xref: /linux/mm/shmem.c (revision f6c0d1a3edb5862c21ddb57bd4dfa175b01136ca)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
36 
37 static struct vfsmount *shm_mnt;
38 
39 #ifdef CONFIG_SHMEM
40 /*
41  * This virtual memory filesystem is heavily based on the ramfs. It
42  * extends ramfs by the ability to use swap and honor resource limits
43  * which makes it a completely usable filesystem.
44  */
45 
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
73 
74 #include <asm/uaccess.h>
75 #include <asm/pgtable.h>
76 
77 #include "internal.h"
78 
79 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
80 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
81 
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
84 
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
87 
88 /*
89  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90  * inode->i_private (with i_mutex making sure that it has only one user at
91  * a time): we would prefer not to enlarge the shmem inode just for that.
92  */
93 struct shmem_falloc {
94 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
95 	pgoff_t start;		/* start of range currently being fallocated */
96 	pgoff_t next;		/* the next page offset to be fallocated */
97 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
98 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
99 };
100 
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
103 {
104 	return totalram_pages / 2;
105 }
106 
107 static unsigned long shmem_default_max_inodes(void)
108 {
109 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110 }
111 #endif
112 
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 				struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117 		struct page **pagep, enum sgp_type sgp,
118 		gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
119 
120 int shmem_getpage(struct inode *inode, pgoff_t index,
121 		struct page **pagep, enum sgp_type sgp)
122 {
123 	return shmem_getpage_gfp(inode, index, pagep, sgp,
124 		mapping_gfp_mask(inode->i_mapping), NULL, NULL);
125 }
126 
127 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
128 {
129 	return sb->s_fs_info;
130 }
131 
132 /*
133  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134  * for shared memory and for shared anonymous (/dev/zero) mappings
135  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136  * consistent with the pre-accounting of private mappings ...
137  */
138 static inline int shmem_acct_size(unsigned long flags, loff_t size)
139 {
140 	return (flags & VM_NORESERVE) ?
141 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
142 }
143 
144 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
145 {
146 	if (!(flags & VM_NORESERVE))
147 		vm_unacct_memory(VM_ACCT(size));
148 }
149 
150 static inline int shmem_reacct_size(unsigned long flags,
151 		loff_t oldsize, loff_t newsize)
152 {
153 	if (!(flags & VM_NORESERVE)) {
154 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155 			return security_vm_enough_memory_mm(current->mm,
156 					VM_ACCT(newsize) - VM_ACCT(oldsize));
157 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
159 	}
160 	return 0;
161 }
162 
163 /*
164  * ... whereas tmpfs objects are accounted incrementally as
165  * pages are allocated, in order to allow large sparse files.
166  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168  */
169 static inline int shmem_acct_block(unsigned long flags, long pages)
170 {
171 	if (!(flags & VM_NORESERVE))
172 		return 0;
173 
174 	return security_vm_enough_memory_mm(current->mm,
175 			pages * VM_ACCT(PAGE_SIZE));
176 }
177 
178 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
179 {
180 	if (flags & VM_NORESERVE)
181 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
182 }
183 
184 static const struct super_operations shmem_ops;
185 static const struct address_space_operations shmem_aops;
186 static const struct file_operations shmem_file_operations;
187 static const struct inode_operations shmem_inode_operations;
188 static const struct inode_operations shmem_dir_inode_operations;
189 static const struct inode_operations shmem_special_inode_operations;
190 static const struct vm_operations_struct shmem_vm_ops;
191 static struct file_system_type shmem_fs_type;
192 
193 static LIST_HEAD(shmem_swaplist);
194 static DEFINE_MUTEX(shmem_swaplist_mutex);
195 
196 static int shmem_reserve_inode(struct super_block *sb)
197 {
198 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
199 	if (sbinfo->max_inodes) {
200 		spin_lock(&sbinfo->stat_lock);
201 		if (!sbinfo->free_inodes) {
202 			spin_unlock(&sbinfo->stat_lock);
203 			return -ENOSPC;
204 		}
205 		sbinfo->free_inodes--;
206 		spin_unlock(&sbinfo->stat_lock);
207 	}
208 	return 0;
209 }
210 
211 static void shmem_free_inode(struct super_block *sb)
212 {
213 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
214 	if (sbinfo->max_inodes) {
215 		spin_lock(&sbinfo->stat_lock);
216 		sbinfo->free_inodes++;
217 		spin_unlock(&sbinfo->stat_lock);
218 	}
219 }
220 
221 /**
222  * shmem_recalc_inode - recalculate the block usage of an inode
223  * @inode: inode to recalc
224  *
225  * We have to calculate the free blocks since the mm can drop
226  * undirtied hole pages behind our back.
227  *
228  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
229  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
230  *
231  * It has to be called with the spinlock held.
232  */
233 static void shmem_recalc_inode(struct inode *inode)
234 {
235 	struct shmem_inode_info *info = SHMEM_I(inode);
236 	long freed;
237 
238 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
239 	if (freed > 0) {
240 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241 		if (sbinfo->max_blocks)
242 			percpu_counter_add(&sbinfo->used_blocks, -freed);
243 		info->alloced -= freed;
244 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
245 		shmem_unacct_blocks(info->flags, freed);
246 	}
247 }
248 
249 bool shmem_charge(struct inode *inode, long pages)
250 {
251 	struct shmem_inode_info *info = SHMEM_I(inode);
252 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253 	unsigned long flags;
254 
255 	if (shmem_acct_block(info->flags, pages))
256 		return false;
257 	spin_lock_irqsave(&info->lock, flags);
258 	info->alloced += pages;
259 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
260 	shmem_recalc_inode(inode);
261 	spin_unlock_irqrestore(&info->lock, flags);
262 	inode->i_mapping->nrpages += pages;
263 
264 	if (!sbinfo->max_blocks)
265 		return true;
266 	if (percpu_counter_compare(&sbinfo->used_blocks,
267 				sbinfo->max_blocks - pages) > 0) {
268 		inode->i_mapping->nrpages -= pages;
269 		spin_lock_irqsave(&info->lock, flags);
270 		info->alloced -= pages;
271 		shmem_recalc_inode(inode);
272 		spin_unlock_irqrestore(&info->lock, flags);
273 		shmem_unacct_blocks(info->flags, pages);
274 		return false;
275 	}
276 	percpu_counter_add(&sbinfo->used_blocks, pages);
277 	return true;
278 }
279 
280 void shmem_uncharge(struct inode *inode, long pages)
281 {
282 	struct shmem_inode_info *info = SHMEM_I(inode);
283 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
284 	unsigned long flags;
285 
286 	spin_lock_irqsave(&info->lock, flags);
287 	info->alloced -= pages;
288 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
289 	shmem_recalc_inode(inode);
290 	spin_unlock_irqrestore(&info->lock, flags);
291 
292 	if (sbinfo->max_blocks)
293 		percpu_counter_sub(&sbinfo->used_blocks, pages);
294 	shmem_unacct_blocks(info->flags, pages);
295 }
296 
297 /*
298  * Replace item expected in radix tree by a new item, while holding tree lock.
299  */
300 static int shmem_radix_tree_replace(struct address_space *mapping,
301 			pgoff_t index, void *expected, void *replacement)
302 {
303 	void **pslot;
304 	void *item;
305 
306 	VM_BUG_ON(!expected);
307 	VM_BUG_ON(!replacement);
308 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
309 	if (!pslot)
310 		return -ENOENT;
311 	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
312 	if (item != expected)
313 		return -ENOENT;
314 	radix_tree_replace_slot(pslot, replacement);
315 	return 0;
316 }
317 
318 /*
319  * Sometimes, before we decide whether to proceed or to fail, we must check
320  * that an entry was not already brought back from swap by a racing thread.
321  *
322  * Checking page is not enough: by the time a SwapCache page is locked, it
323  * might be reused, and again be SwapCache, using the same swap as before.
324  */
325 static bool shmem_confirm_swap(struct address_space *mapping,
326 			       pgoff_t index, swp_entry_t swap)
327 {
328 	void *item;
329 
330 	rcu_read_lock();
331 	item = radix_tree_lookup(&mapping->page_tree, index);
332 	rcu_read_unlock();
333 	return item == swp_to_radix_entry(swap);
334 }
335 
336 /*
337  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
338  *
339  * SHMEM_HUGE_NEVER:
340  *	disables huge pages for the mount;
341  * SHMEM_HUGE_ALWAYS:
342  *	enables huge pages for the mount;
343  * SHMEM_HUGE_WITHIN_SIZE:
344  *	only allocate huge pages if the page will be fully within i_size,
345  *	also respect fadvise()/madvise() hints;
346  * SHMEM_HUGE_ADVISE:
347  *	only allocate huge pages if requested with fadvise()/madvise();
348  */
349 
350 #define SHMEM_HUGE_NEVER	0
351 #define SHMEM_HUGE_ALWAYS	1
352 #define SHMEM_HUGE_WITHIN_SIZE	2
353 #define SHMEM_HUGE_ADVISE	3
354 
355 /*
356  * Special values.
357  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
358  *
359  * SHMEM_HUGE_DENY:
360  *	disables huge on shm_mnt and all mounts, for emergency use;
361  * SHMEM_HUGE_FORCE:
362  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
363  *
364  */
365 #define SHMEM_HUGE_DENY		(-1)
366 #define SHMEM_HUGE_FORCE	(-2)
367 
368 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
369 /* ifdef here to avoid bloating shmem.o when not necessary */
370 
371 int shmem_huge __read_mostly;
372 
373 static int shmem_parse_huge(const char *str)
374 {
375 	if (!strcmp(str, "never"))
376 		return SHMEM_HUGE_NEVER;
377 	if (!strcmp(str, "always"))
378 		return SHMEM_HUGE_ALWAYS;
379 	if (!strcmp(str, "within_size"))
380 		return SHMEM_HUGE_WITHIN_SIZE;
381 	if (!strcmp(str, "advise"))
382 		return SHMEM_HUGE_ADVISE;
383 	if (!strcmp(str, "deny"))
384 		return SHMEM_HUGE_DENY;
385 	if (!strcmp(str, "force"))
386 		return SHMEM_HUGE_FORCE;
387 	return -EINVAL;
388 }
389 
390 static const char *shmem_format_huge(int huge)
391 {
392 	switch (huge) {
393 	case SHMEM_HUGE_NEVER:
394 		return "never";
395 	case SHMEM_HUGE_ALWAYS:
396 		return "always";
397 	case SHMEM_HUGE_WITHIN_SIZE:
398 		return "within_size";
399 	case SHMEM_HUGE_ADVISE:
400 		return "advise";
401 	case SHMEM_HUGE_DENY:
402 		return "deny";
403 	case SHMEM_HUGE_FORCE:
404 		return "force";
405 	default:
406 		VM_BUG_ON(1);
407 		return "bad_val";
408 	}
409 }
410 
411 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
412 		struct shrink_control *sc, unsigned long nr_to_split)
413 {
414 	LIST_HEAD(list), *pos, *next;
415 	struct inode *inode;
416 	struct shmem_inode_info *info;
417 	struct page *page;
418 	unsigned long batch = sc ? sc->nr_to_scan : 128;
419 	int removed = 0, split = 0;
420 
421 	if (list_empty(&sbinfo->shrinklist))
422 		return SHRINK_STOP;
423 
424 	spin_lock(&sbinfo->shrinklist_lock);
425 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
426 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
427 
428 		/* pin the inode */
429 		inode = igrab(&info->vfs_inode);
430 
431 		/* inode is about to be evicted */
432 		if (!inode) {
433 			list_del_init(&info->shrinklist);
434 			removed++;
435 			goto next;
436 		}
437 
438 		/* Check if there's anything to gain */
439 		if (round_up(inode->i_size, PAGE_SIZE) ==
440 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
441 			list_del_init(&info->shrinklist);
442 			removed++;
443 			iput(inode);
444 			goto next;
445 		}
446 
447 		list_move(&info->shrinklist, &list);
448 next:
449 		if (!--batch)
450 			break;
451 	}
452 	spin_unlock(&sbinfo->shrinklist_lock);
453 
454 	list_for_each_safe(pos, next, &list) {
455 		int ret;
456 
457 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
458 		inode = &info->vfs_inode;
459 
460 		if (nr_to_split && split >= nr_to_split) {
461 			iput(inode);
462 			continue;
463 		}
464 
465 		page = find_lock_page(inode->i_mapping,
466 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
467 		if (!page)
468 			goto drop;
469 
470 		if (!PageTransHuge(page)) {
471 			unlock_page(page);
472 			put_page(page);
473 			goto drop;
474 		}
475 
476 		ret = split_huge_page(page);
477 		unlock_page(page);
478 		put_page(page);
479 
480 		if (ret) {
481 			/* split failed: leave it on the list */
482 			iput(inode);
483 			continue;
484 		}
485 
486 		split++;
487 drop:
488 		list_del_init(&info->shrinklist);
489 		removed++;
490 		iput(inode);
491 	}
492 
493 	spin_lock(&sbinfo->shrinklist_lock);
494 	list_splice_tail(&list, &sbinfo->shrinklist);
495 	sbinfo->shrinklist_len -= removed;
496 	spin_unlock(&sbinfo->shrinklist_lock);
497 
498 	return split;
499 }
500 
501 static long shmem_unused_huge_scan(struct super_block *sb,
502 		struct shrink_control *sc)
503 {
504 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
505 
506 	if (!READ_ONCE(sbinfo->shrinklist_len))
507 		return SHRINK_STOP;
508 
509 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
510 }
511 
512 static long shmem_unused_huge_count(struct super_block *sb,
513 		struct shrink_control *sc)
514 {
515 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
516 	return READ_ONCE(sbinfo->shrinklist_len);
517 }
518 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
519 
520 #define shmem_huge SHMEM_HUGE_DENY
521 
522 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
523 		struct shrink_control *sc, unsigned long nr_to_split)
524 {
525 	return 0;
526 }
527 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
528 
529 /*
530  * Like add_to_page_cache_locked, but error if expected item has gone.
531  */
532 static int shmem_add_to_page_cache(struct page *page,
533 				   struct address_space *mapping,
534 				   pgoff_t index, void *expected)
535 {
536 	int error, nr = hpage_nr_pages(page);
537 
538 	VM_BUG_ON_PAGE(PageTail(page), page);
539 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
540 	VM_BUG_ON_PAGE(!PageLocked(page), page);
541 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
542 	VM_BUG_ON(expected && PageTransHuge(page));
543 
544 	page_ref_add(page, nr);
545 	page->mapping = mapping;
546 	page->index = index;
547 
548 	spin_lock_irq(&mapping->tree_lock);
549 	if (PageTransHuge(page)) {
550 		void __rcu **results;
551 		pgoff_t idx;
552 		int i;
553 
554 		error = 0;
555 		if (radix_tree_gang_lookup_slot(&mapping->page_tree,
556 					&results, &idx, index, 1) &&
557 				idx < index + HPAGE_PMD_NR) {
558 			error = -EEXIST;
559 		}
560 
561 		if (!error) {
562 			for (i = 0; i < HPAGE_PMD_NR; i++) {
563 				error = radix_tree_insert(&mapping->page_tree,
564 						index + i, page + i);
565 				VM_BUG_ON(error);
566 			}
567 			count_vm_event(THP_FILE_ALLOC);
568 		}
569 	} else if (!expected) {
570 		error = radix_tree_insert(&mapping->page_tree, index, page);
571 	} else {
572 		error = shmem_radix_tree_replace(mapping, index, expected,
573 								 page);
574 	}
575 
576 	if (!error) {
577 		mapping->nrpages += nr;
578 		if (PageTransHuge(page))
579 			__inc_node_page_state(page, NR_SHMEM_THPS);
580 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
581 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
582 		spin_unlock_irq(&mapping->tree_lock);
583 	} else {
584 		page->mapping = NULL;
585 		spin_unlock_irq(&mapping->tree_lock);
586 		page_ref_sub(page, nr);
587 	}
588 	return error;
589 }
590 
591 /*
592  * Like delete_from_page_cache, but substitutes swap for page.
593  */
594 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
595 {
596 	struct address_space *mapping = page->mapping;
597 	int error;
598 
599 	VM_BUG_ON_PAGE(PageCompound(page), page);
600 
601 	spin_lock_irq(&mapping->tree_lock);
602 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
603 	page->mapping = NULL;
604 	mapping->nrpages--;
605 	__dec_node_page_state(page, NR_FILE_PAGES);
606 	__dec_node_page_state(page, NR_SHMEM);
607 	spin_unlock_irq(&mapping->tree_lock);
608 	put_page(page);
609 	BUG_ON(error);
610 }
611 
612 /*
613  * Remove swap entry from radix tree, free the swap and its page cache.
614  */
615 static int shmem_free_swap(struct address_space *mapping,
616 			   pgoff_t index, void *radswap)
617 {
618 	void *old;
619 
620 	spin_lock_irq(&mapping->tree_lock);
621 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
622 	spin_unlock_irq(&mapping->tree_lock);
623 	if (old != radswap)
624 		return -ENOENT;
625 	free_swap_and_cache(radix_to_swp_entry(radswap));
626 	return 0;
627 }
628 
629 /*
630  * Determine (in bytes) how many of the shmem object's pages mapped by the
631  * given offsets are swapped out.
632  *
633  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
634  * as long as the inode doesn't go away and racy results are not a problem.
635  */
636 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
637 						pgoff_t start, pgoff_t end)
638 {
639 	struct radix_tree_iter iter;
640 	void **slot;
641 	struct page *page;
642 	unsigned long swapped = 0;
643 
644 	rcu_read_lock();
645 
646 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
647 		if (iter.index >= end)
648 			break;
649 
650 		page = radix_tree_deref_slot(slot);
651 
652 		if (radix_tree_deref_retry(page)) {
653 			slot = radix_tree_iter_retry(&iter);
654 			continue;
655 		}
656 
657 		if (radix_tree_exceptional_entry(page))
658 			swapped++;
659 
660 		if (need_resched()) {
661 			cond_resched_rcu();
662 			slot = radix_tree_iter_next(&iter);
663 		}
664 	}
665 
666 	rcu_read_unlock();
667 
668 	return swapped << PAGE_SHIFT;
669 }
670 
671 /*
672  * Determine (in bytes) how many of the shmem object's pages mapped by the
673  * given vma is swapped out.
674  *
675  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
676  * as long as the inode doesn't go away and racy results are not a problem.
677  */
678 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
679 {
680 	struct inode *inode = file_inode(vma->vm_file);
681 	struct shmem_inode_info *info = SHMEM_I(inode);
682 	struct address_space *mapping = inode->i_mapping;
683 	unsigned long swapped;
684 
685 	/* Be careful as we don't hold info->lock */
686 	swapped = READ_ONCE(info->swapped);
687 
688 	/*
689 	 * The easier cases are when the shmem object has nothing in swap, or
690 	 * the vma maps it whole. Then we can simply use the stats that we
691 	 * already track.
692 	 */
693 	if (!swapped)
694 		return 0;
695 
696 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
697 		return swapped << PAGE_SHIFT;
698 
699 	/* Here comes the more involved part */
700 	return shmem_partial_swap_usage(mapping,
701 			linear_page_index(vma, vma->vm_start),
702 			linear_page_index(vma, vma->vm_end));
703 }
704 
705 /*
706  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
707  */
708 void shmem_unlock_mapping(struct address_space *mapping)
709 {
710 	struct pagevec pvec;
711 	pgoff_t indices[PAGEVEC_SIZE];
712 	pgoff_t index = 0;
713 
714 	pagevec_init(&pvec, 0);
715 	/*
716 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
717 	 */
718 	while (!mapping_unevictable(mapping)) {
719 		/*
720 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
721 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
722 		 */
723 		pvec.nr = find_get_entries(mapping, index,
724 					   PAGEVEC_SIZE, pvec.pages, indices);
725 		if (!pvec.nr)
726 			break;
727 		index = indices[pvec.nr - 1] + 1;
728 		pagevec_remove_exceptionals(&pvec);
729 		check_move_unevictable_pages(pvec.pages, pvec.nr);
730 		pagevec_release(&pvec);
731 		cond_resched();
732 	}
733 }
734 
735 /*
736  * Remove range of pages and swap entries from radix tree, and free them.
737  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
738  */
739 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
740 								 bool unfalloc)
741 {
742 	struct address_space *mapping = inode->i_mapping;
743 	struct shmem_inode_info *info = SHMEM_I(inode);
744 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
745 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
746 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
747 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
748 	struct pagevec pvec;
749 	pgoff_t indices[PAGEVEC_SIZE];
750 	long nr_swaps_freed = 0;
751 	pgoff_t index;
752 	int i;
753 
754 	if (lend == -1)
755 		end = -1;	/* unsigned, so actually very big */
756 
757 	pagevec_init(&pvec, 0);
758 	index = start;
759 	while (index < end) {
760 		pvec.nr = find_get_entries(mapping, index,
761 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
762 			pvec.pages, indices);
763 		if (!pvec.nr)
764 			break;
765 		for (i = 0; i < pagevec_count(&pvec); i++) {
766 			struct page *page = pvec.pages[i];
767 
768 			index = indices[i];
769 			if (index >= end)
770 				break;
771 
772 			if (radix_tree_exceptional_entry(page)) {
773 				if (unfalloc)
774 					continue;
775 				nr_swaps_freed += !shmem_free_swap(mapping,
776 								index, page);
777 				continue;
778 			}
779 
780 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
781 
782 			if (!trylock_page(page))
783 				continue;
784 
785 			if (PageTransTail(page)) {
786 				/* Middle of THP: zero out the page */
787 				clear_highpage(page);
788 				unlock_page(page);
789 				continue;
790 			} else if (PageTransHuge(page)) {
791 				if (index == round_down(end, HPAGE_PMD_NR)) {
792 					/*
793 					 * Range ends in the middle of THP:
794 					 * zero out the page
795 					 */
796 					clear_highpage(page);
797 					unlock_page(page);
798 					continue;
799 				}
800 				index += HPAGE_PMD_NR - 1;
801 				i += HPAGE_PMD_NR - 1;
802 			}
803 
804 			if (!unfalloc || !PageUptodate(page)) {
805 				VM_BUG_ON_PAGE(PageTail(page), page);
806 				if (page_mapping(page) == mapping) {
807 					VM_BUG_ON_PAGE(PageWriteback(page), page);
808 					truncate_inode_page(mapping, page);
809 				}
810 			}
811 			unlock_page(page);
812 		}
813 		pagevec_remove_exceptionals(&pvec);
814 		pagevec_release(&pvec);
815 		cond_resched();
816 		index++;
817 	}
818 
819 	if (partial_start) {
820 		struct page *page = NULL;
821 		shmem_getpage(inode, start - 1, &page, SGP_READ);
822 		if (page) {
823 			unsigned int top = PAGE_SIZE;
824 			if (start > end) {
825 				top = partial_end;
826 				partial_end = 0;
827 			}
828 			zero_user_segment(page, partial_start, top);
829 			set_page_dirty(page);
830 			unlock_page(page);
831 			put_page(page);
832 		}
833 	}
834 	if (partial_end) {
835 		struct page *page = NULL;
836 		shmem_getpage(inode, end, &page, SGP_READ);
837 		if (page) {
838 			zero_user_segment(page, 0, partial_end);
839 			set_page_dirty(page);
840 			unlock_page(page);
841 			put_page(page);
842 		}
843 	}
844 	if (start >= end)
845 		return;
846 
847 	index = start;
848 	while (index < end) {
849 		cond_resched();
850 
851 		pvec.nr = find_get_entries(mapping, index,
852 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
853 				pvec.pages, indices);
854 		if (!pvec.nr) {
855 			/* If all gone or hole-punch or unfalloc, we're done */
856 			if (index == start || end != -1)
857 				break;
858 			/* But if truncating, restart to make sure all gone */
859 			index = start;
860 			continue;
861 		}
862 		for (i = 0; i < pagevec_count(&pvec); i++) {
863 			struct page *page = pvec.pages[i];
864 
865 			index = indices[i];
866 			if (index >= end)
867 				break;
868 
869 			if (radix_tree_exceptional_entry(page)) {
870 				if (unfalloc)
871 					continue;
872 				if (shmem_free_swap(mapping, index, page)) {
873 					/* Swap was replaced by page: retry */
874 					index--;
875 					break;
876 				}
877 				nr_swaps_freed++;
878 				continue;
879 			}
880 
881 			lock_page(page);
882 
883 			if (PageTransTail(page)) {
884 				/* Middle of THP: zero out the page */
885 				clear_highpage(page);
886 				unlock_page(page);
887 				/*
888 				 * Partial thp truncate due 'start' in middle
889 				 * of THP: don't need to look on these pages
890 				 * again on !pvec.nr restart.
891 				 */
892 				if (index != round_down(end, HPAGE_PMD_NR))
893 					start++;
894 				continue;
895 			} else if (PageTransHuge(page)) {
896 				if (index == round_down(end, HPAGE_PMD_NR)) {
897 					/*
898 					 * Range ends in the middle of THP:
899 					 * zero out the page
900 					 */
901 					clear_highpage(page);
902 					unlock_page(page);
903 					continue;
904 				}
905 				index += HPAGE_PMD_NR - 1;
906 				i += HPAGE_PMD_NR - 1;
907 			}
908 
909 			if (!unfalloc || !PageUptodate(page)) {
910 				VM_BUG_ON_PAGE(PageTail(page), page);
911 				if (page_mapping(page) == mapping) {
912 					VM_BUG_ON_PAGE(PageWriteback(page), page);
913 					truncate_inode_page(mapping, page);
914 				} else {
915 					/* Page was replaced by swap: retry */
916 					unlock_page(page);
917 					index--;
918 					break;
919 				}
920 			}
921 			unlock_page(page);
922 		}
923 		pagevec_remove_exceptionals(&pvec);
924 		pagevec_release(&pvec);
925 		index++;
926 	}
927 
928 	spin_lock_irq(&info->lock);
929 	info->swapped -= nr_swaps_freed;
930 	shmem_recalc_inode(inode);
931 	spin_unlock_irq(&info->lock);
932 }
933 
934 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
935 {
936 	shmem_undo_range(inode, lstart, lend, false);
937 	inode->i_ctime = inode->i_mtime = current_time(inode);
938 }
939 EXPORT_SYMBOL_GPL(shmem_truncate_range);
940 
941 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
942 			 struct kstat *stat)
943 {
944 	struct inode *inode = dentry->d_inode;
945 	struct shmem_inode_info *info = SHMEM_I(inode);
946 
947 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
948 		spin_lock_irq(&info->lock);
949 		shmem_recalc_inode(inode);
950 		spin_unlock_irq(&info->lock);
951 	}
952 	generic_fillattr(inode, stat);
953 	return 0;
954 }
955 
956 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
957 {
958 	struct inode *inode = d_inode(dentry);
959 	struct shmem_inode_info *info = SHMEM_I(inode);
960 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
961 	int error;
962 
963 	error = setattr_prepare(dentry, attr);
964 	if (error)
965 		return error;
966 
967 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
968 		loff_t oldsize = inode->i_size;
969 		loff_t newsize = attr->ia_size;
970 
971 		/* protected by i_mutex */
972 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
973 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
974 			return -EPERM;
975 
976 		if (newsize != oldsize) {
977 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
978 					oldsize, newsize);
979 			if (error)
980 				return error;
981 			i_size_write(inode, newsize);
982 			inode->i_ctime = inode->i_mtime = current_time(inode);
983 		}
984 		if (newsize <= oldsize) {
985 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
986 			if (oldsize > holebegin)
987 				unmap_mapping_range(inode->i_mapping,
988 							holebegin, 0, 1);
989 			if (info->alloced)
990 				shmem_truncate_range(inode,
991 							newsize, (loff_t)-1);
992 			/* unmap again to remove racily COWed private pages */
993 			if (oldsize > holebegin)
994 				unmap_mapping_range(inode->i_mapping,
995 							holebegin, 0, 1);
996 
997 			/*
998 			 * Part of the huge page can be beyond i_size: subject
999 			 * to shrink under memory pressure.
1000 			 */
1001 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1002 				spin_lock(&sbinfo->shrinklist_lock);
1003 				if (list_empty(&info->shrinklist)) {
1004 					list_add_tail(&info->shrinklist,
1005 							&sbinfo->shrinklist);
1006 					sbinfo->shrinklist_len++;
1007 				}
1008 				spin_unlock(&sbinfo->shrinklist_lock);
1009 			}
1010 		}
1011 	}
1012 
1013 	setattr_copy(inode, attr);
1014 	if (attr->ia_valid & ATTR_MODE)
1015 		error = posix_acl_chmod(inode, inode->i_mode);
1016 	return error;
1017 }
1018 
1019 static void shmem_evict_inode(struct inode *inode)
1020 {
1021 	struct shmem_inode_info *info = SHMEM_I(inode);
1022 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1023 
1024 	if (inode->i_mapping->a_ops == &shmem_aops) {
1025 		shmem_unacct_size(info->flags, inode->i_size);
1026 		inode->i_size = 0;
1027 		shmem_truncate_range(inode, 0, (loff_t)-1);
1028 		if (!list_empty(&info->shrinklist)) {
1029 			spin_lock(&sbinfo->shrinklist_lock);
1030 			if (!list_empty(&info->shrinklist)) {
1031 				list_del_init(&info->shrinklist);
1032 				sbinfo->shrinklist_len--;
1033 			}
1034 			spin_unlock(&sbinfo->shrinklist_lock);
1035 		}
1036 		if (!list_empty(&info->swaplist)) {
1037 			mutex_lock(&shmem_swaplist_mutex);
1038 			list_del_init(&info->swaplist);
1039 			mutex_unlock(&shmem_swaplist_mutex);
1040 		}
1041 	}
1042 
1043 	simple_xattrs_free(&info->xattrs);
1044 	WARN_ON(inode->i_blocks);
1045 	shmem_free_inode(inode->i_sb);
1046 	clear_inode(inode);
1047 }
1048 
1049 /*
1050  * If swap found in inode, free it and move page from swapcache to filecache.
1051  */
1052 static int shmem_unuse_inode(struct shmem_inode_info *info,
1053 			     swp_entry_t swap, struct page **pagep)
1054 {
1055 	struct address_space *mapping = info->vfs_inode.i_mapping;
1056 	void *radswap;
1057 	pgoff_t index;
1058 	gfp_t gfp;
1059 	int error = 0;
1060 
1061 	radswap = swp_to_radix_entry(swap);
1062 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
1063 	if (index == -1)
1064 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1065 
1066 	/*
1067 	 * Move _head_ to start search for next from here.
1068 	 * But be careful: shmem_evict_inode checks list_empty without taking
1069 	 * mutex, and there's an instant in list_move_tail when info->swaplist
1070 	 * would appear empty, if it were the only one on shmem_swaplist.
1071 	 */
1072 	if (shmem_swaplist.next != &info->swaplist)
1073 		list_move_tail(&shmem_swaplist, &info->swaplist);
1074 
1075 	gfp = mapping_gfp_mask(mapping);
1076 	if (shmem_should_replace_page(*pagep, gfp)) {
1077 		mutex_unlock(&shmem_swaplist_mutex);
1078 		error = shmem_replace_page(pagep, gfp, info, index);
1079 		mutex_lock(&shmem_swaplist_mutex);
1080 		/*
1081 		 * We needed to drop mutex to make that restrictive page
1082 		 * allocation, but the inode might have been freed while we
1083 		 * dropped it: although a racing shmem_evict_inode() cannot
1084 		 * complete without emptying the radix_tree, our page lock
1085 		 * on this swapcache page is not enough to prevent that -
1086 		 * free_swap_and_cache() of our swap entry will only
1087 		 * trylock_page(), removing swap from radix_tree whatever.
1088 		 *
1089 		 * We must not proceed to shmem_add_to_page_cache() if the
1090 		 * inode has been freed, but of course we cannot rely on
1091 		 * inode or mapping or info to check that.  However, we can
1092 		 * safely check if our swap entry is still in use (and here
1093 		 * it can't have got reused for another page): if it's still
1094 		 * in use, then the inode cannot have been freed yet, and we
1095 		 * can safely proceed (if it's no longer in use, that tells
1096 		 * nothing about the inode, but we don't need to unuse swap).
1097 		 */
1098 		if (!page_swapcount(*pagep))
1099 			error = -ENOENT;
1100 	}
1101 
1102 	/*
1103 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1104 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1105 	 * beneath us (pagelock doesn't help until the page is in pagecache).
1106 	 */
1107 	if (!error)
1108 		error = shmem_add_to_page_cache(*pagep, mapping, index,
1109 						radswap);
1110 	if (error != -ENOMEM) {
1111 		/*
1112 		 * Truncation and eviction use free_swap_and_cache(), which
1113 		 * only does trylock page: if we raced, best clean up here.
1114 		 */
1115 		delete_from_swap_cache(*pagep);
1116 		set_page_dirty(*pagep);
1117 		if (!error) {
1118 			spin_lock_irq(&info->lock);
1119 			info->swapped--;
1120 			spin_unlock_irq(&info->lock);
1121 			swap_free(swap);
1122 		}
1123 	}
1124 	return error;
1125 }
1126 
1127 /*
1128  * Search through swapped inodes to find and replace swap by page.
1129  */
1130 int shmem_unuse(swp_entry_t swap, struct page *page)
1131 {
1132 	struct list_head *this, *next;
1133 	struct shmem_inode_info *info;
1134 	struct mem_cgroup *memcg;
1135 	int error = 0;
1136 
1137 	/*
1138 	 * There's a faint possibility that swap page was replaced before
1139 	 * caller locked it: caller will come back later with the right page.
1140 	 */
1141 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1142 		goto out;
1143 
1144 	/*
1145 	 * Charge page using GFP_KERNEL while we can wait, before taking
1146 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1147 	 * Charged back to the user (not to caller) when swap account is used.
1148 	 */
1149 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1150 			false);
1151 	if (error)
1152 		goto out;
1153 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
1154 	error = -EAGAIN;
1155 
1156 	mutex_lock(&shmem_swaplist_mutex);
1157 	list_for_each_safe(this, next, &shmem_swaplist) {
1158 		info = list_entry(this, struct shmem_inode_info, swaplist);
1159 		if (info->swapped)
1160 			error = shmem_unuse_inode(info, swap, &page);
1161 		else
1162 			list_del_init(&info->swaplist);
1163 		cond_resched();
1164 		if (error != -EAGAIN)
1165 			break;
1166 		/* found nothing in this: move on to search the next */
1167 	}
1168 	mutex_unlock(&shmem_swaplist_mutex);
1169 
1170 	if (error) {
1171 		if (error != -ENOMEM)
1172 			error = 0;
1173 		mem_cgroup_cancel_charge(page, memcg, false);
1174 	} else
1175 		mem_cgroup_commit_charge(page, memcg, true, false);
1176 out:
1177 	unlock_page(page);
1178 	put_page(page);
1179 	return error;
1180 }
1181 
1182 /*
1183  * Move the page from the page cache to the swap cache.
1184  */
1185 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1186 {
1187 	struct shmem_inode_info *info;
1188 	struct address_space *mapping;
1189 	struct inode *inode;
1190 	swp_entry_t swap;
1191 	pgoff_t index;
1192 
1193 	VM_BUG_ON_PAGE(PageCompound(page), page);
1194 	BUG_ON(!PageLocked(page));
1195 	mapping = page->mapping;
1196 	index = page->index;
1197 	inode = mapping->host;
1198 	info = SHMEM_I(inode);
1199 	if (info->flags & VM_LOCKED)
1200 		goto redirty;
1201 	if (!total_swap_pages)
1202 		goto redirty;
1203 
1204 	/*
1205 	 * Our capabilities prevent regular writeback or sync from ever calling
1206 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1207 	 * its underlying filesystem, in which case tmpfs should write out to
1208 	 * swap only in response to memory pressure, and not for the writeback
1209 	 * threads or sync.
1210 	 */
1211 	if (!wbc->for_reclaim) {
1212 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1213 		goto redirty;
1214 	}
1215 
1216 	/*
1217 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1218 	 * value into swapfile.c, the only way we can correctly account for a
1219 	 * fallocated page arriving here is now to initialize it and write it.
1220 	 *
1221 	 * That's okay for a page already fallocated earlier, but if we have
1222 	 * not yet completed the fallocation, then (a) we want to keep track
1223 	 * of this page in case we have to undo it, and (b) it may not be a
1224 	 * good idea to continue anyway, once we're pushing into swap.  So
1225 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1226 	 */
1227 	if (!PageUptodate(page)) {
1228 		if (inode->i_private) {
1229 			struct shmem_falloc *shmem_falloc;
1230 			spin_lock(&inode->i_lock);
1231 			shmem_falloc = inode->i_private;
1232 			if (shmem_falloc &&
1233 			    !shmem_falloc->waitq &&
1234 			    index >= shmem_falloc->start &&
1235 			    index < shmem_falloc->next)
1236 				shmem_falloc->nr_unswapped++;
1237 			else
1238 				shmem_falloc = NULL;
1239 			spin_unlock(&inode->i_lock);
1240 			if (shmem_falloc)
1241 				goto redirty;
1242 		}
1243 		clear_highpage(page);
1244 		flush_dcache_page(page);
1245 		SetPageUptodate(page);
1246 	}
1247 
1248 	swap = get_swap_page();
1249 	if (!swap.val)
1250 		goto redirty;
1251 
1252 	if (mem_cgroup_try_charge_swap(page, swap))
1253 		goto free_swap;
1254 
1255 	/*
1256 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1257 	 * if it's not already there.  Do it now before the page is
1258 	 * moved to swap cache, when its pagelock no longer protects
1259 	 * the inode from eviction.  But don't unlock the mutex until
1260 	 * we've incremented swapped, because shmem_unuse_inode() will
1261 	 * prune a !swapped inode from the swaplist under this mutex.
1262 	 */
1263 	mutex_lock(&shmem_swaplist_mutex);
1264 	if (list_empty(&info->swaplist))
1265 		list_add_tail(&info->swaplist, &shmem_swaplist);
1266 
1267 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1268 		spin_lock_irq(&info->lock);
1269 		shmem_recalc_inode(inode);
1270 		info->swapped++;
1271 		spin_unlock_irq(&info->lock);
1272 
1273 		swap_shmem_alloc(swap);
1274 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1275 
1276 		mutex_unlock(&shmem_swaplist_mutex);
1277 		BUG_ON(page_mapped(page));
1278 		swap_writepage(page, wbc);
1279 		return 0;
1280 	}
1281 
1282 	mutex_unlock(&shmem_swaplist_mutex);
1283 free_swap:
1284 	swapcache_free(swap);
1285 redirty:
1286 	set_page_dirty(page);
1287 	if (wbc->for_reclaim)
1288 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1289 	unlock_page(page);
1290 	return 0;
1291 }
1292 
1293 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1294 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1295 {
1296 	char buffer[64];
1297 
1298 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1299 		return;		/* show nothing */
1300 
1301 	mpol_to_str(buffer, sizeof(buffer), mpol);
1302 
1303 	seq_printf(seq, ",mpol=%s", buffer);
1304 }
1305 
1306 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1307 {
1308 	struct mempolicy *mpol = NULL;
1309 	if (sbinfo->mpol) {
1310 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1311 		mpol = sbinfo->mpol;
1312 		mpol_get(mpol);
1313 		spin_unlock(&sbinfo->stat_lock);
1314 	}
1315 	return mpol;
1316 }
1317 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1318 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1319 {
1320 }
1321 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1322 {
1323 	return NULL;
1324 }
1325 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1326 #ifndef CONFIG_NUMA
1327 #define vm_policy vm_private_data
1328 #endif
1329 
1330 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1331 		struct shmem_inode_info *info, pgoff_t index)
1332 {
1333 	/* Create a pseudo vma that just contains the policy */
1334 	vma->vm_start = 0;
1335 	/* Bias interleave by inode number to distribute better across nodes */
1336 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1337 	vma->vm_ops = NULL;
1338 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1339 }
1340 
1341 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1342 {
1343 	/* Drop reference taken by mpol_shared_policy_lookup() */
1344 	mpol_cond_put(vma->vm_policy);
1345 }
1346 
1347 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1348 			struct shmem_inode_info *info, pgoff_t index)
1349 {
1350 	struct vm_area_struct pvma;
1351 	struct page *page;
1352 
1353 	shmem_pseudo_vma_init(&pvma, info, index);
1354 	page = swapin_readahead(swap, gfp, &pvma, 0);
1355 	shmem_pseudo_vma_destroy(&pvma);
1356 
1357 	return page;
1358 }
1359 
1360 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1361 		struct shmem_inode_info *info, pgoff_t index)
1362 {
1363 	struct vm_area_struct pvma;
1364 	struct inode *inode = &info->vfs_inode;
1365 	struct address_space *mapping = inode->i_mapping;
1366 	pgoff_t idx, hindex;
1367 	void __rcu **results;
1368 	struct page *page;
1369 
1370 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1371 		return NULL;
1372 
1373 	hindex = round_down(index, HPAGE_PMD_NR);
1374 	rcu_read_lock();
1375 	if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1376 				hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1377 		rcu_read_unlock();
1378 		return NULL;
1379 	}
1380 	rcu_read_unlock();
1381 
1382 	shmem_pseudo_vma_init(&pvma, info, hindex);
1383 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1384 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1385 	shmem_pseudo_vma_destroy(&pvma);
1386 	if (page)
1387 		prep_transhuge_page(page);
1388 	return page;
1389 }
1390 
1391 static struct page *shmem_alloc_page(gfp_t gfp,
1392 			struct shmem_inode_info *info, pgoff_t index)
1393 {
1394 	struct vm_area_struct pvma;
1395 	struct page *page;
1396 
1397 	shmem_pseudo_vma_init(&pvma, info, index);
1398 	page = alloc_page_vma(gfp, &pvma, 0);
1399 	shmem_pseudo_vma_destroy(&pvma);
1400 
1401 	return page;
1402 }
1403 
1404 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1405 		struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1406 		pgoff_t index, bool huge)
1407 {
1408 	struct page *page;
1409 	int nr;
1410 	int err = -ENOSPC;
1411 
1412 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1413 		huge = false;
1414 	nr = huge ? HPAGE_PMD_NR : 1;
1415 
1416 	if (shmem_acct_block(info->flags, nr))
1417 		goto failed;
1418 	if (sbinfo->max_blocks) {
1419 		if (percpu_counter_compare(&sbinfo->used_blocks,
1420 					sbinfo->max_blocks - nr) > 0)
1421 			goto unacct;
1422 		percpu_counter_add(&sbinfo->used_blocks, nr);
1423 	}
1424 
1425 	if (huge)
1426 		page = shmem_alloc_hugepage(gfp, info, index);
1427 	else
1428 		page = shmem_alloc_page(gfp, info, index);
1429 	if (page) {
1430 		__SetPageLocked(page);
1431 		__SetPageSwapBacked(page);
1432 		return page;
1433 	}
1434 
1435 	err = -ENOMEM;
1436 	if (sbinfo->max_blocks)
1437 		percpu_counter_add(&sbinfo->used_blocks, -nr);
1438 unacct:
1439 	shmem_unacct_blocks(info->flags, nr);
1440 failed:
1441 	return ERR_PTR(err);
1442 }
1443 
1444 /*
1445  * When a page is moved from swapcache to shmem filecache (either by the
1446  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1447  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1448  * ignorance of the mapping it belongs to.  If that mapping has special
1449  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1450  * we may need to copy to a suitable page before moving to filecache.
1451  *
1452  * In a future release, this may well be extended to respect cpuset and
1453  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1454  * but for now it is a simple matter of zone.
1455  */
1456 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1457 {
1458 	return page_zonenum(page) > gfp_zone(gfp);
1459 }
1460 
1461 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1462 				struct shmem_inode_info *info, pgoff_t index)
1463 {
1464 	struct page *oldpage, *newpage;
1465 	struct address_space *swap_mapping;
1466 	pgoff_t swap_index;
1467 	int error;
1468 
1469 	oldpage = *pagep;
1470 	swap_index = page_private(oldpage);
1471 	swap_mapping = page_mapping(oldpage);
1472 
1473 	/*
1474 	 * We have arrived here because our zones are constrained, so don't
1475 	 * limit chance of success by further cpuset and node constraints.
1476 	 */
1477 	gfp &= ~GFP_CONSTRAINT_MASK;
1478 	newpage = shmem_alloc_page(gfp, info, index);
1479 	if (!newpage)
1480 		return -ENOMEM;
1481 
1482 	get_page(newpage);
1483 	copy_highpage(newpage, oldpage);
1484 	flush_dcache_page(newpage);
1485 
1486 	__SetPageLocked(newpage);
1487 	__SetPageSwapBacked(newpage);
1488 	SetPageUptodate(newpage);
1489 	set_page_private(newpage, swap_index);
1490 	SetPageSwapCache(newpage);
1491 
1492 	/*
1493 	 * Our caller will very soon move newpage out of swapcache, but it's
1494 	 * a nice clean interface for us to replace oldpage by newpage there.
1495 	 */
1496 	spin_lock_irq(&swap_mapping->tree_lock);
1497 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1498 								   newpage);
1499 	if (!error) {
1500 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1501 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1502 	}
1503 	spin_unlock_irq(&swap_mapping->tree_lock);
1504 
1505 	if (unlikely(error)) {
1506 		/*
1507 		 * Is this possible?  I think not, now that our callers check
1508 		 * both PageSwapCache and page_private after getting page lock;
1509 		 * but be defensive.  Reverse old to newpage for clear and free.
1510 		 */
1511 		oldpage = newpage;
1512 	} else {
1513 		mem_cgroup_migrate(oldpage, newpage);
1514 		lru_cache_add_anon(newpage);
1515 		*pagep = newpage;
1516 	}
1517 
1518 	ClearPageSwapCache(oldpage);
1519 	set_page_private(oldpage, 0);
1520 
1521 	unlock_page(oldpage);
1522 	put_page(oldpage);
1523 	put_page(oldpage);
1524 	return error;
1525 }
1526 
1527 /*
1528  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1529  *
1530  * If we allocate a new one we do not mark it dirty. That's up to the
1531  * vm. If we swap it in we mark it dirty since we also free the swap
1532  * entry since a page cannot live in both the swap and page cache.
1533  *
1534  * fault_mm and fault_type are only supplied by shmem_fault:
1535  * otherwise they are NULL.
1536  */
1537 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1538 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1539 	struct mm_struct *fault_mm, int *fault_type)
1540 {
1541 	struct address_space *mapping = inode->i_mapping;
1542 	struct shmem_inode_info *info;
1543 	struct shmem_sb_info *sbinfo;
1544 	struct mm_struct *charge_mm;
1545 	struct mem_cgroup *memcg;
1546 	struct page *page;
1547 	swp_entry_t swap;
1548 	enum sgp_type sgp_huge = sgp;
1549 	pgoff_t hindex = index;
1550 	int error;
1551 	int once = 0;
1552 	int alloced = 0;
1553 
1554 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1555 		return -EFBIG;
1556 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1557 		sgp = SGP_CACHE;
1558 repeat:
1559 	swap.val = 0;
1560 	page = find_lock_entry(mapping, index);
1561 	if (radix_tree_exceptional_entry(page)) {
1562 		swap = radix_to_swp_entry(page);
1563 		page = NULL;
1564 	}
1565 
1566 	if (sgp <= SGP_CACHE &&
1567 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1568 		error = -EINVAL;
1569 		goto unlock;
1570 	}
1571 
1572 	if (page && sgp == SGP_WRITE)
1573 		mark_page_accessed(page);
1574 
1575 	/* fallocated page? */
1576 	if (page && !PageUptodate(page)) {
1577 		if (sgp != SGP_READ)
1578 			goto clear;
1579 		unlock_page(page);
1580 		put_page(page);
1581 		page = NULL;
1582 	}
1583 	if (page || (sgp == SGP_READ && !swap.val)) {
1584 		*pagep = page;
1585 		return 0;
1586 	}
1587 
1588 	/*
1589 	 * Fast cache lookup did not find it:
1590 	 * bring it back from swap or allocate.
1591 	 */
1592 	info = SHMEM_I(inode);
1593 	sbinfo = SHMEM_SB(inode->i_sb);
1594 	charge_mm = fault_mm ? : current->mm;
1595 
1596 	if (swap.val) {
1597 		/* Look it up and read it in.. */
1598 		page = lookup_swap_cache(swap);
1599 		if (!page) {
1600 			/* Or update major stats only when swapin succeeds?? */
1601 			if (fault_type) {
1602 				*fault_type |= VM_FAULT_MAJOR;
1603 				count_vm_event(PGMAJFAULT);
1604 				mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1605 			}
1606 			/* Here we actually start the io */
1607 			page = shmem_swapin(swap, gfp, info, index);
1608 			if (!page) {
1609 				error = -ENOMEM;
1610 				goto failed;
1611 			}
1612 		}
1613 
1614 		/* We have to do this with page locked to prevent races */
1615 		lock_page(page);
1616 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1617 		    !shmem_confirm_swap(mapping, index, swap)) {
1618 			error = -EEXIST;	/* try again */
1619 			goto unlock;
1620 		}
1621 		if (!PageUptodate(page)) {
1622 			error = -EIO;
1623 			goto failed;
1624 		}
1625 		wait_on_page_writeback(page);
1626 
1627 		if (shmem_should_replace_page(page, gfp)) {
1628 			error = shmem_replace_page(&page, gfp, info, index);
1629 			if (error)
1630 				goto failed;
1631 		}
1632 
1633 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1634 				false);
1635 		if (!error) {
1636 			error = shmem_add_to_page_cache(page, mapping, index,
1637 						swp_to_radix_entry(swap));
1638 			/*
1639 			 * We already confirmed swap under page lock, and make
1640 			 * no memory allocation here, so usually no possibility
1641 			 * of error; but free_swap_and_cache() only trylocks a
1642 			 * page, so it is just possible that the entry has been
1643 			 * truncated or holepunched since swap was confirmed.
1644 			 * shmem_undo_range() will have done some of the
1645 			 * unaccounting, now delete_from_swap_cache() will do
1646 			 * the rest.
1647 			 * Reset swap.val? No, leave it so "failed" goes back to
1648 			 * "repeat": reading a hole and writing should succeed.
1649 			 */
1650 			if (error) {
1651 				mem_cgroup_cancel_charge(page, memcg, false);
1652 				delete_from_swap_cache(page);
1653 			}
1654 		}
1655 		if (error)
1656 			goto failed;
1657 
1658 		mem_cgroup_commit_charge(page, memcg, true, false);
1659 
1660 		spin_lock_irq(&info->lock);
1661 		info->swapped--;
1662 		shmem_recalc_inode(inode);
1663 		spin_unlock_irq(&info->lock);
1664 
1665 		if (sgp == SGP_WRITE)
1666 			mark_page_accessed(page);
1667 
1668 		delete_from_swap_cache(page);
1669 		set_page_dirty(page);
1670 		swap_free(swap);
1671 
1672 	} else {
1673 		/* shmem_symlink() */
1674 		if (mapping->a_ops != &shmem_aops)
1675 			goto alloc_nohuge;
1676 		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1677 			goto alloc_nohuge;
1678 		if (shmem_huge == SHMEM_HUGE_FORCE)
1679 			goto alloc_huge;
1680 		switch (sbinfo->huge) {
1681 			loff_t i_size;
1682 			pgoff_t off;
1683 		case SHMEM_HUGE_NEVER:
1684 			goto alloc_nohuge;
1685 		case SHMEM_HUGE_WITHIN_SIZE:
1686 			off = round_up(index, HPAGE_PMD_NR);
1687 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1688 			if (i_size >= HPAGE_PMD_SIZE &&
1689 					i_size >> PAGE_SHIFT >= off)
1690 				goto alloc_huge;
1691 			/* fallthrough */
1692 		case SHMEM_HUGE_ADVISE:
1693 			if (sgp_huge == SGP_HUGE)
1694 				goto alloc_huge;
1695 			/* TODO: implement fadvise() hints */
1696 			goto alloc_nohuge;
1697 		}
1698 
1699 alloc_huge:
1700 		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1701 				index, true);
1702 		if (IS_ERR(page)) {
1703 alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1704 					index, false);
1705 		}
1706 		if (IS_ERR(page)) {
1707 			int retry = 5;
1708 			error = PTR_ERR(page);
1709 			page = NULL;
1710 			if (error != -ENOSPC)
1711 				goto failed;
1712 			/*
1713 			 * Try to reclaim some spece by splitting a huge page
1714 			 * beyond i_size on the filesystem.
1715 			 */
1716 			while (retry--) {
1717 				int ret;
1718 				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1719 				if (ret == SHRINK_STOP)
1720 					break;
1721 				if (ret)
1722 					goto alloc_nohuge;
1723 			}
1724 			goto failed;
1725 		}
1726 
1727 		if (PageTransHuge(page))
1728 			hindex = round_down(index, HPAGE_PMD_NR);
1729 		else
1730 			hindex = index;
1731 
1732 		if (sgp == SGP_WRITE)
1733 			__SetPageReferenced(page);
1734 
1735 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1736 				PageTransHuge(page));
1737 		if (error)
1738 			goto unacct;
1739 		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1740 				compound_order(page));
1741 		if (!error) {
1742 			error = shmem_add_to_page_cache(page, mapping, hindex,
1743 							NULL);
1744 			radix_tree_preload_end();
1745 		}
1746 		if (error) {
1747 			mem_cgroup_cancel_charge(page, memcg,
1748 					PageTransHuge(page));
1749 			goto unacct;
1750 		}
1751 		mem_cgroup_commit_charge(page, memcg, false,
1752 				PageTransHuge(page));
1753 		lru_cache_add_anon(page);
1754 
1755 		spin_lock_irq(&info->lock);
1756 		info->alloced += 1 << compound_order(page);
1757 		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1758 		shmem_recalc_inode(inode);
1759 		spin_unlock_irq(&info->lock);
1760 		alloced = true;
1761 
1762 		if (PageTransHuge(page) &&
1763 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1764 				hindex + HPAGE_PMD_NR - 1) {
1765 			/*
1766 			 * Part of the huge page is beyond i_size: subject
1767 			 * to shrink under memory pressure.
1768 			 */
1769 			spin_lock(&sbinfo->shrinklist_lock);
1770 			if (list_empty(&info->shrinklist)) {
1771 				list_add_tail(&info->shrinklist,
1772 						&sbinfo->shrinklist);
1773 				sbinfo->shrinklist_len++;
1774 			}
1775 			spin_unlock(&sbinfo->shrinklist_lock);
1776 		}
1777 
1778 		/*
1779 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1780 		 */
1781 		if (sgp == SGP_FALLOC)
1782 			sgp = SGP_WRITE;
1783 clear:
1784 		/*
1785 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1786 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1787 		 * it now, lest undo on failure cancel our earlier guarantee.
1788 		 */
1789 		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1790 			struct page *head = compound_head(page);
1791 			int i;
1792 
1793 			for (i = 0; i < (1 << compound_order(head)); i++) {
1794 				clear_highpage(head + i);
1795 				flush_dcache_page(head + i);
1796 			}
1797 			SetPageUptodate(head);
1798 		}
1799 	}
1800 
1801 	/* Perhaps the file has been truncated since we checked */
1802 	if (sgp <= SGP_CACHE &&
1803 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1804 		if (alloced) {
1805 			ClearPageDirty(page);
1806 			delete_from_page_cache(page);
1807 			spin_lock_irq(&info->lock);
1808 			shmem_recalc_inode(inode);
1809 			spin_unlock_irq(&info->lock);
1810 		}
1811 		error = -EINVAL;
1812 		goto unlock;
1813 	}
1814 	*pagep = page + index - hindex;
1815 	return 0;
1816 
1817 	/*
1818 	 * Error recovery.
1819 	 */
1820 unacct:
1821 	if (sbinfo->max_blocks)
1822 		percpu_counter_sub(&sbinfo->used_blocks,
1823 				1 << compound_order(page));
1824 	shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1825 
1826 	if (PageTransHuge(page)) {
1827 		unlock_page(page);
1828 		put_page(page);
1829 		goto alloc_nohuge;
1830 	}
1831 failed:
1832 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1833 		error = -EEXIST;
1834 unlock:
1835 	if (page) {
1836 		unlock_page(page);
1837 		put_page(page);
1838 	}
1839 	if (error == -ENOSPC && !once++) {
1840 		info = SHMEM_I(inode);
1841 		spin_lock_irq(&info->lock);
1842 		shmem_recalc_inode(inode);
1843 		spin_unlock_irq(&info->lock);
1844 		goto repeat;
1845 	}
1846 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1847 		goto repeat;
1848 	return error;
1849 }
1850 
1851 /*
1852  * This is like autoremove_wake_function, but it removes the wait queue
1853  * entry unconditionally - even if something else had already woken the
1854  * target.
1855  */
1856 static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1857 {
1858 	int ret = default_wake_function(wait, mode, sync, key);
1859 	list_del_init(&wait->task_list);
1860 	return ret;
1861 }
1862 
1863 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1864 {
1865 	struct inode *inode = file_inode(vma->vm_file);
1866 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1867 	enum sgp_type sgp;
1868 	int error;
1869 	int ret = VM_FAULT_LOCKED;
1870 
1871 	/*
1872 	 * Trinity finds that probing a hole which tmpfs is punching can
1873 	 * prevent the hole-punch from ever completing: which in turn
1874 	 * locks writers out with its hold on i_mutex.  So refrain from
1875 	 * faulting pages into the hole while it's being punched.  Although
1876 	 * shmem_undo_range() does remove the additions, it may be unable to
1877 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1878 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1879 	 *
1880 	 * It does not matter if we sometimes reach this check just before the
1881 	 * hole-punch begins, so that one fault then races with the punch:
1882 	 * we just need to make racing faults a rare case.
1883 	 *
1884 	 * The implementation below would be much simpler if we just used a
1885 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1886 	 * and bloating every shmem inode for this unlikely case would be sad.
1887 	 */
1888 	if (unlikely(inode->i_private)) {
1889 		struct shmem_falloc *shmem_falloc;
1890 
1891 		spin_lock(&inode->i_lock);
1892 		shmem_falloc = inode->i_private;
1893 		if (shmem_falloc &&
1894 		    shmem_falloc->waitq &&
1895 		    vmf->pgoff >= shmem_falloc->start &&
1896 		    vmf->pgoff < shmem_falloc->next) {
1897 			wait_queue_head_t *shmem_falloc_waitq;
1898 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1899 
1900 			ret = VM_FAULT_NOPAGE;
1901 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1902 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1903 				/* It's polite to up mmap_sem if we can */
1904 				up_read(&vma->vm_mm->mmap_sem);
1905 				ret = VM_FAULT_RETRY;
1906 			}
1907 
1908 			shmem_falloc_waitq = shmem_falloc->waitq;
1909 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1910 					TASK_UNINTERRUPTIBLE);
1911 			spin_unlock(&inode->i_lock);
1912 			schedule();
1913 
1914 			/*
1915 			 * shmem_falloc_waitq points into the shmem_fallocate()
1916 			 * stack of the hole-punching task: shmem_falloc_waitq
1917 			 * is usually invalid by the time we reach here, but
1918 			 * finish_wait() does not dereference it in that case;
1919 			 * though i_lock needed lest racing with wake_up_all().
1920 			 */
1921 			spin_lock(&inode->i_lock);
1922 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1923 			spin_unlock(&inode->i_lock);
1924 			return ret;
1925 		}
1926 		spin_unlock(&inode->i_lock);
1927 	}
1928 
1929 	sgp = SGP_CACHE;
1930 	if (vma->vm_flags & VM_HUGEPAGE)
1931 		sgp = SGP_HUGE;
1932 	else if (vma->vm_flags & VM_NOHUGEPAGE)
1933 		sgp = SGP_NOHUGE;
1934 
1935 	error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1936 				  gfp, vma->vm_mm, &ret);
1937 	if (error)
1938 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1939 	return ret;
1940 }
1941 
1942 unsigned long shmem_get_unmapped_area(struct file *file,
1943 				      unsigned long uaddr, unsigned long len,
1944 				      unsigned long pgoff, unsigned long flags)
1945 {
1946 	unsigned long (*get_area)(struct file *,
1947 		unsigned long, unsigned long, unsigned long, unsigned long);
1948 	unsigned long addr;
1949 	unsigned long offset;
1950 	unsigned long inflated_len;
1951 	unsigned long inflated_addr;
1952 	unsigned long inflated_offset;
1953 
1954 	if (len > TASK_SIZE)
1955 		return -ENOMEM;
1956 
1957 	get_area = current->mm->get_unmapped_area;
1958 	addr = get_area(file, uaddr, len, pgoff, flags);
1959 
1960 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1961 		return addr;
1962 	if (IS_ERR_VALUE(addr))
1963 		return addr;
1964 	if (addr & ~PAGE_MASK)
1965 		return addr;
1966 	if (addr > TASK_SIZE - len)
1967 		return addr;
1968 
1969 	if (shmem_huge == SHMEM_HUGE_DENY)
1970 		return addr;
1971 	if (len < HPAGE_PMD_SIZE)
1972 		return addr;
1973 	if (flags & MAP_FIXED)
1974 		return addr;
1975 	/*
1976 	 * Our priority is to support MAP_SHARED mapped hugely;
1977 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
1978 	 * But if caller specified an address hint, respect that as before.
1979 	 */
1980 	if (uaddr)
1981 		return addr;
1982 
1983 	if (shmem_huge != SHMEM_HUGE_FORCE) {
1984 		struct super_block *sb;
1985 
1986 		if (file) {
1987 			VM_BUG_ON(file->f_op != &shmem_file_operations);
1988 			sb = file_inode(file)->i_sb;
1989 		} else {
1990 			/*
1991 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
1992 			 * for "/dev/zero", to create a shared anonymous object.
1993 			 */
1994 			if (IS_ERR(shm_mnt))
1995 				return addr;
1996 			sb = shm_mnt->mnt_sb;
1997 		}
1998 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
1999 			return addr;
2000 	}
2001 
2002 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2003 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2004 		return addr;
2005 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2006 		return addr;
2007 
2008 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2009 	if (inflated_len > TASK_SIZE)
2010 		return addr;
2011 	if (inflated_len < len)
2012 		return addr;
2013 
2014 	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2015 	if (IS_ERR_VALUE(inflated_addr))
2016 		return addr;
2017 	if (inflated_addr & ~PAGE_MASK)
2018 		return addr;
2019 
2020 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2021 	inflated_addr += offset - inflated_offset;
2022 	if (inflated_offset > offset)
2023 		inflated_addr += HPAGE_PMD_SIZE;
2024 
2025 	if (inflated_addr > TASK_SIZE - len)
2026 		return addr;
2027 	return inflated_addr;
2028 }
2029 
2030 #ifdef CONFIG_NUMA
2031 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2032 {
2033 	struct inode *inode = file_inode(vma->vm_file);
2034 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2035 }
2036 
2037 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2038 					  unsigned long addr)
2039 {
2040 	struct inode *inode = file_inode(vma->vm_file);
2041 	pgoff_t index;
2042 
2043 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2044 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2045 }
2046 #endif
2047 
2048 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2049 {
2050 	struct inode *inode = file_inode(file);
2051 	struct shmem_inode_info *info = SHMEM_I(inode);
2052 	int retval = -ENOMEM;
2053 
2054 	spin_lock_irq(&info->lock);
2055 	if (lock && !(info->flags & VM_LOCKED)) {
2056 		if (!user_shm_lock(inode->i_size, user))
2057 			goto out_nomem;
2058 		info->flags |= VM_LOCKED;
2059 		mapping_set_unevictable(file->f_mapping);
2060 	}
2061 	if (!lock && (info->flags & VM_LOCKED) && user) {
2062 		user_shm_unlock(inode->i_size, user);
2063 		info->flags &= ~VM_LOCKED;
2064 		mapping_clear_unevictable(file->f_mapping);
2065 	}
2066 	retval = 0;
2067 
2068 out_nomem:
2069 	spin_unlock_irq(&info->lock);
2070 	return retval;
2071 }
2072 
2073 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2074 {
2075 	file_accessed(file);
2076 	vma->vm_ops = &shmem_vm_ops;
2077 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2078 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2079 			(vma->vm_end & HPAGE_PMD_MASK)) {
2080 		khugepaged_enter(vma, vma->vm_flags);
2081 	}
2082 	return 0;
2083 }
2084 
2085 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2086 				     umode_t mode, dev_t dev, unsigned long flags)
2087 {
2088 	struct inode *inode;
2089 	struct shmem_inode_info *info;
2090 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2091 
2092 	if (shmem_reserve_inode(sb))
2093 		return NULL;
2094 
2095 	inode = new_inode(sb);
2096 	if (inode) {
2097 		inode->i_ino = get_next_ino();
2098 		inode_init_owner(inode, dir, mode);
2099 		inode->i_blocks = 0;
2100 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2101 		inode->i_generation = get_seconds();
2102 		info = SHMEM_I(inode);
2103 		memset(info, 0, (char *)inode - (char *)info);
2104 		spin_lock_init(&info->lock);
2105 		info->seals = F_SEAL_SEAL;
2106 		info->flags = flags & VM_NORESERVE;
2107 		INIT_LIST_HEAD(&info->shrinklist);
2108 		INIT_LIST_HEAD(&info->swaplist);
2109 		simple_xattrs_init(&info->xattrs);
2110 		cache_no_acl(inode);
2111 
2112 		switch (mode & S_IFMT) {
2113 		default:
2114 			inode->i_op = &shmem_special_inode_operations;
2115 			init_special_inode(inode, mode, dev);
2116 			break;
2117 		case S_IFREG:
2118 			inode->i_mapping->a_ops = &shmem_aops;
2119 			inode->i_op = &shmem_inode_operations;
2120 			inode->i_fop = &shmem_file_operations;
2121 			mpol_shared_policy_init(&info->policy,
2122 						 shmem_get_sbmpol(sbinfo));
2123 			break;
2124 		case S_IFDIR:
2125 			inc_nlink(inode);
2126 			/* Some things misbehave if size == 0 on a directory */
2127 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2128 			inode->i_op = &shmem_dir_inode_operations;
2129 			inode->i_fop = &simple_dir_operations;
2130 			break;
2131 		case S_IFLNK:
2132 			/*
2133 			 * Must not load anything in the rbtree,
2134 			 * mpol_free_shared_policy will not be called.
2135 			 */
2136 			mpol_shared_policy_init(&info->policy, NULL);
2137 			break;
2138 		}
2139 	} else
2140 		shmem_free_inode(sb);
2141 	return inode;
2142 }
2143 
2144 bool shmem_mapping(struct address_space *mapping)
2145 {
2146 	if (!mapping->host)
2147 		return false;
2148 
2149 	return mapping->host->i_sb->s_op == &shmem_ops;
2150 }
2151 
2152 #ifdef CONFIG_TMPFS
2153 static const struct inode_operations shmem_symlink_inode_operations;
2154 static const struct inode_operations shmem_short_symlink_operations;
2155 
2156 #ifdef CONFIG_TMPFS_XATTR
2157 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2158 #else
2159 #define shmem_initxattrs NULL
2160 #endif
2161 
2162 static int
2163 shmem_write_begin(struct file *file, struct address_space *mapping,
2164 			loff_t pos, unsigned len, unsigned flags,
2165 			struct page **pagep, void **fsdata)
2166 {
2167 	struct inode *inode = mapping->host;
2168 	struct shmem_inode_info *info = SHMEM_I(inode);
2169 	pgoff_t index = pos >> PAGE_SHIFT;
2170 
2171 	/* i_mutex is held by caller */
2172 	if (unlikely(info->seals)) {
2173 		if (info->seals & F_SEAL_WRITE)
2174 			return -EPERM;
2175 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2176 			return -EPERM;
2177 	}
2178 
2179 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2180 }
2181 
2182 static int
2183 shmem_write_end(struct file *file, struct address_space *mapping,
2184 			loff_t pos, unsigned len, unsigned copied,
2185 			struct page *page, void *fsdata)
2186 {
2187 	struct inode *inode = mapping->host;
2188 
2189 	if (pos + copied > inode->i_size)
2190 		i_size_write(inode, pos + copied);
2191 
2192 	if (!PageUptodate(page)) {
2193 		struct page *head = compound_head(page);
2194 		if (PageTransCompound(page)) {
2195 			int i;
2196 
2197 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2198 				if (head + i == page)
2199 					continue;
2200 				clear_highpage(head + i);
2201 				flush_dcache_page(head + i);
2202 			}
2203 		}
2204 		if (copied < PAGE_SIZE) {
2205 			unsigned from = pos & (PAGE_SIZE - 1);
2206 			zero_user_segments(page, 0, from,
2207 					from + copied, PAGE_SIZE);
2208 		}
2209 		SetPageUptodate(head);
2210 	}
2211 	set_page_dirty(page);
2212 	unlock_page(page);
2213 	put_page(page);
2214 
2215 	return copied;
2216 }
2217 
2218 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2219 {
2220 	struct file *file = iocb->ki_filp;
2221 	struct inode *inode = file_inode(file);
2222 	struct address_space *mapping = inode->i_mapping;
2223 	pgoff_t index;
2224 	unsigned long offset;
2225 	enum sgp_type sgp = SGP_READ;
2226 	int error = 0;
2227 	ssize_t retval = 0;
2228 	loff_t *ppos = &iocb->ki_pos;
2229 
2230 	/*
2231 	 * Might this read be for a stacking filesystem?  Then when reading
2232 	 * holes of a sparse file, we actually need to allocate those pages,
2233 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2234 	 */
2235 	if (!iter_is_iovec(to))
2236 		sgp = SGP_CACHE;
2237 
2238 	index = *ppos >> PAGE_SHIFT;
2239 	offset = *ppos & ~PAGE_MASK;
2240 
2241 	for (;;) {
2242 		struct page *page = NULL;
2243 		pgoff_t end_index;
2244 		unsigned long nr, ret;
2245 		loff_t i_size = i_size_read(inode);
2246 
2247 		end_index = i_size >> PAGE_SHIFT;
2248 		if (index > end_index)
2249 			break;
2250 		if (index == end_index) {
2251 			nr = i_size & ~PAGE_MASK;
2252 			if (nr <= offset)
2253 				break;
2254 		}
2255 
2256 		error = shmem_getpage(inode, index, &page, sgp);
2257 		if (error) {
2258 			if (error == -EINVAL)
2259 				error = 0;
2260 			break;
2261 		}
2262 		if (page) {
2263 			if (sgp == SGP_CACHE)
2264 				set_page_dirty(page);
2265 			unlock_page(page);
2266 		}
2267 
2268 		/*
2269 		 * We must evaluate after, since reads (unlike writes)
2270 		 * are called without i_mutex protection against truncate
2271 		 */
2272 		nr = PAGE_SIZE;
2273 		i_size = i_size_read(inode);
2274 		end_index = i_size >> PAGE_SHIFT;
2275 		if (index == end_index) {
2276 			nr = i_size & ~PAGE_MASK;
2277 			if (nr <= offset) {
2278 				if (page)
2279 					put_page(page);
2280 				break;
2281 			}
2282 		}
2283 		nr -= offset;
2284 
2285 		if (page) {
2286 			/*
2287 			 * If users can be writing to this page using arbitrary
2288 			 * virtual addresses, take care about potential aliasing
2289 			 * before reading the page on the kernel side.
2290 			 */
2291 			if (mapping_writably_mapped(mapping))
2292 				flush_dcache_page(page);
2293 			/*
2294 			 * Mark the page accessed if we read the beginning.
2295 			 */
2296 			if (!offset)
2297 				mark_page_accessed(page);
2298 		} else {
2299 			page = ZERO_PAGE(0);
2300 			get_page(page);
2301 		}
2302 
2303 		/*
2304 		 * Ok, we have the page, and it's up-to-date, so
2305 		 * now we can copy it to user space...
2306 		 */
2307 		ret = copy_page_to_iter(page, offset, nr, to);
2308 		retval += ret;
2309 		offset += ret;
2310 		index += offset >> PAGE_SHIFT;
2311 		offset &= ~PAGE_MASK;
2312 
2313 		put_page(page);
2314 		if (!iov_iter_count(to))
2315 			break;
2316 		if (ret < nr) {
2317 			error = -EFAULT;
2318 			break;
2319 		}
2320 		cond_resched();
2321 	}
2322 
2323 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2324 	file_accessed(file);
2325 	return retval ? retval : error;
2326 }
2327 
2328 /*
2329  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2330  */
2331 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2332 				    pgoff_t index, pgoff_t end, int whence)
2333 {
2334 	struct page *page;
2335 	struct pagevec pvec;
2336 	pgoff_t indices[PAGEVEC_SIZE];
2337 	bool done = false;
2338 	int i;
2339 
2340 	pagevec_init(&pvec, 0);
2341 	pvec.nr = 1;		/* start small: we may be there already */
2342 	while (!done) {
2343 		pvec.nr = find_get_entries(mapping, index,
2344 					pvec.nr, pvec.pages, indices);
2345 		if (!pvec.nr) {
2346 			if (whence == SEEK_DATA)
2347 				index = end;
2348 			break;
2349 		}
2350 		for (i = 0; i < pvec.nr; i++, index++) {
2351 			if (index < indices[i]) {
2352 				if (whence == SEEK_HOLE) {
2353 					done = true;
2354 					break;
2355 				}
2356 				index = indices[i];
2357 			}
2358 			page = pvec.pages[i];
2359 			if (page && !radix_tree_exceptional_entry(page)) {
2360 				if (!PageUptodate(page))
2361 					page = NULL;
2362 			}
2363 			if (index >= end ||
2364 			    (page && whence == SEEK_DATA) ||
2365 			    (!page && whence == SEEK_HOLE)) {
2366 				done = true;
2367 				break;
2368 			}
2369 		}
2370 		pagevec_remove_exceptionals(&pvec);
2371 		pagevec_release(&pvec);
2372 		pvec.nr = PAGEVEC_SIZE;
2373 		cond_resched();
2374 	}
2375 	return index;
2376 }
2377 
2378 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2379 {
2380 	struct address_space *mapping = file->f_mapping;
2381 	struct inode *inode = mapping->host;
2382 	pgoff_t start, end;
2383 	loff_t new_offset;
2384 
2385 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2386 		return generic_file_llseek_size(file, offset, whence,
2387 					MAX_LFS_FILESIZE, i_size_read(inode));
2388 	inode_lock(inode);
2389 	/* We're holding i_mutex so we can access i_size directly */
2390 
2391 	if (offset < 0)
2392 		offset = -EINVAL;
2393 	else if (offset >= inode->i_size)
2394 		offset = -ENXIO;
2395 	else {
2396 		start = offset >> PAGE_SHIFT;
2397 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2398 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2399 		new_offset <<= PAGE_SHIFT;
2400 		if (new_offset > offset) {
2401 			if (new_offset < inode->i_size)
2402 				offset = new_offset;
2403 			else if (whence == SEEK_DATA)
2404 				offset = -ENXIO;
2405 			else
2406 				offset = inode->i_size;
2407 		}
2408 	}
2409 
2410 	if (offset >= 0)
2411 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2412 	inode_unlock(inode);
2413 	return offset;
2414 }
2415 
2416 /*
2417  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2418  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2419  */
2420 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2421 #define LAST_SCAN               4       /* about 150ms max */
2422 
2423 static void shmem_tag_pins(struct address_space *mapping)
2424 {
2425 	struct radix_tree_iter iter;
2426 	void **slot;
2427 	pgoff_t start;
2428 	struct page *page;
2429 
2430 	lru_add_drain();
2431 	start = 0;
2432 	rcu_read_lock();
2433 
2434 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2435 		page = radix_tree_deref_slot(slot);
2436 		if (!page || radix_tree_exception(page)) {
2437 			if (radix_tree_deref_retry(page)) {
2438 				slot = radix_tree_iter_retry(&iter);
2439 				continue;
2440 			}
2441 		} else if (page_count(page) - page_mapcount(page) > 1) {
2442 			spin_lock_irq(&mapping->tree_lock);
2443 			radix_tree_tag_set(&mapping->page_tree, iter.index,
2444 					   SHMEM_TAG_PINNED);
2445 			spin_unlock_irq(&mapping->tree_lock);
2446 		}
2447 
2448 		if (need_resched()) {
2449 			cond_resched_rcu();
2450 			slot = radix_tree_iter_next(&iter);
2451 		}
2452 	}
2453 	rcu_read_unlock();
2454 }
2455 
2456 /*
2457  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2458  * via get_user_pages(), drivers might have some pending I/O without any active
2459  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2460  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2461  * them to be dropped.
2462  * The caller must guarantee that no new user will acquire writable references
2463  * to those pages to avoid races.
2464  */
2465 static int shmem_wait_for_pins(struct address_space *mapping)
2466 {
2467 	struct radix_tree_iter iter;
2468 	void **slot;
2469 	pgoff_t start;
2470 	struct page *page;
2471 	int error, scan;
2472 
2473 	shmem_tag_pins(mapping);
2474 
2475 	error = 0;
2476 	for (scan = 0; scan <= LAST_SCAN; scan++) {
2477 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2478 			break;
2479 
2480 		if (!scan)
2481 			lru_add_drain_all();
2482 		else if (schedule_timeout_killable((HZ << scan) / 200))
2483 			scan = LAST_SCAN;
2484 
2485 		start = 0;
2486 		rcu_read_lock();
2487 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2488 					   start, SHMEM_TAG_PINNED) {
2489 
2490 			page = radix_tree_deref_slot(slot);
2491 			if (radix_tree_exception(page)) {
2492 				if (radix_tree_deref_retry(page)) {
2493 					slot = radix_tree_iter_retry(&iter);
2494 					continue;
2495 				}
2496 
2497 				page = NULL;
2498 			}
2499 
2500 			if (page &&
2501 			    page_count(page) - page_mapcount(page) != 1) {
2502 				if (scan < LAST_SCAN)
2503 					goto continue_resched;
2504 
2505 				/*
2506 				 * On the last scan, we clean up all those tags
2507 				 * we inserted; but make a note that we still
2508 				 * found pages pinned.
2509 				 */
2510 				error = -EBUSY;
2511 			}
2512 
2513 			spin_lock_irq(&mapping->tree_lock);
2514 			radix_tree_tag_clear(&mapping->page_tree,
2515 					     iter.index, SHMEM_TAG_PINNED);
2516 			spin_unlock_irq(&mapping->tree_lock);
2517 continue_resched:
2518 			if (need_resched()) {
2519 				cond_resched_rcu();
2520 				slot = radix_tree_iter_next(&iter);
2521 			}
2522 		}
2523 		rcu_read_unlock();
2524 	}
2525 
2526 	return error;
2527 }
2528 
2529 #define F_ALL_SEALS (F_SEAL_SEAL | \
2530 		     F_SEAL_SHRINK | \
2531 		     F_SEAL_GROW | \
2532 		     F_SEAL_WRITE)
2533 
2534 int shmem_add_seals(struct file *file, unsigned int seals)
2535 {
2536 	struct inode *inode = file_inode(file);
2537 	struct shmem_inode_info *info = SHMEM_I(inode);
2538 	int error;
2539 
2540 	/*
2541 	 * SEALING
2542 	 * Sealing allows multiple parties to share a shmem-file but restrict
2543 	 * access to a specific subset of file operations. Seals can only be
2544 	 * added, but never removed. This way, mutually untrusted parties can
2545 	 * share common memory regions with a well-defined policy. A malicious
2546 	 * peer can thus never perform unwanted operations on a shared object.
2547 	 *
2548 	 * Seals are only supported on special shmem-files and always affect
2549 	 * the whole underlying inode. Once a seal is set, it may prevent some
2550 	 * kinds of access to the file. Currently, the following seals are
2551 	 * defined:
2552 	 *   SEAL_SEAL: Prevent further seals from being set on this file
2553 	 *   SEAL_SHRINK: Prevent the file from shrinking
2554 	 *   SEAL_GROW: Prevent the file from growing
2555 	 *   SEAL_WRITE: Prevent write access to the file
2556 	 *
2557 	 * As we don't require any trust relationship between two parties, we
2558 	 * must prevent seals from being removed. Therefore, sealing a file
2559 	 * only adds a given set of seals to the file, it never touches
2560 	 * existing seals. Furthermore, the "setting seals"-operation can be
2561 	 * sealed itself, which basically prevents any further seal from being
2562 	 * added.
2563 	 *
2564 	 * Semantics of sealing are only defined on volatile files. Only
2565 	 * anonymous shmem files support sealing. More importantly, seals are
2566 	 * never written to disk. Therefore, there's no plan to support it on
2567 	 * other file types.
2568 	 */
2569 
2570 	if (file->f_op != &shmem_file_operations)
2571 		return -EINVAL;
2572 	if (!(file->f_mode & FMODE_WRITE))
2573 		return -EPERM;
2574 	if (seals & ~(unsigned int)F_ALL_SEALS)
2575 		return -EINVAL;
2576 
2577 	inode_lock(inode);
2578 
2579 	if (info->seals & F_SEAL_SEAL) {
2580 		error = -EPERM;
2581 		goto unlock;
2582 	}
2583 
2584 	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2585 		error = mapping_deny_writable(file->f_mapping);
2586 		if (error)
2587 			goto unlock;
2588 
2589 		error = shmem_wait_for_pins(file->f_mapping);
2590 		if (error) {
2591 			mapping_allow_writable(file->f_mapping);
2592 			goto unlock;
2593 		}
2594 	}
2595 
2596 	info->seals |= seals;
2597 	error = 0;
2598 
2599 unlock:
2600 	inode_unlock(inode);
2601 	return error;
2602 }
2603 EXPORT_SYMBOL_GPL(shmem_add_seals);
2604 
2605 int shmem_get_seals(struct file *file)
2606 {
2607 	if (file->f_op != &shmem_file_operations)
2608 		return -EINVAL;
2609 
2610 	return SHMEM_I(file_inode(file))->seals;
2611 }
2612 EXPORT_SYMBOL_GPL(shmem_get_seals);
2613 
2614 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2615 {
2616 	long error;
2617 
2618 	switch (cmd) {
2619 	case F_ADD_SEALS:
2620 		/* disallow upper 32bit */
2621 		if (arg > UINT_MAX)
2622 			return -EINVAL;
2623 
2624 		error = shmem_add_seals(file, arg);
2625 		break;
2626 	case F_GET_SEALS:
2627 		error = shmem_get_seals(file);
2628 		break;
2629 	default:
2630 		error = -EINVAL;
2631 		break;
2632 	}
2633 
2634 	return error;
2635 }
2636 
2637 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2638 							 loff_t len)
2639 {
2640 	struct inode *inode = file_inode(file);
2641 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2642 	struct shmem_inode_info *info = SHMEM_I(inode);
2643 	struct shmem_falloc shmem_falloc;
2644 	pgoff_t start, index, end;
2645 	int error;
2646 
2647 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2648 		return -EOPNOTSUPP;
2649 
2650 	inode_lock(inode);
2651 
2652 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2653 		struct address_space *mapping = file->f_mapping;
2654 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2655 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2656 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2657 
2658 		/* protected by i_mutex */
2659 		if (info->seals & F_SEAL_WRITE) {
2660 			error = -EPERM;
2661 			goto out;
2662 		}
2663 
2664 		shmem_falloc.waitq = &shmem_falloc_waitq;
2665 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2666 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2667 		spin_lock(&inode->i_lock);
2668 		inode->i_private = &shmem_falloc;
2669 		spin_unlock(&inode->i_lock);
2670 
2671 		if ((u64)unmap_end > (u64)unmap_start)
2672 			unmap_mapping_range(mapping, unmap_start,
2673 					    1 + unmap_end - unmap_start, 0);
2674 		shmem_truncate_range(inode, offset, offset + len - 1);
2675 		/* No need to unmap again: hole-punching leaves COWed pages */
2676 
2677 		spin_lock(&inode->i_lock);
2678 		inode->i_private = NULL;
2679 		wake_up_all(&shmem_falloc_waitq);
2680 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
2681 		spin_unlock(&inode->i_lock);
2682 		error = 0;
2683 		goto out;
2684 	}
2685 
2686 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2687 	error = inode_newsize_ok(inode, offset + len);
2688 	if (error)
2689 		goto out;
2690 
2691 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2692 		error = -EPERM;
2693 		goto out;
2694 	}
2695 
2696 	start = offset >> PAGE_SHIFT;
2697 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2698 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2699 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2700 		error = -ENOSPC;
2701 		goto out;
2702 	}
2703 
2704 	shmem_falloc.waitq = NULL;
2705 	shmem_falloc.start = start;
2706 	shmem_falloc.next  = start;
2707 	shmem_falloc.nr_falloced = 0;
2708 	shmem_falloc.nr_unswapped = 0;
2709 	spin_lock(&inode->i_lock);
2710 	inode->i_private = &shmem_falloc;
2711 	spin_unlock(&inode->i_lock);
2712 
2713 	for (index = start; index < end; index++) {
2714 		struct page *page;
2715 
2716 		/*
2717 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2718 		 * been interrupted because we are using up too much memory.
2719 		 */
2720 		if (signal_pending(current))
2721 			error = -EINTR;
2722 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2723 			error = -ENOMEM;
2724 		else
2725 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2726 		if (error) {
2727 			/* Remove the !PageUptodate pages we added */
2728 			if (index > start) {
2729 				shmem_undo_range(inode,
2730 				    (loff_t)start << PAGE_SHIFT,
2731 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2732 			}
2733 			goto undone;
2734 		}
2735 
2736 		/*
2737 		 * Inform shmem_writepage() how far we have reached.
2738 		 * No need for lock or barrier: we have the page lock.
2739 		 */
2740 		shmem_falloc.next++;
2741 		if (!PageUptodate(page))
2742 			shmem_falloc.nr_falloced++;
2743 
2744 		/*
2745 		 * If !PageUptodate, leave it that way so that freeable pages
2746 		 * can be recognized if we need to rollback on error later.
2747 		 * But set_page_dirty so that memory pressure will swap rather
2748 		 * than free the pages we are allocating (and SGP_CACHE pages
2749 		 * might still be clean: we now need to mark those dirty too).
2750 		 */
2751 		set_page_dirty(page);
2752 		unlock_page(page);
2753 		put_page(page);
2754 		cond_resched();
2755 	}
2756 
2757 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2758 		i_size_write(inode, offset + len);
2759 	inode->i_ctime = current_time(inode);
2760 undone:
2761 	spin_lock(&inode->i_lock);
2762 	inode->i_private = NULL;
2763 	spin_unlock(&inode->i_lock);
2764 out:
2765 	inode_unlock(inode);
2766 	return error;
2767 }
2768 
2769 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2770 {
2771 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2772 
2773 	buf->f_type = TMPFS_MAGIC;
2774 	buf->f_bsize = PAGE_SIZE;
2775 	buf->f_namelen = NAME_MAX;
2776 	if (sbinfo->max_blocks) {
2777 		buf->f_blocks = sbinfo->max_blocks;
2778 		buf->f_bavail =
2779 		buf->f_bfree  = sbinfo->max_blocks -
2780 				percpu_counter_sum(&sbinfo->used_blocks);
2781 	}
2782 	if (sbinfo->max_inodes) {
2783 		buf->f_files = sbinfo->max_inodes;
2784 		buf->f_ffree = sbinfo->free_inodes;
2785 	}
2786 	/* else leave those fields 0 like simple_statfs */
2787 	return 0;
2788 }
2789 
2790 /*
2791  * File creation. Allocate an inode, and we're done..
2792  */
2793 static int
2794 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2795 {
2796 	struct inode *inode;
2797 	int error = -ENOSPC;
2798 
2799 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2800 	if (inode) {
2801 		error = simple_acl_create(dir, inode);
2802 		if (error)
2803 			goto out_iput;
2804 		error = security_inode_init_security(inode, dir,
2805 						     &dentry->d_name,
2806 						     shmem_initxattrs, NULL);
2807 		if (error && error != -EOPNOTSUPP)
2808 			goto out_iput;
2809 
2810 		error = 0;
2811 		dir->i_size += BOGO_DIRENT_SIZE;
2812 		dir->i_ctime = dir->i_mtime = current_time(dir);
2813 		d_instantiate(dentry, inode);
2814 		dget(dentry); /* Extra count - pin the dentry in core */
2815 	}
2816 	return error;
2817 out_iput:
2818 	iput(inode);
2819 	return error;
2820 }
2821 
2822 static int
2823 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2824 {
2825 	struct inode *inode;
2826 	int error = -ENOSPC;
2827 
2828 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2829 	if (inode) {
2830 		error = security_inode_init_security(inode, dir,
2831 						     NULL,
2832 						     shmem_initxattrs, NULL);
2833 		if (error && error != -EOPNOTSUPP)
2834 			goto out_iput;
2835 		error = simple_acl_create(dir, inode);
2836 		if (error)
2837 			goto out_iput;
2838 		d_tmpfile(dentry, inode);
2839 	}
2840 	return error;
2841 out_iput:
2842 	iput(inode);
2843 	return error;
2844 }
2845 
2846 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2847 {
2848 	int error;
2849 
2850 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2851 		return error;
2852 	inc_nlink(dir);
2853 	return 0;
2854 }
2855 
2856 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2857 		bool excl)
2858 {
2859 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2860 }
2861 
2862 /*
2863  * Link a file..
2864  */
2865 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2866 {
2867 	struct inode *inode = d_inode(old_dentry);
2868 	int ret;
2869 
2870 	/*
2871 	 * No ordinary (disk based) filesystem counts links as inodes;
2872 	 * but each new link needs a new dentry, pinning lowmem, and
2873 	 * tmpfs dentries cannot be pruned until they are unlinked.
2874 	 */
2875 	ret = shmem_reserve_inode(inode->i_sb);
2876 	if (ret)
2877 		goto out;
2878 
2879 	dir->i_size += BOGO_DIRENT_SIZE;
2880 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2881 	inc_nlink(inode);
2882 	ihold(inode);	/* New dentry reference */
2883 	dget(dentry);		/* Extra pinning count for the created dentry */
2884 	d_instantiate(dentry, inode);
2885 out:
2886 	return ret;
2887 }
2888 
2889 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2890 {
2891 	struct inode *inode = d_inode(dentry);
2892 
2893 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2894 		shmem_free_inode(inode->i_sb);
2895 
2896 	dir->i_size -= BOGO_DIRENT_SIZE;
2897 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2898 	drop_nlink(inode);
2899 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2900 	return 0;
2901 }
2902 
2903 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2904 {
2905 	if (!simple_empty(dentry))
2906 		return -ENOTEMPTY;
2907 
2908 	drop_nlink(d_inode(dentry));
2909 	drop_nlink(dir);
2910 	return shmem_unlink(dir, dentry);
2911 }
2912 
2913 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2914 {
2915 	bool old_is_dir = d_is_dir(old_dentry);
2916 	bool new_is_dir = d_is_dir(new_dentry);
2917 
2918 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2919 		if (old_is_dir) {
2920 			drop_nlink(old_dir);
2921 			inc_nlink(new_dir);
2922 		} else {
2923 			drop_nlink(new_dir);
2924 			inc_nlink(old_dir);
2925 		}
2926 	}
2927 	old_dir->i_ctime = old_dir->i_mtime =
2928 	new_dir->i_ctime = new_dir->i_mtime =
2929 	d_inode(old_dentry)->i_ctime =
2930 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2931 
2932 	return 0;
2933 }
2934 
2935 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2936 {
2937 	struct dentry *whiteout;
2938 	int error;
2939 
2940 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2941 	if (!whiteout)
2942 		return -ENOMEM;
2943 
2944 	error = shmem_mknod(old_dir, whiteout,
2945 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2946 	dput(whiteout);
2947 	if (error)
2948 		return error;
2949 
2950 	/*
2951 	 * Cheat and hash the whiteout while the old dentry is still in
2952 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2953 	 *
2954 	 * d_lookup() will consistently find one of them at this point,
2955 	 * not sure which one, but that isn't even important.
2956 	 */
2957 	d_rehash(whiteout);
2958 	return 0;
2959 }
2960 
2961 /*
2962  * The VFS layer already does all the dentry stuff for rename,
2963  * we just have to decrement the usage count for the target if
2964  * it exists so that the VFS layer correctly free's it when it
2965  * gets overwritten.
2966  */
2967 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2968 {
2969 	struct inode *inode = d_inode(old_dentry);
2970 	int they_are_dirs = S_ISDIR(inode->i_mode);
2971 
2972 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2973 		return -EINVAL;
2974 
2975 	if (flags & RENAME_EXCHANGE)
2976 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2977 
2978 	if (!simple_empty(new_dentry))
2979 		return -ENOTEMPTY;
2980 
2981 	if (flags & RENAME_WHITEOUT) {
2982 		int error;
2983 
2984 		error = shmem_whiteout(old_dir, old_dentry);
2985 		if (error)
2986 			return error;
2987 	}
2988 
2989 	if (d_really_is_positive(new_dentry)) {
2990 		(void) shmem_unlink(new_dir, new_dentry);
2991 		if (they_are_dirs) {
2992 			drop_nlink(d_inode(new_dentry));
2993 			drop_nlink(old_dir);
2994 		}
2995 	} else if (they_are_dirs) {
2996 		drop_nlink(old_dir);
2997 		inc_nlink(new_dir);
2998 	}
2999 
3000 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3001 	new_dir->i_size += BOGO_DIRENT_SIZE;
3002 	old_dir->i_ctime = old_dir->i_mtime =
3003 	new_dir->i_ctime = new_dir->i_mtime =
3004 	inode->i_ctime = current_time(old_dir);
3005 	return 0;
3006 }
3007 
3008 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3009 {
3010 	int error;
3011 	int len;
3012 	struct inode *inode;
3013 	struct page *page;
3014 	struct shmem_inode_info *info;
3015 
3016 	len = strlen(symname) + 1;
3017 	if (len > PAGE_SIZE)
3018 		return -ENAMETOOLONG;
3019 
3020 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3021 	if (!inode)
3022 		return -ENOSPC;
3023 
3024 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3025 					     shmem_initxattrs, NULL);
3026 	if (error) {
3027 		if (error != -EOPNOTSUPP) {
3028 			iput(inode);
3029 			return error;
3030 		}
3031 		error = 0;
3032 	}
3033 
3034 	info = SHMEM_I(inode);
3035 	inode->i_size = len-1;
3036 	if (len <= SHORT_SYMLINK_LEN) {
3037 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3038 		if (!inode->i_link) {
3039 			iput(inode);
3040 			return -ENOMEM;
3041 		}
3042 		inode->i_op = &shmem_short_symlink_operations;
3043 	} else {
3044 		inode_nohighmem(inode);
3045 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3046 		if (error) {
3047 			iput(inode);
3048 			return error;
3049 		}
3050 		inode->i_mapping->a_ops = &shmem_aops;
3051 		inode->i_op = &shmem_symlink_inode_operations;
3052 		memcpy(page_address(page), symname, len);
3053 		SetPageUptodate(page);
3054 		set_page_dirty(page);
3055 		unlock_page(page);
3056 		put_page(page);
3057 	}
3058 	dir->i_size += BOGO_DIRENT_SIZE;
3059 	dir->i_ctime = dir->i_mtime = current_time(dir);
3060 	d_instantiate(dentry, inode);
3061 	dget(dentry);
3062 	return 0;
3063 }
3064 
3065 static void shmem_put_link(void *arg)
3066 {
3067 	mark_page_accessed(arg);
3068 	put_page(arg);
3069 }
3070 
3071 static const char *shmem_get_link(struct dentry *dentry,
3072 				  struct inode *inode,
3073 				  struct delayed_call *done)
3074 {
3075 	struct page *page = NULL;
3076 	int error;
3077 	if (!dentry) {
3078 		page = find_get_page(inode->i_mapping, 0);
3079 		if (!page)
3080 			return ERR_PTR(-ECHILD);
3081 		if (!PageUptodate(page)) {
3082 			put_page(page);
3083 			return ERR_PTR(-ECHILD);
3084 		}
3085 	} else {
3086 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3087 		if (error)
3088 			return ERR_PTR(error);
3089 		unlock_page(page);
3090 	}
3091 	set_delayed_call(done, shmem_put_link, page);
3092 	return page_address(page);
3093 }
3094 
3095 #ifdef CONFIG_TMPFS_XATTR
3096 /*
3097  * Superblocks without xattr inode operations may get some security.* xattr
3098  * support from the LSM "for free". As soon as we have any other xattrs
3099  * like ACLs, we also need to implement the security.* handlers at
3100  * filesystem level, though.
3101  */
3102 
3103 /*
3104  * Callback for security_inode_init_security() for acquiring xattrs.
3105  */
3106 static int shmem_initxattrs(struct inode *inode,
3107 			    const struct xattr *xattr_array,
3108 			    void *fs_info)
3109 {
3110 	struct shmem_inode_info *info = SHMEM_I(inode);
3111 	const struct xattr *xattr;
3112 	struct simple_xattr *new_xattr;
3113 	size_t len;
3114 
3115 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3116 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3117 		if (!new_xattr)
3118 			return -ENOMEM;
3119 
3120 		len = strlen(xattr->name) + 1;
3121 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3122 					  GFP_KERNEL);
3123 		if (!new_xattr->name) {
3124 			kfree(new_xattr);
3125 			return -ENOMEM;
3126 		}
3127 
3128 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3129 		       XATTR_SECURITY_PREFIX_LEN);
3130 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3131 		       xattr->name, len);
3132 
3133 		simple_xattr_list_add(&info->xattrs, new_xattr);
3134 	}
3135 
3136 	return 0;
3137 }
3138 
3139 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3140 				   struct dentry *unused, struct inode *inode,
3141 				   const char *name, void *buffer, size_t size)
3142 {
3143 	struct shmem_inode_info *info = SHMEM_I(inode);
3144 
3145 	name = xattr_full_name(handler, name);
3146 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3147 }
3148 
3149 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3150 				   struct dentry *unused, struct inode *inode,
3151 				   const char *name, const void *value,
3152 				   size_t size, int flags)
3153 {
3154 	struct shmem_inode_info *info = SHMEM_I(inode);
3155 
3156 	name = xattr_full_name(handler, name);
3157 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3158 }
3159 
3160 static const struct xattr_handler shmem_security_xattr_handler = {
3161 	.prefix = XATTR_SECURITY_PREFIX,
3162 	.get = shmem_xattr_handler_get,
3163 	.set = shmem_xattr_handler_set,
3164 };
3165 
3166 static const struct xattr_handler shmem_trusted_xattr_handler = {
3167 	.prefix = XATTR_TRUSTED_PREFIX,
3168 	.get = shmem_xattr_handler_get,
3169 	.set = shmem_xattr_handler_set,
3170 };
3171 
3172 static const struct xattr_handler *shmem_xattr_handlers[] = {
3173 #ifdef CONFIG_TMPFS_POSIX_ACL
3174 	&posix_acl_access_xattr_handler,
3175 	&posix_acl_default_xattr_handler,
3176 #endif
3177 	&shmem_security_xattr_handler,
3178 	&shmem_trusted_xattr_handler,
3179 	NULL
3180 };
3181 
3182 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3183 {
3184 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3185 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3186 }
3187 #endif /* CONFIG_TMPFS_XATTR */
3188 
3189 static const struct inode_operations shmem_short_symlink_operations = {
3190 	.readlink	= generic_readlink,
3191 	.get_link	= simple_get_link,
3192 #ifdef CONFIG_TMPFS_XATTR
3193 	.listxattr	= shmem_listxattr,
3194 #endif
3195 };
3196 
3197 static const struct inode_operations shmem_symlink_inode_operations = {
3198 	.readlink	= generic_readlink,
3199 	.get_link	= shmem_get_link,
3200 #ifdef CONFIG_TMPFS_XATTR
3201 	.listxattr	= shmem_listxattr,
3202 #endif
3203 };
3204 
3205 static struct dentry *shmem_get_parent(struct dentry *child)
3206 {
3207 	return ERR_PTR(-ESTALE);
3208 }
3209 
3210 static int shmem_match(struct inode *ino, void *vfh)
3211 {
3212 	__u32 *fh = vfh;
3213 	__u64 inum = fh[2];
3214 	inum = (inum << 32) | fh[1];
3215 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3216 }
3217 
3218 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3219 		struct fid *fid, int fh_len, int fh_type)
3220 {
3221 	struct inode *inode;
3222 	struct dentry *dentry = NULL;
3223 	u64 inum;
3224 
3225 	if (fh_len < 3)
3226 		return NULL;
3227 
3228 	inum = fid->raw[2];
3229 	inum = (inum << 32) | fid->raw[1];
3230 
3231 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3232 			shmem_match, fid->raw);
3233 	if (inode) {
3234 		dentry = d_find_alias(inode);
3235 		iput(inode);
3236 	}
3237 
3238 	return dentry;
3239 }
3240 
3241 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3242 				struct inode *parent)
3243 {
3244 	if (*len < 3) {
3245 		*len = 3;
3246 		return FILEID_INVALID;
3247 	}
3248 
3249 	if (inode_unhashed(inode)) {
3250 		/* Unfortunately insert_inode_hash is not idempotent,
3251 		 * so as we hash inodes here rather than at creation
3252 		 * time, we need a lock to ensure we only try
3253 		 * to do it once
3254 		 */
3255 		static DEFINE_SPINLOCK(lock);
3256 		spin_lock(&lock);
3257 		if (inode_unhashed(inode))
3258 			__insert_inode_hash(inode,
3259 					    inode->i_ino + inode->i_generation);
3260 		spin_unlock(&lock);
3261 	}
3262 
3263 	fh[0] = inode->i_generation;
3264 	fh[1] = inode->i_ino;
3265 	fh[2] = ((__u64)inode->i_ino) >> 32;
3266 
3267 	*len = 3;
3268 	return 1;
3269 }
3270 
3271 static const struct export_operations shmem_export_ops = {
3272 	.get_parent     = shmem_get_parent,
3273 	.encode_fh      = shmem_encode_fh,
3274 	.fh_to_dentry	= shmem_fh_to_dentry,
3275 };
3276 
3277 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3278 			       bool remount)
3279 {
3280 	char *this_char, *value, *rest;
3281 	struct mempolicy *mpol = NULL;
3282 	uid_t uid;
3283 	gid_t gid;
3284 
3285 	while (options != NULL) {
3286 		this_char = options;
3287 		for (;;) {
3288 			/*
3289 			 * NUL-terminate this option: unfortunately,
3290 			 * mount options form a comma-separated list,
3291 			 * but mpol's nodelist may also contain commas.
3292 			 */
3293 			options = strchr(options, ',');
3294 			if (options == NULL)
3295 				break;
3296 			options++;
3297 			if (!isdigit(*options)) {
3298 				options[-1] = '\0';
3299 				break;
3300 			}
3301 		}
3302 		if (!*this_char)
3303 			continue;
3304 		if ((value = strchr(this_char,'=')) != NULL) {
3305 			*value++ = 0;
3306 		} else {
3307 			pr_err("tmpfs: No value for mount option '%s'\n",
3308 			       this_char);
3309 			goto error;
3310 		}
3311 
3312 		if (!strcmp(this_char,"size")) {
3313 			unsigned long long size;
3314 			size = memparse(value,&rest);
3315 			if (*rest == '%') {
3316 				size <<= PAGE_SHIFT;
3317 				size *= totalram_pages;
3318 				do_div(size, 100);
3319 				rest++;
3320 			}
3321 			if (*rest)
3322 				goto bad_val;
3323 			sbinfo->max_blocks =
3324 				DIV_ROUND_UP(size, PAGE_SIZE);
3325 		} else if (!strcmp(this_char,"nr_blocks")) {
3326 			sbinfo->max_blocks = memparse(value, &rest);
3327 			if (*rest)
3328 				goto bad_val;
3329 		} else if (!strcmp(this_char,"nr_inodes")) {
3330 			sbinfo->max_inodes = memparse(value, &rest);
3331 			if (*rest)
3332 				goto bad_val;
3333 		} else if (!strcmp(this_char,"mode")) {
3334 			if (remount)
3335 				continue;
3336 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3337 			if (*rest)
3338 				goto bad_val;
3339 		} else if (!strcmp(this_char,"uid")) {
3340 			if (remount)
3341 				continue;
3342 			uid = simple_strtoul(value, &rest, 0);
3343 			if (*rest)
3344 				goto bad_val;
3345 			sbinfo->uid = make_kuid(current_user_ns(), uid);
3346 			if (!uid_valid(sbinfo->uid))
3347 				goto bad_val;
3348 		} else if (!strcmp(this_char,"gid")) {
3349 			if (remount)
3350 				continue;
3351 			gid = simple_strtoul(value, &rest, 0);
3352 			if (*rest)
3353 				goto bad_val;
3354 			sbinfo->gid = make_kgid(current_user_ns(), gid);
3355 			if (!gid_valid(sbinfo->gid))
3356 				goto bad_val;
3357 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3358 		} else if (!strcmp(this_char, "huge")) {
3359 			int huge;
3360 			huge = shmem_parse_huge(value);
3361 			if (huge < 0)
3362 				goto bad_val;
3363 			if (!has_transparent_hugepage() &&
3364 					huge != SHMEM_HUGE_NEVER)
3365 				goto bad_val;
3366 			sbinfo->huge = huge;
3367 #endif
3368 #ifdef CONFIG_NUMA
3369 		} else if (!strcmp(this_char,"mpol")) {
3370 			mpol_put(mpol);
3371 			mpol = NULL;
3372 			if (mpol_parse_str(value, &mpol))
3373 				goto bad_val;
3374 #endif
3375 		} else {
3376 			pr_err("tmpfs: Bad mount option %s\n", this_char);
3377 			goto error;
3378 		}
3379 	}
3380 	sbinfo->mpol = mpol;
3381 	return 0;
3382 
3383 bad_val:
3384 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3385 	       value, this_char);
3386 error:
3387 	mpol_put(mpol);
3388 	return 1;
3389 
3390 }
3391 
3392 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3393 {
3394 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3395 	struct shmem_sb_info config = *sbinfo;
3396 	unsigned long inodes;
3397 	int error = -EINVAL;
3398 
3399 	config.mpol = NULL;
3400 	if (shmem_parse_options(data, &config, true))
3401 		return error;
3402 
3403 	spin_lock(&sbinfo->stat_lock);
3404 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3405 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3406 		goto out;
3407 	if (config.max_inodes < inodes)
3408 		goto out;
3409 	/*
3410 	 * Those tests disallow limited->unlimited while any are in use;
3411 	 * but we must separately disallow unlimited->limited, because
3412 	 * in that case we have no record of how much is already in use.
3413 	 */
3414 	if (config.max_blocks && !sbinfo->max_blocks)
3415 		goto out;
3416 	if (config.max_inodes && !sbinfo->max_inodes)
3417 		goto out;
3418 
3419 	error = 0;
3420 	sbinfo->huge = config.huge;
3421 	sbinfo->max_blocks  = config.max_blocks;
3422 	sbinfo->max_inodes  = config.max_inodes;
3423 	sbinfo->free_inodes = config.max_inodes - inodes;
3424 
3425 	/*
3426 	 * Preserve previous mempolicy unless mpol remount option was specified.
3427 	 */
3428 	if (config.mpol) {
3429 		mpol_put(sbinfo->mpol);
3430 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3431 	}
3432 out:
3433 	spin_unlock(&sbinfo->stat_lock);
3434 	return error;
3435 }
3436 
3437 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3438 {
3439 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3440 
3441 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3442 		seq_printf(seq, ",size=%luk",
3443 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3444 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3445 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3446 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3447 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3448 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3449 		seq_printf(seq, ",uid=%u",
3450 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3451 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3452 		seq_printf(seq, ",gid=%u",
3453 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3454 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3455 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3456 	if (sbinfo->huge)
3457 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3458 #endif
3459 	shmem_show_mpol(seq, sbinfo->mpol);
3460 	return 0;
3461 }
3462 
3463 #define MFD_NAME_PREFIX "memfd:"
3464 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3465 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3466 
3467 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3468 
3469 SYSCALL_DEFINE2(memfd_create,
3470 		const char __user *, uname,
3471 		unsigned int, flags)
3472 {
3473 	struct shmem_inode_info *info;
3474 	struct file *file;
3475 	int fd, error;
3476 	char *name;
3477 	long len;
3478 
3479 	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3480 		return -EINVAL;
3481 
3482 	/* length includes terminating zero */
3483 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3484 	if (len <= 0)
3485 		return -EFAULT;
3486 	if (len > MFD_NAME_MAX_LEN + 1)
3487 		return -EINVAL;
3488 
3489 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3490 	if (!name)
3491 		return -ENOMEM;
3492 
3493 	strcpy(name, MFD_NAME_PREFIX);
3494 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3495 		error = -EFAULT;
3496 		goto err_name;
3497 	}
3498 
3499 	/* terminating-zero may have changed after strnlen_user() returned */
3500 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3501 		error = -EFAULT;
3502 		goto err_name;
3503 	}
3504 
3505 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3506 	if (fd < 0) {
3507 		error = fd;
3508 		goto err_name;
3509 	}
3510 
3511 	file = shmem_file_setup(name, 0, VM_NORESERVE);
3512 	if (IS_ERR(file)) {
3513 		error = PTR_ERR(file);
3514 		goto err_fd;
3515 	}
3516 	info = SHMEM_I(file_inode(file));
3517 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3518 	file->f_flags |= O_RDWR | O_LARGEFILE;
3519 	if (flags & MFD_ALLOW_SEALING)
3520 		info->seals &= ~F_SEAL_SEAL;
3521 
3522 	fd_install(fd, file);
3523 	kfree(name);
3524 	return fd;
3525 
3526 err_fd:
3527 	put_unused_fd(fd);
3528 err_name:
3529 	kfree(name);
3530 	return error;
3531 }
3532 
3533 #endif /* CONFIG_TMPFS */
3534 
3535 static void shmem_put_super(struct super_block *sb)
3536 {
3537 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3538 
3539 	percpu_counter_destroy(&sbinfo->used_blocks);
3540 	mpol_put(sbinfo->mpol);
3541 	kfree(sbinfo);
3542 	sb->s_fs_info = NULL;
3543 }
3544 
3545 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3546 {
3547 	struct inode *inode;
3548 	struct shmem_sb_info *sbinfo;
3549 	int err = -ENOMEM;
3550 
3551 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3552 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3553 				L1_CACHE_BYTES), GFP_KERNEL);
3554 	if (!sbinfo)
3555 		return -ENOMEM;
3556 
3557 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3558 	sbinfo->uid = current_fsuid();
3559 	sbinfo->gid = current_fsgid();
3560 	sb->s_fs_info = sbinfo;
3561 
3562 #ifdef CONFIG_TMPFS
3563 	/*
3564 	 * Per default we only allow half of the physical ram per
3565 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3566 	 * but the internal instance is left unlimited.
3567 	 */
3568 	if (!(sb->s_flags & MS_KERNMOUNT)) {
3569 		sbinfo->max_blocks = shmem_default_max_blocks();
3570 		sbinfo->max_inodes = shmem_default_max_inodes();
3571 		if (shmem_parse_options(data, sbinfo, false)) {
3572 			err = -EINVAL;
3573 			goto failed;
3574 		}
3575 	} else {
3576 		sb->s_flags |= MS_NOUSER;
3577 	}
3578 	sb->s_export_op = &shmem_export_ops;
3579 	sb->s_flags |= MS_NOSEC;
3580 #else
3581 	sb->s_flags |= MS_NOUSER;
3582 #endif
3583 
3584 	spin_lock_init(&sbinfo->stat_lock);
3585 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3586 		goto failed;
3587 	sbinfo->free_inodes = sbinfo->max_inodes;
3588 	spin_lock_init(&sbinfo->shrinklist_lock);
3589 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3590 
3591 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3592 	sb->s_blocksize = PAGE_SIZE;
3593 	sb->s_blocksize_bits = PAGE_SHIFT;
3594 	sb->s_magic = TMPFS_MAGIC;
3595 	sb->s_op = &shmem_ops;
3596 	sb->s_time_gran = 1;
3597 #ifdef CONFIG_TMPFS_XATTR
3598 	sb->s_xattr = shmem_xattr_handlers;
3599 #endif
3600 #ifdef CONFIG_TMPFS_POSIX_ACL
3601 	sb->s_flags |= MS_POSIXACL;
3602 #endif
3603 
3604 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3605 	if (!inode)
3606 		goto failed;
3607 	inode->i_uid = sbinfo->uid;
3608 	inode->i_gid = sbinfo->gid;
3609 	sb->s_root = d_make_root(inode);
3610 	if (!sb->s_root)
3611 		goto failed;
3612 	return 0;
3613 
3614 failed:
3615 	shmem_put_super(sb);
3616 	return err;
3617 }
3618 
3619 static struct kmem_cache *shmem_inode_cachep;
3620 
3621 static struct inode *shmem_alloc_inode(struct super_block *sb)
3622 {
3623 	struct shmem_inode_info *info;
3624 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3625 	if (!info)
3626 		return NULL;
3627 	return &info->vfs_inode;
3628 }
3629 
3630 static void shmem_destroy_callback(struct rcu_head *head)
3631 {
3632 	struct inode *inode = container_of(head, struct inode, i_rcu);
3633 	if (S_ISLNK(inode->i_mode))
3634 		kfree(inode->i_link);
3635 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3636 }
3637 
3638 static void shmem_destroy_inode(struct inode *inode)
3639 {
3640 	if (S_ISREG(inode->i_mode))
3641 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3642 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3643 }
3644 
3645 static void shmem_init_inode(void *foo)
3646 {
3647 	struct shmem_inode_info *info = foo;
3648 	inode_init_once(&info->vfs_inode);
3649 }
3650 
3651 static int shmem_init_inodecache(void)
3652 {
3653 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3654 				sizeof(struct shmem_inode_info),
3655 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3656 	return 0;
3657 }
3658 
3659 static void shmem_destroy_inodecache(void)
3660 {
3661 	kmem_cache_destroy(shmem_inode_cachep);
3662 }
3663 
3664 static const struct address_space_operations shmem_aops = {
3665 	.writepage	= shmem_writepage,
3666 	.set_page_dirty	= __set_page_dirty_no_writeback,
3667 #ifdef CONFIG_TMPFS
3668 	.write_begin	= shmem_write_begin,
3669 	.write_end	= shmem_write_end,
3670 #endif
3671 #ifdef CONFIG_MIGRATION
3672 	.migratepage	= migrate_page,
3673 #endif
3674 	.error_remove_page = generic_error_remove_page,
3675 };
3676 
3677 static const struct file_operations shmem_file_operations = {
3678 	.mmap		= shmem_mmap,
3679 	.get_unmapped_area = shmem_get_unmapped_area,
3680 #ifdef CONFIG_TMPFS
3681 	.llseek		= shmem_file_llseek,
3682 	.read_iter	= shmem_file_read_iter,
3683 	.write_iter	= generic_file_write_iter,
3684 	.fsync		= noop_fsync,
3685 	.splice_read	= generic_file_splice_read,
3686 	.splice_write	= iter_file_splice_write,
3687 	.fallocate	= shmem_fallocate,
3688 #endif
3689 };
3690 
3691 static const struct inode_operations shmem_inode_operations = {
3692 	.getattr	= shmem_getattr,
3693 	.setattr	= shmem_setattr,
3694 #ifdef CONFIG_TMPFS_XATTR
3695 	.listxattr	= shmem_listxattr,
3696 	.set_acl	= simple_set_acl,
3697 #endif
3698 };
3699 
3700 static const struct inode_operations shmem_dir_inode_operations = {
3701 #ifdef CONFIG_TMPFS
3702 	.create		= shmem_create,
3703 	.lookup		= simple_lookup,
3704 	.link		= shmem_link,
3705 	.unlink		= shmem_unlink,
3706 	.symlink	= shmem_symlink,
3707 	.mkdir		= shmem_mkdir,
3708 	.rmdir		= shmem_rmdir,
3709 	.mknod		= shmem_mknod,
3710 	.rename		= shmem_rename2,
3711 	.tmpfile	= shmem_tmpfile,
3712 #endif
3713 #ifdef CONFIG_TMPFS_XATTR
3714 	.listxattr	= shmem_listxattr,
3715 #endif
3716 #ifdef CONFIG_TMPFS_POSIX_ACL
3717 	.setattr	= shmem_setattr,
3718 	.set_acl	= simple_set_acl,
3719 #endif
3720 };
3721 
3722 static const struct inode_operations shmem_special_inode_operations = {
3723 #ifdef CONFIG_TMPFS_XATTR
3724 	.listxattr	= shmem_listxattr,
3725 #endif
3726 #ifdef CONFIG_TMPFS_POSIX_ACL
3727 	.setattr	= shmem_setattr,
3728 	.set_acl	= simple_set_acl,
3729 #endif
3730 };
3731 
3732 static const struct super_operations shmem_ops = {
3733 	.alloc_inode	= shmem_alloc_inode,
3734 	.destroy_inode	= shmem_destroy_inode,
3735 #ifdef CONFIG_TMPFS
3736 	.statfs		= shmem_statfs,
3737 	.remount_fs	= shmem_remount_fs,
3738 	.show_options	= shmem_show_options,
3739 #endif
3740 	.evict_inode	= shmem_evict_inode,
3741 	.drop_inode	= generic_delete_inode,
3742 	.put_super	= shmem_put_super,
3743 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3744 	.nr_cached_objects	= shmem_unused_huge_count,
3745 	.free_cached_objects	= shmem_unused_huge_scan,
3746 #endif
3747 };
3748 
3749 static const struct vm_operations_struct shmem_vm_ops = {
3750 	.fault		= shmem_fault,
3751 	.map_pages	= filemap_map_pages,
3752 #ifdef CONFIG_NUMA
3753 	.set_policy     = shmem_set_policy,
3754 	.get_policy     = shmem_get_policy,
3755 #endif
3756 };
3757 
3758 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3759 	int flags, const char *dev_name, void *data)
3760 {
3761 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3762 }
3763 
3764 static struct file_system_type shmem_fs_type = {
3765 	.owner		= THIS_MODULE,
3766 	.name		= "tmpfs",
3767 	.mount		= shmem_mount,
3768 	.kill_sb	= kill_litter_super,
3769 	.fs_flags	= FS_USERNS_MOUNT,
3770 };
3771 
3772 int __init shmem_init(void)
3773 {
3774 	int error;
3775 
3776 	/* If rootfs called this, don't re-init */
3777 	if (shmem_inode_cachep)
3778 		return 0;
3779 
3780 	error = shmem_init_inodecache();
3781 	if (error)
3782 		goto out3;
3783 
3784 	error = register_filesystem(&shmem_fs_type);
3785 	if (error) {
3786 		pr_err("Could not register tmpfs\n");
3787 		goto out2;
3788 	}
3789 
3790 	shm_mnt = kern_mount(&shmem_fs_type);
3791 	if (IS_ERR(shm_mnt)) {
3792 		error = PTR_ERR(shm_mnt);
3793 		pr_err("Could not kern_mount tmpfs\n");
3794 		goto out1;
3795 	}
3796 
3797 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3798 	if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3799 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3800 	else
3801 		shmem_huge = 0; /* just in case it was patched */
3802 #endif
3803 	return 0;
3804 
3805 out1:
3806 	unregister_filesystem(&shmem_fs_type);
3807 out2:
3808 	shmem_destroy_inodecache();
3809 out3:
3810 	shm_mnt = ERR_PTR(error);
3811 	return error;
3812 }
3813 
3814 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3815 static ssize_t shmem_enabled_show(struct kobject *kobj,
3816 		struct kobj_attribute *attr, char *buf)
3817 {
3818 	int values[] = {
3819 		SHMEM_HUGE_ALWAYS,
3820 		SHMEM_HUGE_WITHIN_SIZE,
3821 		SHMEM_HUGE_ADVISE,
3822 		SHMEM_HUGE_NEVER,
3823 		SHMEM_HUGE_DENY,
3824 		SHMEM_HUGE_FORCE,
3825 	};
3826 	int i, count;
3827 
3828 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3829 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3830 
3831 		count += sprintf(buf + count, fmt,
3832 				shmem_format_huge(values[i]));
3833 	}
3834 	buf[count - 1] = '\n';
3835 	return count;
3836 }
3837 
3838 static ssize_t shmem_enabled_store(struct kobject *kobj,
3839 		struct kobj_attribute *attr, const char *buf, size_t count)
3840 {
3841 	char tmp[16];
3842 	int huge;
3843 
3844 	if (count + 1 > sizeof(tmp))
3845 		return -EINVAL;
3846 	memcpy(tmp, buf, count);
3847 	tmp[count] = '\0';
3848 	if (count && tmp[count - 1] == '\n')
3849 		tmp[count - 1] = '\0';
3850 
3851 	huge = shmem_parse_huge(tmp);
3852 	if (huge == -EINVAL)
3853 		return -EINVAL;
3854 	if (!has_transparent_hugepage() &&
3855 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3856 		return -EINVAL;
3857 
3858 	shmem_huge = huge;
3859 	if (shmem_huge < SHMEM_HUGE_DENY)
3860 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3861 	return count;
3862 }
3863 
3864 struct kobj_attribute shmem_enabled_attr =
3865 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3866 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3867 
3868 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3869 bool shmem_huge_enabled(struct vm_area_struct *vma)
3870 {
3871 	struct inode *inode = file_inode(vma->vm_file);
3872 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3873 	loff_t i_size;
3874 	pgoff_t off;
3875 
3876 	if (shmem_huge == SHMEM_HUGE_FORCE)
3877 		return true;
3878 	if (shmem_huge == SHMEM_HUGE_DENY)
3879 		return false;
3880 	switch (sbinfo->huge) {
3881 		case SHMEM_HUGE_NEVER:
3882 			return false;
3883 		case SHMEM_HUGE_ALWAYS:
3884 			return true;
3885 		case SHMEM_HUGE_WITHIN_SIZE:
3886 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3887 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
3888 			if (i_size >= HPAGE_PMD_SIZE &&
3889 					i_size >> PAGE_SHIFT >= off)
3890 				return true;
3891 		case SHMEM_HUGE_ADVISE:
3892 			/* TODO: implement fadvise() hints */
3893 			return (vma->vm_flags & VM_HUGEPAGE);
3894 		default:
3895 			VM_BUG_ON(1);
3896 			return false;
3897 	}
3898 }
3899 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3900 
3901 #else /* !CONFIG_SHMEM */
3902 
3903 /*
3904  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3905  *
3906  * This is intended for small system where the benefits of the full
3907  * shmem code (swap-backed and resource-limited) are outweighed by
3908  * their complexity. On systems without swap this code should be
3909  * effectively equivalent, but much lighter weight.
3910  */
3911 
3912 static struct file_system_type shmem_fs_type = {
3913 	.name		= "tmpfs",
3914 	.mount		= ramfs_mount,
3915 	.kill_sb	= kill_litter_super,
3916 	.fs_flags	= FS_USERNS_MOUNT,
3917 };
3918 
3919 int __init shmem_init(void)
3920 {
3921 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3922 
3923 	shm_mnt = kern_mount(&shmem_fs_type);
3924 	BUG_ON(IS_ERR(shm_mnt));
3925 
3926 	return 0;
3927 }
3928 
3929 int shmem_unuse(swp_entry_t swap, struct page *page)
3930 {
3931 	return 0;
3932 }
3933 
3934 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3935 {
3936 	return 0;
3937 }
3938 
3939 void shmem_unlock_mapping(struct address_space *mapping)
3940 {
3941 }
3942 
3943 #ifdef CONFIG_MMU
3944 unsigned long shmem_get_unmapped_area(struct file *file,
3945 				      unsigned long addr, unsigned long len,
3946 				      unsigned long pgoff, unsigned long flags)
3947 {
3948 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3949 }
3950 #endif
3951 
3952 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3953 {
3954 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3955 }
3956 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3957 
3958 #define shmem_vm_ops				generic_file_vm_ops
3959 #define shmem_file_operations			ramfs_file_operations
3960 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3961 #define shmem_acct_size(flags, size)		0
3962 #define shmem_unacct_size(flags, size)		do {} while (0)
3963 
3964 #endif /* CONFIG_SHMEM */
3965 
3966 /* common code */
3967 
3968 static const struct dentry_operations anon_ops = {
3969 	.d_dname = simple_dname
3970 };
3971 
3972 static struct file *__shmem_file_setup(const char *name, loff_t size,
3973 				       unsigned long flags, unsigned int i_flags)
3974 {
3975 	struct file *res;
3976 	struct inode *inode;
3977 	struct path path;
3978 	struct super_block *sb;
3979 	struct qstr this;
3980 
3981 	if (IS_ERR(shm_mnt))
3982 		return ERR_CAST(shm_mnt);
3983 
3984 	if (size < 0 || size > MAX_LFS_FILESIZE)
3985 		return ERR_PTR(-EINVAL);
3986 
3987 	if (shmem_acct_size(flags, size))
3988 		return ERR_PTR(-ENOMEM);
3989 
3990 	res = ERR_PTR(-ENOMEM);
3991 	this.name = name;
3992 	this.len = strlen(name);
3993 	this.hash = 0; /* will go */
3994 	sb = shm_mnt->mnt_sb;
3995 	path.mnt = mntget(shm_mnt);
3996 	path.dentry = d_alloc_pseudo(sb, &this);
3997 	if (!path.dentry)
3998 		goto put_memory;
3999 	d_set_d_op(path.dentry, &anon_ops);
4000 
4001 	res = ERR_PTR(-ENOSPC);
4002 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4003 	if (!inode)
4004 		goto put_memory;
4005 
4006 	inode->i_flags |= i_flags;
4007 	d_instantiate(path.dentry, inode);
4008 	inode->i_size = size;
4009 	clear_nlink(inode);	/* It is unlinked */
4010 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4011 	if (IS_ERR(res))
4012 		goto put_path;
4013 
4014 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4015 		  &shmem_file_operations);
4016 	if (IS_ERR(res))
4017 		goto put_path;
4018 
4019 	return res;
4020 
4021 put_memory:
4022 	shmem_unacct_size(flags, size);
4023 put_path:
4024 	path_put(&path);
4025 	return res;
4026 }
4027 
4028 /**
4029  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4030  * 	kernel internal.  There will be NO LSM permission checks against the
4031  * 	underlying inode.  So users of this interface must do LSM checks at a
4032  *	higher layer.  The users are the big_key and shm implementations.  LSM
4033  *	checks are provided at the key or shm level rather than the inode.
4034  * @name: name for dentry (to be seen in /proc/<pid>/maps
4035  * @size: size to be set for the file
4036  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4037  */
4038 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4039 {
4040 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
4041 }
4042 
4043 /**
4044  * shmem_file_setup - get an unlinked file living in tmpfs
4045  * @name: name for dentry (to be seen in /proc/<pid>/maps
4046  * @size: size to be set for the file
4047  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4048  */
4049 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4050 {
4051 	return __shmem_file_setup(name, size, flags, 0);
4052 }
4053 EXPORT_SYMBOL_GPL(shmem_file_setup);
4054 
4055 /**
4056  * shmem_zero_setup - setup a shared anonymous mapping
4057  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4058  */
4059 int shmem_zero_setup(struct vm_area_struct *vma)
4060 {
4061 	struct file *file;
4062 	loff_t size = vma->vm_end - vma->vm_start;
4063 
4064 	/*
4065 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4066 	 * between XFS directory reading and selinux: since this file is only
4067 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4068 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4069 	 */
4070 	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4071 	if (IS_ERR(file))
4072 		return PTR_ERR(file);
4073 
4074 	if (vma->vm_file)
4075 		fput(vma->vm_file);
4076 	vma->vm_file = file;
4077 	vma->vm_ops = &shmem_vm_ops;
4078 
4079 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4080 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4081 			(vma->vm_end & HPAGE_PMD_MASK)) {
4082 		khugepaged_enter(vma, vma->vm_flags);
4083 	}
4084 
4085 	return 0;
4086 }
4087 
4088 /**
4089  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4090  * @mapping:	the page's address_space
4091  * @index:	the page index
4092  * @gfp:	the page allocator flags to use if allocating
4093  *
4094  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4095  * with any new page allocations done using the specified allocation flags.
4096  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4097  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4098  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4099  *
4100  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4101  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4102  */
4103 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4104 					 pgoff_t index, gfp_t gfp)
4105 {
4106 #ifdef CONFIG_SHMEM
4107 	struct inode *inode = mapping->host;
4108 	struct page *page;
4109 	int error;
4110 
4111 	BUG_ON(mapping->a_ops != &shmem_aops);
4112 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4113 				  gfp, NULL, NULL);
4114 	if (error)
4115 		page = ERR_PTR(error);
4116 	else
4117 		unlock_page(page);
4118 	return page;
4119 #else
4120 	/*
4121 	 * The tiny !SHMEM case uses ramfs without swap
4122 	 */
4123 	return read_cache_page_gfp(mapping, index, gfp);
4124 #endif
4125 }
4126 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4127