1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include "swap.h" 44 45 static struct vfsmount *shm_mnt __ro_after_init; 46 47 #ifdef CONFIG_SHMEM 48 /* 49 * This virtual memory filesystem is heavily based on the ramfs. It 50 * extends ramfs by the ability to use swap and honor resource limits 51 * which makes it a completely usable filesystem. 52 */ 53 54 #include <linux/xattr.h> 55 #include <linux/exportfs.h> 56 #include <linux/posix_acl.h> 57 #include <linux/posix_acl_xattr.h> 58 #include <linux/mman.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/backing-dev.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 #include <linux/quotaops.h> 82 #include <linux/rcupdate_wait.h> 83 84 #include <linux/uaccess.h> 85 86 #include "internal.h" 87 88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Pretend that one inode + its dentry occupy this much memory */ 95 #define BOGO_INODE_SIZE 1024 96 97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 98 #define SHORT_SYMLINK_LEN 128 99 100 /* 101 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 102 * inode->i_private (with i_rwsem making sure that it has only one user at 103 * a time): we would prefer not to enlarge the shmem inode just for that. 104 */ 105 struct shmem_falloc { 106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 107 pgoff_t start; /* start of range currently being fallocated */ 108 pgoff_t next; /* the next page offset to be fallocated */ 109 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 110 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 111 }; 112 113 struct shmem_options { 114 unsigned long long blocks; 115 unsigned long long inodes; 116 struct mempolicy *mpol; 117 kuid_t uid; 118 kgid_t gid; 119 umode_t mode; 120 bool full_inums; 121 int huge; 122 int seen; 123 bool noswap; 124 unsigned short quota_types; 125 struct shmem_quota_limits qlimits; 126 #define SHMEM_SEEN_BLOCKS 1 127 #define SHMEM_SEEN_INODES 2 128 #define SHMEM_SEEN_HUGE 4 129 #define SHMEM_SEEN_INUMS 8 130 #define SHMEM_SEEN_NOSWAP 16 131 #define SHMEM_SEEN_QUOTA 32 132 }; 133 134 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 135 static unsigned long huge_shmem_orders_always __read_mostly; 136 static unsigned long huge_shmem_orders_madvise __read_mostly; 137 static unsigned long huge_shmem_orders_inherit __read_mostly; 138 static unsigned long huge_shmem_orders_within_size __read_mostly; 139 #endif 140 141 #ifdef CONFIG_TMPFS 142 static unsigned long shmem_default_max_blocks(void) 143 { 144 return totalram_pages() / 2; 145 } 146 147 static unsigned long shmem_default_max_inodes(void) 148 { 149 unsigned long nr_pages = totalram_pages(); 150 151 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 152 ULONG_MAX / BOGO_INODE_SIZE); 153 } 154 #endif 155 156 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 157 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 158 struct vm_area_struct *vma, vm_fault_t *fault_type); 159 160 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 161 { 162 return sb->s_fs_info; 163 } 164 165 /* 166 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 167 * for shared memory and for shared anonymous (/dev/zero) mappings 168 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 169 * consistent with the pre-accounting of private mappings ... 170 */ 171 static inline int shmem_acct_size(unsigned long flags, loff_t size) 172 { 173 return (flags & VM_NORESERVE) ? 174 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 175 } 176 177 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 178 { 179 if (!(flags & VM_NORESERVE)) 180 vm_unacct_memory(VM_ACCT(size)); 181 } 182 183 static inline int shmem_reacct_size(unsigned long flags, 184 loff_t oldsize, loff_t newsize) 185 { 186 if (!(flags & VM_NORESERVE)) { 187 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 188 return security_vm_enough_memory_mm(current->mm, 189 VM_ACCT(newsize) - VM_ACCT(oldsize)); 190 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 191 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 192 } 193 return 0; 194 } 195 196 /* 197 * ... whereas tmpfs objects are accounted incrementally as 198 * pages are allocated, in order to allow large sparse files. 199 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 200 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 201 */ 202 static inline int shmem_acct_blocks(unsigned long flags, long pages) 203 { 204 if (!(flags & VM_NORESERVE)) 205 return 0; 206 207 return security_vm_enough_memory_mm(current->mm, 208 pages * VM_ACCT(PAGE_SIZE)); 209 } 210 211 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 212 { 213 if (flags & VM_NORESERVE) 214 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 215 } 216 217 static int shmem_inode_acct_blocks(struct inode *inode, long pages) 218 { 219 struct shmem_inode_info *info = SHMEM_I(inode); 220 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 221 int err = -ENOSPC; 222 223 if (shmem_acct_blocks(info->flags, pages)) 224 return err; 225 226 might_sleep(); /* when quotas */ 227 if (sbinfo->max_blocks) { 228 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 229 sbinfo->max_blocks, pages)) 230 goto unacct; 231 232 err = dquot_alloc_block_nodirty(inode, pages); 233 if (err) { 234 percpu_counter_sub(&sbinfo->used_blocks, pages); 235 goto unacct; 236 } 237 } else { 238 err = dquot_alloc_block_nodirty(inode, pages); 239 if (err) 240 goto unacct; 241 } 242 243 return 0; 244 245 unacct: 246 shmem_unacct_blocks(info->flags, pages); 247 return err; 248 } 249 250 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 251 { 252 struct shmem_inode_info *info = SHMEM_I(inode); 253 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 254 255 might_sleep(); /* when quotas */ 256 dquot_free_block_nodirty(inode, pages); 257 258 if (sbinfo->max_blocks) 259 percpu_counter_sub(&sbinfo->used_blocks, pages); 260 shmem_unacct_blocks(info->flags, pages); 261 } 262 263 static const struct super_operations shmem_ops; 264 static const struct address_space_operations shmem_aops; 265 static const struct file_operations shmem_file_operations; 266 static const struct inode_operations shmem_inode_operations; 267 static const struct inode_operations shmem_dir_inode_operations; 268 static const struct inode_operations shmem_special_inode_operations; 269 static const struct vm_operations_struct shmem_vm_ops; 270 static const struct vm_operations_struct shmem_anon_vm_ops; 271 static struct file_system_type shmem_fs_type; 272 273 bool shmem_mapping(struct address_space *mapping) 274 { 275 return mapping->a_ops == &shmem_aops; 276 } 277 EXPORT_SYMBOL_GPL(shmem_mapping); 278 279 bool vma_is_anon_shmem(struct vm_area_struct *vma) 280 { 281 return vma->vm_ops == &shmem_anon_vm_ops; 282 } 283 284 bool vma_is_shmem(struct vm_area_struct *vma) 285 { 286 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 287 } 288 289 static LIST_HEAD(shmem_swaplist); 290 static DEFINE_MUTEX(shmem_swaplist_mutex); 291 292 #ifdef CONFIG_TMPFS_QUOTA 293 294 static int shmem_enable_quotas(struct super_block *sb, 295 unsigned short quota_types) 296 { 297 int type, err = 0; 298 299 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 300 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 301 if (!(quota_types & (1 << type))) 302 continue; 303 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 304 DQUOT_USAGE_ENABLED | 305 DQUOT_LIMITS_ENABLED); 306 if (err) 307 goto out_err; 308 } 309 return 0; 310 311 out_err: 312 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 313 type, err); 314 for (type--; type >= 0; type--) 315 dquot_quota_off(sb, type); 316 return err; 317 } 318 319 static void shmem_disable_quotas(struct super_block *sb) 320 { 321 int type; 322 323 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 324 dquot_quota_off(sb, type); 325 } 326 327 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 328 { 329 return SHMEM_I(inode)->i_dquot; 330 } 331 #endif /* CONFIG_TMPFS_QUOTA */ 332 333 /* 334 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 335 * produces a novel ino for the newly allocated inode. 336 * 337 * It may also be called when making a hard link to permit the space needed by 338 * each dentry. However, in that case, no new inode number is needed since that 339 * internally draws from another pool of inode numbers (currently global 340 * get_next_ino()). This case is indicated by passing NULL as inop. 341 */ 342 #define SHMEM_INO_BATCH 1024 343 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 344 { 345 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 346 ino_t ino; 347 348 if (!(sb->s_flags & SB_KERNMOUNT)) { 349 raw_spin_lock(&sbinfo->stat_lock); 350 if (sbinfo->max_inodes) { 351 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 352 raw_spin_unlock(&sbinfo->stat_lock); 353 return -ENOSPC; 354 } 355 sbinfo->free_ispace -= BOGO_INODE_SIZE; 356 } 357 if (inop) { 358 ino = sbinfo->next_ino++; 359 if (unlikely(is_zero_ino(ino))) 360 ino = sbinfo->next_ino++; 361 if (unlikely(!sbinfo->full_inums && 362 ino > UINT_MAX)) { 363 /* 364 * Emulate get_next_ino uint wraparound for 365 * compatibility 366 */ 367 if (IS_ENABLED(CONFIG_64BIT)) 368 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 369 __func__, MINOR(sb->s_dev)); 370 sbinfo->next_ino = 1; 371 ino = sbinfo->next_ino++; 372 } 373 *inop = ino; 374 } 375 raw_spin_unlock(&sbinfo->stat_lock); 376 } else if (inop) { 377 /* 378 * __shmem_file_setup, one of our callers, is lock-free: it 379 * doesn't hold stat_lock in shmem_reserve_inode since 380 * max_inodes is always 0, and is called from potentially 381 * unknown contexts. As such, use a per-cpu batched allocator 382 * which doesn't require the per-sb stat_lock unless we are at 383 * the batch boundary. 384 * 385 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 386 * shmem mounts are not exposed to userspace, so we don't need 387 * to worry about things like glibc compatibility. 388 */ 389 ino_t *next_ino; 390 391 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 392 ino = *next_ino; 393 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 394 raw_spin_lock(&sbinfo->stat_lock); 395 ino = sbinfo->next_ino; 396 sbinfo->next_ino += SHMEM_INO_BATCH; 397 raw_spin_unlock(&sbinfo->stat_lock); 398 if (unlikely(is_zero_ino(ino))) 399 ino++; 400 } 401 *inop = ino; 402 *next_ino = ++ino; 403 put_cpu(); 404 } 405 406 return 0; 407 } 408 409 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 410 { 411 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 412 if (sbinfo->max_inodes) { 413 raw_spin_lock(&sbinfo->stat_lock); 414 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 415 raw_spin_unlock(&sbinfo->stat_lock); 416 } 417 } 418 419 /** 420 * shmem_recalc_inode - recalculate the block usage of an inode 421 * @inode: inode to recalc 422 * @alloced: the change in number of pages allocated to inode 423 * @swapped: the change in number of pages swapped from inode 424 * 425 * We have to calculate the free blocks since the mm can drop 426 * undirtied hole pages behind our back. 427 * 428 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 429 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 430 */ 431 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 432 { 433 struct shmem_inode_info *info = SHMEM_I(inode); 434 long freed; 435 436 spin_lock(&info->lock); 437 info->alloced += alloced; 438 info->swapped += swapped; 439 freed = info->alloced - info->swapped - 440 READ_ONCE(inode->i_mapping->nrpages); 441 /* 442 * Special case: whereas normally shmem_recalc_inode() is called 443 * after i_mapping->nrpages has already been adjusted (up or down), 444 * shmem_writepage() has to raise swapped before nrpages is lowered - 445 * to stop a racing shmem_recalc_inode() from thinking that a page has 446 * been freed. Compensate here, to avoid the need for a followup call. 447 */ 448 if (swapped > 0) 449 freed += swapped; 450 if (freed > 0) 451 info->alloced -= freed; 452 spin_unlock(&info->lock); 453 454 /* The quota case may block */ 455 if (freed > 0) 456 shmem_inode_unacct_blocks(inode, freed); 457 } 458 459 bool shmem_charge(struct inode *inode, long pages) 460 { 461 struct address_space *mapping = inode->i_mapping; 462 463 if (shmem_inode_acct_blocks(inode, pages)) 464 return false; 465 466 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 467 xa_lock_irq(&mapping->i_pages); 468 mapping->nrpages += pages; 469 xa_unlock_irq(&mapping->i_pages); 470 471 shmem_recalc_inode(inode, pages, 0); 472 return true; 473 } 474 475 void shmem_uncharge(struct inode *inode, long pages) 476 { 477 /* pages argument is currently unused: keep it to help debugging */ 478 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 479 480 shmem_recalc_inode(inode, 0, 0); 481 } 482 483 /* 484 * Replace item expected in xarray by a new item, while holding xa_lock. 485 */ 486 static int shmem_replace_entry(struct address_space *mapping, 487 pgoff_t index, void *expected, void *replacement) 488 { 489 XA_STATE(xas, &mapping->i_pages, index); 490 void *item; 491 492 VM_BUG_ON(!expected); 493 VM_BUG_ON(!replacement); 494 item = xas_load(&xas); 495 if (item != expected) 496 return -ENOENT; 497 xas_store(&xas, replacement); 498 return 0; 499 } 500 501 /* 502 * Sometimes, before we decide whether to proceed or to fail, we must check 503 * that an entry was not already brought back from swap by a racing thread. 504 * 505 * Checking folio is not enough: by the time a swapcache folio is locked, it 506 * might be reused, and again be swapcache, using the same swap as before. 507 */ 508 static bool shmem_confirm_swap(struct address_space *mapping, 509 pgoff_t index, swp_entry_t swap) 510 { 511 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 512 } 513 514 /* 515 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 516 * 517 * SHMEM_HUGE_NEVER: 518 * disables huge pages for the mount; 519 * SHMEM_HUGE_ALWAYS: 520 * enables huge pages for the mount; 521 * SHMEM_HUGE_WITHIN_SIZE: 522 * only allocate huge pages if the page will be fully within i_size, 523 * also respect fadvise()/madvise() hints; 524 * SHMEM_HUGE_ADVISE: 525 * only allocate huge pages if requested with fadvise()/madvise(); 526 */ 527 528 #define SHMEM_HUGE_NEVER 0 529 #define SHMEM_HUGE_ALWAYS 1 530 #define SHMEM_HUGE_WITHIN_SIZE 2 531 #define SHMEM_HUGE_ADVISE 3 532 533 /* 534 * Special values. 535 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 536 * 537 * SHMEM_HUGE_DENY: 538 * disables huge on shm_mnt and all mounts, for emergency use; 539 * SHMEM_HUGE_FORCE: 540 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 541 * 542 */ 543 #define SHMEM_HUGE_DENY (-1) 544 #define SHMEM_HUGE_FORCE (-2) 545 546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 547 /* ifdef here to avoid bloating shmem.o when not necessary */ 548 549 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 550 551 static bool __shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 552 loff_t write_end, bool shmem_huge_force, 553 struct vm_area_struct *vma, 554 unsigned long vm_flags) 555 { 556 struct mm_struct *mm = vma ? vma->vm_mm : NULL; 557 loff_t i_size; 558 559 if (!S_ISREG(inode->i_mode)) 560 return false; 561 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags))) 562 return false; 563 if (shmem_huge == SHMEM_HUGE_DENY) 564 return false; 565 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 566 return true; 567 568 switch (SHMEM_SB(inode->i_sb)->huge) { 569 case SHMEM_HUGE_ALWAYS: 570 return true; 571 case SHMEM_HUGE_WITHIN_SIZE: 572 index = round_up(index + 1, HPAGE_PMD_NR); 573 i_size = max(write_end, i_size_read(inode)); 574 i_size = round_up(i_size, PAGE_SIZE); 575 if (i_size >> PAGE_SHIFT >= index) 576 return true; 577 fallthrough; 578 case SHMEM_HUGE_ADVISE: 579 if (mm && (vm_flags & VM_HUGEPAGE)) 580 return true; 581 fallthrough; 582 default: 583 return false; 584 } 585 } 586 587 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 588 loff_t write_end, bool shmem_huge_force, 589 struct vm_area_struct *vma, unsigned long vm_flags) 590 { 591 if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER) 592 return false; 593 594 return __shmem_huge_global_enabled(inode, index, write_end, 595 shmem_huge_force, vma, vm_flags); 596 } 597 598 #if defined(CONFIG_SYSFS) 599 static int shmem_parse_huge(const char *str) 600 { 601 if (!strcmp(str, "never")) 602 return SHMEM_HUGE_NEVER; 603 if (!strcmp(str, "always")) 604 return SHMEM_HUGE_ALWAYS; 605 if (!strcmp(str, "within_size")) 606 return SHMEM_HUGE_WITHIN_SIZE; 607 if (!strcmp(str, "advise")) 608 return SHMEM_HUGE_ADVISE; 609 if (!strcmp(str, "deny")) 610 return SHMEM_HUGE_DENY; 611 if (!strcmp(str, "force")) 612 return SHMEM_HUGE_FORCE; 613 return -EINVAL; 614 } 615 #endif 616 617 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 618 static const char *shmem_format_huge(int huge) 619 { 620 switch (huge) { 621 case SHMEM_HUGE_NEVER: 622 return "never"; 623 case SHMEM_HUGE_ALWAYS: 624 return "always"; 625 case SHMEM_HUGE_WITHIN_SIZE: 626 return "within_size"; 627 case SHMEM_HUGE_ADVISE: 628 return "advise"; 629 case SHMEM_HUGE_DENY: 630 return "deny"; 631 case SHMEM_HUGE_FORCE: 632 return "force"; 633 default: 634 VM_BUG_ON(1); 635 return "bad_val"; 636 } 637 } 638 #endif 639 640 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 641 struct shrink_control *sc, unsigned long nr_to_free) 642 { 643 LIST_HEAD(list), *pos, *next; 644 struct inode *inode; 645 struct shmem_inode_info *info; 646 struct folio *folio; 647 unsigned long batch = sc ? sc->nr_to_scan : 128; 648 unsigned long split = 0, freed = 0; 649 650 if (list_empty(&sbinfo->shrinklist)) 651 return SHRINK_STOP; 652 653 spin_lock(&sbinfo->shrinklist_lock); 654 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 655 info = list_entry(pos, struct shmem_inode_info, shrinklist); 656 657 /* pin the inode */ 658 inode = igrab(&info->vfs_inode); 659 660 /* inode is about to be evicted */ 661 if (!inode) { 662 list_del_init(&info->shrinklist); 663 goto next; 664 } 665 666 list_move(&info->shrinklist, &list); 667 next: 668 sbinfo->shrinklist_len--; 669 if (!--batch) 670 break; 671 } 672 spin_unlock(&sbinfo->shrinklist_lock); 673 674 list_for_each_safe(pos, next, &list) { 675 pgoff_t next, end; 676 loff_t i_size; 677 int ret; 678 679 info = list_entry(pos, struct shmem_inode_info, shrinklist); 680 inode = &info->vfs_inode; 681 682 if (nr_to_free && freed >= nr_to_free) 683 goto move_back; 684 685 i_size = i_size_read(inode); 686 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE); 687 if (!folio || xa_is_value(folio)) 688 goto drop; 689 690 /* No large folio at the end of the file: nothing to split */ 691 if (!folio_test_large(folio)) { 692 folio_put(folio); 693 goto drop; 694 } 695 696 /* Check if there is anything to gain from splitting */ 697 next = folio_next_index(folio); 698 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE)); 699 if (end <= folio->index || end >= next) { 700 folio_put(folio); 701 goto drop; 702 } 703 704 /* 705 * Move the inode on the list back to shrinklist if we failed 706 * to lock the page at this time. 707 * 708 * Waiting for the lock may lead to deadlock in the 709 * reclaim path. 710 */ 711 if (!folio_trylock(folio)) { 712 folio_put(folio); 713 goto move_back; 714 } 715 716 ret = split_folio(folio); 717 folio_unlock(folio); 718 folio_put(folio); 719 720 /* If split failed move the inode on the list back to shrinklist */ 721 if (ret) 722 goto move_back; 723 724 freed += next - end; 725 split++; 726 drop: 727 list_del_init(&info->shrinklist); 728 goto put; 729 move_back: 730 /* 731 * Make sure the inode is either on the global list or deleted 732 * from any local list before iput() since it could be deleted 733 * in another thread once we put the inode (then the local list 734 * is corrupted). 735 */ 736 spin_lock(&sbinfo->shrinklist_lock); 737 list_move(&info->shrinklist, &sbinfo->shrinklist); 738 sbinfo->shrinklist_len++; 739 spin_unlock(&sbinfo->shrinklist_lock); 740 put: 741 iput(inode); 742 } 743 744 return split; 745 } 746 747 static long shmem_unused_huge_scan(struct super_block *sb, 748 struct shrink_control *sc) 749 { 750 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 751 752 if (!READ_ONCE(sbinfo->shrinklist_len)) 753 return SHRINK_STOP; 754 755 return shmem_unused_huge_shrink(sbinfo, sc, 0); 756 } 757 758 static long shmem_unused_huge_count(struct super_block *sb, 759 struct shrink_control *sc) 760 { 761 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 762 return READ_ONCE(sbinfo->shrinklist_len); 763 } 764 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 765 766 #define shmem_huge SHMEM_HUGE_DENY 767 768 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 769 struct shrink_control *sc, unsigned long nr_to_free) 770 { 771 return 0; 772 } 773 774 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 775 loff_t write_end, bool shmem_huge_force, 776 struct vm_area_struct *vma, unsigned long vm_flags) 777 { 778 return false; 779 } 780 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 781 782 /* 783 * Somewhat like filemap_add_folio, but error if expected item has gone. 784 */ 785 static int shmem_add_to_page_cache(struct folio *folio, 786 struct address_space *mapping, 787 pgoff_t index, void *expected, gfp_t gfp) 788 { 789 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 790 long nr = folio_nr_pages(folio); 791 792 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 793 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 794 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 795 796 folio_ref_add(folio, nr); 797 folio->mapping = mapping; 798 folio->index = index; 799 800 gfp &= GFP_RECLAIM_MASK; 801 folio_throttle_swaprate(folio, gfp); 802 803 do { 804 xas_lock_irq(&xas); 805 if (expected != xas_find_conflict(&xas)) { 806 xas_set_err(&xas, -EEXIST); 807 goto unlock; 808 } 809 if (expected && xas_find_conflict(&xas)) { 810 xas_set_err(&xas, -EEXIST); 811 goto unlock; 812 } 813 xas_store(&xas, folio); 814 if (xas_error(&xas)) 815 goto unlock; 816 if (folio_test_pmd_mappable(folio)) 817 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 818 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 819 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 820 mapping->nrpages += nr; 821 unlock: 822 xas_unlock_irq(&xas); 823 } while (xas_nomem(&xas, gfp)); 824 825 if (xas_error(&xas)) { 826 folio->mapping = NULL; 827 folio_ref_sub(folio, nr); 828 return xas_error(&xas); 829 } 830 831 return 0; 832 } 833 834 /* 835 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 836 */ 837 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 838 { 839 struct address_space *mapping = folio->mapping; 840 long nr = folio_nr_pages(folio); 841 int error; 842 843 xa_lock_irq(&mapping->i_pages); 844 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 845 folio->mapping = NULL; 846 mapping->nrpages -= nr; 847 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 848 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 849 xa_unlock_irq(&mapping->i_pages); 850 folio_put_refs(folio, nr); 851 BUG_ON(error); 852 } 853 854 /* 855 * Remove swap entry from page cache, free the swap and its page cache. Returns 856 * the number of pages being freed. 0 means entry not found in XArray (0 pages 857 * being freed). 858 */ 859 static long shmem_free_swap(struct address_space *mapping, 860 pgoff_t index, void *radswap) 861 { 862 int order = xa_get_order(&mapping->i_pages, index); 863 void *old; 864 865 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 866 if (old != radswap) 867 return 0; 868 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order); 869 870 return 1 << order; 871 } 872 873 /* 874 * Determine (in bytes) how many of the shmem object's pages mapped by the 875 * given offsets are swapped out. 876 * 877 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 878 * as long as the inode doesn't go away and racy results are not a problem. 879 */ 880 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 881 pgoff_t start, pgoff_t end) 882 { 883 XA_STATE(xas, &mapping->i_pages, start); 884 struct page *page; 885 unsigned long swapped = 0; 886 unsigned long max = end - 1; 887 888 rcu_read_lock(); 889 xas_for_each(&xas, page, max) { 890 if (xas_retry(&xas, page)) 891 continue; 892 if (xa_is_value(page)) 893 swapped += 1 << xas_get_order(&xas); 894 if (xas.xa_index == max) 895 break; 896 if (need_resched()) { 897 xas_pause(&xas); 898 cond_resched_rcu(); 899 } 900 } 901 rcu_read_unlock(); 902 903 return swapped << PAGE_SHIFT; 904 } 905 906 /* 907 * Determine (in bytes) how many of the shmem object's pages mapped by the 908 * given vma is swapped out. 909 * 910 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 911 * as long as the inode doesn't go away and racy results are not a problem. 912 */ 913 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 914 { 915 struct inode *inode = file_inode(vma->vm_file); 916 struct shmem_inode_info *info = SHMEM_I(inode); 917 struct address_space *mapping = inode->i_mapping; 918 unsigned long swapped; 919 920 /* Be careful as we don't hold info->lock */ 921 swapped = READ_ONCE(info->swapped); 922 923 /* 924 * The easier cases are when the shmem object has nothing in swap, or 925 * the vma maps it whole. Then we can simply use the stats that we 926 * already track. 927 */ 928 if (!swapped) 929 return 0; 930 931 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 932 return swapped << PAGE_SHIFT; 933 934 /* Here comes the more involved part */ 935 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 936 vma->vm_pgoff + vma_pages(vma)); 937 } 938 939 /* 940 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 941 */ 942 void shmem_unlock_mapping(struct address_space *mapping) 943 { 944 struct folio_batch fbatch; 945 pgoff_t index = 0; 946 947 folio_batch_init(&fbatch); 948 /* 949 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 950 */ 951 while (!mapping_unevictable(mapping) && 952 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 953 check_move_unevictable_folios(&fbatch); 954 folio_batch_release(&fbatch); 955 cond_resched(); 956 } 957 } 958 959 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 960 { 961 struct folio *folio; 962 963 /* 964 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 965 * beyond i_size, and reports fallocated folios as holes. 966 */ 967 folio = filemap_get_entry(inode->i_mapping, index); 968 if (!folio) 969 return folio; 970 if (!xa_is_value(folio)) { 971 folio_lock(folio); 972 if (folio->mapping == inode->i_mapping) 973 return folio; 974 /* The folio has been swapped out */ 975 folio_unlock(folio); 976 folio_put(folio); 977 } 978 /* 979 * But read a folio back from swap if any of it is within i_size 980 * (although in some cases this is just a waste of time). 981 */ 982 folio = NULL; 983 shmem_get_folio(inode, index, 0, &folio, SGP_READ); 984 return folio; 985 } 986 987 /* 988 * Remove range of pages and swap entries from page cache, and free them. 989 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 990 */ 991 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 992 bool unfalloc) 993 { 994 struct address_space *mapping = inode->i_mapping; 995 struct shmem_inode_info *info = SHMEM_I(inode); 996 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 997 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 998 struct folio_batch fbatch; 999 pgoff_t indices[PAGEVEC_SIZE]; 1000 struct folio *folio; 1001 bool same_folio; 1002 long nr_swaps_freed = 0; 1003 pgoff_t index; 1004 int i; 1005 1006 if (lend == -1) 1007 end = -1; /* unsigned, so actually very big */ 1008 1009 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1010 info->fallocend = start; 1011 1012 folio_batch_init(&fbatch); 1013 index = start; 1014 while (index < end && find_lock_entries(mapping, &index, end - 1, 1015 &fbatch, indices)) { 1016 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1017 folio = fbatch.folios[i]; 1018 1019 if (xa_is_value(folio)) { 1020 if (unfalloc) 1021 continue; 1022 nr_swaps_freed += shmem_free_swap(mapping, 1023 indices[i], folio); 1024 continue; 1025 } 1026 1027 if (!unfalloc || !folio_test_uptodate(folio)) 1028 truncate_inode_folio(mapping, folio); 1029 folio_unlock(folio); 1030 } 1031 folio_batch_remove_exceptionals(&fbatch); 1032 folio_batch_release(&fbatch); 1033 cond_resched(); 1034 } 1035 1036 /* 1037 * When undoing a failed fallocate, we want none of the partial folio 1038 * zeroing and splitting below, but shall want to truncate the whole 1039 * folio when !uptodate indicates that it was added by this fallocate, 1040 * even when [lstart, lend] covers only a part of the folio. 1041 */ 1042 if (unfalloc) 1043 goto whole_folios; 1044 1045 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1046 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1047 if (folio) { 1048 same_folio = lend < folio_pos(folio) + folio_size(folio); 1049 folio_mark_dirty(folio); 1050 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1051 start = folio_next_index(folio); 1052 if (same_folio) 1053 end = folio->index; 1054 } 1055 folio_unlock(folio); 1056 folio_put(folio); 1057 folio = NULL; 1058 } 1059 1060 if (!same_folio) 1061 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1062 if (folio) { 1063 folio_mark_dirty(folio); 1064 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1065 end = folio->index; 1066 folio_unlock(folio); 1067 folio_put(folio); 1068 } 1069 1070 whole_folios: 1071 1072 index = start; 1073 while (index < end) { 1074 cond_resched(); 1075 1076 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1077 indices)) { 1078 /* If all gone or hole-punch or unfalloc, we're done */ 1079 if (index == start || end != -1) 1080 break; 1081 /* But if truncating, restart to make sure all gone */ 1082 index = start; 1083 continue; 1084 } 1085 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1086 folio = fbatch.folios[i]; 1087 1088 if (xa_is_value(folio)) { 1089 long swaps_freed; 1090 1091 if (unfalloc) 1092 continue; 1093 swaps_freed = shmem_free_swap(mapping, indices[i], folio); 1094 if (!swaps_freed) { 1095 /* Swap was replaced by page: retry */ 1096 index = indices[i]; 1097 break; 1098 } 1099 nr_swaps_freed += swaps_freed; 1100 continue; 1101 } 1102 1103 folio_lock(folio); 1104 1105 if (!unfalloc || !folio_test_uptodate(folio)) { 1106 if (folio_mapping(folio) != mapping) { 1107 /* Page was replaced by swap: retry */ 1108 folio_unlock(folio); 1109 index = indices[i]; 1110 break; 1111 } 1112 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1113 folio); 1114 1115 if (!folio_test_large(folio)) { 1116 truncate_inode_folio(mapping, folio); 1117 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1118 /* 1119 * If we split a page, reset the loop so 1120 * that we pick up the new sub pages. 1121 * Otherwise the THP was entirely 1122 * dropped or the target range was 1123 * zeroed, so just continue the loop as 1124 * is. 1125 */ 1126 if (!folio_test_large(folio)) { 1127 folio_unlock(folio); 1128 index = start; 1129 break; 1130 } 1131 } 1132 } 1133 folio_unlock(folio); 1134 } 1135 folio_batch_remove_exceptionals(&fbatch); 1136 folio_batch_release(&fbatch); 1137 } 1138 1139 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1140 } 1141 1142 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1143 { 1144 shmem_undo_range(inode, lstart, lend, false); 1145 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1146 inode_inc_iversion(inode); 1147 } 1148 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1149 1150 static int shmem_getattr(struct mnt_idmap *idmap, 1151 const struct path *path, struct kstat *stat, 1152 u32 request_mask, unsigned int query_flags) 1153 { 1154 struct inode *inode = path->dentry->d_inode; 1155 struct shmem_inode_info *info = SHMEM_I(inode); 1156 1157 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1158 shmem_recalc_inode(inode, 0, 0); 1159 1160 if (info->fsflags & FS_APPEND_FL) 1161 stat->attributes |= STATX_ATTR_APPEND; 1162 if (info->fsflags & FS_IMMUTABLE_FL) 1163 stat->attributes |= STATX_ATTR_IMMUTABLE; 1164 if (info->fsflags & FS_NODUMP_FL) 1165 stat->attributes |= STATX_ATTR_NODUMP; 1166 stat->attributes_mask |= (STATX_ATTR_APPEND | 1167 STATX_ATTR_IMMUTABLE | 1168 STATX_ATTR_NODUMP); 1169 inode_lock_shared(inode); 1170 generic_fillattr(idmap, request_mask, inode, stat); 1171 inode_unlock_shared(inode); 1172 1173 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0)) 1174 stat->blksize = HPAGE_PMD_SIZE; 1175 1176 if (request_mask & STATX_BTIME) { 1177 stat->result_mask |= STATX_BTIME; 1178 stat->btime.tv_sec = info->i_crtime.tv_sec; 1179 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1180 } 1181 1182 return 0; 1183 } 1184 1185 static int shmem_setattr(struct mnt_idmap *idmap, 1186 struct dentry *dentry, struct iattr *attr) 1187 { 1188 struct inode *inode = d_inode(dentry); 1189 struct shmem_inode_info *info = SHMEM_I(inode); 1190 int error; 1191 bool update_mtime = false; 1192 bool update_ctime = true; 1193 1194 error = setattr_prepare(idmap, dentry, attr); 1195 if (error) 1196 return error; 1197 1198 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1199 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1200 return -EPERM; 1201 } 1202 } 1203 1204 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1205 loff_t oldsize = inode->i_size; 1206 loff_t newsize = attr->ia_size; 1207 1208 /* protected by i_rwsem */ 1209 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1210 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1211 return -EPERM; 1212 1213 if (newsize != oldsize) { 1214 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1215 oldsize, newsize); 1216 if (error) 1217 return error; 1218 i_size_write(inode, newsize); 1219 update_mtime = true; 1220 } else { 1221 update_ctime = false; 1222 } 1223 if (newsize <= oldsize) { 1224 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1225 if (oldsize > holebegin) 1226 unmap_mapping_range(inode->i_mapping, 1227 holebegin, 0, 1); 1228 if (info->alloced) 1229 shmem_truncate_range(inode, 1230 newsize, (loff_t)-1); 1231 /* unmap again to remove racily COWed private pages */ 1232 if (oldsize > holebegin) 1233 unmap_mapping_range(inode->i_mapping, 1234 holebegin, 0, 1); 1235 } 1236 } 1237 1238 if (is_quota_modification(idmap, inode, attr)) { 1239 error = dquot_initialize(inode); 1240 if (error) 1241 return error; 1242 } 1243 1244 /* Transfer quota accounting */ 1245 if (i_uid_needs_update(idmap, attr, inode) || 1246 i_gid_needs_update(idmap, attr, inode)) { 1247 error = dquot_transfer(idmap, inode, attr); 1248 if (error) 1249 return error; 1250 } 1251 1252 setattr_copy(idmap, inode, attr); 1253 if (attr->ia_valid & ATTR_MODE) 1254 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1255 if (!error && update_ctime) { 1256 inode_set_ctime_current(inode); 1257 if (update_mtime) 1258 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1259 inode_inc_iversion(inode); 1260 } 1261 return error; 1262 } 1263 1264 static void shmem_evict_inode(struct inode *inode) 1265 { 1266 struct shmem_inode_info *info = SHMEM_I(inode); 1267 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1268 size_t freed = 0; 1269 1270 if (shmem_mapping(inode->i_mapping)) { 1271 shmem_unacct_size(info->flags, inode->i_size); 1272 inode->i_size = 0; 1273 mapping_set_exiting(inode->i_mapping); 1274 shmem_truncate_range(inode, 0, (loff_t)-1); 1275 if (!list_empty(&info->shrinklist)) { 1276 spin_lock(&sbinfo->shrinklist_lock); 1277 if (!list_empty(&info->shrinklist)) { 1278 list_del_init(&info->shrinklist); 1279 sbinfo->shrinklist_len--; 1280 } 1281 spin_unlock(&sbinfo->shrinklist_lock); 1282 } 1283 while (!list_empty(&info->swaplist)) { 1284 /* Wait while shmem_unuse() is scanning this inode... */ 1285 wait_var_event(&info->stop_eviction, 1286 !atomic_read(&info->stop_eviction)); 1287 mutex_lock(&shmem_swaplist_mutex); 1288 /* ...but beware of the race if we peeked too early */ 1289 if (!atomic_read(&info->stop_eviction)) 1290 list_del_init(&info->swaplist); 1291 mutex_unlock(&shmem_swaplist_mutex); 1292 } 1293 } 1294 1295 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1296 shmem_free_inode(inode->i_sb, freed); 1297 WARN_ON(inode->i_blocks); 1298 clear_inode(inode); 1299 #ifdef CONFIG_TMPFS_QUOTA 1300 dquot_free_inode(inode); 1301 dquot_drop(inode); 1302 #endif 1303 } 1304 1305 static int shmem_find_swap_entries(struct address_space *mapping, 1306 pgoff_t start, struct folio_batch *fbatch, 1307 pgoff_t *indices, unsigned int type) 1308 { 1309 XA_STATE(xas, &mapping->i_pages, start); 1310 struct folio *folio; 1311 swp_entry_t entry; 1312 1313 rcu_read_lock(); 1314 xas_for_each(&xas, folio, ULONG_MAX) { 1315 if (xas_retry(&xas, folio)) 1316 continue; 1317 1318 if (!xa_is_value(folio)) 1319 continue; 1320 1321 entry = radix_to_swp_entry(folio); 1322 /* 1323 * swapin error entries can be found in the mapping. But they're 1324 * deliberately ignored here as we've done everything we can do. 1325 */ 1326 if (swp_type(entry) != type) 1327 continue; 1328 1329 indices[folio_batch_count(fbatch)] = xas.xa_index; 1330 if (!folio_batch_add(fbatch, folio)) 1331 break; 1332 1333 if (need_resched()) { 1334 xas_pause(&xas); 1335 cond_resched_rcu(); 1336 } 1337 } 1338 rcu_read_unlock(); 1339 1340 return xas.xa_index; 1341 } 1342 1343 /* 1344 * Move the swapped pages for an inode to page cache. Returns the count 1345 * of pages swapped in, or the error in case of failure. 1346 */ 1347 static int shmem_unuse_swap_entries(struct inode *inode, 1348 struct folio_batch *fbatch, pgoff_t *indices) 1349 { 1350 int i = 0; 1351 int ret = 0; 1352 int error = 0; 1353 struct address_space *mapping = inode->i_mapping; 1354 1355 for (i = 0; i < folio_batch_count(fbatch); i++) { 1356 struct folio *folio = fbatch->folios[i]; 1357 1358 if (!xa_is_value(folio)) 1359 continue; 1360 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1361 mapping_gfp_mask(mapping), NULL, NULL); 1362 if (error == 0) { 1363 folio_unlock(folio); 1364 folio_put(folio); 1365 ret++; 1366 } 1367 if (error == -ENOMEM) 1368 break; 1369 error = 0; 1370 } 1371 return error ? error : ret; 1372 } 1373 1374 /* 1375 * If swap found in inode, free it and move page from swapcache to filecache. 1376 */ 1377 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1378 { 1379 struct address_space *mapping = inode->i_mapping; 1380 pgoff_t start = 0; 1381 struct folio_batch fbatch; 1382 pgoff_t indices[PAGEVEC_SIZE]; 1383 int ret = 0; 1384 1385 do { 1386 folio_batch_init(&fbatch); 1387 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1388 if (folio_batch_count(&fbatch) == 0) { 1389 ret = 0; 1390 break; 1391 } 1392 1393 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1394 if (ret < 0) 1395 break; 1396 1397 start = indices[folio_batch_count(&fbatch) - 1]; 1398 } while (true); 1399 1400 return ret; 1401 } 1402 1403 /* 1404 * Read all the shared memory data that resides in the swap 1405 * device 'type' back into memory, so the swap device can be 1406 * unused. 1407 */ 1408 int shmem_unuse(unsigned int type) 1409 { 1410 struct shmem_inode_info *info, *next; 1411 int error = 0; 1412 1413 if (list_empty(&shmem_swaplist)) 1414 return 0; 1415 1416 mutex_lock(&shmem_swaplist_mutex); 1417 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1418 if (!info->swapped) { 1419 list_del_init(&info->swaplist); 1420 continue; 1421 } 1422 /* 1423 * Drop the swaplist mutex while searching the inode for swap; 1424 * but before doing so, make sure shmem_evict_inode() will not 1425 * remove placeholder inode from swaplist, nor let it be freed 1426 * (igrab() would protect from unlink, but not from unmount). 1427 */ 1428 atomic_inc(&info->stop_eviction); 1429 mutex_unlock(&shmem_swaplist_mutex); 1430 1431 error = shmem_unuse_inode(&info->vfs_inode, type); 1432 cond_resched(); 1433 1434 mutex_lock(&shmem_swaplist_mutex); 1435 next = list_next_entry(info, swaplist); 1436 if (!info->swapped) 1437 list_del_init(&info->swaplist); 1438 if (atomic_dec_and_test(&info->stop_eviction)) 1439 wake_up_var(&info->stop_eviction); 1440 if (error) 1441 break; 1442 } 1443 mutex_unlock(&shmem_swaplist_mutex); 1444 1445 return error; 1446 } 1447 1448 /* 1449 * Move the page from the page cache to the swap cache. 1450 */ 1451 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1452 { 1453 struct folio *folio = page_folio(page); 1454 struct address_space *mapping = folio->mapping; 1455 struct inode *inode = mapping->host; 1456 struct shmem_inode_info *info = SHMEM_I(inode); 1457 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1458 swp_entry_t swap; 1459 pgoff_t index; 1460 int nr_pages; 1461 bool split = false; 1462 1463 /* 1464 * Our capabilities prevent regular writeback or sync from ever calling 1465 * shmem_writepage; but a stacking filesystem might use ->writepage of 1466 * its underlying filesystem, in which case tmpfs should write out to 1467 * swap only in response to memory pressure, and not for the writeback 1468 * threads or sync. 1469 */ 1470 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1471 goto redirty; 1472 1473 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap)) 1474 goto redirty; 1475 1476 if (!total_swap_pages) 1477 goto redirty; 1478 1479 /* 1480 * If CONFIG_THP_SWAP is not enabled, the large folio should be 1481 * split when swapping. 1482 * 1483 * And shrinkage of pages beyond i_size does not split swap, so 1484 * swapout of a large folio crossing i_size needs to split too 1485 * (unless fallocate has been used to preallocate beyond EOF). 1486 */ 1487 if (folio_test_large(folio)) { 1488 index = shmem_fallocend(inode, 1489 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 1490 if ((index > folio->index && index < folio_next_index(folio)) || 1491 !IS_ENABLED(CONFIG_THP_SWAP)) 1492 split = true; 1493 } 1494 1495 if (split) { 1496 try_split: 1497 /* Ensure the subpages are still dirty */ 1498 folio_test_set_dirty(folio); 1499 if (split_huge_page_to_list_to_order(page, wbc->list, 0)) 1500 goto redirty; 1501 folio = page_folio(page); 1502 folio_clear_dirty(folio); 1503 } 1504 1505 index = folio->index; 1506 nr_pages = folio_nr_pages(folio); 1507 1508 /* 1509 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1510 * value into swapfile.c, the only way we can correctly account for a 1511 * fallocated folio arriving here is now to initialize it and write it. 1512 * 1513 * That's okay for a folio already fallocated earlier, but if we have 1514 * not yet completed the fallocation, then (a) we want to keep track 1515 * of this folio in case we have to undo it, and (b) it may not be a 1516 * good idea to continue anyway, once we're pushing into swap. So 1517 * reactivate the folio, and let shmem_fallocate() quit when too many. 1518 */ 1519 if (!folio_test_uptodate(folio)) { 1520 if (inode->i_private) { 1521 struct shmem_falloc *shmem_falloc; 1522 spin_lock(&inode->i_lock); 1523 shmem_falloc = inode->i_private; 1524 if (shmem_falloc && 1525 !shmem_falloc->waitq && 1526 index >= shmem_falloc->start && 1527 index < shmem_falloc->next) 1528 shmem_falloc->nr_unswapped++; 1529 else 1530 shmem_falloc = NULL; 1531 spin_unlock(&inode->i_lock); 1532 if (shmem_falloc) 1533 goto redirty; 1534 } 1535 folio_zero_range(folio, 0, folio_size(folio)); 1536 flush_dcache_folio(folio); 1537 folio_mark_uptodate(folio); 1538 } 1539 1540 swap = folio_alloc_swap(folio); 1541 if (!swap.val) { 1542 if (nr_pages > 1) 1543 goto try_split; 1544 1545 goto redirty; 1546 } 1547 1548 /* 1549 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1550 * if it's not already there. Do it now before the folio is 1551 * moved to swap cache, when its pagelock no longer protects 1552 * the inode from eviction. But don't unlock the mutex until 1553 * we've incremented swapped, because shmem_unuse_inode() will 1554 * prune a !swapped inode from the swaplist under this mutex. 1555 */ 1556 mutex_lock(&shmem_swaplist_mutex); 1557 if (list_empty(&info->swaplist)) 1558 list_add(&info->swaplist, &shmem_swaplist); 1559 1560 if (add_to_swap_cache(folio, swap, 1561 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1562 NULL) == 0) { 1563 shmem_recalc_inode(inode, 0, nr_pages); 1564 swap_shmem_alloc(swap, nr_pages); 1565 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1566 1567 mutex_unlock(&shmem_swaplist_mutex); 1568 BUG_ON(folio_mapped(folio)); 1569 return swap_writepage(&folio->page, wbc); 1570 } 1571 1572 mutex_unlock(&shmem_swaplist_mutex); 1573 put_swap_folio(folio, swap); 1574 redirty: 1575 folio_mark_dirty(folio); 1576 if (wbc->for_reclaim) 1577 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1578 folio_unlock(folio); 1579 return 0; 1580 } 1581 1582 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1583 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1584 { 1585 char buffer[64]; 1586 1587 if (!mpol || mpol->mode == MPOL_DEFAULT) 1588 return; /* show nothing */ 1589 1590 mpol_to_str(buffer, sizeof(buffer), mpol); 1591 1592 seq_printf(seq, ",mpol=%s", buffer); 1593 } 1594 1595 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1596 { 1597 struct mempolicy *mpol = NULL; 1598 if (sbinfo->mpol) { 1599 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1600 mpol = sbinfo->mpol; 1601 mpol_get(mpol); 1602 raw_spin_unlock(&sbinfo->stat_lock); 1603 } 1604 return mpol; 1605 } 1606 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1607 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1608 { 1609 } 1610 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1611 { 1612 return NULL; 1613 } 1614 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1615 1616 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1617 pgoff_t index, unsigned int order, pgoff_t *ilx); 1618 1619 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1620 struct shmem_inode_info *info, pgoff_t index) 1621 { 1622 struct mempolicy *mpol; 1623 pgoff_t ilx; 1624 struct folio *folio; 1625 1626 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1627 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1628 mpol_cond_put(mpol); 1629 1630 return folio; 1631 } 1632 1633 /* 1634 * Make sure huge_gfp is always more limited than limit_gfp. 1635 * Some of the flags set permissions, while others set limitations. 1636 */ 1637 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1638 { 1639 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1640 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1641 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1642 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1643 1644 /* Allow allocations only from the originally specified zones. */ 1645 result |= zoneflags; 1646 1647 /* 1648 * Minimize the result gfp by taking the union with the deny flags, 1649 * and the intersection of the allow flags. 1650 */ 1651 result |= (limit_gfp & denyflags); 1652 result |= (huge_gfp & limit_gfp) & allowflags; 1653 1654 return result; 1655 } 1656 1657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1658 unsigned long shmem_allowable_huge_orders(struct inode *inode, 1659 struct vm_area_struct *vma, pgoff_t index, 1660 loff_t write_end, bool shmem_huge_force) 1661 { 1662 unsigned long mask = READ_ONCE(huge_shmem_orders_always); 1663 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size); 1664 unsigned long vm_flags = vma ? vma->vm_flags : 0; 1665 bool global_huge; 1666 loff_t i_size; 1667 int order; 1668 1669 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags))) 1670 return 0; 1671 1672 global_huge = shmem_huge_global_enabled(inode, index, write_end, 1673 shmem_huge_force, vma, vm_flags); 1674 if (!vma || !vma_is_anon_shmem(vma)) { 1675 /* 1676 * For tmpfs, we now only support PMD sized THP if huge page 1677 * is enabled, otherwise fallback to order 0. 1678 */ 1679 return global_huge ? BIT(HPAGE_PMD_ORDER) : 0; 1680 } 1681 1682 /* 1683 * Following the 'deny' semantics of the top level, force the huge 1684 * option off from all mounts. 1685 */ 1686 if (shmem_huge == SHMEM_HUGE_DENY) 1687 return 0; 1688 1689 /* 1690 * Only allow inherit orders if the top-level value is 'force', which 1691 * means non-PMD sized THP can not override 'huge' mount option now. 1692 */ 1693 if (shmem_huge == SHMEM_HUGE_FORCE) 1694 return READ_ONCE(huge_shmem_orders_inherit); 1695 1696 /* Allow mTHP that will be fully within i_size. */ 1697 order = highest_order(within_size_orders); 1698 while (within_size_orders) { 1699 index = round_up(index + 1, order); 1700 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1701 if (i_size >> PAGE_SHIFT >= index) { 1702 mask |= within_size_orders; 1703 break; 1704 } 1705 1706 order = next_order(&within_size_orders, order); 1707 } 1708 1709 if (vm_flags & VM_HUGEPAGE) 1710 mask |= READ_ONCE(huge_shmem_orders_madvise); 1711 1712 if (global_huge) 1713 mask |= READ_ONCE(huge_shmem_orders_inherit); 1714 1715 return THP_ORDERS_ALL_FILE_DEFAULT & mask; 1716 } 1717 1718 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1719 struct address_space *mapping, pgoff_t index, 1720 unsigned long orders) 1721 { 1722 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1723 pgoff_t aligned_index; 1724 unsigned long pages; 1725 int order; 1726 1727 if (vma) { 1728 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 1729 if (!orders) 1730 return 0; 1731 } 1732 1733 /* Find the highest order that can add into the page cache */ 1734 order = highest_order(orders); 1735 while (orders) { 1736 pages = 1UL << order; 1737 aligned_index = round_down(index, pages); 1738 /* 1739 * Check for conflict before waiting on a huge allocation. 1740 * Conflict might be that a huge page has just been allocated 1741 * and added to page cache by a racing thread, or that there 1742 * is already at least one small page in the huge extent. 1743 * Be careful to retry when appropriate, but not forever! 1744 * Elsewhere -EEXIST would be the right code, but not here. 1745 */ 1746 if (!xa_find(&mapping->i_pages, &aligned_index, 1747 aligned_index + pages - 1, XA_PRESENT)) 1748 break; 1749 order = next_order(&orders, order); 1750 } 1751 1752 return orders; 1753 } 1754 #else 1755 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1756 struct address_space *mapping, pgoff_t index, 1757 unsigned long orders) 1758 { 1759 return 0; 1760 } 1761 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1762 1763 static struct folio *shmem_alloc_folio(gfp_t gfp, int order, 1764 struct shmem_inode_info *info, pgoff_t index) 1765 { 1766 struct mempolicy *mpol; 1767 pgoff_t ilx; 1768 struct folio *folio; 1769 1770 mpol = shmem_get_pgoff_policy(info, index, order, &ilx); 1771 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id()); 1772 mpol_cond_put(mpol); 1773 1774 return folio; 1775 } 1776 1777 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf, 1778 gfp_t gfp, struct inode *inode, pgoff_t index, 1779 struct mm_struct *fault_mm, unsigned long orders) 1780 { 1781 struct address_space *mapping = inode->i_mapping; 1782 struct shmem_inode_info *info = SHMEM_I(inode); 1783 unsigned long suitable_orders = 0; 1784 struct folio *folio = NULL; 1785 long pages; 1786 int error, order; 1787 1788 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1789 orders = 0; 1790 1791 if (orders > 0) { 1792 suitable_orders = shmem_suitable_orders(inode, vmf, 1793 mapping, index, orders); 1794 1795 order = highest_order(suitable_orders); 1796 while (suitable_orders) { 1797 pages = 1UL << order; 1798 index = round_down(index, pages); 1799 folio = shmem_alloc_folio(gfp, order, info, index); 1800 if (folio) 1801 goto allocated; 1802 1803 if (pages == HPAGE_PMD_NR) 1804 count_vm_event(THP_FILE_FALLBACK); 1805 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK); 1806 order = next_order(&suitable_orders, order); 1807 } 1808 } else { 1809 pages = 1; 1810 folio = shmem_alloc_folio(gfp, 0, info, index); 1811 } 1812 if (!folio) 1813 return ERR_PTR(-ENOMEM); 1814 1815 allocated: 1816 __folio_set_locked(folio); 1817 __folio_set_swapbacked(folio); 1818 1819 gfp &= GFP_RECLAIM_MASK; 1820 error = mem_cgroup_charge(folio, fault_mm, gfp); 1821 if (error) { 1822 if (xa_find(&mapping->i_pages, &index, 1823 index + pages - 1, XA_PRESENT)) { 1824 error = -EEXIST; 1825 } else if (pages > 1) { 1826 if (pages == HPAGE_PMD_NR) { 1827 count_vm_event(THP_FILE_FALLBACK); 1828 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1829 } 1830 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK); 1831 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE); 1832 } 1833 goto unlock; 1834 } 1835 1836 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1837 if (error) 1838 goto unlock; 1839 1840 error = shmem_inode_acct_blocks(inode, pages); 1841 if (error) { 1842 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1843 long freed; 1844 /* 1845 * Try to reclaim some space by splitting a few 1846 * large folios beyond i_size on the filesystem. 1847 */ 1848 shmem_unused_huge_shrink(sbinfo, NULL, pages); 1849 /* 1850 * And do a shmem_recalc_inode() to account for freed pages: 1851 * except our folio is there in cache, so not quite balanced. 1852 */ 1853 spin_lock(&info->lock); 1854 freed = pages + info->alloced - info->swapped - 1855 READ_ONCE(mapping->nrpages); 1856 if (freed > 0) 1857 info->alloced -= freed; 1858 spin_unlock(&info->lock); 1859 if (freed > 0) 1860 shmem_inode_unacct_blocks(inode, freed); 1861 error = shmem_inode_acct_blocks(inode, pages); 1862 if (error) { 1863 filemap_remove_folio(folio); 1864 goto unlock; 1865 } 1866 } 1867 1868 shmem_recalc_inode(inode, pages, 0); 1869 folio_add_lru(folio); 1870 return folio; 1871 1872 unlock: 1873 folio_unlock(folio); 1874 folio_put(folio); 1875 return ERR_PTR(error); 1876 } 1877 1878 /* 1879 * When a page is moved from swapcache to shmem filecache (either by the 1880 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1881 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1882 * ignorance of the mapping it belongs to. If that mapping has special 1883 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1884 * we may need to copy to a suitable page before moving to filecache. 1885 * 1886 * In a future release, this may well be extended to respect cpuset and 1887 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1888 * but for now it is a simple matter of zone. 1889 */ 1890 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1891 { 1892 return folio_zonenum(folio) > gfp_zone(gfp); 1893 } 1894 1895 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1896 struct shmem_inode_info *info, pgoff_t index, 1897 struct vm_area_struct *vma) 1898 { 1899 struct folio *new, *old = *foliop; 1900 swp_entry_t entry = old->swap; 1901 struct address_space *swap_mapping = swap_address_space(entry); 1902 pgoff_t swap_index = swap_cache_index(entry); 1903 XA_STATE(xas, &swap_mapping->i_pages, swap_index); 1904 int nr_pages = folio_nr_pages(old); 1905 int error = 0, i; 1906 1907 /* 1908 * We have arrived here because our zones are constrained, so don't 1909 * limit chance of success by further cpuset and node constraints. 1910 */ 1911 gfp &= ~GFP_CONSTRAINT_MASK; 1912 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1913 if (nr_pages > 1) { 1914 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 1915 1916 gfp = limit_gfp_mask(huge_gfp, gfp); 1917 } 1918 #endif 1919 1920 new = shmem_alloc_folio(gfp, folio_order(old), info, index); 1921 if (!new) 1922 return -ENOMEM; 1923 1924 folio_ref_add(new, nr_pages); 1925 folio_copy(new, old); 1926 flush_dcache_folio(new); 1927 1928 __folio_set_locked(new); 1929 __folio_set_swapbacked(new); 1930 folio_mark_uptodate(new); 1931 new->swap = entry; 1932 folio_set_swapcache(new); 1933 1934 /* Swap cache still stores N entries instead of a high-order entry */ 1935 xa_lock_irq(&swap_mapping->i_pages); 1936 for (i = 0; i < nr_pages; i++) { 1937 void *item = xas_load(&xas); 1938 1939 if (item != old) { 1940 error = -ENOENT; 1941 break; 1942 } 1943 1944 xas_store(&xas, new); 1945 xas_next(&xas); 1946 } 1947 if (!error) { 1948 mem_cgroup_replace_folio(old, new); 1949 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, nr_pages); 1950 __lruvec_stat_mod_folio(new, NR_SHMEM, nr_pages); 1951 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -nr_pages); 1952 __lruvec_stat_mod_folio(old, NR_SHMEM, -nr_pages); 1953 } 1954 xa_unlock_irq(&swap_mapping->i_pages); 1955 1956 if (unlikely(error)) { 1957 /* 1958 * Is this possible? I think not, now that our callers 1959 * check both the swapcache flag and folio->private 1960 * after getting the folio lock; but be defensive. 1961 * Reverse old to newpage for clear and free. 1962 */ 1963 old = new; 1964 } else { 1965 folio_add_lru(new); 1966 *foliop = new; 1967 } 1968 1969 folio_clear_swapcache(old); 1970 old->private = NULL; 1971 1972 folio_unlock(old); 1973 /* 1974 * The old folio are removed from swap cache, drop the 'nr_pages' 1975 * reference, as well as one temporary reference getting from swap 1976 * cache. 1977 */ 1978 folio_put_refs(old, nr_pages + 1); 1979 return error; 1980 } 1981 1982 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1983 struct folio *folio, swp_entry_t swap) 1984 { 1985 struct address_space *mapping = inode->i_mapping; 1986 swp_entry_t swapin_error; 1987 void *old; 1988 int nr_pages; 1989 1990 swapin_error = make_poisoned_swp_entry(); 1991 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1992 swp_to_radix_entry(swap), 1993 swp_to_radix_entry(swapin_error), 0); 1994 if (old != swp_to_radix_entry(swap)) 1995 return; 1996 1997 nr_pages = folio_nr_pages(folio); 1998 folio_wait_writeback(folio); 1999 delete_from_swap_cache(folio); 2000 /* 2001 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 2002 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 2003 * in shmem_evict_inode(). 2004 */ 2005 shmem_recalc_inode(inode, -nr_pages, -nr_pages); 2006 swap_free_nr(swap, nr_pages); 2007 } 2008 2009 static int shmem_split_large_entry(struct inode *inode, pgoff_t index, 2010 swp_entry_t swap, gfp_t gfp) 2011 { 2012 struct address_space *mapping = inode->i_mapping; 2013 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0); 2014 void *alloced_shadow = NULL; 2015 int alloced_order = 0, i; 2016 2017 /* Convert user data gfp flags to xarray node gfp flags */ 2018 gfp &= GFP_RECLAIM_MASK; 2019 2020 for (;;) { 2021 int order = -1, split_order = 0; 2022 void *old = NULL; 2023 2024 xas_lock_irq(&xas); 2025 old = xas_load(&xas); 2026 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) { 2027 xas_set_err(&xas, -EEXIST); 2028 goto unlock; 2029 } 2030 2031 order = xas_get_order(&xas); 2032 2033 /* Swap entry may have changed before we re-acquire the lock */ 2034 if (alloced_order && 2035 (old != alloced_shadow || order != alloced_order)) { 2036 xas_destroy(&xas); 2037 alloced_order = 0; 2038 } 2039 2040 /* Try to split large swap entry in pagecache */ 2041 if (order > 0) { 2042 if (!alloced_order) { 2043 split_order = order; 2044 goto unlock; 2045 } 2046 xas_split(&xas, old, order); 2047 2048 /* 2049 * Re-set the swap entry after splitting, and the swap 2050 * offset of the original large entry must be continuous. 2051 */ 2052 for (i = 0; i < 1 << order; i++) { 2053 pgoff_t aligned_index = round_down(index, 1 << order); 2054 swp_entry_t tmp; 2055 2056 tmp = swp_entry(swp_type(swap), swp_offset(swap) + i); 2057 __xa_store(&mapping->i_pages, aligned_index + i, 2058 swp_to_radix_entry(tmp), 0); 2059 } 2060 } 2061 2062 unlock: 2063 xas_unlock_irq(&xas); 2064 2065 /* split needed, alloc here and retry. */ 2066 if (split_order) { 2067 xas_split_alloc(&xas, old, split_order, gfp); 2068 if (xas_error(&xas)) 2069 goto error; 2070 alloced_shadow = old; 2071 alloced_order = split_order; 2072 xas_reset(&xas); 2073 continue; 2074 } 2075 2076 if (!xas_nomem(&xas, gfp)) 2077 break; 2078 } 2079 2080 error: 2081 if (xas_error(&xas)) 2082 return xas_error(&xas); 2083 2084 return alloced_order; 2085 } 2086 2087 /* 2088 * Swap in the folio pointed to by *foliop. 2089 * Caller has to make sure that *foliop contains a valid swapped folio. 2090 * Returns 0 and the folio in foliop if success. On failure, returns the 2091 * error code and NULL in *foliop. 2092 */ 2093 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 2094 struct folio **foliop, enum sgp_type sgp, 2095 gfp_t gfp, struct vm_area_struct *vma, 2096 vm_fault_t *fault_type) 2097 { 2098 struct address_space *mapping = inode->i_mapping; 2099 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL; 2100 struct shmem_inode_info *info = SHMEM_I(inode); 2101 struct swap_info_struct *si; 2102 struct folio *folio = NULL; 2103 swp_entry_t swap; 2104 int error, nr_pages; 2105 2106 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 2107 swap = radix_to_swp_entry(*foliop); 2108 *foliop = NULL; 2109 2110 if (is_poisoned_swp_entry(swap)) 2111 return -EIO; 2112 2113 si = get_swap_device(swap); 2114 if (!si) { 2115 if (!shmem_confirm_swap(mapping, index, swap)) 2116 return -EEXIST; 2117 else 2118 return -EINVAL; 2119 } 2120 2121 /* Look it up and read it in.. */ 2122 folio = swap_cache_get_folio(swap, NULL, 0); 2123 if (!folio) { 2124 int split_order; 2125 2126 /* Or update major stats only when swapin succeeds?? */ 2127 if (fault_type) { 2128 *fault_type |= VM_FAULT_MAJOR; 2129 count_vm_event(PGMAJFAULT); 2130 count_memcg_event_mm(fault_mm, PGMAJFAULT); 2131 } 2132 2133 /* 2134 * Now swap device can only swap in order 0 folio, then we 2135 * should split the large swap entry stored in the pagecache 2136 * if necessary. 2137 */ 2138 split_order = shmem_split_large_entry(inode, index, swap, gfp); 2139 if (split_order < 0) { 2140 error = split_order; 2141 goto failed; 2142 } 2143 2144 /* 2145 * If the large swap entry has already been split, it is 2146 * necessary to recalculate the new swap entry based on 2147 * the old order alignment. 2148 */ 2149 if (split_order > 0) { 2150 pgoff_t offset = index - round_down(index, 1 << split_order); 2151 2152 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2153 } 2154 2155 /* Here we actually start the io */ 2156 folio = shmem_swapin_cluster(swap, gfp, info, index); 2157 if (!folio) { 2158 error = -ENOMEM; 2159 goto failed; 2160 } 2161 } 2162 2163 /* We have to do this with folio locked to prevent races */ 2164 folio_lock(folio); 2165 if (!folio_test_swapcache(folio) || 2166 folio->swap.val != swap.val || 2167 !shmem_confirm_swap(mapping, index, swap)) { 2168 error = -EEXIST; 2169 goto unlock; 2170 } 2171 if (!folio_test_uptodate(folio)) { 2172 error = -EIO; 2173 goto failed; 2174 } 2175 folio_wait_writeback(folio); 2176 nr_pages = folio_nr_pages(folio); 2177 2178 /* 2179 * Some architectures may have to restore extra metadata to the 2180 * folio after reading from swap. 2181 */ 2182 arch_swap_restore(folio_swap(swap, folio), folio); 2183 2184 if (shmem_should_replace_folio(folio, gfp)) { 2185 error = shmem_replace_folio(&folio, gfp, info, index, vma); 2186 if (error) 2187 goto failed; 2188 } 2189 2190 error = shmem_add_to_page_cache(folio, mapping, 2191 round_down(index, nr_pages), 2192 swp_to_radix_entry(swap), gfp); 2193 if (error) 2194 goto failed; 2195 2196 shmem_recalc_inode(inode, 0, -nr_pages); 2197 2198 if (sgp == SGP_WRITE) 2199 folio_mark_accessed(folio); 2200 2201 delete_from_swap_cache(folio); 2202 folio_mark_dirty(folio); 2203 swap_free_nr(swap, nr_pages); 2204 put_swap_device(si); 2205 2206 *foliop = folio; 2207 return 0; 2208 failed: 2209 if (!shmem_confirm_swap(mapping, index, swap)) 2210 error = -EEXIST; 2211 if (error == -EIO) 2212 shmem_set_folio_swapin_error(inode, index, folio, swap); 2213 unlock: 2214 if (folio) { 2215 folio_unlock(folio); 2216 folio_put(folio); 2217 } 2218 put_swap_device(si); 2219 2220 return error; 2221 } 2222 2223 /* 2224 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 2225 * 2226 * If we allocate a new one we do not mark it dirty. That's up to the 2227 * vm. If we swap it in we mark it dirty since we also free the swap 2228 * entry since a page cannot live in both the swap and page cache. 2229 * 2230 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 2231 */ 2232 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 2233 loff_t write_end, struct folio **foliop, enum sgp_type sgp, 2234 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type) 2235 { 2236 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 2237 struct mm_struct *fault_mm; 2238 struct folio *folio; 2239 int error; 2240 bool alloced; 2241 unsigned long orders = 0; 2242 2243 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 2244 return -EINVAL; 2245 2246 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 2247 return -EFBIG; 2248 repeat: 2249 if (sgp <= SGP_CACHE && 2250 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 2251 return -EINVAL; 2252 2253 alloced = false; 2254 fault_mm = vma ? vma->vm_mm : NULL; 2255 2256 folio = filemap_get_entry(inode->i_mapping, index); 2257 if (folio && vma && userfaultfd_minor(vma)) { 2258 if (!xa_is_value(folio)) 2259 folio_put(folio); 2260 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 2261 return 0; 2262 } 2263 2264 if (xa_is_value(folio)) { 2265 error = shmem_swapin_folio(inode, index, &folio, 2266 sgp, gfp, vma, fault_type); 2267 if (error == -EEXIST) 2268 goto repeat; 2269 2270 *foliop = folio; 2271 return error; 2272 } 2273 2274 if (folio) { 2275 folio_lock(folio); 2276 2277 /* Has the folio been truncated or swapped out? */ 2278 if (unlikely(folio->mapping != inode->i_mapping)) { 2279 folio_unlock(folio); 2280 folio_put(folio); 2281 goto repeat; 2282 } 2283 if (sgp == SGP_WRITE) 2284 folio_mark_accessed(folio); 2285 if (folio_test_uptodate(folio)) 2286 goto out; 2287 /* fallocated folio */ 2288 if (sgp != SGP_READ) 2289 goto clear; 2290 folio_unlock(folio); 2291 folio_put(folio); 2292 } 2293 2294 /* 2295 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2296 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2297 */ 2298 *foliop = NULL; 2299 if (sgp == SGP_READ) 2300 return 0; 2301 if (sgp == SGP_NOALLOC) 2302 return -ENOENT; 2303 2304 /* 2305 * Fast cache lookup and swap lookup did not find it: allocate. 2306 */ 2307 2308 if (vma && userfaultfd_missing(vma)) { 2309 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2310 return 0; 2311 } 2312 2313 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */ 2314 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false); 2315 if (orders > 0) { 2316 gfp_t huge_gfp; 2317 2318 huge_gfp = vma_thp_gfp_mask(vma); 2319 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2320 folio = shmem_alloc_and_add_folio(vmf, huge_gfp, 2321 inode, index, fault_mm, orders); 2322 if (!IS_ERR(folio)) { 2323 if (folio_test_pmd_mappable(folio)) 2324 count_vm_event(THP_FILE_ALLOC); 2325 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC); 2326 goto alloced; 2327 } 2328 if (PTR_ERR(folio) == -EEXIST) 2329 goto repeat; 2330 } 2331 2332 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0); 2333 if (IS_ERR(folio)) { 2334 error = PTR_ERR(folio); 2335 if (error == -EEXIST) 2336 goto repeat; 2337 folio = NULL; 2338 goto unlock; 2339 } 2340 2341 alloced: 2342 alloced = true; 2343 if (folio_test_large(folio) && 2344 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2345 folio_next_index(folio)) { 2346 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2347 struct shmem_inode_info *info = SHMEM_I(inode); 2348 /* 2349 * Part of the large folio is beyond i_size: subject 2350 * to shrink under memory pressure. 2351 */ 2352 spin_lock(&sbinfo->shrinklist_lock); 2353 /* 2354 * _careful to defend against unlocked access to 2355 * ->shrink_list in shmem_unused_huge_shrink() 2356 */ 2357 if (list_empty_careful(&info->shrinklist)) { 2358 list_add_tail(&info->shrinklist, 2359 &sbinfo->shrinklist); 2360 sbinfo->shrinklist_len++; 2361 } 2362 spin_unlock(&sbinfo->shrinklist_lock); 2363 } 2364 2365 if (sgp == SGP_WRITE) 2366 folio_set_referenced(folio); 2367 /* 2368 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2369 */ 2370 if (sgp == SGP_FALLOC) 2371 sgp = SGP_WRITE; 2372 clear: 2373 /* 2374 * Let SGP_WRITE caller clear ends if write does not fill folio; 2375 * but SGP_FALLOC on a folio fallocated earlier must initialize 2376 * it now, lest undo on failure cancel our earlier guarantee. 2377 */ 2378 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2379 long i, n = folio_nr_pages(folio); 2380 2381 for (i = 0; i < n; i++) 2382 clear_highpage(folio_page(folio, i)); 2383 flush_dcache_folio(folio); 2384 folio_mark_uptodate(folio); 2385 } 2386 2387 /* Perhaps the file has been truncated since we checked */ 2388 if (sgp <= SGP_CACHE && 2389 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2390 error = -EINVAL; 2391 goto unlock; 2392 } 2393 out: 2394 *foliop = folio; 2395 return 0; 2396 2397 /* 2398 * Error recovery. 2399 */ 2400 unlock: 2401 if (alloced) 2402 filemap_remove_folio(folio); 2403 shmem_recalc_inode(inode, 0, 0); 2404 if (folio) { 2405 folio_unlock(folio); 2406 folio_put(folio); 2407 } 2408 return error; 2409 } 2410 2411 /** 2412 * shmem_get_folio - find, and lock a shmem folio. 2413 * @inode: inode to search 2414 * @index: the page index. 2415 * @write_end: end of a write, could extend inode size 2416 * @foliop: pointer to the folio if found 2417 * @sgp: SGP_* flags to control behavior 2418 * 2419 * Looks up the page cache entry at @inode & @index. If a folio is 2420 * present, it is returned locked with an increased refcount. 2421 * 2422 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2423 * before unlocking the folio to ensure that the folio is not reclaimed. 2424 * There is no need to reserve space before calling folio_mark_dirty(). 2425 * 2426 * When no folio is found, the behavior depends on @sgp: 2427 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2428 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2429 * - for all other flags a new folio is allocated, inserted into the 2430 * page cache and returned locked in @foliop. 2431 * 2432 * Context: May sleep. 2433 * Return: 0 if successful, else a negative error code. 2434 */ 2435 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end, 2436 struct folio **foliop, enum sgp_type sgp) 2437 { 2438 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp, 2439 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2440 } 2441 EXPORT_SYMBOL_GPL(shmem_get_folio); 2442 2443 /* 2444 * This is like autoremove_wake_function, but it removes the wait queue 2445 * entry unconditionally - even if something else had already woken the 2446 * target. 2447 */ 2448 static int synchronous_wake_function(wait_queue_entry_t *wait, 2449 unsigned int mode, int sync, void *key) 2450 { 2451 int ret = default_wake_function(wait, mode, sync, key); 2452 list_del_init(&wait->entry); 2453 return ret; 2454 } 2455 2456 /* 2457 * Trinity finds that probing a hole which tmpfs is punching can 2458 * prevent the hole-punch from ever completing: which in turn 2459 * locks writers out with its hold on i_rwsem. So refrain from 2460 * faulting pages into the hole while it's being punched. Although 2461 * shmem_undo_range() does remove the additions, it may be unable to 2462 * keep up, as each new page needs its own unmap_mapping_range() call, 2463 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2464 * 2465 * It does not matter if we sometimes reach this check just before the 2466 * hole-punch begins, so that one fault then races with the punch: 2467 * we just need to make racing faults a rare case. 2468 * 2469 * The implementation below would be much simpler if we just used a 2470 * standard mutex or completion: but we cannot take i_rwsem in fault, 2471 * and bloating every shmem inode for this unlikely case would be sad. 2472 */ 2473 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2474 { 2475 struct shmem_falloc *shmem_falloc; 2476 struct file *fpin = NULL; 2477 vm_fault_t ret = 0; 2478 2479 spin_lock(&inode->i_lock); 2480 shmem_falloc = inode->i_private; 2481 if (shmem_falloc && 2482 shmem_falloc->waitq && 2483 vmf->pgoff >= shmem_falloc->start && 2484 vmf->pgoff < shmem_falloc->next) { 2485 wait_queue_head_t *shmem_falloc_waitq; 2486 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2487 2488 ret = VM_FAULT_NOPAGE; 2489 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2490 shmem_falloc_waitq = shmem_falloc->waitq; 2491 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2492 TASK_UNINTERRUPTIBLE); 2493 spin_unlock(&inode->i_lock); 2494 schedule(); 2495 2496 /* 2497 * shmem_falloc_waitq points into the shmem_fallocate() 2498 * stack of the hole-punching task: shmem_falloc_waitq 2499 * is usually invalid by the time we reach here, but 2500 * finish_wait() does not dereference it in that case; 2501 * though i_lock needed lest racing with wake_up_all(). 2502 */ 2503 spin_lock(&inode->i_lock); 2504 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2505 } 2506 spin_unlock(&inode->i_lock); 2507 if (fpin) { 2508 fput(fpin); 2509 ret = VM_FAULT_RETRY; 2510 } 2511 return ret; 2512 } 2513 2514 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2515 { 2516 struct inode *inode = file_inode(vmf->vma->vm_file); 2517 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2518 struct folio *folio = NULL; 2519 vm_fault_t ret = 0; 2520 int err; 2521 2522 /* 2523 * Trinity finds that probing a hole which tmpfs is punching can 2524 * prevent the hole-punch from ever completing: noted in i_private. 2525 */ 2526 if (unlikely(inode->i_private)) { 2527 ret = shmem_falloc_wait(vmf, inode); 2528 if (ret) 2529 return ret; 2530 } 2531 2532 WARN_ON_ONCE(vmf->page != NULL); 2533 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE, 2534 gfp, vmf, &ret); 2535 if (err) 2536 return vmf_error(err); 2537 if (folio) { 2538 vmf->page = folio_file_page(folio, vmf->pgoff); 2539 ret |= VM_FAULT_LOCKED; 2540 } 2541 return ret; 2542 } 2543 2544 unsigned long shmem_get_unmapped_area(struct file *file, 2545 unsigned long uaddr, unsigned long len, 2546 unsigned long pgoff, unsigned long flags) 2547 { 2548 unsigned long addr; 2549 unsigned long offset; 2550 unsigned long inflated_len; 2551 unsigned long inflated_addr; 2552 unsigned long inflated_offset; 2553 unsigned long hpage_size; 2554 2555 if (len > TASK_SIZE) 2556 return -ENOMEM; 2557 2558 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff, 2559 flags); 2560 2561 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2562 return addr; 2563 if (IS_ERR_VALUE(addr)) 2564 return addr; 2565 if (addr & ~PAGE_MASK) 2566 return addr; 2567 if (addr > TASK_SIZE - len) 2568 return addr; 2569 2570 if (shmem_huge == SHMEM_HUGE_DENY) 2571 return addr; 2572 if (flags & MAP_FIXED) 2573 return addr; 2574 /* 2575 * Our priority is to support MAP_SHARED mapped hugely; 2576 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2577 * But if caller specified an address hint and we allocated area there 2578 * successfully, respect that as before. 2579 */ 2580 if (uaddr == addr) 2581 return addr; 2582 2583 hpage_size = HPAGE_PMD_SIZE; 2584 if (shmem_huge != SHMEM_HUGE_FORCE) { 2585 struct super_block *sb; 2586 unsigned long __maybe_unused hpage_orders; 2587 int order = 0; 2588 2589 if (file) { 2590 VM_BUG_ON(file->f_op != &shmem_file_operations); 2591 sb = file_inode(file)->i_sb; 2592 } else { 2593 /* 2594 * Called directly from mm/mmap.c, or drivers/char/mem.c 2595 * for "/dev/zero", to create a shared anonymous object. 2596 */ 2597 if (IS_ERR(shm_mnt)) 2598 return addr; 2599 sb = shm_mnt->mnt_sb; 2600 2601 /* 2602 * Find the highest mTHP order used for anonymous shmem to 2603 * provide a suitable alignment address. 2604 */ 2605 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2606 hpage_orders = READ_ONCE(huge_shmem_orders_always); 2607 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size); 2608 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise); 2609 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 2610 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit); 2611 2612 if (hpage_orders > 0) { 2613 order = highest_order(hpage_orders); 2614 hpage_size = PAGE_SIZE << order; 2615 } 2616 #endif 2617 } 2618 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order) 2619 return addr; 2620 } 2621 2622 if (len < hpage_size) 2623 return addr; 2624 2625 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1); 2626 if (offset && offset + len < 2 * hpage_size) 2627 return addr; 2628 if ((addr & (hpage_size - 1)) == offset) 2629 return addr; 2630 2631 inflated_len = len + hpage_size - PAGE_SIZE; 2632 if (inflated_len > TASK_SIZE) 2633 return addr; 2634 if (inflated_len < len) 2635 return addr; 2636 2637 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr, 2638 inflated_len, 0, flags); 2639 if (IS_ERR_VALUE(inflated_addr)) 2640 return addr; 2641 if (inflated_addr & ~PAGE_MASK) 2642 return addr; 2643 2644 inflated_offset = inflated_addr & (hpage_size - 1); 2645 inflated_addr += offset - inflated_offset; 2646 if (inflated_offset > offset) 2647 inflated_addr += hpage_size; 2648 2649 if (inflated_addr > TASK_SIZE - len) 2650 return addr; 2651 return inflated_addr; 2652 } 2653 2654 #ifdef CONFIG_NUMA 2655 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2656 { 2657 struct inode *inode = file_inode(vma->vm_file); 2658 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2659 } 2660 2661 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2662 unsigned long addr, pgoff_t *ilx) 2663 { 2664 struct inode *inode = file_inode(vma->vm_file); 2665 pgoff_t index; 2666 2667 /* 2668 * Bias interleave by inode number to distribute better across nodes; 2669 * but this interface is independent of which page order is used, so 2670 * supplies only that bias, letting caller apply the offset (adjusted 2671 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2672 */ 2673 *ilx = inode->i_ino; 2674 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2675 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2676 } 2677 2678 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2679 pgoff_t index, unsigned int order, pgoff_t *ilx) 2680 { 2681 struct mempolicy *mpol; 2682 2683 /* Bias interleave by inode number to distribute better across nodes */ 2684 *ilx = info->vfs_inode.i_ino + (index >> order); 2685 2686 mpol = mpol_shared_policy_lookup(&info->policy, index); 2687 return mpol ? mpol : get_task_policy(current); 2688 } 2689 #else 2690 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2691 pgoff_t index, unsigned int order, pgoff_t *ilx) 2692 { 2693 *ilx = 0; 2694 return NULL; 2695 } 2696 #endif /* CONFIG_NUMA */ 2697 2698 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2699 { 2700 struct inode *inode = file_inode(file); 2701 struct shmem_inode_info *info = SHMEM_I(inode); 2702 int retval = -ENOMEM; 2703 2704 /* 2705 * What serializes the accesses to info->flags? 2706 * ipc_lock_object() when called from shmctl_do_lock(), 2707 * no serialization needed when called from shm_destroy(). 2708 */ 2709 if (lock && !(info->flags & VM_LOCKED)) { 2710 if (!user_shm_lock(inode->i_size, ucounts)) 2711 goto out_nomem; 2712 info->flags |= VM_LOCKED; 2713 mapping_set_unevictable(file->f_mapping); 2714 } 2715 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2716 user_shm_unlock(inode->i_size, ucounts); 2717 info->flags &= ~VM_LOCKED; 2718 mapping_clear_unevictable(file->f_mapping); 2719 } 2720 retval = 0; 2721 2722 out_nomem: 2723 return retval; 2724 } 2725 2726 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2727 { 2728 struct inode *inode = file_inode(file); 2729 struct shmem_inode_info *info = SHMEM_I(inode); 2730 int ret; 2731 2732 ret = seal_check_write(info->seals, vma); 2733 if (ret) 2734 return ret; 2735 2736 /* arm64 - allow memory tagging on RAM-based files */ 2737 vm_flags_set(vma, VM_MTE_ALLOWED); 2738 2739 file_accessed(file); 2740 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2741 if (inode->i_nlink) 2742 vma->vm_ops = &shmem_vm_ops; 2743 else 2744 vma->vm_ops = &shmem_anon_vm_ops; 2745 return 0; 2746 } 2747 2748 static int shmem_file_open(struct inode *inode, struct file *file) 2749 { 2750 file->f_mode |= FMODE_CAN_ODIRECT; 2751 return generic_file_open(inode, file); 2752 } 2753 2754 #ifdef CONFIG_TMPFS_XATTR 2755 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2756 2757 /* 2758 * chattr's fsflags are unrelated to extended attributes, 2759 * but tmpfs has chosen to enable them under the same config option. 2760 */ 2761 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2762 { 2763 unsigned int i_flags = 0; 2764 2765 if (fsflags & FS_NOATIME_FL) 2766 i_flags |= S_NOATIME; 2767 if (fsflags & FS_APPEND_FL) 2768 i_flags |= S_APPEND; 2769 if (fsflags & FS_IMMUTABLE_FL) 2770 i_flags |= S_IMMUTABLE; 2771 /* 2772 * But FS_NODUMP_FL does not require any action in i_flags. 2773 */ 2774 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2775 } 2776 #else 2777 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2778 { 2779 } 2780 #define shmem_initxattrs NULL 2781 #endif 2782 2783 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 2784 { 2785 return &SHMEM_I(inode)->dir_offsets; 2786 } 2787 2788 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 2789 struct super_block *sb, 2790 struct inode *dir, umode_t mode, 2791 dev_t dev, unsigned long flags) 2792 { 2793 struct inode *inode; 2794 struct shmem_inode_info *info; 2795 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2796 ino_t ino; 2797 int err; 2798 2799 err = shmem_reserve_inode(sb, &ino); 2800 if (err) 2801 return ERR_PTR(err); 2802 2803 inode = new_inode(sb); 2804 if (!inode) { 2805 shmem_free_inode(sb, 0); 2806 return ERR_PTR(-ENOSPC); 2807 } 2808 2809 inode->i_ino = ino; 2810 inode_init_owner(idmap, inode, dir, mode); 2811 inode->i_blocks = 0; 2812 simple_inode_init_ts(inode); 2813 inode->i_generation = get_random_u32(); 2814 info = SHMEM_I(inode); 2815 memset(info, 0, (char *)inode - (char *)info); 2816 spin_lock_init(&info->lock); 2817 atomic_set(&info->stop_eviction, 0); 2818 info->seals = F_SEAL_SEAL; 2819 info->flags = flags & VM_NORESERVE; 2820 info->i_crtime = inode_get_mtime(inode); 2821 info->fsflags = (dir == NULL) ? 0 : 2822 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2823 if (info->fsflags) 2824 shmem_set_inode_flags(inode, info->fsflags); 2825 INIT_LIST_HEAD(&info->shrinklist); 2826 INIT_LIST_HEAD(&info->swaplist); 2827 simple_xattrs_init(&info->xattrs); 2828 cache_no_acl(inode); 2829 if (sbinfo->noswap) 2830 mapping_set_unevictable(inode->i_mapping); 2831 mapping_set_large_folios(inode->i_mapping); 2832 2833 switch (mode & S_IFMT) { 2834 default: 2835 inode->i_op = &shmem_special_inode_operations; 2836 init_special_inode(inode, mode, dev); 2837 break; 2838 case S_IFREG: 2839 inode->i_mapping->a_ops = &shmem_aops; 2840 inode->i_op = &shmem_inode_operations; 2841 inode->i_fop = &shmem_file_operations; 2842 mpol_shared_policy_init(&info->policy, 2843 shmem_get_sbmpol(sbinfo)); 2844 break; 2845 case S_IFDIR: 2846 inc_nlink(inode); 2847 /* Some things misbehave if size == 0 on a directory */ 2848 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2849 inode->i_op = &shmem_dir_inode_operations; 2850 inode->i_fop = &simple_offset_dir_operations; 2851 simple_offset_init(shmem_get_offset_ctx(inode)); 2852 break; 2853 case S_IFLNK: 2854 /* 2855 * Must not load anything in the rbtree, 2856 * mpol_free_shared_policy will not be called. 2857 */ 2858 mpol_shared_policy_init(&info->policy, NULL); 2859 break; 2860 } 2861 2862 lockdep_annotate_inode_mutex_key(inode); 2863 return inode; 2864 } 2865 2866 #ifdef CONFIG_TMPFS_QUOTA 2867 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2868 struct super_block *sb, struct inode *dir, 2869 umode_t mode, dev_t dev, unsigned long flags) 2870 { 2871 int err; 2872 struct inode *inode; 2873 2874 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2875 if (IS_ERR(inode)) 2876 return inode; 2877 2878 err = dquot_initialize(inode); 2879 if (err) 2880 goto errout; 2881 2882 err = dquot_alloc_inode(inode); 2883 if (err) { 2884 dquot_drop(inode); 2885 goto errout; 2886 } 2887 return inode; 2888 2889 errout: 2890 inode->i_flags |= S_NOQUOTA; 2891 iput(inode); 2892 return ERR_PTR(err); 2893 } 2894 #else 2895 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2896 struct super_block *sb, struct inode *dir, 2897 umode_t mode, dev_t dev, unsigned long flags) 2898 { 2899 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2900 } 2901 #endif /* CONFIG_TMPFS_QUOTA */ 2902 2903 #ifdef CONFIG_USERFAULTFD 2904 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 2905 struct vm_area_struct *dst_vma, 2906 unsigned long dst_addr, 2907 unsigned long src_addr, 2908 uffd_flags_t flags, 2909 struct folio **foliop) 2910 { 2911 struct inode *inode = file_inode(dst_vma->vm_file); 2912 struct shmem_inode_info *info = SHMEM_I(inode); 2913 struct address_space *mapping = inode->i_mapping; 2914 gfp_t gfp = mapping_gfp_mask(mapping); 2915 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2916 void *page_kaddr; 2917 struct folio *folio; 2918 int ret; 2919 pgoff_t max_off; 2920 2921 if (shmem_inode_acct_blocks(inode, 1)) { 2922 /* 2923 * We may have got a page, returned -ENOENT triggering a retry, 2924 * and now we find ourselves with -ENOMEM. Release the page, to 2925 * avoid a BUG_ON in our caller. 2926 */ 2927 if (unlikely(*foliop)) { 2928 folio_put(*foliop); 2929 *foliop = NULL; 2930 } 2931 return -ENOMEM; 2932 } 2933 2934 if (!*foliop) { 2935 ret = -ENOMEM; 2936 folio = shmem_alloc_folio(gfp, 0, info, pgoff); 2937 if (!folio) 2938 goto out_unacct_blocks; 2939 2940 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 2941 page_kaddr = kmap_local_folio(folio, 0); 2942 /* 2943 * The read mmap_lock is held here. Despite the 2944 * mmap_lock being read recursive a deadlock is still 2945 * possible if a writer has taken a lock. For example: 2946 * 2947 * process A thread 1 takes read lock on own mmap_lock 2948 * process A thread 2 calls mmap, blocks taking write lock 2949 * process B thread 1 takes page fault, read lock on own mmap lock 2950 * process B thread 2 calls mmap, blocks taking write lock 2951 * process A thread 1 blocks taking read lock on process B 2952 * process B thread 1 blocks taking read lock on process A 2953 * 2954 * Disable page faults to prevent potential deadlock 2955 * and retry the copy outside the mmap_lock. 2956 */ 2957 pagefault_disable(); 2958 ret = copy_from_user(page_kaddr, 2959 (const void __user *)src_addr, 2960 PAGE_SIZE); 2961 pagefault_enable(); 2962 kunmap_local(page_kaddr); 2963 2964 /* fallback to copy_from_user outside mmap_lock */ 2965 if (unlikely(ret)) { 2966 *foliop = folio; 2967 ret = -ENOENT; 2968 /* don't free the page */ 2969 goto out_unacct_blocks; 2970 } 2971 2972 flush_dcache_folio(folio); 2973 } else { /* ZEROPAGE */ 2974 clear_user_highpage(&folio->page, dst_addr); 2975 } 2976 } else { 2977 folio = *foliop; 2978 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2979 *foliop = NULL; 2980 } 2981 2982 VM_BUG_ON(folio_test_locked(folio)); 2983 VM_BUG_ON(folio_test_swapbacked(folio)); 2984 __folio_set_locked(folio); 2985 __folio_set_swapbacked(folio); 2986 __folio_mark_uptodate(folio); 2987 2988 ret = -EFAULT; 2989 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2990 if (unlikely(pgoff >= max_off)) 2991 goto out_release; 2992 2993 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 2994 if (ret) 2995 goto out_release; 2996 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 2997 if (ret) 2998 goto out_release; 2999 3000 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 3001 &folio->page, true, flags); 3002 if (ret) 3003 goto out_delete_from_cache; 3004 3005 shmem_recalc_inode(inode, 1, 0); 3006 folio_unlock(folio); 3007 return 0; 3008 out_delete_from_cache: 3009 filemap_remove_folio(folio); 3010 out_release: 3011 folio_unlock(folio); 3012 folio_put(folio); 3013 out_unacct_blocks: 3014 shmem_inode_unacct_blocks(inode, 1); 3015 return ret; 3016 } 3017 #endif /* CONFIG_USERFAULTFD */ 3018 3019 #ifdef CONFIG_TMPFS 3020 static const struct inode_operations shmem_symlink_inode_operations; 3021 static const struct inode_operations shmem_short_symlink_operations; 3022 3023 static int 3024 shmem_write_begin(struct file *file, struct address_space *mapping, 3025 loff_t pos, unsigned len, 3026 struct folio **foliop, void **fsdata) 3027 { 3028 struct inode *inode = mapping->host; 3029 struct shmem_inode_info *info = SHMEM_I(inode); 3030 pgoff_t index = pos >> PAGE_SHIFT; 3031 struct folio *folio; 3032 int ret = 0; 3033 3034 /* i_rwsem is held by caller */ 3035 if (unlikely(info->seals & (F_SEAL_GROW | 3036 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 3037 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 3038 return -EPERM; 3039 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 3040 return -EPERM; 3041 } 3042 3043 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE); 3044 if (ret) 3045 return ret; 3046 3047 if (folio_test_hwpoison(folio) || 3048 (folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) { 3049 folio_unlock(folio); 3050 folio_put(folio); 3051 return -EIO; 3052 } 3053 3054 *foliop = folio; 3055 return 0; 3056 } 3057 3058 static int 3059 shmem_write_end(struct file *file, struct address_space *mapping, 3060 loff_t pos, unsigned len, unsigned copied, 3061 struct folio *folio, void *fsdata) 3062 { 3063 struct inode *inode = mapping->host; 3064 3065 if (pos + copied > inode->i_size) 3066 i_size_write(inode, pos + copied); 3067 3068 if (!folio_test_uptodate(folio)) { 3069 if (copied < folio_size(folio)) { 3070 size_t from = offset_in_folio(folio, pos); 3071 folio_zero_segments(folio, 0, from, 3072 from + copied, folio_size(folio)); 3073 } 3074 folio_mark_uptodate(folio); 3075 } 3076 folio_mark_dirty(folio); 3077 folio_unlock(folio); 3078 folio_put(folio); 3079 3080 return copied; 3081 } 3082 3083 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3084 { 3085 struct file *file = iocb->ki_filp; 3086 struct inode *inode = file_inode(file); 3087 struct address_space *mapping = inode->i_mapping; 3088 pgoff_t index; 3089 unsigned long offset; 3090 int error = 0; 3091 ssize_t retval = 0; 3092 loff_t *ppos = &iocb->ki_pos; 3093 3094 index = *ppos >> PAGE_SHIFT; 3095 offset = *ppos & ~PAGE_MASK; 3096 3097 for (;;) { 3098 struct folio *folio = NULL; 3099 struct page *page = NULL; 3100 pgoff_t end_index; 3101 unsigned long nr, ret; 3102 loff_t i_size = i_size_read(inode); 3103 3104 end_index = i_size >> PAGE_SHIFT; 3105 if (index > end_index) 3106 break; 3107 if (index == end_index) { 3108 nr = i_size & ~PAGE_MASK; 3109 if (nr <= offset) 3110 break; 3111 } 3112 3113 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3114 if (error) { 3115 if (error == -EINVAL) 3116 error = 0; 3117 break; 3118 } 3119 if (folio) { 3120 folio_unlock(folio); 3121 3122 page = folio_file_page(folio, index); 3123 if (PageHWPoison(page)) { 3124 folio_put(folio); 3125 error = -EIO; 3126 break; 3127 } 3128 } 3129 3130 /* 3131 * We must evaluate after, since reads (unlike writes) 3132 * are called without i_rwsem protection against truncate 3133 */ 3134 nr = PAGE_SIZE; 3135 i_size = i_size_read(inode); 3136 end_index = i_size >> PAGE_SHIFT; 3137 if (index == end_index) { 3138 nr = i_size & ~PAGE_MASK; 3139 if (nr <= offset) { 3140 if (folio) 3141 folio_put(folio); 3142 break; 3143 } 3144 } 3145 nr -= offset; 3146 3147 if (folio) { 3148 /* 3149 * If users can be writing to this page using arbitrary 3150 * virtual addresses, take care about potential aliasing 3151 * before reading the page on the kernel side. 3152 */ 3153 if (mapping_writably_mapped(mapping)) 3154 flush_dcache_page(page); 3155 /* 3156 * Mark the page accessed if we read the beginning. 3157 */ 3158 if (!offset) 3159 folio_mark_accessed(folio); 3160 /* 3161 * Ok, we have the page, and it's up-to-date, so 3162 * now we can copy it to user space... 3163 */ 3164 ret = copy_page_to_iter(page, offset, nr, to); 3165 folio_put(folio); 3166 3167 } else if (user_backed_iter(to)) { 3168 /* 3169 * Copy to user tends to be so well optimized, but 3170 * clear_user() not so much, that it is noticeably 3171 * faster to copy the zero page instead of clearing. 3172 */ 3173 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 3174 } else { 3175 /* 3176 * But submitting the same page twice in a row to 3177 * splice() - or others? - can result in confusion: 3178 * so don't attempt that optimization on pipes etc. 3179 */ 3180 ret = iov_iter_zero(nr, to); 3181 } 3182 3183 retval += ret; 3184 offset += ret; 3185 index += offset >> PAGE_SHIFT; 3186 offset &= ~PAGE_MASK; 3187 3188 if (!iov_iter_count(to)) 3189 break; 3190 if (ret < nr) { 3191 error = -EFAULT; 3192 break; 3193 } 3194 cond_resched(); 3195 } 3196 3197 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 3198 file_accessed(file); 3199 return retval ? retval : error; 3200 } 3201 3202 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3203 { 3204 struct file *file = iocb->ki_filp; 3205 struct inode *inode = file->f_mapping->host; 3206 ssize_t ret; 3207 3208 inode_lock(inode); 3209 ret = generic_write_checks(iocb, from); 3210 if (ret <= 0) 3211 goto unlock; 3212 ret = file_remove_privs(file); 3213 if (ret) 3214 goto unlock; 3215 ret = file_update_time(file); 3216 if (ret) 3217 goto unlock; 3218 ret = generic_perform_write(iocb, from); 3219 unlock: 3220 inode_unlock(inode); 3221 return ret; 3222 } 3223 3224 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 3225 struct pipe_buffer *buf) 3226 { 3227 return true; 3228 } 3229 3230 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 3231 struct pipe_buffer *buf) 3232 { 3233 } 3234 3235 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 3236 struct pipe_buffer *buf) 3237 { 3238 return false; 3239 } 3240 3241 static const struct pipe_buf_operations zero_pipe_buf_ops = { 3242 .release = zero_pipe_buf_release, 3243 .try_steal = zero_pipe_buf_try_steal, 3244 .get = zero_pipe_buf_get, 3245 }; 3246 3247 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 3248 loff_t fpos, size_t size) 3249 { 3250 size_t offset = fpos & ~PAGE_MASK; 3251 3252 size = min_t(size_t, size, PAGE_SIZE - offset); 3253 3254 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 3255 struct pipe_buffer *buf = pipe_head_buf(pipe); 3256 3257 *buf = (struct pipe_buffer) { 3258 .ops = &zero_pipe_buf_ops, 3259 .page = ZERO_PAGE(0), 3260 .offset = offset, 3261 .len = size, 3262 }; 3263 pipe->head++; 3264 } 3265 3266 return size; 3267 } 3268 3269 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 3270 struct pipe_inode_info *pipe, 3271 size_t len, unsigned int flags) 3272 { 3273 struct inode *inode = file_inode(in); 3274 struct address_space *mapping = inode->i_mapping; 3275 struct folio *folio = NULL; 3276 size_t total_spliced = 0, used, npages, n, part; 3277 loff_t isize; 3278 int error = 0; 3279 3280 /* Work out how much data we can actually add into the pipe */ 3281 used = pipe_occupancy(pipe->head, pipe->tail); 3282 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3283 len = min_t(size_t, len, npages * PAGE_SIZE); 3284 3285 do { 3286 if (*ppos >= i_size_read(inode)) 3287 break; 3288 3289 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, 0, &folio, 3290 SGP_READ); 3291 if (error) { 3292 if (error == -EINVAL) 3293 error = 0; 3294 break; 3295 } 3296 if (folio) { 3297 folio_unlock(folio); 3298 3299 if (folio_test_hwpoison(folio) || 3300 (folio_test_large(folio) && 3301 folio_test_has_hwpoisoned(folio))) { 3302 error = -EIO; 3303 break; 3304 } 3305 } 3306 3307 /* 3308 * i_size must be checked after we know the pages are Uptodate. 3309 * 3310 * Checking i_size after the check allows us to calculate 3311 * the correct value for "nr", which means the zero-filled 3312 * part of the page is not copied back to userspace (unless 3313 * another truncate extends the file - this is desired though). 3314 */ 3315 isize = i_size_read(inode); 3316 if (unlikely(*ppos >= isize)) 3317 break; 3318 part = min_t(loff_t, isize - *ppos, len); 3319 3320 if (folio) { 3321 /* 3322 * If users can be writing to this page using arbitrary 3323 * virtual addresses, take care about potential aliasing 3324 * before reading the page on the kernel side. 3325 */ 3326 if (mapping_writably_mapped(mapping)) 3327 flush_dcache_folio(folio); 3328 folio_mark_accessed(folio); 3329 /* 3330 * Ok, we have the page, and it's up-to-date, so we can 3331 * now splice it into the pipe. 3332 */ 3333 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3334 folio_put(folio); 3335 folio = NULL; 3336 } else { 3337 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3338 } 3339 3340 if (!n) 3341 break; 3342 len -= n; 3343 total_spliced += n; 3344 *ppos += n; 3345 in->f_ra.prev_pos = *ppos; 3346 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 3347 break; 3348 3349 cond_resched(); 3350 } while (len); 3351 3352 if (folio) 3353 folio_put(folio); 3354 3355 file_accessed(in); 3356 return total_spliced ? total_spliced : error; 3357 } 3358 3359 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3360 { 3361 struct address_space *mapping = file->f_mapping; 3362 struct inode *inode = mapping->host; 3363 3364 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3365 return generic_file_llseek_size(file, offset, whence, 3366 MAX_LFS_FILESIZE, i_size_read(inode)); 3367 if (offset < 0) 3368 return -ENXIO; 3369 3370 inode_lock(inode); 3371 /* We're holding i_rwsem so we can access i_size directly */ 3372 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3373 if (offset >= 0) 3374 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3375 inode_unlock(inode); 3376 return offset; 3377 } 3378 3379 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3380 loff_t len) 3381 { 3382 struct inode *inode = file_inode(file); 3383 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3384 struct shmem_inode_info *info = SHMEM_I(inode); 3385 struct shmem_falloc shmem_falloc; 3386 pgoff_t start, index, end, undo_fallocend; 3387 int error; 3388 3389 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3390 return -EOPNOTSUPP; 3391 3392 inode_lock(inode); 3393 3394 if (mode & FALLOC_FL_PUNCH_HOLE) { 3395 struct address_space *mapping = file->f_mapping; 3396 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3397 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3398 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3399 3400 /* protected by i_rwsem */ 3401 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3402 error = -EPERM; 3403 goto out; 3404 } 3405 3406 shmem_falloc.waitq = &shmem_falloc_waitq; 3407 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3408 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3409 spin_lock(&inode->i_lock); 3410 inode->i_private = &shmem_falloc; 3411 spin_unlock(&inode->i_lock); 3412 3413 if ((u64)unmap_end > (u64)unmap_start) 3414 unmap_mapping_range(mapping, unmap_start, 3415 1 + unmap_end - unmap_start, 0); 3416 shmem_truncate_range(inode, offset, offset + len - 1); 3417 /* No need to unmap again: hole-punching leaves COWed pages */ 3418 3419 spin_lock(&inode->i_lock); 3420 inode->i_private = NULL; 3421 wake_up_all(&shmem_falloc_waitq); 3422 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3423 spin_unlock(&inode->i_lock); 3424 error = 0; 3425 goto out; 3426 } 3427 3428 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3429 error = inode_newsize_ok(inode, offset + len); 3430 if (error) 3431 goto out; 3432 3433 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3434 error = -EPERM; 3435 goto out; 3436 } 3437 3438 start = offset >> PAGE_SHIFT; 3439 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3440 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3441 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3442 error = -ENOSPC; 3443 goto out; 3444 } 3445 3446 shmem_falloc.waitq = NULL; 3447 shmem_falloc.start = start; 3448 shmem_falloc.next = start; 3449 shmem_falloc.nr_falloced = 0; 3450 shmem_falloc.nr_unswapped = 0; 3451 spin_lock(&inode->i_lock); 3452 inode->i_private = &shmem_falloc; 3453 spin_unlock(&inode->i_lock); 3454 3455 /* 3456 * info->fallocend is only relevant when huge pages might be 3457 * involved: to prevent split_huge_page() freeing fallocated 3458 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3459 */ 3460 undo_fallocend = info->fallocend; 3461 if (info->fallocend < end) 3462 info->fallocend = end; 3463 3464 for (index = start; index < end; ) { 3465 struct folio *folio; 3466 3467 /* 3468 * Check for fatal signal so that we abort early in OOM 3469 * situations. We don't want to abort in case of non-fatal 3470 * signals as large fallocate can take noticeable time and 3471 * e.g. periodic timers may result in fallocate constantly 3472 * restarting. 3473 */ 3474 if (fatal_signal_pending(current)) 3475 error = -EINTR; 3476 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3477 error = -ENOMEM; 3478 else 3479 error = shmem_get_folio(inode, index, offset + len, 3480 &folio, SGP_FALLOC); 3481 if (error) { 3482 info->fallocend = undo_fallocend; 3483 /* Remove the !uptodate folios we added */ 3484 if (index > start) { 3485 shmem_undo_range(inode, 3486 (loff_t)start << PAGE_SHIFT, 3487 ((loff_t)index << PAGE_SHIFT) - 1, true); 3488 } 3489 goto undone; 3490 } 3491 3492 /* 3493 * Here is a more important optimization than it appears: 3494 * a second SGP_FALLOC on the same large folio will clear it, 3495 * making it uptodate and un-undoable if we fail later. 3496 */ 3497 index = folio_next_index(folio); 3498 /* Beware 32-bit wraparound */ 3499 if (!index) 3500 index--; 3501 3502 /* 3503 * Inform shmem_writepage() how far we have reached. 3504 * No need for lock or barrier: we have the page lock. 3505 */ 3506 if (!folio_test_uptodate(folio)) 3507 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3508 shmem_falloc.next = index; 3509 3510 /* 3511 * If !uptodate, leave it that way so that freeable folios 3512 * can be recognized if we need to rollback on error later. 3513 * But mark it dirty so that memory pressure will swap rather 3514 * than free the folios we are allocating (and SGP_CACHE folios 3515 * might still be clean: we now need to mark those dirty too). 3516 */ 3517 folio_mark_dirty(folio); 3518 folio_unlock(folio); 3519 folio_put(folio); 3520 cond_resched(); 3521 } 3522 3523 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3524 i_size_write(inode, offset + len); 3525 undone: 3526 spin_lock(&inode->i_lock); 3527 inode->i_private = NULL; 3528 spin_unlock(&inode->i_lock); 3529 out: 3530 if (!error) 3531 file_modified(file); 3532 inode_unlock(inode); 3533 return error; 3534 } 3535 3536 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3537 { 3538 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3539 3540 buf->f_type = TMPFS_MAGIC; 3541 buf->f_bsize = PAGE_SIZE; 3542 buf->f_namelen = NAME_MAX; 3543 if (sbinfo->max_blocks) { 3544 buf->f_blocks = sbinfo->max_blocks; 3545 buf->f_bavail = 3546 buf->f_bfree = sbinfo->max_blocks - 3547 percpu_counter_sum(&sbinfo->used_blocks); 3548 } 3549 if (sbinfo->max_inodes) { 3550 buf->f_files = sbinfo->max_inodes; 3551 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3552 } 3553 /* else leave those fields 0 like simple_statfs */ 3554 3555 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3556 3557 return 0; 3558 } 3559 3560 /* 3561 * File creation. Allocate an inode, and we're done.. 3562 */ 3563 static int 3564 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3565 struct dentry *dentry, umode_t mode, dev_t dev) 3566 { 3567 struct inode *inode; 3568 int error; 3569 3570 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3571 if (IS_ERR(inode)) 3572 return PTR_ERR(inode); 3573 3574 error = simple_acl_create(dir, inode); 3575 if (error) 3576 goto out_iput; 3577 error = security_inode_init_security(inode, dir, &dentry->d_name, 3578 shmem_initxattrs, NULL); 3579 if (error && error != -EOPNOTSUPP) 3580 goto out_iput; 3581 3582 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3583 if (error) 3584 goto out_iput; 3585 3586 dir->i_size += BOGO_DIRENT_SIZE; 3587 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3588 inode_inc_iversion(dir); 3589 d_instantiate(dentry, inode); 3590 dget(dentry); /* Extra count - pin the dentry in core */ 3591 return error; 3592 3593 out_iput: 3594 iput(inode); 3595 return error; 3596 } 3597 3598 static int 3599 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3600 struct file *file, umode_t mode) 3601 { 3602 struct inode *inode; 3603 int error; 3604 3605 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3606 if (IS_ERR(inode)) { 3607 error = PTR_ERR(inode); 3608 goto err_out; 3609 } 3610 error = security_inode_init_security(inode, dir, NULL, 3611 shmem_initxattrs, NULL); 3612 if (error && error != -EOPNOTSUPP) 3613 goto out_iput; 3614 error = simple_acl_create(dir, inode); 3615 if (error) 3616 goto out_iput; 3617 d_tmpfile(file, inode); 3618 3619 err_out: 3620 return finish_open_simple(file, error); 3621 out_iput: 3622 iput(inode); 3623 return error; 3624 } 3625 3626 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3627 struct dentry *dentry, umode_t mode) 3628 { 3629 int error; 3630 3631 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3632 if (error) 3633 return error; 3634 inc_nlink(dir); 3635 return 0; 3636 } 3637 3638 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3639 struct dentry *dentry, umode_t mode, bool excl) 3640 { 3641 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3642 } 3643 3644 /* 3645 * Link a file.. 3646 */ 3647 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3648 struct dentry *dentry) 3649 { 3650 struct inode *inode = d_inode(old_dentry); 3651 int ret = 0; 3652 3653 /* 3654 * No ordinary (disk based) filesystem counts links as inodes; 3655 * but each new link needs a new dentry, pinning lowmem, and 3656 * tmpfs dentries cannot be pruned until they are unlinked. 3657 * But if an O_TMPFILE file is linked into the tmpfs, the 3658 * first link must skip that, to get the accounting right. 3659 */ 3660 if (inode->i_nlink) { 3661 ret = shmem_reserve_inode(inode->i_sb, NULL); 3662 if (ret) 3663 goto out; 3664 } 3665 3666 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3667 if (ret) { 3668 if (inode->i_nlink) 3669 shmem_free_inode(inode->i_sb, 0); 3670 goto out; 3671 } 3672 3673 dir->i_size += BOGO_DIRENT_SIZE; 3674 inode_set_mtime_to_ts(dir, 3675 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3676 inode_inc_iversion(dir); 3677 inc_nlink(inode); 3678 ihold(inode); /* New dentry reference */ 3679 dget(dentry); /* Extra pinning count for the created dentry */ 3680 d_instantiate(dentry, inode); 3681 out: 3682 return ret; 3683 } 3684 3685 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3686 { 3687 struct inode *inode = d_inode(dentry); 3688 3689 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3690 shmem_free_inode(inode->i_sb, 0); 3691 3692 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3693 3694 dir->i_size -= BOGO_DIRENT_SIZE; 3695 inode_set_mtime_to_ts(dir, 3696 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3697 inode_inc_iversion(dir); 3698 drop_nlink(inode); 3699 dput(dentry); /* Undo the count from "create" - does all the work */ 3700 return 0; 3701 } 3702 3703 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3704 { 3705 if (!simple_offset_empty(dentry)) 3706 return -ENOTEMPTY; 3707 3708 drop_nlink(d_inode(dentry)); 3709 drop_nlink(dir); 3710 return shmem_unlink(dir, dentry); 3711 } 3712 3713 static int shmem_whiteout(struct mnt_idmap *idmap, 3714 struct inode *old_dir, struct dentry *old_dentry) 3715 { 3716 struct dentry *whiteout; 3717 int error; 3718 3719 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3720 if (!whiteout) 3721 return -ENOMEM; 3722 3723 error = shmem_mknod(idmap, old_dir, whiteout, 3724 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3725 dput(whiteout); 3726 if (error) 3727 return error; 3728 3729 /* 3730 * Cheat and hash the whiteout while the old dentry is still in 3731 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3732 * 3733 * d_lookup() will consistently find one of them at this point, 3734 * not sure which one, but that isn't even important. 3735 */ 3736 d_rehash(whiteout); 3737 return 0; 3738 } 3739 3740 /* 3741 * The VFS layer already does all the dentry stuff for rename, 3742 * we just have to decrement the usage count for the target if 3743 * it exists so that the VFS layer correctly free's it when it 3744 * gets overwritten. 3745 */ 3746 static int shmem_rename2(struct mnt_idmap *idmap, 3747 struct inode *old_dir, struct dentry *old_dentry, 3748 struct inode *new_dir, struct dentry *new_dentry, 3749 unsigned int flags) 3750 { 3751 struct inode *inode = d_inode(old_dentry); 3752 int they_are_dirs = S_ISDIR(inode->i_mode); 3753 int error; 3754 3755 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3756 return -EINVAL; 3757 3758 if (flags & RENAME_EXCHANGE) 3759 return simple_offset_rename_exchange(old_dir, old_dentry, 3760 new_dir, new_dentry); 3761 3762 if (!simple_offset_empty(new_dentry)) 3763 return -ENOTEMPTY; 3764 3765 if (flags & RENAME_WHITEOUT) { 3766 error = shmem_whiteout(idmap, old_dir, old_dentry); 3767 if (error) 3768 return error; 3769 } 3770 3771 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 3772 if (error) 3773 return error; 3774 3775 if (d_really_is_positive(new_dentry)) { 3776 (void) shmem_unlink(new_dir, new_dentry); 3777 if (they_are_dirs) { 3778 drop_nlink(d_inode(new_dentry)); 3779 drop_nlink(old_dir); 3780 } 3781 } else if (they_are_dirs) { 3782 drop_nlink(old_dir); 3783 inc_nlink(new_dir); 3784 } 3785 3786 old_dir->i_size -= BOGO_DIRENT_SIZE; 3787 new_dir->i_size += BOGO_DIRENT_SIZE; 3788 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 3789 inode_inc_iversion(old_dir); 3790 inode_inc_iversion(new_dir); 3791 return 0; 3792 } 3793 3794 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3795 struct dentry *dentry, const char *symname) 3796 { 3797 int error; 3798 int len; 3799 struct inode *inode; 3800 struct folio *folio; 3801 3802 len = strlen(symname) + 1; 3803 if (len > PAGE_SIZE) 3804 return -ENAMETOOLONG; 3805 3806 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3807 VM_NORESERVE); 3808 if (IS_ERR(inode)) 3809 return PTR_ERR(inode); 3810 3811 error = security_inode_init_security(inode, dir, &dentry->d_name, 3812 shmem_initxattrs, NULL); 3813 if (error && error != -EOPNOTSUPP) 3814 goto out_iput; 3815 3816 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3817 if (error) 3818 goto out_iput; 3819 3820 inode->i_size = len-1; 3821 if (len <= SHORT_SYMLINK_LEN) { 3822 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3823 if (!inode->i_link) { 3824 error = -ENOMEM; 3825 goto out_remove_offset; 3826 } 3827 inode->i_op = &shmem_short_symlink_operations; 3828 } else { 3829 inode_nohighmem(inode); 3830 inode->i_mapping->a_ops = &shmem_aops; 3831 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE); 3832 if (error) 3833 goto out_remove_offset; 3834 inode->i_op = &shmem_symlink_inode_operations; 3835 memcpy(folio_address(folio), symname, len); 3836 folio_mark_uptodate(folio); 3837 folio_mark_dirty(folio); 3838 folio_unlock(folio); 3839 folio_put(folio); 3840 } 3841 dir->i_size += BOGO_DIRENT_SIZE; 3842 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3843 inode_inc_iversion(dir); 3844 d_instantiate(dentry, inode); 3845 dget(dentry); 3846 return 0; 3847 3848 out_remove_offset: 3849 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3850 out_iput: 3851 iput(inode); 3852 return error; 3853 } 3854 3855 static void shmem_put_link(void *arg) 3856 { 3857 folio_mark_accessed(arg); 3858 folio_put(arg); 3859 } 3860 3861 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 3862 struct delayed_call *done) 3863 { 3864 struct folio *folio = NULL; 3865 int error; 3866 3867 if (!dentry) { 3868 folio = filemap_get_folio(inode->i_mapping, 0); 3869 if (IS_ERR(folio)) 3870 return ERR_PTR(-ECHILD); 3871 if (PageHWPoison(folio_page(folio, 0)) || 3872 !folio_test_uptodate(folio)) { 3873 folio_put(folio); 3874 return ERR_PTR(-ECHILD); 3875 } 3876 } else { 3877 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ); 3878 if (error) 3879 return ERR_PTR(error); 3880 if (!folio) 3881 return ERR_PTR(-ECHILD); 3882 if (PageHWPoison(folio_page(folio, 0))) { 3883 folio_unlock(folio); 3884 folio_put(folio); 3885 return ERR_PTR(-ECHILD); 3886 } 3887 folio_unlock(folio); 3888 } 3889 set_delayed_call(done, shmem_put_link, folio); 3890 return folio_address(folio); 3891 } 3892 3893 #ifdef CONFIG_TMPFS_XATTR 3894 3895 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3896 { 3897 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3898 3899 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3900 3901 return 0; 3902 } 3903 3904 static int shmem_fileattr_set(struct mnt_idmap *idmap, 3905 struct dentry *dentry, struct fileattr *fa) 3906 { 3907 struct inode *inode = d_inode(dentry); 3908 struct shmem_inode_info *info = SHMEM_I(inode); 3909 3910 if (fileattr_has_fsx(fa)) 3911 return -EOPNOTSUPP; 3912 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3913 return -EOPNOTSUPP; 3914 3915 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3916 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3917 3918 shmem_set_inode_flags(inode, info->fsflags); 3919 inode_set_ctime_current(inode); 3920 inode_inc_iversion(inode); 3921 return 0; 3922 } 3923 3924 /* 3925 * Superblocks without xattr inode operations may get some security.* xattr 3926 * support from the LSM "for free". As soon as we have any other xattrs 3927 * like ACLs, we also need to implement the security.* handlers at 3928 * filesystem level, though. 3929 */ 3930 3931 /* 3932 * Callback for security_inode_init_security() for acquiring xattrs. 3933 */ 3934 static int shmem_initxattrs(struct inode *inode, 3935 const struct xattr *xattr_array, void *fs_info) 3936 { 3937 struct shmem_inode_info *info = SHMEM_I(inode); 3938 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3939 const struct xattr *xattr; 3940 struct simple_xattr *new_xattr; 3941 size_t ispace = 0; 3942 size_t len; 3943 3944 if (sbinfo->max_inodes) { 3945 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3946 ispace += simple_xattr_space(xattr->name, 3947 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 3948 } 3949 if (ispace) { 3950 raw_spin_lock(&sbinfo->stat_lock); 3951 if (sbinfo->free_ispace < ispace) 3952 ispace = 0; 3953 else 3954 sbinfo->free_ispace -= ispace; 3955 raw_spin_unlock(&sbinfo->stat_lock); 3956 if (!ispace) 3957 return -ENOSPC; 3958 } 3959 } 3960 3961 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3962 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3963 if (!new_xattr) 3964 break; 3965 3966 len = strlen(xattr->name) + 1; 3967 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3968 GFP_KERNEL_ACCOUNT); 3969 if (!new_xattr->name) { 3970 kvfree(new_xattr); 3971 break; 3972 } 3973 3974 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3975 XATTR_SECURITY_PREFIX_LEN); 3976 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3977 xattr->name, len); 3978 3979 simple_xattr_add(&info->xattrs, new_xattr); 3980 } 3981 3982 if (xattr->name != NULL) { 3983 if (ispace) { 3984 raw_spin_lock(&sbinfo->stat_lock); 3985 sbinfo->free_ispace += ispace; 3986 raw_spin_unlock(&sbinfo->stat_lock); 3987 } 3988 simple_xattrs_free(&info->xattrs, NULL); 3989 return -ENOMEM; 3990 } 3991 3992 return 0; 3993 } 3994 3995 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3996 struct dentry *unused, struct inode *inode, 3997 const char *name, void *buffer, size_t size) 3998 { 3999 struct shmem_inode_info *info = SHMEM_I(inode); 4000 4001 name = xattr_full_name(handler, name); 4002 return simple_xattr_get(&info->xattrs, name, buffer, size); 4003 } 4004 4005 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 4006 struct mnt_idmap *idmap, 4007 struct dentry *unused, struct inode *inode, 4008 const char *name, const void *value, 4009 size_t size, int flags) 4010 { 4011 struct shmem_inode_info *info = SHMEM_I(inode); 4012 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4013 struct simple_xattr *old_xattr; 4014 size_t ispace = 0; 4015 4016 name = xattr_full_name(handler, name); 4017 if (value && sbinfo->max_inodes) { 4018 ispace = simple_xattr_space(name, size); 4019 raw_spin_lock(&sbinfo->stat_lock); 4020 if (sbinfo->free_ispace < ispace) 4021 ispace = 0; 4022 else 4023 sbinfo->free_ispace -= ispace; 4024 raw_spin_unlock(&sbinfo->stat_lock); 4025 if (!ispace) 4026 return -ENOSPC; 4027 } 4028 4029 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 4030 if (!IS_ERR(old_xattr)) { 4031 ispace = 0; 4032 if (old_xattr && sbinfo->max_inodes) 4033 ispace = simple_xattr_space(old_xattr->name, 4034 old_xattr->size); 4035 simple_xattr_free(old_xattr); 4036 old_xattr = NULL; 4037 inode_set_ctime_current(inode); 4038 inode_inc_iversion(inode); 4039 } 4040 if (ispace) { 4041 raw_spin_lock(&sbinfo->stat_lock); 4042 sbinfo->free_ispace += ispace; 4043 raw_spin_unlock(&sbinfo->stat_lock); 4044 } 4045 return PTR_ERR(old_xattr); 4046 } 4047 4048 static const struct xattr_handler shmem_security_xattr_handler = { 4049 .prefix = XATTR_SECURITY_PREFIX, 4050 .get = shmem_xattr_handler_get, 4051 .set = shmem_xattr_handler_set, 4052 }; 4053 4054 static const struct xattr_handler shmem_trusted_xattr_handler = { 4055 .prefix = XATTR_TRUSTED_PREFIX, 4056 .get = shmem_xattr_handler_get, 4057 .set = shmem_xattr_handler_set, 4058 }; 4059 4060 static const struct xattr_handler shmem_user_xattr_handler = { 4061 .prefix = XATTR_USER_PREFIX, 4062 .get = shmem_xattr_handler_get, 4063 .set = shmem_xattr_handler_set, 4064 }; 4065 4066 static const struct xattr_handler * const shmem_xattr_handlers[] = { 4067 &shmem_security_xattr_handler, 4068 &shmem_trusted_xattr_handler, 4069 &shmem_user_xattr_handler, 4070 NULL 4071 }; 4072 4073 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 4074 { 4075 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4076 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 4077 } 4078 #endif /* CONFIG_TMPFS_XATTR */ 4079 4080 static const struct inode_operations shmem_short_symlink_operations = { 4081 .getattr = shmem_getattr, 4082 .setattr = shmem_setattr, 4083 .get_link = simple_get_link, 4084 #ifdef CONFIG_TMPFS_XATTR 4085 .listxattr = shmem_listxattr, 4086 #endif 4087 }; 4088 4089 static const struct inode_operations shmem_symlink_inode_operations = { 4090 .getattr = shmem_getattr, 4091 .setattr = shmem_setattr, 4092 .get_link = shmem_get_link, 4093 #ifdef CONFIG_TMPFS_XATTR 4094 .listxattr = shmem_listxattr, 4095 #endif 4096 }; 4097 4098 static struct dentry *shmem_get_parent(struct dentry *child) 4099 { 4100 return ERR_PTR(-ESTALE); 4101 } 4102 4103 static int shmem_match(struct inode *ino, void *vfh) 4104 { 4105 __u32 *fh = vfh; 4106 __u64 inum = fh[2]; 4107 inum = (inum << 32) | fh[1]; 4108 return ino->i_ino == inum && fh[0] == ino->i_generation; 4109 } 4110 4111 /* Find any alias of inode, but prefer a hashed alias */ 4112 static struct dentry *shmem_find_alias(struct inode *inode) 4113 { 4114 struct dentry *alias = d_find_alias(inode); 4115 4116 return alias ?: d_find_any_alias(inode); 4117 } 4118 4119 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 4120 struct fid *fid, int fh_len, int fh_type) 4121 { 4122 struct inode *inode; 4123 struct dentry *dentry = NULL; 4124 u64 inum; 4125 4126 if (fh_len < 3) 4127 return NULL; 4128 4129 inum = fid->raw[2]; 4130 inum = (inum << 32) | fid->raw[1]; 4131 4132 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 4133 shmem_match, fid->raw); 4134 if (inode) { 4135 dentry = shmem_find_alias(inode); 4136 iput(inode); 4137 } 4138 4139 return dentry; 4140 } 4141 4142 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 4143 struct inode *parent) 4144 { 4145 if (*len < 3) { 4146 *len = 3; 4147 return FILEID_INVALID; 4148 } 4149 4150 if (inode_unhashed(inode)) { 4151 /* Unfortunately insert_inode_hash is not idempotent, 4152 * so as we hash inodes here rather than at creation 4153 * time, we need a lock to ensure we only try 4154 * to do it once 4155 */ 4156 static DEFINE_SPINLOCK(lock); 4157 spin_lock(&lock); 4158 if (inode_unhashed(inode)) 4159 __insert_inode_hash(inode, 4160 inode->i_ino + inode->i_generation); 4161 spin_unlock(&lock); 4162 } 4163 4164 fh[0] = inode->i_generation; 4165 fh[1] = inode->i_ino; 4166 fh[2] = ((__u64)inode->i_ino) >> 32; 4167 4168 *len = 3; 4169 return 1; 4170 } 4171 4172 static const struct export_operations shmem_export_ops = { 4173 .get_parent = shmem_get_parent, 4174 .encode_fh = shmem_encode_fh, 4175 .fh_to_dentry = shmem_fh_to_dentry, 4176 }; 4177 4178 enum shmem_param { 4179 Opt_gid, 4180 Opt_huge, 4181 Opt_mode, 4182 Opt_mpol, 4183 Opt_nr_blocks, 4184 Opt_nr_inodes, 4185 Opt_size, 4186 Opt_uid, 4187 Opt_inode32, 4188 Opt_inode64, 4189 Opt_noswap, 4190 Opt_quota, 4191 Opt_usrquota, 4192 Opt_grpquota, 4193 Opt_usrquota_block_hardlimit, 4194 Opt_usrquota_inode_hardlimit, 4195 Opt_grpquota_block_hardlimit, 4196 Opt_grpquota_inode_hardlimit, 4197 }; 4198 4199 static const struct constant_table shmem_param_enums_huge[] = { 4200 {"never", SHMEM_HUGE_NEVER }, 4201 {"always", SHMEM_HUGE_ALWAYS }, 4202 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 4203 {"advise", SHMEM_HUGE_ADVISE }, 4204 {} 4205 }; 4206 4207 const struct fs_parameter_spec shmem_fs_parameters[] = { 4208 fsparam_gid ("gid", Opt_gid), 4209 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 4210 fsparam_u32oct("mode", Opt_mode), 4211 fsparam_string("mpol", Opt_mpol), 4212 fsparam_string("nr_blocks", Opt_nr_blocks), 4213 fsparam_string("nr_inodes", Opt_nr_inodes), 4214 fsparam_string("size", Opt_size), 4215 fsparam_uid ("uid", Opt_uid), 4216 fsparam_flag ("inode32", Opt_inode32), 4217 fsparam_flag ("inode64", Opt_inode64), 4218 fsparam_flag ("noswap", Opt_noswap), 4219 #ifdef CONFIG_TMPFS_QUOTA 4220 fsparam_flag ("quota", Opt_quota), 4221 fsparam_flag ("usrquota", Opt_usrquota), 4222 fsparam_flag ("grpquota", Opt_grpquota), 4223 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 4224 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 4225 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 4226 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 4227 #endif 4228 {} 4229 }; 4230 4231 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 4232 { 4233 struct shmem_options *ctx = fc->fs_private; 4234 struct fs_parse_result result; 4235 unsigned long long size; 4236 char *rest; 4237 int opt; 4238 kuid_t kuid; 4239 kgid_t kgid; 4240 4241 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 4242 if (opt < 0) 4243 return opt; 4244 4245 switch (opt) { 4246 case Opt_size: 4247 size = memparse(param->string, &rest); 4248 if (*rest == '%') { 4249 size <<= PAGE_SHIFT; 4250 size *= totalram_pages(); 4251 do_div(size, 100); 4252 rest++; 4253 } 4254 if (*rest) 4255 goto bad_value; 4256 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 4257 ctx->seen |= SHMEM_SEEN_BLOCKS; 4258 break; 4259 case Opt_nr_blocks: 4260 ctx->blocks = memparse(param->string, &rest); 4261 if (*rest || ctx->blocks > LONG_MAX) 4262 goto bad_value; 4263 ctx->seen |= SHMEM_SEEN_BLOCKS; 4264 break; 4265 case Opt_nr_inodes: 4266 ctx->inodes = memparse(param->string, &rest); 4267 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 4268 goto bad_value; 4269 ctx->seen |= SHMEM_SEEN_INODES; 4270 break; 4271 case Opt_mode: 4272 ctx->mode = result.uint_32 & 07777; 4273 break; 4274 case Opt_uid: 4275 kuid = result.uid; 4276 4277 /* 4278 * The requested uid must be representable in the 4279 * filesystem's idmapping. 4280 */ 4281 if (!kuid_has_mapping(fc->user_ns, kuid)) 4282 goto bad_value; 4283 4284 ctx->uid = kuid; 4285 break; 4286 case Opt_gid: 4287 kgid = result.gid; 4288 4289 /* 4290 * The requested gid must be representable in the 4291 * filesystem's idmapping. 4292 */ 4293 if (!kgid_has_mapping(fc->user_ns, kgid)) 4294 goto bad_value; 4295 4296 ctx->gid = kgid; 4297 break; 4298 case Opt_huge: 4299 ctx->huge = result.uint_32; 4300 if (ctx->huge != SHMEM_HUGE_NEVER && 4301 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4302 has_transparent_hugepage())) 4303 goto unsupported_parameter; 4304 ctx->seen |= SHMEM_SEEN_HUGE; 4305 break; 4306 case Opt_mpol: 4307 if (IS_ENABLED(CONFIG_NUMA)) { 4308 mpol_put(ctx->mpol); 4309 ctx->mpol = NULL; 4310 if (mpol_parse_str(param->string, &ctx->mpol)) 4311 goto bad_value; 4312 break; 4313 } 4314 goto unsupported_parameter; 4315 case Opt_inode32: 4316 ctx->full_inums = false; 4317 ctx->seen |= SHMEM_SEEN_INUMS; 4318 break; 4319 case Opt_inode64: 4320 if (sizeof(ino_t) < 8) { 4321 return invalfc(fc, 4322 "Cannot use inode64 with <64bit inums in kernel\n"); 4323 } 4324 ctx->full_inums = true; 4325 ctx->seen |= SHMEM_SEEN_INUMS; 4326 break; 4327 case Opt_noswap: 4328 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4329 return invalfc(fc, 4330 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4331 } 4332 ctx->noswap = true; 4333 ctx->seen |= SHMEM_SEEN_NOSWAP; 4334 break; 4335 case Opt_quota: 4336 if (fc->user_ns != &init_user_ns) 4337 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4338 ctx->seen |= SHMEM_SEEN_QUOTA; 4339 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4340 break; 4341 case Opt_usrquota: 4342 if (fc->user_ns != &init_user_ns) 4343 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4344 ctx->seen |= SHMEM_SEEN_QUOTA; 4345 ctx->quota_types |= QTYPE_MASK_USR; 4346 break; 4347 case Opt_grpquota: 4348 if (fc->user_ns != &init_user_ns) 4349 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4350 ctx->seen |= SHMEM_SEEN_QUOTA; 4351 ctx->quota_types |= QTYPE_MASK_GRP; 4352 break; 4353 case Opt_usrquota_block_hardlimit: 4354 size = memparse(param->string, &rest); 4355 if (*rest || !size) 4356 goto bad_value; 4357 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4358 return invalfc(fc, 4359 "User quota block hardlimit too large."); 4360 ctx->qlimits.usrquota_bhardlimit = size; 4361 break; 4362 case Opt_grpquota_block_hardlimit: 4363 size = memparse(param->string, &rest); 4364 if (*rest || !size) 4365 goto bad_value; 4366 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4367 return invalfc(fc, 4368 "Group quota block hardlimit too large."); 4369 ctx->qlimits.grpquota_bhardlimit = size; 4370 break; 4371 case Opt_usrquota_inode_hardlimit: 4372 size = memparse(param->string, &rest); 4373 if (*rest || !size) 4374 goto bad_value; 4375 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4376 return invalfc(fc, 4377 "User quota inode hardlimit too large."); 4378 ctx->qlimits.usrquota_ihardlimit = size; 4379 break; 4380 case Opt_grpquota_inode_hardlimit: 4381 size = memparse(param->string, &rest); 4382 if (*rest || !size) 4383 goto bad_value; 4384 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4385 return invalfc(fc, 4386 "Group quota inode hardlimit too large."); 4387 ctx->qlimits.grpquota_ihardlimit = size; 4388 break; 4389 } 4390 return 0; 4391 4392 unsupported_parameter: 4393 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4394 bad_value: 4395 return invalfc(fc, "Bad value for '%s'", param->key); 4396 } 4397 4398 static int shmem_parse_options(struct fs_context *fc, void *data) 4399 { 4400 char *options = data; 4401 4402 if (options) { 4403 int err = security_sb_eat_lsm_opts(options, &fc->security); 4404 if (err) 4405 return err; 4406 } 4407 4408 while (options != NULL) { 4409 char *this_char = options; 4410 for (;;) { 4411 /* 4412 * NUL-terminate this option: unfortunately, 4413 * mount options form a comma-separated list, 4414 * but mpol's nodelist may also contain commas. 4415 */ 4416 options = strchr(options, ','); 4417 if (options == NULL) 4418 break; 4419 options++; 4420 if (!isdigit(*options)) { 4421 options[-1] = '\0'; 4422 break; 4423 } 4424 } 4425 if (*this_char) { 4426 char *value = strchr(this_char, '='); 4427 size_t len = 0; 4428 int err; 4429 4430 if (value) { 4431 *value++ = '\0'; 4432 len = strlen(value); 4433 } 4434 err = vfs_parse_fs_string(fc, this_char, value, len); 4435 if (err < 0) 4436 return err; 4437 } 4438 } 4439 return 0; 4440 } 4441 4442 /* 4443 * Reconfigure a shmem filesystem. 4444 */ 4445 static int shmem_reconfigure(struct fs_context *fc) 4446 { 4447 struct shmem_options *ctx = fc->fs_private; 4448 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4449 unsigned long used_isp; 4450 struct mempolicy *mpol = NULL; 4451 const char *err; 4452 4453 raw_spin_lock(&sbinfo->stat_lock); 4454 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4455 4456 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4457 if (!sbinfo->max_blocks) { 4458 err = "Cannot retroactively limit size"; 4459 goto out; 4460 } 4461 if (percpu_counter_compare(&sbinfo->used_blocks, 4462 ctx->blocks) > 0) { 4463 err = "Too small a size for current use"; 4464 goto out; 4465 } 4466 } 4467 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4468 if (!sbinfo->max_inodes) { 4469 err = "Cannot retroactively limit inodes"; 4470 goto out; 4471 } 4472 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4473 err = "Too few inodes for current use"; 4474 goto out; 4475 } 4476 } 4477 4478 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4479 sbinfo->next_ino > UINT_MAX) { 4480 err = "Current inum too high to switch to 32-bit inums"; 4481 goto out; 4482 } 4483 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4484 err = "Cannot disable swap on remount"; 4485 goto out; 4486 } 4487 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4488 err = "Cannot enable swap on remount if it was disabled on first mount"; 4489 goto out; 4490 } 4491 4492 if (ctx->seen & SHMEM_SEEN_QUOTA && 4493 !sb_any_quota_loaded(fc->root->d_sb)) { 4494 err = "Cannot enable quota on remount"; 4495 goto out; 4496 } 4497 4498 #ifdef CONFIG_TMPFS_QUOTA 4499 #define CHANGED_LIMIT(name) \ 4500 (ctx->qlimits.name## hardlimit && \ 4501 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4502 4503 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4504 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4505 err = "Cannot change global quota limit on remount"; 4506 goto out; 4507 } 4508 #endif /* CONFIG_TMPFS_QUOTA */ 4509 4510 if (ctx->seen & SHMEM_SEEN_HUGE) 4511 sbinfo->huge = ctx->huge; 4512 if (ctx->seen & SHMEM_SEEN_INUMS) 4513 sbinfo->full_inums = ctx->full_inums; 4514 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4515 sbinfo->max_blocks = ctx->blocks; 4516 if (ctx->seen & SHMEM_SEEN_INODES) { 4517 sbinfo->max_inodes = ctx->inodes; 4518 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4519 } 4520 4521 /* 4522 * Preserve previous mempolicy unless mpol remount option was specified. 4523 */ 4524 if (ctx->mpol) { 4525 mpol = sbinfo->mpol; 4526 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4527 ctx->mpol = NULL; 4528 } 4529 4530 if (ctx->noswap) 4531 sbinfo->noswap = true; 4532 4533 raw_spin_unlock(&sbinfo->stat_lock); 4534 mpol_put(mpol); 4535 return 0; 4536 out: 4537 raw_spin_unlock(&sbinfo->stat_lock); 4538 return invalfc(fc, "%s", err); 4539 } 4540 4541 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4542 { 4543 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4544 struct mempolicy *mpol; 4545 4546 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4547 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4548 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4549 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4550 if (sbinfo->mode != (0777 | S_ISVTX)) 4551 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4552 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4553 seq_printf(seq, ",uid=%u", 4554 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4555 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4556 seq_printf(seq, ",gid=%u", 4557 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4558 4559 /* 4560 * Showing inode{64,32} might be useful even if it's the system default, 4561 * since then people don't have to resort to checking both here and 4562 * /proc/config.gz to confirm 64-bit inums were successfully applied 4563 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4564 * 4565 * We hide it when inode64 isn't the default and we are using 32-bit 4566 * inodes, since that probably just means the feature isn't even under 4567 * consideration. 4568 * 4569 * As such: 4570 * 4571 * +-----------------+-----------------+ 4572 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4573 * +------------------+-----------------+-----------------+ 4574 * | full_inums=true | show | show | 4575 * | full_inums=false | show | hide | 4576 * +------------------+-----------------+-----------------+ 4577 * 4578 */ 4579 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4580 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4581 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4582 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4583 if (sbinfo->huge) 4584 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4585 #endif 4586 mpol = shmem_get_sbmpol(sbinfo); 4587 shmem_show_mpol(seq, mpol); 4588 mpol_put(mpol); 4589 if (sbinfo->noswap) 4590 seq_printf(seq, ",noswap"); 4591 #ifdef CONFIG_TMPFS_QUOTA 4592 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4593 seq_printf(seq, ",usrquota"); 4594 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4595 seq_printf(seq, ",grpquota"); 4596 if (sbinfo->qlimits.usrquota_bhardlimit) 4597 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4598 sbinfo->qlimits.usrquota_bhardlimit); 4599 if (sbinfo->qlimits.grpquota_bhardlimit) 4600 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4601 sbinfo->qlimits.grpquota_bhardlimit); 4602 if (sbinfo->qlimits.usrquota_ihardlimit) 4603 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4604 sbinfo->qlimits.usrquota_ihardlimit); 4605 if (sbinfo->qlimits.grpquota_ihardlimit) 4606 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4607 sbinfo->qlimits.grpquota_ihardlimit); 4608 #endif 4609 return 0; 4610 } 4611 4612 #endif /* CONFIG_TMPFS */ 4613 4614 static void shmem_put_super(struct super_block *sb) 4615 { 4616 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4617 4618 #ifdef CONFIG_TMPFS_QUOTA 4619 shmem_disable_quotas(sb); 4620 #endif 4621 free_percpu(sbinfo->ino_batch); 4622 percpu_counter_destroy(&sbinfo->used_blocks); 4623 mpol_put(sbinfo->mpol); 4624 kfree(sbinfo); 4625 sb->s_fs_info = NULL; 4626 } 4627 4628 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4629 { 4630 struct shmem_options *ctx = fc->fs_private; 4631 struct inode *inode; 4632 struct shmem_sb_info *sbinfo; 4633 int error = -ENOMEM; 4634 4635 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4636 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4637 L1_CACHE_BYTES), GFP_KERNEL); 4638 if (!sbinfo) 4639 return error; 4640 4641 sb->s_fs_info = sbinfo; 4642 4643 #ifdef CONFIG_TMPFS 4644 /* 4645 * Per default we only allow half of the physical ram per 4646 * tmpfs instance, limiting inodes to one per page of lowmem; 4647 * but the internal instance is left unlimited. 4648 */ 4649 if (!(sb->s_flags & SB_KERNMOUNT)) { 4650 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 4651 ctx->blocks = shmem_default_max_blocks(); 4652 if (!(ctx->seen & SHMEM_SEEN_INODES)) 4653 ctx->inodes = shmem_default_max_inodes(); 4654 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 4655 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 4656 sbinfo->noswap = ctx->noswap; 4657 } else { 4658 sb->s_flags |= SB_NOUSER; 4659 } 4660 sb->s_export_op = &shmem_export_ops; 4661 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 4662 #else 4663 sb->s_flags |= SB_NOUSER; 4664 #endif 4665 sbinfo->max_blocks = ctx->blocks; 4666 sbinfo->max_inodes = ctx->inodes; 4667 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 4668 if (sb->s_flags & SB_KERNMOUNT) { 4669 sbinfo->ino_batch = alloc_percpu(ino_t); 4670 if (!sbinfo->ino_batch) 4671 goto failed; 4672 } 4673 sbinfo->uid = ctx->uid; 4674 sbinfo->gid = ctx->gid; 4675 sbinfo->full_inums = ctx->full_inums; 4676 sbinfo->mode = ctx->mode; 4677 sbinfo->huge = ctx->huge; 4678 sbinfo->mpol = ctx->mpol; 4679 ctx->mpol = NULL; 4680 4681 raw_spin_lock_init(&sbinfo->stat_lock); 4682 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 4683 goto failed; 4684 spin_lock_init(&sbinfo->shrinklist_lock); 4685 INIT_LIST_HEAD(&sbinfo->shrinklist); 4686 4687 sb->s_maxbytes = MAX_LFS_FILESIZE; 4688 sb->s_blocksize = PAGE_SIZE; 4689 sb->s_blocksize_bits = PAGE_SHIFT; 4690 sb->s_magic = TMPFS_MAGIC; 4691 sb->s_op = &shmem_ops; 4692 sb->s_time_gran = 1; 4693 #ifdef CONFIG_TMPFS_XATTR 4694 sb->s_xattr = shmem_xattr_handlers; 4695 #endif 4696 #ifdef CONFIG_TMPFS_POSIX_ACL 4697 sb->s_flags |= SB_POSIXACL; 4698 #endif 4699 uuid_t uuid; 4700 uuid_gen(&uuid); 4701 super_set_uuid(sb, uuid.b, sizeof(uuid)); 4702 4703 #ifdef CONFIG_TMPFS_QUOTA 4704 if (ctx->seen & SHMEM_SEEN_QUOTA) { 4705 sb->dq_op = &shmem_quota_operations; 4706 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4707 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4708 4709 /* Copy the default limits from ctx into sbinfo */ 4710 memcpy(&sbinfo->qlimits, &ctx->qlimits, 4711 sizeof(struct shmem_quota_limits)); 4712 4713 if (shmem_enable_quotas(sb, ctx->quota_types)) 4714 goto failed; 4715 } 4716 #endif /* CONFIG_TMPFS_QUOTA */ 4717 4718 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 4719 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 4720 if (IS_ERR(inode)) { 4721 error = PTR_ERR(inode); 4722 goto failed; 4723 } 4724 inode->i_uid = sbinfo->uid; 4725 inode->i_gid = sbinfo->gid; 4726 sb->s_root = d_make_root(inode); 4727 if (!sb->s_root) 4728 goto failed; 4729 return 0; 4730 4731 failed: 4732 shmem_put_super(sb); 4733 return error; 4734 } 4735 4736 static int shmem_get_tree(struct fs_context *fc) 4737 { 4738 return get_tree_nodev(fc, shmem_fill_super); 4739 } 4740 4741 static void shmem_free_fc(struct fs_context *fc) 4742 { 4743 struct shmem_options *ctx = fc->fs_private; 4744 4745 if (ctx) { 4746 mpol_put(ctx->mpol); 4747 kfree(ctx); 4748 } 4749 } 4750 4751 static const struct fs_context_operations shmem_fs_context_ops = { 4752 .free = shmem_free_fc, 4753 .get_tree = shmem_get_tree, 4754 #ifdef CONFIG_TMPFS 4755 .parse_monolithic = shmem_parse_options, 4756 .parse_param = shmem_parse_one, 4757 .reconfigure = shmem_reconfigure, 4758 #endif 4759 }; 4760 4761 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 4762 4763 static struct inode *shmem_alloc_inode(struct super_block *sb) 4764 { 4765 struct shmem_inode_info *info; 4766 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 4767 if (!info) 4768 return NULL; 4769 return &info->vfs_inode; 4770 } 4771 4772 static void shmem_free_in_core_inode(struct inode *inode) 4773 { 4774 if (S_ISLNK(inode->i_mode)) 4775 kfree(inode->i_link); 4776 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 4777 } 4778 4779 static void shmem_destroy_inode(struct inode *inode) 4780 { 4781 if (S_ISREG(inode->i_mode)) 4782 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 4783 if (S_ISDIR(inode->i_mode)) 4784 simple_offset_destroy(shmem_get_offset_ctx(inode)); 4785 } 4786 4787 static void shmem_init_inode(void *foo) 4788 { 4789 struct shmem_inode_info *info = foo; 4790 inode_init_once(&info->vfs_inode); 4791 } 4792 4793 static void __init shmem_init_inodecache(void) 4794 { 4795 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 4796 sizeof(struct shmem_inode_info), 4797 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 4798 } 4799 4800 static void __init shmem_destroy_inodecache(void) 4801 { 4802 kmem_cache_destroy(shmem_inode_cachep); 4803 } 4804 4805 /* Keep the page in page cache instead of truncating it */ 4806 static int shmem_error_remove_folio(struct address_space *mapping, 4807 struct folio *folio) 4808 { 4809 return 0; 4810 } 4811 4812 static const struct address_space_operations shmem_aops = { 4813 .writepage = shmem_writepage, 4814 .dirty_folio = noop_dirty_folio, 4815 #ifdef CONFIG_TMPFS 4816 .write_begin = shmem_write_begin, 4817 .write_end = shmem_write_end, 4818 #endif 4819 #ifdef CONFIG_MIGRATION 4820 .migrate_folio = migrate_folio, 4821 #endif 4822 .error_remove_folio = shmem_error_remove_folio, 4823 }; 4824 4825 static const struct file_operations shmem_file_operations = { 4826 .mmap = shmem_mmap, 4827 .open = shmem_file_open, 4828 .get_unmapped_area = shmem_get_unmapped_area, 4829 #ifdef CONFIG_TMPFS 4830 .llseek = shmem_file_llseek, 4831 .read_iter = shmem_file_read_iter, 4832 .write_iter = shmem_file_write_iter, 4833 .fsync = noop_fsync, 4834 .splice_read = shmem_file_splice_read, 4835 .splice_write = iter_file_splice_write, 4836 .fallocate = shmem_fallocate, 4837 #endif 4838 }; 4839 4840 static const struct inode_operations shmem_inode_operations = { 4841 .getattr = shmem_getattr, 4842 .setattr = shmem_setattr, 4843 #ifdef CONFIG_TMPFS_XATTR 4844 .listxattr = shmem_listxattr, 4845 .set_acl = simple_set_acl, 4846 .fileattr_get = shmem_fileattr_get, 4847 .fileattr_set = shmem_fileattr_set, 4848 #endif 4849 }; 4850 4851 static const struct inode_operations shmem_dir_inode_operations = { 4852 #ifdef CONFIG_TMPFS 4853 .getattr = shmem_getattr, 4854 .create = shmem_create, 4855 .lookup = simple_lookup, 4856 .link = shmem_link, 4857 .unlink = shmem_unlink, 4858 .symlink = shmem_symlink, 4859 .mkdir = shmem_mkdir, 4860 .rmdir = shmem_rmdir, 4861 .mknod = shmem_mknod, 4862 .rename = shmem_rename2, 4863 .tmpfile = shmem_tmpfile, 4864 .get_offset_ctx = shmem_get_offset_ctx, 4865 #endif 4866 #ifdef CONFIG_TMPFS_XATTR 4867 .listxattr = shmem_listxattr, 4868 .fileattr_get = shmem_fileattr_get, 4869 .fileattr_set = shmem_fileattr_set, 4870 #endif 4871 #ifdef CONFIG_TMPFS_POSIX_ACL 4872 .setattr = shmem_setattr, 4873 .set_acl = simple_set_acl, 4874 #endif 4875 }; 4876 4877 static const struct inode_operations shmem_special_inode_operations = { 4878 .getattr = shmem_getattr, 4879 #ifdef CONFIG_TMPFS_XATTR 4880 .listxattr = shmem_listxattr, 4881 #endif 4882 #ifdef CONFIG_TMPFS_POSIX_ACL 4883 .setattr = shmem_setattr, 4884 .set_acl = simple_set_acl, 4885 #endif 4886 }; 4887 4888 static const struct super_operations shmem_ops = { 4889 .alloc_inode = shmem_alloc_inode, 4890 .free_inode = shmem_free_in_core_inode, 4891 .destroy_inode = shmem_destroy_inode, 4892 #ifdef CONFIG_TMPFS 4893 .statfs = shmem_statfs, 4894 .show_options = shmem_show_options, 4895 #endif 4896 #ifdef CONFIG_TMPFS_QUOTA 4897 .get_dquots = shmem_get_dquots, 4898 #endif 4899 .evict_inode = shmem_evict_inode, 4900 .drop_inode = generic_delete_inode, 4901 .put_super = shmem_put_super, 4902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4903 .nr_cached_objects = shmem_unused_huge_count, 4904 .free_cached_objects = shmem_unused_huge_scan, 4905 #endif 4906 }; 4907 4908 static const struct vm_operations_struct shmem_vm_ops = { 4909 .fault = shmem_fault, 4910 .map_pages = filemap_map_pages, 4911 #ifdef CONFIG_NUMA 4912 .set_policy = shmem_set_policy, 4913 .get_policy = shmem_get_policy, 4914 #endif 4915 }; 4916 4917 static const struct vm_operations_struct shmem_anon_vm_ops = { 4918 .fault = shmem_fault, 4919 .map_pages = filemap_map_pages, 4920 #ifdef CONFIG_NUMA 4921 .set_policy = shmem_set_policy, 4922 .get_policy = shmem_get_policy, 4923 #endif 4924 }; 4925 4926 int shmem_init_fs_context(struct fs_context *fc) 4927 { 4928 struct shmem_options *ctx; 4929 4930 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4931 if (!ctx) 4932 return -ENOMEM; 4933 4934 ctx->mode = 0777 | S_ISVTX; 4935 ctx->uid = current_fsuid(); 4936 ctx->gid = current_fsgid(); 4937 4938 fc->fs_private = ctx; 4939 fc->ops = &shmem_fs_context_ops; 4940 return 0; 4941 } 4942 4943 static struct file_system_type shmem_fs_type = { 4944 .owner = THIS_MODULE, 4945 .name = "tmpfs", 4946 .init_fs_context = shmem_init_fs_context, 4947 #ifdef CONFIG_TMPFS 4948 .parameters = shmem_fs_parameters, 4949 #endif 4950 .kill_sb = kill_litter_super, 4951 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP, 4952 }; 4953 4954 void __init shmem_init(void) 4955 { 4956 int error; 4957 4958 shmem_init_inodecache(); 4959 4960 #ifdef CONFIG_TMPFS_QUOTA 4961 register_quota_format(&shmem_quota_format); 4962 #endif 4963 4964 error = register_filesystem(&shmem_fs_type); 4965 if (error) { 4966 pr_err("Could not register tmpfs\n"); 4967 goto out2; 4968 } 4969 4970 shm_mnt = kern_mount(&shmem_fs_type); 4971 if (IS_ERR(shm_mnt)) { 4972 error = PTR_ERR(shm_mnt); 4973 pr_err("Could not kern_mount tmpfs\n"); 4974 goto out1; 4975 } 4976 4977 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4978 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4979 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4980 else 4981 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4982 4983 /* 4984 * Default to setting PMD-sized THP to inherit the global setting and 4985 * disable all other multi-size THPs. 4986 */ 4987 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER); 4988 #endif 4989 return; 4990 4991 out1: 4992 unregister_filesystem(&shmem_fs_type); 4993 out2: 4994 #ifdef CONFIG_TMPFS_QUOTA 4995 unregister_quota_format(&shmem_quota_format); 4996 #endif 4997 shmem_destroy_inodecache(); 4998 shm_mnt = ERR_PTR(error); 4999 } 5000 5001 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 5002 static ssize_t shmem_enabled_show(struct kobject *kobj, 5003 struct kobj_attribute *attr, char *buf) 5004 { 5005 static const int values[] = { 5006 SHMEM_HUGE_ALWAYS, 5007 SHMEM_HUGE_WITHIN_SIZE, 5008 SHMEM_HUGE_ADVISE, 5009 SHMEM_HUGE_NEVER, 5010 SHMEM_HUGE_DENY, 5011 SHMEM_HUGE_FORCE, 5012 }; 5013 int len = 0; 5014 int i; 5015 5016 for (i = 0; i < ARRAY_SIZE(values); i++) { 5017 len += sysfs_emit_at(buf, len, 5018 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 5019 i ? " " : "", shmem_format_huge(values[i])); 5020 } 5021 len += sysfs_emit_at(buf, len, "\n"); 5022 5023 return len; 5024 } 5025 5026 static ssize_t shmem_enabled_store(struct kobject *kobj, 5027 struct kobj_attribute *attr, const char *buf, size_t count) 5028 { 5029 char tmp[16]; 5030 int huge; 5031 5032 if (count + 1 > sizeof(tmp)) 5033 return -EINVAL; 5034 memcpy(tmp, buf, count); 5035 tmp[count] = '\0'; 5036 if (count && tmp[count - 1] == '\n') 5037 tmp[count - 1] = '\0'; 5038 5039 huge = shmem_parse_huge(tmp); 5040 if (huge == -EINVAL) 5041 return -EINVAL; 5042 if (!has_transparent_hugepage() && 5043 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 5044 return -EINVAL; 5045 5046 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5047 if (huge == SHMEM_HUGE_FORCE && 5048 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER)) 5049 return -EINVAL; 5050 5051 shmem_huge = huge; 5052 if (shmem_huge > SHMEM_HUGE_DENY) 5053 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5054 return count; 5055 } 5056 5057 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 5058 static DEFINE_SPINLOCK(huge_shmem_orders_lock); 5059 5060 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj, 5061 struct kobj_attribute *attr, char *buf) 5062 { 5063 int order = to_thpsize(kobj)->order; 5064 const char *output; 5065 5066 if (test_bit(order, &huge_shmem_orders_always)) 5067 output = "[always] inherit within_size advise never"; 5068 else if (test_bit(order, &huge_shmem_orders_inherit)) 5069 output = "always [inherit] within_size advise never"; 5070 else if (test_bit(order, &huge_shmem_orders_within_size)) 5071 output = "always inherit [within_size] advise never"; 5072 else if (test_bit(order, &huge_shmem_orders_madvise)) 5073 output = "always inherit within_size [advise] never"; 5074 else 5075 output = "always inherit within_size advise [never]"; 5076 5077 return sysfs_emit(buf, "%s\n", output); 5078 } 5079 5080 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj, 5081 struct kobj_attribute *attr, 5082 const char *buf, size_t count) 5083 { 5084 int order = to_thpsize(kobj)->order; 5085 ssize_t ret = count; 5086 5087 if (sysfs_streq(buf, "always")) { 5088 spin_lock(&huge_shmem_orders_lock); 5089 clear_bit(order, &huge_shmem_orders_inherit); 5090 clear_bit(order, &huge_shmem_orders_madvise); 5091 clear_bit(order, &huge_shmem_orders_within_size); 5092 set_bit(order, &huge_shmem_orders_always); 5093 spin_unlock(&huge_shmem_orders_lock); 5094 } else if (sysfs_streq(buf, "inherit")) { 5095 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5096 if (shmem_huge == SHMEM_HUGE_FORCE && 5097 order != HPAGE_PMD_ORDER) 5098 return -EINVAL; 5099 5100 spin_lock(&huge_shmem_orders_lock); 5101 clear_bit(order, &huge_shmem_orders_always); 5102 clear_bit(order, &huge_shmem_orders_madvise); 5103 clear_bit(order, &huge_shmem_orders_within_size); 5104 set_bit(order, &huge_shmem_orders_inherit); 5105 spin_unlock(&huge_shmem_orders_lock); 5106 } else if (sysfs_streq(buf, "within_size")) { 5107 spin_lock(&huge_shmem_orders_lock); 5108 clear_bit(order, &huge_shmem_orders_always); 5109 clear_bit(order, &huge_shmem_orders_inherit); 5110 clear_bit(order, &huge_shmem_orders_madvise); 5111 set_bit(order, &huge_shmem_orders_within_size); 5112 spin_unlock(&huge_shmem_orders_lock); 5113 } else if (sysfs_streq(buf, "advise")) { 5114 spin_lock(&huge_shmem_orders_lock); 5115 clear_bit(order, &huge_shmem_orders_always); 5116 clear_bit(order, &huge_shmem_orders_inherit); 5117 clear_bit(order, &huge_shmem_orders_within_size); 5118 set_bit(order, &huge_shmem_orders_madvise); 5119 spin_unlock(&huge_shmem_orders_lock); 5120 } else if (sysfs_streq(buf, "never")) { 5121 spin_lock(&huge_shmem_orders_lock); 5122 clear_bit(order, &huge_shmem_orders_always); 5123 clear_bit(order, &huge_shmem_orders_inherit); 5124 clear_bit(order, &huge_shmem_orders_within_size); 5125 clear_bit(order, &huge_shmem_orders_madvise); 5126 spin_unlock(&huge_shmem_orders_lock); 5127 } else { 5128 ret = -EINVAL; 5129 } 5130 5131 return ret; 5132 } 5133 5134 struct kobj_attribute thpsize_shmem_enabled_attr = 5135 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store); 5136 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 5137 5138 #else /* !CONFIG_SHMEM */ 5139 5140 /* 5141 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 5142 * 5143 * This is intended for small system where the benefits of the full 5144 * shmem code (swap-backed and resource-limited) are outweighed by 5145 * their complexity. On systems without swap this code should be 5146 * effectively equivalent, but much lighter weight. 5147 */ 5148 5149 static struct file_system_type shmem_fs_type = { 5150 .name = "tmpfs", 5151 .init_fs_context = ramfs_init_fs_context, 5152 .parameters = ramfs_fs_parameters, 5153 .kill_sb = ramfs_kill_sb, 5154 .fs_flags = FS_USERNS_MOUNT, 5155 }; 5156 5157 void __init shmem_init(void) 5158 { 5159 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 5160 5161 shm_mnt = kern_mount(&shmem_fs_type); 5162 BUG_ON(IS_ERR(shm_mnt)); 5163 } 5164 5165 int shmem_unuse(unsigned int type) 5166 { 5167 return 0; 5168 } 5169 5170 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 5171 { 5172 return 0; 5173 } 5174 5175 void shmem_unlock_mapping(struct address_space *mapping) 5176 { 5177 } 5178 5179 #ifdef CONFIG_MMU 5180 unsigned long shmem_get_unmapped_area(struct file *file, 5181 unsigned long addr, unsigned long len, 5182 unsigned long pgoff, unsigned long flags) 5183 { 5184 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags); 5185 } 5186 #endif 5187 5188 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 5189 { 5190 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 5191 } 5192 EXPORT_SYMBOL_GPL(shmem_truncate_range); 5193 5194 #define shmem_vm_ops generic_file_vm_ops 5195 #define shmem_anon_vm_ops generic_file_vm_ops 5196 #define shmem_file_operations ramfs_file_operations 5197 #define shmem_acct_size(flags, size) 0 5198 #define shmem_unacct_size(flags, size) do {} while (0) 5199 5200 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 5201 struct super_block *sb, struct inode *dir, 5202 umode_t mode, dev_t dev, unsigned long flags) 5203 { 5204 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 5205 return inode ? inode : ERR_PTR(-ENOSPC); 5206 } 5207 5208 #endif /* CONFIG_SHMEM */ 5209 5210 /* common code */ 5211 5212 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 5213 loff_t size, unsigned long flags, unsigned int i_flags) 5214 { 5215 struct inode *inode; 5216 struct file *res; 5217 5218 if (IS_ERR(mnt)) 5219 return ERR_CAST(mnt); 5220 5221 if (size < 0 || size > MAX_LFS_FILESIZE) 5222 return ERR_PTR(-EINVAL); 5223 5224 if (shmem_acct_size(flags, size)) 5225 return ERR_PTR(-ENOMEM); 5226 5227 if (is_idmapped_mnt(mnt)) 5228 return ERR_PTR(-EINVAL); 5229 5230 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 5231 S_IFREG | S_IRWXUGO, 0, flags); 5232 if (IS_ERR(inode)) { 5233 shmem_unacct_size(flags, size); 5234 return ERR_CAST(inode); 5235 } 5236 inode->i_flags |= i_flags; 5237 inode->i_size = size; 5238 clear_nlink(inode); /* It is unlinked */ 5239 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 5240 if (!IS_ERR(res)) 5241 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 5242 &shmem_file_operations); 5243 if (IS_ERR(res)) 5244 iput(inode); 5245 return res; 5246 } 5247 5248 /** 5249 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 5250 * kernel internal. There will be NO LSM permission checks against the 5251 * underlying inode. So users of this interface must do LSM checks at a 5252 * higher layer. The users are the big_key and shm implementations. LSM 5253 * checks are provided at the key or shm level rather than the inode. 5254 * @name: name for dentry (to be seen in /proc/<pid>/maps 5255 * @size: size to be set for the file 5256 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5257 */ 5258 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 5259 { 5260 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 5261 } 5262 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 5263 5264 /** 5265 * shmem_file_setup - get an unlinked file living in tmpfs 5266 * @name: name for dentry (to be seen in /proc/<pid>/maps 5267 * @size: size to be set for the file 5268 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5269 */ 5270 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 5271 { 5272 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 5273 } 5274 EXPORT_SYMBOL_GPL(shmem_file_setup); 5275 5276 /** 5277 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 5278 * @mnt: the tmpfs mount where the file will be created 5279 * @name: name for dentry (to be seen in /proc/<pid>/maps 5280 * @size: size to be set for the file 5281 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5282 */ 5283 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 5284 loff_t size, unsigned long flags) 5285 { 5286 return __shmem_file_setup(mnt, name, size, flags, 0); 5287 } 5288 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 5289 5290 /** 5291 * shmem_zero_setup - setup a shared anonymous mapping 5292 * @vma: the vma to be mmapped is prepared by do_mmap 5293 */ 5294 int shmem_zero_setup(struct vm_area_struct *vma) 5295 { 5296 struct file *file; 5297 loff_t size = vma->vm_end - vma->vm_start; 5298 5299 /* 5300 * Cloning a new file under mmap_lock leads to a lock ordering conflict 5301 * between XFS directory reading and selinux: since this file is only 5302 * accessible to the user through its mapping, use S_PRIVATE flag to 5303 * bypass file security, in the same way as shmem_kernel_file_setup(). 5304 */ 5305 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 5306 if (IS_ERR(file)) 5307 return PTR_ERR(file); 5308 5309 if (vma->vm_file) 5310 fput(vma->vm_file); 5311 vma->vm_file = file; 5312 vma->vm_ops = &shmem_anon_vm_ops; 5313 5314 return 0; 5315 } 5316 5317 /** 5318 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 5319 * @mapping: the folio's address_space 5320 * @index: the folio index 5321 * @gfp: the page allocator flags to use if allocating 5322 * 5323 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 5324 * with any new page allocations done using the specified allocation flags. 5325 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 5326 * suit tmpfs, since it may have pages in swapcache, and needs to find those 5327 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 5328 * 5329 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 5330 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 5331 */ 5332 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 5333 pgoff_t index, gfp_t gfp) 5334 { 5335 #ifdef CONFIG_SHMEM 5336 struct inode *inode = mapping->host; 5337 struct folio *folio; 5338 int error; 5339 5340 error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE, 5341 gfp, NULL, NULL); 5342 if (error) 5343 return ERR_PTR(error); 5344 5345 folio_unlock(folio); 5346 return folio; 5347 #else 5348 /* 5349 * The tiny !SHMEM case uses ramfs without swap 5350 */ 5351 return mapping_read_folio_gfp(mapping, index, gfp); 5352 #endif 5353 } 5354 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 5355 5356 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 5357 pgoff_t index, gfp_t gfp) 5358 { 5359 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 5360 struct page *page; 5361 5362 if (IS_ERR(folio)) 5363 return &folio->page; 5364 5365 page = folio_file_page(folio, index); 5366 if (PageHWPoison(page)) { 5367 folio_put(folio); 5368 return ERR_PTR(-EIO); 5369 } 5370 5371 return page; 5372 } 5373 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 5374