1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include "swap.h" 44 45 static struct vfsmount *shm_mnt __ro_after_init; 46 47 #ifdef CONFIG_SHMEM 48 /* 49 * This virtual memory filesystem is heavily based on the ramfs. It 50 * extends ramfs by the ability to use swap and honor resource limits 51 * which makes it a completely usable filesystem. 52 */ 53 54 #include <linux/xattr.h> 55 #include <linux/exportfs.h> 56 #include <linux/posix_acl.h> 57 #include <linux/posix_acl_xattr.h> 58 #include <linux/mman.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/backing-dev.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 #include <linux/quotaops.h> 82 #include <linux/rcupdate_wait.h> 83 84 #include <linux/uaccess.h> 85 86 #include "internal.h" 87 88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Pretend that one inode + its dentry occupy this much memory */ 95 #define BOGO_INODE_SIZE 1024 96 97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 98 #define SHORT_SYMLINK_LEN 128 99 100 /* 101 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 102 * inode->i_private (with i_rwsem making sure that it has only one user at 103 * a time): we would prefer not to enlarge the shmem inode just for that. 104 */ 105 struct shmem_falloc { 106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 107 pgoff_t start; /* start of range currently being fallocated */ 108 pgoff_t next; /* the next page offset to be fallocated */ 109 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 110 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 111 }; 112 113 struct shmem_options { 114 unsigned long long blocks; 115 unsigned long long inodes; 116 struct mempolicy *mpol; 117 kuid_t uid; 118 kgid_t gid; 119 umode_t mode; 120 bool full_inums; 121 int huge; 122 int seen; 123 bool noswap; 124 unsigned short quota_types; 125 struct shmem_quota_limits qlimits; 126 #define SHMEM_SEEN_BLOCKS 1 127 #define SHMEM_SEEN_INODES 2 128 #define SHMEM_SEEN_HUGE 4 129 #define SHMEM_SEEN_INUMS 8 130 #define SHMEM_SEEN_NOSWAP 16 131 #define SHMEM_SEEN_QUOTA 32 132 }; 133 134 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 135 static unsigned long huge_shmem_orders_always __read_mostly; 136 static unsigned long huge_shmem_orders_madvise __read_mostly; 137 static unsigned long huge_shmem_orders_inherit __read_mostly; 138 static unsigned long huge_shmem_orders_within_size __read_mostly; 139 #endif 140 141 #ifdef CONFIG_TMPFS 142 static unsigned long shmem_default_max_blocks(void) 143 { 144 return totalram_pages() / 2; 145 } 146 147 static unsigned long shmem_default_max_inodes(void) 148 { 149 unsigned long nr_pages = totalram_pages(); 150 151 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 152 ULONG_MAX / BOGO_INODE_SIZE); 153 } 154 #endif 155 156 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 157 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 158 struct vm_area_struct *vma, vm_fault_t *fault_type); 159 160 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 161 { 162 return sb->s_fs_info; 163 } 164 165 /* 166 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 167 * for shared memory and for shared anonymous (/dev/zero) mappings 168 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 169 * consistent with the pre-accounting of private mappings ... 170 */ 171 static inline int shmem_acct_size(unsigned long flags, loff_t size) 172 { 173 return (flags & VM_NORESERVE) ? 174 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 175 } 176 177 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 178 { 179 if (!(flags & VM_NORESERVE)) 180 vm_unacct_memory(VM_ACCT(size)); 181 } 182 183 static inline int shmem_reacct_size(unsigned long flags, 184 loff_t oldsize, loff_t newsize) 185 { 186 if (!(flags & VM_NORESERVE)) { 187 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 188 return security_vm_enough_memory_mm(current->mm, 189 VM_ACCT(newsize) - VM_ACCT(oldsize)); 190 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 191 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 192 } 193 return 0; 194 } 195 196 /* 197 * ... whereas tmpfs objects are accounted incrementally as 198 * pages are allocated, in order to allow large sparse files. 199 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 200 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 201 */ 202 static inline int shmem_acct_blocks(unsigned long flags, long pages) 203 { 204 if (!(flags & VM_NORESERVE)) 205 return 0; 206 207 return security_vm_enough_memory_mm(current->mm, 208 pages * VM_ACCT(PAGE_SIZE)); 209 } 210 211 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 212 { 213 if (flags & VM_NORESERVE) 214 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 215 } 216 217 static int shmem_inode_acct_blocks(struct inode *inode, long pages) 218 { 219 struct shmem_inode_info *info = SHMEM_I(inode); 220 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 221 int err = -ENOSPC; 222 223 if (shmem_acct_blocks(info->flags, pages)) 224 return err; 225 226 might_sleep(); /* when quotas */ 227 if (sbinfo->max_blocks) { 228 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 229 sbinfo->max_blocks, pages)) 230 goto unacct; 231 232 err = dquot_alloc_block_nodirty(inode, pages); 233 if (err) { 234 percpu_counter_sub(&sbinfo->used_blocks, pages); 235 goto unacct; 236 } 237 } else { 238 err = dquot_alloc_block_nodirty(inode, pages); 239 if (err) 240 goto unacct; 241 } 242 243 return 0; 244 245 unacct: 246 shmem_unacct_blocks(info->flags, pages); 247 return err; 248 } 249 250 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 251 { 252 struct shmem_inode_info *info = SHMEM_I(inode); 253 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 254 255 might_sleep(); /* when quotas */ 256 dquot_free_block_nodirty(inode, pages); 257 258 if (sbinfo->max_blocks) 259 percpu_counter_sub(&sbinfo->used_blocks, pages); 260 shmem_unacct_blocks(info->flags, pages); 261 } 262 263 static const struct super_operations shmem_ops; 264 static const struct address_space_operations shmem_aops; 265 static const struct file_operations shmem_file_operations; 266 static const struct inode_operations shmem_inode_operations; 267 static const struct inode_operations shmem_dir_inode_operations; 268 static const struct inode_operations shmem_special_inode_operations; 269 static const struct vm_operations_struct shmem_vm_ops; 270 static const struct vm_operations_struct shmem_anon_vm_ops; 271 static struct file_system_type shmem_fs_type; 272 273 bool shmem_mapping(struct address_space *mapping) 274 { 275 return mapping->a_ops == &shmem_aops; 276 } 277 EXPORT_SYMBOL_GPL(shmem_mapping); 278 279 bool vma_is_anon_shmem(struct vm_area_struct *vma) 280 { 281 return vma->vm_ops == &shmem_anon_vm_ops; 282 } 283 284 bool vma_is_shmem(struct vm_area_struct *vma) 285 { 286 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 287 } 288 289 static LIST_HEAD(shmem_swaplist); 290 static DEFINE_MUTEX(shmem_swaplist_mutex); 291 292 #ifdef CONFIG_TMPFS_QUOTA 293 294 static int shmem_enable_quotas(struct super_block *sb, 295 unsigned short quota_types) 296 { 297 int type, err = 0; 298 299 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 300 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 301 if (!(quota_types & (1 << type))) 302 continue; 303 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 304 DQUOT_USAGE_ENABLED | 305 DQUOT_LIMITS_ENABLED); 306 if (err) 307 goto out_err; 308 } 309 return 0; 310 311 out_err: 312 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 313 type, err); 314 for (type--; type >= 0; type--) 315 dquot_quota_off(sb, type); 316 return err; 317 } 318 319 static void shmem_disable_quotas(struct super_block *sb) 320 { 321 int type; 322 323 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 324 dquot_quota_off(sb, type); 325 } 326 327 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 328 { 329 return SHMEM_I(inode)->i_dquot; 330 } 331 #endif /* CONFIG_TMPFS_QUOTA */ 332 333 /* 334 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 335 * produces a novel ino for the newly allocated inode. 336 * 337 * It may also be called when making a hard link to permit the space needed by 338 * each dentry. However, in that case, no new inode number is needed since that 339 * internally draws from another pool of inode numbers (currently global 340 * get_next_ino()). This case is indicated by passing NULL as inop. 341 */ 342 #define SHMEM_INO_BATCH 1024 343 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 344 { 345 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 346 ino_t ino; 347 348 if (!(sb->s_flags & SB_KERNMOUNT)) { 349 raw_spin_lock(&sbinfo->stat_lock); 350 if (sbinfo->max_inodes) { 351 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 352 raw_spin_unlock(&sbinfo->stat_lock); 353 return -ENOSPC; 354 } 355 sbinfo->free_ispace -= BOGO_INODE_SIZE; 356 } 357 if (inop) { 358 ino = sbinfo->next_ino++; 359 if (unlikely(is_zero_ino(ino))) 360 ino = sbinfo->next_ino++; 361 if (unlikely(!sbinfo->full_inums && 362 ino > UINT_MAX)) { 363 /* 364 * Emulate get_next_ino uint wraparound for 365 * compatibility 366 */ 367 if (IS_ENABLED(CONFIG_64BIT)) 368 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 369 __func__, MINOR(sb->s_dev)); 370 sbinfo->next_ino = 1; 371 ino = sbinfo->next_ino++; 372 } 373 *inop = ino; 374 } 375 raw_spin_unlock(&sbinfo->stat_lock); 376 } else if (inop) { 377 /* 378 * __shmem_file_setup, one of our callers, is lock-free: it 379 * doesn't hold stat_lock in shmem_reserve_inode since 380 * max_inodes is always 0, and is called from potentially 381 * unknown contexts. As such, use a per-cpu batched allocator 382 * which doesn't require the per-sb stat_lock unless we are at 383 * the batch boundary. 384 * 385 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 386 * shmem mounts are not exposed to userspace, so we don't need 387 * to worry about things like glibc compatibility. 388 */ 389 ino_t *next_ino; 390 391 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 392 ino = *next_ino; 393 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 394 raw_spin_lock(&sbinfo->stat_lock); 395 ino = sbinfo->next_ino; 396 sbinfo->next_ino += SHMEM_INO_BATCH; 397 raw_spin_unlock(&sbinfo->stat_lock); 398 if (unlikely(is_zero_ino(ino))) 399 ino++; 400 } 401 *inop = ino; 402 *next_ino = ++ino; 403 put_cpu(); 404 } 405 406 return 0; 407 } 408 409 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 410 { 411 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 412 if (sbinfo->max_inodes) { 413 raw_spin_lock(&sbinfo->stat_lock); 414 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 415 raw_spin_unlock(&sbinfo->stat_lock); 416 } 417 } 418 419 /** 420 * shmem_recalc_inode - recalculate the block usage of an inode 421 * @inode: inode to recalc 422 * @alloced: the change in number of pages allocated to inode 423 * @swapped: the change in number of pages swapped from inode 424 * 425 * We have to calculate the free blocks since the mm can drop 426 * undirtied hole pages behind our back. 427 * 428 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 429 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 430 */ 431 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 432 { 433 struct shmem_inode_info *info = SHMEM_I(inode); 434 long freed; 435 436 spin_lock(&info->lock); 437 info->alloced += alloced; 438 info->swapped += swapped; 439 freed = info->alloced - info->swapped - 440 READ_ONCE(inode->i_mapping->nrpages); 441 /* 442 * Special case: whereas normally shmem_recalc_inode() is called 443 * after i_mapping->nrpages has already been adjusted (up or down), 444 * shmem_writepage() has to raise swapped before nrpages is lowered - 445 * to stop a racing shmem_recalc_inode() from thinking that a page has 446 * been freed. Compensate here, to avoid the need for a followup call. 447 */ 448 if (swapped > 0) 449 freed += swapped; 450 if (freed > 0) 451 info->alloced -= freed; 452 spin_unlock(&info->lock); 453 454 /* The quota case may block */ 455 if (freed > 0) 456 shmem_inode_unacct_blocks(inode, freed); 457 } 458 459 bool shmem_charge(struct inode *inode, long pages) 460 { 461 struct address_space *mapping = inode->i_mapping; 462 463 if (shmem_inode_acct_blocks(inode, pages)) 464 return false; 465 466 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 467 xa_lock_irq(&mapping->i_pages); 468 mapping->nrpages += pages; 469 xa_unlock_irq(&mapping->i_pages); 470 471 shmem_recalc_inode(inode, pages, 0); 472 return true; 473 } 474 475 void shmem_uncharge(struct inode *inode, long pages) 476 { 477 /* pages argument is currently unused: keep it to help debugging */ 478 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 479 480 shmem_recalc_inode(inode, 0, 0); 481 } 482 483 /* 484 * Replace item expected in xarray by a new item, while holding xa_lock. 485 */ 486 static int shmem_replace_entry(struct address_space *mapping, 487 pgoff_t index, void *expected, void *replacement) 488 { 489 XA_STATE(xas, &mapping->i_pages, index); 490 void *item; 491 492 VM_BUG_ON(!expected); 493 VM_BUG_ON(!replacement); 494 item = xas_load(&xas); 495 if (item != expected) 496 return -ENOENT; 497 xas_store(&xas, replacement); 498 return 0; 499 } 500 501 /* 502 * Sometimes, before we decide whether to proceed or to fail, we must check 503 * that an entry was not already brought back from swap by a racing thread. 504 * 505 * Checking folio is not enough: by the time a swapcache folio is locked, it 506 * might be reused, and again be swapcache, using the same swap as before. 507 */ 508 static bool shmem_confirm_swap(struct address_space *mapping, 509 pgoff_t index, swp_entry_t swap) 510 { 511 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 512 } 513 514 /* 515 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 516 * 517 * SHMEM_HUGE_NEVER: 518 * disables huge pages for the mount; 519 * SHMEM_HUGE_ALWAYS: 520 * enables huge pages for the mount; 521 * SHMEM_HUGE_WITHIN_SIZE: 522 * only allocate huge pages if the page will be fully within i_size, 523 * also respect fadvise()/madvise() hints; 524 * SHMEM_HUGE_ADVISE: 525 * only allocate huge pages if requested with fadvise()/madvise(); 526 */ 527 528 #define SHMEM_HUGE_NEVER 0 529 #define SHMEM_HUGE_ALWAYS 1 530 #define SHMEM_HUGE_WITHIN_SIZE 2 531 #define SHMEM_HUGE_ADVISE 3 532 533 /* 534 * Special values. 535 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 536 * 537 * SHMEM_HUGE_DENY: 538 * disables huge on shm_mnt and all mounts, for emergency use; 539 * SHMEM_HUGE_FORCE: 540 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 541 * 542 */ 543 #define SHMEM_HUGE_DENY (-1) 544 #define SHMEM_HUGE_FORCE (-2) 545 546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 547 /* ifdef here to avoid bloating shmem.o when not necessary */ 548 549 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 550 551 static bool __shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 552 loff_t write_end, bool shmem_huge_force, 553 struct vm_area_struct *vma, 554 unsigned long vm_flags) 555 { 556 struct mm_struct *mm = vma ? vma->vm_mm : NULL; 557 loff_t i_size; 558 559 if (!S_ISREG(inode->i_mode)) 560 return false; 561 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags))) 562 return false; 563 if (shmem_huge == SHMEM_HUGE_DENY) 564 return false; 565 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 566 return true; 567 568 switch (SHMEM_SB(inode->i_sb)->huge) { 569 case SHMEM_HUGE_ALWAYS: 570 return true; 571 case SHMEM_HUGE_WITHIN_SIZE: 572 index = round_up(index + 1, HPAGE_PMD_NR); 573 i_size = max(write_end, i_size_read(inode)); 574 i_size = round_up(i_size, PAGE_SIZE); 575 if (i_size >> PAGE_SHIFT >= index) 576 return true; 577 fallthrough; 578 case SHMEM_HUGE_ADVISE: 579 if (mm && (vm_flags & VM_HUGEPAGE)) 580 return true; 581 fallthrough; 582 default: 583 return false; 584 } 585 } 586 587 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 588 loff_t write_end, bool shmem_huge_force, 589 struct vm_area_struct *vma, unsigned long vm_flags) 590 { 591 if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER) 592 return false; 593 594 return __shmem_huge_global_enabled(inode, index, write_end, 595 shmem_huge_force, vma, vm_flags); 596 } 597 598 #if defined(CONFIG_SYSFS) 599 static int shmem_parse_huge(const char *str) 600 { 601 if (!strcmp(str, "never")) 602 return SHMEM_HUGE_NEVER; 603 if (!strcmp(str, "always")) 604 return SHMEM_HUGE_ALWAYS; 605 if (!strcmp(str, "within_size")) 606 return SHMEM_HUGE_WITHIN_SIZE; 607 if (!strcmp(str, "advise")) 608 return SHMEM_HUGE_ADVISE; 609 if (!strcmp(str, "deny")) 610 return SHMEM_HUGE_DENY; 611 if (!strcmp(str, "force")) 612 return SHMEM_HUGE_FORCE; 613 return -EINVAL; 614 } 615 #endif 616 617 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 618 static const char *shmem_format_huge(int huge) 619 { 620 switch (huge) { 621 case SHMEM_HUGE_NEVER: 622 return "never"; 623 case SHMEM_HUGE_ALWAYS: 624 return "always"; 625 case SHMEM_HUGE_WITHIN_SIZE: 626 return "within_size"; 627 case SHMEM_HUGE_ADVISE: 628 return "advise"; 629 case SHMEM_HUGE_DENY: 630 return "deny"; 631 case SHMEM_HUGE_FORCE: 632 return "force"; 633 default: 634 VM_BUG_ON(1); 635 return "bad_val"; 636 } 637 } 638 #endif 639 640 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 641 struct shrink_control *sc, unsigned long nr_to_free) 642 { 643 LIST_HEAD(list), *pos, *next; 644 struct inode *inode; 645 struct shmem_inode_info *info; 646 struct folio *folio; 647 unsigned long batch = sc ? sc->nr_to_scan : 128; 648 unsigned long split = 0, freed = 0; 649 650 if (list_empty(&sbinfo->shrinklist)) 651 return SHRINK_STOP; 652 653 spin_lock(&sbinfo->shrinklist_lock); 654 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 655 info = list_entry(pos, struct shmem_inode_info, shrinklist); 656 657 /* pin the inode */ 658 inode = igrab(&info->vfs_inode); 659 660 /* inode is about to be evicted */ 661 if (!inode) { 662 list_del_init(&info->shrinklist); 663 goto next; 664 } 665 666 list_move(&info->shrinklist, &list); 667 next: 668 sbinfo->shrinklist_len--; 669 if (!--batch) 670 break; 671 } 672 spin_unlock(&sbinfo->shrinklist_lock); 673 674 list_for_each_safe(pos, next, &list) { 675 pgoff_t next, end; 676 loff_t i_size; 677 int ret; 678 679 info = list_entry(pos, struct shmem_inode_info, shrinklist); 680 inode = &info->vfs_inode; 681 682 if (nr_to_free && freed >= nr_to_free) 683 goto move_back; 684 685 i_size = i_size_read(inode); 686 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE); 687 if (!folio || xa_is_value(folio)) 688 goto drop; 689 690 /* No large folio at the end of the file: nothing to split */ 691 if (!folio_test_large(folio)) { 692 folio_put(folio); 693 goto drop; 694 } 695 696 /* Check if there is anything to gain from splitting */ 697 next = folio_next_index(folio); 698 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE)); 699 if (end <= folio->index || end >= next) { 700 folio_put(folio); 701 goto drop; 702 } 703 704 /* 705 * Move the inode on the list back to shrinklist if we failed 706 * to lock the page at this time. 707 * 708 * Waiting for the lock may lead to deadlock in the 709 * reclaim path. 710 */ 711 if (!folio_trylock(folio)) { 712 folio_put(folio); 713 goto move_back; 714 } 715 716 ret = split_folio(folio); 717 folio_unlock(folio); 718 folio_put(folio); 719 720 /* If split failed move the inode on the list back to shrinklist */ 721 if (ret) 722 goto move_back; 723 724 freed += next - end; 725 split++; 726 drop: 727 list_del_init(&info->shrinklist); 728 goto put; 729 move_back: 730 /* 731 * Make sure the inode is either on the global list or deleted 732 * from any local list before iput() since it could be deleted 733 * in another thread once we put the inode (then the local list 734 * is corrupted). 735 */ 736 spin_lock(&sbinfo->shrinklist_lock); 737 list_move(&info->shrinklist, &sbinfo->shrinklist); 738 sbinfo->shrinklist_len++; 739 spin_unlock(&sbinfo->shrinklist_lock); 740 put: 741 iput(inode); 742 } 743 744 return split; 745 } 746 747 static long shmem_unused_huge_scan(struct super_block *sb, 748 struct shrink_control *sc) 749 { 750 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 751 752 if (!READ_ONCE(sbinfo->shrinklist_len)) 753 return SHRINK_STOP; 754 755 return shmem_unused_huge_shrink(sbinfo, sc, 0); 756 } 757 758 static long shmem_unused_huge_count(struct super_block *sb, 759 struct shrink_control *sc) 760 { 761 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 762 return READ_ONCE(sbinfo->shrinklist_len); 763 } 764 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 765 766 #define shmem_huge SHMEM_HUGE_DENY 767 768 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 769 struct shrink_control *sc, unsigned long nr_to_free) 770 { 771 return 0; 772 } 773 774 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 775 loff_t write_end, bool shmem_huge_force, 776 struct vm_area_struct *vma, unsigned long vm_flags) 777 { 778 return false; 779 } 780 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 781 782 /* 783 * Somewhat like filemap_add_folio, but error if expected item has gone. 784 */ 785 static int shmem_add_to_page_cache(struct folio *folio, 786 struct address_space *mapping, 787 pgoff_t index, void *expected, gfp_t gfp) 788 { 789 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 790 long nr = folio_nr_pages(folio); 791 792 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 793 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 794 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 795 796 folio_ref_add(folio, nr); 797 folio->mapping = mapping; 798 folio->index = index; 799 800 gfp &= GFP_RECLAIM_MASK; 801 folio_throttle_swaprate(folio, gfp); 802 803 do { 804 xas_lock_irq(&xas); 805 if (expected != xas_find_conflict(&xas)) { 806 xas_set_err(&xas, -EEXIST); 807 goto unlock; 808 } 809 if (expected && xas_find_conflict(&xas)) { 810 xas_set_err(&xas, -EEXIST); 811 goto unlock; 812 } 813 xas_store(&xas, folio); 814 if (xas_error(&xas)) 815 goto unlock; 816 if (folio_test_pmd_mappable(folio)) 817 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 818 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 819 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 820 mapping->nrpages += nr; 821 unlock: 822 xas_unlock_irq(&xas); 823 } while (xas_nomem(&xas, gfp)); 824 825 if (xas_error(&xas)) { 826 folio->mapping = NULL; 827 folio_ref_sub(folio, nr); 828 return xas_error(&xas); 829 } 830 831 return 0; 832 } 833 834 /* 835 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 836 */ 837 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 838 { 839 struct address_space *mapping = folio->mapping; 840 long nr = folio_nr_pages(folio); 841 int error; 842 843 xa_lock_irq(&mapping->i_pages); 844 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 845 folio->mapping = NULL; 846 mapping->nrpages -= nr; 847 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 848 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 849 xa_unlock_irq(&mapping->i_pages); 850 folio_put_refs(folio, nr); 851 BUG_ON(error); 852 } 853 854 /* 855 * Remove swap entry from page cache, free the swap and its page cache. Returns 856 * the number of pages being freed. 0 means entry not found in XArray (0 pages 857 * being freed). 858 */ 859 static long shmem_free_swap(struct address_space *mapping, 860 pgoff_t index, void *radswap) 861 { 862 int order = xa_get_order(&mapping->i_pages, index); 863 void *old; 864 865 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 866 if (old != radswap) 867 return 0; 868 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order); 869 870 return 1 << order; 871 } 872 873 /* 874 * Determine (in bytes) how many of the shmem object's pages mapped by the 875 * given offsets are swapped out. 876 * 877 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 878 * as long as the inode doesn't go away and racy results are not a problem. 879 */ 880 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 881 pgoff_t start, pgoff_t end) 882 { 883 XA_STATE(xas, &mapping->i_pages, start); 884 struct page *page; 885 unsigned long swapped = 0; 886 unsigned long max = end - 1; 887 888 rcu_read_lock(); 889 xas_for_each(&xas, page, max) { 890 if (xas_retry(&xas, page)) 891 continue; 892 if (xa_is_value(page)) 893 swapped += 1 << xa_get_order(xas.xa, xas.xa_index); 894 if (xas.xa_index == max) 895 break; 896 if (need_resched()) { 897 xas_pause(&xas); 898 cond_resched_rcu(); 899 } 900 } 901 rcu_read_unlock(); 902 903 return swapped << PAGE_SHIFT; 904 } 905 906 /* 907 * Determine (in bytes) how many of the shmem object's pages mapped by the 908 * given vma is swapped out. 909 * 910 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 911 * as long as the inode doesn't go away and racy results are not a problem. 912 */ 913 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 914 { 915 struct inode *inode = file_inode(vma->vm_file); 916 struct shmem_inode_info *info = SHMEM_I(inode); 917 struct address_space *mapping = inode->i_mapping; 918 unsigned long swapped; 919 920 /* Be careful as we don't hold info->lock */ 921 swapped = READ_ONCE(info->swapped); 922 923 /* 924 * The easier cases are when the shmem object has nothing in swap, or 925 * the vma maps it whole. Then we can simply use the stats that we 926 * already track. 927 */ 928 if (!swapped) 929 return 0; 930 931 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 932 return swapped << PAGE_SHIFT; 933 934 /* Here comes the more involved part */ 935 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 936 vma->vm_pgoff + vma_pages(vma)); 937 } 938 939 /* 940 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 941 */ 942 void shmem_unlock_mapping(struct address_space *mapping) 943 { 944 struct folio_batch fbatch; 945 pgoff_t index = 0; 946 947 folio_batch_init(&fbatch); 948 /* 949 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 950 */ 951 while (!mapping_unevictable(mapping) && 952 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 953 check_move_unevictable_folios(&fbatch); 954 folio_batch_release(&fbatch); 955 cond_resched(); 956 } 957 } 958 959 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 960 { 961 struct folio *folio; 962 963 /* 964 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 965 * beyond i_size, and reports fallocated folios as holes. 966 */ 967 folio = filemap_get_entry(inode->i_mapping, index); 968 if (!folio) 969 return folio; 970 if (!xa_is_value(folio)) { 971 folio_lock(folio); 972 if (folio->mapping == inode->i_mapping) 973 return folio; 974 /* The folio has been swapped out */ 975 folio_unlock(folio); 976 folio_put(folio); 977 } 978 /* 979 * But read a folio back from swap if any of it is within i_size 980 * (although in some cases this is just a waste of time). 981 */ 982 folio = NULL; 983 shmem_get_folio(inode, index, 0, &folio, SGP_READ); 984 return folio; 985 } 986 987 /* 988 * Remove range of pages and swap entries from page cache, and free them. 989 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 990 */ 991 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 992 bool unfalloc) 993 { 994 struct address_space *mapping = inode->i_mapping; 995 struct shmem_inode_info *info = SHMEM_I(inode); 996 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 997 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 998 struct folio_batch fbatch; 999 pgoff_t indices[PAGEVEC_SIZE]; 1000 struct folio *folio; 1001 bool same_folio; 1002 long nr_swaps_freed = 0; 1003 pgoff_t index; 1004 int i; 1005 1006 if (lend == -1) 1007 end = -1; /* unsigned, so actually very big */ 1008 1009 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1010 info->fallocend = start; 1011 1012 folio_batch_init(&fbatch); 1013 index = start; 1014 while (index < end && find_lock_entries(mapping, &index, end - 1, 1015 &fbatch, indices)) { 1016 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1017 folio = fbatch.folios[i]; 1018 1019 if (xa_is_value(folio)) { 1020 if (unfalloc) 1021 continue; 1022 nr_swaps_freed += shmem_free_swap(mapping, 1023 indices[i], folio); 1024 continue; 1025 } 1026 1027 if (!unfalloc || !folio_test_uptodate(folio)) 1028 truncate_inode_folio(mapping, folio); 1029 folio_unlock(folio); 1030 } 1031 folio_batch_remove_exceptionals(&fbatch); 1032 folio_batch_release(&fbatch); 1033 cond_resched(); 1034 } 1035 1036 /* 1037 * When undoing a failed fallocate, we want none of the partial folio 1038 * zeroing and splitting below, but shall want to truncate the whole 1039 * folio when !uptodate indicates that it was added by this fallocate, 1040 * even when [lstart, lend] covers only a part of the folio. 1041 */ 1042 if (unfalloc) 1043 goto whole_folios; 1044 1045 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1046 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1047 if (folio) { 1048 same_folio = lend < folio_pos(folio) + folio_size(folio); 1049 folio_mark_dirty(folio); 1050 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1051 start = folio_next_index(folio); 1052 if (same_folio) 1053 end = folio->index; 1054 } 1055 folio_unlock(folio); 1056 folio_put(folio); 1057 folio = NULL; 1058 } 1059 1060 if (!same_folio) 1061 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1062 if (folio) { 1063 folio_mark_dirty(folio); 1064 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1065 end = folio->index; 1066 folio_unlock(folio); 1067 folio_put(folio); 1068 } 1069 1070 whole_folios: 1071 1072 index = start; 1073 while (index < end) { 1074 cond_resched(); 1075 1076 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1077 indices)) { 1078 /* If all gone or hole-punch or unfalloc, we're done */ 1079 if (index == start || end != -1) 1080 break; 1081 /* But if truncating, restart to make sure all gone */ 1082 index = start; 1083 continue; 1084 } 1085 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1086 folio = fbatch.folios[i]; 1087 1088 if (xa_is_value(folio)) { 1089 long swaps_freed; 1090 1091 if (unfalloc) 1092 continue; 1093 swaps_freed = shmem_free_swap(mapping, indices[i], folio); 1094 if (!swaps_freed) { 1095 /* Swap was replaced by page: retry */ 1096 index = indices[i]; 1097 break; 1098 } 1099 nr_swaps_freed += swaps_freed; 1100 continue; 1101 } 1102 1103 folio_lock(folio); 1104 1105 if (!unfalloc || !folio_test_uptodate(folio)) { 1106 if (folio_mapping(folio) != mapping) { 1107 /* Page was replaced by swap: retry */ 1108 folio_unlock(folio); 1109 index = indices[i]; 1110 break; 1111 } 1112 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1113 folio); 1114 1115 if (!folio_test_large(folio)) { 1116 truncate_inode_folio(mapping, folio); 1117 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1118 /* 1119 * If we split a page, reset the loop so 1120 * that we pick up the new sub pages. 1121 * Otherwise the THP was entirely 1122 * dropped or the target range was 1123 * zeroed, so just continue the loop as 1124 * is. 1125 */ 1126 if (!folio_test_large(folio)) { 1127 folio_unlock(folio); 1128 index = start; 1129 break; 1130 } 1131 } 1132 } 1133 folio_unlock(folio); 1134 } 1135 folio_batch_remove_exceptionals(&fbatch); 1136 folio_batch_release(&fbatch); 1137 } 1138 1139 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1140 } 1141 1142 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1143 { 1144 shmem_undo_range(inode, lstart, lend, false); 1145 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1146 inode_inc_iversion(inode); 1147 } 1148 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1149 1150 static int shmem_getattr(struct mnt_idmap *idmap, 1151 const struct path *path, struct kstat *stat, 1152 u32 request_mask, unsigned int query_flags) 1153 { 1154 struct inode *inode = path->dentry->d_inode; 1155 struct shmem_inode_info *info = SHMEM_I(inode); 1156 1157 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1158 shmem_recalc_inode(inode, 0, 0); 1159 1160 if (info->fsflags & FS_APPEND_FL) 1161 stat->attributes |= STATX_ATTR_APPEND; 1162 if (info->fsflags & FS_IMMUTABLE_FL) 1163 stat->attributes |= STATX_ATTR_IMMUTABLE; 1164 if (info->fsflags & FS_NODUMP_FL) 1165 stat->attributes |= STATX_ATTR_NODUMP; 1166 stat->attributes_mask |= (STATX_ATTR_APPEND | 1167 STATX_ATTR_IMMUTABLE | 1168 STATX_ATTR_NODUMP); 1169 generic_fillattr(idmap, request_mask, inode, stat); 1170 1171 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0)) 1172 stat->blksize = HPAGE_PMD_SIZE; 1173 1174 if (request_mask & STATX_BTIME) { 1175 stat->result_mask |= STATX_BTIME; 1176 stat->btime.tv_sec = info->i_crtime.tv_sec; 1177 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1178 } 1179 1180 return 0; 1181 } 1182 1183 static int shmem_setattr(struct mnt_idmap *idmap, 1184 struct dentry *dentry, struct iattr *attr) 1185 { 1186 struct inode *inode = d_inode(dentry); 1187 struct shmem_inode_info *info = SHMEM_I(inode); 1188 int error; 1189 bool update_mtime = false; 1190 bool update_ctime = true; 1191 1192 error = setattr_prepare(idmap, dentry, attr); 1193 if (error) 1194 return error; 1195 1196 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1197 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1198 return -EPERM; 1199 } 1200 } 1201 1202 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1203 loff_t oldsize = inode->i_size; 1204 loff_t newsize = attr->ia_size; 1205 1206 /* protected by i_rwsem */ 1207 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1208 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1209 return -EPERM; 1210 1211 if (newsize != oldsize) { 1212 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1213 oldsize, newsize); 1214 if (error) 1215 return error; 1216 i_size_write(inode, newsize); 1217 update_mtime = true; 1218 } else { 1219 update_ctime = false; 1220 } 1221 if (newsize <= oldsize) { 1222 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1223 if (oldsize > holebegin) 1224 unmap_mapping_range(inode->i_mapping, 1225 holebegin, 0, 1); 1226 if (info->alloced) 1227 shmem_truncate_range(inode, 1228 newsize, (loff_t)-1); 1229 /* unmap again to remove racily COWed private pages */ 1230 if (oldsize > holebegin) 1231 unmap_mapping_range(inode->i_mapping, 1232 holebegin, 0, 1); 1233 } 1234 } 1235 1236 if (is_quota_modification(idmap, inode, attr)) { 1237 error = dquot_initialize(inode); 1238 if (error) 1239 return error; 1240 } 1241 1242 /* Transfer quota accounting */ 1243 if (i_uid_needs_update(idmap, attr, inode) || 1244 i_gid_needs_update(idmap, attr, inode)) { 1245 error = dquot_transfer(idmap, inode, attr); 1246 if (error) 1247 return error; 1248 } 1249 1250 setattr_copy(idmap, inode, attr); 1251 if (attr->ia_valid & ATTR_MODE) 1252 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1253 if (!error && update_ctime) { 1254 inode_set_ctime_current(inode); 1255 if (update_mtime) 1256 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1257 inode_inc_iversion(inode); 1258 } 1259 return error; 1260 } 1261 1262 static void shmem_evict_inode(struct inode *inode) 1263 { 1264 struct shmem_inode_info *info = SHMEM_I(inode); 1265 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1266 size_t freed = 0; 1267 1268 if (shmem_mapping(inode->i_mapping)) { 1269 shmem_unacct_size(info->flags, inode->i_size); 1270 inode->i_size = 0; 1271 mapping_set_exiting(inode->i_mapping); 1272 shmem_truncate_range(inode, 0, (loff_t)-1); 1273 if (!list_empty(&info->shrinklist)) { 1274 spin_lock(&sbinfo->shrinklist_lock); 1275 if (!list_empty(&info->shrinklist)) { 1276 list_del_init(&info->shrinklist); 1277 sbinfo->shrinklist_len--; 1278 } 1279 spin_unlock(&sbinfo->shrinklist_lock); 1280 } 1281 while (!list_empty(&info->swaplist)) { 1282 /* Wait while shmem_unuse() is scanning this inode... */ 1283 wait_var_event(&info->stop_eviction, 1284 !atomic_read(&info->stop_eviction)); 1285 mutex_lock(&shmem_swaplist_mutex); 1286 /* ...but beware of the race if we peeked too early */ 1287 if (!atomic_read(&info->stop_eviction)) 1288 list_del_init(&info->swaplist); 1289 mutex_unlock(&shmem_swaplist_mutex); 1290 } 1291 } 1292 1293 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1294 shmem_free_inode(inode->i_sb, freed); 1295 WARN_ON(inode->i_blocks); 1296 clear_inode(inode); 1297 #ifdef CONFIG_TMPFS_QUOTA 1298 dquot_free_inode(inode); 1299 dquot_drop(inode); 1300 #endif 1301 } 1302 1303 static int shmem_find_swap_entries(struct address_space *mapping, 1304 pgoff_t start, struct folio_batch *fbatch, 1305 pgoff_t *indices, unsigned int type) 1306 { 1307 XA_STATE(xas, &mapping->i_pages, start); 1308 struct folio *folio; 1309 swp_entry_t entry; 1310 1311 rcu_read_lock(); 1312 xas_for_each(&xas, folio, ULONG_MAX) { 1313 if (xas_retry(&xas, folio)) 1314 continue; 1315 1316 if (!xa_is_value(folio)) 1317 continue; 1318 1319 entry = radix_to_swp_entry(folio); 1320 /* 1321 * swapin error entries can be found in the mapping. But they're 1322 * deliberately ignored here as we've done everything we can do. 1323 */ 1324 if (swp_type(entry) != type) 1325 continue; 1326 1327 indices[folio_batch_count(fbatch)] = xas.xa_index; 1328 if (!folio_batch_add(fbatch, folio)) 1329 break; 1330 1331 if (need_resched()) { 1332 xas_pause(&xas); 1333 cond_resched_rcu(); 1334 } 1335 } 1336 rcu_read_unlock(); 1337 1338 return xas.xa_index; 1339 } 1340 1341 /* 1342 * Move the swapped pages for an inode to page cache. Returns the count 1343 * of pages swapped in, or the error in case of failure. 1344 */ 1345 static int shmem_unuse_swap_entries(struct inode *inode, 1346 struct folio_batch *fbatch, pgoff_t *indices) 1347 { 1348 int i = 0; 1349 int ret = 0; 1350 int error = 0; 1351 struct address_space *mapping = inode->i_mapping; 1352 1353 for (i = 0; i < folio_batch_count(fbatch); i++) { 1354 struct folio *folio = fbatch->folios[i]; 1355 1356 if (!xa_is_value(folio)) 1357 continue; 1358 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1359 mapping_gfp_mask(mapping), NULL, NULL); 1360 if (error == 0) { 1361 folio_unlock(folio); 1362 folio_put(folio); 1363 ret++; 1364 } 1365 if (error == -ENOMEM) 1366 break; 1367 error = 0; 1368 } 1369 return error ? error : ret; 1370 } 1371 1372 /* 1373 * If swap found in inode, free it and move page from swapcache to filecache. 1374 */ 1375 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1376 { 1377 struct address_space *mapping = inode->i_mapping; 1378 pgoff_t start = 0; 1379 struct folio_batch fbatch; 1380 pgoff_t indices[PAGEVEC_SIZE]; 1381 int ret = 0; 1382 1383 do { 1384 folio_batch_init(&fbatch); 1385 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1386 if (folio_batch_count(&fbatch) == 0) { 1387 ret = 0; 1388 break; 1389 } 1390 1391 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1392 if (ret < 0) 1393 break; 1394 1395 start = indices[folio_batch_count(&fbatch) - 1]; 1396 } while (true); 1397 1398 return ret; 1399 } 1400 1401 /* 1402 * Read all the shared memory data that resides in the swap 1403 * device 'type' back into memory, so the swap device can be 1404 * unused. 1405 */ 1406 int shmem_unuse(unsigned int type) 1407 { 1408 struct shmem_inode_info *info, *next; 1409 int error = 0; 1410 1411 if (list_empty(&shmem_swaplist)) 1412 return 0; 1413 1414 mutex_lock(&shmem_swaplist_mutex); 1415 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1416 if (!info->swapped) { 1417 list_del_init(&info->swaplist); 1418 continue; 1419 } 1420 /* 1421 * Drop the swaplist mutex while searching the inode for swap; 1422 * but before doing so, make sure shmem_evict_inode() will not 1423 * remove placeholder inode from swaplist, nor let it be freed 1424 * (igrab() would protect from unlink, but not from unmount). 1425 */ 1426 atomic_inc(&info->stop_eviction); 1427 mutex_unlock(&shmem_swaplist_mutex); 1428 1429 error = shmem_unuse_inode(&info->vfs_inode, type); 1430 cond_resched(); 1431 1432 mutex_lock(&shmem_swaplist_mutex); 1433 next = list_next_entry(info, swaplist); 1434 if (!info->swapped) 1435 list_del_init(&info->swaplist); 1436 if (atomic_dec_and_test(&info->stop_eviction)) 1437 wake_up_var(&info->stop_eviction); 1438 if (error) 1439 break; 1440 } 1441 mutex_unlock(&shmem_swaplist_mutex); 1442 1443 return error; 1444 } 1445 1446 /* 1447 * Move the page from the page cache to the swap cache. 1448 */ 1449 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1450 { 1451 struct folio *folio = page_folio(page); 1452 struct address_space *mapping = folio->mapping; 1453 struct inode *inode = mapping->host; 1454 struct shmem_inode_info *info = SHMEM_I(inode); 1455 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1456 swp_entry_t swap; 1457 pgoff_t index; 1458 int nr_pages; 1459 bool split = false; 1460 1461 /* 1462 * Our capabilities prevent regular writeback or sync from ever calling 1463 * shmem_writepage; but a stacking filesystem might use ->writepage of 1464 * its underlying filesystem, in which case tmpfs should write out to 1465 * swap only in response to memory pressure, and not for the writeback 1466 * threads or sync. 1467 */ 1468 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1469 goto redirty; 1470 1471 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap)) 1472 goto redirty; 1473 1474 if (!total_swap_pages) 1475 goto redirty; 1476 1477 /* 1478 * If CONFIG_THP_SWAP is not enabled, the large folio should be 1479 * split when swapping. 1480 * 1481 * And shrinkage of pages beyond i_size does not split swap, so 1482 * swapout of a large folio crossing i_size needs to split too 1483 * (unless fallocate has been used to preallocate beyond EOF). 1484 */ 1485 if (folio_test_large(folio)) { 1486 index = shmem_fallocend(inode, 1487 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 1488 if ((index > folio->index && index < folio_next_index(folio)) || 1489 !IS_ENABLED(CONFIG_THP_SWAP)) 1490 split = true; 1491 } 1492 1493 if (split) { 1494 try_split: 1495 /* Ensure the subpages are still dirty */ 1496 folio_test_set_dirty(folio); 1497 if (split_huge_page_to_list_to_order(page, wbc->list, 0)) 1498 goto redirty; 1499 folio = page_folio(page); 1500 folio_clear_dirty(folio); 1501 } 1502 1503 index = folio->index; 1504 nr_pages = folio_nr_pages(folio); 1505 1506 /* 1507 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1508 * value into swapfile.c, the only way we can correctly account for a 1509 * fallocated folio arriving here is now to initialize it and write it. 1510 * 1511 * That's okay for a folio already fallocated earlier, but if we have 1512 * not yet completed the fallocation, then (a) we want to keep track 1513 * of this folio in case we have to undo it, and (b) it may not be a 1514 * good idea to continue anyway, once we're pushing into swap. So 1515 * reactivate the folio, and let shmem_fallocate() quit when too many. 1516 */ 1517 if (!folio_test_uptodate(folio)) { 1518 if (inode->i_private) { 1519 struct shmem_falloc *shmem_falloc; 1520 spin_lock(&inode->i_lock); 1521 shmem_falloc = inode->i_private; 1522 if (shmem_falloc && 1523 !shmem_falloc->waitq && 1524 index >= shmem_falloc->start && 1525 index < shmem_falloc->next) 1526 shmem_falloc->nr_unswapped++; 1527 else 1528 shmem_falloc = NULL; 1529 spin_unlock(&inode->i_lock); 1530 if (shmem_falloc) 1531 goto redirty; 1532 } 1533 folio_zero_range(folio, 0, folio_size(folio)); 1534 flush_dcache_folio(folio); 1535 folio_mark_uptodate(folio); 1536 } 1537 1538 swap = folio_alloc_swap(folio); 1539 if (!swap.val) { 1540 if (nr_pages > 1) 1541 goto try_split; 1542 1543 goto redirty; 1544 } 1545 1546 /* 1547 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1548 * if it's not already there. Do it now before the folio is 1549 * moved to swap cache, when its pagelock no longer protects 1550 * the inode from eviction. But don't unlock the mutex until 1551 * we've incremented swapped, because shmem_unuse_inode() will 1552 * prune a !swapped inode from the swaplist under this mutex. 1553 */ 1554 mutex_lock(&shmem_swaplist_mutex); 1555 if (list_empty(&info->swaplist)) 1556 list_add(&info->swaplist, &shmem_swaplist); 1557 1558 if (add_to_swap_cache(folio, swap, 1559 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1560 NULL) == 0) { 1561 shmem_recalc_inode(inode, 0, nr_pages); 1562 swap_shmem_alloc(swap, nr_pages); 1563 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1564 1565 mutex_unlock(&shmem_swaplist_mutex); 1566 BUG_ON(folio_mapped(folio)); 1567 return swap_writepage(&folio->page, wbc); 1568 } 1569 1570 mutex_unlock(&shmem_swaplist_mutex); 1571 put_swap_folio(folio, swap); 1572 redirty: 1573 folio_mark_dirty(folio); 1574 if (wbc->for_reclaim) 1575 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1576 folio_unlock(folio); 1577 return 0; 1578 } 1579 1580 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1581 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1582 { 1583 char buffer[64]; 1584 1585 if (!mpol || mpol->mode == MPOL_DEFAULT) 1586 return; /* show nothing */ 1587 1588 mpol_to_str(buffer, sizeof(buffer), mpol); 1589 1590 seq_printf(seq, ",mpol=%s", buffer); 1591 } 1592 1593 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1594 { 1595 struct mempolicy *mpol = NULL; 1596 if (sbinfo->mpol) { 1597 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1598 mpol = sbinfo->mpol; 1599 mpol_get(mpol); 1600 raw_spin_unlock(&sbinfo->stat_lock); 1601 } 1602 return mpol; 1603 } 1604 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1605 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1606 { 1607 } 1608 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1609 { 1610 return NULL; 1611 } 1612 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1613 1614 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1615 pgoff_t index, unsigned int order, pgoff_t *ilx); 1616 1617 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1618 struct shmem_inode_info *info, pgoff_t index) 1619 { 1620 struct mempolicy *mpol; 1621 pgoff_t ilx; 1622 struct folio *folio; 1623 1624 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1625 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1626 mpol_cond_put(mpol); 1627 1628 return folio; 1629 } 1630 1631 /* 1632 * Make sure huge_gfp is always more limited than limit_gfp. 1633 * Some of the flags set permissions, while others set limitations. 1634 */ 1635 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1636 { 1637 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1638 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1639 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1640 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1641 1642 /* Allow allocations only from the originally specified zones. */ 1643 result |= zoneflags; 1644 1645 /* 1646 * Minimize the result gfp by taking the union with the deny flags, 1647 * and the intersection of the allow flags. 1648 */ 1649 result |= (limit_gfp & denyflags); 1650 result |= (huge_gfp & limit_gfp) & allowflags; 1651 1652 return result; 1653 } 1654 1655 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1656 unsigned long shmem_allowable_huge_orders(struct inode *inode, 1657 struct vm_area_struct *vma, pgoff_t index, 1658 loff_t write_end, bool shmem_huge_force) 1659 { 1660 unsigned long mask = READ_ONCE(huge_shmem_orders_always); 1661 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size); 1662 unsigned long vm_flags = vma ? vma->vm_flags : 0; 1663 bool global_huge; 1664 loff_t i_size; 1665 int order; 1666 1667 if (vma && ((vm_flags & VM_NOHUGEPAGE) || 1668 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))) 1669 return 0; 1670 1671 /* If the hardware/firmware marked hugepage support disabled. */ 1672 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED)) 1673 return 0; 1674 1675 global_huge = shmem_huge_global_enabled(inode, index, write_end, 1676 shmem_huge_force, vma, vm_flags); 1677 if (!vma || !vma_is_anon_shmem(vma)) { 1678 /* 1679 * For tmpfs, we now only support PMD sized THP if huge page 1680 * is enabled, otherwise fallback to order 0. 1681 */ 1682 return global_huge ? BIT(HPAGE_PMD_ORDER) : 0; 1683 } 1684 1685 /* 1686 * Following the 'deny' semantics of the top level, force the huge 1687 * option off from all mounts. 1688 */ 1689 if (shmem_huge == SHMEM_HUGE_DENY) 1690 return 0; 1691 1692 /* 1693 * Only allow inherit orders if the top-level value is 'force', which 1694 * means non-PMD sized THP can not override 'huge' mount option now. 1695 */ 1696 if (shmem_huge == SHMEM_HUGE_FORCE) 1697 return READ_ONCE(huge_shmem_orders_inherit); 1698 1699 /* Allow mTHP that will be fully within i_size. */ 1700 order = highest_order(within_size_orders); 1701 while (within_size_orders) { 1702 index = round_up(index + 1, order); 1703 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1704 if (i_size >> PAGE_SHIFT >= index) { 1705 mask |= within_size_orders; 1706 break; 1707 } 1708 1709 order = next_order(&within_size_orders, order); 1710 } 1711 1712 if (vm_flags & VM_HUGEPAGE) 1713 mask |= READ_ONCE(huge_shmem_orders_madvise); 1714 1715 if (global_huge) 1716 mask |= READ_ONCE(huge_shmem_orders_inherit); 1717 1718 return THP_ORDERS_ALL_FILE_DEFAULT & mask; 1719 } 1720 1721 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1722 struct address_space *mapping, pgoff_t index, 1723 unsigned long orders) 1724 { 1725 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1726 pgoff_t aligned_index; 1727 unsigned long pages; 1728 int order; 1729 1730 if (vma) { 1731 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 1732 if (!orders) 1733 return 0; 1734 } 1735 1736 /* Find the highest order that can add into the page cache */ 1737 order = highest_order(orders); 1738 while (orders) { 1739 pages = 1UL << order; 1740 aligned_index = round_down(index, pages); 1741 /* 1742 * Check for conflict before waiting on a huge allocation. 1743 * Conflict might be that a huge page has just been allocated 1744 * and added to page cache by a racing thread, or that there 1745 * is already at least one small page in the huge extent. 1746 * Be careful to retry when appropriate, but not forever! 1747 * Elsewhere -EEXIST would be the right code, but not here. 1748 */ 1749 if (!xa_find(&mapping->i_pages, &aligned_index, 1750 aligned_index + pages - 1, XA_PRESENT)) 1751 break; 1752 order = next_order(&orders, order); 1753 } 1754 1755 return orders; 1756 } 1757 #else 1758 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1759 struct address_space *mapping, pgoff_t index, 1760 unsigned long orders) 1761 { 1762 return 0; 1763 } 1764 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1765 1766 static struct folio *shmem_alloc_folio(gfp_t gfp, int order, 1767 struct shmem_inode_info *info, pgoff_t index) 1768 { 1769 struct mempolicy *mpol; 1770 pgoff_t ilx; 1771 struct folio *folio; 1772 1773 mpol = shmem_get_pgoff_policy(info, index, order, &ilx); 1774 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id()); 1775 mpol_cond_put(mpol); 1776 1777 return folio; 1778 } 1779 1780 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf, 1781 gfp_t gfp, struct inode *inode, pgoff_t index, 1782 struct mm_struct *fault_mm, unsigned long orders) 1783 { 1784 struct address_space *mapping = inode->i_mapping; 1785 struct shmem_inode_info *info = SHMEM_I(inode); 1786 unsigned long suitable_orders = 0; 1787 struct folio *folio = NULL; 1788 long pages; 1789 int error, order; 1790 1791 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1792 orders = 0; 1793 1794 if (orders > 0) { 1795 suitable_orders = shmem_suitable_orders(inode, vmf, 1796 mapping, index, orders); 1797 1798 order = highest_order(suitable_orders); 1799 while (suitable_orders) { 1800 pages = 1UL << order; 1801 index = round_down(index, pages); 1802 folio = shmem_alloc_folio(gfp, order, info, index); 1803 if (folio) 1804 goto allocated; 1805 1806 if (pages == HPAGE_PMD_NR) 1807 count_vm_event(THP_FILE_FALLBACK); 1808 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK); 1809 order = next_order(&suitable_orders, order); 1810 } 1811 } else { 1812 pages = 1; 1813 folio = shmem_alloc_folio(gfp, 0, info, index); 1814 } 1815 if (!folio) 1816 return ERR_PTR(-ENOMEM); 1817 1818 allocated: 1819 __folio_set_locked(folio); 1820 __folio_set_swapbacked(folio); 1821 1822 gfp &= GFP_RECLAIM_MASK; 1823 error = mem_cgroup_charge(folio, fault_mm, gfp); 1824 if (error) { 1825 if (xa_find(&mapping->i_pages, &index, 1826 index + pages - 1, XA_PRESENT)) { 1827 error = -EEXIST; 1828 } else if (pages > 1) { 1829 if (pages == HPAGE_PMD_NR) { 1830 count_vm_event(THP_FILE_FALLBACK); 1831 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1832 } 1833 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK); 1834 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE); 1835 } 1836 goto unlock; 1837 } 1838 1839 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1840 if (error) 1841 goto unlock; 1842 1843 error = shmem_inode_acct_blocks(inode, pages); 1844 if (error) { 1845 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1846 long freed; 1847 /* 1848 * Try to reclaim some space by splitting a few 1849 * large folios beyond i_size on the filesystem. 1850 */ 1851 shmem_unused_huge_shrink(sbinfo, NULL, pages); 1852 /* 1853 * And do a shmem_recalc_inode() to account for freed pages: 1854 * except our folio is there in cache, so not quite balanced. 1855 */ 1856 spin_lock(&info->lock); 1857 freed = pages + info->alloced - info->swapped - 1858 READ_ONCE(mapping->nrpages); 1859 if (freed > 0) 1860 info->alloced -= freed; 1861 spin_unlock(&info->lock); 1862 if (freed > 0) 1863 shmem_inode_unacct_blocks(inode, freed); 1864 error = shmem_inode_acct_blocks(inode, pages); 1865 if (error) { 1866 filemap_remove_folio(folio); 1867 goto unlock; 1868 } 1869 } 1870 1871 shmem_recalc_inode(inode, pages, 0); 1872 folio_add_lru(folio); 1873 return folio; 1874 1875 unlock: 1876 folio_unlock(folio); 1877 folio_put(folio); 1878 return ERR_PTR(error); 1879 } 1880 1881 /* 1882 * When a page is moved from swapcache to shmem filecache (either by the 1883 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1884 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1885 * ignorance of the mapping it belongs to. If that mapping has special 1886 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1887 * we may need to copy to a suitable page before moving to filecache. 1888 * 1889 * In a future release, this may well be extended to respect cpuset and 1890 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1891 * but for now it is a simple matter of zone. 1892 */ 1893 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1894 { 1895 return folio_zonenum(folio) > gfp_zone(gfp); 1896 } 1897 1898 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1899 struct shmem_inode_info *info, pgoff_t index, 1900 struct vm_area_struct *vma) 1901 { 1902 struct folio *new, *old = *foliop; 1903 swp_entry_t entry = old->swap; 1904 struct address_space *swap_mapping = swap_address_space(entry); 1905 pgoff_t swap_index = swap_cache_index(entry); 1906 XA_STATE(xas, &swap_mapping->i_pages, swap_index); 1907 int nr_pages = folio_nr_pages(old); 1908 int error = 0, i; 1909 1910 /* 1911 * We have arrived here because our zones are constrained, so don't 1912 * limit chance of success by further cpuset and node constraints. 1913 */ 1914 gfp &= ~GFP_CONSTRAINT_MASK; 1915 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1916 if (nr_pages > 1) { 1917 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 1918 1919 gfp = limit_gfp_mask(huge_gfp, gfp); 1920 } 1921 #endif 1922 1923 new = shmem_alloc_folio(gfp, folio_order(old), info, index); 1924 if (!new) 1925 return -ENOMEM; 1926 1927 folio_ref_add(new, nr_pages); 1928 folio_copy(new, old); 1929 flush_dcache_folio(new); 1930 1931 __folio_set_locked(new); 1932 __folio_set_swapbacked(new); 1933 folio_mark_uptodate(new); 1934 new->swap = entry; 1935 folio_set_swapcache(new); 1936 1937 /* Swap cache still stores N entries instead of a high-order entry */ 1938 xa_lock_irq(&swap_mapping->i_pages); 1939 for (i = 0; i < nr_pages; i++) { 1940 void *item = xas_load(&xas); 1941 1942 if (item != old) { 1943 error = -ENOENT; 1944 break; 1945 } 1946 1947 xas_store(&xas, new); 1948 xas_next(&xas); 1949 } 1950 if (!error) { 1951 mem_cgroup_replace_folio(old, new); 1952 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, nr_pages); 1953 __lruvec_stat_mod_folio(new, NR_SHMEM, nr_pages); 1954 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -nr_pages); 1955 __lruvec_stat_mod_folio(old, NR_SHMEM, -nr_pages); 1956 } 1957 xa_unlock_irq(&swap_mapping->i_pages); 1958 1959 if (unlikely(error)) { 1960 /* 1961 * Is this possible? I think not, now that our callers 1962 * check both the swapcache flag and folio->private 1963 * after getting the folio lock; but be defensive. 1964 * Reverse old to newpage for clear and free. 1965 */ 1966 old = new; 1967 } else { 1968 folio_add_lru(new); 1969 *foliop = new; 1970 } 1971 1972 folio_clear_swapcache(old); 1973 old->private = NULL; 1974 1975 folio_unlock(old); 1976 /* 1977 * The old folio are removed from swap cache, drop the 'nr_pages' 1978 * reference, as well as one temporary reference getting from swap 1979 * cache. 1980 */ 1981 folio_put_refs(old, nr_pages + 1); 1982 return error; 1983 } 1984 1985 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1986 struct folio *folio, swp_entry_t swap) 1987 { 1988 struct address_space *mapping = inode->i_mapping; 1989 swp_entry_t swapin_error; 1990 void *old; 1991 int nr_pages; 1992 1993 swapin_error = make_poisoned_swp_entry(); 1994 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1995 swp_to_radix_entry(swap), 1996 swp_to_radix_entry(swapin_error), 0); 1997 if (old != swp_to_radix_entry(swap)) 1998 return; 1999 2000 nr_pages = folio_nr_pages(folio); 2001 folio_wait_writeback(folio); 2002 delete_from_swap_cache(folio); 2003 /* 2004 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 2005 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 2006 * in shmem_evict_inode(). 2007 */ 2008 shmem_recalc_inode(inode, -nr_pages, -nr_pages); 2009 swap_free_nr(swap, nr_pages); 2010 } 2011 2012 static int shmem_split_large_entry(struct inode *inode, pgoff_t index, 2013 swp_entry_t swap, gfp_t gfp) 2014 { 2015 struct address_space *mapping = inode->i_mapping; 2016 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0); 2017 void *alloced_shadow = NULL; 2018 int alloced_order = 0, i; 2019 2020 /* Convert user data gfp flags to xarray node gfp flags */ 2021 gfp &= GFP_RECLAIM_MASK; 2022 2023 for (;;) { 2024 int order = -1, split_order = 0; 2025 void *old = NULL; 2026 2027 xas_lock_irq(&xas); 2028 old = xas_load(&xas); 2029 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) { 2030 xas_set_err(&xas, -EEXIST); 2031 goto unlock; 2032 } 2033 2034 order = xas_get_order(&xas); 2035 2036 /* Swap entry may have changed before we re-acquire the lock */ 2037 if (alloced_order && 2038 (old != alloced_shadow || order != alloced_order)) { 2039 xas_destroy(&xas); 2040 alloced_order = 0; 2041 } 2042 2043 /* Try to split large swap entry in pagecache */ 2044 if (order > 0) { 2045 if (!alloced_order) { 2046 split_order = order; 2047 goto unlock; 2048 } 2049 xas_split(&xas, old, order); 2050 2051 /* 2052 * Re-set the swap entry after splitting, and the swap 2053 * offset of the original large entry must be continuous. 2054 */ 2055 for (i = 0; i < 1 << order; i++) { 2056 pgoff_t aligned_index = round_down(index, 1 << order); 2057 swp_entry_t tmp; 2058 2059 tmp = swp_entry(swp_type(swap), swp_offset(swap) + i); 2060 __xa_store(&mapping->i_pages, aligned_index + i, 2061 swp_to_radix_entry(tmp), 0); 2062 } 2063 } 2064 2065 unlock: 2066 xas_unlock_irq(&xas); 2067 2068 /* split needed, alloc here and retry. */ 2069 if (split_order) { 2070 xas_split_alloc(&xas, old, split_order, gfp); 2071 if (xas_error(&xas)) 2072 goto error; 2073 alloced_shadow = old; 2074 alloced_order = split_order; 2075 xas_reset(&xas); 2076 continue; 2077 } 2078 2079 if (!xas_nomem(&xas, gfp)) 2080 break; 2081 } 2082 2083 error: 2084 if (xas_error(&xas)) 2085 return xas_error(&xas); 2086 2087 return alloced_order; 2088 } 2089 2090 /* 2091 * Swap in the folio pointed to by *foliop. 2092 * Caller has to make sure that *foliop contains a valid swapped folio. 2093 * Returns 0 and the folio in foliop if success. On failure, returns the 2094 * error code and NULL in *foliop. 2095 */ 2096 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 2097 struct folio **foliop, enum sgp_type sgp, 2098 gfp_t gfp, struct vm_area_struct *vma, 2099 vm_fault_t *fault_type) 2100 { 2101 struct address_space *mapping = inode->i_mapping; 2102 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL; 2103 struct shmem_inode_info *info = SHMEM_I(inode); 2104 struct swap_info_struct *si; 2105 struct folio *folio = NULL; 2106 swp_entry_t swap; 2107 int error, nr_pages; 2108 2109 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 2110 swap = radix_to_swp_entry(*foliop); 2111 *foliop = NULL; 2112 2113 if (is_poisoned_swp_entry(swap)) 2114 return -EIO; 2115 2116 si = get_swap_device(swap); 2117 if (!si) { 2118 if (!shmem_confirm_swap(mapping, index, swap)) 2119 return -EEXIST; 2120 else 2121 return -EINVAL; 2122 } 2123 2124 /* Look it up and read it in.. */ 2125 folio = swap_cache_get_folio(swap, NULL, 0); 2126 if (!folio) { 2127 int split_order; 2128 2129 /* Or update major stats only when swapin succeeds?? */ 2130 if (fault_type) { 2131 *fault_type |= VM_FAULT_MAJOR; 2132 count_vm_event(PGMAJFAULT); 2133 count_memcg_event_mm(fault_mm, PGMAJFAULT); 2134 } 2135 2136 /* 2137 * Now swap device can only swap in order 0 folio, then we 2138 * should split the large swap entry stored in the pagecache 2139 * if necessary. 2140 */ 2141 split_order = shmem_split_large_entry(inode, index, swap, gfp); 2142 if (split_order < 0) { 2143 error = split_order; 2144 goto failed; 2145 } 2146 2147 /* 2148 * If the large swap entry has already been split, it is 2149 * necessary to recalculate the new swap entry based on 2150 * the old order alignment. 2151 */ 2152 if (split_order > 0) { 2153 pgoff_t offset = index - round_down(index, 1 << split_order); 2154 2155 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2156 } 2157 2158 /* Here we actually start the io */ 2159 folio = shmem_swapin_cluster(swap, gfp, info, index); 2160 if (!folio) { 2161 error = -ENOMEM; 2162 goto failed; 2163 } 2164 } 2165 2166 /* We have to do this with folio locked to prevent races */ 2167 folio_lock(folio); 2168 if (!folio_test_swapcache(folio) || 2169 folio->swap.val != swap.val || 2170 !shmem_confirm_swap(mapping, index, swap)) { 2171 error = -EEXIST; 2172 goto unlock; 2173 } 2174 if (!folio_test_uptodate(folio)) { 2175 error = -EIO; 2176 goto failed; 2177 } 2178 folio_wait_writeback(folio); 2179 nr_pages = folio_nr_pages(folio); 2180 2181 /* 2182 * Some architectures may have to restore extra metadata to the 2183 * folio after reading from swap. 2184 */ 2185 arch_swap_restore(folio_swap(swap, folio), folio); 2186 2187 if (shmem_should_replace_folio(folio, gfp)) { 2188 error = shmem_replace_folio(&folio, gfp, info, index, vma); 2189 if (error) 2190 goto failed; 2191 } 2192 2193 error = shmem_add_to_page_cache(folio, mapping, 2194 round_down(index, nr_pages), 2195 swp_to_radix_entry(swap), gfp); 2196 if (error) 2197 goto failed; 2198 2199 shmem_recalc_inode(inode, 0, -nr_pages); 2200 2201 if (sgp == SGP_WRITE) 2202 folio_mark_accessed(folio); 2203 2204 delete_from_swap_cache(folio); 2205 folio_mark_dirty(folio); 2206 swap_free_nr(swap, nr_pages); 2207 put_swap_device(si); 2208 2209 *foliop = folio; 2210 return 0; 2211 failed: 2212 if (!shmem_confirm_swap(mapping, index, swap)) 2213 error = -EEXIST; 2214 if (error == -EIO) 2215 shmem_set_folio_swapin_error(inode, index, folio, swap); 2216 unlock: 2217 if (folio) { 2218 folio_unlock(folio); 2219 folio_put(folio); 2220 } 2221 put_swap_device(si); 2222 2223 return error; 2224 } 2225 2226 /* 2227 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 2228 * 2229 * If we allocate a new one we do not mark it dirty. That's up to the 2230 * vm. If we swap it in we mark it dirty since we also free the swap 2231 * entry since a page cannot live in both the swap and page cache. 2232 * 2233 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 2234 */ 2235 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 2236 loff_t write_end, struct folio **foliop, enum sgp_type sgp, 2237 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type) 2238 { 2239 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 2240 struct mm_struct *fault_mm; 2241 struct folio *folio; 2242 int error; 2243 bool alloced; 2244 unsigned long orders = 0; 2245 2246 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 2247 return -EINVAL; 2248 2249 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 2250 return -EFBIG; 2251 repeat: 2252 if (sgp <= SGP_CACHE && 2253 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 2254 return -EINVAL; 2255 2256 alloced = false; 2257 fault_mm = vma ? vma->vm_mm : NULL; 2258 2259 folio = filemap_get_entry(inode->i_mapping, index); 2260 if (folio && vma && userfaultfd_minor(vma)) { 2261 if (!xa_is_value(folio)) 2262 folio_put(folio); 2263 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 2264 return 0; 2265 } 2266 2267 if (xa_is_value(folio)) { 2268 error = shmem_swapin_folio(inode, index, &folio, 2269 sgp, gfp, vma, fault_type); 2270 if (error == -EEXIST) 2271 goto repeat; 2272 2273 *foliop = folio; 2274 return error; 2275 } 2276 2277 if (folio) { 2278 folio_lock(folio); 2279 2280 /* Has the folio been truncated or swapped out? */ 2281 if (unlikely(folio->mapping != inode->i_mapping)) { 2282 folio_unlock(folio); 2283 folio_put(folio); 2284 goto repeat; 2285 } 2286 if (sgp == SGP_WRITE) 2287 folio_mark_accessed(folio); 2288 if (folio_test_uptodate(folio)) 2289 goto out; 2290 /* fallocated folio */ 2291 if (sgp != SGP_READ) 2292 goto clear; 2293 folio_unlock(folio); 2294 folio_put(folio); 2295 } 2296 2297 /* 2298 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2299 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2300 */ 2301 *foliop = NULL; 2302 if (sgp == SGP_READ) 2303 return 0; 2304 if (sgp == SGP_NOALLOC) 2305 return -ENOENT; 2306 2307 /* 2308 * Fast cache lookup and swap lookup did not find it: allocate. 2309 */ 2310 2311 if (vma && userfaultfd_missing(vma)) { 2312 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2313 return 0; 2314 } 2315 2316 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */ 2317 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false); 2318 if (orders > 0) { 2319 gfp_t huge_gfp; 2320 2321 huge_gfp = vma_thp_gfp_mask(vma); 2322 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2323 folio = shmem_alloc_and_add_folio(vmf, huge_gfp, 2324 inode, index, fault_mm, orders); 2325 if (!IS_ERR(folio)) { 2326 if (folio_test_pmd_mappable(folio)) 2327 count_vm_event(THP_FILE_ALLOC); 2328 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC); 2329 goto alloced; 2330 } 2331 if (PTR_ERR(folio) == -EEXIST) 2332 goto repeat; 2333 } 2334 2335 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0); 2336 if (IS_ERR(folio)) { 2337 error = PTR_ERR(folio); 2338 if (error == -EEXIST) 2339 goto repeat; 2340 folio = NULL; 2341 goto unlock; 2342 } 2343 2344 alloced: 2345 alloced = true; 2346 if (folio_test_large(folio) && 2347 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2348 folio_next_index(folio)) { 2349 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2350 struct shmem_inode_info *info = SHMEM_I(inode); 2351 /* 2352 * Part of the large folio is beyond i_size: subject 2353 * to shrink under memory pressure. 2354 */ 2355 spin_lock(&sbinfo->shrinklist_lock); 2356 /* 2357 * _careful to defend against unlocked access to 2358 * ->shrink_list in shmem_unused_huge_shrink() 2359 */ 2360 if (list_empty_careful(&info->shrinklist)) { 2361 list_add_tail(&info->shrinklist, 2362 &sbinfo->shrinklist); 2363 sbinfo->shrinklist_len++; 2364 } 2365 spin_unlock(&sbinfo->shrinklist_lock); 2366 } 2367 2368 if (sgp == SGP_WRITE) 2369 folio_set_referenced(folio); 2370 /* 2371 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2372 */ 2373 if (sgp == SGP_FALLOC) 2374 sgp = SGP_WRITE; 2375 clear: 2376 /* 2377 * Let SGP_WRITE caller clear ends if write does not fill folio; 2378 * but SGP_FALLOC on a folio fallocated earlier must initialize 2379 * it now, lest undo on failure cancel our earlier guarantee. 2380 */ 2381 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2382 long i, n = folio_nr_pages(folio); 2383 2384 for (i = 0; i < n; i++) 2385 clear_highpage(folio_page(folio, i)); 2386 flush_dcache_folio(folio); 2387 folio_mark_uptodate(folio); 2388 } 2389 2390 /* Perhaps the file has been truncated since we checked */ 2391 if (sgp <= SGP_CACHE && 2392 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2393 error = -EINVAL; 2394 goto unlock; 2395 } 2396 out: 2397 *foliop = folio; 2398 return 0; 2399 2400 /* 2401 * Error recovery. 2402 */ 2403 unlock: 2404 if (alloced) 2405 filemap_remove_folio(folio); 2406 shmem_recalc_inode(inode, 0, 0); 2407 if (folio) { 2408 folio_unlock(folio); 2409 folio_put(folio); 2410 } 2411 return error; 2412 } 2413 2414 /** 2415 * shmem_get_folio - find, and lock a shmem folio. 2416 * @inode: inode to search 2417 * @index: the page index. 2418 * @write_end: end of a write, could extend inode size 2419 * @foliop: pointer to the folio if found 2420 * @sgp: SGP_* flags to control behavior 2421 * 2422 * Looks up the page cache entry at @inode & @index. If a folio is 2423 * present, it is returned locked with an increased refcount. 2424 * 2425 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2426 * before unlocking the folio to ensure that the folio is not reclaimed. 2427 * There is no need to reserve space before calling folio_mark_dirty(). 2428 * 2429 * When no folio is found, the behavior depends on @sgp: 2430 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2431 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2432 * - for all other flags a new folio is allocated, inserted into the 2433 * page cache and returned locked in @foliop. 2434 * 2435 * Context: May sleep. 2436 * Return: 0 if successful, else a negative error code. 2437 */ 2438 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end, 2439 struct folio **foliop, enum sgp_type sgp) 2440 { 2441 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp, 2442 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2443 } 2444 EXPORT_SYMBOL_GPL(shmem_get_folio); 2445 2446 /* 2447 * This is like autoremove_wake_function, but it removes the wait queue 2448 * entry unconditionally - even if something else had already woken the 2449 * target. 2450 */ 2451 static int synchronous_wake_function(wait_queue_entry_t *wait, 2452 unsigned int mode, int sync, void *key) 2453 { 2454 int ret = default_wake_function(wait, mode, sync, key); 2455 list_del_init(&wait->entry); 2456 return ret; 2457 } 2458 2459 /* 2460 * Trinity finds that probing a hole which tmpfs is punching can 2461 * prevent the hole-punch from ever completing: which in turn 2462 * locks writers out with its hold on i_rwsem. So refrain from 2463 * faulting pages into the hole while it's being punched. Although 2464 * shmem_undo_range() does remove the additions, it may be unable to 2465 * keep up, as each new page needs its own unmap_mapping_range() call, 2466 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2467 * 2468 * It does not matter if we sometimes reach this check just before the 2469 * hole-punch begins, so that one fault then races with the punch: 2470 * we just need to make racing faults a rare case. 2471 * 2472 * The implementation below would be much simpler if we just used a 2473 * standard mutex or completion: but we cannot take i_rwsem in fault, 2474 * and bloating every shmem inode for this unlikely case would be sad. 2475 */ 2476 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2477 { 2478 struct shmem_falloc *shmem_falloc; 2479 struct file *fpin = NULL; 2480 vm_fault_t ret = 0; 2481 2482 spin_lock(&inode->i_lock); 2483 shmem_falloc = inode->i_private; 2484 if (shmem_falloc && 2485 shmem_falloc->waitq && 2486 vmf->pgoff >= shmem_falloc->start && 2487 vmf->pgoff < shmem_falloc->next) { 2488 wait_queue_head_t *shmem_falloc_waitq; 2489 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2490 2491 ret = VM_FAULT_NOPAGE; 2492 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2493 shmem_falloc_waitq = shmem_falloc->waitq; 2494 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2495 TASK_UNINTERRUPTIBLE); 2496 spin_unlock(&inode->i_lock); 2497 schedule(); 2498 2499 /* 2500 * shmem_falloc_waitq points into the shmem_fallocate() 2501 * stack of the hole-punching task: shmem_falloc_waitq 2502 * is usually invalid by the time we reach here, but 2503 * finish_wait() does not dereference it in that case; 2504 * though i_lock needed lest racing with wake_up_all(). 2505 */ 2506 spin_lock(&inode->i_lock); 2507 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2508 } 2509 spin_unlock(&inode->i_lock); 2510 if (fpin) { 2511 fput(fpin); 2512 ret = VM_FAULT_RETRY; 2513 } 2514 return ret; 2515 } 2516 2517 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2518 { 2519 struct inode *inode = file_inode(vmf->vma->vm_file); 2520 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2521 struct folio *folio = NULL; 2522 vm_fault_t ret = 0; 2523 int err; 2524 2525 /* 2526 * Trinity finds that probing a hole which tmpfs is punching can 2527 * prevent the hole-punch from ever completing: noted in i_private. 2528 */ 2529 if (unlikely(inode->i_private)) { 2530 ret = shmem_falloc_wait(vmf, inode); 2531 if (ret) 2532 return ret; 2533 } 2534 2535 WARN_ON_ONCE(vmf->page != NULL); 2536 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE, 2537 gfp, vmf, &ret); 2538 if (err) 2539 return vmf_error(err); 2540 if (folio) { 2541 vmf->page = folio_file_page(folio, vmf->pgoff); 2542 ret |= VM_FAULT_LOCKED; 2543 } 2544 return ret; 2545 } 2546 2547 unsigned long shmem_get_unmapped_area(struct file *file, 2548 unsigned long uaddr, unsigned long len, 2549 unsigned long pgoff, unsigned long flags) 2550 { 2551 unsigned long addr; 2552 unsigned long offset; 2553 unsigned long inflated_len; 2554 unsigned long inflated_addr; 2555 unsigned long inflated_offset; 2556 unsigned long hpage_size; 2557 2558 if (len > TASK_SIZE) 2559 return -ENOMEM; 2560 2561 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff, 2562 flags); 2563 2564 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2565 return addr; 2566 if (IS_ERR_VALUE(addr)) 2567 return addr; 2568 if (addr & ~PAGE_MASK) 2569 return addr; 2570 if (addr > TASK_SIZE - len) 2571 return addr; 2572 2573 if (shmem_huge == SHMEM_HUGE_DENY) 2574 return addr; 2575 if (flags & MAP_FIXED) 2576 return addr; 2577 /* 2578 * Our priority is to support MAP_SHARED mapped hugely; 2579 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2580 * But if caller specified an address hint and we allocated area there 2581 * successfully, respect that as before. 2582 */ 2583 if (uaddr == addr) 2584 return addr; 2585 2586 hpage_size = HPAGE_PMD_SIZE; 2587 if (shmem_huge != SHMEM_HUGE_FORCE) { 2588 struct super_block *sb; 2589 unsigned long __maybe_unused hpage_orders; 2590 int order = 0; 2591 2592 if (file) { 2593 VM_BUG_ON(file->f_op != &shmem_file_operations); 2594 sb = file_inode(file)->i_sb; 2595 } else { 2596 /* 2597 * Called directly from mm/mmap.c, or drivers/char/mem.c 2598 * for "/dev/zero", to create a shared anonymous object. 2599 */ 2600 if (IS_ERR(shm_mnt)) 2601 return addr; 2602 sb = shm_mnt->mnt_sb; 2603 2604 /* 2605 * Find the highest mTHP order used for anonymous shmem to 2606 * provide a suitable alignment address. 2607 */ 2608 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2609 hpage_orders = READ_ONCE(huge_shmem_orders_always); 2610 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size); 2611 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise); 2612 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 2613 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit); 2614 2615 if (hpage_orders > 0) { 2616 order = highest_order(hpage_orders); 2617 hpage_size = PAGE_SIZE << order; 2618 } 2619 #endif 2620 } 2621 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order) 2622 return addr; 2623 } 2624 2625 if (len < hpage_size) 2626 return addr; 2627 2628 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1); 2629 if (offset && offset + len < 2 * hpage_size) 2630 return addr; 2631 if ((addr & (hpage_size - 1)) == offset) 2632 return addr; 2633 2634 inflated_len = len + hpage_size - PAGE_SIZE; 2635 if (inflated_len > TASK_SIZE) 2636 return addr; 2637 if (inflated_len < len) 2638 return addr; 2639 2640 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr, 2641 inflated_len, 0, flags); 2642 if (IS_ERR_VALUE(inflated_addr)) 2643 return addr; 2644 if (inflated_addr & ~PAGE_MASK) 2645 return addr; 2646 2647 inflated_offset = inflated_addr & (hpage_size - 1); 2648 inflated_addr += offset - inflated_offset; 2649 if (inflated_offset > offset) 2650 inflated_addr += hpage_size; 2651 2652 if (inflated_addr > TASK_SIZE - len) 2653 return addr; 2654 return inflated_addr; 2655 } 2656 2657 #ifdef CONFIG_NUMA 2658 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2659 { 2660 struct inode *inode = file_inode(vma->vm_file); 2661 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2662 } 2663 2664 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2665 unsigned long addr, pgoff_t *ilx) 2666 { 2667 struct inode *inode = file_inode(vma->vm_file); 2668 pgoff_t index; 2669 2670 /* 2671 * Bias interleave by inode number to distribute better across nodes; 2672 * but this interface is independent of which page order is used, so 2673 * supplies only that bias, letting caller apply the offset (adjusted 2674 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2675 */ 2676 *ilx = inode->i_ino; 2677 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2678 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2679 } 2680 2681 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2682 pgoff_t index, unsigned int order, pgoff_t *ilx) 2683 { 2684 struct mempolicy *mpol; 2685 2686 /* Bias interleave by inode number to distribute better across nodes */ 2687 *ilx = info->vfs_inode.i_ino + (index >> order); 2688 2689 mpol = mpol_shared_policy_lookup(&info->policy, index); 2690 return mpol ? mpol : get_task_policy(current); 2691 } 2692 #else 2693 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2694 pgoff_t index, unsigned int order, pgoff_t *ilx) 2695 { 2696 *ilx = 0; 2697 return NULL; 2698 } 2699 #endif /* CONFIG_NUMA */ 2700 2701 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2702 { 2703 struct inode *inode = file_inode(file); 2704 struct shmem_inode_info *info = SHMEM_I(inode); 2705 int retval = -ENOMEM; 2706 2707 /* 2708 * What serializes the accesses to info->flags? 2709 * ipc_lock_object() when called from shmctl_do_lock(), 2710 * no serialization needed when called from shm_destroy(). 2711 */ 2712 if (lock && !(info->flags & VM_LOCKED)) { 2713 if (!user_shm_lock(inode->i_size, ucounts)) 2714 goto out_nomem; 2715 info->flags |= VM_LOCKED; 2716 mapping_set_unevictable(file->f_mapping); 2717 } 2718 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2719 user_shm_unlock(inode->i_size, ucounts); 2720 info->flags &= ~VM_LOCKED; 2721 mapping_clear_unevictable(file->f_mapping); 2722 } 2723 retval = 0; 2724 2725 out_nomem: 2726 return retval; 2727 } 2728 2729 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2730 { 2731 struct inode *inode = file_inode(file); 2732 struct shmem_inode_info *info = SHMEM_I(inode); 2733 int ret; 2734 2735 ret = seal_check_write(info->seals, vma); 2736 if (ret) 2737 return ret; 2738 2739 /* arm64 - allow memory tagging on RAM-based files */ 2740 vm_flags_set(vma, VM_MTE_ALLOWED); 2741 2742 file_accessed(file); 2743 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2744 if (inode->i_nlink) 2745 vma->vm_ops = &shmem_vm_ops; 2746 else 2747 vma->vm_ops = &shmem_anon_vm_ops; 2748 return 0; 2749 } 2750 2751 static int shmem_file_open(struct inode *inode, struct file *file) 2752 { 2753 file->f_mode |= FMODE_CAN_ODIRECT; 2754 return generic_file_open(inode, file); 2755 } 2756 2757 #ifdef CONFIG_TMPFS_XATTR 2758 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2759 2760 /* 2761 * chattr's fsflags are unrelated to extended attributes, 2762 * but tmpfs has chosen to enable them under the same config option. 2763 */ 2764 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2765 { 2766 unsigned int i_flags = 0; 2767 2768 if (fsflags & FS_NOATIME_FL) 2769 i_flags |= S_NOATIME; 2770 if (fsflags & FS_APPEND_FL) 2771 i_flags |= S_APPEND; 2772 if (fsflags & FS_IMMUTABLE_FL) 2773 i_flags |= S_IMMUTABLE; 2774 /* 2775 * But FS_NODUMP_FL does not require any action in i_flags. 2776 */ 2777 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2778 } 2779 #else 2780 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2781 { 2782 } 2783 #define shmem_initxattrs NULL 2784 #endif 2785 2786 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 2787 { 2788 return &SHMEM_I(inode)->dir_offsets; 2789 } 2790 2791 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 2792 struct super_block *sb, 2793 struct inode *dir, umode_t mode, 2794 dev_t dev, unsigned long flags) 2795 { 2796 struct inode *inode; 2797 struct shmem_inode_info *info; 2798 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2799 ino_t ino; 2800 int err; 2801 2802 err = shmem_reserve_inode(sb, &ino); 2803 if (err) 2804 return ERR_PTR(err); 2805 2806 inode = new_inode(sb); 2807 if (!inode) { 2808 shmem_free_inode(sb, 0); 2809 return ERR_PTR(-ENOSPC); 2810 } 2811 2812 inode->i_ino = ino; 2813 inode_init_owner(idmap, inode, dir, mode); 2814 inode->i_blocks = 0; 2815 simple_inode_init_ts(inode); 2816 inode->i_generation = get_random_u32(); 2817 info = SHMEM_I(inode); 2818 memset(info, 0, (char *)inode - (char *)info); 2819 spin_lock_init(&info->lock); 2820 atomic_set(&info->stop_eviction, 0); 2821 info->seals = F_SEAL_SEAL; 2822 info->flags = flags & VM_NORESERVE; 2823 info->i_crtime = inode_get_mtime(inode); 2824 info->fsflags = (dir == NULL) ? 0 : 2825 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2826 if (info->fsflags) 2827 shmem_set_inode_flags(inode, info->fsflags); 2828 INIT_LIST_HEAD(&info->shrinklist); 2829 INIT_LIST_HEAD(&info->swaplist); 2830 simple_xattrs_init(&info->xattrs); 2831 cache_no_acl(inode); 2832 if (sbinfo->noswap) 2833 mapping_set_unevictable(inode->i_mapping); 2834 mapping_set_large_folios(inode->i_mapping); 2835 2836 switch (mode & S_IFMT) { 2837 default: 2838 inode->i_op = &shmem_special_inode_operations; 2839 init_special_inode(inode, mode, dev); 2840 break; 2841 case S_IFREG: 2842 inode->i_mapping->a_ops = &shmem_aops; 2843 inode->i_op = &shmem_inode_operations; 2844 inode->i_fop = &shmem_file_operations; 2845 mpol_shared_policy_init(&info->policy, 2846 shmem_get_sbmpol(sbinfo)); 2847 break; 2848 case S_IFDIR: 2849 inc_nlink(inode); 2850 /* Some things misbehave if size == 0 on a directory */ 2851 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2852 inode->i_op = &shmem_dir_inode_operations; 2853 inode->i_fop = &simple_offset_dir_operations; 2854 simple_offset_init(shmem_get_offset_ctx(inode)); 2855 break; 2856 case S_IFLNK: 2857 /* 2858 * Must not load anything in the rbtree, 2859 * mpol_free_shared_policy will not be called. 2860 */ 2861 mpol_shared_policy_init(&info->policy, NULL); 2862 break; 2863 } 2864 2865 lockdep_annotate_inode_mutex_key(inode); 2866 return inode; 2867 } 2868 2869 #ifdef CONFIG_TMPFS_QUOTA 2870 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2871 struct super_block *sb, struct inode *dir, 2872 umode_t mode, dev_t dev, unsigned long flags) 2873 { 2874 int err; 2875 struct inode *inode; 2876 2877 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2878 if (IS_ERR(inode)) 2879 return inode; 2880 2881 err = dquot_initialize(inode); 2882 if (err) 2883 goto errout; 2884 2885 err = dquot_alloc_inode(inode); 2886 if (err) { 2887 dquot_drop(inode); 2888 goto errout; 2889 } 2890 return inode; 2891 2892 errout: 2893 inode->i_flags |= S_NOQUOTA; 2894 iput(inode); 2895 return ERR_PTR(err); 2896 } 2897 #else 2898 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2899 struct super_block *sb, struct inode *dir, 2900 umode_t mode, dev_t dev, unsigned long flags) 2901 { 2902 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2903 } 2904 #endif /* CONFIG_TMPFS_QUOTA */ 2905 2906 #ifdef CONFIG_USERFAULTFD 2907 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 2908 struct vm_area_struct *dst_vma, 2909 unsigned long dst_addr, 2910 unsigned long src_addr, 2911 uffd_flags_t flags, 2912 struct folio **foliop) 2913 { 2914 struct inode *inode = file_inode(dst_vma->vm_file); 2915 struct shmem_inode_info *info = SHMEM_I(inode); 2916 struct address_space *mapping = inode->i_mapping; 2917 gfp_t gfp = mapping_gfp_mask(mapping); 2918 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2919 void *page_kaddr; 2920 struct folio *folio; 2921 int ret; 2922 pgoff_t max_off; 2923 2924 if (shmem_inode_acct_blocks(inode, 1)) { 2925 /* 2926 * We may have got a page, returned -ENOENT triggering a retry, 2927 * and now we find ourselves with -ENOMEM. Release the page, to 2928 * avoid a BUG_ON in our caller. 2929 */ 2930 if (unlikely(*foliop)) { 2931 folio_put(*foliop); 2932 *foliop = NULL; 2933 } 2934 return -ENOMEM; 2935 } 2936 2937 if (!*foliop) { 2938 ret = -ENOMEM; 2939 folio = shmem_alloc_folio(gfp, 0, info, pgoff); 2940 if (!folio) 2941 goto out_unacct_blocks; 2942 2943 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 2944 page_kaddr = kmap_local_folio(folio, 0); 2945 /* 2946 * The read mmap_lock is held here. Despite the 2947 * mmap_lock being read recursive a deadlock is still 2948 * possible if a writer has taken a lock. For example: 2949 * 2950 * process A thread 1 takes read lock on own mmap_lock 2951 * process A thread 2 calls mmap, blocks taking write lock 2952 * process B thread 1 takes page fault, read lock on own mmap lock 2953 * process B thread 2 calls mmap, blocks taking write lock 2954 * process A thread 1 blocks taking read lock on process B 2955 * process B thread 1 blocks taking read lock on process A 2956 * 2957 * Disable page faults to prevent potential deadlock 2958 * and retry the copy outside the mmap_lock. 2959 */ 2960 pagefault_disable(); 2961 ret = copy_from_user(page_kaddr, 2962 (const void __user *)src_addr, 2963 PAGE_SIZE); 2964 pagefault_enable(); 2965 kunmap_local(page_kaddr); 2966 2967 /* fallback to copy_from_user outside mmap_lock */ 2968 if (unlikely(ret)) { 2969 *foliop = folio; 2970 ret = -ENOENT; 2971 /* don't free the page */ 2972 goto out_unacct_blocks; 2973 } 2974 2975 flush_dcache_folio(folio); 2976 } else { /* ZEROPAGE */ 2977 clear_user_highpage(&folio->page, dst_addr); 2978 } 2979 } else { 2980 folio = *foliop; 2981 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2982 *foliop = NULL; 2983 } 2984 2985 VM_BUG_ON(folio_test_locked(folio)); 2986 VM_BUG_ON(folio_test_swapbacked(folio)); 2987 __folio_set_locked(folio); 2988 __folio_set_swapbacked(folio); 2989 __folio_mark_uptodate(folio); 2990 2991 ret = -EFAULT; 2992 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2993 if (unlikely(pgoff >= max_off)) 2994 goto out_release; 2995 2996 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 2997 if (ret) 2998 goto out_release; 2999 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 3000 if (ret) 3001 goto out_release; 3002 3003 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 3004 &folio->page, true, flags); 3005 if (ret) 3006 goto out_delete_from_cache; 3007 3008 shmem_recalc_inode(inode, 1, 0); 3009 folio_unlock(folio); 3010 return 0; 3011 out_delete_from_cache: 3012 filemap_remove_folio(folio); 3013 out_release: 3014 folio_unlock(folio); 3015 folio_put(folio); 3016 out_unacct_blocks: 3017 shmem_inode_unacct_blocks(inode, 1); 3018 return ret; 3019 } 3020 #endif /* CONFIG_USERFAULTFD */ 3021 3022 #ifdef CONFIG_TMPFS 3023 static const struct inode_operations shmem_symlink_inode_operations; 3024 static const struct inode_operations shmem_short_symlink_operations; 3025 3026 static int 3027 shmem_write_begin(struct file *file, struct address_space *mapping, 3028 loff_t pos, unsigned len, 3029 struct page **pagep, void **fsdata) 3030 { 3031 struct inode *inode = mapping->host; 3032 struct shmem_inode_info *info = SHMEM_I(inode); 3033 pgoff_t index = pos >> PAGE_SHIFT; 3034 struct folio *folio; 3035 int ret = 0; 3036 3037 /* i_rwsem is held by caller */ 3038 if (unlikely(info->seals & (F_SEAL_GROW | 3039 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 3040 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 3041 return -EPERM; 3042 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 3043 return -EPERM; 3044 } 3045 3046 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE); 3047 if (ret) 3048 return ret; 3049 3050 *pagep = folio_file_page(folio, index); 3051 if (PageHWPoison(*pagep)) { 3052 folio_unlock(folio); 3053 folio_put(folio); 3054 *pagep = NULL; 3055 return -EIO; 3056 } 3057 3058 return 0; 3059 } 3060 3061 static int 3062 shmem_write_end(struct file *file, struct address_space *mapping, 3063 loff_t pos, unsigned len, unsigned copied, 3064 struct page *page, void *fsdata) 3065 { 3066 struct folio *folio = page_folio(page); 3067 struct inode *inode = mapping->host; 3068 3069 if (pos + copied > inode->i_size) 3070 i_size_write(inode, pos + copied); 3071 3072 if (!folio_test_uptodate(folio)) { 3073 if (copied < folio_size(folio)) { 3074 size_t from = offset_in_folio(folio, pos); 3075 folio_zero_segments(folio, 0, from, 3076 from + copied, folio_size(folio)); 3077 } 3078 folio_mark_uptodate(folio); 3079 } 3080 folio_mark_dirty(folio); 3081 folio_unlock(folio); 3082 folio_put(folio); 3083 3084 return copied; 3085 } 3086 3087 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3088 { 3089 struct file *file = iocb->ki_filp; 3090 struct inode *inode = file_inode(file); 3091 struct address_space *mapping = inode->i_mapping; 3092 pgoff_t index; 3093 unsigned long offset; 3094 int error = 0; 3095 ssize_t retval = 0; 3096 loff_t *ppos = &iocb->ki_pos; 3097 3098 index = *ppos >> PAGE_SHIFT; 3099 offset = *ppos & ~PAGE_MASK; 3100 3101 for (;;) { 3102 struct folio *folio = NULL; 3103 struct page *page = NULL; 3104 pgoff_t end_index; 3105 unsigned long nr, ret; 3106 loff_t i_size = i_size_read(inode); 3107 3108 end_index = i_size >> PAGE_SHIFT; 3109 if (index > end_index) 3110 break; 3111 if (index == end_index) { 3112 nr = i_size & ~PAGE_MASK; 3113 if (nr <= offset) 3114 break; 3115 } 3116 3117 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3118 if (error) { 3119 if (error == -EINVAL) 3120 error = 0; 3121 break; 3122 } 3123 if (folio) { 3124 folio_unlock(folio); 3125 3126 page = folio_file_page(folio, index); 3127 if (PageHWPoison(page)) { 3128 folio_put(folio); 3129 error = -EIO; 3130 break; 3131 } 3132 } 3133 3134 /* 3135 * We must evaluate after, since reads (unlike writes) 3136 * are called without i_rwsem protection against truncate 3137 */ 3138 nr = PAGE_SIZE; 3139 i_size = i_size_read(inode); 3140 end_index = i_size >> PAGE_SHIFT; 3141 if (index == end_index) { 3142 nr = i_size & ~PAGE_MASK; 3143 if (nr <= offset) { 3144 if (folio) 3145 folio_put(folio); 3146 break; 3147 } 3148 } 3149 nr -= offset; 3150 3151 if (folio) { 3152 /* 3153 * If users can be writing to this page using arbitrary 3154 * virtual addresses, take care about potential aliasing 3155 * before reading the page on the kernel side. 3156 */ 3157 if (mapping_writably_mapped(mapping)) 3158 flush_dcache_page(page); 3159 /* 3160 * Mark the page accessed if we read the beginning. 3161 */ 3162 if (!offset) 3163 folio_mark_accessed(folio); 3164 /* 3165 * Ok, we have the page, and it's up-to-date, so 3166 * now we can copy it to user space... 3167 */ 3168 ret = copy_page_to_iter(page, offset, nr, to); 3169 folio_put(folio); 3170 3171 } else if (user_backed_iter(to)) { 3172 /* 3173 * Copy to user tends to be so well optimized, but 3174 * clear_user() not so much, that it is noticeably 3175 * faster to copy the zero page instead of clearing. 3176 */ 3177 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 3178 } else { 3179 /* 3180 * But submitting the same page twice in a row to 3181 * splice() - or others? - can result in confusion: 3182 * so don't attempt that optimization on pipes etc. 3183 */ 3184 ret = iov_iter_zero(nr, to); 3185 } 3186 3187 retval += ret; 3188 offset += ret; 3189 index += offset >> PAGE_SHIFT; 3190 offset &= ~PAGE_MASK; 3191 3192 if (!iov_iter_count(to)) 3193 break; 3194 if (ret < nr) { 3195 error = -EFAULT; 3196 break; 3197 } 3198 cond_resched(); 3199 } 3200 3201 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 3202 file_accessed(file); 3203 return retval ? retval : error; 3204 } 3205 3206 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3207 { 3208 struct file *file = iocb->ki_filp; 3209 struct inode *inode = file->f_mapping->host; 3210 ssize_t ret; 3211 3212 inode_lock(inode); 3213 ret = generic_write_checks(iocb, from); 3214 if (ret <= 0) 3215 goto unlock; 3216 ret = file_remove_privs(file); 3217 if (ret) 3218 goto unlock; 3219 ret = file_update_time(file); 3220 if (ret) 3221 goto unlock; 3222 ret = generic_perform_write(iocb, from); 3223 unlock: 3224 inode_unlock(inode); 3225 return ret; 3226 } 3227 3228 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 3229 struct pipe_buffer *buf) 3230 { 3231 return true; 3232 } 3233 3234 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 3235 struct pipe_buffer *buf) 3236 { 3237 } 3238 3239 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 3240 struct pipe_buffer *buf) 3241 { 3242 return false; 3243 } 3244 3245 static const struct pipe_buf_operations zero_pipe_buf_ops = { 3246 .release = zero_pipe_buf_release, 3247 .try_steal = zero_pipe_buf_try_steal, 3248 .get = zero_pipe_buf_get, 3249 }; 3250 3251 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 3252 loff_t fpos, size_t size) 3253 { 3254 size_t offset = fpos & ~PAGE_MASK; 3255 3256 size = min_t(size_t, size, PAGE_SIZE - offset); 3257 3258 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 3259 struct pipe_buffer *buf = pipe_head_buf(pipe); 3260 3261 *buf = (struct pipe_buffer) { 3262 .ops = &zero_pipe_buf_ops, 3263 .page = ZERO_PAGE(0), 3264 .offset = offset, 3265 .len = size, 3266 }; 3267 pipe->head++; 3268 } 3269 3270 return size; 3271 } 3272 3273 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 3274 struct pipe_inode_info *pipe, 3275 size_t len, unsigned int flags) 3276 { 3277 struct inode *inode = file_inode(in); 3278 struct address_space *mapping = inode->i_mapping; 3279 struct folio *folio = NULL; 3280 size_t total_spliced = 0, used, npages, n, part; 3281 loff_t isize; 3282 int error = 0; 3283 3284 /* Work out how much data we can actually add into the pipe */ 3285 used = pipe_occupancy(pipe->head, pipe->tail); 3286 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3287 len = min_t(size_t, len, npages * PAGE_SIZE); 3288 3289 do { 3290 if (*ppos >= i_size_read(inode)) 3291 break; 3292 3293 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, 0, &folio, 3294 SGP_READ); 3295 if (error) { 3296 if (error == -EINVAL) 3297 error = 0; 3298 break; 3299 } 3300 if (folio) { 3301 folio_unlock(folio); 3302 3303 if (folio_test_hwpoison(folio) || 3304 (folio_test_large(folio) && 3305 folio_test_has_hwpoisoned(folio))) { 3306 error = -EIO; 3307 break; 3308 } 3309 } 3310 3311 /* 3312 * i_size must be checked after we know the pages are Uptodate. 3313 * 3314 * Checking i_size after the check allows us to calculate 3315 * the correct value for "nr", which means the zero-filled 3316 * part of the page is not copied back to userspace (unless 3317 * another truncate extends the file - this is desired though). 3318 */ 3319 isize = i_size_read(inode); 3320 if (unlikely(*ppos >= isize)) 3321 break; 3322 part = min_t(loff_t, isize - *ppos, len); 3323 3324 if (folio) { 3325 /* 3326 * If users can be writing to this page using arbitrary 3327 * virtual addresses, take care about potential aliasing 3328 * before reading the page on the kernel side. 3329 */ 3330 if (mapping_writably_mapped(mapping)) 3331 flush_dcache_folio(folio); 3332 folio_mark_accessed(folio); 3333 /* 3334 * Ok, we have the page, and it's up-to-date, so we can 3335 * now splice it into the pipe. 3336 */ 3337 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3338 folio_put(folio); 3339 folio = NULL; 3340 } else { 3341 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3342 } 3343 3344 if (!n) 3345 break; 3346 len -= n; 3347 total_spliced += n; 3348 *ppos += n; 3349 in->f_ra.prev_pos = *ppos; 3350 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 3351 break; 3352 3353 cond_resched(); 3354 } while (len); 3355 3356 if (folio) 3357 folio_put(folio); 3358 3359 file_accessed(in); 3360 return total_spliced ? total_spliced : error; 3361 } 3362 3363 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3364 { 3365 struct address_space *mapping = file->f_mapping; 3366 struct inode *inode = mapping->host; 3367 3368 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3369 return generic_file_llseek_size(file, offset, whence, 3370 MAX_LFS_FILESIZE, i_size_read(inode)); 3371 if (offset < 0) 3372 return -ENXIO; 3373 3374 inode_lock(inode); 3375 /* We're holding i_rwsem so we can access i_size directly */ 3376 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3377 if (offset >= 0) 3378 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3379 inode_unlock(inode); 3380 return offset; 3381 } 3382 3383 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3384 loff_t len) 3385 { 3386 struct inode *inode = file_inode(file); 3387 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3388 struct shmem_inode_info *info = SHMEM_I(inode); 3389 struct shmem_falloc shmem_falloc; 3390 pgoff_t start, index, end, undo_fallocend; 3391 int error; 3392 3393 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3394 return -EOPNOTSUPP; 3395 3396 inode_lock(inode); 3397 3398 if (mode & FALLOC_FL_PUNCH_HOLE) { 3399 struct address_space *mapping = file->f_mapping; 3400 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3401 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3402 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3403 3404 /* protected by i_rwsem */ 3405 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3406 error = -EPERM; 3407 goto out; 3408 } 3409 3410 shmem_falloc.waitq = &shmem_falloc_waitq; 3411 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3412 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3413 spin_lock(&inode->i_lock); 3414 inode->i_private = &shmem_falloc; 3415 spin_unlock(&inode->i_lock); 3416 3417 if ((u64)unmap_end > (u64)unmap_start) 3418 unmap_mapping_range(mapping, unmap_start, 3419 1 + unmap_end - unmap_start, 0); 3420 shmem_truncate_range(inode, offset, offset + len - 1); 3421 /* No need to unmap again: hole-punching leaves COWed pages */ 3422 3423 spin_lock(&inode->i_lock); 3424 inode->i_private = NULL; 3425 wake_up_all(&shmem_falloc_waitq); 3426 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3427 spin_unlock(&inode->i_lock); 3428 error = 0; 3429 goto out; 3430 } 3431 3432 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3433 error = inode_newsize_ok(inode, offset + len); 3434 if (error) 3435 goto out; 3436 3437 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3438 error = -EPERM; 3439 goto out; 3440 } 3441 3442 start = offset >> PAGE_SHIFT; 3443 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3444 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3445 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3446 error = -ENOSPC; 3447 goto out; 3448 } 3449 3450 shmem_falloc.waitq = NULL; 3451 shmem_falloc.start = start; 3452 shmem_falloc.next = start; 3453 shmem_falloc.nr_falloced = 0; 3454 shmem_falloc.nr_unswapped = 0; 3455 spin_lock(&inode->i_lock); 3456 inode->i_private = &shmem_falloc; 3457 spin_unlock(&inode->i_lock); 3458 3459 /* 3460 * info->fallocend is only relevant when huge pages might be 3461 * involved: to prevent split_huge_page() freeing fallocated 3462 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3463 */ 3464 undo_fallocend = info->fallocend; 3465 if (info->fallocend < end) 3466 info->fallocend = end; 3467 3468 for (index = start; index < end; ) { 3469 struct folio *folio; 3470 3471 /* 3472 * Check for fatal signal so that we abort early in OOM 3473 * situations. We don't want to abort in case of non-fatal 3474 * signals as large fallocate can take noticeable time and 3475 * e.g. periodic timers may result in fallocate constantly 3476 * restarting. 3477 */ 3478 if (fatal_signal_pending(current)) 3479 error = -EINTR; 3480 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3481 error = -ENOMEM; 3482 else 3483 error = shmem_get_folio(inode, index, offset + len, 3484 &folio, SGP_FALLOC); 3485 if (error) { 3486 info->fallocend = undo_fallocend; 3487 /* Remove the !uptodate folios we added */ 3488 if (index > start) { 3489 shmem_undo_range(inode, 3490 (loff_t)start << PAGE_SHIFT, 3491 ((loff_t)index << PAGE_SHIFT) - 1, true); 3492 } 3493 goto undone; 3494 } 3495 3496 /* 3497 * Here is a more important optimization than it appears: 3498 * a second SGP_FALLOC on the same large folio will clear it, 3499 * making it uptodate and un-undoable if we fail later. 3500 */ 3501 index = folio_next_index(folio); 3502 /* Beware 32-bit wraparound */ 3503 if (!index) 3504 index--; 3505 3506 /* 3507 * Inform shmem_writepage() how far we have reached. 3508 * No need for lock or barrier: we have the page lock. 3509 */ 3510 if (!folio_test_uptodate(folio)) 3511 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3512 shmem_falloc.next = index; 3513 3514 /* 3515 * If !uptodate, leave it that way so that freeable folios 3516 * can be recognized if we need to rollback on error later. 3517 * But mark it dirty so that memory pressure will swap rather 3518 * than free the folios we are allocating (and SGP_CACHE folios 3519 * might still be clean: we now need to mark those dirty too). 3520 */ 3521 folio_mark_dirty(folio); 3522 folio_unlock(folio); 3523 folio_put(folio); 3524 cond_resched(); 3525 } 3526 3527 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3528 i_size_write(inode, offset + len); 3529 undone: 3530 spin_lock(&inode->i_lock); 3531 inode->i_private = NULL; 3532 spin_unlock(&inode->i_lock); 3533 out: 3534 if (!error) 3535 file_modified(file); 3536 inode_unlock(inode); 3537 return error; 3538 } 3539 3540 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3541 { 3542 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3543 3544 buf->f_type = TMPFS_MAGIC; 3545 buf->f_bsize = PAGE_SIZE; 3546 buf->f_namelen = NAME_MAX; 3547 if (sbinfo->max_blocks) { 3548 buf->f_blocks = sbinfo->max_blocks; 3549 buf->f_bavail = 3550 buf->f_bfree = sbinfo->max_blocks - 3551 percpu_counter_sum(&sbinfo->used_blocks); 3552 } 3553 if (sbinfo->max_inodes) { 3554 buf->f_files = sbinfo->max_inodes; 3555 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3556 } 3557 /* else leave those fields 0 like simple_statfs */ 3558 3559 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3560 3561 return 0; 3562 } 3563 3564 /* 3565 * File creation. Allocate an inode, and we're done.. 3566 */ 3567 static int 3568 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3569 struct dentry *dentry, umode_t mode, dev_t dev) 3570 { 3571 struct inode *inode; 3572 int error; 3573 3574 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3575 if (IS_ERR(inode)) 3576 return PTR_ERR(inode); 3577 3578 error = simple_acl_create(dir, inode); 3579 if (error) 3580 goto out_iput; 3581 error = security_inode_init_security(inode, dir, &dentry->d_name, 3582 shmem_initxattrs, NULL); 3583 if (error && error != -EOPNOTSUPP) 3584 goto out_iput; 3585 3586 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3587 if (error) 3588 goto out_iput; 3589 3590 dir->i_size += BOGO_DIRENT_SIZE; 3591 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3592 inode_inc_iversion(dir); 3593 d_instantiate(dentry, inode); 3594 dget(dentry); /* Extra count - pin the dentry in core */ 3595 return error; 3596 3597 out_iput: 3598 iput(inode); 3599 return error; 3600 } 3601 3602 static int 3603 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3604 struct file *file, umode_t mode) 3605 { 3606 struct inode *inode; 3607 int error; 3608 3609 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3610 if (IS_ERR(inode)) { 3611 error = PTR_ERR(inode); 3612 goto err_out; 3613 } 3614 error = security_inode_init_security(inode, dir, NULL, 3615 shmem_initxattrs, NULL); 3616 if (error && error != -EOPNOTSUPP) 3617 goto out_iput; 3618 error = simple_acl_create(dir, inode); 3619 if (error) 3620 goto out_iput; 3621 d_tmpfile(file, inode); 3622 3623 err_out: 3624 return finish_open_simple(file, error); 3625 out_iput: 3626 iput(inode); 3627 return error; 3628 } 3629 3630 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3631 struct dentry *dentry, umode_t mode) 3632 { 3633 int error; 3634 3635 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3636 if (error) 3637 return error; 3638 inc_nlink(dir); 3639 return 0; 3640 } 3641 3642 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3643 struct dentry *dentry, umode_t mode, bool excl) 3644 { 3645 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3646 } 3647 3648 /* 3649 * Link a file.. 3650 */ 3651 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3652 struct dentry *dentry) 3653 { 3654 struct inode *inode = d_inode(old_dentry); 3655 int ret = 0; 3656 3657 /* 3658 * No ordinary (disk based) filesystem counts links as inodes; 3659 * but each new link needs a new dentry, pinning lowmem, and 3660 * tmpfs dentries cannot be pruned until they are unlinked. 3661 * But if an O_TMPFILE file is linked into the tmpfs, the 3662 * first link must skip that, to get the accounting right. 3663 */ 3664 if (inode->i_nlink) { 3665 ret = shmem_reserve_inode(inode->i_sb, NULL); 3666 if (ret) 3667 goto out; 3668 } 3669 3670 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3671 if (ret) { 3672 if (inode->i_nlink) 3673 shmem_free_inode(inode->i_sb, 0); 3674 goto out; 3675 } 3676 3677 dir->i_size += BOGO_DIRENT_SIZE; 3678 inode_set_mtime_to_ts(dir, 3679 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3680 inode_inc_iversion(dir); 3681 inc_nlink(inode); 3682 ihold(inode); /* New dentry reference */ 3683 dget(dentry); /* Extra pinning count for the created dentry */ 3684 d_instantiate(dentry, inode); 3685 out: 3686 return ret; 3687 } 3688 3689 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3690 { 3691 struct inode *inode = d_inode(dentry); 3692 3693 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3694 shmem_free_inode(inode->i_sb, 0); 3695 3696 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3697 3698 dir->i_size -= BOGO_DIRENT_SIZE; 3699 inode_set_mtime_to_ts(dir, 3700 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3701 inode_inc_iversion(dir); 3702 drop_nlink(inode); 3703 dput(dentry); /* Undo the count from "create" - does all the work */ 3704 return 0; 3705 } 3706 3707 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3708 { 3709 if (!simple_offset_empty(dentry)) 3710 return -ENOTEMPTY; 3711 3712 drop_nlink(d_inode(dentry)); 3713 drop_nlink(dir); 3714 return shmem_unlink(dir, dentry); 3715 } 3716 3717 static int shmem_whiteout(struct mnt_idmap *idmap, 3718 struct inode *old_dir, struct dentry *old_dentry) 3719 { 3720 struct dentry *whiteout; 3721 int error; 3722 3723 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3724 if (!whiteout) 3725 return -ENOMEM; 3726 3727 error = shmem_mknod(idmap, old_dir, whiteout, 3728 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3729 dput(whiteout); 3730 if (error) 3731 return error; 3732 3733 /* 3734 * Cheat and hash the whiteout while the old dentry is still in 3735 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3736 * 3737 * d_lookup() will consistently find one of them at this point, 3738 * not sure which one, but that isn't even important. 3739 */ 3740 d_rehash(whiteout); 3741 return 0; 3742 } 3743 3744 /* 3745 * The VFS layer already does all the dentry stuff for rename, 3746 * we just have to decrement the usage count for the target if 3747 * it exists so that the VFS layer correctly free's it when it 3748 * gets overwritten. 3749 */ 3750 static int shmem_rename2(struct mnt_idmap *idmap, 3751 struct inode *old_dir, struct dentry *old_dentry, 3752 struct inode *new_dir, struct dentry *new_dentry, 3753 unsigned int flags) 3754 { 3755 struct inode *inode = d_inode(old_dentry); 3756 int they_are_dirs = S_ISDIR(inode->i_mode); 3757 int error; 3758 3759 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3760 return -EINVAL; 3761 3762 if (flags & RENAME_EXCHANGE) 3763 return simple_offset_rename_exchange(old_dir, old_dentry, 3764 new_dir, new_dentry); 3765 3766 if (!simple_offset_empty(new_dentry)) 3767 return -ENOTEMPTY; 3768 3769 if (flags & RENAME_WHITEOUT) { 3770 error = shmem_whiteout(idmap, old_dir, old_dentry); 3771 if (error) 3772 return error; 3773 } 3774 3775 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 3776 if (error) 3777 return error; 3778 3779 if (d_really_is_positive(new_dentry)) { 3780 (void) shmem_unlink(new_dir, new_dentry); 3781 if (they_are_dirs) { 3782 drop_nlink(d_inode(new_dentry)); 3783 drop_nlink(old_dir); 3784 } 3785 } else if (they_are_dirs) { 3786 drop_nlink(old_dir); 3787 inc_nlink(new_dir); 3788 } 3789 3790 old_dir->i_size -= BOGO_DIRENT_SIZE; 3791 new_dir->i_size += BOGO_DIRENT_SIZE; 3792 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 3793 inode_inc_iversion(old_dir); 3794 inode_inc_iversion(new_dir); 3795 return 0; 3796 } 3797 3798 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3799 struct dentry *dentry, const char *symname) 3800 { 3801 int error; 3802 int len; 3803 struct inode *inode; 3804 struct folio *folio; 3805 3806 len = strlen(symname) + 1; 3807 if (len > PAGE_SIZE) 3808 return -ENAMETOOLONG; 3809 3810 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3811 VM_NORESERVE); 3812 if (IS_ERR(inode)) 3813 return PTR_ERR(inode); 3814 3815 error = security_inode_init_security(inode, dir, &dentry->d_name, 3816 shmem_initxattrs, NULL); 3817 if (error && error != -EOPNOTSUPP) 3818 goto out_iput; 3819 3820 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3821 if (error) 3822 goto out_iput; 3823 3824 inode->i_size = len-1; 3825 if (len <= SHORT_SYMLINK_LEN) { 3826 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3827 if (!inode->i_link) { 3828 error = -ENOMEM; 3829 goto out_remove_offset; 3830 } 3831 inode->i_op = &shmem_short_symlink_operations; 3832 } else { 3833 inode_nohighmem(inode); 3834 inode->i_mapping->a_ops = &shmem_aops; 3835 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE); 3836 if (error) 3837 goto out_remove_offset; 3838 inode->i_op = &shmem_symlink_inode_operations; 3839 memcpy(folio_address(folio), symname, len); 3840 folio_mark_uptodate(folio); 3841 folio_mark_dirty(folio); 3842 folio_unlock(folio); 3843 folio_put(folio); 3844 } 3845 dir->i_size += BOGO_DIRENT_SIZE; 3846 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3847 inode_inc_iversion(dir); 3848 d_instantiate(dentry, inode); 3849 dget(dentry); 3850 return 0; 3851 3852 out_remove_offset: 3853 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3854 out_iput: 3855 iput(inode); 3856 return error; 3857 } 3858 3859 static void shmem_put_link(void *arg) 3860 { 3861 folio_mark_accessed(arg); 3862 folio_put(arg); 3863 } 3864 3865 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 3866 struct delayed_call *done) 3867 { 3868 struct folio *folio = NULL; 3869 int error; 3870 3871 if (!dentry) { 3872 folio = filemap_get_folio(inode->i_mapping, 0); 3873 if (IS_ERR(folio)) 3874 return ERR_PTR(-ECHILD); 3875 if (PageHWPoison(folio_page(folio, 0)) || 3876 !folio_test_uptodate(folio)) { 3877 folio_put(folio); 3878 return ERR_PTR(-ECHILD); 3879 } 3880 } else { 3881 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ); 3882 if (error) 3883 return ERR_PTR(error); 3884 if (!folio) 3885 return ERR_PTR(-ECHILD); 3886 if (PageHWPoison(folio_page(folio, 0))) { 3887 folio_unlock(folio); 3888 folio_put(folio); 3889 return ERR_PTR(-ECHILD); 3890 } 3891 folio_unlock(folio); 3892 } 3893 set_delayed_call(done, shmem_put_link, folio); 3894 return folio_address(folio); 3895 } 3896 3897 #ifdef CONFIG_TMPFS_XATTR 3898 3899 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3900 { 3901 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3902 3903 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3904 3905 return 0; 3906 } 3907 3908 static int shmem_fileattr_set(struct mnt_idmap *idmap, 3909 struct dentry *dentry, struct fileattr *fa) 3910 { 3911 struct inode *inode = d_inode(dentry); 3912 struct shmem_inode_info *info = SHMEM_I(inode); 3913 3914 if (fileattr_has_fsx(fa)) 3915 return -EOPNOTSUPP; 3916 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3917 return -EOPNOTSUPP; 3918 3919 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3920 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3921 3922 shmem_set_inode_flags(inode, info->fsflags); 3923 inode_set_ctime_current(inode); 3924 inode_inc_iversion(inode); 3925 return 0; 3926 } 3927 3928 /* 3929 * Superblocks without xattr inode operations may get some security.* xattr 3930 * support from the LSM "for free". As soon as we have any other xattrs 3931 * like ACLs, we also need to implement the security.* handlers at 3932 * filesystem level, though. 3933 */ 3934 3935 /* 3936 * Callback for security_inode_init_security() for acquiring xattrs. 3937 */ 3938 static int shmem_initxattrs(struct inode *inode, 3939 const struct xattr *xattr_array, void *fs_info) 3940 { 3941 struct shmem_inode_info *info = SHMEM_I(inode); 3942 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3943 const struct xattr *xattr; 3944 struct simple_xattr *new_xattr; 3945 size_t ispace = 0; 3946 size_t len; 3947 3948 if (sbinfo->max_inodes) { 3949 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3950 ispace += simple_xattr_space(xattr->name, 3951 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 3952 } 3953 if (ispace) { 3954 raw_spin_lock(&sbinfo->stat_lock); 3955 if (sbinfo->free_ispace < ispace) 3956 ispace = 0; 3957 else 3958 sbinfo->free_ispace -= ispace; 3959 raw_spin_unlock(&sbinfo->stat_lock); 3960 if (!ispace) 3961 return -ENOSPC; 3962 } 3963 } 3964 3965 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3966 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3967 if (!new_xattr) 3968 break; 3969 3970 len = strlen(xattr->name) + 1; 3971 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3972 GFP_KERNEL_ACCOUNT); 3973 if (!new_xattr->name) { 3974 kvfree(new_xattr); 3975 break; 3976 } 3977 3978 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3979 XATTR_SECURITY_PREFIX_LEN); 3980 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3981 xattr->name, len); 3982 3983 simple_xattr_add(&info->xattrs, new_xattr); 3984 } 3985 3986 if (xattr->name != NULL) { 3987 if (ispace) { 3988 raw_spin_lock(&sbinfo->stat_lock); 3989 sbinfo->free_ispace += ispace; 3990 raw_spin_unlock(&sbinfo->stat_lock); 3991 } 3992 simple_xattrs_free(&info->xattrs, NULL); 3993 return -ENOMEM; 3994 } 3995 3996 return 0; 3997 } 3998 3999 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 4000 struct dentry *unused, struct inode *inode, 4001 const char *name, void *buffer, size_t size) 4002 { 4003 struct shmem_inode_info *info = SHMEM_I(inode); 4004 4005 name = xattr_full_name(handler, name); 4006 return simple_xattr_get(&info->xattrs, name, buffer, size); 4007 } 4008 4009 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 4010 struct mnt_idmap *idmap, 4011 struct dentry *unused, struct inode *inode, 4012 const char *name, const void *value, 4013 size_t size, int flags) 4014 { 4015 struct shmem_inode_info *info = SHMEM_I(inode); 4016 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4017 struct simple_xattr *old_xattr; 4018 size_t ispace = 0; 4019 4020 name = xattr_full_name(handler, name); 4021 if (value && sbinfo->max_inodes) { 4022 ispace = simple_xattr_space(name, size); 4023 raw_spin_lock(&sbinfo->stat_lock); 4024 if (sbinfo->free_ispace < ispace) 4025 ispace = 0; 4026 else 4027 sbinfo->free_ispace -= ispace; 4028 raw_spin_unlock(&sbinfo->stat_lock); 4029 if (!ispace) 4030 return -ENOSPC; 4031 } 4032 4033 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 4034 if (!IS_ERR(old_xattr)) { 4035 ispace = 0; 4036 if (old_xattr && sbinfo->max_inodes) 4037 ispace = simple_xattr_space(old_xattr->name, 4038 old_xattr->size); 4039 simple_xattr_free(old_xattr); 4040 old_xattr = NULL; 4041 inode_set_ctime_current(inode); 4042 inode_inc_iversion(inode); 4043 } 4044 if (ispace) { 4045 raw_spin_lock(&sbinfo->stat_lock); 4046 sbinfo->free_ispace += ispace; 4047 raw_spin_unlock(&sbinfo->stat_lock); 4048 } 4049 return PTR_ERR(old_xattr); 4050 } 4051 4052 static const struct xattr_handler shmem_security_xattr_handler = { 4053 .prefix = XATTR_SECURITY_PREFIX, 4054 .get = shmem_xattr_handler_get, 4055 .set = shmem_xattr_handler_set, 4056 }; 4057 4058 static const struct xattr_handler shmem_trusted_xattr_handler = { 4059 .prefix = XATTR_TRUSTED_PREFIX, 4060 .get = shmem_xattr_handler_get, 4061 .set = shmem_xattr_handler_set, 4062 }; 4063 4064 static const struct xattr_handler shmem_user_xattr_handler = { 4065 .prefix = XATTR_USER_PREFIX, 4066 .get = shmem_xattr_handler_get, 4067 .set = shmem_xattr_handler_set, 4068 }; 4069 4070 static const struct xattr_handler * const shmem_xattr_handlers[] = { 4071 &shmem_security_xattr_handler, 4072 &shmem_trusted_xattr_handler, 4073 &shmem_user_xattr_handler, 4074 NULL 4075 }; 4076 4077 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 4078 { 4079 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4080 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 4081 } 4082 #endif /* CONFIG_TMPFS_XATTR */ 4083 4084 static const struct inode_operations shmem_short_symlink_operations = { 4085 .getattr = shmem_getattr, 4086 .setattr = shmem_setattr, 4087 .get_link = simple_get_link, 4088 #ifdef CONFIG_TMPFS_XATTR 4089 .listxattr = shmem_listxattr, 4090 #endif 4091 }; 4092 4093 static const struct inode_operations shmem_symlink_inode_operations = { 4094 .getattr = shmem_getattr, 4095 .setattr = shmem_setattr, 4096 .get_link = shmem_get_link, 4097 #ifdef CONFIG_TMPFS_XATTR 4098 .listxattr = shmem_listxattr, 4099 #endif 4100 }; 4101 4102 static struct dentry *shmem_get_parent(struct dentry *child) 4103 { 4104 return ERR_PTR(-ESTALE); 4105 } 4106 4107 static int shmem_match(struct inode *ino, void *vfh) 4108 { 4109 __u32 *fh = vfh; 4110 __u64 inum = fh[2]; 4111 inum = (inum << 32) | fh[1]; 4112 return ino->i_ino == inum && fh[0] == ino->i_generation; 4113 } 4114 4115 /* Find any alias of inode, but prefer a hashed alias */ 4116 static struct dentry *shmem_find_alias(struct inode *inode) 4117 { 4118 struct dentry *alias = d_find_alias(inode); 4119 4120 return alias ?: d_find_any_alias(inode); 4121 } 4122 4123 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 4124 struct fid *fid, int fh_len, int fh_type) 4125 { 4126 struct inode *inode; 4127 struct dentry *dentry = NULL; 4128 u64 inum; 4129 4130 if (fh_len < 3) 4131 return NULL; 4132 4133 inum = fid->raw[2]; 4134 inum = (inum << 32) | fid->raw[1]; 4135 4136 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 4137 shmem_match, fid->raw); 4138 if (inode) { 4139 dentry = shmem_find_alias(inode); 4140 iput(inode); 4141 } 4142 4143 return dentry; 4144 } 4145 4146 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 4147 struct inode *parent) 4148 { 4149 if (*len < 3) { 4150 *len = 3; 4151 return FILEID_INVALID; 4152 } 4153 4154 if (inode_unhashed(inode)) { 4155 /* Unfortunately insert_inode_hash is not idempotent, 4156 * so as we hash inodes here rather than at creation 4157 * time, we need a lock to ensure we only try 4158 * to do it once 4159 */ 4160 static DEFINE_SPINLOCK(lock); 4161 spin_lock(&lock); 4162 if (inode_unhashed(inode)) 4163 __insert_inode_hash(inode, 4164 inode->i_ino + inode->i_generation); 4165 spin_unlock(&lock); 4166 } 4167 4168 fh[0] = inode->i_generation; 4169 fh[1] = inode->i_ino; 4170 fh[2] = ((__u64)inode->i_ino) >> 32; 4171 4172 *len = 3; 4173 return 1; 4174 } 4175 4176 static const struct export_operations shmem_export_ops = { 4177 .get_parent = shmem_get_parent, 4178 .encode_fh = shmem_encode_fh, 4179 .fh_to_dentry = shmem_fh_to_dentry, 4180 }; 4181 4182 enum shmem_param { 4183 Opt_gid, 4184 Opt_huge, 4185 Opt_mode, 4186 Opt_mpol, 4187 Opt_nr_blocks, 4188 Opt_nr_inodes, 4189 Opt_size, 4190 Opt_uid, 4191 Opt_inode32, 4192 Opt_inode64, 4193 Opt_noswap, 4194 Opt_quota, 4195 Opt_usrquota, 4196 Opt_grpquota, 4197 Opt_usrquota_block_hardlimit, 4198 Opt_usrquota_inode_hardlimit, 4199 Opt_grpquota_block_hardlimit, 4200 Opt_grpquota_inode_hardlimit, 4201 }; 4202 4203 static const struct constant_table shmem_param_enums_huge[] = { 4204 {"never", SHMEM_HUGE_NEVER }, 4205 {"always", SHMEM_HUGE_ALWAYS }, 4206 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 4207 {"advise", SHMEM_HUGE_ADVISE }, 4208 {} 4209 }; 4210 4211 const struct fs_parameter_spec shmem_fs_parameters[] = { 4212 fsparam_gid ("gid", Opt_gid), 4213 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 4214 fsparam_u32oct("mode", Opt_mode), 4215 fsparam_string("mpol", Opt_mpol), 4216 fsparam_string("nr_blocks", Opt_nr_blocks), 4217 fsparam_string("nr_inodes", Opt_nr_inodes), 4218 fsparam_string("size", Opt_size), 4219 fsparam_uid ("uid", Opt_uid), 4220 fsparam_flag ("inode32", Opt_inode32), 4221 fsparam_flag ("inode64", Opt_inode64), 4222 fsparam_flag ("noswap", Opt_noswap), 4223 #ifdef CONFIG_TMPFS_QUOTA 4224 fsparam_flag ("quota", Opt_quota), 4225 fsparam_flag ("usrquota", Opt_usrquota), 4226 fsparam_flag ("grpquota", Opt_grpquota), 4227 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 4228 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 4229 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 4230 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 4231 #endif 4232 {} 4233 }; 4234 4235 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 4236 { 4237 struct shmem_options *ctx = fc->fs_private; 4238 struct fs_parse_result result; 4239 unsigned long long size; 4240 char *rest; 4241 int opt; 4242 kuid_t kuid; 4243 kgid_t kgid; 4244 4245 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 4246 if (opt < 0) 4247 return opt; 4248 4249 switch (opt) { 4250 case Opt_size: 4251 size = memparse(param->string, &rest); 4252 if (*rest == '%') { 4253 size <<= PAGE_SHIFT; 4254 size *= totalram_pages(); 4255 do_div(size, 100); 4256 rest++; 4257 } 4258 if (*rest) 4259 goto bad_value; 4260 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 4261 ctx->seen |= SHMEM_SEEN_BLOCKS; 4262 break; 4263 case Opt_nr_blocks: 4264 ctx->blocks = memparse(param->string, &rest); 4265 if (*rest || ctx->blocks > LONG_MAX) 4266 goto bad_value; 4267 ctx->seen |= SHMEM_SEEN_BLOCKS; 4268 break; 4269 case Opt_nr_inodes: 4270 ctx->inodes = memparse(param->string, &rest); 4271 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 4272 goto bad_value; 4273 ctx->seen |= SHMEM_SEEN_INODES; 4274 break; 4275 case Opt_mode: 4276 ctx->mode = result.uint_32 & 07777; 4277 break; 4278 case Opt_uid: 4279 kuid = result.uid; 4280 4281 /* 4282 * The requested uid must be representable in the 4283 * filesystem's idmapping. 4284 */ 4285 if (!kuid_has_mapping(fc->user_ns, kuid)) 4286 goto bad_value; 4287 4288 ctx->uid = kuid; 4289 break; 4290 case Opt_gid: 4291 kgid = result.gid; 4292 4293 /* 4294 * The requested gid must be representable in the 4295 * filesystem's idmapping. 4296 */ 4297 if (!kgid_has_mapping(fc->user_ns, kgid)) 4298 goto bad_value; 4299 4300 ctx->gid = kgid; 4301 break; 4302 case Opt_huge: 4303 ctx->huge = result.uint_32; 4304 if (ctx->huge != SHMEM_HUGE_NEVER && 4305 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4306 has_transparent_hugepage())) 4307 goto unsupported_parameter; 4308 ctx->seen |= SHMEM_SEEN_HUGE; 4309 break; 4310 case Opt_mpol: 4311 if (IS_ENABLED(CONFIG_NUMA)) { 4312 mpol_put(ctx->mpol); 4313 ctx->mpol = NULL; 4314 if (mpol_parse_str(param->string, &ctx->mpol)) 4315 goto bad_value; 4316 break; 4317 } 4318 goto unsupported_parameter; 4319 case Opt_inode32: 4320 ctx->full_inums = false; 4321 ctx->seen |= SHMEM_SEEN_INUMS; 4322 break; 4323 case Opt_inode64: 4324 if (sizeof(ino_t) < 8) { 4325 return invalfc(fc, 4326 "Cannot use inode64 with <64bit inums in kernel\n"); 4327 } 4328 ctx->full_inums = true; 4329 ctx->seen |= SHMEM_SEEN_INUMS; 4330 break; 4331 case Opt_noswap: 4332 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4333 return invalfc(fc, 4334 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4335 } 4336 ctx->noswap = true; 4337 ctx->seen |= SHMEM_SEEN_NOSWAP; 4338 break; 4339 case Opt_quota: 4340 if (fc->user_ns != &init_user_ns) 4341 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4342 ctx->seen |= SHMEM_SEEN_QUOTA; 4343 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4344 break; 4345 case Opt_usrquota: 4346 if (fc->user_ns != &init_user_ns) 4347 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4348 ctx->seen |= SHMEM_SEEN_QUOTA; 4349 ctx->quota_types |= QTYPE_MASK_USR; 4350 break; 4351 case Opt_grpquota: 4352 if (fc->user_ns != &init_user_ns) 4353 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4354 ctx->seen |= SHMEM_SEEN_QUOTA; 4355 ctx->quota_types |= QTYPE_MASK_GRP; 4356 break; 4357 case Opt_usrquota_block_hardlimit: 4358 size = memparse(param->string, &rest); 4359 if (*rest || !size) 4360 goto bad_value; 4361 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4362 return invalfc(fc, 4363 "User quota block hardlimit too large."); 4364 ctx->qlimits.usrquota_bhardlimit = size; 4365 break; 4366 case Opt_grpquota_block_hardlimit: 4367 size = memparse(param->string, &rest); 4368 if (*rest || !size) 4369 goto bad_value; 4370 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4371 return invalfc(fc, 4372 "Group quota block hardlimit too large."); 4373 ctx->qlimits.grpquota_bhardlimit = size; 4374 break; 4375 case Opt_usrquota_inode_hardlimit: 4376 size = memparse(param->string, &rest); 4377 if (*rest || !size) 4378 goto bad_value; 4379 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4380 return invalfc(fc, 4381 "User quota inode hardlimit too large."); 4382 ctx->qlimits.usrquota_ihardlimit = size; 4383 break; 4384 case Opt_grpquota_inode_hardlimit: 4385 size = memparse(param->string, &rest); 4386 if (*rest || !size) 4387 goto bad_value; 4388 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4389 return invalfc(fc, 4390 "Group quota inode hardlimit too large."); 4391 ctx->qlimits.grpquota_ihardlimit = size; 4392 break; 4393 } 4394 return 0; 4395 4396 unsupported_parameter: 4397 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4398 bad_value: 4399 return invalfc(fc, "Bad value for '%s'", param->key); 4400 } 4401 4402 static int shmem_parse_options(struct fs_context *fc, void *data) 4403 { 4404 char *options = data; 4405 4406 if (options) { 4407 int err = security_sb_eat_lsm_opts(options, &fc->security); 4408 if (err) 4409 return err; 4410 } 4411 4412 while (options != NULL) { 4413 char *this_char = options; 4414 for (;;) { 4415 /* 4416 * NUL-terminate this option: unfortunately, 4417 * mount options form a comma-separated list, 4418 * but mpol's nodelist may also contain commas. 4419 */ 4420 options = strchr(options, ','); 4421 if (options == NULL) 4422 break; 4423 options++; 4424 if (!isdigit(*options)) { 4425 options[-1] = '\0'; 4426 break; 4427 } 4428 } 4429 if (*this_char) { 4430 char *value = strchr(this_char, '='); 4431 size_t len = 0; 4432 int err; 4433 4434 if (value) { 4435 *value++ = '\0'; 4436 len = strlen(value); 4437 } 4438 err = vfs_parse_fs_string(fc, this_char, value, len); 4439 if (err < 0) 4440 return err; 4441 } 4442 } 4443 return 0; 4444 } 4445 4446 /* 4447 * Reconfigure a shmem filesystem. 4448 */ 4449 static int shmem_reconfigure(struct fs_context *fc) 4450 { 4451 struct shmem_options *ctx = fc->fs_private; 4452 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4453 unsigned long used_isp; 4454 struct mempolicy *mpol = NULL; 4455 const char *err; 4456 4457 raw_spin_lock(&sbinfo->stat_lock); 4458 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4459 4460 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4461 if (!sbinfo->max_blocks) { 4462 err = "Cannot retroactively limit size"; 4463 goto out; 4464 } 4465 if (percpu_counter_compare(&sbinfo->used_blocks, 4466 ctx->blocks) > 0) { 4467 err = "Too small a size for current use"; 4468 goto out; 4469 } 4470 } 4471 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4472 if (!sbinfo->max_inodes) { 4473 err = "Cannot retroactively limit inodes"; 4474 goto out; 4475 } 4476 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4477 err = "Too few inodes for current use"; 4478 goto out; 4479 } 4480 } 4481 4482 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4483 sbinfo->next_ino > UINT_MAX) { 4484 err = "Current inum too high to switch to 32-bit inums"; 4485 goto out; 4486 } 4487 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4488 err = "Cannot disable swap on remount"; 4489 goto out; 4490 } 4491 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4492 err = "Cannot enable swap on remount if it was disabled on first mount"; 4493 goto out; 4494 } 4495 4496 if (ctx->seen & SHMEM_SEEN_QUOTA && 4497 !sb_any_quota_loaded(fc->root->d_sb)) { 4498 err = "Cannot enable quota on remount"; 4499 goto out; 4500 } 4501 4502 #ifdef CONFIG_TMPFS_QUOTA 4503 #define CHANGED_LIMIT(name) \ 4504 (ctx->qlimits.name## hardlimit && \ 4505 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4506 4507 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4508 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4509 err = "Cannot change global quota limit on remount"; 4510 goto out; 4511 } 4512 #endif /* CONFIG_TMPFS_QUOTA */ 4513 4514 if (ctx->seen & SHMEM_SEEN_HUGE) 4515 sbinfo->huge = ctx->huge; 4516 if (ctx->seen & SHMEM_SEEN_INUMS) 4517 sbinfo->full_inums = ctx->full_inums; 4518 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4519 sbinfo->max_blocks = ctx->blocks; 4520 if (ctx->seen & SHMEM_SEEN_INODES) { 4521 sbinfo->max_inodes = ctx->inodes; 4522 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4523 } 4524 4525 /* 4526 * Preserve previous mempolicy unless mpol remount option was specified. 4527 */ 4528 if (ctx->mpol) { 4529 mpol = sbinfo->mpol; 4530 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4531 ctx->mpol = NULL; 4532 } 4533 4534 if (ctx->noswap) 4535 sbinfo->noswap = true; 4536 4537 raw_spin_unlock(&sbinfo->stat_lock); 4538 mpol_put(mpol); 4539 return 0; 4540 out: 4541 raw_spin_unlock(&sbinfo->stat_lock); 4542 return invalfc(fc, "%s", err); 4543 } 4544 4545 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4546 { 4547 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4548 struct mempolicy *mpol; 4549 4550 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4551 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4552 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4553 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4554 if (sbinfo->mode != (0777 | S_ISVTX)) 4555 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4556 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4557 seq_printf(seq, ",uid=%u", 4558 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4559 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4560 seq_printf(seq, ",gid=%u", 4561 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4562 4563 /* 4564 * Showing inode{64,32} might be useful even if it's the system default, 4565 * since then people don't have to resort to checking both here and 4566 * /proc/config.gz to confirm 64-bit inums were successfully applied 4567 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4568 * 4569 * We hide it when inode64 isn't the default and we are using 32-bit 4570 * inodes, since that probably just means the feature isn't even under 4571 * consideration. 4572 * 4573 * As such: 4574 * 4575 * +-----------------+-----------------+ 4576 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4577 * +------------------+-----------------+-----------------+ 4578 * | full_inums=true | show | show | 4579 * | full_inums=false | show | hide | 4580 * +------------------+-----------------+-----------------+ 4581 * 4582 */ 4583 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4584 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4585 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4586 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4587 if (sbinfo->huge) 4588 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4589 #endif 4590 mpol = shmem_get_sbmpol(sbinfo); 4591 shmem_show_mpol(seq, mpol); 4592 mpol_put(mpol); 4593 if (sbinfo->noswap) 4594 seq_printf(seq, ",noswap"); 4595 #ifdef CONFIG_TMPFS_QUOTA 4596 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4597 seq_printf(seq, ",usrquota"); 4598 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4599 seq_printf(seq, ",grpquota"); 4600 if (sbinfo->qlimits.usrquota_bhardlimit) 4601 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4602 sbinfo->qlimits.usrquota_bhardlimit); 4603 if (sbinfo->qlimits.grpquota_bhardlimit) 4604 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4605 sbinfo->qlimits.grpquota_bhardlimit); 4606 if (sbinfo->qlimits.usrquota_ihardlimit) 4607 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4608 sbinfo->qlimits.usrquota_ihardlimit); 4609 if (sbinfo->qlimits.grpquota_ihardlimit) 4610 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4611 sbinfo->qlimits.grpquota_ihardlimit); 4612 #endif 4613 return 0; 4614 } 4615 4616 #endif /* CONFIG_TMPFS */ 4617 4618 static void shmem_put_super(struct super_block *sb) 4619 { 4620 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4621 4622 #ifdef CONFIG_TMPFS_QUOTA 4623 shmem_disable_quotas(sb); 4624 #endif 4625 free_percpu(sbinfo->ino_batch); 4626 percpu_counter_destroy(&sbinfo->used_blocks); 4627 mpol_put(sbinfo->mpol); 4628 kfree(sbinfo); 4629 sb->s_fs_info = NULL; 4630 } 4631 4632 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4633 { 4634 struct shmem_options *ctx = fc->fs_private; 4635 struct inode *inode; 4636 struct shmem_sb_info *sbinfo; 4637 int error = -ENOMEM; 4638 4639 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4640 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4641 L1_CACHE_BYTES), GFP_KERNEL); 4642 if (!sbinfo) 4643 return error; 4644 4645 sb->s_fs_info = sbinfo; 4646 4647 #ifdef CONFIG_TMPFS 4648 /* 4649 * Per default we only allow half of the physical ram per 4650 * tmpfs instance, limiting inodes to one per page of lowmem; 4651 * but the internal instance is left unlimited. 4652 */ 4653 if (!(sb->s_flags & SB_KERNMOUNT)) { 4654 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 4655 ctx->blocks = shmem_default_max_blocks(); 4656 if (!(ctx->seen & SHMEM_SEEN_INODES)) 4657 ctx->inodes = shmem_default_max_inodes(); 4658 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 4659 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 4660 sbinfo->noswap = ctx->noswap; 4661 } else { 4662 sb->s_flags |= SB_NOUSER; 4663 } 4664 sb->s_export_op = &shmem_export_ops; 4665 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 4666 #else 4667 sb->s_flags |= SB_NOUSER; 4668 #endif 4669 sbinfo->max_blocks = ctx->blocks; 4670 sbinfo->max_inodes = ctx->inodes; 4671 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 4672 if (sb->s_flags & SB_KERNMOUNT) { 4673 sbinfo->ino_batch = alloc_percpu(ino_t); 4674 if (!sbinfo->ino_batch) 4675 goto failed; 4676 } 4677 sbinfo->uid = ctx->uid; 4678 sbinfo->gid = ctx->gid; 4679 sbinfo->full_inums = ctx->full_inums; 4680 sbinfo->mode = ctx->mode; 4681 sbinfo->huge = ctx->huge; 4682 sbinfo->mpol = ctx->mpol; 4683 ctx->mpol = NULL; 4684 4685 raw_spin_lock_init(&sbinfo->stat_lock); 4686 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 4687 goto failed; 4688 spin_lock_init(&sbinfo->shrinklist_lock); 4689 INIT_LIST_HEAD(&sbinfo->shrinklist); 4690 4691 sb->s_maxbytes = MAX_LFS_FILESIZE; 4692 sb->s_blocksize = PAGE_SIZE; 4693 sb->s_blocksize_bits = PAGE_SHIFT; 4694 sb->s_magic = TMPFS_MAGIC; 4695 sb->s_op = &shmem_ops; 4696 sb->s_time_gran = 1; 4697 #ifdef CONFIG_TMPFS_XATTR 4698 sb->s_xattr = shmem_xattr_handlers; 4699 #endif 4700 #ifdef CONFIG_TMPFS_POSIX_ACL 4701 sb->s_flags |= SB_POSIXACL; 4702 #endif 4703 uuid_t uuid; 4704 uuid_gen(&uuid); 4705 super_set_uuid(sb, uuid.b, sizeof(uuid)); 4706 4707 #ifdef CONFIG_TMPFS_QUOTA 4708 if (ctx->seen & SHMEM_SEEN_QUOTA) { 4709 sb->dq_op = &shmem_quota_operations; 4710 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4711 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4712 4713 /* Copy the default limits from ctx into sbinfo */ 4714 memcpy(&sbinfo->qlimits, &ctx->qlimits, 4715 sizeof(struct shmem_quota_limits)); 4716 4717 if (shmem_enable_quotas(sb, ctx->quota_types)) 4718 goto failed; 4719 } 4720 #endif /* CONFIG_TMPFS_QUOTA */ 4721 4722 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 4723 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 4724 if (IS_ERR(inode)) { 4725 error = PTR_ERR(inode); 4726 goto failed; 4727 } 4728 inode->i_uid = sbinfo->uid; 4729 inode->i_gid = sbinfo->gid; 4730 sb->s_root = d_make_root(inode); 4731 if (!sb->s_root) 4732 goto failed; 4733 return 0; 4734 4735 failed: 4736 shmem_put_super(sb); 4737 return error; 4738 } 4739 4740 static int shmem_get_tree(struct fs_context *fc) 4741 { 4742 return get_tree_nodev(fc, shmem_fill_super); 4743 } 4744 4745 static void shmem_free_fc(struct fs_context *fc) 4746 { 4747 struct shmem_options *ctx = fc->fs_private; 4748 4749 if (ctx) { 4750 mpol_put(ctx->mpol); 4751 kfree(ctx); 4752 } 4753 } 4754 4755 static const struct fs_context_operations shmem_fs_context_ops = { 4756 .free = shmem_free_fc, 4757 .get_tree = shmem_get_tree, 4758 #ifdef CONFIG_TMPFS 4759 .parse_monolithic = shmem_parse_options, 4760 .parse_param = shmem_parse_one, 4761 .reconfigure = shmem_reconfigure, 4762 #endif 4763 }; 4764 4765 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 4766 4767 static struct inode *shmem_alloc_inode(struct super_block *sb) 4768 { 4769 struct shmem_inode_info *info; 4770 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 4771 if (!info) 4772 return NULL; 4773 return &info->vfs_inode; 4774 } 4775 4776 static void shmem_free_in_core_inode(struct inode *inode) 4777 { 4778 if (S_ISLNK(inode->i_mode)) 4779 kfree(inode->i_link); 4780 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 4781 } 4782 4783 static void shmem_destroy_inode(struct inode *inode) 4784 { 4785 if (S_ISREG(inode->i_mode)) 4786 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 4787 if (S_ISDIR(inode->i_mode)) 4788 simple_offset_destroy(shmem_get_offset_ctx(inode)); 4789 } 4790 4791 static void shmem_init_inode(void *foo) 4792 { 4793 struct shmem_inode_info *info = foo; 4794 inode_init_once(&info->vfs_inode); 4795 } 4796 4797 static void __init shmem_init_inodecache(void) 4798 { 4799 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 4800 sizeof(struct shmem_inode_info), 4801 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 4802 } 4803 4804 static void __init shmem_destroy_inodecache(void) 4805 { 4806 kmem_cache_destroy(shmem_inode_cachep); 4807 } 4808 4809 /* Keep the page in page cache instead of truncating it */ 4810 static int shmem_error_remove_folio(struct address_space *mapping, 4811 struct folio *folio) 4812 { 4813 return 0; 4814 } 4815 4816 static const struct address_space_operations shmem_aops = { 4817 .writepage = shmem_writepage, 4818 .dirty_folio = noop_dirty_folio, 4819 #ifdef CONFIG_TMPFS 4820 .write_begin = shmem_write_begin, 4821 .write_end = shmem_write_end, 4822 #endif 4823 #ifdef CONFIG_MIGRATION 4824 .migrate_folio = migrate_folio, 4825 #endif 4826 .error_remove_folio = shmem_error_remove_folio, 4827 }; 4828 4829 static const struct file_operations shmem_file_operations = { 4830 .mmap = shmem_mmap, 4831 .open = shmem_file_open, 4832 .get_unmapped_area = shmem_get_unmapped_area, 4833 #ifdef CONFIG_TMPFS 4834 .llseek = shmem_file_llseek, 4835 .read_iter = shmem_file_read_iter, 4836 .write_iter = shmem_file_write_iter, 4837 .fsync = noop_fsync, 4838 .splice_read = shmem_file_splice_read, 4839 .splice_write = iter_file_splice_write, 4840 .fallocate = shmem_fallocate, 4841 #endif 4842 }; 4843 4844 static const struct inode_operations shmem_inode_operations = { 4845 .getattr = shmem_getattr, 4846 .setattr = shmem_setattr, 4847 #ifdef CONFIG_TMPFS_XATTR 4848 .listxattr = shmem_listxattr, 4849 .set_acl = simple_set_acl, 4850 .fileattr_get = shmem_fileattr_get, 4851 .fileattr_set = shmem_fileattr_set, 4852 #endif 4853 }; 4854 4855 static const struct inode_operations shmem_dir_inode_operations = { 4856 #ifdef CONFIG_TMPFS 4857 .getattr = shmem_getattr, 4858 .create = shmem_create, 4859 .lookup = simple_lookup, 4860 .link = shmem_link, 4861 .unlink = shmem_unlink, 4862 .symlink = shmem_symlink, 4863 .mkdir = shmem_mkdir, 4864 .rmdir = shmem_rmdir, 4865 .mknod = shmem_mknod, 4866 .rename = shmem_rename2, 4867 .tmpfile = shmem_tmpfile, 4868 .get_offset_ctx = shmem_get_offset_ctx, 4869 #endif 4870 #ifdef CONFIG_TMPFS_XATTR 4871 .listxattr = shmem_listxattr, 4872 .fileattr_get = shmem_fileattr_get, 4873 .fileattr_set = shmem_fileattr_set, 4874 #endif 4875 #ifdef CONFIG_TMPFS_POSIX_ACL 4876 .setattr = shmem_setattr, 4877 .set_acl = simple_set_acl, 4878 #endif 4879 }; 4880 4881 static const struct inode_operations shmem_special_inode_operations = { 4882 .getattr = shmem_getattr, 4883 #ifdef CONFIG_TMPFS_XATTR 4884 .listxattr = shmem_listxattr, 4885 #endif 4886 #ifdef CONFIG_TMPFS_POSIX_ACL 4887 .setattr = shmem_setattr, 4888 .set_acl = simple_set_acl, 4889 #endif 4890 }; 4891 4892 static const struct super_operations shmem_ops = { 4893 .alloc_inode = shmem_alloc_inode, 4894 .free_inode = shmem_free_in_core_inode, 4895 .destroy_inode = shmem_destroy_inode, 4896 #ifdef CONFIG_TMPFS 4897 .statfs = shmem_statfs, 4898 .show_options = shmem_show_options, 4899 #endif 4900 #ifdef CONFIG_TMPFS_QUOTA 4901 .get_dquots = shmem_get_dquots, 4902 #endif 4903 .evict_inode = shmem_evict_inode, 4904 .drop_inode = generic_delete_inode, 4905 .put_super = shmem_put_super, 4906 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4907 .nr_cached_objects = shmem_unused_huge_count, 4908 .free_cached_objects = shmem_unused_huge_scan, 4909 #endif 4910 }; 4911 4912 static const struct vm_operations_struct shmem_vm_ops = { 4913 .fault = shmem_fault, 4914 .map_pages = filemap_map_pages, 4915 #ifdef CONFIG_NUMA 4916 .set_policy = shmem_set_policy, 4917 .get_policy = shmem_get_policy, 4918 #endif 4919 }; 4920 4921 static const struct vm_operations_struct shmem_anon_vm_ops = { 4922 .fault = shmem_fault, 4923 .map_pages = filemap_map_pages, 4924 #ifdef CONFIG_NUMA 4925 .set_policy = shmem_set_policy, 4926 .get_policy = shmem_get_policy, 4927 #endif 4928 }; 4929 4930 int shmem_init_fs_context(struct fs_context *fc) 4931 { 4932 struct shmem_options *ctx; 4933 4934 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4935 if (!ctx) 4936 return -ENOMEM; 4937 4938 ctx->mode = 0777 | S_ISVTX; 4939 ctx->uid = current_fsuid(); 4940 ctx->gid = current_fsgid(); 4941 4942 fc->fs_private = ctx; 4943 fc->ops = &shmem_fs_context_ops; 4944 return 0; 4945 } 4946 4947 static struct file_system_type shmem_fs_type = { 4948 .owner = THIS_MODULE, 4949 .name = "tmpfs", 4950 .init_fs_context = shmem_init_fs_context, 4951 #ifdef CONFIG_TMPFS 4952 .parameters = shmem_fs_parameters, 4953 #endif 4954 .kill_sb = kill_litter_super, 4955 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP, 4956 }; 4957 4958 void __init shmem_init(void) 4959 { 4960 int error; 4961 4962 shmem_init_inodecache(); 4963 4964 #ifdef CONFIG_TMPFS_QUOTA 4965 error = register_quota_format(&shmem_quota_format); 4966 if (error < 0) { 4967 pr_err("Could not register quota format\n"); 4968 goto out3; 4969 } 4970 #endif 4971 4972 error = register_filesystem(&shmem_fs_type); 4973 if (error) { 4974 pr_err("Could not register tmpfs\n"); 4975 goto out2; 4976 } 4977 4978 shm_mnt = kern_mount(&shmem_fs_type); 4979 if (IS_ERR(shm_mnt)) { 4980 error = PTR_ERR(shm_mnt); 4981 pr_err("Could not kern_mount tmpfs\n"); 4982 goto out1; 4983 } 4984 4985 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4986 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4987 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4988 else 4989 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4990 4991 /* 4992 * Default to setting PMD-sized THP to inherit the global setting and 4993 * disable all other multi-size THPs. 4994 */ 4995 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER); 4996 #endif 4997 return; 4998 4999 out1: 5000 unregister_filesystem(&shmem_fs_type); 5001 out2: 5002 #ifdef CONFIG_TMPFS_QUOTA 5003 unregister_quota_format(&shmem_quota_format); 5004 out3: 5005 #endif 5006 shmem_destroy_inodecache(); 5007 shm_mnt = ERR_PTR(error); 5008 } 5009 5010 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 5011 static ssize_t shmem_enabled_show(struct kobject *kobj, 5012 struct kobj_attribute *attr, char *buf) 5013 { 5014 static const int values[] = { 5015 SHMEM_HUGE_ALWAYS, 5016 SHMEM_HUGE_WITHIN_SIZE, 5017 SHMEM_HUGE_ADVISE, 5018 SHMEM_HUGE_NEVER, 5019 SHMEM_HUGE_DENY, 5020 SHMEM_HUGE_FORCE, 5021 }; 5022 int len = 0; 5023 int i; 5024 5025 for (i = 0; i < ARRAY_SIZE(values); i++) { 5026 len += sysfs_emit_at(buf, len, 5027 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 5028 i ? " " : "", shmem_format_huge(values[i])); 5029 } 5030 len += sysfs_emit_at(buf, len, "\n"); 5031 5032 return len; 5033 } 5034 5035 static ssize_t shmem_enabled_store(struct kobject *kobj, 5036 struct kobj_attribute *attr, const char *buf, size_t count) 5037 { 5038 char tmp[16]; 5039 int huge; 5040 5041 if (count + 1 > sizeof(tmp)) 5042 return -EINVAL; 5043 memcpy(tmp, buf, count); 5044 tmp[count] = '\0'; 5045 if (count && tmp[count - 1] == '\n') 5046 tmp[count - 1] = '\0'; 5047 5048 huge = shmem_parse_huge(tmp); 5049 if (huge == -EINVAL) 5050 return -EINVAL; 5051 if (!has_transparent_hugepage() && 5052 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 5053 return -EINVAL; 5054 5055 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5056 if (huge == SHMEM_HUGE_FORCE && 5057 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER)) 5058 return -EINVAL; 5059 5060 shmem_huge = huge; 5061 if (shmem_huge > SHMEM_HUGE_DENY) 5062 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5063 return count; 5064 } 5065 5066 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 5067 static DEFINE_SPINLOCK(huge_shmem_orders_lock); 5068 5069 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj, 5070 struct kobj_attribute *attr, char *buf) 5071 { 5072 int order = to_thpsize(kobj)->order; 5073 const char *output; 5074 5075 if (test_bit(order, &huge_shmem_orders_always)) 5076 output = "[always] inherit within_size advise never"; 5077 else if (test_bit(order, &huge_shmem_orders_inherit)) 5078 output = "always [inherit] within_size advise never"; 5079 else if (test_bit(order, &huge_shmem_orders_within_size)) 5080 output = "always inherit [within_size] advise never"; 5081 else if (test_bit(order, &huge_shmem_orders_madvise)) 5082 output = "always inherit within_size [advise] never"; 5083 else 5084 output = "always inherit within_size advise [never]"; 5085 5086 return sysfs_emit(buf, "%s\n", output); 5087 } 5088 5089 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj, 5090 struct kobj_attribute *attr, 5091 const char *buf, size_t count) 5092 { 5093 int order = to_thpsize(kobj)->order; 5094 ssize_t ret = count; 5095 5096 if (sysfs_streq(buf, "always")) { 5097 spin_lock(&huge_shmem_orders_lock); 5098 clear_bit(order, &huge_shmem_orders_inherit); 5099 clear_bit(order, &huge_shmem_orders_madvise); 5100 clear_bit(order, &huge_shmem_orders_within_size); 5101 set_bit(order, &huge_shmem_orders_always); 5102 spin_unlock(&huge_shmem_orders_lock); 5103 } else if (sysfs_streq(buf, "inherit")) { 5104 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5105 if (shmem_huge == SHMEM_HUGE_FORCE && 5106 order != HPAGE_PMD_ORDER) 5107 return -EINVAL; 5108 5109 spin_lock(&huge_shmem_orders_lock); 5110 clear_bit(order, &huge_shmem_orders_always); 5111 clear_bit(order, &huge_shmem_orders_madvise); 5112 clear_bit(order, &huge_shmem_orders_within_size); 5113 set_bit(order, &huge_shmem_orders_inherit); 5114 spin_unlock(&huge_shmem_orders_lock); 5115 } else if (sysfs_streq(buf, "within_size")) { 5116 spin_lock(&huge_shmem_orders_lock); 5117 clear_bit(order, &huge_shmem_orders_always); 5118 clear_bit(order, &huge_shmem_orders_inherit); 5119 clear_bit(order, &huge_shmem_orders_madvise); 5120 set_bit(order, &huge_shmem_orders_within_size); 5121 spin_unlock(&huge_shmem_orders_lock); 5122 } else if (sysfs_streq(buf, "advise")) { 5123 spin_lock(&huge_shmem_orders_lock); 5124 clear_bit(order, &huge_shmem_orders_always); 5125 clear_bit(order, &huge_shmem_orders_inherit); 5126 clear_bit(order, &huge_shmem_orders_within_size); 5127 set_bit(order, &huge_shmem_orders_madvise); 5128 spin_unlock(&huge_shmem_orders_lock); 5129 } else if (sysfs_streq(buf, "never")) { 5130 spin_lock(&huge_shmem_orders_lock); 5131 clear_bit(order, &huge_shmem_orders_always); 5132 clear_bit(order, &huge_shmem_orders_inherit); 5133 clear_bit(order, &huge_shmem_orders_within_size); 5134 clear_bit(order, &huge_shmem_orders_madvise); 5135 spin_unlock(&huge_shmem_orders_lock); 5136 } else { 5137 ret = -EINVAL; 5138 } 5139 5140 return ret; 5141 } 5142 5143 struct kobj_attribute thpsize_shmem_enabled_attr = 5144 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store); 5145 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 5146 5147 #else /* !CONFIG_SHMEM */ 5148 5149 /* 5150 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 5151 * 5152 * This is intended for small system where the benefits of the full 5153 * shmem code (swap-backed and resource-limited) are outweighed by 5154 * their complexity. On systems without swap this code should be 5155 * effectively equivalent, but much lighter weight. 5156 */ 5157 5158 static struct file_system_type shmem_fs_type = { 5159 .name = "tmpfs", 5160 .init_fs_context = ramfs_init_fs_context, 5161 .parameters = ramfs_fs_parameters, 5162 .kill_sb = ramfs_kill_sb, 5163 .fs_flags = FS_USERNS_MOUNT, 5164 }; 5165 5166 void __init shmem_init(void) 5167 { 5168 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 5169 5170 shm_mnt = kern_mount(&shmem_fs_type); 5171 BUG_ON(IS_ERR(shm_mnt)); 5172 } 5173 5174 int shmem_unuse(unsigned int type) 5175 { 5176 return 0; 5177 } 5178 5179 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 5180 { 5181 return 0; 5182 } 5183 5184 void shmem_unlock_mapping(struct address_space *mapping) 5185 { 5186 } 5187 5188 #ifdef CONFIG_MMU 5189 unsigned long shmem_get_unmapped_area(struct file *file, 5190 unsigned long addr, unsigned long len, 5191 unsigned long pgoff, unsigned long flags) 5192 { 5193 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags); 5194 } 5195 #endif 5196 5197 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 5198 { 5199 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 5200 } 5201 EXPORT_SYMBOL_GPL(shmem_truncate_range); 5202 5203 #define shmem_vm_ops generic_file_vm_ops 5204 #define shmem_anon_vm_ops generic_file_vm_ops 5205 #define shmem_file_operations ramfs_file_operations 5206 #define shmem_acct_size(flags, size) 0 5207 #define shmem_unacct_size(flags, size) do {} while (0) 5208 5209 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 5210 struct super_block *sb, struct inode *dir, 5211 umode_t mode, dev_t dev, unsigned long flags) 5212 { 5213 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 5214 return inode ? inode : ERR_PTR(-ENOSPC); 5215 } 5216 5217 #endif /* CONFIG_SHMEM */ 5218 5219 /* common code */ 5220 5221 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 5222 loff_t size, unsigned long flags, unsigned int i_flags) 5223 { 5224 struct inode *inode; 5225 struct file *res; 5226 5227 if (IS_ERR(mnt)) 5228 return ERR_CAST(mnt); 5229 5230 if (size < 0 || size > MAX_LFS_FILESIZE) 5231 return ERR_PTR(-EINVAL); 5232 5233 if (shmem_acct_size(flags, size)) 5234 return ERR_PTR(-ENOMEM); 5235 5236 if (is_idmapped_mnt(mnt)) 5237 return ERR_PTR(-EINVAL); 5238 5239 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 5240 S_IFREG | S_IRWXUGO, 0, flags); 5241 if (IS_ERR(inode)) { 5242 shmem_unacct_size(flags, size); 5243 return ERR_CAST(inode); 5244 } 5245 inode->i_flags |= i_flags; 5246 inode->i_size = size; 5247 clear_nlink(inode); /* It is unlinked */ 5248 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 5249 if (!IS_ERR(res)) 5250 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 5251 &shmem_file_operations); 5252 if (IS_ERR(res)) 5253 iput(inode); 5254 return res; 5255 } 5256 5257 /** 5258 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 5259 * kernel internal. There will be NO LSM permission checks against the 5260 * underlying inode. So users of this interface must do LSM checks at a 5261 * higher layer. The users are the big_key and shm implementations. LSM 5262 * checks are provided at the key or shm level rather than the inode. 5263 * @name: name for dentry (to be seen in /proc/<pid>/maps 5264 * @size: size to be set for the file 5265 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5266 */ 5267 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 5268 { 5269 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 5270 } 5271 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 5272 5273 /** 5274 * shmem_file_setup - get an unlinked file living in tmpfs 5275 * @name: name for dentry (to be seen in /proc/<pid>/maps 5276 * @size: size to be set for the file 5277 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5278 */ 5279 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 5280 { 5281 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 5282 } 5283 EXPORT_SYMBOL_GPL(shmem_file_setup); 5284 5285 /** 5286 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 5287 * @mnt: the tmpfs mount where the file will be created 5288 * @name: name for dentry (to be seen in /proc/<pid>/maps 5289 * @size: size to be set for the file 5290 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5291 */ 5292 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 5293 loff_t size, unsigned long flags) 5294 { 5295 return __shmem_file_setup(mnt, name, size, flags, 0); 5296 } 5297 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 5298 5299 /** 5300 * shmem_zero_setup - setup a shared anonymous mapping 5301 * @vma: the vma to be mmapped is prepared by do_mmap 5302 */ 5303 int shmem_zero_setup(struct vm_area_struct *vma) 5304 { 5305 struct file *file; 5306 loff_t size = vma->vm_end - vma->vm_start; 5307 5308 /* 5309 * Cloning a new file under mmap_lock leads to a lock ordering conflict 5310 * between XFS directory reading and selinux: since this file is only 5311 * accessible to the user through its mapping, use S_PRIVATE flag to 5312 * bypass file security, in the same way as shmem_kernel_file_setup(). 5313 */ 5314 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 5315 if (IS_ERR(file)) 5316 return PTR_ERR(file); 5317 5318 if (vma->vm_file) 5319 fput(vma->vm_file); 5320 vma->vm_file = file; 5321 vma->vm_ops = &shmem_anon_vm_ops; 5322 5323 return 0; 5324 } 5325 5326 /** 5327 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 5328 * @mapping: the folio's address_space 5329 * @index: the folio index 5330 * @gfp: the page allocator flags to use if allocating 5331 * 5332 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 5333 * with any new page allocations done using the specified allocation flags. 5334 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 5335 * suit tmpfs, since it may have pages in swapcache, and needs to find those 5336 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 5337 * 5338 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 5339 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 5340 */ 5341 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 5342 pgoff_t index, gfp_t gfp) 5343 { 5344 #ifdef CONFIG_SHMEM 5345 struct inode *inode = mapping->host; 5346 struct folio *folio; 5347 int error; 5348 5349 error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE, 5350 gfp, NULL, NULL); 5351 if (error) 5352 return ERR_PTR(error); 5353 5354 folio_unlock(folio); 5355 return folio; 5356 #else 5357 /* 5358 * The tiny !SHMEM case uses ramfs without swap 5359 */ 5360 return mapping_read_folio_gfp(mapping, index, gfp); 5361 #endif 5362 } 5363 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 5364 5365 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 5366 pgoff_t index, gfp_t gfp) 5367 { 5368 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 5369 struct page *page; 5370 5371 if (IS_ERR(folio)) 5372 return &folio->page; 5373 5374 page = folio_file_page(folio, index); 5375 if (PageHWPoison(page)) { 5376 folio_put(folio); 5377 return ERR_PTR(-EIO); 5378 } 5379 5380 return page; 5381 } 5382 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 5383