1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include "swap.h" 44 45 static struct vfsmount *shm_mnt __ro_after_init; 46 47 #ifdef CONFIG_SHMEM 48 /* 49 * This virtual memory filesystem is heavily based on the ramfs. It 50 * extends ramfs by the ability to use swap and honor resource limits 51 * which makes it a completely usable filesystem. 52 */ 53 54 #include <linux/xattr.h> 55 #include <linux/exportfs.h> 56 #include <linux/posix_acl.h> 57 #include <linux/posix_acl_xattr.h> 58 #include <linux/mman.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/backing-dev.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 #include <linux/quotaops.h> 82 #include <linux/rcupdate_wait.h> 83 84 #include <linux/uaccess.h> 85 86 #include "internal.h" 87 88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Pretend that one inode + its dentry occupy this much memory */ 95 #define BOGO_INODE_SIZE 1024 96 97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 98 #define SHORT_SYMLINK_LEN 128 99 100 /* 101 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 102 * inode->i_private (with i_rwsem making sure that it has only one user at 103 * a time): we would prefer not to enlarge the shmem inode just for that. 104 */ 105 struct shmem_falloc { 106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 107 pgoff_t start; /* start of range currently being fallocated */ 108 pgoff_t next; /* the next page offset to be fallocated */ 109 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 110 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 111 }; 112 113 struct shmem_options { 114 unsigned long long blocks; 115 unsigned long long inodes; 116 struct mempolicy *mpol; 117 kuid_t uid; 118 kgid_t gid; 119 umode_t mode; 120 bool full_inums; 121 int huge; 122 int seen; 123 bool noswap; 124 unsigned short quota_types; 125 struct shmem_quota_limits qlimits; 126 #define SHMEM_SEEN_BLOCKS 1 127 #define SHMEM_SEEN_INODES 2 128 #define SHMEM_SEEN_HUGE 4 129 #define SHMEM_SEEN_INUMS 8 130 #define SHMEM_SEEN_NOSWAP 16 131 #define SHMEM_SEEN_QUOTA 32 132 }; 133 134 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 135 static unsigned long huge_shmem_orders_always __read_mostly; 136 static unsigned long huge_shmem_orders_madvise __read_mostly; 137 static unsigned long huge_shmem_orders_inherit __read_mostly; 138 static unsigned long huge_shmem_orders_within_size __read_mostly; 139 #endif 140 141 #ifdef CONFIG_TMPFS 142 static unsigned long shmem_default_max_blocks(void) 143 { 144 return totalram_pages() / 2; 145 } 146 147 static unsigned long shmem_default_max_inodes(void) 148 { 149 unsigned long nr_pages = totalram_pages(); 150 151 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 152 ULONG_MAX / BOGO_INODE_SIZE); 153 } 154 #endif 155 156 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 157 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 158 struct vm_area_struct *vma, vm_fault_t *fault_type); 159 160 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 161 { 162 return sb->s_fs_info; 163 } 164 165 /* 166 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 167 * for shared memory and for shared anonymous (/dev/zero) mappings 168 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 169 * consistent with the pre-accounting of private mappings ... 170 */ 171 static inline int shmem_acct_size(unsigned long flags, loff_t size) 172 { 173 return (flags & VM_NORESERVE) ? 174 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 175 } 176 177 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 178 { 179 if (!(flags & VM_NORESERVE)) 180 vm_unacct_memory(VM_ACCT(size)); 181 } 182 183 static inline int shmem_reacct_size(unsigned long flags, 184 loff_t oldsize, loff_t newsize) 185 { 186 if (!(flags & VM_NORESERVE)) { 187 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 188 return security_vm_enough_memory_mm(current->mm, 189 VM_ACCT(newsize) - VM_ACCT(oldsize)); 190 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 191 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 192 } 193 return 0; 194 } 195 196 /* 197 * ... whereas tmpfs objects are accounted incrementally as 198 * pages are allocated, in order to allow large sparse files. 199 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 200 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 201 */ 202 static inline int shmem_acct_blocks(unsigned long flags, long pages) 203 { 204 if (!(flags & VM_NORESERVE)) 205 return 0; 206 207 return security_vm_enough_memory_mm(current->mm, 208 pages * VM_ACCT(PAGE_SIZE)); 209 } 210 211 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 212 { 213 if (flags & VM_NORESERVE) 214 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 215 } 216 217 static int shmem_inode_acct_blocks(struct inode *inode, long pages) 218 { 219 struct shmem_inode_info *info = SHMEM_I(inode); 220 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 221 int err = -ENOSPC; 222 223 if (shmem_acct_blocks(info->flags, pages)) 224 return err; 225 226 might_sleep(); /* when quotas */ 227 if (sbinfo->max_blocks) { 228 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 229 sbinfo->max_blocks, pages)) 230 goto unacct; 231 232 err = dquot_alloc_block_nodirty(inode, pages); 233 if (err) { 234 percpu_counter_sub(&sbinfo->used_blocks, pages); 235 goto unacct; 236 } 237 } else { 238 err = dquot_alloc_block_nodirty(inode, pages); 239 if (err) 240 goto unacct; 241 } 242 243 return 0; 244 245 unacct: 246 shmem_unacct_blocks(info->flags, pages); 247 return err; 248 } 249 250 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 251 { 252 struct shmem_inode_info *info = SHMEM_I(inode); 253 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 254 255 might_sleep(); /* when quotas */ 256 dquot_free_block_nodirty(inode, pages); 257 258 if (sbinfo->max_blocks) 259 percpu_counter_sub(&sbinfo->used_blocks, pages); 260 shmem_unacct_blocks(info->flags, pages); 261 } 262 263 static const struct super_operations shmem_ops; 264 static const struct address_space_operations shmem_aops; 265 static const struct file_operations shmem_file_operations; 266 static const struct inode_operations shmem_inode_operations; 267 static const struct inode_operations shmem_dir_inode_operations; 268 static const struct inode_operations shmem_special_inode_operations; 269 static const struct vm_operations_struct shmem_vm_ops; 270 static const struct vm_operations_struct shmem_anon_vm_ops; 271 static struct file_system_type shmem_fs_type; 272 273 bool shmem_mapping(struct address_space *mapping) 274 { 275 return mapping->a_ops == &shmem_aops; 276 } 277 EXPORT_SYMBOL_GPL(shmem_mapping); 278 279 bool vma_is_anon_shmem(struct vm_area_struct *vma) 280 { 281 return vma->vm_ops == &shmem_anon_vm_ops; 282 } 283 284 bool vma_is_shmem(struct vm_area_struct *vma) 285 { 286 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 287 } 288 289 static LIST_HEAD(shmem_swaplist); 290 static DEFINE_MUTEX(shmem_swaplist_mutex); 291 292 #ifdef CONFIG_TMPFS_QUOTA 293 294 static int shmem_enable_quotas(struct super_block *sb, 295 unsigned short quota_types) 296 { 297 int type, err = 0; 298 299 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 300 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 301 if (!(quota_types & (1 << type))) 302 continue; 303 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 304 DQUOT_USAGE_ENABLED | 305 DQUOT_LIMITS_ENABLED); 306 if (err) 307 goto out_err; 308 } 309 return 0; 310 311 out_err: 312 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 313 type, err); 314 for (type--; type >= 0; type--) 315 dquot_quota_off(sb, type); 316 return err; 317 } 318 319 static void shmem_disable_quotas(struct super_block *sb) 320 { 321 int type; 322 323 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 324 dquot_quota_off(sb, type); 325 } 326 327 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 328 { 329 return SHMEM_I(inode)->i_dquot; 330 } 331 #endif /* CONFIG_TMPFS_QUOTA */ 332 333 /* 334 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 335 * produces a novel ino for the newly allocated inode. 336 * 337 * It may also be called when making a hard link to permit the space needed by 338 * each dentry. However, in that case, no new inode number is needed since that 339 * internally draws from another pool of inode numbers (currently global 340 * get_next_ino()). This case is indicated by passing NULL as inop. 341 */ 342 #define SHMEM_INO_BATCH 1024 343 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 344 { 345 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 346 ino_t ino; 347 348 if (!(sb->s_flags & SB_KERNMOUNT)) { 349 raw_spin_lock(&sbinfo->stat_lock); 350 if (sbinfo->max_inodes) { 351 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 352 raw_spin_unlock(&sbinfo->stat_lock); 353 return -ENOSPC; 354 } 355 sbinfo->free_ispace -= BOGO_INODE_SIZE; 356 } 357 if (inop) { 358 ino = sbinfo->next_ino++; 359 if (unlikely(is_zero_ino(ino))) 360 ino = sbinfo->next_ino++; 361 if (unlikely(!sbinfo->full_inums && 362 ino > UINT_MAX)) { 363 /* 364 * Emulate get_next_ino uint wraparound for 365 * compatibility 366 */ 367 if (IS_ENABLED(CONFIG_64BIT)) 368 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 369 __func__, MINOR(sb->s_dev)); 370 sbinfo->next_ino = 1; 371 ino = sbinfo->next_ino++; 372 } 373 *inop = ino; 374 } 375 raw_spin_unlock(&sbinfo->stat_lock); 376 } else if (inop) { 377 /* 378 * __shmem_file_setup, one of our callers, is lock-free: it 379 * doesn't hold stat_lock in shmem_reserve_inode since 380 * max_inodes is always 0, and is called from potentially 381 * unknown contexts. As such, use a per-cpu batched allocator 382 * which doesn't require the per-sb stat_lock unless we are at 383 * the batch boundary. 384 * 385 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 386 * shmem mounts are not exposed to userspace, so we don't need 387 * to worry about things like glibc compatibility. 388 */ 389 ino_t *next_ino; 390 391 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 392 ino = *next_ino; 393 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 394 raw_spin_lock(&sbinfo->stat_lock); 395 ino = sbinfo->next_ino; 396 sbinfo->next_ino += SHMEM_INO_BATCH; 397 raw_spin_unlock(&sbinfo->stat_lock); 398 if (unlikely(is_zero_ino(ino))) 399 ino++; 400 } 401 *inop = ino; 402 *next_ino = ++ino; 403 put_cpu(); 404 } 405 406 return 0; 407 } 408 409 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 410 { 411 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 412 if (sbinfo->max_inodes) { 413 raw_spin_lock(&sbinfo->stat_lock); 414 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 415 raw_spin_unlock(&sbinfo->stat_lock); 416 } 417 } 418 419 /** 420 * shmem_recalc_inode - recalculate the block usage of an inode 421 * @inode: inode to recalc 422 * @alloced: the change in number of pages allocated to inode 423 * @swapped: the change in number of pages swapped from inode 424 * 425 * We have to calculate the free blocks since the mm can drop 426 * undirtied hole pages behind our back. 427 * 428 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 429 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 430 */ 431 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 432 { 433 struct shmem_inode_info *info = SHMEM_I(inode); 434 long freed; 435 436 spin_lock(&info->lock); 437 info->alloced += alloced; 438 info->swapped += swapped; 439 freed = info->alloced - info->swapped - 440 READ_ONCE(inode->i_mapping->nrpages); 441 /* 442 * Special case: whereas normally shmem_recalc_inode() is called 443 * after i_mapping->nrpages has already been adjusted (up or down), 444 * shmem_writepage() has to raise swapped before nrpages is lowered - 445 * to stop a racing shmem_recalc_inode() from thinking that a page has 446 * been freed. Compensate here, to avoid the need for a followup call. 447 */ 448 if (swapped > 0) 449 freed += swapped; 450 if (freed > 0) 451 info->alloced -= freed; 452 spin_unlock(&info->lock); 453 454 /* The quota case may block */ 455 if (freed > 0) 456 shmem_inode_unacct_blocks(inode, freed); 457 } 458 459 bool shmem_charge(struct inode *inode, long pages) 460 { 461 struct address_space *mapping = inode->i_mapping; 462 463 if (shmem_inode_acct_blocks(inode, pages)) 464 return false; 465 466 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 467 xa_lock_irq(&mapping->i_pages); 468 mapping->nrpages += pages; 469 xa_unlock_irq(&mapping->i_pages); 470 471 shmem_recalc_inode(inode, pages, 0); 472 return true; 473 } 474 475 void shmem_uncharge(struct inode *inode, long pages) 476 { 477 /* pages argument is currently unused: keep it to help debugging */ 478 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 479 480 shmem_recalc_inode(inode, 0, 0); 481 } 482 483 /* 484 * Replace item expected in xarray by a new item, while holding xa_lock. 485 */ 486 static int shmem_replace_entry(struct address_space *mapping, 487 pgoff_t index, void *expected, void *replacement) 488 { 489 XA_STATE(xas, &mapping->i_pages, index); 490 void *item; 491 492 VM_BUG_ON(!expected); 493 VM_BUG_ON(!replacement); 494 item = xas_load(&xas); 495 if (item != expected) 496 return -ENOENT; 497 xas_store(&xas, replacement); 498 return 0; 499 } 500 501 /* 502 * Sometimes, before we decide whether to proceed or to fail, we must check 503 * that an entry was not already brought back from swap by a racing thread. 504 * 505 * Checking folio is not enough: by the time a swapcache folio is locked, it 506 * might be reused, and again be swapcache, using the same swap as before. 507 */ 508 static bool shmem_confirm_swap(struct address_space *mapping, 509 pgoff_t index, swp_entry_t swap) 510 { 511 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 512 } 513 514 /* 515 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 516 * 517 * SHMEM_HUGE_NEVER: 518 * disables huge pages for the mount; 519 * SHMEM_HUGE_ALWAYS: 520 * enables huge pages for the mount; 521 * SHMEM_HUGE_WITHIN_SIZE: 522 * only allocate huge pages if the page will be fully within i_size, 523 * also respect fadvise()/madvise() hints; 524 * SHMEM_HUGE_ADVISE: 525 * only allocate huge pages if requested with fadvise()/madvise(); 526 */ 527 528 #define SHMEM_HUGE_NEVER 0 529 #define SHMEM_HUGE_ALWAYS 1 530 #define SHMEM_HUGE_WITHIN_SIZE 2 531 #define SHMEM_HUGE_ADVISE 3 532 533 /* 534 * Special values. 535 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 536 * 537 * SHMEM_HUGE_DENY: 538 * disables huge on shm_mnt and all mounts, for emergency use; 539 * SHMEM_HUGE_FORCE: 540 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 541 * 542 */ 543 #define SHMEM_HUGE_DENY (-1) 544 #define SHMEM_HUGE_FORCE (-2) 545 546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 547 /* ifdef here to avoid bloating shmem.o when not necessary */ 548 549 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 550 551 static bool __shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 552 bool shmem_huge_force, struct vm_area_struct *vma, 553 unsigned long vm_flags) 554 { 555 struct mm_struct *mm = vma ? vma->vm_mm : NULL; 556 loff_t i_size; 557 558 if (!S_ISREG(inode->i_mode)) 559 return false; 560 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags))) 561 return false; 562 if (shmem_huge == SHMEM_HUGE_DENY) 563 return false; 564 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 565 return true; 566 567 switch (SHMEM_SB(inode->i_sb)->huge) { 568 case SHMEM_HUGE_ALWAYS: 569 return true; 570 case SHMEM_HUGE_WITHIN_SIZE: 571 index = round_up(index + 1, HPAGE_PMD_NR); 572 i_size = round_up(i_size_read(inode), PAGE_SIZE); 573 if (i_size >> PAGE_SHIFT >= index) 574 return true; 575 fallthrough; 576 case SHMEM_HUGE_ADVISE: 577 if (mm && (vm_flags & VM_HUGEPAGE)) 578 return true; 579 fallthrough; 580 default: 581 return false; 582 } 583 } 584 585 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 586 bool shmem_huge_force, struct vm_area_struct *vma, 587 unsigned long vm_flags) 588 { 589 if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER) 590 return false; 591 592 return __shmem_huge_global_enabled(inode, index, shmem_huge_force, 593 vma, vm_flags); 594 } 595 596 #if defined(CONFIG_SYSFS) 597 static int shmem_parse_huge(const char *str) 598 { 599 if (!strcmp(str, "never")) 600 return SHMEM_HUGE_NEVER; 601 if (!strcmp(str, "always")) 602 return SHMEM_HUGE_ALWAYS; 603 if (!strcmp(str, "within_size")) 604 return SHMEM_HUGE_WITHIN_SIZE; 605 if (!strcmp(str, "advise")) 606 return SHMEM_HUGE_ADVISE; 607 if (!strcmp(str, "deny")) 608 return SHMEM_HUGE_DENY; 609 if (!strcmp(str, "force")) 610 return SHMEM_HUGE_FORCE; 611 return -EINVAL; 612 } 613 #endif 614 615 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 616 static const char *shmem_format_huge(int huge) 617 { 618 switch (huge) { 619 case SHMEM_HUGE_NEVER: 620 return "never"; 621 case SHMEM_HUGE_ALWAYS: 622 return "always"; 623 case SHMEM_HUGE_WITHIN_SIZE: 624 return "within_size"; 625 case SHMEM_HUGE_ADVISE: 626 return "advise"; 627 case SHMEM_HUGE_DENY: 628 return "deny"; 629 case SHMEM_HUGE_FORCE: 630 return "force"; 631 default: 632 VM_BUG_ON(1); 633 return "bad_val"; 634 } 635 } 636 #endif 637 638 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 639 struct shrink_control *sc, unsigned long nr_to_free) 640 { 641 LIST_HEAD(list), *pos, *next; 642 struct inode *inode; 643 struct shmem_inode_info *info; 644 struct folio *folio; 645 unsigned long batch = sc ? sc->nr_to_scan : 128; 646 unsigned long split = 0, freed = 0; 647 648 if (list_empty(&sbinfo->shrinklist)) 649 return SHRINK_STOP; 650 651 spin_lock(&sbinfo->shrinklist_lock); 652 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 653 info = list_entry(pos, struct shmem_inode_info, shrinklist); 654 655 /* pin the inode */ 656 inode = igrab(&info->vfs_inode); 657 658 /* inode is about to be evicted */ 659 if (!inode) { 660 list_del_init(&info->shrinklist); 661 goto next; 662 } 663 664 list_move(&info->shrinklist, &list); 665 next: 666 sbinfo->shrinklist_len--; 667 if (!--batch) 668 break; 669 } 670 spin_unlock(&sbinfo->shrinklist_lock); 671 672 list_for_each_safe(pos, next, &list) { 673 pgoff_t next, end; 674 loff_t i_size; 675 int ret; 676 677 info = list_entry(pos, struct shmem_inode_info, shrinklist); 678 inode = &info->vfs_inode; 679 680 if (nr_to_free && freed >= nr_to_free) 681 goto move_back; 682 683 i_size = i_size_read(inode); 684 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE); 685 if (!folio || xa_is_value(folio)) 686 goto drop; 687 688 /* No large folio at the end of the file: nothing to split */ 689 if (!folio_test_large(folio)) { 690 folio_put(folio); 691 goto drop; 692 } 693 694 /* Check if there is anything to gain from splitting */ 695 next = folio_next_index(folio); 696 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE)); 697 if (end <= folio->index || end >= next) { 698 folio_put(folio); 699 goto drop; 700 } 701 702 /* 703 * Move the inode on the list back to shrinklist if we failed 704 * to lock the page at this time. 705 * 706 * Waiting for the lock may lead to deadlock in the 707 * reclaim path. 708 */ 709 if (!folio_trylock(folio)) { 710 folio_put(folio); 711 goto move_back; 712 } 713 714 ret = split_folio(folio); 715 folio_unlock(folio); 716 folio_put(folio); 717 718 /* If split failed move the inode on the list back to shrinklist */ 719 if (ret) 720 goto move_back; 721 722 freed += next - end; 723 split++; 724 drop: 725 list_del_init(&info->shrinklist); 726 goto put; 727 move_back: 728 /* 729 * Make sure the inode is either on the global list or deleted 730 * from any local list before iput() since it could be deleted 731 * in another thread once we put the inode (then the local list 732 * is corrupted). 733 */ 734 spin_lock(&sbinfo->shrinklist_lock); 735 list_move(&info->shrinklist, &sbinfo->shrinklist); 736 sbinfo->shrinklist_len++; 737 spin_unlock(&sbinfo->shrinklist_lock); 738 put: 739 iput(inode); 740 } 741 742 return split; 743 } 744 745 static long shmem_unused_huge_scan(struct super_block *sb, 746 struct shrink_control *sc) 747 { 748 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 749 750 if (!READ_ONCE(sbinfo->shrinklist_len)) 751 return SHRINK_STOP; 752 753 return shmem_unused_huge_shrink(sbinfo, sc, 0); 754 } 755 756 static long shmem_unused_huge_count(struct super_block *sb, 757 struct shrink_control *sc) 758 { 759 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 760 return READ_ONCE(sbinfo->shrinklist_len); 761 } 762 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 763 764 #define shmem_huge SHMEM_HUGE_DENY 765 766 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 767 struct shrink_control *sc, unsigned long nr_to_free) 768 { 769 return 0; 770 } 771 772 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 773 bool shmem_huge_force, struct vm_area_struct *vma, 774 unsigned long vm_flags) 775 { 776 return false; 777 } 778 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 779 780 /* 781 * Somewhat like filemap_add_folio, but error if expected item has gone. 782 */ 783 static int shmem_add_to_page_cache(struct folio *folio, 784 struct address_space *mapping, 785 pgoff_t index, void *expected, gfp_t gfp) 786 { 787 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 788 long nr = folio_nr_pages(folio); 789 790 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 791 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 792 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 793 794 folio_ref_add(folio, nr); 795 folio->mapping = mapping; 796 folio->index = index; 797 798 gfp &= GFP_RECLAIM_MASK; 799 folio_throttle_swaprate(folio, gfp); 800 801 do { 802 xas_lock_irq(&xas); 803 if (expected != xas_find_conflict(&xas)) { 804 xas_set_err(&xas, -EEXIST); 805 goto unlock; 806 } 807 if (expected && xas_find_conflict(&xas)) { 808 xas_set_err(&xas, -EEXIST); 809 goto unlock; 810 } 811 xas_store(&xas, folio); 812 if (xas_error(&xas)) 813 goto unlock; 814 if (folio_test_pmd_mappable(folio)) 815 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 816 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 817 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 818 mapping->nrpages += nr; 819 unlock: 820 xas_unlock_irq(&xas); 821 } while (xas_nomem(&xas, gfp)); 822 823 if (xas_error(&xas)) { 824 folio->mapping = NULL; 825 folio_ref_sub(folio, nr); 826 return xas_error(&xas); 827 } 828 829 return 0; 830 } 831 832 /* 833 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 834 */ 835 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 836 { 837 struct address_space *mapping = folio->mapping; 838 long nr = folio_nr_pages(folio); 839 int error; 840 841 xa_lock_irq(&mapping->i_pages); 842 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 843 folio->mapping = NULL; 844 mapping->nrpages -= nr; 845 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 846 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 847 xa_unlock_irq(&mapping->i_pages); 848 folio_put_refs(folio, nr); 849 BUG_ON(error); 850 } 851 852 /* 853 * Remove swap entry from page cache, free the swap and its page cache. Returns 854 * the number of pages being freed. 0 means entry not found in XArray (0 pages 855 * being freed). 856 */ 857 static long shmem_free_swap(struct address_space *mapping, 858 pgoff_t index, void *radswap) 859 { 860 int order = xa_get_order(&mapping->i_pages, index); 861 void *old; 862 863 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 864 if (old != radswap) 865 return 0; 866 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order); 867 868 return 1 << order; 869 } 870 871 /* 872 * Determine (in bytes) how many of the shmem object's pages mapped by the 873 * given offsets are swapped out. 874 * 875 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 876 * as long as the inode doesn't go away and racy results are not a problem. 877 */ 878 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 879 pgoff_t start, pgoff_t end) 880 { 881 XA_STATE(xas, &mapping->i_pages, start); 882 struct page *page; 883 unsigned long swapped = 0; 884 unsigned long max = end - 1; 885 886 rcu_read_lock(); 887 xas_for_each(&xas, page, max) { 888 if (xas_retry(&xas, page)) 889 continue; 890 if (xa_is_value(page)) 891 swapped += 1 << xa_get_order(xas.xa, xas.xa_index); 892 if (xas.xa_index == max) 893 break; 894 if (need_resched()) { 895 xas_pause(&xas); 896 cond_resched_rcu(); 897 } 898 } 899 rcu_read_unlock(); 900 901 return swapped << PAGE_SHIFT; 902 } 903 904 /* 905 * Determine (in bytes) how many of the shmem object's pages mapped by the 906 * given vma is swapped out. 907 * 908 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 909 * as long as the inode doesn't go away and racy results are not a problem. 910 */ 911 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 912 { 913 struct inode *inode = file_inode(vma->vm_file); 914 struct shmem_inode_info *info = SHMEM_I(inode); 915 struct address_space *mapping = inode->i_mapping; 916 unsigned long swapped; 917 918 /* Be careful as we don't hold info->lock */ 919 swapped = READ_ONCE(info->swapped); 920 921 /* 922 * The easier cases are when the shmem object has nothing in swap, or 923 * the vma maps it whole. Then we can simply use the stats that we 924 * already track. 925 */ 926 if (!swapped) 927 return 0; 928 929 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 930 return swapped << PAGE_SHIFT; 931 932 /* Here comes the more involved part */ 933 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 934 vma->vm_pgoff + vma_pages(vma)); 935 } 936 937 /* 938 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 939 */ 940 void shmem_unlock_mapping(struct address_space *mapping) 941 { 942 struct folio_batch fbatch; 943 pgoff_t index = 0; 944 945 folio_batch_init(&fbatch); 946 /* 947 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 948 */ 949 while (!mapping_unevictable(mapping) && 950 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 951 check_move_unevictable_folios(&fbatch); 952 folio_batch_release(&fbatch); 953 cond_resched(); 954 } 955 } 956 957 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 958 { 959 struct folio *folio; 960 961 /* 962 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 963 * beyond i_size, and reports fallocated folios as holes. 964 */ 965 folio = filemap_get_entry(inode->i_mapping, index); 966 if (!folio) 967 return folio; 968 if (!xa_is_value(folio)) { 969 folio_lock(folio); 970 if (folio->mapping == inode->i_mapping) 971 return folio; 972 /* The folio has been swapped out */ 973 folio_unlock(folio); 974 folio_put(folio); 975 } 976 /* 977 * But read a folio back from swap if any of it is within i_size 978 * (although in some cases this is just a waste of time). 979 */ 980 folio = NULL; 981 shmem_get_folio(inode, index, &folio, SGP_READ); 982 return folio; 983 } 984 985 /* 986 * Remove range of pages and swap entries from page cache, and free them. 987 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 988 */ 989 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 990 bool unfalloc) 991 { 992 struct address_space *mapping = inode->i_mapping; 993 struct shmem_inode_info *info = SHMEM_I(inode); 994 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 995 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 996 struct folio_batch fbatch; 997 pgoff_t indices[PAGEVEC_SIZE]; 998 struct folio *folio; 999 bool same_folio; 1000 long nr_swaps_freed = 0; 1001 pgoff_t index; 1002 int i; 1003 1004 if (lend == -1) 1005 end = -1; /* unsigned, so actually very big */ 1006 1007 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1008 info->fallocend = start; 1009 1010 folio_batch_init(&fbatch); 1011 index = start; 1012 while (index < end && find_lock_entries(mapping, &index, end - 1, 1013 &fbatch, indices)) { 1014 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1015 folio = fbatch.folios[i]; 1016 1017 if (xa_is_value(folio)) { 1018 if (unfalloc) 1019 continue; 1020 nr_swaps_freed += shmem_free_swap(mapping, 1021 indices[i], folio); 1022 continue; 1023 } 1024 1025 if (!unfalloc || !folio_test_uptodate(folio)) 1026 truncate_inode_folio(mapping, folio); 1027 folio_unlock(folio); 1028 } 1029 folio_batch_remove_exceptionals(&fbatch); 1030 folio_batch_release(&fbatch); 1031 cond_resched(); 1032 } 1033 1034 /* 1035 * When undoing a failed fallocate, we want none of the partial folio 1036 * zeroing and splitting below, but shall want to truncate the whole 1037 * folio when !uptodate indicates that it was added by this fallocate, 1038 * even when [lstart, lend] covers only a part of the folio. 1039 */ 1040 if (unfalloc) 1041 goto whole_folios; 1042 1043 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1044 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1045 if (folio) { 1046 same_folio = lend < folio_pos(folio) + folio_size(folio); 1047 folio_mark_dirty(folio); 1048 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1049 start = folio_next_index(folio); 1050 if (same_folio) 1051 end = folio->index; 1052 } 1053 folio_unlock(folio); 1054 folio_put(folio); 1055 folio = NULL; 1056 } 1057 1058 if (!same_folio) 1059 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1060 if (folio) { 1061 folio_mark_dirty(folio); 1062 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1063 end = folio->index; 1064 folio_unlock(folio); 1065 folio_put(folio); 1066 } 1067 1068 whole_folios: 1069 1070 index = start; 1071 while (index < end) { 1072 cond_resched(); 1073 1074 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1075 indices)) { 1076 /* If all gone or hole-punch or unfalloc, we're done */ 1077 if (index == start || end != -1) 1078 break; 1079 /* But if truncating, restart to make sure all gone */ 1080 index = start; 1081 continue; 1082 } 1083 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1084 folio = fbatch.folios[i]; 1085 1086 if (xa_is_value(folio)) { 1087 long swaps_freed; 1088 1089 if (unfalloc) 1090 continue; 1091 swaps_freed = shmem_free_swap(mapping, indices[i], folio); 1092 if (!swaps_freed) { 1093 /* Swap was replaced by page: retry */ 1094 index = indices[i]; 1095 break; 1096 } 1097 nr_swaps_freed += swaps_freed; 1098 continue; 1099 } 1100 1101 folio_lock(folio); 1102 1103 if (!unfalloc || !folio_test_uptodate(folio)) { 1104 if (folio_mapping(folio) != mapping) { 1105 /* Page was replaced by swap: retry */ 1106 folio_unlock(folio); 1107 index = indices[i]; 1108 break; 1109 } 1110 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1111 folio); 1112 1113 if (!folio_test_large(folio)) { 1114 truncate_inode_folio(mapping, folio); 1115 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1116 /* 1117 * If we split a page, reset the loop so 1118 * that we pick up the new sub pages. 1119 * Otherwise the THP was entirely 1120 * dropped or the target range was 1121 * zeroed, so just continue the loop as 1122 * is. 1123 */ 1124 if (!folio_test_large(folio)) { 1125 folio_unlock(folio); 1126 index = start; 1127 break; 1128 } 1129 } 1130 } 1131 folio_unlock(folio); 1132 } 1133 folio_batch_remove_exceptionals(&fbatch); 1134 folio_batch_release(&fbatch); 1135 } 1136 1137 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1138 } 1139 1140 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1141 { 1142 shmem_undo_range(inode, lstart, lend, false); 1143 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1144 inode_inc_iversion(inode); 1145 } 1146 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1147 1148 static int shmem_getattr(struct mnt_idmap *idmap, 1149 const struct path *path, struct kstat *stat, 1150 u32 request_mask, unsigned int query_flags) 1151 { 1152 struct inode *inode = path->dentry->d_inode; 1153 struct shmem_inode_info *info = SHMEM_I(inode); 1154 1155 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1156 shmem_recalc_inode(inode, 0, 0); 1157 1158 if (info->fsflags & FS_APPEND_FL) 1159 stat->attributes |= STATX_ATTR_APPEND; 1160 if (info->fsflags & FS_IMMUTABLE_FL) 1161 stat->attributes |= STATX_ATTR_IMMUTABLE; 1162 if (info->fsflags & FS_NODUMP_FL) 1163 stat->attributes |= STATX_ATTR_NODUMP; 1164 stat->attributes_mask |= (STATX_ATTR_APPEND | 1165 STATX_ATTR_IMMUTABLE | 1166 STATX_ATTR_NODUMP); 1167 generic_fillattr(idmap, request_mask, inode, stat); 1168 1169 if (shmem_huge_global_enabled(inode, 0, false, NULL, 0)) 1170 stat->blksize = HPAGE_PMD_SIZE; 1171 1172 if (request_mask & STATX_BTIME) { 1173 stat->result_mask |= STATX_BTIME; 1174 stat->btime.tv_sec = info->i_crtime.tv_sec; 1175 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1176 } 1177 1178 return 0; 1179 } 1180 1181 static int shmem_setattr(struct mnt_idmap *idmap, 1182 struct dentry *dentry, struct iattr *attr) 1183 { 1184 struct inode *inode = d_inode(dentry); 1185 struct shmem_inode_info *info = SHMEM_I(inode); 1186 int error; 1187 bool update_mtime = false; 1188 bool update_ctime = true; 1189 1190 error = setattr_prepare(idmap, dentry, attr); 1191 if (error) 1192 return error; 1193 1194 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1195 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1196 return -EPERM; 1197 } 1198 } 1199 1200 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1201 loff_t oldsize = inode->i_size; 1202 loff_t newsize = attr->ia_size; 1203 1204 /* protected by i_rwsem */ 1205 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1206 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1207 return -EPERM; 1208 1209 if (newsize != oldsize) { 1210 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1211 oldsize, newsize); 1212 if (error) 1213 return error; 1214 i_size_write(inode, newsize); 1215 update_mtime = true; 1216 } else { 1217 update_ctime = false; 1218 } 1219 if (newsize <= oldsize) { 1220 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1221 if (oldsize > holebegin) 1222 unmap_mapping_range(inode->i_mapping, 1223 holebegin, 0, 1); 1224 if (info->alloced) 1225 shmem_truncate_range(inode, 1226 newsize, (loff_t)-1); 1227 /* unmap again to remove racily COWed private pages */ 1228 if (oldsize > holebegin) 1229 unmap_mapping_range(inode->i_mapping, 1230 holebegin, 0, 1); 1231 } 1232 } 1233 1234 if (is_quota_modification(idmap, inode, attr)) { 1235 error = dquot_initialize(inode); 1236 if (error) 1237 return error; 1238 } 1239 1240 /* Transfer quota accounting */ 1241 if (i_uid_needs_update(idmap, attr, inode) || 1242 i_gid_needs_update(idmap, attr, inode)) { 1243 error = dquot_transfer(idmap, inode, attr); 1244 if (error) 1245 return error; 1246 } 1247 1248 setattr_copy(idmap, inode, attr); 1249 if (attr->ia_valid & ATTR_MODE) 1250 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1251 if (!error && update_ctime) { 1252 inode_set_ctime_current(inode); 1253 if (update_mtime) 1254 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1255 inode_inc_iversion(inode); 1256 } 1257 return error; 1258 } 1259 1260 static void shmem_evict_inode(struct inode *inode) 1261 { 1262 struct shmem_inode_info *info = SHMEM_I(inode); 1263 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1264 size_t freed = 0; 1265 1266 if (shmem_mapping(inode->i_mapping)) { 1267 shmem_unacct_size(info->flags, inode->i_size); 1268 inode->i_size = 0; 1269 mapping_set_exiting(inode->i_mapping); 1270 shmem_truncate_range(inode, 0, (loff_t)-1); 1271 if (!list_empty(&info->shrinklist)) { 1272 spin_lock(&sbinfo->shrinklist_lock); 1273 if (!list_empty(&info->shrinklist)) { 1274 list_del_init(&info->shrinklist); 1275 sbinfo->shrinklist_len--; 1276 } 1277 spin_unlock(&sbinfo->shrinklist_lock); 1278 } 1279 while (!list_empty(&info->swaplist)) { 1280 /* Wait while shmem_unuse() is scanning this inode... */ 1281 wait_var_event(&info->stop_eviction, 1282 !atomic_read(&info->stop_eviction)); 1283 mutex_lock(&shmem_swaplist_mutex); 1284 /* ...but beware of the race if we peeked too early */ 1285 if (!atomic_read(&info->stop_eviction)) 1286 list_del_init(&info->swaplist); 1287 mutex_unlock(&shmem_swaplist_mutex); 1288 } 1289 } 1290 1291 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1292 shmem_free_inode(inode->i_sb, freed); 1293 WARN_ON(inode->i_blocks); 1294 clear_inode(inode); 1295 #ifdef CONFIG_TMPFS_QUOTA 1296 dquot_free_inode(inode); 1297 dquot_drop(inode); 1298 #endif 1299 } 1300 1301 static int shmem_find_swap_entries(struct address_space *mapping, 1302 pgoff_t start, struct folio_batch *fbatch, 1303 pgoff_t *indices, unsigned int type) 1304 { 1305 XA_STATE(xas, &mapping->i_pages, start); 1306 struct folio *folio; 1307 swp_entry_t entry; 1308 1309 rcu_read_lock(); 1310 xas_for_each(&xas, folio, ULONG_MAX) { 1311 if (xas_retry(&xas, folio)) 1312 continue; 1313 1314 if (!xa_is_value(folio)) 1315 continue; 1316 1317 entry = radix_to_swp_entry(folio); 1318 /* 1319 * swapin error entries can be found in the mapping. But they're 1320 * deliberately ignored here as we've done everything we can do. 1321 */ 1322 if (swp_type(entry) != type) 1323 continue; 1324 1325 indices[folio_batch_count(fbatch)] = xas.xa_index; 1326 if (!folio_batch_add(fbatch, folio)) 1327 break; 1328 1329 if (need_resched()) { 1330 xas_pause(&xas); 1331 cond_resched_rcu(); 1332 } 1333 } 1334 rcu_read_unlock(); 1335 1336 return xas.xa_index; 1337 } 1338 1339 /* 1340 * Move the swapped pages for an inode to page cache. Returns the count 1341 * of pages swapped in, or the error in case of failure. 1342 */ 1343 static int shmem_unuse_swap_entries(struct inode *inode, 1344 struct folio_batch *fbatch, pgoff_t *indices) 1345 { 1346 int i = 0; 1347 int ret = 0; 1348 int error = 0; 1349 struct address_space *mapping = inode->i_mapping; 1350 1351 for (i = 0; i < folio_batch_count(fbatch); i++) { 1352 struct folio *folio = fbatch->folios[i]; 1353 1354 if (!xa_is_value(folio)) 1355 continue; 1356 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1357 mapping_gfp_mask(mapping), NULL, NULL); 1358 if (error == 0) { 1359 folio_unlock(folio); 1360 folio_put(folio); 1361 ret++; 1362 } 1363 if (error == -ENOMEM) 1364 break; 1365 error = 0; 1366 } 1367 return error ? error : ret; 1368 } 1369 1370 /* 1371 * If swap found in inode, free it and move page from swapcache to filecache. 1372 */ 1373 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1374 { 1375 struct address_space *mapping = inode->i_mapping; 1376 pgoff_t start = 0; 1377 struct folio_batch fbatch; 1378 pgoff_t indices[PAGEVEC_SIZE]; 1379 int ret = 0; 1380 1381 do { 1382 folio_batch_init(&fbatch); 1383 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1384 if (folio_batch_count(&fbatch) == 0) { 1385 ret = 0; 1386 break; 1387 } 1388 1389 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1390 if (ret < 0) 1391 break; 1392 1393 start = indices[folio_batch_count(&fbatch) - 1]; 1394 } while (true); 1395 1396 return ret; 1397 } 1398 1399 /* 1400 * Read all the shared memory data that resides in the swap 1401 * device 'type' back into memory, so the swap device can be 1402 * unused. 1403 */ 1404 int shmem_unuse(unsigned int type) 1405 { 1406 struct shmem_inode_info *info, *next; 1407 int error = 0; 1408 1409 if (list_empty(&shmem_swaplist)) 1410 return 0; 1411 1412 mutex_lock(&shmem_swaplist_mutex); 1413 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1414 if (!info->swapped) { 1415 list_del_init(&info->swaplist); 1416 continue; 1417 } 1418 /* 1419 * Drop the swaplist mutex while searching the inode for swap; 1420 * but before doing so, make sure shmem_evict_inode() will not 1421 * remove placeholder inode from swaplist, nor let it be freed 1422 * (igrab() would protect from unlink, but not from unmount). 1423 */ 1424 atomic_inc(&info->stop_eviction); 1425 mutex_unlock(&shmem_swaplist_mutex); 1426 1427 error = shmem_unuse_inode(&info->vfs_inode, type); 1428 cond_resched(); 1429 1430 mutex_lock(&shmem_swaplist_mutex); 1431 next = list_next_entry(info, swaplist); 1432 if (!info->swapped) 1433 list_del_init(&info->swaplist); 1434 if (atomic_dec_and_test(&info->stop_eviction)) 1435 wake_up_var(&info->stop_eviction); 1436 if (error) 1437 break; 1438 } 1439 mutex_unlock(&shmem_swaplist_mutex); 1440 1441 return error; 1442 } 1443 1444 /* 1445 * Move the page from the page cache to the swap cache. 1446 */ 1447 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1448 { 1449 struct folio *folio = page_folio(page); 1450 struct address_space *mapping = folio->mapping; 1451 struct inode *inode = mapping->host; 1452 struct shmem_inode_info *info = SHMEM_I(inode); 1453 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1454 swp_entry_t swap; 1455 pgoff_t index; 1456 int nr_pages; 1457 bool split = false; 1458 1459 /* 1460 * Our capabilities prevent regular writeback or sync from ever calling 1461 * shmem_writepage; but a stacking filesystem might use ->writepage of 1462 * its underlying filesystem, in which case tmpfs should write out to 1463 * swap only in response to memory pressure, and not for the writeback 1464 * threads or sync. 1465 */ 1466 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1467 goto redirty; 1468 1469 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap)) 1470 goto redirty; 1471 1472 if (!total_swap_pages) 1473 goto redirty; 1474 1475 /* 1476 * If CONFIG_THP_SWAP is not enabled, the large folio should be 1477 * split when swapping. 1478 * 1479 * And shrinkage of pages beyond i_size does not split swap, so 1480 * swapout of a large folio crossing i_size needs to split too 1481 * (unless fallocate has been used to preallocate beyond EOF). 1482 */ 1483 if (folio_test_large(folio)) { 1484 index = shmem_fallocend(inode, 1485 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 1486 if ((index > folio->index && index < folio_next_index(folio)) || 1487 !IS_ENABLED(CONFIG_THP_SWAP)) 1488 split = true; 1489 } 1490 1491 if (split) { 1492 try_split: 1493 /* Ensure the subpages are still dirty */ 1494 folio_test_set_dirty(folio); 1495 if (split_huge_page_to_list_to_order(page, wbc->list, 0)) 1496 goto redirty; 1497 folio = page_folio(page); 1498 folio_clear_dirty(folio); 1499 } 1500 1501 index = folio->index; 1502 nr_pages = folio_nr_pages(folio); 1503 1504 /* 1505 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1506 * value into swapfile.c, the only way we can correctly account for a 1507 * fallocated folio arriving here is now to initialize it and write it. 1508 * 1509 * That's okay for a folio already fallocated earlier, but if we have 1510 * not yet completed the fallocation, then (a) we want to keep track 1511 * of this folio in case we have to undo it, and (b) it may not be a 1512 * good idea to continue anyway, once we're pushing into swap. So 1513 * reactivate the folio, and let shmem_fallocate() quit when too many. 1514 */ 1515 if (!folio_test_uptodate(folio)) { 1516 if (inode->i_private) { 1517 struct shmem_falloc *shmem_falloc; 1518 spin_lock(&inode->i_lock); 1519 shmem_falloc = inode->i_private; 1520 if (shmem_falloc && 1521 !shmem_falloc->waitq && 1522 index >= shmem_falloc->start && 1523 index < shmem_falloc->next) 1524 shmem_falloc->nr_unswapped++; 1525 else 1526 shmem_falloc = NULL; 1527 spin_unlock(&inode->i_lock); 1528 if (shmem_falloc) 1529 goto redirty; 1530 } 1531 folio_zero_range(folio, 0, folio_size(folio)); 1532 flush_dcache_folio(folio); 1533 folio_mark_uptodate(folio); 1534 } 1535 1536 swap = folio_alloc_swap(folio); 1537 if (!swap.val) { 1538 if (nr_pages > 1) 1539 goto try_split; 1540 1541 goto redirty; 1542 } 1543 1544 /* 1545 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1546 * if it's not already there. Do it now before the folio is 1547 * moved to swap cache, when its pagelock no longer protects 1548 * the inode from eviction. But don't unlock the mutex until 1549 * we've incremented swapped, because shmem_unuse_inode() will 1550 * prune a !swapped inode from the swaplist under this mutex. 1551 */ 1552 mutex_lock(&shmem_swaplist_mutex); 1553 if (list_empty(&info->swaplist)) 1554 list_add(&info->swaplist, &shmem_swaplist); 1555 1556 if (add_to_swap_cache(folio, swap, 1557 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1558 NULL) == 0) { 1559 shmem_recalc_inode(inode, 0, nr_pages); 1560 swap_shmem_alloc(swap, nr_pages); 1561 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1562 1563 mutex_unlock(&shmem_swaplist_mutex); 1564 BUG_ON(folio_mapped(folio)); 1565 return swap_writepage(&folio->page, wbc); 1566 } 1567 1568 mutex_unlock(&shmem_swaplist_mutex); 1569 put_swap_folio(folio, swap); 1570 redirty: 1571 folio_mark_dirty(folio); 1572 if (wbc->for_reclaim) 1573 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1574 folio_unlock(folio); 1575 return 0; 1576 } 1577 1578 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1579 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1580 { 1581 char buffer[64]; 1582 1583 if (!mpol || mpol->mode == MPOL_DEFAULT) 1584 return; /* show nothing */ 1585 1586 mpol_to_str(buffer, sizeof(buffer), mpol); 1587 1588 seq_printf(seq, ",mpol=%s", buffer); 1589 } 1590 1591 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1592 { 1593 struct mempolicy *mpol = NULL; 1594 if (sbinfo->mpol) { 1595 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1596 mpol = sbinfo->mpol; 1597 mpol_get(mpol); 1598 raw_spin_unlock(&sbinfo->stat_lock); 1599 } 1600 return mpol; 1601 } 1602 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1603 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1604 { 1605 } 1606 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1607 { 1608 return NULL; 1609 } 1610 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1611 1612 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1613 pgoff_t index, unsigned int order, pgoff_t *ilx); 1614 1615 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1616 struct shmem_inode_info *info, pgoff_t index) 1617 { 1618 struct mempolicy *mpol; 1619 pgoff_t ilx; 1620 struct folio *folio; 1621 1622 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1623 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1624 mpol_cond_put(mpol); 1625 1626 return folio; 1627 } 1628 1629 /* 1630 * Make sure huge_gfp is always more limited than limit_gfp. 1631 * Some of the flags set permissions, while others set limitations. 1632 */ 1633 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1634 { 1635 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1636 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1637 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1638 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1639 1640 /* Allow allocations only from the originally specified zones. */ 1641 result |= zoneflags; 1642 1643 /* 1644 * Minimize the result gfp by taking the union with the deny flags, 1645 * and the intersection of the allow flags. 1646 */ 1647 result |= (limit_gfp & denyflags); 1648 result |= (huge_gfp & limit_gfp) & allowflags; 1649 1650 return result; 1651 } 1652 1653 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1654 unsigned long shmem_allowable_huge_orders(struct inode *inode, 1655 struct vm_area_struct *vma, pgoff_t index, 1656 bool shmem_huge_force) 1657 { 1658 unsigned long mask = READ_ONCE(huge_shmem_orders_always); 1659 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size); 1660 unsigned long vm_flags = vma ? vma->vm_flags : 0; 1661 bool global_huge; 1662 loff_t i_size; 1663 int order; 1664 1665 if (vma && ((vm_flags & VM_NOHUGEPAGE) || 1666 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))) 1667 return 0; 1668 1669 /* If the hardware/firmware marked hugepage support disabled. */ 1670 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED)) 1671 return 0; 1672 1673 global_huge = shmem_huge_global_enabled(inode, index, shmem_huge_force, 1674 vma, vm_flags); 1675 if (!vma || !vma_is_anon_shmem(vma)) { 1676 /* 1677 * For tmpfs, we now only support PMD sized THP if huge page 1678 * is enabled, otherwise fallback to order 0. 1679 */ 1680 return global_huge ? BIT(HPAGE_PMD_ORDER) : 0; 1681 } 1682 1683 /* 1684 * Following the 'deny' semantics of the top level, force the huge 1685 * option off from all mounts. 1686 */ 1687 if (shmem_huge == SHMEM_HUGE_DENY) 1688 return 0; 1689 1690 /* 1691 * Only allow inherit orders if the top-level value is 'force', which 1692 * means non-PMD sized THP can not override 'huge' mount option now. 1693 */ 1694 if (shmem_huge == SHMEM_HUGE_FORCE) 1695 return READ_ONCE(huge_shmem_orders_inherit); 1696 1697 /* Allow mTHP that will be fully within i_size. */ 1698 order = highest_order(within_size_orders); 1699 while (within_size_orders) { 1700 index = round_up(index + 1, order); 1701 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1702 if (i_size >> PAGE_SHIFT >= index) { 1703 mask |= within_size_orders; 1704 break; 1705 } 1706 1707 order = next_order(&within_size_orders, order); 1708 } 1709 1710 if (vm_flags & VM_HUGEPAGE) 1711 mask |= READ_ONCE(huge_shmem_orders_madvise); 1712 1713 if (global_huge) 1714 mask |= READ_ONCE(huge_shmem_orders_inherit); 1715 1716 return THP_ORDERS_ALL_FILE_DEFAULT & mask; 1717 } 1718 1719 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1720 struct address_space *mapping, pgoff_t index, 1721 unsigned long orders) 1722 { 1723 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1724 pgoff_t aligned_index; 1725 unsigned long pages; 1726 int order; 1727 1728 if (vma) { 1729 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 1730 if (!orders) 1731 return 0; 1732 } 1733 1734 /* Find the highest order that can add into the page cache */ 1735 order = highest_order(orders); 1736 while (orders) { 1737 pages = 1UL << order; 1738 aligned_index = round_down(index, pages); 1739 /* 1740 * Check for conflict before waiting on a huge allocation. 1741 * Conflict might be that a huge page has just been allocated 1742 * and added to page cache by a racing thread, or that there 1743 * is already at least one small page in the huge extent. 1744 * Be careful to retry when appropriate, but not forever! 1745 * Elsewhere -EEXIST would be the right code, but not here. 1746 */ 1747 if (!xa_find(&mapping->i_pages, &aligned_index, 1748 aligned_index + pages - 1, XA_PRESENT)) 1749 break; 1750 order = next_order(&orders, order); 1751 } 1752 1753 return orders; 1754 } 1755 #else 1756 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1757 struct address_space *mapping, pgoff_t index, 1758 unsigned long orders) 1759 { 1760 return 0; 1761 } 1762 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1763 1764 static struct folio *shmem_alloc_folio(gfp_t gfp, int order, 1765 struct shmem_inode_info *info, pgoff_t index) 1766 { 1767 struct mempolicy *mpol; 1768 pgoff_t ilx; 1769 struct folio *folio; 1770 1771 mpol = shmem_get_pgoff_policy(info, index, order, &ilx); 1772 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id()); 1773 mpol_cond_put(mpol); 1774 1775 return folio; 1776 } 1777 1778 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf, 1779 gfp_t gfp, struct inode *inode, pgoff_t index, 1780 struct mm_struct *fault_mm, unsigned long orders) 1781 { 1782 struct address_space *mapping = inode->i_mapping; 1783 struct shmem_inode_info *info = SHMEM_I(inode); 1784 unsigned long suitable_orders = 0; 1785 struct folio *folio = NULL; 1786 long pages; 1787 int error, order; 1788 1789 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1790 orders = 0; 1791 1792 if (orders > 0) { 1793 suitable_orders = shmem_suitable_orders(inode, vmf, 1794 mapping, index, orders); 1795 1796 order = highest_order(suitable_orders); 1797 while (suitable_orders) { 1798 pages = 1UL << order; 1799 index = round_down(index, pages); 1800 folio = shmem_alloc_folio(gfp, order, info, index); 1801 if (folio) 1802 goto allocated; 1803 1804 if (pages == HPAGE_PMD_NR) 1805 count_vm_event(THP_FILE_FALLBACK); 1806 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK); 1807 order = next_order(&suitable_orders, order); 1808 } 1809 } else { 1810 pages = 1; 1811 folio = shmem_alloc_folio(gfp, 0, info, index); 1812 } 1813 if (!folio) 1814 return ERR_PTR(-ENOMEM); 1815 1816 allocated: 1817 __folio_set_locked(folio); 1818 __folio_set_swapbacked(folio); 1819 1820 gfp &= GFP_RECLAIM_MASK; 1821 error = mem_cgroup_charge(folio, fault_mm, gfp); 1822 if (error) { 1823 if (xa_find(&mapping->i_pages, &index, 1824 index + pages - 1, XA_PRESENT)) { 1825 error = -EEXIST; 1826 } else if (pages > 1) { 1827 if (pages == HPAGE_PMD_NR) { 1828 count_vm_event(THP_FILE_FALLBACK); 1829 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1830 } 1831 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK); 1832 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE); 1833 } 1834 goto unlock; 1835 } 1836 1837 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1838 if (error) 1839 goto unlock; 1840 1841 error = shmem_inode_acct_blocks(inode, pages); 1842 if (error) { 1843 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1844 long freed; 1845 /* 1846 * Try to reclaim some space by splitting a few 1847 * large folios beyond i_size on the filesystem. 1848 */ 1849 shmem_unused_huge_shrink(sbinfo, NULL, pages); 1850 /* 1851 * And do a shmem_recalc_inode() to account for freed pages: 1852 * except our folio is there in cache, so not quite balanced. 1853 */ 1854 spin_lock(&info->lock); 1855 freed = pages + info->alloced - info->swapped - 1856 READ_ONCE(mapping->nrpages); 1857 if (freed > 0) 1858 info->alloced -= freed; 1859 spin_unlock(&info->lock); 1860 if (freed > 0) 1861 shmem_inode_unacct_blocks(inode, freed); 1862 error = shmem_inode_acct_blocks(inode, pages); 1863 if (error) { 1864 filemap_remove_folio(folio); 1865 goto unlock; 1866 } 1867 } 1868 1869 shmem_recalc_inode(inode, pages, 0); 1870 folio_add_lru(folio); 1871 return folio; 1872 1873 unlock: 1874 folio_unlock(folio); 1875 folio_put(folio); 1876 return ERR_PTR(error); 1877 } 1878 1879 /* 1880 * When a page is moved from swapcache to shmem filecache (either by the 1881 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1882 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1883 * ignorance of the mapping it belongs to. If that mapping has special 1884 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1885 * we may need to copy to a suitable page before moving to filecache. 1886 * 1887 * In a future release, this may well be extended to respect cpuset and 1888 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1889 * but for now it is a simple matter of zone. 1890 */ 1891 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1892 { 1893 return folio_zonenum(folio) > gfp_zone(gfp); 1894 } 1895 1896 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1897 struct shmem_inode_info *info, pgoff_t index, 1898 struct vm_area_struct *vma) 1899 { 1900 struct folio *new, *old = *foliop; 1901 swp_entry_t entry = old->swap; 1902 struct address_space *swap_mapping = swap_address_space(entry); 1903 pgoff_t swap_index = swap_cache_index(entry); 1904 XA_STATE(xas, &swap_mapping->i_pages, swap_index); 1905 int nr_pages = folio_nr_pages(old); 1906 int error = 0, i; 1907 1908 /* 1909 * We have arrived here because our zones are constrained, so don't 1910 * limit chance of success by further cpuset and node constraints. 1911 */ 1912 gfp &= ~GFP_CONSTRAINT_MASK; 1913 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1914 if (nr_pages > 1) { 1915 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 1916 1917 gfp = limit_gfp_mask(huge_gfp, gfp); 1918 } 1919 #endif 1920 1921 new = shmem_alloc_folio(gfp, folio_order(old), info, index); 1922 if (!new) 1923 return -ENOMEM; 1924 1925 folio_ref_add(new, nr_pages); 1926 folio_copy(new, old); 1927 flush_dcache_folio(new); 1928 1929 __folio_set_locked(new); 1930 __folio_set_swapbacked(new); 1931 folio_mark_uptodate(new); 1932 new->swap = entry; 1933 folio_set_swapcache(new); 1934 1935 /* Swap cache still stores N entries instead of a high-order entry */ 1936 xa_lock_irq(&swap_mapping->i_pages); 1937 for (i = 0; i < nr_pages; i++) { 1938 void *item = xas_load(&xas); 1939 1940 if (item != old) { 1941 error = -ENOENT; 1942 break; 1943 } 1944 1945 xas_store(&xas, new); 1946 xas_next(&xas); 1947 } 1948 if (!error) { 1949 mem_cgroup_replace_folio(old, new); 1950 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, nr_pages); 1951 __lruvec_stat_mod_folio(new, NR_SHMEM, nr_pages); 1952 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -nr_pages); 1953 __lruvec_stat_mod_folio(old, NR_SHMEM, -nr_pages); 1954 } 1955 xa_unlock_irq(&swap_mapping->i_pages); 1956 1957 if (unlikely(error)) { 1958 /* 1959 * Is this possible? I think not, now that our callers 1960 * check both the swapcache flag and folio->private 1961 * after getting the folio lock; but be defensive. 1962 * Reverse old to newpage for clear and free. 1963 */ 1964 old = new; 1965 } else { 1966 folio_add_lru(new); 1967 *foliop = new; 1968 } 1969 1970 folio_clear_swapcache(old); 1971 old->private = NULL; 1972 1973 folio_unlock(old); 1974 /* 1975 * The old folio are removed from swap cache, drop the 'nr_pages' 1976 * reference, as well as one temporary reference getting from swap 1977 * cache. 1978 */ 1979 folio_put_refs(old, nr_pages + 1); 1980 return error; 1981 } 1982 1983 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1984 struct folio *folio, swp_entry_t swap) 1985 { 1986 struct address_space *mapping = inode->i_mapping; 1987 swp_entry_t swapin_error; 1988 void *old; 1989 int nr_pages; 1990 1991 swapin_error = make_poisoned_swp_entry(); 1992 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1993 swp_to_radix_entry(swap), 1994 swp_to_radix_entry(swapin_error), 0); 1995 if (old != swp_to_radix_entry(swap)) 1996 return; 1997 1998 nr_pages = folio_nr_pages(folio); 1999 folio_wait_writeback(folio); 2000 delete_from_swap_cache(folio); 2001 /* 2002 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 2003 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 2004 * in shmem_evict_inode(). 2005 */ 2006 shmem_recalc_inode(inode, -nr_pages, -nr_pages); 2007 swap_free_nr(swap, nr_pages); 2008 } 2009 2010 static int shmem_split_large_entry(struct inode *inode, pgoff_t index, 2011 swp_entry_t swap, gfp_t gfp) 2012 { 2013 struct address_space *mapping = inode->i_mapping; 2014 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0); 2015 void *alloced_shadow = NULL; 2016 int alloced_order = 0, i; 2017 2018 /* Convert user data gfp flags to xarray node gfp flags */ 2019 gfp &= GFP_RECLAIM_MASK; 2020 2021 for (;;) { 2022 int order = -1, split_order = 0; 2023 void *old = NULL; 2024 2025 xas_lock_irq(&xas); 2026 old = xas_load(&xas); 2027 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) { 2028 xas_set_err(&xas, -EEXIST); 2029 goto unlock; 2030 } 2031 2032 order = xas_get_order(&xas); 2033 2034 /* Swap entry may have changed before we re-acquire the lock */ 2035 if (alloced_order && 2036 (old != alloced_shadow || order != alloced_order)) { 2037 xas_destroy(&xas); 2038 alloced_order = 0; 2039 } 2040 2041 /* Try to split large swap entry in pagecache */ 2042 if (order > 0) { 2043 if (!alloced_order) { 2044 split_order = order; 2045 goto unlock; 2046 } 2047 xas_split(&xas, old, order); 2048 2049 /* 2050 * Re-set the swap entry after splitting, and the swap 2051 * offset of the original large entry must be continuous. 2052 */ 2053 for (i = 0; i < 1 << order; i++) { 2054 pgoff_t aligned_index = round_down(index, 1 << order); 2055 swp_entry_t tmp; 2056 2057 tmp = swp_entry(swp_type(swap), swp_offset(swap) + i); 2058 __xa_store(&mapping->i_pages, aligned_index + i, 2059 swp_to_radix_entry(tmp), 0); 2060 } 2061 } 2062 2063 unlock: 2064 xas_unlock_irq(&xas); 2065 2066 /* split needed, alloc here and retry. */ 2067 if (split_order) { 2068 xas_split_alloc(&xas, old, split_order, gfp); 2069 if (xas_error(&xas)) 2070 goto error; 2071 alloced_shadow = old; 2072 alloced_order = split_order; 2073 xas_reset(&xas); 2074 continue; 2075 } 2076 2077 if (!xas_nomem(&xas, gfp)) 2078 break; 2079 } 2080 2081 error: 2082 if (xas_error(&xas)) 2083 return xas_error(&xas); 2084 2085 return alloced_order; 2086 } 2087 2088 /* 2089 * Swap in the folio pointed to by *foliop. 2090 * Caller has to make sure that *foliop contains a valid swapped folio. 2091 * Returns 0 and the folio in foliop if success. On failure, returns the 2092 * error code and NULL in *foliop. 2093 */ 2094 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 2095 struct folio **foliop, enum sgp_type sgp, 2096 gfp_t gfp, struct vm_area_struct *vma, 2097 vm_fault_t *fault_type) 2098 { 2099 struct address_space *mapping = inode->i_mapping; 2100 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL; 2101 struct shmem_inode_info *info = SHMEM_I(inode); 2102 struct swap_info_struct *si; 2103 struct folio *folio = NULL; 2104 swp_entry_t swap; 2105 int error, nr_pages; 2106 2107 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 2108 swap = radix_to_swp_entry(*foliop); 2109 *foliop = NULL; 2110 2111 if (is_poisoned_swp_entry(swap)) 2112 return -EIO; 2113 2114 si = get_swap_device(swap); 2115 if (!si) { 2116 if (!shmem_confirm_swap(mapping, index, swap)) 2117 return -EEXIST; 2118 else 2119 return -EINVAL; 2120 } 2121 2122 /* Look it up and read it in.. */ 2123 folio = swap_cache_get_folio(swap, NULL, 0); 2124 if (!folio) { 2125 int split_order; 2126 2127 /* Or update major stats only when swapin succeeds?? */ 2128 if (fault_type) { 2129 *fault_type |= VM_FAULT_MAJOR; 2130 count_vm_event(PGMAJFAULT); 2131 count_memcg_event_mm(fault_mm, PGMAJFAULT); 2132 } 2133 2134 /* 2135 * Now swap device can only swap in order 0 folio, then we 2136 * should split the large swap entry stored in the pagecache 2137 * if necessary. 2138 */ 2139 split_order = shmem_split_large_entry(inode, index, swap, gfp); 2140 if (split_order < 0) { 2141 error = split_order; 2142 goto failed; 2143 } 2144 2145 /* 2146 * If the large swap entry has already been split, it is 2147 * necessary to recalculate the new swap entry based on 2148 * the old order alignment. 2149 */ 2150 if (split_order > 0) { 2151 pgoff_t offset = index - round_down(index, 1 << split_order); 2152 2153 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2154 } 2155 2156 /* Here we actually start the io */ 2157 folio = shmem_swapin_cluster(swap, gfp, info, index); 2158 if (!folio) { 2159 error = -ENOMEM; 2160 goto failed; 2161 } 2162 } 2163 2164 /* We have to do this with folio locked to prevent races */ 2165 folio_lock(folio); 2166 if (!folio_test_swapcache(folio) || 2167 folio->swap.val != swap.val || 2168 !shmem_confirm_swap(mapping, index, swap)) { 2169 error = -EEXIST; 2170 goto unlock; 2171 } 2172 if (!folio_test_uptodate(folio)) { 2173 error = -EIO; 2174 goto failed; 2175 } 2176 folio_wait_writeback(folio); 2177 nr_pages = folio_nr_pages(folio); 2178 2179 /* 2180 * Some architectures may have to restore extra metadata to the 2181 * folio after reading from swap. 2182 */ 2183 arch_swap_restore(folio_swap(swap, folio), folio); 2184 2185 if (shmem_should_replace_folio(folio, gfp)) { 2186 error = shmem_replace_folio(&folio, gfp, info, index, vma); 2187 if (error) 2188 goto failed; 2189 } 2190 2191 error = shmem_add_to_page_cache(folio, mapping, 2192 round_down(index, nr_pages), 2193 swp_to_radix_entry(swap), gfp); 2194 if (error) 2195 goto failed; 2196 2197 shmem_recalc_inode(inode, 0, -nr_pages); 2198 2199 if (sgp == SGP_WRITE) 2200 folio_mark_accessed(folio); 2201 2202 delete_from_swap_cache(folio); 2203 folio_mark_dirty(folio); 2204 swap_free_nr(swap, nr_pages); 2205 put_swap_device(si); 2206 2207 *foliop = folio; 2208 return 0; 2209 failed: 2210 if (!shmem_confirm_swap(mapping, index, swap)) 2211 error = -EEXIST; 2212 if (error == -EIO) 2213 shmem_set_folio_swapin_error(inode, index, folio, swap); 2214 unlock: 2215 if (folio) { 2216 folio_unlock(folio); 2217 folio_put(folio); 2218 } 2219 put_swap_device(si); 2220 2221 return error; 2222 } 2223 2224 /* 2225 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 2226 * 2227 * If we allocate a new one we do not mark it dirty. That's up to the 2228 * vm. If we swap it in we mark it dirty since we also free the swap 2229 * entry since a page cannot live in both the swap and page cache. 2230 * 2231 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 2232 */ 2233 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 2234 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 2235 struct vm_fault *vmf, vm_fault_t *fault_type) 2236 { 2237 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 2238 struct mm_struct *fault_mm; 2239 struct folio *folio; 2240 int error; 2241 bool alloced; 2242 unsigned long orders = 0; 2243 2244 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 2245 return -EINVAL; 2246 2247 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 2248 return -EFBIG; 2249 repeat: 2250 if (sgp <= SGP_CACHE && 2251 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 2252 return -EINVAL; 2253 2254 alloced = false; 2255 fault_mm = vma ? vma->vm_mm : NULL; 2256 2257 folio = filemap_get_entry(inode->i_mapping, index); 2258 if (folio && vma && userfaultfd_minor(vma)) { 2259 if (!xa_is_value(folio)) 2260 folio_put(folio); 2261 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 2262 return 0; 2263 } 2264 2265 if (xa_is_value(folio)) { 2266 error = shmem_swapin_folio(inode, index, &folio, 2267 sgp, gfp, vma, fault_type); 2268 if (error == -EEXIST) 2269 goto repeat; 2270 2271 *foliop = folio; 2272 return error; 2273 } 2274 2275 if (folio) { 2276 folio_lock(folio); 2277 2278 /* Has the folio been truncated or swapped out? */ 2279 if (unlikely(folio->mapping != inode->i_mapping)) { 2280 folio_unlock(folio); 2281 folio_put(folio); 2282 goto repeat; 2283 } 2284 if (sgp == SGP_WRITE) 2285 folio_mark_accessed(folio); 2286 if (folio_test_uptodate(folio)) 2287 goto out; 2288 /* fallocated folio */ 2289 if (sgp != SGP_READ) 2290 goto clear; 2291 folio_unlock(folio); 2292 folio_put(folio); 2293 } 2294 2295 /* 2296 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2297 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2298 */ 2299 *foliop = NULL; 2300 if (sgp == SGP_READ) 2301 return 0; 2302 if (sgp == SGP_NOALLOC) 2303 return -ENOENT; 2304 2305 /* 2306 * Fast cache lookup and swap lookup did not find it: allocate. 2307 */ 2308 2309 if (vma && userfaultfd_missing(vma)) { 2310 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2311 return 0; 2312 } 2313 2314 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */ 2315 orders = shmem_allowable_huge_orders(inode, vma, index, false); 2316 if (orders > 0) { 2317 gfp_t huge_gfp; 2318 2319 huge_gfp = vma_thp_gfp_mask(vma); 2320 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2321 folio = shmem_alloc_and_add_folio(vmf, huge_gfp, 2322 inode, index, fault_mm, orders); 2323 if (!IS_ERR(folio)) { 2324 if (folio_test_pmd_mappable(folio)) 2325 count_vm_event(THP_FILE_ALLOC); 2326 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC); 2327 goto alloced; 2328 } 2329 if (PTR_ERR(folio) == -EEXIST) 2330 goto repeat; 2331 } 2332 2333 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0); 2334 if (IS_ERR(folio)) { 2335 error = PTR_ERR(folio); 2336 if (error == -EEXIST) 2337 goto repeat; 2338 folio = NULL; 2339 goto unlock; 2340 } 2341 2342 alloced: 2343 alloced = true; 2344 if (folio_test_large(folio) && 2345 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2346 folio_next_index(folio)) { 2347 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2348 struct shmem_inode_info *info = SHMEM_I(inode); 2349 /* 2350 * Part of the large folio is beyond i_size: subject 2351 * to shrink under memory pressure. 2352 */ 2353 spin_lock(&sbinfo->shrinklist_lock); 2354 /* 2355 * _careful to defend against unlocked access to 2356 * ->shrink_list in shmem_unused_huge_shrink() 2357 */ 2358 if (list_empty_careful(&info->shrinklist)) { 2359 list_add_tail(&info->shrinklist, 2360 &sbinfo->shrinklist); 2361 sbinfo->shrinklist_len++; 2362 } 2363 spin_unlock(&sbinfo->shrinklist_lock); 2364 } 2365 2366 if (sgp == SGP_WRITE) 2367 folio_set_referenced(folio); 2368 /* 2369 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2370 */ 2371 if (sgp == SGP_FALLOC) 2372 sgp = SGP_WRITE; 2373 clear: 2374 /* 2375 * Let SGP_WRITE caller clear ends if write does not fill folio; 2376 * but SGP_FALLOC on a folio fallocated earlier must initialize 2377 * it now, lest undo on failure cancel our earlier guarantee. 2378 */ 2379 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2380 long i, n = folio_nr_pages(folio); 2381 2382 for (i = 0; i < n; i++) 2383 clear_highpage(folio_page(folio, i)); 2384 flush_dcache_folio(folio); 2385 folio_mark_uptodate(folio); 2386 } 2387 2388 /* Perhaps the file has been truncated since we checked */ 2389 if (sgp <= SGP_CACHE && 2390 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2391 error = -EINVAL; 2392 goto unlock; 2393 } 2394 out: 2395 *foliop = folio; 2396 return 0; 2397 2398 /* 2399 * Error recovery. 2400 */ 2401 unlock: 2402 if (alloced) 2403 filemap_remove_folio(folio); 2404 shmem_recalc_inode(inode, 0, 0); 2405 if (folio) { 2406 folio_unlock(folio); 2407 folio_put(folio); 2408 } 2409 return error; 2410 } 2411 2412 /** 2413 * shmem_get_folio - find, and lock a shmem folio. 2414 * @inode: inode to search 2415 * @index: the page index. 2416 * @foliop: pointer to the folio if found 2417 * @sgp: SGP_* flags to control behavior 2418 * 2419 * Looks up the page cache entry at @inode & @index. If a folio is 2420 * present, it is returned locked with an increased refcount. 2421 * 2422 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2423 * before unlocking the folio to ensure that the folio is not reclaimed. 2424 * There is no need to reserve space before calling folio_mark_dirty(). 2425 * 2426 * When no folio is found, the behavior depends on @sgp: 2427 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2428 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2429 * - for all other flags a new folio is allocated, inserted into the 2430 * page cache and returned locked in @foliop. 2431 * 2432 * Context: May sleep. 2433 * Return: 0 if successful, else a negative error code. 2434 */ 2435 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop, 2436 enum sgp_type sgp) 2437 { 2438 return shmem_get_folio_gfp(inode, index, foliop, sgp, 2439 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2440 } 2441 EXPORT_SYMBOL_GPL(shmem_get_folio); 2442 2443 /* 2444 * This is like autoremove_wake_function, but it removes the wait queue 2445 * entry unconditionally - even if something else had already woken the 2446 * target. 2447 */ 2448 static int synchronous_wake_function(wait_queue_entry_t *wait, 2449 unsigned int mode, int sync, void *key) 2450 { 2451 int ret = default_wake_function(wait, mode, sync, key); 2452 list_del_init(&wait->entry); 2453 return ret; 2454 } 2455 2456 /* 2457 * Trinity finds that probing a hole which tmpfs is punching can 2458 * prevent the hole-punch from ever completing: which in turn 2459 * locks writers out with its hold on i_rwsem. So refrain from 2460 * faulting pages into the hole while it's being punched. Although 2461 * shmem_undo_range() does remove the additions, it may be unable to 2462 * keep up, as each new page needs its own unmap_mapping_range() call, 2463 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2464 * 2465 * It does not matter if we sometimes reach this check just before the 2466 * hole-punch begins, so that one fault then races with the punch: 2467 * we just need to make racing faults a rare case. 2468 * 2469 * The implementation below would be much simpler if we just used a 2470 * standard mutex or completion: but we cannot take i_rwsem in fault, 2471 * and bloating every shmem inode for this unlikely case would be sad. 2472 */ 2473 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2474 { 2475 struct shmem_falloc *shmem_falloc; 2476 struct file *fpin = NULL; 2477 vm_fault_t ret = 0; 2478 2479 spin_lock(&inode->i_lock); 2480 shmem_falloc = inode->i_private; 2481 if (shmem_falloc && 2482 shmem_falloc->waitq && 2483 vmf->pgoff >= shmem_falloc->start && 2484 vmf->pgoff < shmem_falloc->next) { 2485 wait_queue_head_t *shmem_falloc_waitq; 2486 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2487 2488 ret = VM_FAULT_NOPAGE; 2489 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2490 shmem_falloc_waitq = shmem_falloc->waitq; 2491 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2492 TASK_UNINTERRUPTIBLE); 2493 spin_unlock(&inode->i_lock); 2494 schedule(); 2495 2496 /* 2497 * shmem_falloc_waitq points into the shmem_fallocate() 2498 * stack of the hole-punching task: shmem_falloc_waitq 2499 * is usually invalid by the time we reach here, but 2500 * finish_wait() does not dereference it in that case; 2501 * though i_lock needed lest racing with wake_up_all(). 2502 */ 2503 spin_lock(&inode->i_lock); 2504 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2505 } 2506 spin_unlock(&inode->i_lock); 2507 if (fpin) { 2508 fput(fpin); 2509 ret = VM_FAULT_RETRY; 2510 } 2511 return ret; 2512 } 2513 2514 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2515 { 2516 struct inode *inode = file_inode(vmf->vma->vm_file); 2517 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2518 struct folio *folio = NULL; 2519 vm_fault_t ret = 0; 2520 int err; 2521 2522 /* 2523 * Trinity finds that probing a hole which tmpfs is punching can 2524 * prevent the hole-punch from ever completing: noted in i_private. 2525 */ 2526 if (unlikely(inode->i_private)) { 2527 ret = shmem_falloc_wait(vmf, inode); 2528 if (ret) 2529 return ret; 2530 } 2531 2532 WARN_ON_ONCE(vmf->page != NULL); 2533 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, 2534 gfp, vmf, &ret); 2535 if (err) 2536 return vmf_error(err); 2537 if (folio) { 2538 vmf->page = folio_file_page(folio, vmf->pgoff); 2539 ret |= VM_FAULT_LOCKED; 2540 } 2541 return ret; 2542 } 2543 2544 unsigned long shmem_get_unmapped_area(struct file *file, 2545 unsigned long uaddr, unsigned long len, 2546 unsigned long pgoff, unsigned long flags) 2547 { 2548 unsigned long addr; 2549 unsigned long offset; 2550 unsigned long inflated_len; 2551 unsigned long inflated_addr; 2552 unsigned long inflated_offset; 2553 unsigned long hpage_size; 2554 2555 if (len > TASK_SIZE) 2556 return -ENOMEM; 2557 2558 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff, 2559 flags); 2560 2561 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2562 return addr; 2563 if (IS_ERR_VALUE(addr)) 2564 return addr; 2565 if (addr & ~PAGE_MASK) 2566 return addr; 2567 if (addr > TASK_SIZE - len) 2568 return addr; 2569 2570 if (shmem_huge == SHMEM_HUGE_DENY) 2571 return addr; 2572 if (flags & MAP_FIXED) 2573 return addr; 2574 /* 2575 * Our priority is to support MAP_SHARED mapped hugely; 2576 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2577 * But if caller specified an address hint and we allocated area there 2578 * successfully, respect that as before. 2579 */ 2580 if (uaddr == addr) 2581 return addr; 2582 2583 hpage_size = HPAGE_PMD_SIZE; 2584 if (shmem_huge != SHMEM_HUGE_FORCE) { 2585 struct super_block *sb; 2586 unsigned long __maybe_unused hpage_orders; 2587 int order = 0; 2588 2589 if (file) { 2590 VM_BUG_ON(file->f_op != &shmem_file_operations); 2591 sb = file_inode(file)->i_sb; 2592 } else { 2593 /* 2594 * Called directly from mm/mmap.c, or drivers/char/mem.c 2595 * for "/dev/zero", to create a shared anonymous object. 2596 */ 2597 if (IS_ERR(shm_mnt)) 2598 return addr; 2599 sb = shm_mnt->mnt_sb; 2600 2601 /* 2602 * Find the highest mTHP order used for anonymous shmem to 2603 * provide a suitable alignment address. 2604 */ 2605 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2606 hpage_orders = READ_ONCE(huge_shmem_orders_always); 2607 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size); 2608 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise); 2609 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 2610 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit); 2611 2612 if (hpage_orders > 0) { 2613 order = highest_order(hpage_orders); 2614 hpage_size = PAGE_SIZE << order; 2615 } 2616 #endif 2617 } 2618 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order) 2619 return addr; 2620 } 2621 2622 if (len < hpage_size) 2623 return addr; 2624 2625 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1); 2626 if (offset && offset + len < 2 * hpage_size) 2627 return addr; 2628 if ((addr & (hpage_size - 1)) == offset) 2629 return addr; 2630 2631 inflated_len = len + hpage_size - PAGE_SIZE; 2632 if (inflated_len > TASK_SIZE) 2633 return addr; 2634 if (inflated_len < len) 2635 return addr; 2636 2637 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr, 2638 inflated_len, 0, flags); 2639 if (IS_ERR_VALUE(inflated_addr)) 2640 return addr; 2641 if (inflated_addr & ~PAGE_MASK) 2642 return addr; 2643 2644 inflated_offset = inflated_addr & (hpage_size - 1); 2645 inflated_addr += offset - inflated_offset; 2646 if (inflated_offset > offset) 2647 inflated_addr += hpage_size; 2648 2649 if (inflated_addr > TASK_SIZE - len) 2650 return addr; 2651 return inflated_addr; 2652 } 2653 2654 #ifdef CONFIG_NUMA 2655 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2656 { 2657 struct inode *inode = file_inode(vma->vm_file); 2658 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2659 } 2660 2661 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2662 unsigned long addr, pgoff_t *ilx) 2663 { 2664 struct inode *inode = file_inode(vma->vm_file); 2665 pgoff_t index; 2666 2667 /* 2668 * Bias interleave by inode number to distribute better across nodes; 2669 * but this interface is independent of which page order is used, so 2670 * supplies only that bias, letting caller apply the offset (adjusted 2671 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2672 */ 2673 *ilx = inode->i_ino; 2674 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2675 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2676 } 2677 2678 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2679 pgoff_t index, unsigned int order, pgoff_t *ilx) 2680 { 2681 struct mempolicy *mpol; 2682 2683 /* Bias interleave by inode number to distribute better across nodes */ 2684 *ilx = info->vfs_inode.i_ino + (index >> order); 2685 2686 mpol = mpol_shared_policy_lookup(&info->policy, index); 2687 return mpol ? mpol : get_task_policy(current); 2688 } 2689 #else 2690 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2691 pgoff_t index, unsigned int order, pgoff_t *ilx) 2692 { 2693 *ilx = 0; 2694 return NULL; 2695 } 2696 #endif /* CONFIG_NUMA */ 2697 2698 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2699 { 2700 struct inode *inode = file_inode(file); 2701 struct shmem_inode_info *info = SHMEM_I(inode); 2702 int retval = -ENOMEM; 2703 2704 /* 2705 * What serializes the accesses to info->flags? 2706 * ipc_lock_object() when called from shmctl_do_lock(), 2707 * no serialization needed when called from shm_destroy(). 2708 */ 2709 if (lock && !(info->flags & VM_LOCKED)) { 2710 if (!user_shm_lock(inode->i_size, ucounts)) 2711 goto out_nomem; 2712 info->flags |= VM_LOCKED; 2713 mapping_set_unevictable(file->f_mapping); 2714 } 2715 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2716 user_shm_unlock(inode->i_size, ucounts); 2717 info->flags &= ~VM_LOCKED; 2718 mapping_clear_unevictable(file->f_mapping); 2719 } 2720 retval = 0; 2721 2722 out_nomem: 2723 return retval; 2724 } 2725 2726 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2727 { 2728 struct inode *inode = file_inode(file); 2729 struct shmem_inode_info *info = SHMEM_I(inode); 2730 int ret; 2731 2732 ret = seal_check_write(info->seals, vma); 2733 if (ret) 2734 return ret; 2735 2736 /* arm64 - allow memory tagging on RAM-based files */ 2737 vm_flags_set(vma, VM_MTE_ALLOWED); 2738 2739 file_accessed(file); 2740 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2741 if (inode->i_nlink) 2742 vma->vm_ops = &shmem_vm_ops; 2743 else 2744 vma->vm_ops = &shmem_anon_vm_ops; 2745 return 0; 2746 } 2747 2748 static int shmem_file_open(struct inode *inode, struct file *file) 2749 { 2750 file->f_mode |= FMODE_CAN_ODIRECT; 2751 return generic_file_open(inode, file); 2752 } 2753 2754 #ifdef CONFIG_TMPFS_XATTR 2755 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2756 2757 /* 2758 * chattr's fsflags are unrelated to extended attributes, 2759 * but tmpfs has chosen to enable them under the same config option. 2760 */ 2761 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2762 { 2763 unsigned int i_flags = 0; 2764 2765 if (fsflags & FS_NOATIME_FL) 2766 i_flags |= S_NOATIME; 2767 if (fsflags & FS_APPEND_FL) 2768 i_flags |= S_APPEND; 2769 if (fsflags & FS_IMMUTABLE_FL) 2770 i_flags |= S_IMMUTABLE; 2771 /* 2772 * But FS_NODUMP_FL does not require any action in i_flags. 2773 */ 2774 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2775 } 2776 #else 2777 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2778 { 2779 } 2780 #define shmem_initxattrs NULL 2781 #endif 2782 2783 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 2784 { 2785 return &SHMEM_I(inode)->dir_offsets; 2786 } 2787 2788 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 2789 struct super_block *sb, 2790 struct inode *dir, umode_t mode, 2791 dev_t dev, unsigned long flags) 2792 { 2793 struct inode *inode; 2794 struct shmem_inode_info *info; 2795 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2796 ino_t ino; 2797 int err; 2798 2799 err = shmem_reserve_inode(sb, &ino); 2800 if (err) 2801 return ERR_PTR(err); 2802 2803 inode = new_inode(sb); 2804 if (!inode) { 2805 shmem_free_inode(sb, 0); 2806 return ERR_PTR(-ENOSPC); 2807 } 2808 2809 inode->i_ino = ino; 2810 inode_init_owner(idmap, inode, dir, mode); 2811 inode->i_blocks = 0; 2812 simple_inode_init_ts(inode); 2813 inode->i_generation = get_random_u32(); 2814 info = SHMEM_I(inode); 2815 memset(info, 0, (char *)inode - (char *)info); 2816 spin_lock_init(&info->lock); 2817 atomic_set(&info->stop_eviction, 0); 2818 info->seals = F_SEAL_SEAL; 2819 info->flags = flags & VM_NORESERVE; 2820 info->i_crtime = inode_get_mtime(inode); 2821 info->fsflags = (dir == NULL) ? 0 : 2822 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2823 if (info->fsflags) 2824 shmem_set_inode_flags(inode, info->fsflags); 2825 INIT_LIST_HEAD(&info->shrinklist); 2826 INIT_LIST_HEAD(&info->swaplist); 2827 simple_xattrs_init(&info->xattrs); 2828 cache_no_acl(inode); 2829 if (sbinfo->noswap) 2830 mapping_set_unevictable(inode->i_mapping); 2831 mapping_set_large_folios(inode->i_mapping); 2832 2833 switch (mode & S_IFMT) { 2834 default: 2835 inode->i_op = &shmem_special_inode_operations; 2836 init_special_inode(inode, mode, dev); 2837 break; 2838 case S_IFREG: 2839 inode->i_mapping->a_ops = &shmem_aops; 2840 inode->i_op = &shmem_inode_operations; 2841 inode->i_fop = &shmem_file_operations; 2842 mpol_shared_policy_init(&info->policy, 2843 shmem_get_sbmpol(sbinfo)); 2844 break; 2845 case S_IFDIR: 2846 inc_nlink(inode); 2847 /* Some things misbehave if size == 0 on a directory */ 2848 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2849 inode->i_op = &shmem_dir_inode_operations; 2850 inode->i_fop = &simple_offset_dir_operations; 2851 simple_offset_init(shmem_get_offset_ctx(inode)); 2852 break; 2853 case S_IFLNK: 2854 /* 2855 * Must not load anything in the rbtree, 2856 * mpol_free_shared_policy will not be called. 2857 */ 2858 mpol_shared_policy_init(&info->policy, NULL); 2859 break; 2860 } 2861 2862 lockdep_annotate_inode_mutex_key(inode); 2863 return inode; 2864 } 2865 2866 #ifdef CONFIG_TMPFS_QUOTA 2867 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2868 struct super_block *sb, struct inode *dir, 2869 umode_t mode, dev_t dev, unsigned long flags) 2870 { 2871 int err; 2872 struct inode *inode; 2873 2874 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2875 if (IS_ERR(inode)) 2876 return inode; 2877 2878 err = dquot_initialize(inode); 2879 if (err) 2880 goto errout; 2881 2882 err = dquot_alloc_inode(inode); 2883 if (err) { 2884 dquot_drop(inode); 2885 goto errout; 2886 } 2887 return inode; 2888 2889 errout: 2890 inode->i_flags |= S_NOQUOTA; 2891 iput(inode); 2892 return ERR_PTR(err); 2893 } 2894 #else 2895 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2896 struct super_block *sb, struct inode *dir, 2897 umode_t mode, dev_t dev, unsigned long flags) 2898 { 2899 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2900 } 2901 #endif /* CONFIG_TMPFS_QUOTA */ 2902 2903 #ifdef CONFIG_USERFAULTFD 2904 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 2905 struct vm_area_struct *dst_vma, 2906 unsigned long dst_addr, 2907 unsigned long src_addr, 2908 uffd_flags_t flags, 2909 struct folio **foliop) 2910 { 2911 struct inode *inode = file_inode(dst_vma->vm_file); 2912 struct shmem_inode_info *info = SHMEM_I(inode); 2913 struct address_space *mapping = inode->i_mapping; 2914 gfp_t gfp = mapping_gfp_mask(mapping); 2915 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2916 void *page_kaddr; 2917 struct folio *folio; 2918 int ret; 2919 pgoff_t max_off; 2920 2921 if (shmem_inode_acct_blocks(inode, 1)) { 2922 /* 2923 * We may have got a page, returned -ENOENT triggering a retry, 2924 * and now we find ourselves with -ENOMEM. Release the page, to 2925 * avoid a BUG_ON in our caller. 2926 */ 2927 if (unlikely(*foliop)) { 2928 folio_put(*foliop); 2929 *foliop = NULL; 2930 } 2931 return -ENOMEM; 2932 } 2933 2934 if (!*foliop) { 2935 ret = -ENOMEM; 2936 folio = shmem_alloc_folio(gfp, 0, info, pgoff); 2937 if (!folio) 2938 goto out_unacct_blocks; 2939 2940 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 2941 page_kaddr = kmap_local_folio(folio, 0); 2942 /* 2943 * The read mmap_lock is held here. Despite the 2944 * mmap_lock being read recursive a deadlock is still 2945 * possible if a writer has taken a lock. For example: 2946 * 2947 * process A thread 1 takes read lock on own mmap_lock 2948 * process A thread 2 calls mmap, blocks taking write lock 2949 * process B thread 1 takes page fault, read lock on own mmap lock 2950 * process B thread 2 calls mmap, blocks taking write lock 2951 * process A thread 1 blocks taking read lock on process B 2952 * process B thread 1 blocks taking read lock on process A 2953 * 2954 * Disable page faults to prevent potential deadlock 2955 * and retry the copy outside the mmap_lock. 2956 */ 2957 pagefault_disable(); 2958 ret = copy_from_user(page_kaddr, 2959 (const void __user *)src_addr, 2960 PAGE_SIZE); 2961 pagefault_enable(); 2962 kunmap_local(page_kaddr); 2963 2964 /* fallback to copy_from_user outside mmap_lock */ 2965 if (unlikely(ret)) { 2966 *foliop = folio; 2967 ret = -ENOENT; 2968 /* don't free the page */ 2969 goto out_unacct_blocks; 2970 } 2971 2972 flush_dcache_folio(folio); 2973 } else { /* ZEROPAGE */ 2974 clear_user_highpage(&folio->page, dst_addr); 2975 } 2976 } else { 2977 folio = *foliop; 2978 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2979 *foliop = NULL; 2980 } 2981 2982 VM_BUG_ON(folio_test_locked(folio)); 2983 VM_BUG_ON(folio_test_swapbacked(folio)); 2984 __folio_set_locked(folio); 2985 __folio_set_swapbacked(folio); 2986 __folio_mark_uptodate(folio); 2987 2988 ret = -EFAULT; 2989 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2990 if (unlikely(pgoff >= max_off)) 2991 goto out_release; 2992 2993 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 2994 if (ret) 2995 goto out_release; 2996 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 2997 if (ret) 2998 goto out_release; 2999 3000 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 3001 &folio->page, true, flags); 3002 if (ret) 3003 goto out_delete_from_cache; 3004 3005 shmem_recalc_inode(inode, 1, 0); 3006 folio_unlock(folio); 3007 return 0; 3008 out_delete_from_cache: 3009 filemap_remove_folio(folio); 3010 out_release: 3011 folio_unlock(folio); 3012 folio_put(folio); 3013 out_unacct_blocks: 3014 shmem_inode_unacct_blocks(inode, 1); 3015 return ret; 3016 } 3017 #endif /* CONFIG_USERFAULTFD */ 3018 3019 #ifdef CONFIG_TMPFS 3020 static const struct inode_operations shmem_symlink_inode_operations; 3021 static const struct inode_operations shmem_short_symlink_operations; 3022 3023 static int 3024 shmem_write_begin(struct file *file, struct address_space *mapping, 3025 loff_t pos, unsigned len, 3026 struct page **pagep, void **fsdata) 3027 { 3028 struct inode *inode = mapping->host; 3029 struct shmem_inode_info *info = SHMEM_I(inode); 3030 pgoff_t index = pos >> PAGE_SHIFT; 3031 struct folio *folio; 3032 int ret = 0; 3033 3034 /* i_rwsem is held by caller */ 3035 if (unlikely(info->seals & (F_SEAL_GROW | 3036 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 3037 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 3038 return -EPERM; 3039 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 3040 return -EPERM; 3041 } 3042 3043 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE); 3044 if (ret) 3045 return ret; 3046 3047 *pagep = folio_file_page(folio, index); 3048 if (PageHWPoison(*pagep)) { 3049 folio_unlock(folio); 3050 folio_put(folio); 3051 *pagep = NULL; 3052 return -EIO; 3053 } 3054 3055 return 0; 3056 } 3057 3058 static int 3059 shmem_write_end(struct file *file, struct address_space *mapping, 3060 loff_t pos, unsigned len, unsigned copied, 3061 struct page *page, void *fsdata) 3062 { 3063 struct folio *folio = page_folio(page); 3064 struct inode *inode = mapping->host; 3065 3066 if (pos + copied > inode->i_size) 3067 i_size_write(inode, pos + copied); 3068 3069 if (!folio_test_uptodate(folio)) { 3070 if (copied < folio_size(folio)) { 3071 size_t from = offset_in_folio(folio, pos); 3072 folio_zero_segments(folio, 0, from, 3073 from + copied, folio_size(folio)); 3074 } 3075 folio_mark_uptodate(folio); 3076 } 3077 folio_mark_dirty(folio); 3078 folio_unlock(folio); 3079 folio_put(folio); 3080 3081 return copied; 3082 } 3083 3084 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3085 { 3086 struct file *file = iocb->ki_filp; 3087 struct inode *inode = file_inode(file); 3088 struct address_space *mapping = inode->i_mapping; 3089 pgoff_t index; 3090 unsigned long offset; 3091 int error = 0; 3092 ssize_t retval = 0; 3093 loff_t *ppos = &iocb->ki_pos; 3094 3095 index = *ppos >> PAGE_SHIFT; 3096 offset = *ppos & ~PAGE_MASK; 3097 3098 for (;;) { 3099 struct folio *folio = NULL; 3100 struct page *page = NULL; 3101 pgoff_t end_index; 3102 unsigned long nr, ret; 3103 loff_t i_size = i_size_read(inode); 3104 3105 end_index = i_size >> PAGE_SHIFT; 3106 if (index > end_index) 3107 break; 3108 if (index == end_index) { 3109 nr = i_size & ~PAGE_MASK; 3110 if (nr <= offset) 3111 break; 3112 } 3113 3114 error = shmem_get_folio(inode, index, &folio, SGP_READ); 3115 if (error) { 3116 if (error == -EINVAL) 3117 error = 0; 3118 break; 3119 } 3120 if (folio) { 3121 folio_unlock(folio); 3122 3123 page = folio_file_page(folio, index); 3124 if (PageHWPoison(page)) { 3125 folio_put(folio); 3126 error = -EIO; 3127 break; 3128 } 3129 } 3130 3131 /* 3132 * We must evaluate after, since reads (unlike writes) 3133 * are called without i_rwsem protection against truncate 3134 */ 3135 nr = PAGE_SIZE; 3136 i_size = i_size_read(inode); 3137 end_index = i_size >> PAGE_SHIFT; 3138 if (index == end_index) { 3139 nr = i_size & ~PAGE_MASK; 3140 if (nr <= offset) { 3141 if (folio) 3142 folio_put(folio); 3143 break; 3144 } 3145 } 3146 nr -= offset; 3147 3148 if (folio) { 3149 /* 3150 * If users can be writing to this page using arbitrary 3151 * virtual addresses, take care about potential aliasing 3152 * before reading the page on the kernel side. 3153 */ 3154 if (mapping_writably_mapped(mapping)) 3155 flush_dcache_page(page); 3156 /* 3157 * Mark the page accessed if we read the beginning. 3158 */ 3159 if (!offset) 3160 folio_mark_accessed(folio); 3161 /* 3162 * Ok, we have the page, and it's up-to-date, so 3163 * now we can copy it to user space... 3164 */ 3165 ret = copy_page_to_iter(page, offset, nr, to); 3166 folio_put(folio); 3167 3168 } else if (user_backed_iter(to)) { 3169 /* 3170 * Copy to user tends to be so well optimized, but 3171 * clear_user() not so much, that it is noticeably 3172 * faster to copy the zero page instead of clearing. 3173 */ 3174 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 3175 } else { 3176 /* 3177 * But submitting the same page twice in a row to 3178 * splice() - or others? - can result in confusion: 3179 * so don't attempt that optimization on pipes etc. 3180 */ 3181 ret = iov_iter_zero(nr, to); 3182 } 3183 3184 retval += ret; 3185 offset += ret; 3186 index += offset >> PAGE_SHIFT; 3187 offset &= ~PAGE_MASK; 3188 3189 if (!iov_iter_count(to)) 3190 break; 3191 if (ret < nr) { 3192 error = -EFAULT; 3193 break; 3194 } 3195 cond_resched(); 3196 } 3197 3198 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 3199 file_accessed(file); 3200 return retval ? retval : error; 3201 } 3202 3203 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3204 { 3205 struct file *file = iocb->ki_filp; 3206 struct inode *inode = file->f_mapping->host; 3207 ssize_t ret; 3208 3209 inode_lock(inode); 3210 ret = generic_write_checks(iocb, from); 3211 if (ret <= 0) 3212 goto unlock; 3213 ret = file_remove_privs(file); 3214 if (ret) 3215 goto unlock; 3216 ret = file_update_time(file); 3217 if (ret) 3218 goto unlock; 3219 ret = generic_perform_write(iocb, from); 3220 unlock: 3221 inode_unlock(inode); 3222 return ret; 3223 } 3224 3225 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 3226 struct pipe_buffer *buf) 3227 { 3228 return true; 3229 } 3230 3231 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 3232 struct pipe_buffer *buf) 3233 { 3234 } 3235 3236 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 3237 struct pipe_buffer *buf) 3238 { 3239 return false; 3240 } 3241 3242 static const struct pipe_buf_operations zero_pipe_buf_ops = { 3243 .release = zero_pipe_buf_release, 3244 .try_steal = zero_pipe_buf_try_steal, 3245 .get = zero_pipe_buf_get, 3246 }; 3247 3248 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 3249 loff_t fpos, size_t size) 3250 { 3251 size_t offset = fpos & ~PAGE_MASK; 3252 3253 size = min_t(size_t, size, PAGE_SIZE - offset); 3254 3255 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 3256 struct pipe_buffer *buf = pipe_head_buf(pipe); 3257 3258 *buf = (struct pipe_buffer) { 3259 .ops = &zero_pipe_buf_ops, 3260 .page = ZERO_PAGE(0), 3261 .offset = offset, 3262 .len = size, 3263 }; 3264 pipe->head++; 3265 } 3266 3267 return size; 3268 } 3269 3270 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 3271 struct pipe_inode_info *pipe, 3272 size_t len, unsigned int flags) 3273 { 3274 struct inode *inode = file_inode(in); 3275 struct address_space *mapping = inode->i_mapping; 3276 struct folio *folio = NULL; 3277 size_t total_spliced = 0, used, npages, n, part; 3278 loff_t isize; 3279 int error = 0; 3280 3281 /* Work out how much data we can actually add into the pipe */ 3282 used = pipe_occupancy(pipe->head, pipe->tail); 3283 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3284 len = min_t(size_t, len, npages * PAGE_SIZE); 3285 3286 do { 3287 if (*ppos >= i_size_read(inode)) 3288 break; 3289 3290 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio, 3291 SGP_READ); 3292 if (error) { 3293 if (error == -EINVAL) 3294 error = 0; 3295 break; 3296 } 3297 if (folio) { 3298 folio_unlock(folio); 3299 3300 if (folio_test_hwpoison(folio) || 3301 (folio_test_large(folio) && 3302 folio_test_has_hwpoisoned(folio))) { 3303 error = -EIO; 3304 break; 3305 } 3306 } 3307 3308 /* 3309 * i_size must be checked after we know the pages are Uptodate. 3310 * 3311 * Checking i_size after the check allows us to calculate 3312 * the correct value for "nr", which means the zero-filled 3313 * part of the page is not copied back to userspace (unless 3314 * another truncate extends the file - this is desired though). 3315 */ 3316 isize = i_size_read(inode); 3317 if (unlikely(*ppos >= isize)) 3318 break; 3319 part = min_t(loff_t, isize - *ppos, len); 3320 3321 if (folio) { 3322 /* 3323 * If users can be writing to this page using arbitrary 3324 * virtual addresses, take care about potential aliasing 3325 * before reading the page on the kernel side. 3326 */ 3327 if (mapping_writably_mapped(mapping)) 3328 flush_dcache_folio(folio); 3329 folio_mark_accessed(folio); 3330 /* 3331 * Ok, we have the page, and it's up-to-date, so we can 3332 * now splice it into the pipe. 3333 */ 3334 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3335 folio_put(folio); 3336 folio = NULL; 3337 } else { 3338 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3339 } 3340 3341 if (!n) 3342 break; 3343 len -= n; 3344 total_spliced += n; 3345 *ppos += n; 3346 in->f_ra.prev_pos = *ppos; 3347 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 3348 break; 3349 3350 cond_resched(); 3351 } while (len); 3352 3353 if (folio) 3354 folio_put(folio); 3355 3356 file_accessed(in); 3357 return total_spliced ? total_spliced : error; 3358 } 3359 3360 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3361 { 3362 struct address_space *mapping = file->f_mapping; 3363 struct inode *inode = mapping->host; 3364 3365 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3366 return generic_file_llseek_size(file, offset, whence, 3367 MAX_LFS_FILESIZE, i_size_read(inode)); 3368 if (offset < 0) 3369 return -ENXIO; 3370 3371 inode_lock(inode); 3372 /* We're holding i_rwsem so we can access i_size directly */ 3373 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3374 if (offset >= 0) 3375 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3376 inode_unlock(inode); 3377 return offset; 3378 } 3379 3380 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3381 loff_t len) 3382 { 3383 struct inode *inode = file_inode(file); 3384 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3385 struct shmem_inode_info *info = SHMEM_I(inode); 3386 struct shmem_falloc shmem_falloc; 3387 pgoff_t start, index, end, undo_fallocend; 3388 int error; 3389 3390 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3391 return -EOPNOTSUPP; 3392 3393 inode_lock(inode); 3394 3395 if (mode & FALLOC_FL_PUNCH_HOLE) { 3396 struct address_space *mapping = file->f_mapping; 3397 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3398 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3399 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3400 3401 /* protected by i_rwsem */ 3402 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3403 error = -EPERM; 3404 goto out; 3405 } 3406 3407 shmem_falloc.waitq = &shmem_falloc_waitq; 3408 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3409 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3410 spin_lock(&inode->i_lock); 3411 inode->i_private = &shmem_falloc; 3412 spin_unlock(&inode->i_lock); 3413 3414 if ((u64)unmap_end > (u64)unmap_start) 3415 unmap_mapping_range(mapping, unmap_start, 3416 1 + unmap_end - unmap_start, 0); 3417 shmem_truncate_range(inode, offset, offset + len - 1); 3418 /* No need to unmap again: hole-punching leaves COWed pages */ 3419 3420 spin_lock(&inode->i_lock); 3421 inode->i_private = NULL; 3422 wake_up_all(&shmem_falloc_waitq); 3423 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3424 spin_unlock(&inode->i_lock); 3425 error = 0; 3426 goto out; 3427 } 3428 3429 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3430 error = inode_newsize_ok(inode, offset + len); 3431 if (error) 3432 goto out; 3433 3434 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3435 error = -EPERM; 3436 goto out; 3437 } 3438 3439 start = offset >> PAGE_SHIFT; 3440 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3441 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3442 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3443 error = -ENOSPC; 3444 goto out; 3445 } 3446 3447 shmem_falloc.waitq = NULL; 3448 shmem_falloc.start = start; 3449 shmem_falloc.next = start; 3450 shmem_falloc.nr_falloced = 0; 3451 shmem_falloc.nr_unswapped = 0; 3452 spin_lock(&inode->i_lock); 3453 inode->i_private = &shmem_falloc; 3454 spin_unlock(&inode->i_lock); 3455 3456 /* 3457 * info->fallocend is only relevant when huge pages might be 3458 * involved: to prevent split_huge_page() freeing fallocated 3459 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3460 */ 3461 undo_fallocend = info->fallocend; 3462 if (info->fallocend < end) 3463 info->fallocend = end; 3464 3465 for (index = start; index < end; ) { 3466 struct folio *folio; 3467 3468 /* 3469 * Check for fatal signal so that we abort early in OOM 3470 * situations. We don't want to abort in case of non-fatal 3471 * signals as large fallocate can take noticeable time and 3472 * e.g. periodic timers may result in fallocate constantly 3473 * restarting. 3474 */ 3475 if (fatal_signal_pending(current)) 3476 error = -EINTR; 3477 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3478 error = -ENOMEM; 3479 else 3480 error = shmem_get_folio(inode, index, &folio, 3481 SGP_FALLOC); 3482 if (error) { 3483 info->fallocend = undo_fallocend; 3484 /* Remove the !uptodate folios we added */ 3485 if (index > start) { 3486 shmem_undo_range(inode, 3487 (loff_t)start << PAGE_SHIFT, 3488 ((loff_t)index << PAGE_SHIFT) - 1, true); 3489 } 3490 goto undone; 3491 } 3492 3493 /* 3494 * Here is a more important optimization than it appears: 3495 * a second SGP_FALLOC on the same large folio will clear it, 3496 * making it uptodate and un-undoable if we fail later. 3497 */ 3498 index = folio_next_index(folio); 3499 /* Beware 32-bit wraparound */ 3500 if (!index) 3501 index--; 3502 3503 /* 3504 * Inform shmem_writepage() how far we have reached. 3505 * No need for lock or barrier: we have the page lock. 3506 */ 3507 if (!folio_test_uptodate(folio)) 3508 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3509 shmem_falloc.next = index; 3510 3511 /* 3512 * If !uptodate, leave it that way so that freeable folios 3513 * can be recognized if we need to rollback on error later. 3514 * But mark it dirty so that memory pressure will swap rather 3515 * than free the folios we are allocating (and SGP_CACHE folios 3516 * might still be clean: we now need to mark those dirty too). 3517 */ 3518 folio_mark_dirty(folio); 3519 folio_unlock(folio); 3520 folio_put(folio); 3521 cond_resched(); 3522 } 3523 3524 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3525 i_size_write(inode, offset + len); 3526 undone: 3527 spin_lock(&inode->i_lock); 3528 inode->i_private = NULL; 3529 spin_unlock(&inode->i_lock); 3530 out: 3531 if (!error) 3532 file_modified(file); 3533 inode_unlock(inode); 3534 return error; 3535 } 3536 3537 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3538 { 3539 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3540 3541 buf->f_type = TMPFS_MAGIC; 3542 buf->f_bsize = PAGE_SIZE; 3543 buf->f_namelen = NAME_MAX; 3544 if (sbinfo->max_blocks) { 3545 buf->f_blocks = sbinfo->max_blocks; 3546 buf->f_bavail = 3547 buf->f_bfree = sbinfo->max_blocks - 3548 percpu_counter_sum(&sbinfo->used_blocks); 3549 } 3550 if (sbinfo->max_inodes) { 3551 buf->f_files = sbinfo->max_inodes; 3552 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3553 } 3554 /* else leave those fields 0 like simple_statfs */ 3555 3556 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3557 3558 return 0; 3559 } 3560 3561 /* 3562 * File creation. Allocate an inode, and we're done.. 3563 */ 3564 static int 3565 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3566 struct dentry *dentry, umode_t mode, dev_t dev) 3567 { 3568 struct inode *inode; 3569 int error; 3570 3571 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3572 if (IS_ERR(inode)) 3573 return PTR_ERR(inode); 3574 3575 error = simple_acl_create(dir, inode); 3576 if (error) 3577 goto out_iput; 3578 error = security_inode_init_security(inode, dir, &dentry->d_name, 3579 shmem_initxattrs, NULL); 3580 if (error && error != -EOPNOTSUPP) 3581 goto out_iput; 3582 3583 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3584 if (error) 3585 goto out_iput; 3586 3587 dir->i_size += BOGO_DIRENT_SIZE; 3588 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3589 inode_inc_iversion(dir); 3590 d_instantiate(dentry, inode); 3591 dget(dentry); /* Extra count - pin the dentry in core */ 3592 return error; 3593 3594 out_iput: 3595 iput(inode); 3596 return error; 3597 } 3598 3599 static int 3600 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3601 struct file *file, umode_t mode) 3602 { 3603 struct inode *inode; 3604 int error; 3605 3606 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3607 if (IS_ERR(inode)) { 3608 error = PTR_ERR(inode); 3609 goto err_out; 3610 } 3611 error = security_inode_init_security(inode, dir, NULL, 3612 shmem_initxattrs, NULL); 3613 if (error && error != -EOPNOTSUPP) 3614 goto out_iput; 3615 error = simple_acl_create(dir, inode); 3616 if (error) 3617 goto out_iput; 3618 d_tmpfile(file, inode); 3619 3620 err_out: 3621 return finish_open_simple(file, error); 3622 out_iput: 3623 iput(inode); 3624 return error; 3625 } 3626 3627 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3628 struct dentry *dentry, umode_t mode) 3629 { 3630 int error; 3631 3632 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3633 if (error) 3634 return error; 3635 inc_nlink(dir); 3636 return 0; 3637 } 3638 3639 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3640 struct dentry *dentry, umode_t mode, bool excl) 3641 { 3642 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3643 } 3644 3645 /* 3646 * Link a file.. 3647 */ 3648 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3649 struct dentry *dentry) 3650 { 3651 struct inode *inode = d_inode(old_dentry); 3652 int ret = 0; 3653 3654 /* 3655 * No ordinary (disk based) filesystem counts links as inodes; 3656 * but each new link needs a new dentry, pinning lowmem, and 3657 * tmpfs dentries cannot be pruned until they are unlinked. 3658 * But if an O_TMPFILE file is linked into the tmpfs, the 3659 * first link must skip that, to get the accounting right. 3660 */ 3661 if (inode->i_nlink) { 3662 ret = shmem_reserve_inode(inode->i_sb, NULL); 3663 if (ret) 3664 goto out; 3665 } 3666 3667 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3668 if (ret) { 3669 if (inode->i_nlink) 3670 shmem_free_inode(inode->i_sb, 0); 3671 goto out; 3672 } 3673 3674 dir->i_size += BOGO_DIRENT_SIZE; 3675 inode_set_mtime_to_ts(dir, 3676 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3677 inode_inc_iversion(dir); 3678 inc_nlink(inode); 3679 ihold(inode); /* New dentry reference */ 3680 dget(dentry); /* Extra pinning count for the created dentry */ 3681 d_instantiate(dentry, inode); 3682 out: 3683 return ret; 3684 } 3685 3686 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3687 { 3688 struct inode *inode = d_inode(dentry); 3689 3690 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3691 shmem_free_inode(inode->i_sb, 0); 3692 3693 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3694 3695 dir->i_size -= BOGO_DIRENT_SIZE; 3696 inode_set_mtime_to_ts(dir, 3697 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3698 inode_inc_iversion(dir); 3699 drop_nlink(inode); 3700 dput(dentry); /* Undo the count from "create" - does all the work */ 3701 return 0; 3702 } 3703 3704 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3705 { 3706 if (!simple_offset_empty(dentry)) 3707 return -ENOTEMPTY; 3708 3709 drop_nlink(d_inode(dentry)); 3710 drop_nlink(dir); 3711 return shmem_unlink(dir, dentry); 3712 } 3713 3714 static int shmem_whiteout(struct mnt_idmap *idmap, 3715 struct inode *old_dir, struct dentry *old_dentry) 3716 { 3717 struct dentry *whiteout; 3718 int error; 3719 3720 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3721 if (!whiteout) 3722 return -ENOMEM; 3723 3724 error = shmem_mknod(idmap, old_dir, whiteout, 3725 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3726 dput(whiteout); 3727 if (error) 3728 return error; 3729 3730 /* 3731 * Cheat and hash the whiteout while the old dentry is still in 3732 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3733 * 3734 * d_lookup() will consistently find one of them at this point, 3735 * not sure which one, but that isn't even important. 3736 */ 3737 d_rehash(whiteout); 3738 return 0; 3739 } 3740 3741 /* 3742 * The VFS layer already does all the dentry stuff for rename, 3743 * we just have to decrement the usage count for the target if 3744 * it exists so that the VFS layer correctly free's it when it 3745 * gets overwritten. 3746 */ 3747 static int shmem_rename2(struct mnt_idmap *idmap, 3748 struct inode *old_dir, struct dentry *old_dentry, 3749 struct inode *new_dir, struct dentry *new_dentry, 3750 unsigned int flags) 3751 { 3752 struct inode *inode = d_inode(old_dentry); 3753 int they_are_dirs = S_ISDIR(inode->i_mode); 3754 int error; 3755 3756 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3757 return -EINVAL; 3758 3759 if (flags & RENAME_EXCHANGE) 3760 return simple_offset_rename_exchange(old_dir, old_dentry, 3761 new_dir, new_dentry); 3762 3763 if (!simple_offset_empty(new_dentry)) 3764 return -ENOTEMPTY; 3765 3766 if (flags & RENAME_WHITEOUT) { 3767 error = shmem_whiteout(idmap, old_dir, old_dentry); 3768 if (error) 3769 return error; 3770 } 3771 3772 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 3773 if (error) 3774 return error; 3775 3776 if (d_really_is_positive(new_dentry)) { 3777 (void) shmem_unlink(new_dir, new_dentry); 3778 if (they_are_dirs) { 3779 drop_nlink(d_inode(new_dentry)); 3780 drop_nlink(old_dir); 3781 } 3782 } else if (they_are_dirs) { 3783 drop_nlink(old_dir); 3784 inc_nlink(new_dir); 3785 } 3786 3787 old_dir->i_size -= BOGO_DIRENT_SIZE; 3788 new_dir->i_size += BOGO_DIRENT_SIZE; 3789 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 3790 inode_inc_iversion(old_dir); 3791 inode_inc_iversion(new_dir); 3792 return 0; 3793 } 3794 3795 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3796 struct dentry *dentry, const char *symname) 3797 { 3798 int error; 3799 int len; 3800 struct inode *inode; 3801 struct folio *folio; 3802 3803 len = strlen(symname) + 1; 3804 if (len > PAGE_SIZE) 3805 return -ENAMETOOLONG; 3806 3807 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3808 VM_NORESERVE); 3809 if (IS_ERR(inode)) 3810 return PTR_ERR(inode); 3811 3812 error = security_inode_init_security(inode, dir, &dentry->d_name, 3813 shmem_initxattrs, NULL); 3814 if (error && error != -EOPNOTSUPP) 3815 goto out_iput; 3816 3817 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3818 if (error) 3819 goto out_iput; 3820 3821 inode->i_size = len-1; 3822 if (len <= SHORT_SYMLINK_LEN) { 3823 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3824 if (!inode->i_link) { 3825 error = -ENOMEM; 3826 goto out_remove_offset; 3827 } 3828 inode->i_op = &shmem_short_symlink_operations; 3829 } else { 3830 inode_nohighmem(inode); 3831 inode->i_mapping->a_ops = &shmem_aops; 3832 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE); 3833 if (error) 3834 goto out_remove_offset; 3835 inode->i_op = &shmem_symlink_inode_operations; 3836 memcpy(folio_address(folio), symname, len); 3837 folio_mark_uptodate(folio); 3838 folio_mark_dirty(folio); 3839 folio_unlock(folio); 3840 folio_put(folio); 3841 } 3842 dir->i_size += BOGO_DIRENT_SIZE; 3843 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3844 inode_inc_iversion(dir); 3845 d_instantiate(dentry, inode); 3846 dget(dentry); 3847 return 0; 3848 3849 out_remove_offset: 3850 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3851 out_iput: 3852 iput(inode); 3853 return error; 3854 } 3855 3856 static void shmem_put_link(void *arg) 3857 { 3858 folio_mark_accessed(arg); 3859 folio_put(arg); 3860 } 3861 3862 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 3863 struct delayed_call *done) 3864 { 3865 struct folio *folio = NULL; 3866 int error; 3867 3868 if (!dentry) { 3869 folio = filemap_get_folio(inode->i_mapping, 0); 3870 if (IS_ERR(folio)) 3871 return ERR_PTR(-ECHILD); 3872 if (PageHWPoison(folio_page(folio, 0)) || 3873 !folio_test_uptodate(folio)) { 3874 folio_put(folio); 3875 return ERR_PTR(-ECHILD); 3876 } 3877 } else { 3878 error = shmem_get_folio(inode, 0, &folio, SGP_READ); 3879 if (error) 3880 return ERR_PTR(error); 3881 if (!folio) 3882 return ERR_PTR(-ECHILD); 3883 if (PageHWPoison(folio_page(folio, 0))) { 3884 folio_unlock(folio); 3885 folio_put(folio); 3886 return ERR_PTR(-ECHILD); 3887 } 3888 folio_unlock(folio); 3889 } 3890 set_delayed_call(done, shmem_put_link, folio); 3891 return folio_address(folio); 3892 } 3893 3894 #ifdef CONFIG_TMPFS_XATTR 3895 3896 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3897 { 3898 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3899 3900 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3901 3902 return 0; 3903 } 3904 3905 static int shmem_fileattr_set(struct mnt_idmap *idmap, 3906 struct dentry *dentry, struct fileattr *fa) 3907 { 3908 struct inode *inode = d_inode(dentry); 3909 struct shmem_inode_info *info = SHMEM_I(inode); 3910 3911 if (fileattr_has_fsx(fa)) 3912 return -EOPNOTSUPP; 3913 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3914 return -EOPNOTSUPP; 3915 3916 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3917 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3918 3919 shmem_set_inode_flags(inode, info->fsflags); 3920 inode_set_ctime_current(inode); 3921 inode_inc_iversion(inode); 3922 return 0; 3923 } 3924 3925 /* 3926 * Superblocks without xattr inode operations may get some security.* xattr 3927 * support from the LSM "for free". As soon as we have any other xattrs 3928 * like ACLs, we also need to implement the security.* handlers at 3929 * filesystem level, though. 3930 */ 3931 3932 /* 3933 * Callback for security_inode_init_security() for acquiring xattrs. 3934 */ 3935 static int shmem_initxattrs(struct inode *inode, 3936 const struct xattr *xattr_array, void *fs_info) 3937 { 3938 struct shmem_inode_info *info = SHMEM_I(inode); 3939 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3940 const struct xattr *xattr; 3941 struct simple_xattr *new_xattr; 3942 size_t ispace = 0; 3943 size_t len; 3944 3945 if (sbinfo->max_inodes) { 3946 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3947 ispace += simple_xattr_space(xattr->name, 3948 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 3949 } 3950 if (ispace) { 3951 raw_spin_lock(&sbinfo->stat_lock); 3952 if (sbinfo->free_ispace < ispace) 3953 ispace = 0; 3954 else 3955 sbinfo->free_ispace -= ispace; 3956 raw_spin_unlock(&sbinfo->stat_lock); 3957 if (!ispace) 3958 return -ENOSPC; 3959 } 3960 } 3961 3962 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3963 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3964 if (!new_xattr) 3965 break; 3966 3967 len = strlen(xattr->name) + 1; 3968 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3969 GFP_KERNEL_ACCOUNT); 3970 if (!new_xattr->name) { 3971 kvfree(new_xattr); 3972 break; 3973 } 3974 3975 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3976 XATTR_SECURITY_PREFIX_LEN); 3977 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3978 xattr->name, len); 3979 3980 simple_xattr_add(&info->xattrs, new_xattr); 3981 } 3982 3983 if (xattr->name != NULL) { 3984 if (ispace) { 3985 raw_spin_lock(&sbinfo->stat_lock); 3986 sbinfo->free_ispace += ispace; 3987 raw_spin_unlock(&sbinfo->stat_lock); 3988 } 3989 simple_xattrs_free(&info->xattrs, NULL); 3990 return -ENOMEM; 3991 } 3992 3993 return 0; 3994 } 3995 3996 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3997 struct dentry *unused, struct inode *inode, 3998 const char *name, void *buffer, size_t size) 3999 { 4000 struct shmem_inode_info *info = SHMEM_I(inode); 4001 4002 name = xattr_full_name(handler, name); 4003 return simple_xattr_get(&info->xattrs, name, buffer, size); 4004 } 4005 4006 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 4007 struct mnt_idmap *idmap, 4008 struct dentry *unused, struct inode *inode, 4009 const char *name, const void *value, 4010 size_t size, int flags) 4011 { 4012 struct shmem_inode_info *info = SHMEM_I(inode); 4013 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4014 struct simple_xattr *old_xattr; 4015 size_t ispace = 0; 4016 4017 name = xattr_full_name(handler, name); 4018 if (value && sbinfo->max_inodes) { 4019 ispace = simple_xattr_space(name, size); 4020 raw_spin_lock(&sbinfo->stat_lock); 4021 if (sbinfo->free_ispace < ispace) 4022 ispace = 0; 4023 else 4024 sbinfo->free_ispace -= ispace; 4025 raw_spin_unlock(&sbinfo->stat_lock); 4026 if (!ispace) 4027 return -ENOSPC; 4028 } 4029 4030 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 4031 if (!IS_ERR(old_xattr)) { 4032 ispace = 0; 4033 if (old_xattr && sbinfo->max_inodes) 4034 ispace = simple_xattr_space(old_xattr->name, 4035 old_xattr->size); 4036 simple_xattr_free(old_xattr); 4037 old_xattr = NULL; 4038 inode_set_ctime_current(inode); 4039 inode_inc_iversion(inode); 4040 } 4041 if (ispace) { 4042 raw_spin_lock(&sbinfo->stat_lock); 4043 sbinfo->free_ispace += ispace; 4044 raw_spin_unlock(&sbinfo->stat_lock); 4045 } 4046 return PTR_ERR(old_xattr); 4047 } 4048 4049 static const struct xattr_handler shmem_security_xattr_handler = { 4050 .prefix = XATTR_SECURITY_PREFIX, 4051 .get = shmem_xattr_handler_get, 4052 .set = shmem_xattr_handler_set, 4053 }; 4054 4055 static const struct xattr_handler shmem_trusted_xattr_handler = { 4056 .prefix = XATTR_TRUSTED_PREFIX, 4057 .get = shmem_xattr_handler_get, 4058 .set = shmem_xattr_handler_set, 4059 }; 4060 4061 static const struct xattr_handler shmem_user_xattr_handler = { 4062 .prefix = XATTR_USER_PREFIX, 4063 .get = shmem_xattr_handler_get, 4064 .set = shmem_xattr_handler_set, 4065 }; 4066 4067 static const struct xattr_handler * const shmem_xattr_handlers[] = { 4068 &shmem_security_xattr_handler, 4069 &shmem_trusted_xattr_handler, 4070 &shmem_user_xattr_handler, 4071 NULL 4072 }; 4073 4074 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 4075 { 4076 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4077 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 4078 } 4079 #endif /* CONFIG_TMPFS_XATTR */ 4080 4081 static const struct inode_operations shmem_short_symlink_operations = { 4082 .getattr = shmem_getattr, 4083 .setattr = shmem_setattr, 4084 .get_link = simple_get_link, 4085 #ifdef CONFIG_TMPFS_XATTR 4086 .listxattr = shmem_listxattr, 4087 #endif 4088 }; 4089 4090 static const struct inode_operations shmem_symlink_inode_operations = { 4091 .getattr = shmem_getattr, 4092 .setattr = shmem_setattr, 4093 .get_link = shmem_get_link, 4094 #ifdef CONFIG_TMPFS_XATTR 4095 .listxattr = shmem_listxattr, 4096 #endif 4097 }; 4098 4099 static struct dentry *shmem_get_parent(struct dentry *child) 4100 { 4101 return ERR_PTR(-ESTALE); 4102 } 4103 4104 static int shmem_match(struct inode *ino, void *vfh) 4105 { 4106 __u32 *fh = vfh; 4107 __u64 inum = fh[2]; 4108 inum = (inum << 32) | fh[1]; 4109 return ino->i_ino == inum && fh[0] == ino->i_generation; 4110 } 4111 4112 /* Find any alias of inode, but prefer a hashed alias */ 4113 static struct dentry *shmem_find_alias(struct inode *inode) 4114 { 4115 struct dentry *alias = d_find_alias(inode); 4116 4117 return alias ?: d_find_any_alias(inode); 4118 } 4119 4120 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 4121 struct fid *fid, int fh_len, int fh_type) 4122 { 4123 struct inode *inode; 4124 struct dentry *dentry = NULL; 4125 u64 inum; 4126 4127 if (fh_len < 3) 4128 return NULL; 4129 4130 inum = fid->raw[2]; 4131 inum = (inum << 32) | fid->raw[1]; 4132 4133 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 4134 shmem_match, fid->raw); 4135 if (inode) { 4136 dentry = shmem_find_alias(inode); 4137 iput(inode); 4138 } 4139 4140 return dentry; 4141 } 4142 4143 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 4144 struct inode *parent) 4145 { 4146 if (*len < 3) { 4147 *len = 3; 4148 return FILEID_INVALID; 4149 } 4150 4151 if (inode_unhashed(inode)) { 4152 /* Unfortunately insert_inode_hash is not idempotent, 4153 * so as we hash inodes here rather than at creation 4154 * time, we need a lock to ensure we only try 4155 * to do it once 4156 */ 4157 static DEFINE_SPINLOCK(lock); 4158 spin_lock(&lock); 4159 if (inode_unhashed(inode)) 4160 __insert_inode_hash(inode, 4161 inode->i_ino + inode->i_generation); 4162 spin_unlock(&lock); 4163 } 4164 4165 fh[0] = inode->i_generation; 4166 fh[1] = inode->i_ino; 4167 fh[2] = ((__u64)inode->i_ino) >> 32; 4168 4169 *len = 3; 4170 return 1; 4171 } 4172 4173 static const struct export_operations shmem_export_ops = { 4174 .get_parent = shmem_get_parent, 4175 .encode_fh = shmem_encode_fh, 4176 .fh_to_dentry = shmem_fh_to_dentry, 4177 }; 4178 4179 enum shmem_param { 4180 Opt_gid, 4181 Opt_huge, 4182 Opt_mode, 4183 Opt_mpol, 4184 Opt_nr_blocks, 4185 Opt_nr_inodes, 4186 Opt_size, 4187 Opt_uid, 4188 Opt_inode32, 4189 Opt_inode64, 4190 Opt_noswap, 4191 Opt_quota, 4192 Opt_usrquota, 4193 Opt_grpquota, 4194 Opt_usrquota_block_hardlimit, 4195 Opt_usrquota_inode_hardlimit, 4196 Opt_grpquota_block_hardlimit, 4197 Opt_grpquota_inode_hardlimit, 4198 }; 4199 4200 static const struct constant_table shmem_param_enums_huge[] = { 4201 {"never", SHMEM_HUGE_NEVER }, 4202 {"always", SHMEM_HUGE_ALWAYS }, 4203 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 4204 {"advise", SHMEM_HUGE_ADVISE }, 4205 {} 4206 }; 4207 4208 const struct fs_parameter_spec shmem_fs_parameters[] = { 4209 fsparam_gid ("gid", Opt_gid), 4210 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 4211 fsparam_u32oct("mode", Opt_mode), 4212 fsparam_string("mpol", Opt_mpol), 4213 fsparam_string("nr_blocks", Opt_nr_blocks), 4214 fsparam_string("nr_inodes", Opt_nr_inodes), 4215 fsparam_string("size", Opt_size), 4216 fsparam_uid ("uid", Opt_uid), 4217 fsparam_flag ("inode32", Opt_inode32), 4218 fsparam_flag ("inode64", Opt_inode64), 4219 fsparam_flag ("noswap", Opt_noswap), 4220 #ifdef CONFIG_TMPFS_QUOTA 4221 fsparam_flag ("quota", Opt_quota), 4222 fsparam_flag ("usrquota", Opt_usrquota), 4223 fsparam_flag ("grpquota", Opt_grpquota), 4224 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 4225 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 4226 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 4227 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 4228 #endif 4229 {} 4230 }; 4231 4232 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 4233 { 4234 struct shmem_options *ctx = fc->fs_private; 4235 struct fs_parse_result result; 4236 unsigned long long size; 4237 char *rest; 4238 int opt; 4239 kuid_t kuid; 4240 kgid_t kgid; 4241 4242 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 4243 if (opt < 0) 4244 return opt; 4245 4246 switch (opt) { 4247 case Opt_size: 4248 size = memparse(param->string, &rest); 4249 if (*rest == '%') { 4250 size <<= PAGE_SHIFT; 4251 size *= totalram_pages(); 4252 do_div(size, 100); 4253 rest++; 4254 } 4255 if (*rest) 4256 goto bad_value; 4257 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 4258 ctx->seen |= SHMEM_SEEN_BLOCKS; 4259 break; 4260 case Opt_nr_blocks: 4261 ctx->blocks = memparse(param->string, &rest); 4262 if (*rest || ctx->blocks > LONG_MAX) 4263 goto bad_value; 4264 ctx->seen |= SHMEM_SEEN_BLOCKS; 4265 break; 4266 case Opt_nr_inodes: 4267 ctx->inodes = memparse(param->string, &rest); 4268 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 4269 goto bad_value; 4270 ctx->seen |= SHMEM_SEEN_INODES; 4271 break; 4272 case Opt_mode: 4273 ctx->mode = result.uint_32 & 07777; 4274 break; 4275 case Opt_uid: 4276 kuid = result.uid; 4277 4278 /* 4279 * The requested uid must be representable in the 4280 * filesystem's idmapping. 4281 */ 4282 if (!kuid_has_mapping(fc->user_ns, kuid)) 4283 goto bad_value; 4284 4285 ctx->uid = kuid; 4286 break; 4287 case Opt_gid: 4288 kgid = result.gid; 4289 4290 /* 4291 * The requested gid must be representable in the 4292 * filesystem's idmapping. 4293 */ 4294 if (!kgid_has_mapping(fc->user_ns, kgid)) 4295 goto bad_value; 4296 4297 ctx->gid = kgid; 4298 break; 4299 case Opt_huge: 4300 ctx->huge = result.uint_32; 4301 if (ctx->huge != SHMEM_HUGE_NEVER && 4302 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4303 has_transparent_hugepage())) 4304 goto unsupported_parameter; 4305 ctx->seen |= SHMEM_SEEN_HUGE; 4306 break; 4307 case Opt_mpol: 4308 if (IS_ENABLED(CONFIG_NUMA)) { 4309 mpol_put(ctx->mpol); 4310 ctx->mpol = NULL; 4311 if (mpol_parse_str(param->string, &ctx->mpol)) 4312 goto bad_value; 4313 break; 4314 } 4315 goto unsupported_parameter; 4316 case Opt_inode32: 4317 ctx->full_inums = false; 4318 ctx->seen |= SHMEM_SEEN_INUMS; 4319 break; 4320 case Opt_inode64: 4321 if (sizeof(ino_t) < 8) { 4322 return invalfc(fc, 4323 "Cannot use inode64 with <64bit inums in kernel\n"); 4324 } 4325 ctx->full_inums = true; 4326 ctx->seen |= SHMEM_SEEN_INUMS; 4327 break; 4328 case Opt_noswap: 4329 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4330 return invalfc(fc, 4331 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4332 } 4333 ctx->noswap = true; 4334 ctx->seen |= SHMEM_SEEN_NOSWAP; 4335 break; 4336 case Opt_quota: 4337 if (fc->user_ns != &init_user_ns) 4338 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4339 ctx->seen |= SHMEM_SEEN_QUOTA; 4340 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4341 break; 4342 case Opt_usrquota: 4343 if (fc->user_ns != &init_user_ns) 4344 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4345 ctx->seen |= SHMEM_SEEN_QUOTA; 4346 ctx->quota_types |= QTYPE_MASK_USR; 4347 break; 4348 case Opt_grpquota: 4349 if (fc->user_ns != &init_user_ns) 4350 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4351 ctx->seen |= SHMEM_SEEN_QUOTA; 4352 ctx->quota_types |= QTYPE_MASK_GRP; 4353 break; 4354 case Opt_usrquota_block_hardlimit: 4355 size = memparse(param->string, &rest); 4356 if (*rest || !size) 4357 goto bad_value; 4358 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4359 return invalfc(fc, 4360 "User quota block hardlimit too large."); 4361 ctx->qlimits.usrquota_bhardlimit = size; 4362 break; 4363 case Opt_grpquota_block_hardlimit: 4364 size = memparse(param->string, &rest); 4365 if (*rest || !size) 4366 goto bad_value; 4367 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4368 return invalfc(fc, 4369 "Group quota block hardlimit too large."); 4370 ctx->qlimits.grpquota_bhardlimit = size; 4371 break; 4372 case Opt_usrquota_inode_hardlimit: 4373 size = memparse(param->string, &rest); 4374 if (*rest || !size) 4375 goto bad_value; 4376 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4377 return invalfc(fc, 4378 "User quota inode hardlimit too large."); 4379 ctx->qlimits.usrquota_ihardlimit = size; 4380 break; 4381 case Opt_grpquota_inode_hardlimit: 4382 size = memparse(param->string, &rest); 4383 if (*rest || !size) 4384 goto bad_value; 4385 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4386 return invalfc(fc, 4387 "Group quota inode hardlimit too large."); 4388 ctx->qlimits.grpquota_ihardlimit = size; 4389 break; 4390 } 4391 return 0; 4392 4393 unsupported_parameter: 4394 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4395 bad_value: 4396 return invalfc(fc, "Bad value for '%s'", param->key); 4397 } 4398 4399 static int shmem_parse_options(struct fs_context *fc, void *data) 4400 { 4401 char *options = data; 4402 4403 if (options) { 4404 int err = security_sb_eat_lsm_opts(options, &fc->security); 4405 if (err) 4406 return err; 4407 } 4408 4409 while (options != NULL) { 4410 char *this_char = options; 4411 for (;;) { 4412 /* 4413 * NUL-terminate this option: unfortunately, 4414 * mount options form a comma-separated list, 4415 * but mpol's nodelist may also contain commas. 4416 */ 4417 options = strchr(options, ','); 4418 if (options == NULL) 4419 break; 4420 options++; 4421 if (!isdigit(*options)) { 4422 options[-1] = '\0'; 4423 break; 4424 } 4425 } 4426 if (*this_char) { 4427 char *value = strchr(this_char, '='); 4428 size_t len = 0; 4429 int err; 4430 4431 if (value) { 4432 *value++ = '\0'; 4433 len = strlen(value); 4434 } 4435 err = vfs_parse_fs_string(fc, this_char, value, len); 4436 if (err < 0) 4437 return err; 4438 } 4439 } 4440 return 0; 4441 } 4442 4443 /* 4444 * Reconfigure a shmem filesystem. 4445 */ 4446 static int shmem_reconfigure(struct fs_context *fc) 4447 { 4448 struct shmem_options *ctx = fc->fs_private; 4449 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4450 unsigned long used_isp; 4451 struct mempolicy *mpol = NULL; 4452 const char *err; 4453 4454 raw_spin_lock(&sbinfo->stat_lock); 4455 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4456 4457 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4458 if (!sbinfo->max_blocks) { 4459 err = "Cannot retroactively limit size"; 4460 goto out; 4461 } 4462 if (percpu_counter_compare(&sbinfo->used_blocks, 4463 ctx->blocks) > 0) { 4464 err = "Too small a size for current use"; 4465 goto out; 4466 } 4467 } 4468 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4469 if (!sbinfo->max_inodes) { 4470 err = "Cannot retroactively limit inodes"; 4471 goto out; 4472 } 4473 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4474 err = "Too few inodes for current use"; 4475 goto out; 4476 } 4477 } 4478 4479 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4480 sbinfo->next_ino > UINT_MAX) { 4481 err = "Current inum too high to switch to 32-bit inums"; 4482 goto out; 4483 } 4484 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4485 err = "Cannot disable swap on remount"; 4486 goto out; 4487 } 4488 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4489 err = "Cannot enable swap on remount if it was disabled on first mount"; 4490 goto out; 4491 } 4492 4493 if (ctx->seen & SHMEM_SEEN_QUOTA && 4494 !sb_any_quota_loaded(fc->root->d_sb)) { 4495 err = "Cannot enable quota on remount"; 4496 goto out; 4497 } 4498 4499 #ifdef CONFIG_TMPFS_QUOTA 4500 #define CHANGED_LIMIT(name) \ 4501 (ctx->qlimits.name## hardlimit && \ 4502 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4503 4504 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4505 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4506 err = "Cannot change global quota limit on remount"; 4507 goto out; 4508 } 4509 #endif /* CONFIG_TMPFS_QUOTA */ 4510 4511 if (ctx->seen & SHMEM_SEEN_HUGE) 4512 sbinfo->huge = ctx->huge; 4513 if (ctx->seen & SHMEM_SEEN_INUMS) 4514 sbinfo->full_inums = ctx->full_inums; 4515 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4516 sbinfo->max_blocks = ctx->blocks; 4517 if (ctx->seen & SHMEM_SEEN_INODES) { 4518 sbinfo->max_inodes = ctx->inodes; 4519 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4520 } 4521 4522 /* 4523 * Preserve previous mempolicy unless mpol remount option was specified. 4524 */ 4525 if (ctx->mpol) { 4526 mpol = sbinfo->mpol; 4527 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4528 ctx->mpol = NULL; 4529 } 4530 4531 if (ctx->noswap) 4532 sbinfo->noswap = true; 4533 4534 raw_spin_unlock(&sbinfo->stat_lock); 4535 mpol_put(mpol); 4536 return 0; 4537 out: 4538 raw_spin_unlock(&sbinfo->stat_lock); 4539 return invalfc(fc, "%s", err); 4540 } 4541 4542 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4543 { 4544 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4545 struct mempolicy *mpol; 4546 4547 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4548 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4549 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4550 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4551 if (sbinfo->mode != (0777 | S_ISVTX)) 4552 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4553 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4554 seq_printf(seq, ",uid=%u", 4555 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4556 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4557 seq_printf(seq, ",gid=%u", 4558 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4559 4560 /* 4561 * Showing inode{64,32} might be useful even if it's the system default, 4562 * since then people don't have to resort to checking both here and 4563 * /proc/config.gz to confirm 64-bit inums were successfully applied 4564 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4565 * 4566 * We hide it when inode64 isn't the default and we are using 32-bit 4567 * inodes, since that probably just means the feature isn't even under 4568 * consideration. 4569 * 4570 * As such: 4571 * 4572 * +-----------------+-----------------+ 4573 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4574 * +------------------+-----------------+-----------------+ 4575 * | full_inums=true | show | show | 4576 * | full_inums=false | show | hide | 4577 * +------------------+-----------------+-----------------+ 4578 * 4579 */ 4580 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4581 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4582 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4583 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4584 if (sbinfo->huge) 4585 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4586 #endif 4587 mpol = shmem_get_sbmpol(sbinfo); 4588 shmem_show_mpol(seq, mpol); 4589 mpol_put(mpol); 4590 if (sbinfo->noswap) 4591 seq_printf(seq, ",noswap"); 4592 #ifdef CONFIG_TMPFS_QUOTA 4593 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4594 seq_printf(seq, ",usrquota"); 4595 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4596 seq_printf(seq, ",grpquota"); 4597 if (sbinfo->qlimits.usrquota_bhardlimit) 4598 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4599 sbinfo->qlimits.usrquota_bhardlimit); 4600 if (sbinfo->qlimits.grpquota_bhardlimit) 4601 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4602 sbinfo->qlimits.grpquota_bhardlimit); 4603 if (sbinfo->qlimits.usrquota_ihardlimit) 4604 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4605 sbinfo->qlimits.usrquota_ihardlimit); 4606 if (sbinfo->qlimits.grpquota_ihardlimit) 4607 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4608 sbinfo->qlimits.grpquota_ihardlimit); 4609 #endif 4610 return 0; 4611 } 4612 4613 #endif /* CONFIG_TMPFS */ 4614 4615 static void shmem_put_super(struct super_block *sb) 4616 { 4617 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4618 4619 #ifdef CONFIG_TMPFS_QUOTA 4620 shmem_disable_quotas(sb); 4621 #endif 4622 free_percpu(sbinfo->ino_batch); 4623 percpu_counter_destroy(&sbinfo->used_blocks); 4624 mpol_put(sbinfo->mpol); 4625 kfree(sbinfo); 4626 sb->s_fs_info = NULL; 4627 } 4628 4629 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4630 { 4631 struct shmem_options *ctx = fc->fs_private; 4632 struct inode *inode; 4633 struct shmem_sb_info *sbinfo; 4634 int error = -ENOMEM; 4635 4636 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4637 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4638 L1_CACHE_BYTES), GFP_KERNEL); 4639 if (!sbinfo) 4640 return error; 4641 4642 sb->s_fs_info = sbinfo; 4643 4644 #ifdef CONFIG_TMPFS 4645 /* 4646 * Per default we only allow half of the physical ram per 4647 * tmpfs instance, limiting inodes to one per page of lowmem; 4648 * but the internal instance is left unlimited. 4649 */ 4650 if (!(sb->s_flags & SB_KERNMOUNT)) { 4651 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 4652 ctx->blocks = shmem_default_max_blocks(); 4653 if (!(ctx->seen & SHMEM_SEEN_INODES)) 4654 ctx->inodes = shmem_default_max_inodes(); 4655 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 4656 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 4657 sbinfo->noswap = ctx->noswap; 4658 } else { 4659 sb->s_flags |= SB_NOUSER; 4660 } 4661 sb->s_export_op = &shmem_export_ops; 4662 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 4663 #else 4664 sb->s_flags |= SB_NOUSER; 4665 #endif 4666 sbinfo->max_blocks = ctx->blocks; 4667 sbinfo->max_inodes = ctx->inodes; 4668 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 4669 if (sb->s_flags & SB_KERNMOUNT) { 4670 sbinfo->ino_batch = alloc_percpu(ino_t); 4671 if (!sbinfo->ino_batch) 4672 goto failed; 4673 } 4674 sbinfo->uid = ctx->uid; 4675 sbinfo->gid = ctx->gid; 4676 sbinfo->full_inums = ctx->full_inums; 4677 sbinfo->mode = ctx->mode; 4678 sbinfo->huge = ctx->huge; 4679 sbinfo->mpol = ctx->mpol; 4680 ctx->mpol = NULL; 4681 4682 raw_spin_lock_init(&sbinfo->stat_lock); 4683 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 4684 goto failed; 4685 spin_lock_init(&sbinfo->shrinklist_lock); 4686 INIT_LIST_HEAD(&sbinfo->shrinklist); 4687 4688 sb->s_maxbytes = MAX_LFS_FILESIZE; 4689 sb->s_blocksize = PAGE_SIZE; 4690 sb->s_blocksize_bits = PAGE_SHIFT; 4691 sb->s_magic = TMPFS_MAGIC; 4692 sb->s_op = &shmem_ops; 4693 sb->s_time_gran = 1; 4694 #ifdef CONFIG_TMPFS_XATTR 4695 sb->s_xattr = shmem_xattr_handlers; 4696 #endif 4697 #ifdef CONFIG_TMPFS_POSIX_ACL 4698 sb->s_flags |= SB_POSIXACL; 4699 #endif 4700 uuid_t uuid; 4701 uuid_gen(&uuid); 4702 super_set_uuid(sb, uuid.b, sizeof(uuid)); 4703 4704 #ifdef CONFIG_TMPFS_QUOTA 4705 if (ctx->seen & SHMEM_SEEN_QUOTA) { 4706 sb->dq_op = &shmem_quota_operations; 4707 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4708 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4709 4710 /* Copy the default limits from ctx into sbinfo */ 4711 memcpy(&sbinfo->qlimits, &ctx->qlimits, 4712 sizeof(struct shmem_quota_limits)); 4713 4714 if (shmem_enable_quotas(sb, ctx->quota_types)) 4715 goto failed; 4716 } 4717 #endif /* CONFIG_TMPFS_QUOTA */ 4718 4719 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 4720 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 4721 if (IS_ERR(inode)) { 4722 error = PTR_ERR(inode); 4723 goto failed; 4724 } 4725 inode->i_uid = sbinfo->uid; 4726 inode->i_gid = sbinfo->gid; 4727 sb->s_root = d_make_root(inode); 4728 if (!sb->s_root) 4729 goto failed; 4730 return 0; 4731 4732 failed: 4733 shmem_put_super(sb); 4734 return error; 4735 } 4736 4737 static int shmem_get_tree(struct fs_context *fc) 4738 { 4739 return get_tree_nodev(fc, shmem_fill_super); 4740 } 4741 4742 static void shmem_free_fc(struct fs_context *fc) 4743 { 4744 struct shmem_options *ctx = fc->fs_private; 4745 4746 if (ctx) { 4747 mpol_put(ctx->mpol); 4748 kfree(ctx); 4749 } 4750 } 4751 4752 static const struct fs_context_operations shmem_fs_context_ops = { 4753 .free = shmem_free_fc, 4754 .get_tree = shmem_get_tree, 4755 #ifdef CONFIG_TMPFS 4756 .parse_monolithic = shmem_parse_options, 4757 .parse_param = shmem_parse_one, 4758 .reconfigure = shmem_reconfigure, 4759 #endif 4760 }; 4761 4762 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 4763 4764 static struct inode *shmem_alloc_inode(struct super_block *sb) 4765 { 4766 struct shmem_inode_info *info; 4767 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 4768 if (!info) 4769 return NULL; 4770 return &info->vfs_inode; 4771 } 4772 4773 static void shmem_free_in_core_inode(struct inode *inode) 4774 { 4775 if (S_ISLNK(inode->i_mode)) 4776 kfree(inode->i_link); 4777 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 4778 } 4779 4780 static void shmem_destroy_inode(struct inode *inode) 4781 { 4782 if (S_ISREG(inode->i_mode)) 4783 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 4784 if (S_ISDIR(inode->i_mode)) 4785 simple_offset_destroy(shmem_get_offset_ctx(inode)); 4786 } 4787 4788 static void shmem_init_inode(void *foo) 4789 { 4790 struct shmem_inode_info *info = foo; 4791 inode_init_once(&info->vfs_inode); 4792 } 4793 4794 static void __init shmem_init_inodecache(void) 4795 { 4796 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 4797 sizeof(struct shmem_inode_info), 4798 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 4799 } 4800 4801 static void __init shmem_destroy_inodecache(void) 4802 { 4803 kmem_cache_destroy(shmem_inode_cachep); 4804 } 4805 4806 /* Keep the page in page cache instead of truncating it */ 4807 static int shmem_error_remove_folio(struct address_space *mapping, 4808 struct folio *folio) 4809 { 4810 return 0; 4811 } 4812 4813 static const struct address_space_operations shmem_aops = { 4814 .writepage = shmem_writepage, 4815 .dirty_folio = noop_dirty_folio, 4816 #ifdef CONFIG_TMPFS 4817 .write_begin = shmem_write_begin, 4818 .write_end = shmem_write_end, 4819 #endif 4820 #ifdef CONFIG_MIGRATION 4821 .migrate_folio = migrate_folio, 4822 #endif 4823 .error_remove_folio = shmem_error_remove_folio, 4824 }; 4825 4826 static const struct file_operations shmem_file_operations = { 4827 .mmap = shmem_mmap, 4828 .open = shmem_file_open, 4829 .get_unmapped_area = shmem_get_unmapped_area, 4830 #ifdef CONFIG_TMPFS 4831 .llseek = shmem_file_llseek, 4832 .read_iter = shmem_file_read_iter, 4833 .write_iter = shmem_file_write_iter, 4834 .fsync = noop_fsync, 4835 .splice_read = shmem_file_splice_read, 4836 .splice_write = iter_file_splice_write, 4837 .fallocate = shmem_fallocate, 4838 #endif 4839 }; 4840 4841 static const struct inode_operations shmem_inode_operations = { 4842 .getattr = shmem_getattr, 4843 .setattr = shmem_setattr, 4844 #ifdef CONFIG_TMPFS_XATTR 4845 .listxattr = shmem_listxattr, 4846 .set_acl = simple_set_acl, 4847 .fileattr_get = shmem_fileattr_get, 4848 .fileattr_set = shmem_fileattr_set, 4849 #endif 4850 }; 4851 4852 static const struct inode_operations shmem_dir_inode_operations = { 4853 #ifdef CONFIG_TMPFS 4854 .getattr = shmem_getattr, 4855 .create = shmem_create, 4856 .lookup = simple_lookup, 4857 .link = shmem_link, 4858 .unlink = shmem_unlink, 4859 .symlink = shmem_symlink, 4860 .mkdir = shmem_mkdir, 4861 .rmdir = shmem_rmdir, 4862 .mknod = shmem_mknod, 4863 .rename = shmem_rename2, 4864 .tmpfile = shmem_tmpfile, 4865 .get_offset_ctx = shmem_get_offset_ctx, 4866 #endif 4867 #ifdef CONFIG_TMPFS_XATTR 4868 .listxattr = shmem_listxattr, 4869 .fileattr_get = shmem_fileattr_get, 4870 .fileattr_set = shmem_fileattr_set, 4871 #endif 4872 #ifdef CONFIG_TMPFS_POSIX_ACL 4873 .setattr = shmem_setattr, 4874 .set_acl = simple_set_acl, 4875 #endif 4876 }; 4877 4878 static const struct inode_operations shmem_special_inode_operations = { 4879 .getattr = shmem_getattr, 4880 #ifdef CONFIG_TMPFS_XATTR 4881 .listxattr = shmem_listxattr, 4882 #endif 4883 #ifdef CONFIG_TMPFS_POSIX_ACL 4884 .setattr = shmem_setattr, 4885 .set_acl = simple_set_acl, 4886 #endif 4887 }; 4888 4889 static const struct super_operations shmem_ops = { 4890 .alloc_inode = shmem_alloc_inode, 4891 .free_inode = shmem_free_in_core_inode, 4892 .destroy_inode = shmem_destroy_inode, 4893 #ifdef CONFIG_TMPFS 4894 .statfs = shmem_statfs, 4895 .show_options = shmem_show_options, 4896 #endif 4897 #ifdef CONFIG_TMPFS_QUOTA 4898 .get_dquots = shmem_get_dquots, 4899 #endif 4900 .evict_inode = shmem_evict_inode, 4901 .drop_inode = generic_delete_inode, 4902 .put_super = shmem_put_super, 4903 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4904 .nr_cached_objects = shmem_unused_huge_count, 4905 .free_cached_objects = shmem_unused_huge_scan, 4906 #endif 4907 }; 4908 4909 static const struct vm_operations_struct shmem_vm_ops = { 4910 .fault = shmem_fault, 4911 .map_pages = filemap_map_pages, 4912 #ifdef CONFIG_NUMA 4913 .set_policy = shmem_set_policy, 4914 .get_policy = shmem_get_policy, 4915 #endif 4916 }; 4917 4918 static const struct vm_operations_struct shmem_anon_vm_ops = { 4919 .fault = shmem_fault, 4920 .map_pages = filemap_map_pages, 4921 #ifdef CONFIG_NUMA 4922 .set_policy = shmem_set_policy, 4923 .get_policy = shmem_get_policy, 4924 #endif 4925 }; 4926 4927 int shmem_init_fs_context(struct fs_context *fc) 4928 { 4929 struct shmem_options *ctx; 4930 4931 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4932 if (!ctx) 4933 return -ENOMEM; 4934 4935 ctx->mode = 0777 | S_ISVTX; 4936 ctx->uid = current_fsuid(); 4937 ctx->gid = current_fsgid(); 4938 4939 fc->fs_private = ctx; 4940 fc->ops = &shmem_fs_context_ops; 4941 return 0; 4942 } 4943 4944 static struct file_system_type shmem_fs_type = { 4945 .owner = THIS_MODULE, 4946 .name = "tmpfs", 4947 .init_fs_context = shmem_init_fs_context, 4948 #ifdef CONFIG_TMPFS 4949 .parameters = shmem_fs_parameters, 4950 #endif 4951 .kill_sb = kill_litter_super, 4952 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP, 4953 }; 4954 4955 void __init shmem_init(void) 4956 { 4957 int error; 4958 4959 shmem_init_inodecache(); 4960 4961 #ifdef CONFIG_TMPFS_QUOTA 4962 error = register_quota_format(&shmem_quota_format); 4963 if (error < 0) { 4964 pr_err("Could not register quota format\n"); 4965 goto out3; 4966 } 4967 #endif 4968 4969 error = register_filesystem(&shmem_fs_type); 4970 if (error) { 4971 pr_err("Could not register tmpfs\n"); 4972 goto out2; 4973 } 4974 4975 shm_mnt = kern_mount(&shmem_fs_type); 4976 if (IS_ERR(shm_mnt)) { 4977 error = PTR_ERR(shm_mnt); 4978 pr_err("Could not kern_mount tmpfs\n"); 4979 goto out1; 4980 } 4981 4982 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4983 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4984 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4985 else 4986 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4987 4988 /* 4989 * Default to setting PMD-sized THP to inherit the global setting and 4990 * disable all other multi-size THPs. 4991 */ 4992 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER); 4993 #endif 4994 return; 4995 4996 out1: 4997 unregister_filesystem(&shmem_fs_type); 4998 out2: 4999 #ifdef CONFIG_TMPFS_QUOTA 5000 unregister_quota_format(&shmem_quota_format); 5001 out3: 5002 #endif 5003 shmem_destroy_inodecache(); 5004 shm_mnt = ERR_PTR(error); 5005 } 5006 5007 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 5008 static ssize_t shmem_enabled_show(struct kobject *kobj, 5009 struct kobj_attribute *attr, char *buf) 5010 { 5011 static const int values[] = { 5012 SHMEM_HUGE_ALWAYS, 5013 SHMEM_HUGE_WITHIN_SIZE, 5014 SHMEM_HUGE_ADVISE, 5015 SHMEM_HUGE_NEVER, 5016 SHMEM_HUGE_DENY, 5017 SHMEM_HUGE_FORCE, 5018 }; 5019 int len = 0; 5020 int i; 5021 5022 for (i = 0; i < ARRAY_SIZE(values); i++) { 5023 len += sysfs_emit_at(buf, len, 5024 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 5025 i ? " " : "", shmem_format_huge(values[i])); 5026 } 5027 len += sysfs_emit_at(buf, len, "\n"); 5028 5029 return len; 5030 } 5031 5032 static ssize_t shmem_enabled_store(struct kobject *kobj, 5033 struct kobj_attribute *attr, const char *buf, size_t count) 5034 { 5035 char tmp[16]; 5036 int huge; 5037 5038 if (count + 1 > sizeof(tmp)) 5039 return -EINVAL; 5040 memcpy(tmp, buf, count); 5041 tmp[count] = '\0'; 5042 if (count && tmp[count - 1] == '\n') 5043 tmp[count - 1] = '\0'; 5044 5045 huge = shmem_parse_huge(tmp); 5046 if (huge == -EINVAL) 5047 return -EINVAL; 5048 if (!has_transparent_hugepage() && 5049 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 5050 return -EINVAL; 5051 5052 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5053 if (huge == SHMEM_HUGE_FORCE && 5054 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER)) 5055 return -EINVAL; 5056 5057 shmem_huge = huge; 5058 if (shmem_huge > SHMEM_HUGE_DENY) 5059 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5060 return count; 5061 } 5062 5063 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 5064 static DEFINE_SPINLOCK(huge_shmem_orders_lock); 5065 5066 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj, 5067 struct kobj_attribute *attr, char *buf) 5068 { 5069 int order = to_thpsize(kobj)->order; 5070 const char *output; 5071 5072 if (test_bit(order, &huge_shmem_orders_always)) 5073 output = "[always] inherit within_size advise never"; 5074 else if (test_bit(order, &huge_shmem_orders_inherit)) 5075 output = "always [inherit] within_size advise never"; 5076 else if (test_bit(order, &huge_shmem_orders_within_size)) 5077 output = "always inherit [within_size] advise never"; 5078 else if (test_bit(order, &huge_shmem_orders_madvise)) 5079 output = "always inherit within_size [advise] never"; 5080 else 5081 output = "always inherit within_size advise [never]"; 5082 5083 return sysfs_emit(buf, "%s\n", output); 5084 } 5085 5086 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj, 5087 struct kobj_attribute *attr, 5088 const char *buf, size_t count) 5089 { 5090 int order = to_thpsize(kobj)->order; 5091 ssize_t ret = count; 5092 5093 if (sysfs_streq(buf, "always")) { 5094 spin_lock(&huge_shmem_orders_lock); 5095 clear_bit(order, &huge_shmem_orders_inherit); 5096 clear_bit(order, &huge_shmem_orders_madvise); 5097 clear_bit(order, &huge_shmem_orders_within_size); 5098 set_bit(order, &huge_shmem_orders_always); 5099 spin_unlock(&huge_shmem_orders_lock); 5100 } else if (sysfs_streq(buf, "inherit")) { 5101 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5102 if (shmem_huge == SHMEM_HUGE_FORCE && 5103 order != HPAGE_PMD_ORDER) 5104 return -EINVAL; 5105 5106 spin_lock(&huge_shmem_orders_lock); 5107 clear_bit(order, &huge_shmem_orders_always); 5108 clear_bit(order, &huge_shmem_orders_madvise); 5109 clear_bit(order, &huge_shmem_orders_within_size); 5110 set_bit(order, &huge_shmem_orders_inherit); 5111 spin_unlock(&huge_shmem_orders_lock); 5112 } else if (sysfs_streq(buf, "within_size")) { 5113 spin_lock(&huge_shmem_orders_lock); 5114 clear_bit(order, &huge_shmem_orders_always); 5115 clear_bit(order, &huge_shmem_orders_inherit); 5116 clear_bit(order, &huge_shmem_orders_madvise); 5117 set_bit(order, &huge_shmem_orders_within_size); 5118 spin_unlock(&huge_shmem_orders_lock); 5119 } else if (sysfs_streq(buf, "advise")) { 5120 spin_lock(&huge_shmem_orders_lock); 5121 clear_bit(order, &huge_shmem_orders_always); 5122 clear_bit(order, &huge_shmem_orders_inherit); 5123 clear_bit(order, &huge_shmem_orders_within_size); 5124 set_bit(order, &huge_shmem_orders_madvise); 5125 spin_unlock(&huge_shmem_orders_lock); 5126 } else if (sysfs_streq(buf, "never")) { 5127 spin_lock(&huge_shmem_orders_lock); 5128 clear_bit(order, &huge_shmem_orders_always); 5129 clear_bit(order, &huge_shmem_orders_inherit); 5130 clear_bit(order, &huge_shmem_orders_within_size); 5131 clear_bit(order, &huge_shmem_orders_madvise); 5132 spin_unlock(&huge_shmem_orders_lock); 5133 } else { 5134 ret = -EINVAL; 5135 } 5136 5137 return ret; 5138 } 5139 5140 struct kobj_attribute thpsize_shmem_enabled_attr = 5141 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store); 5142 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 5143 5144 #else /* !CONFIG_SHMEM */ 5145 5146 /* 5147 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 5148 * 5149 * This is intended for small system where the benefits of the full 5150 * shmem code (swap-backed and resource-limited) are outweighed by 5151 * their complexity. On systems without swap this code should be 5152 * effectively equivalent, but much lighter weight. 5153 */ 5154 5155 static struct file_system_type shmem_fs_type = { 5156 .name = "tmpfs", 5157 .init_fs_context = ramfs_init_fs_context, 5158 .parameters = ramfs_fs_parameters, 5159 .kill_sb = ramfs_kill_sb, 5160 .fs_flags = FS_USERNS_MOUNT, 5161 }; 5162 5163 void __init shmem_init(void) 5164 { 5165 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 5166 5167 shm_mnt = kern_mount(&shmem_fs_type); 5168 BUG_ON(IS_ERR(shm_mnt)); 5169 } 5170 5171 int shmem_unuse(unsigned int type) 5172 { 5173 return 0; 5174 } 5175 5176 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 5177 { 5178 return 0; 5179 } 5180 5181 void shmem_unlock_mapping(struct address_space *mapping) 5182 { 5183 } 5184 5185 #ifdef CONFIG_MMU 5186 unsigned long shmem_get_unmapped_area(struct file *file, 5187 unsigned long addr, unsigned long len, 5188 unsigned long pgoff, unsigned long flags) 5189 { 5190 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags); 5191 } 5192 #endif 5193 5194 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 5195 { 5196 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 5197 } 5198 EXPORT_SYMBOL_GPL(shmem_truncate_range); 5199 5200 #define shmem_vm_ops generic_file_vm_ops 5201 #define shmem_anon_vm_ops generic_file_vm_ops 5202 #define shmem_file_operations ramfs_file_operations 5203 #define shmem_acct_size(flags, size) 0 5204 #define shmem_unacct_size(flags, size) do {} while (0) 5205 5206 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 5207 struct super_block *sb, struct inode *dir, 5208 umode_t mode, dev_t dev, unsigned long flags) 5209 { 5210 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 5211 return inode ? inode : ERR_PTR(-ENOSPC); 5212 } 5213 5214 #endif /* CONFIG_SHMEM */ 5215 5216 /* common code */ 5217 5218 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 5219 loff_t size, unsigned long flags, unsigned int i_flags) 5220 { 5221 struct inode *inode; 5222 struct file *res; 5223 5224 if (IS_ERR(mnt)) 5225 return ERR_CAST(mnt); 5226 5227 if (size < 0 || size > MAX_LFS_FILESIZE) 5228 return ERR_PTR(-EINVAL); 5229 5230 if (shmem_acct_size(flags, size)) 5231 return ERR_PTR(-ENOMEM); 5232 5233 if (is_idmapped_mnt(mnt)) 5234 return ERR_PTR(-EINVAL); 5235 5236 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 5237 S_IFREG | S_IRWXUGO, 0, flags); 5238 if (IS_ERR(inode)) { 5239 shmem_unacct_size(flags, size); 5240 return ERR_CAST(inode); 5241 } 5242 inode->i_flags |= i_flags; 5243 inode->i_size = size; 5244 clear_nlink(inode); /* It is unlinked */ 5245 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 5246 if (!IS_ERR(res)) 5247 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 5248 &shmem_file_operations); 5249 if (IS_ERR(res)) 5250 iput(inode); 5251 return res; 5252 } 5253 5254 /** 5255 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 5256 * kernel internal. There will be NO LSM permission checks against the 5257 * underlying inode. So users of this interface must do LSM checks at a 5258 * higher layer. The users are the big_key and shm implementations. LSM 5259 * checks are provided at the key or shm level rather than the inode. 5260 * @name: name for dentry (to be seen in /proc/<pid>/maps 5261 * @size: size to be set for the file 5262 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5263 */ 5264 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 5265 { 5266 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 5267 } 5268 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 5269 5270 /** 5271 * shmem_file_setup - get an unlinked file living in tmpfs 5272 * @name: name for dentry (to be seen in /proc/<pid>/maps 5273 * @size: size to be set for the file 5274 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5275 */ 5276 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 5277 { 5278 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 5279 } 5280 EXPORT_SYMBOL_GPL(shmem_file_setup); 5281 5282 /** 5283 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 5284 * @mnt: the tmpfs mount where the file will be created 5285 * @name: name for dentry (to be seen in /proc/<pid>/maps 5286 * @size: size to be set for the file 5287 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5288 */ 5289 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 5290 loff_t size, unsigned long flags) 5291 { 5292 return __shmem_file_setup(mnt, name, size, flags, 0); 5293 } 5294 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 5295 5296 /** 5297 * shmem_zero_setup - setup a shared anonymous mapping 5298 * @vma: the vma to be mmapped is prepared by do_mmap 5299 */ 5300 int shmem_zero_setup(struct vm_area_struct *vma) 5301 { 5302 struct file *file; 5303 loff_t size = vma->vm_end - vma->vm_start; 5304 5305 /* 5306 * Cloning a new file under mmap_lock leads to a lock ordering conflict 5307 * between XFS directory reading and selinux: since this file is only 5308 * accessible to the user through its mapping, use S_PRIVATE flag to 5309 * bypass file security, in the same way as shmem_kernel_file_setup(). 5310 */ 5311 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 5312 if (IS_ERR(file)) 5313 return PTR_ERR(file); 5314 5315 if (vma->vm_file) 5316 fput(vma->vm_file); 5317 vma->vm_file = file; 5318 vma->vm_ops = &shmem_anon_vm_ops; 5319 5320 return 0; 5321 } 5322 5323 /** 5324 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 5325 * @mapping: the folio's address_space 5326 * @index: the folio index 5327 * @gfp: the page allocator flags to use if allocating 5328 * 5329 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 5330 * with any new page allocations done using the specified allocation flags. 5331 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 5332 * suit tmpfs, since it may have pages in swapcache, and needs to find those 5333 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 5334 * 5335 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 5336 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 5337 */ 5338 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 5339 pgoff_t index, gfp_t gfp) 5340 { 5341 #ifdef CONFIG_SHMEM 5342 struct inode *inode = mapping->host; 5343 struct folio *folio; 5344 int error; 5345 5346 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE, 5347 gfp, NULL, NULL); 5348 if (error) 5349 return ERR_PTR(error); 5350 5351 folio_unlock(folio); 5352 return folio; 5353 #else 5354 /* 5355 * The tiny !SHMEM case uses ramfs without swap 5356 */ 5357 return mapping_read_folio_gfp(mapping, index, gfp); 5358 #endif 5359 } 5360 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 5361 5362 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 5363 pgoff_t index, gfp_t gfp) 5364 { 5365 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 5366 struct page *page; 5367 5368 if (IS_ERR(folio)) 5369 return &folio->page; 5370 5371 page = folio_file_page(folio, index); 5372 if (PageHWPoison(page)) { 5373 folio_put(folio); 5374 return ERR_PTR(-EIO); 5375 } 5376 5377 return page; 5378 } 5379 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 5380