xref: /linux/mm/shmem.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44 
45 static struct vfsmount *shm_mnt __ro_after_init;
46 
47 #ifdef CONFIG_SHMEM
48 /*
49  * This virtual memory filesystem is heavily based on the ramfs. It
50  * extends ramfs by the ability to use swap and honor resource limits
51  * which makes it a completely usable filesystem.
52  */
53 
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 #include <linux/quotaops.h>
82 #include <linux/rcupdate_wait.h>
83 
84 #include <linux/uaccess.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Pretend that one inode + its dentry occupy this much memory */
95 #define BOGO_INODE_SIZE 1024
96 
97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98 #define SHORT_SYMLINK_LEN 128
99 
100 /*
101  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
102  * inode->i_private (with i_rwsem making sure that it has only one user at
103  * a time): we would prefer not to enlarge the shmem inode just for that.
104  */
105 struct shmem_falloc {
106 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 	pgoff_t start;		/* start of range currently being fallocated */
108 	pgoff_t next;		/* the next page offset to be fallocated */
109 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
110 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
111 };
112 
113 struct shmem_options {
114 	unsigned long long blocks;
115 	unsigned long long inodes;
116 	struct mempolicy *mpol;
117 	kuid_t uid;
118 	kgid_t gid;
119 	umode_t mode;
120 	bool full_inums;
121 	int huge;
122 	int seen;
123 	bool noswap;
124 	unsigned short quota_types;
125 	struct shmem_quota_limits qlimits;
126 #define SHMEM_SEEN_BLOCKS 1
127 #define SHMEM_SEEN_INODES 2
128 #define SHMEM_SEEN_HUGE 4
129 #define SHMEM_SEEN_INUMS 8
130 #define SHMEM_SEEN_NOSWAP 16
131 #define SHMEM_SEEN_QUOTA 32
132 };
133 
134 #ifdef CONFIG_TMPFS
135 static unsigned long shmem_default_max_blocks(void)
136 {
137 	return totalram_pages() / 2;
138 }
139 
140 static unsigned long shmem_default_max_inodes(void)
141 {
142 	unsigned long nr_pages = totalram_pages();
143 
144 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
145 			ULONG_MAX / BOGO_INODE_SIZE);
146 }
147 #endif
148 
149 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
150 			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
151 			struct mm_struct *fault_mm, vm_fault_t *fault_type);
152 
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 	return sb->s_fs_info;
156 }
157 
158 /*
159  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160  * for shared memory and for shared anonymous (/dev/zero) mappings
161  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162  * consistent with the pre-accounting of private mappings ...
163  */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 	return (flags & VM_NORESERVE) ?
167 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169 
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 	if (!(flags & VM_NORESERVE))
173 		vm_unacct_memory(VM_ACCT(size));
174 }
175 
176 static inline int shmem_reacct_size(unsigned long flags,
177 		loff_t oldsize, loff_t newsize)
178 {
179 	if (!(flags & VM_NORESERVE)) {
180 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 			return security_vm_enough_memory_mm(current->mm,
182 					VM_ACCT(newsize) - VM_ACCT(oldsize));
183 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 	}
186 	return 0;
187 }
188 
189 /*
190  * ... whereas tmpfs objects are accounted incrementally as
191  * pages are allocated, in order to allow large sparse files.
192  * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
193  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194  */
195 static inline int shmem_acct_blocks(unsigned long flags, long pages)
196 {
197 	if (!(flags & VM_NORESERVE))
198 		return 0;
199 
200 	return security_vm_enough_memory_mm(current->mm,
201 			pages * VM_ACCT(PAGE_SIZE));
202 }
203 
204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206 	if (flags & VM_NORESERVE)
207 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
211 {
212 	struct shmem_inode_info *info = SHMEM_I(inode);
213 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 	int err = -ENOSPC;
215 
216 	if (shmem_acct_blocks(info->flags, pages))
217 		return err;
218 
219 	might_sleep();	/* when quotas */
220 	if (sbinfo->max_blocks) {
221 		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
222 						sbinfo->max_blocks, pages))
223 			goto unacct;
224 
225 		err = dquot_alloc_block_nodirty(inode, pages);
226 		if (err) {
227 			percpu_counter_sub(&sbinfo->used_blocks, pages);
228 			goto unacct;
229 		}
230 	} else {
231 		err = dquot_alloc_block_nodirty(inode, pages);
232 		if (err)
233 			goto unacct;
234 	}
235 
236 	return 0;
237 
238 unacct:
239 	shmem_unacct_blocks(info->flags, pages);
240 	return err;
241 }
242 
243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
244 {
245 	struct shmem_inode_info *info = SHMEM_I(inode);
246 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247 
248 	might_sleep();	/* when quotas */
249 	dquot_free_block_nodirty(inode, pages);
250 
251 	if (sbinfo->max_blocks)
252 		percpu_counter_sub(&sbinfo->used_blocks, pages);
253 	shmem_unacct_blocks(info->flags, pages);
254 }
255 
256 static const struct super_operations shmem_ops;
257 static const struct address_space_operations shmem_aops;
258 static const struct file_operations shmem_file_operations;
259 static const struct inode_operations shmem_inode_operations;
260 static const struct inode_operations shmem_dir_inode_operations;
261 static const struct inode_operations shmem_special_inode_operations;
262 static const struct vm_operations_struct shmem_vm_ops;
263 static const struct vm_operations_struct shmem_anon_vm_ops;
264 static struct file_system_type shmem_fs_type;
265 
266 bool shmem_mapping(struct address_space *mapping)
267 {
268 	return mapping->a_ops == &shmem_aops;
269 }
270 EXPORT_SYMBOL_GPL(shmem_mapping);
271 
272 bool vma_is_anon_shmem(struct vm_area_struct *vma)
273 {
274 	return vma->vm_ops == &shmem_anon_vm_ops;
275 }
276 
277 bool vma_is_shmem(struct vm_area_struct *vma)
278 {
279 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
280 }
281 
282 static LIST_HEAD(shmem_swaplist);
283 static DEFINE_MUTEX(shmem_swaplist_mutex);
284 
285 #ifdef CONFIG_TMPFS_QUOTA
286 
287 static int shmem_enable_quotas(struct super_block *sb,
288 			       unsigned short quota_types)
289 {
290 	int type, err = 0;
291 
292 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
293 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
294 		if (!(quota_types & (1 << type)))
295 			continue;
296 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
297 					  DQUOT_USAGE_ENABLED |
298 					  DQUOT_LIMITS_ENABLED);
299 		if (err)
300 			goto out_err;
301 	}
302 	return 0;
303 
304 out_err:
305 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
306 		type, err);
307 	for (type--; type >= 0; type--)
308 		dquot_quota_off(sb, type);
309 	return err;
310 }
311 
312 static void shmem_disable_quotas(struct super_block *sb)
313 {
314 	int type;
315 
316 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
317 		dquot_quota_off(sb, type);
318 }
319 
320 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
321 {
322 	return SHMEM_I(inode)->i_dquot;
323 }
324 #endif /* CONFIG_TMPFS_QUOTA */
325 
326 /*
327  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
328  * produces a novel ino for the newly allocated inode.
329  *
330  * It may also be called when making a hard link to permit the space needed by
331  * each dentry. However, in that case, no new inode number is needed since that
332  * internally draws from another pool of inode numbers (currently global
333  * get_next_ino()). This case is indicated by passing NULL as inop.
334  */
335 #define SHMEM_INO_BATCH 1024
336 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
337 {
338 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339 	ino_t ino;
340 
341 	if (!(sb->s_flags & SB_KERNMOUNT)) {
342 		raw_spin_lock(&sbinfo->stat_lock);
343 		if (sbinfo->max_inodes) {
344 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
345 				raw_spin_unlock(&sbinfo->stat_lock);
346 				return -ENOSPC;
347 			}
348 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
349 		}
350 		if (inop) {
351 			ino = sbinfo->next_ino++;
352 			if (unlikely(is_zero_ino(ino)))
353 				ino = sbinfo->next_ino++;
354 			if (unlikely(!sbinfo->full_inums &&
355 				     ino > UINT_MAX)) {
356 				/*
357 				 * Emulate get_next_ino uint wraparound for
358 				 * compatibility
359 				 */
360 				if (IS_ENABLED(CONFIG_64BIT))
361 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
362 						__func__, MINOR(sb->s_dev));
363 				sbinfo->next_ino = 1;
364 				ino = sbinfo->next_ino++;
365 			}
366 			*inop = ino;
367 		}
368 		raw_spin_unlock(&sbinfo->stat_lock);
369 	} else if (inop) {
370 		/*
371 		 * __shmem_file_setup, one of our callers, is lock-free: it
372 		 * doesn't hold stat_lock in shmem_reserve_inode since
373 		 * max_inodes is always 0, and is called from potentially
374 		 * unknown contexts. As such, use a per-cpu batched allocator
375 		 * which doesn't require the per-sb stat_lock unless we are at
376 		 * the batch boundary.
377 		 *
378 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
379 		 * shmem mounts are not exposed to userspace, so we don't need
380 		 * to worry about things like glibc compatibility.
381 		 */
382 		ino_t *next_ino;
383 
384 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
385 		ino = *next_ino;
386 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
387 			raw_spin_lock(&sbinfo->stat_lock);
388 			ino = sbinfo->next_ino;
389 			sbinfo->next_ino += SHMEM_INO_BATCH;
390 			raw_spin_unlock(&sbinfo->stat_lock);
391 			if (unlikely(is_zero_ino(ino)))
392 				ino++;
393 		}
394 		*inop = ino;
395 		*next_ino = ++ino;
396 		put_cpu();
397 	}
398 
399 	return 0;
400 }
401 
402 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
403 {
404 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
405 	if (sbinfo->max_inodes) {
406 		raw_spin_lock(&sbinfo->stat_lock);
407 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
408 		raw_spin_unlock(&sbinfo->stat_lock);
409 	}
410 }
411 
412 /**
413  * shmem_recalc_inode - recalculate the block usage of an inode
414  * @inode: inode to recalc
415  * @alloced: the change in number of pages allocated to inode
416  * @swapped: the change in number of pages swapped from inode
417  *
418  * We have to calculate the free blocks since the mm can drop
419  * undirtied hole pages behind our back.
420  *
421  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
422  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
423  */
424 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
425 {
426 	struct shmem_inode_info *info = SHMEM_I(inode);
427 	long freed;
428 
429 	spin_lock(&info->lock);
430 	info->alloced += alloced;
431 	info->swapped += swapped;
432 	freed = info->alloced - info->swapped -
433 		READ_ONCE(inode->i_mapping->nrpages);
434 	/*
435 	 * Special case: whereas normally shmem_recalc_inode() is called
436 	 * after i_mapping->nrpages has already been adjusted (up or down),
437 	 * shmem_writepage() has to raise swapped before nrpages is lowered -
438 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
439 	 * been freed.  Compensate here, to avoid the need for a followup call.
440 	 */
441 	if (swapped > 0)
442 		freed += swapped;
443 	if (freed > 0)
444 		info->alloced -= freed;
445 	spin_unlock(&info->lock);
446 
447 	/* The quota case may block */
448 	if (freed > 0)
449 		shmem_inode_unacct_blocks(inode, freed);
450 }
451 
452 bool shmem_charge(struct inode *inode, long pages)
453 {
454 	struct address_space *mapping = inode->i_mapping;
455 
456 	if (shmem_inode_acct_blocks(inode, pages))
457 		return false;
458 
459 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
460 	xa_lock_irq(&mapping->i_pages);
461 	mapping->nrpages += pages;
462 	xa_unlock_irq(&mapping->i_pages);
463 
464 	shmem_recalc_inode(inode, pages, 0);
465 	return true;
466 }
467 
468 void shmem_uncharge(struct inode *inode, long pages)
469 {
470 	/* pages argument is currently unused: keep it to help debugging */
471 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
472 
473 	shmem_recalc_inode(inode, 0, 0);
474 }
475 
476 /*
477  * Replace item expected in xarray by a new item, while holding xa_lock.
478  */
479 static int shmem_replace_entry(struct address_space *mapping,
480 			pgoff_t index, void *expected, void *replacement)
481 {
482 	XA_STATE(xas, &mapping->i_pages, index);
483 	void *item;
484 
485 	VM_BUG_ON(!expected);
486 	VM_BUG_ON(!replacement);
487 	item = xas_load(&xas);
488 	if (item != expected)
489 		return -ENOENT;
490 	xas_store(&xas, replacement);
491 	return 0;
492 }
493 
494 /*
495  * Sometimes, before we decide whether to proceed or to fail, we must check
496  * that an entry was not already brought back from swap by a racing thread.
497  *
498  * Checking page is not enough: by the time a SwapCache page is locked, it
499  * might be reused, and again be SwapCache, using the same swap as before.
500  */
501 static bool shmem_confirm_swap(struct address_space *mapping,
502 			       pgoff_t index, swp_entry_t swap)
503 {
504 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
505 }
506 
507 /*
508  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
509  *
510  * SHMEM_HUGE_NEVER:
511  *	disables huge pages for the mount;
512  * SHMEM_HUGE_ALWAYS:
513  *	enables huge pages for the mount;
514  * SHMEM_HUGE_WITHIN_SIZE:
515  *	only allocate huge pages if the page will be fully within i_size,
516  *	also respect fadvise()/madvise() hints;
517  * SHMEM_HUGE_ADVISE:
518  *	only allocate huge pages if requested with fadvise()/madvise();
519  */
520 
521 #define SHMEM_HUGE_NEVER	0
522 #define SHMEM_HUGE_ALWAYS	1
523 #define SHMEM_HUGE_WITHIN_SIZE	2
524 #define SHMEM_HUGE_ADVISE	3
525 
526 /*
527  * Special values.
528  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
529  *
530  * SHMEM_HUGE_DENY:
531  *	disables huge on shm_mnt and all mounts, for emergency use;
532  * SHMEM_HUGE_FORCE:
533  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
534  *
535  */
536 #define SHMEM_HUGE_DENY		(-1)
537 #define SHMEM_HUGE_FORCE	(-2)
538 
539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
540 /* ifdef here to avoid bloating shmem.o when not necessary */
541 
542 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
543 
544 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
545 		   struct mm_struct *mm, unsigned long vm_flags)
546 {
547 	loff_t i_size;
548 
549 	if (!S_ISREG(inode->i_mode))
550 		return false;
551 	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
552 		return false;
553 	if (shmem_huge == SHMEM_HUGE_DENY)
554 		return false;
555 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
556 		return true;
557 
558 	switch (SHMEM_SB(inode->i_sb)->huge) {
559 	case SHMEM_HUGE_ALWAYS:
560 		return true;
561 	case SHMEM_HUGE_WITHIN_SIZE:
562 		index = round_up(index + 1, HPAGE_PMD_NR);
563 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
564 		if (i_size >> PAGE_SHIFT >= index)
565 			return true;
566 		fallthrough;
567 	case SHMEM_HUGE_ADVISE:
568 		if (mm && (vm_flags & VM_HUGEPAGE))
569 			return true;
570 		fallthrough;
571 	default:
572 		return false;
573 	}
574 }
575 
576 #if defined(CONFIG_SYSFS)
577 static int shmem_parse_huge(const char *str)
578 {
579 	if (!strcmp(str, "never"))
580 		return SHMEM_HUGE_NEVER;
581 	if (!strcmp(str, "always"))
582 		return SHMEM_HUGE_ALWAYS;
583 	if (!strcmp(str, "within_size"))
584 		return SHMEM_HUGE_WITHIN_SIZE;
585 	if (!strcmp(str, "advise"))
586 		return SHMEM_HUGE_ADVISE;
587 	if (!strcmp(str, "deny"))
588 		return SHMEM_HUGE_DENY;
589 	if (!strcmp(str, "force"))
590 		return SHMEM_HUGE_FORCE;
591 	return -EINVAL;
592 }
593 #endif
594 
595 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
596 static const char *shmem_format_huge(int huge)
597 {
598 	switch (huge) {
599 	case SHMEM_HUGE_NEVER:
600 		return "never";
601 	case SHMEM_HUGE_ALWAYS:
602 		return "always";
603 	case SHMEM_HUGE_WITHIN_SIZE:
604 		return "within_size";
605 	case SHMEM_HUGE_ADVISE:
606 		return "advise";
607 	case SHMEM_HUGE_DENY:
608 		return "deny";
609 	case SHMEM_HUGE_FORCE:
610 		return "force";
611 	default:
612 		VM_BUG_ON(1);
613 		return "bad_val";
614 	}
615 }
616 #endif
617 
618 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
619 		struct shrink_control *sc, unsigned long nr_to_split)
620 {
621 	LIST_HEAD(list), *pos, *next;
622 	LIST_HEAD(to_remove);
623 	struct inode *inode;
624 	struct shmem_inode_info *info;
625 	struct folio *folio;
626 	unsigned long batch = sc ? sc->nr_to_scan : 128;
627 	int split = 0;
628 
629 	if (list_empty(&sbinfo->shrinklist))
630 		return SHRINK_STOP;
631 
632 	spin_lock(&sbinfo->shrinklist_lock);
633 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
634 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
635 
636 		/* pin the inode */
637 		inode = igrab(&info->vfs_inode);
638 
639 		/* inode is about to be evicted */
640 		if (!inode) {
641 			list_del_init(&info->shrinklist);
642 			goto next;
643 		}
644 
645 		/* Check if there's anything to gain */
646 		if (round_up(inode->i_size, PAGE_SIZE) ==
647 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
648 			list_move(&info->shrinklist, &to_remove);
649 			goto next;
650 		}
651 
652 		list_move(&info->shrinklist, &list);
653 next:
654 		sbinfo->shrinklist_len--;
655 		if (!--batch)
656 			break;
657 	}
658 	spin_unlock(&sbinfo->shrinklist_lock);
659 
660 	list_for_each_safe(pos, next, &to_remove) {
661 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
662 		inode = &info->vfs_inode;
663 		list_del_init(&info->shrinklist);
664 		iput(inode);
665 	}
666 
667 	list_for_each_safe(pos, next, &list) {
668 		int ret;
669 		pgoff_t index;
670 
671 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
672 		inode = &info->vfs_inode;
673 
674 		if (nr_to_split && split >= nr_to_split)
675 			goto move_back;
676 
677 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
678 		folio = filemap_get_folio(inode->i_mapping, index);
679 		if (IS_ERR(folio))
680 			goto drop;
681 
682 		/* No huge page at the end of the file: nothing to split */
683 		if (!folio_test_large(folio)) {
684 			folio_put(folio);
685 			goto drop;
686 		}
687 
688 		/*
689 		 * Move the inode on the list back to shrinklist if we failed
690 		 * to lock the page at this time.
691 		 *
692 		 * Waiting for the lock may lead to deadlock in the
693 		 * reclaim path.
694 		 */
695 		if (!folio_trylock(folio)) {
696 			folio_put(folio);
697 			goto move_back;
698 		}
699 
700 		ret = split_folio(folio);
701 		folio_unlock(folio);
702 		folio_put(folio);
703 
704 		/* If split failed move the inode on the list back to shrinklist */
705 		if (ret)
706 			goto move_back;
707 
708 		split++;
709 drop:
710 		list_del_init(&info->shrinklist);
711 		goto put;
712 move_back:
713 		/*
714 		 * Make sure the inode is either on the global list or deleted
715 		 * from any local list before iput() since it could be deleted
716 		 * in another thread once we put the inode (then the local list
717 		 * is corrupted).
718 		 */
719 		spin_lock(&sbinfo->shrinklist_lock);
720 		list_move(&info->shrinklist, &sbinfo->shrinklist);
721 		sbinfo->shrinklist_len++;
722 		spin_unlock(&sbinfo->shrinklist_lock);
723 put:
724 		iput(inode);
725 	}
726 
727 	return split;
728 }
729 
730 static long shmem_unused_huge_scan(struct super_block *sb,
731 		struct shrink_control *sc)
732 {
733 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
734 
735 	if (!READ_ONCE(sbinfo->shrinklist_len))
736 		return SHRINK_STOP;
737 
738 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
739 }
740 
741 static long shmem_unused_huge_count(struct super_block *sb,
742 		struct shrink_control *sc)
743 {
744 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
745 	return READ_ONCE(sbinfo->shrinklist_len);
746 }
747 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
748 
749 #define shmem_huge SHMEM_HUGE_DENY
750 
751 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
752 		   struct mm_struct *mm, unsigned long vm_flags)
753 {
754 	return false;
755 }
756 
757 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
758 		struct shrink_control *sc, unsigned long nr_to_split)
759 {
760 	return 0;
761 }
762 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
763 
764 /*
765  * Somewhat like filemap_add_folio, but error if expected item has gone.
766  */
767 static int shmem_add_to_page_cache(struct folio *folio,
768 				   struct address_space *mapping,
769 				   pgoff_t index, void *expected, gfp_t gfp)
770 {
771 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
772 	long nr = folio_nr_pages(folio);
773 
774 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
775 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
776 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
777 	VM_BUG_ON(expected && folio_test_large(folio));
778 
779 	folio_ref_add(folio, nr);
780 	folio->mapping = mapping;
781 	folio->index = index;
782 
783 	gfp &= GFP_RECLAIM_MASK;
784 	folio_throttle_swaprate(folio, gfp);
785 
786 	do {
787 		xas_lock_irq(&xas);
788 		if (expected != xas_find_conflict(&xas)) {
789 			xas_set_err(&xas, -EEXIST);
790 			goto unlock;
791 		}
792 		if (expected && xas_find_conflict(&xas)) {
793 			xas_set_err(&xas, -EEXIST);
794 			goto unlock;
795 		}
796 		xas_store(&xas, folio);
797 		if (xas_error(&xas))
798 			goto unlock;
799 		if (folio_test_pmd_mappable(folio))
800 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
801 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
802 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
803 		mapping->nrpages += nr;
804 unlock:
805 		xas_unlock_irq(&xas);
806 	} while (xas_nomem(&xas, gfp));
807 
808 	if (xas_error(&xas)) {
809 		folio->mapping = NULL;
810 		folio_ref_sub(folio, nr);
811 		return xas_error(&xas);
812 	}
813 
814 	return 0;
815 }
816 
817 /*
818  * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
819  */
820 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
821 {
822 	struct address_space *mapping = folio->mapping;
823 	long nr = folio_nr_pages(folio);
824 	int error;
825 
826 	xa_lock_irq(&mapping->i_pages);
827 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
828 	folio->mapping = NULL;
829 	mapping->nrpages -= nr;
830 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
831 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
832 	xa_unlock_irq(&mapping->i_pages);
833 	folio_put(folio);
834 	BUG_ON(error);
835 }
836 
837 /*
838  * Remove swap entry from page cache, free the swap and its page cache.
839  */
840 static int shmem_free_swap(struct address_space *mapping,
841 			   pgoff_t index, void *radswap)
842 {
843 	void *old;
844 
845 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
846 	if (old != radswap)
847 		return -ENOENT;
848 	free_swap_and_cache(radix_to_swp_entry(radswap));
849 	return 0;
850 }
851 
852 /*
853  * Determine (in bytes) how many of the shmem object's pages mapped by the
854  * given offsets are swapped out.
855  *
856  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
857  * as long as the inode doesn't go away and racy results are not a problem.
858  */
859 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
860 						pgoff_t start, pgoff_t end)
861 {
862 	XA_STATE(xas, &mapping->i_pages, start);
863 	struct page *page;
864 	unsigned long swapped = 0;
865 	unsigned long max = end - 1;
866 
867 	rcu_read_lock();
868 	xas_for_each(&xas, page, max) {
869 		if (xas_retry(&xas, page))
870 			continue;
871 		if (xa_is_value(page))
872 			swapped++;
873 		if (xas.xa_index == max)
874 			break;
875 		if (need_resched()) {
876 			xas_pause(&xas);
877 			cond_resched_rcu();
878 		}
879 	}
880 	rcu_read_unlock();
881 
882 	return swapped << PAGE_SHIFT;
883 }
884 
885 /*
886  * Determine (in bytes) how many of the shmem object's pages mapped by the
887  * given vma is swapped out.
888  *
889  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
890  * as long as the inode doesn't go away and racy results are not a problem.
891  */
892 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
893 {
894 	struct inode *inode = file_inode(vma->vm_file);
895 	struct shmem_inode_info *info = SHMEM_I(inode);
896 	struct address_space *mapping = inode->i_mapping;
897 	unsigned long swapped;
898 
899 	/* Be careful as we don't hold info->lock */
900 	swapped = READ_ONCE(info->swapped);
901 
902 	/*
903 	 * The easier cases are when the shmem object has nothing in swap, or
904 	 * the vma maps it whole. Then we can simply use the stats that we
905 	 * already track.
906 	 */
907 	if (!swapped)
908 		return 0;
909 
910 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
911 		return swapped << PAGE_SHIFT;
912 
913 	/* Here comes the more involved part */
914 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
915 					vma->vm_pgoff + vma_pages(vma));
916 }
917 
918 /*
919  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
920  */
921 void shmem_unlock_mapping(struct address_space *mapping)
922 {
923 	struct folio_batch fbatch;
924 	pgoff_t index = 0;
925 
926 	folio_batch_init(&fbatch);
927 	/*
928 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
929 	 */
930 	while (!mapping_unevictable(mapping) &&
931 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
932 		check_move_unevictable_folios(&fbatch);
933 		folio_batch_release(&fbatch);
934 		cond_resched();
935 	}
936 }
937 
938 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
939 {
940 	struct folio *folio;
941 
942 	/*
943 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
944 	 * beyond i_size, and reports fallocated folios as holes.
945 	 */
946 	folio = filemap_get_entry(inode->i_mapping, index);
947 	if (!folio)
948 		return folio;
949 	if (!xa_is_value(folio)) {
950 		folio_lock(folio);
951 		if (folio->mapping == inode->i_mapping)
952 			return folio;
953 		/* The folio has been swapped out */
954 		folio_unlock(folio);
955 		folio_put(folio);
956 	}
957 	/*
958 	 * But read a folio back from swap if any of it is within i_size
959 	 * (although in some cases this is just a waste of time).
960 	 */
961 	folio = NULL;
962 	shmem_get_folio(inode, index, &folio, SGP_READ);
963 	return folio;
964 }
965 
966 /*
967  * Remove range of pages and swap entries from page cache, and free them.
968  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
969  */
970 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
971 								 bool unfalloc)
972 {
973 	struct address_space *mapping = inode->i_mapping;
974 	struct shmem_inode_info *info = SHMEM_I(inode);
975 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
976 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
977 	struct folio_batch fbatch;
978 	pgoff_t indices[PAGEVEC_SIZE];
979 	struct folio *folio;
980 	bool same_folio;
981 	long nr_swaps_freed = 0;
982 	pgoff_t index;
983 	int i;
984 
985 	if (lend == -1)
986 		end = -1;	/* unsigned, so actually very big */
987 
988 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
989 		info->fallocend = start;
990 
991 	folio_batch_init(&fbatch);
992 	index = start;
993 	while (index < end && find_lock_entries(mapping, &index, end - 1,
994 			&fbatch, indices)) {
995 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
996 			folio = fbatch.folios[i];
997 
998 			if (xa_is_value(folio)) {
999 				if (unfalloc)
1000 					continue;
1001 				nr_swaps_freed += !shmem_free_swap(mapping,
1002 							indices[i], folio);
1003 				continue;
1004 			}
1005 
1006 			if (!unfalloc || !folio_test_uptodate(folio))
1007 				truncate_inode_folio(mapping, folio);
1008 			folio_unlock(folio);
1009 		}
1010 		folio_batch_remove_exceptionals(&fbatch);
1011 		folio_batch_release(&fbatch);
1012 		cond_resched();
1013 	}
1014 
1015 	/*
1016 	 * When undoing a failed fallocate, we want none of the partial folio
1017 	 * zeroing and splitting below, but shall want to truncate the whole
1018 	 * folio when !uptodate indicates that it was added by this fallocate,
1019 	 * even when [lstart, lend] covers only a part of the folio.
1020 	 */
1021 	if (unfalloc)
1022 		goto whole_folios;
1023 
1024 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1025 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1026 	if (folio) {
1027 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1028 		folio_mark_dirty(folio);
1029 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1030 			start = folio_next_index(folio);
1031 			if (same_folio)
1032 				end = folio->index;
1033 		}
1034 		folio_unlock(folio);
1035 		folio_put(folio);
1036 		folio = NULL;
1037 	}
1038 
1039 	if (!same_folio)
1040 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1041 	if (folio) {
1042 		folio_mark_dirty(folio);
1043 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1044 			end = folio->index;
1045 		folio_unlock(folio);
1046 		folio_put(folio);
1047 	}
1048 
1049 whole_folios:
1050 
1051 	index = start;
1052 	while (index < end) {
1053 		cond_resched();
1054 
1055 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1056 				indices)) {
1057 			/* If all gone or hole-punch or unfalloc, we're done */
1058 			if (index == start || end != -1)
1059 				break;
1060 			/* But if truncating, restart to make sure all gone */
1061 			index = start;
1062 			continue;
1063 		}
1064 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1065 			folio = fbatch.folios[i];
1066 
1067 			if (xa_is_value(folio)) {
1068 				if (unfalloc)
1069 					continue;
1070 				if (shmem_free_swap(mapping, indices[i], folio)) {
1071 					/* Swap was replaced by page: retry */
1072 					index = indices[i];
1073 					break;
1074 				}
1075 				nr_swaps_freed++;
1076 				continue;
1077 			}
1078 
1079 			folio_lock(folio);
1080 
1081 			if (!unfalloc || !folio_test_uptodate(folio)) {
1082 				if (folio_mapping(folio) != mapping) {
1083 					/* Page was replaced by swap: retry */
1084 					folio_unlock(folio);
1085 					index = indices[i];
1086 					break;
1087 				}
1088 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1089 						folio);
1090 
1091 				if (!folio_test_large(folio)) {
1092 					truncate_inode_folio(mapping, folio);
1093 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1094 					/*
1095 					 * If we split a page, reset the loop so
1096 					 * that we pick up the new sub pages.
1097 					 * Otherwise the THP was entirely
1098 					 * dropped or the target range was
1099 					 * zeroed, so just continue the loop as
1100 					 * is.
1101 					 */
1102 					if (!folio_test_large(folio)) {
1103 						folio_unlock(folio);
1104 						index = start;
1105 						break;
1106 					}
1107 				}
1108 			}
1109 			folio_unlock(folio);
1110 		}
1111 		folio_batch_remove_exceptionals(&fbatch);
1112 		folio_batch_release(&fbatch);
1113 	}
1114 
1115 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1116 }
1117 
1118 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1119 {
1120 	shmem_undo_range(inode, lstart, lend, false);
1121 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1122 	inode_inc_iversion(inode);
1123 }
1124 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1125 
1126 static int shmem_getattr(struct mnt_idmap *idmap,
1127 			 const struct path *path, struct kstat *stat,
1128 			 u32 request_mask, unsigned int query_flags)
1129 {
1130 	struct inode *inode = path->dentry->d_inode;
1131 	struct shmem_inode_info *info = SHMEM_I(inode);
1132 
1133 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1134 		shmem_recalc_inode(inode, 0, 0);
1135 
1136 	if (info->fsflags & FS_APPEND_FL)
1137 		stat->attributes |= STATX_ATTR_APPEND;
1138 	if (info->fsflags & FS_IMMUTABLE_FL)
1139 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1140 	if (info->fsflags & FS_NODUMP_FL)
1141 		stat->attributes |= STATX_ATTR_NODUMP;
1142 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1143 			STATX_ATTR_IMMUTABLE |
1144 			STATX_ATTR_NODUMP);
1145 	generic_fillattr(idmap, request_mask, inode, stat);
1146 
1147 	if (shmem_is_huge(inode, 0, false, NULL, 0))
1148 		stat->blksize = HPAGE_PMD_SIZE;
1149 
1150 	if (request_mask & STATX_BTIME) {
1151 		stat->result_mask |= STATX_BTIME;
1152 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1153 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1154 	}
1155 
1156 	return 0;
1157 }
1158 
1159 static int shmem_setattr(struct mnt_idmap *idmap,
1160 			 struct dentry *dentry, struct iattr *attr)
1161 {
1162 	struct inode *inode = d_inode(dentry);
1163 	struct shmem_inode_info *info = SHMEM_I(inode);
1164 	int error;
1165 	bool update_mtime = false;
1166 	bool update_ctime = true;
1167 
1168 	error = setattr_prepare(idmap, dentry, attr);
1169 	if (error)
1170 		return error;
1171 
1172 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1173 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1174 			return -EPERM;
1175 		}
1176 	}
1177 
1178 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1179 		loff_t oldsize = inode->i_size;
1180 		loff_t newsize = attr->ia_size;
1181 
1182 		/* protected by i_rwsem */
1183 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1184 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1185 			return -EPERM;
1186 
1187 		if (newsize != oldsize) {
1188 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1189 					oldsize, newsize);
1190 			if (error)
1191 				return error;
1192 			i_size_write(inode, newsize);
1193 			update_mtime = true;
1194 		} else {
1195 			update_ctime = false;
1196 		}
1197 		if (newsize <= oldsize) {
1198 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1199 			if (oldsize > holebegin)
1200 				unmap_mapping_range(inode->i_mapping,
1201 							holebegin, 0, 1);
1202 			if (info->alloced)
1203 				shmem_truncate_range(inode,
1204 							newsize, (loff_t)-1);
1205 			/* unmap again to remove racily COWed private pages */
1206 			if (oldsize > holebegin)
1207 				unmap_mapping_range(inode->i_mapping,
1208 							holebegin, 0, 1);
1209 		}
1210 	}
1211 
1212 	if (is_quota_modification(idmap, inode, attr)) {
1213 		error = dquot_initialize(inode);
1214 		if (error)
1215 			return error;
1216 	}
1217 
1218 	/* Transfer quota accounting */
1219 	if (i_uid_needs_update(idmap, attr, inode) ||
1220 	    i_gid_needs_update(idmap, attr, inode)) {
1221 		error = dquot_transfer(idmap, inode, attr);
1222 		if (error)
1223 			return error;
1224 	}
1225 
1226 	setattr_copy(idmap, inode, attr);
1227 	if (attr->ia_valid & ATTR_MODE)
1228 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1229 	if (!error && update_ctime) {
1230 		inode_set_ctime_current(inode);
1231 		if (update_mtime)
1232 			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1233 		inode_inc_iversion(inode);
1234 	}
1235 	return error;
1236 }
1237 
1238 static void shmem_evict_inode(struct inode *inode)
1239 {
1240 	struct shmem_inode_info *info = SHMEM_I(inode);
1241 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1242 	size_t freed = 0;
1243 
1244 	if (shmem_mapping(inode->i_mapping)) {
1245 		shmem_unacct_size(info->flags, inode->i_size);
1246 		inode->i_size = 0;
1247 		mapping_set_exiting(inode->i_mapping);
1248 		shmem_truncate_range(inode, 0, (loff_t)-1);
1249 		if (!list_empty(&info->shrinklist)) {
1250 			spin_lock(&sbinfo->shrinklist_lock);
1251 			if (!list_empty(&info->shrinklist)) {
1252 				list_del_init(&info->shrinklist);
1253 				sbinfo->shrinklist_len--;
1254 			}
1255 			spin_unlock(&sbinfo->shrinklist_lock);
1256 		}
1257 		while (!list_empty(&info->swaplist)) {
1258 			/* Wait while shmem_unuse() is scanning this inode... */
1259 			wait_var_event(&info->stop_eviction,
1260 				       !atomic_read(&info->stop_eviction));
1261 			mutex_lock(&shmem_swaplist_mutex);
1262 			/* ...but beware of the race if we peeked too early */
1263 			if (!atomic_read(&info->stop_eviction))
1264 				list_del_init(&info->swaplist);
1265 			mutex_unlock(&shmem_swaplist_mutex);
1266 		}
1267 	}
1268 
1269 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1270 	shmem_free_inode(inode->i_sb, freed);
1271 	WARN_ON(inode->i_blocks);
1272 	clear_inode(inode);
1273 #ifdef CONFIG_TMPFS_QUOTA
1274 	dquot_free_inode(inode);
1275 	dquot_drop(inode);
1276 #endif
1277 }
1278 
1279 static int shmem_find_swap_entries(struct address_space *mapping,
1280 				   pgoff_t start, struct folio_batch *fbatch,
1281 				   pgoff_t *indices, unsigned int type)
1282 {
1283 	XA_STATE(xas, &mapping->i_pages, start);
1284 	struct folio *folio;
1285 	swp_entry_t entry;
1286 
1287 	rcu_read_lock();
1288 	xas_for_each(&xas, folio, ULONG_MAX) {
1289 		if (xas_retry(&xas, folio))
1290 			continue;
1291 
1292 		if (!xa_is_value(folio))
1293 			continue;
1294 
1295 		entry = radix_to_swp_entry(folio);
1296 		/*
1297 		 * swapin error entries can be found in the mapping. But they're
1298 		 * deliberately ignored here as we've done everything we can do.
1299 		 */
1300 		if (swp_type(entry) != type)
1301 			continue;
1302 
1303 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1304 		if (!folio_batch_add(fbatch, folio))
1305 			break;
1306 
1307 		if (need_resched()) {
1308 			xas_pause(&xas);
1309 			cond_resched_rcu();
1310 		}
1311 	}
1312 	rcu_read_unlock();
1313 
1314 	return xas.xa_index;
1315 }
1316 
1317 /*
1318  * Move the swapped pages for an inode to page cache. Returns the count
1319  * of pages swapped in, or the error in case of failure.
1320  */
1321 static int shmem_unuse_swap_entries(struct inode *inode,
1322 		struct folio_batch *fbatch, pgoff_t *indices)
1323 {
1324 	int i = 0;
1325 	int ret = 0;
1326 	int error = 0;
1327 	struct address_space *mapping = inode->i_mapping;
1328 
1329 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1330 		struct folio *folio = fbatch->folios[i];
1331 
1332 		if (!xa_is_value(folio))
1333 			continue;
1334 		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1335 					mapping_gfp_mask(mapping), NULL, NULL);
1336 		if (error == 0) {
1337 			folio_unlock(folio);
1338 			folio_put(folio);
1339 			ret++;
1340 		}
1341 		if (error == -ENOMEM)
1342 			break;
1343 		error = 0;
1344 	}
1345 	return error ? error : ret;
1346 }
1347 
1348 /*
1349  * If swap found in inode, free it and move page from swapcache to filecache.
1350  */
1351 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1352 {
1353 	struct address_space *mapping = inode->i_mapping;
1354 	pgoff_t start = 0;
1355 	struct folio_batch fbatch;
1356 	pgoff_t indices[PAGEVEC_SIZE];
1357 	int ret = 0;
1358 
1359 	do {
1360 		folio_batch_init(&fbatch);
1361 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1362 		if (folio_batch_count(&fbatch) == 0) {
1363 			ret = 0;
1364 			break;
1365 		}
1366 
1367 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1368 		if (ret < 0)
1369 			break;
1370 
1371 		start = indices[folio_batch_count(&fbatch) - 1];
1372 	} while (true);
1373 
1374 	return ret;
1375 }
1376 
1377 /*
1378  * Read all the shared memory data that resides in the swap
1379  * device 'type' back into memory, so the swap device can be
1380  * unused.
1381  */
1382 int shmem_unuse(unsigned int type)
1383 {
1384 	struct shmem_inode_info *info, *next;
1385 	int error = 0;
1386 
1387 	if (list_empty(&shmem_swaplist))
1388 		return 0;
1389 
1390 	mutex_lock(&shmem_swaplist_mutex);
1391 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1392 		if (!info->swapped) {
1393 			list_del_init(&info->swaplist);
1394 			continue;
1395 		}
1396 		/*
1397 		 * Drop the swaplist mutex while searching the inode for swap;
1398 		 * but before doing so, make sure shmem_evict_inode() will not
1399 		 * remove placeholder inode from swaplist, nor let it be freed
1400 		 * (igrab() would protect from unlink, but not from unmount).
1401 		 */
1402 		atomic_inc(&info->stop_eviction);
1403 		mutex_unlock(&shmem_swaplist_mutex);
1404 
1405 		error = shmem_unuse_inode(&info->vfs_inode, type);
1406 		cond_resched();
1407 
1408 		mutex_lock(&shmem_swaplist_mutex);
1409 		next = list_next_entry(info, swaplist);
1410 		if (!info->swapped)
1411 			list_del_init(&info->swaplist);
1412 		if (atomic_dec_and_test(&info->stop_eviction))
1413 			wake_up_var(&info->stop_eviction);
1414 		if (error)
1415 			break;
1416 	}
1417 	mutex_unlock(&shmem_swaplist_mutex);
1418 
1419 	return error;
1420 }
1421 
1422 /*
1423  * Move the page from the page cache to the swap cache.
1424  */
1425 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1426 {
1427 	struct folio *folio = page_folio(page);
1428 	struct address_space *mapping = folio->mapping;
1429 	struct inode *inode = mapping->host;
1430 	struct shmem_inode_info *info = SHMEM_I(inode);
1431 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1432 	swp_entry_t swap;
1433 	pgoff_t index;
1434 
1435 	/*
1436 	 * Our capabilities prevent regular writeback or sync from ever calling
1437 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1438 	 * its underlying filesystem, in which case tmpfs should write out to
1439 	 * swap only in response to memory pressure, and not for the writeback
1440 	 * threads or sync.
1441 	 */
1442 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1443 		goto redirty;
1444 
1445 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1446 		goto redirty;
1447 
1448 	if (!total_swap_pages)
1449 		goto redirty;
1450 
1451 	/*
1452 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1453 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1454 	 * and its shmem_writeback() needs them to be split when swapping.
1455 	 */
1456 	if (folio_test_large(folio)) {
1457 		/* Ensure the subpages are still dirty */
1458 		folio_test_set_dirty(folio);
1459 		if (split_huge_page(page) < 0)
1460 			goto redirty;
1461 		folio = page_folio(page);
1462 		folio_clear_dirty(folio);
1463 	}
1464 
1465 	index = folio->index;
1466 
1467 	/*
1468 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1469 	 * value into swapfile.c, the only way we can correctly account for a
1470 	 * fallocated folio arriving here is now to initialize it and write it.
1471 	 *
1472 	 * That's okay for a folio already fallocated earlier, but if we have
1473 	 * not yet completed the fallocation, then (a) we want to keep track
1474 	 * of this folio in case we have to undo it, and (b) it may not be a
1475 	 * good idea to continue anyway, once we're pushing into swap.  So
1476 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1477 	 */
1478 	if (!folio_test_uptodate(folio)) {
1479 		if (inode->i_private) {
1480 			struct shmem_falloc *shmem_falloc;
1481 			spin_lock(&inode->i_lock);
1482 			shmem_falloc = inode->i_private;
1483 			if (shmem_falloc &&
1484 			    !shmem_falloc->waitq &&
1485 			    index >= shmem_falloc->start &&
1486 			    index < shmem_falloc->next)
1487 				shmem_falloc->nr_unswapped++;
1488 			else
1489 				shmem_falloc = NULL;
1490 			spin_unlock(&inode->i_lock);
1491 			if (shmem_falloc)
1492 				goto redirty;
1493 		}
1494 		folio_zero_range(folio, 0, folio_size(folio));
1495 		flush_dcache_folio(folio);
1496 		folio_mark_uptodate(folio);
1497 	}
1498 
1499 	swap = folio_alloc_swap(folio);
1500 	if (!swap.val)
1501 		goto redirty;
1502 
1503 	/*
1504 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1505 	 * if it's not already there.  Do it now before the folio is
1506 	 * moved to swap cache, when its pagelock no longer protects
1507 	 * the inode from eviction.  But don't unlock the mutex until
1508 	 * we've incremented swapped, because shmem_unuse_inode() will
1509 	 * prune a !swapped inode from the swaplist under this mutex.
1510 	 */
1511 	mutex_lock(&shmem_swaplist_mutex);
1512 	if (list_empty(&info->swaplist))
1513 		list_add(&info->swaplist, &shmem_swaplist);
1514 
1515 	if (add_to_swap_cache(folio, swap,
1516 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1517 			NULL) == 0) {
1518 		shmem_recalc_inode(inode, 0, 1);
1519 		swap_shmem_alloc(swap);
1520 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1521 
1522 		mutex_unlock(&shmem_swaplist_mutex);
1523 		BUG_ON(folio_mapped(folio));
1524 		return swap_writepage(&folio->page, wbc);
1525 	}
1526 
1527 	mutex_unlock(&shmem_swaplist_mutex);
1528 	put_swap_folio(folio, swap);
1529 redirty:
1530 	folio_mark_dirty(folio);
1531 	if (wbc->for_reclaim)
1532 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1533 	folio_unlock(folio);
1534 	return 0;
1535 }
1536 
1537 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1538 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1539 {
1540 	char buffer[64];
1541 
1542 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1543 		return;		/* show nothing */
1544 
1545 	mpol_to_str(buffer, sizeof(buffer), mpol);
1546 
1547 	seq_printf(seq, ",mpol=%s", buffer);
1548 }
1549 
1550 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1551 {
1552 	struct mempolicy *mpol = NULL;
1553 	if (sbinfo->mpol) {
1554 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1555 		mpol = sbinfo->mpol;
1556 		mpol_get(mpol);
1557 		raw_spin_unlock(&sbinfo->stat_lock);
1558 	}
1559 	return mpol;
1560 }
1561 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1562 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1563 {
1564 }
1565 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1566 {
1567 	return NULL;
1568 }
1569 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1570 
1571 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1572 			pgoff_t index, unsigned int order, pgoff_t *ilx);
1573 
1574 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1575 			struct shmem_inode_info *info, pgoff_t index)
1576 {
1577 	struct mempolicy *mpol;
1578 	pgoff_t ilx;
1579 	struct folio *folio;
1580 
1581 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1582 	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1583 	mpol_cond_put(mpol);
1584 
1585 	return folio;
1586 }
1587 
1588 /*
1589  * Make sure huge_gfp is always more limited than limit_gfp.
1590  * Some of the flags set permissions, while others set limitations.
1591  */
1592 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1593 {
1594 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1595 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1596 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1597 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1598 
1599 	/* Allow allocations only from the originally specified zones. */
1600 	result |= zoneflags;
1601 
1602 	/*
1603 	 * Minimize the result gfp by taking the union with the deny flags,
1604 	 * and the intersection of the allow flags.
1605 	 */
1606 	result |= (limit_gfp & denyflags);
1607 	result |= (huge_gfp & limit_gfp) & allowflags;
1608 
1609 	return result;
1610 }
1611 
1612 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1613 		struct shmem_inode_info *info, pgoff_t index)
1614 {
1615 	struct mempolicy *mpol;
1616 	pgoff_t ilx;
1617 	struct page *page;
1618 
1619 	mpol = shmem_get_pgoff_policy(info, index, HPAGE_PMD_ORDER, &ilx);
1620 	page = alloc_pages_mpol(gfp, HPAGE_PMD_ORDER, mpol, ilx, numa_node_id());
1621 	mpol_cond_put(mpol);
1622 
1623 	return page_rmappable_folio(page);
1624 }
1625 
1626 static struct folio *shmem_alloc_folio(gfp_t gfp,
1627 		struct shmem_inode_info *info, pgoff_t index)
1628 {
1629 	struct mempolicy *mpol;
1630 	pgoff_t ilx;
1631 	struct page *page;
1632 
1633 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1634 	page = alloc_pages_mpol(gfp, 0, mpol, ilx, numa_node_id());
1635 	mpol_cond_put(mpol);
1636 
1637 	return (struct folio *)page;
1638 }
1639 
1640 static struct folio *shmem_alloc_and_add_folio(gfp_t gfp,
1641 		struct inode *inode, pgoff_t index,
1642 		struct mm_struct *fault_mm, bool huge)
1643 {
1644 	struct address_space *mapping = inode->i_mapping;
1645 	struct shmem_inode_info *info = SHMEM_I(inode);
1646 	struct folio *folio;
1647 	long pages;
1648 	int error;
1649 
1650 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1651 		huge = false;
1652 
1653 	if (huge) {
1654 		pages = HPAGE_PMD_NR;
1655 		index = round_down(index, HPAGE_PMD_NR);
1656 
1657 		/*
1658 		 * Check for conflict before waiting on a huge allocation.
1659 		 * Conflict might be that a huge page has just been allocated
1660 		 * and added to page cache by a racing thread, or that there
1661 		 * is already at least one small page in the huge extent.
1662 		 * Be careful to retry when appropriate, but not forever!
1663 		 * Elsewhere -EEXIST would be the right code, but not here.
1664 		 */
1665 		if (xa_find(&mapping->i_pages, &index,
1666 				index + HPAGE_PMD_NR - 1, XA_PRESENT))
1667 			return ERR_PTR(-E2BIG);
1668 
1669 		folio = shmem_alloc_hugefolio(gfp, info, index);
1670 		if (!folio)
1671 			count_vm_event(THP_FILE_FALLBACK);
1672 	} else {
1673 		pages = 1;
1674 		folio = shmem_alloc_folio(gfp, info, index);
1675 	}
1676 	if (!folio)
1677 		return ERR_PTR(-ENOMEM);
1678 
1679 	__folio_set_locked(folio);
1680 	__folio_set_swapbacked(folio);
1681 
1682 	gfp &= GFP_RECLAIM_MASK;
1683 	error = mem_cgroup_charge(folio, fault_mm, gfp);
1684 	if (error) {
1685 		if (xa_find(&mapping->i_pages, &index,
1686 				index + pages - 1, XA_PRESENT)) {
1687 			error = -EEXIST;
1688 		} else if (huge) {
1689 			count_vm_event(THP_FILE_FALLBACK);
1690 			count_vm_event(THP_FILE_FALLBACK_CHARGE);
1691 		}
1692 		goto unlock;
1693 	}
1694 
1695 	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1696 	if (error)
1697 		goto unlock;
1698 
1699 	error = shmem_inode_acct_blocks(inode, pages);
1700 	if (error) {
1701 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1702 		long freed;
1703 		/*
1704 		 * Try to reclaim some space by splitting a few
1705 		 * large folios beyond i_size on the filesystem.
1706 		 */
1707 		shmem_unused_huge_shrink(sbinfo, NULL, 2);
1708 		/*
1709 		 * And do a shmem_recalc_inode() to account for freed pages:
1710 		 * except our folio is there in cache, so not quite balanced.
1711 		 */
1712 		spin_lock(&info->lock);
1713 		freed = pages + info->alloced - info->swapped -
1714 			READ_ONCE(mapping->nrpages);
1715 		if (freed > 0)
1716 			info->alloced -= freed;
1717 		spin_unlock(&info->lock);
1718 		if (freed > 0)
1719 			shmem_inode_unacct_blocks(inode, freed);
1720 		error = shmem_inode_acct_blocks(inode, pages);
1721 		if (error) {
1722 			filemap_remove_folio(folio);
1723 			goto unlock;
1724 		}
1725 	}
1726 
1727 	shmem_recalc_inode(inode, pages, 0);
1728 	folio_add_lru(folio);
1729 	return folio;
1730 
1731 unlock:
1732 	folio_unlock(folio);
1733 	folio_put(folio);
1734 	return ERR_PTR(error);
1735 }
1736 
1737 /*
1738  * When a page is moved from swapcache to shmem filecache (either by the
1739  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1740  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1741  * ignorance of the mapping it belongs to.  If that mapping has special
1742  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1743  * we may need to copy to a suitable page before moving to filecache.
1744  *
1745  * In a future release, this may well be extended to respect cpuset and
1746  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1747  * but for now it is a simple matter of zone.
1748  */
1749 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1750 {
1751 	return folio_zonenum(folio) > gfp_zone(gfp);
1752 }
1753 
1754 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1755 				struct shmem_inode_info *info, pgoff_t index)
1756 {
1757 	struct folio *old, *new;
1758 	struct address_space *swap_mapping;
1759 	swp_entry_t entry;
1760 	pgoff_t swap_index;
1761 	int error;
1762 
1763 	old = *foliop;
1764 	entry = old->swap;
1765 	swap_index = swp_offset(entry);
1766 	swap_mapping = swap_address_space(entry);
1767 
1768 	/*
1769 	 * We have arrived here because our zones are constrained, so don't
1770 	 * limit chance of success by further cpuset and node constraints.
1771 	 */
1772 	gfp &= ~GFP_CONSTRAINT_MASK;
1773 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1774 	new = shmem_alloc_folio(gfp, info, index);
1775 	if (!new)
1776 		return -ENOMEM;
1777 
1778 	folio_get(new);
1779 	folio_copy(new, old);
1780 	flush_dcache_folio(new);
1781 
1782 	__folio_set_locked(new);
1783 	__folio_set_swapbacked(new);
1784 	folio_mark_uptodate(new);
1785 	new->swap = entry;
1786 	folio_set_swapcache(new);
1787 
1788 	/*
1789 	 * Our caller will very soon move newpage out of swapcache, but it's
1790 	 * a nice clean interface for us to replace oldpage by newpage there.
1791 	 */
1792 	xa_lock_irq(&swap_mapping->i_pages);
1793 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1794 	if (!error) {
1795 		mem_cgroup_migrate(old, new);
1796 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1797 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1798 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1799 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1800 	}
1801 	xa_unlock_irq(&swap_mapping->i_pages);
1802 
1803 	if (unlikely(error)) {
1804 		/*
1805 		 * Is this possible?  I think not, now that our callers check
1806 		 * both PageSwapCache and page_private after getting page lock;
1807 		 * but be defensive.  Reverse old to newpage for clear and free.
1808 		 */
1809 		old = new;
1810 	} else {
1811 		folio_add_lru(new);
1812 		*foliop = new;
1813 	}
1814 
1815 	folio_clear_swapcache(old);
1816 	old->private = NULL;
1817 
1818 	folio_unlock(old);
1819 	folio_put_refs(old, 2);
1820 	return error;
1821 }
1822 
1823 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1824 					 struct folio *folio, swp_entry_t swap)
1825 {
1826 	struct address_space *mapping = inode->i_mapping;
1827 	swp_entry_t swapin_error;
1828 	void *old;
1829 
1830 	swapin_error = make_poisoned_swp_entry();
1831 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1832 			     swp_to_radix_entry(swap),
1833 			     swp_to_radix_entry(swapin_error), 0);
1834 	if (old != swp_to_radix_entry(swap))
1835 		return;
1836 
1837 	folio_wait_writeback(folio);
1838 	delete_from_swap_cache(folio);
1839 	/*
1840 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
1841 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
1842 	 * in shmem_evict_inode().
1843 	 */
1844 	shmem_recalc_inode(inode, -1, -1);
1845 	swap_free(swap);
1846 }
1847 
1848 /*
1849  * Swap in the folio pointed to by *foliop.
1850  * Caller has to make sure that *foliop contains a valid swapped folio.
1851  * Returns 0 and the folio in foliop if success. On failure, returns the
1852  * error code and NULL in *foliop.
1853  */
1854 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1855 			     struct folio **foliop, enum sgp_type sgp,
1856 			     gfp_t gfp, struct mm_struct *fault_mm,
1857 			     vm_fault_t *fault_type)
1858 {
1859 	struct address_space *mapping = inode->i_mapping;
1860 	struct shmem_inode_info *info = SHMEM_I(inode);
1861 	struct swap_info_struct *si;
1862 	struct folio *folio = NULL;
1863 	swp_entry_t swap;
1864 	int error;
1865 
1866 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1867 	swap = radix_to_swp_entry(*foliop);
1868 	*foliop = NULL;
1869 
1870 	if (is_poisoned_swp_entry(swap))
1871 		return -EIO;
1872 
1873 	si = get_swap_device(swap);
1874 	if (!si) {
1875 		if (!shmem_confirm_swap(mapping, index, swap))
1876 			return -EEXIST;
1877 		else
1878 			return -EINVAL;
1879 	}
1880 
1881 	/* Look it up and read it in.. */
1882 	folio = swap_cache_get_folio(swap, NULL, 0);
1883 	if (!folio) {
1884 		/* Or update major stats only when swapin succeeds?? */
1885 		if (fault_type) {
1886 			*fault_type |= VM_FAULT_MAJOR;
1887 			count_vm_event(PGMAJFAULT);
1888 			count_memcg_event_mm(fault_mm, PGMAJFAULT);
1889 		}
1890 		/* Here we actually start the io */
1891 		folio = shmem_swapin_cluster(swap, gfp, info, index);
1892 		if (!folio) {
1893 			error = -ENOMEM;
1894 			goto failed;
1895 		}
1896 	}
1897 
1898 	/* We have to do this with folio locked to prevent races */
1899 	folio_lock(folio);
1900 	if (!folio_test_swapcache(folio) ||
1901 	    folio->swap.val != swap.val ||
1902 	    !shmem_confirm_swap(mapping, index, swap)) {
1903 		error = -EEXIST;
1904 		goto unlock;
1905 	}
1906 	if (!folio_test_uptodate(folio)) {
1907 		error = -EIO;
1908 		goto failed;
1909 	}
1910 	folio_wait_writeback(folio);
1911 
1912 	/*
1913 	 * Some architectures may have to restore extra metadata to the
1914 	 * folio after reading from swap.
1915 	 */
1916 	arch_swap_restore(swap, folio);
1917 
1918 	if (shmem_should_replace_folio(folio, gfp)) {
1919 		error = shmem_replace_folio(&folio, gfp, info, index);
1920 		if (error)
1921 			goto failed;
1922 	}
1923 
1924 	error = shmem_add_to_page_cache(folio, mapping, index,
1925 					swp_to_radix_entry(swap), gfp);
1926 	if (error)
1927 		goto failed;
1928 
1929 	shmem_recalc_inode(inode, 0, -1);
1930 
1931 	if (sgp == SGP_WRITE)
1932 		folio_mark_accessed(folio);
1933 
1934 	delete_from_swap_cache(folio);
1935 	folio_mark_dirty(folio);
1936 	swap_free(swap);
1937 	put_swap_device(si);
1938 
1939 	*foliop = folio;
1940 	return 0;
1941 failed:
1942 	if (!shmem_confirm_swap(mapping, index, swap))
1943 		error = -EEXIST;
1944 	if (error == -EIO)
1945 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1946 unlock:
1947 	if (folio) {
1948 		folio_unlock(folio);
1949 		folio_put(folio);
1950 	}
1951 	put_swap_device(si);
1952 
1953 	return error;
1954 }
1955 
1956 /*
1957  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1958  *
1959  * If we allocate a new one we do not mark it dirty. That's up to the
1960  * vm. If we swap it in we mark it dirty since we also free the swap
1961  * entry since a page cannot live in both the swap and page cache.
1962  *
1963  * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
1964  */
1965 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1966 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1967 		struct vm_fault *vmf, vm_fault_t *fault_type)
1968 {
1969 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1970 	struct mm_struct *fault_mm;
1971 	struct folio *folio;
1972 	int error;
1973 	bool alloced;
1974 
1975 	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
1976 		return -EINVAL;
1977 
1978 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1979 		return -EFBIG;
1980 repeat:
1981 	if (sgp <= SGP_CACHE &&
1982 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
1983 		return -EINVAL;
1984 
1985 	alloced = false;
1986 	fault_mm = vma ? vma->vm_mm : NULL;
1987 
1988 	folio = filemap_get_entry(inode->i_mapping, index);
1989 	if (folio && vma && userfaultfd_minor(vma)) {
1990 		if (!xa_is_value(folio))
1991 			folio_put(folio);
1992 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1993 		return 0;
1994 	}
1995 
1996 	if (xa_is_value(folio)) {
1997 		error = shmem_swapin_folio(inode, index, &folio,
1998 					   sgp, gfp, fault_mm, fault_type);
1999 		if (error == -EEXIST)
2000 			goto repeat;
2001 
2002 		*foliop = folio;
2003 		return error;
2004 	}
2005 
2006 	if (folio) {
2007 		folio_lock(folio);
2008 
2009 		/* Has the folio been truncated or swapped out? */
2010 		if (unlikely(folio->mapping != inode->i_mapping)) {
2011 			folio_unlock(folio);
2012 			folio_put(folio);
2013 			goto repeat;
2014 		}
2015 		if (sgp == SGP_WRITE)
2016 			folio_mark_accessed(folio);
2017 		if (folio_test_uptodate(folio))
2018 			goto out;
2019 		/* fallocated folio */
2020 		if (sgp != SGP_READ)
2021 			goto clear;
2022 		folio_unlock(folio);
2023 		folio_put(folio);
2024 	}
2025 
2026 	/*
2027 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2028 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2029 	 */
2030 	*foliop = NULL;
2031 	if (sgp == SGP_READ)
2032 		return 0;
2033 	if (sgp == SGP_NOALLOC)
2034 		return -ENOENT;
2035 
2036 	/*
2037 	 * Fast cache lookup and swap lookup did not find it: allocate.
2038 	 */
2039 
2040 	if (vma && userfaultfd_missing(vma)) {
2041 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2042 		return 0;
2043 	}
2044 
2045 	if (shmem_is_huge(inode, index, false, fault_mm,
2046 			  vma ? vma->vm_flags : 0)) {
2047 		gfp_t huge_gfp;
2048 
2049 		huge_gfp = vma_thp_gfp_mask(vma);
2050 		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2051 		folio = shmem_alloc_and_add_folio(huge_gfp,
2052 				inode, index, fault_mm, true);
2053 		if (!IS_ERR(folio)) {
2054 			count_vm_event(THP_FILE_ALLOC);
2055 			goto alloced;
2056 		}
2057 		if (PTR_ERR(folio) == -EEXIST)
2058 			goto repeat;
2059 	}
2060 
2061 	folio = shmem_alloc_and_add_folio(gfp, inode, index, fault_mm, false);
2062 	if (IS_ERR(folio)) {
2063 		error = PTR_ERR(folio);
2064 		if (error == -EEXIST)
2065 			goto repeat;
2066 		folio = NULL;
2067 		goto unlock;
2068 	}
2069 
2070 alloced:
2071 	alloced = true;
2072 	if (folio_test_pmd_mappable(folio) &&
2073 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2074 					folio_next_index(folio) - 1) {
2075 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2076 		struct shmem_inode_info *info = SHMEM_I(inode);
2077 		/*
2078 		 * Part of the large folio is beyond i_size: subject
2079 		 * to shrink under memory pressure.
2080 		 */
2081 		spin_lock(&sbinfo->shrinklist_lock);
2082 		/*
2083 		 * _careful to defend against unlocked access to
2084 		 * ->shrink_list in shmem_unused_huge_shrink()
2085 		 */
2086 		if (list_empty_careful(&info->shrinklist)) {
2087 			list_add_tail(&info->shrinklist,
2088 				      &sbinfo->shrinklist);
2089 			sbinfo->shrinklist_len++;
2090 		}
2091 		spin_unlock(&sbinfo->shrinklist_lock);
2092 	}
2093 
2094 	if (sgp == SGP_WRITE)
2095 		folio_set_referenced(folio);
2096 	/*
2097 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2098 	 */
2099 	if (sgp == SGP_FALLOC)
2100 		sgp = SGP_WRITE;
2101 clear:
2102 	/*
2103 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2104 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2105 	 * it now, lest undo on failure cancel our earlier guarantee.
2106 	 */
2107 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2108 		long i, n = folio_nr_pages(folio);
2109 
2110 		for (i = 0; i < n; i++)
2111 			clear_highpage(folio_page(folio, i));
2112 		flush_dcache_folio(folio);
2113 		folio_mark_uptodate(folio);
2114 	}
2115 
2116 	/* Perhaps the file has been truncated since we checked */
2117 	if (sgp <= SGP_CACHE &&
2118 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2119 		error = -EINVAL;
2120 		goto unlock;
2121 	}
2122 out:
2123 	*foliop = folio;
2124 	return 0;
2125 
2126 	/*
2127 	 * Error recovery.
2128 	 */
2129 unlock:
2130 	if (alloced)
2131 		filemap_remove_folio(folio);
2132 	shmem_recalc_inode(inode, 0, 0);
2133 	if (folio) {
2134 		folio_unlock(folio);
2135 		folio_put(folio);
2136 	}
2137 	return error;
2138 }
2139 
2140 /**
2141  * shmem_get_folio - find, and lock a shmem folio.
2142  * @inode:	inode to search
2143  * @index:	the page index.
2144  * @foliop:	pointer to the folio if found
2145  * @sgp:	SGP_* flags to control behavior
2146  *
2147  * Looks up the page cache entry at @inode & @index.  If a folio is
2148  * present, it is returned locked with an increased refcount.
2149  *
2150  * If the caller modifies data in the folio, it must call folio_mark_dirty()
2151  * before unlocking the folio to ensure that the folio is not reclaimed.
2152  * There is no need to reserve space before calling folio_mark_dirty().
2153  *
2154  * When no folio is found, the behavior depends on @sgp:
2155  *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2156  *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2157  *  - for all other flags a new folio is allocated, inserted into the
2158  *    page cache and returned locked in @foliop.
2159  *
2160  * Context: May sleep.
2161  * Return: 0 if successful, else a negative error code.
2162  */
2163 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2164 		enum sgp_type sgp)
2165 {
2166 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2167 			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2168 }
2169 EXPORT_SYMBOL_GPL(shmem_get_folio);
2170 
2171 /*
2172  * This is like autoremove_wake_function, but it removes the wait queue
2173  * entry unconditionally - even if something else had already woken the
2174  * target.
2175  */
2176 static int synchronous_wake_function(wait_queue_entry_t *wait,
2177 			unsigned int mode, int sync, void *key)
2178 {
2179 	int ret = default_wake_function(wait, mode, sync, key);
2180 	list_del_init(&wait->entry);
2181 	return ret;
2182 }
2183 
2184 /*
2185  * Trinity finds that probing a hole which tmpfs is punching can
2186  * prevent the hole-punch from ever completing: which in turn
2187  * locks writers out with its hold on i_rwsem.  So refrain from
2188  * faulting pages into the hole while it's being punched.  Although
2189  * shmem_undo_range() does remove the additions, it may be unable to
2190  * keep up, as each new page needs its own unmap_mapping_range() call,
2191  * and the i_mmap tree grows ever slower to scan if new vmas are added.
2192  *
2193  * It does not matter if we sometimes reach this check just before the
2194  * hole-punch begins, so that one fault then races with the punch:
2195  * we just need to make racing faults a rare case.
2196  *
2197  * The implementation below would be much simpler if we just used a
2198  * standard mutex or completion: but we cannot take i_rwsem in fault,
2199  * and bloating every shmem inode for this unlikely case would be sad.
2200  */
2201 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2202 {
2203 	struct shmem_falloc *shmem_falloc;
2204 	struct file *fpin = NULL;
2205 	vm_fault_t ret = 0;
2206 
2207 	spin_lock(&inode->i_lock);
2208 	shmem_falloc = inode->i_private;
2209 	if (shmem_falloc &&
2210 	    shmem_falloc->waitq &&
2211 	    vmf->pgoff >= shmem_falloc->start &&
2212 	    vmf->pgoff < shmem_falloc->next) {
2213 		wait_queue_head_t *shmem_falloc_waitq;
2214 		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2215 
2216 		ret = VM_FAULT_NOPAGE;
2217 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2218 		shmem_falloc_waitq = shmem_falloc->waitq;
2219 		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2220 				TASK_UNINTERRUPTIBLE);
2221 		spin_unlock(&inode->i_lock);
2222 		schedule();
2223 
2224 		/*
2225 		 * shmem_falloc_waitq points into the shmem_fallocate()
2226 		 * stack of the hole-punching task: shmem_falloc_waitq
2227 		 * is usually invalid by the time we reach here, but
2228 		 * finish_wait() does not dereference it in that case;
2229 		 * though i_lock needed lest racing with wake_up_all().
2230 		 */
2231 		spin_lock(&inode->i_lock);
2232 		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2233 	}
2234 	spin_unlock(&inode->i_lock);
2235 	if (fpin) {
2236 		fput(fpin);
2237 		ret = VM_FAULT_RETRY;
2238 	}
2239 	return ret;
2240 }
2241 
2242 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2243 {
2244 	struct inode *inode = file_inode(vmf->vma->vm_file);
2245 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2246 	struct folio *folio = NULL;
2247 	vm_fault_t ret = 0;
2248 	int err;
2249 
2250 	/*
2251 	 * Trinity finds that probing a hole which tmpfs is punching can
2252 	 * prevent the hole-punch from ever completing: noted in i_private.
2253 	 */
2254 	if (unlikely(inode->i_private)) {
2255 		ret = shmem_falloc_wait(vmf, inode);
2256 		if (ret)
2257 			return ret;
2258 	}
2259 
2260 	WARN_ON_ONCE(vmf->page != NULL);
2261 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2262 				  gfp, vmf, &ret);
2263 	if (err)
2264 		return vmf_error(err);
2265 	if (folio) {
2266 		vmf->page = folio_file_page(folio, vmf->pgoff);
2267 		ret |= VM_FAULT_LOCKED;
2268 	}
2269 	return ret;
2270 }
2271 
2272 unsigned long shmem_get_unmapped_area(struct file *file,
2273 				      unsigned long uaddr, unsigned long len,
2274 				      unsigned long pgoff, unsigned long flags)
2275 {
2276 	unsigned long (*get_area)(struct file *,
2277 		unsigned long, unsigned long, unsigned long, unsigned long);
2278 	unsigned long addr;
2279 	unsigned long offset;
2280 	unsigned long inflated_len;
2281 	unsigned long inflated_addr;
2282 	unsigned long inflated_offset;
2283 
2284 	if (len > TASK_SIZE)
2285 		return -ENOMEM;
2286 
2287 	get_area = current->mm->get_unmapped_area;
2288 	addr = get_area(file, uaddr, len, pgoff, flags);
2289 
2290 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2291 		return addr;
2292 	if (IS_ERR_VALUE(addr))
2293 		return addr;
2294 	if (addr & ~PAGE_MASK)
2295 		return addr;
2296 	if (addr > TASK_SIZE - len)
2297 		return addr;
2298 
2299 	if (shmem_huge == SHMEM_HUGE_DENY)
2300 		return addr;
2301 	if (len < HPAGE_PMD_SIZE)
2302 		return addr;
2303 	if (flags & MAP_FIXED)
2304 		return addr;
2305 	/*
2306 	 * Our priority is to support MAP_SHARED mapped hugely;
2307 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2308 	 * But if caller specified an address hint and we allocated area there
2309 	 * successfully, respect that as before.
2310 	 */
2311 	if (uaddr == addr)
2312 		return addr;
2313 
2314 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2315 		struct super_block *sb;
2316 
2317 		if (file) {
2318 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2319 			sb = file_inode(file)->i_sb;
2320 		} else {
2321 			/*
2322 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2323 			 * for "/dev/zero", to create a shared anonymous object.
2324 			 */
2325 			if (IS_ERR(shm_mnt))
2326 				return addr;
2327 			sb = shm_mnt->mnt_sb;
2328 		}
2329 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2330 			return addr;
2331 	}
2332 
2333 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2334 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2335 		return addr;
2336 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2337 		return addr;
2338 
2339 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2340 	if (inflated_len > TASK_SIZE)
2341 		return addr;
2342 	if (inflated_len < len)
2343 		return addr;
2344 
2345 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2346 	if (IS_ERR_VALUE(inflated_addr))
2347 		return addr;
2348 	if (inflated_addr & ~PAGE_MASK)
2349 		return addr;
2350 
2351 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2352 	inflated_addr += offset - inflated_offset;
2353 	if (inflated_offset > offset)
2354 		inflated_addr += HPAGE_PMD_SIZE;
2355 
2356 	if (inflated_addr > TASK_SIZE - len)
2357 		return addr;
2358 	return inflated_addr;
2359 }
2360 
2361 #ifdef CONFIG_NUMA
2362 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2363 {
2364 	struct inode *inode = file_inode(vma->vm_file);
2365 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2366 }
2367 
2368 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2369 					  unsigned long addr, pgoff_t *ilx)
2370 {
2371 	struct inode *inode = file_inode(vma->vm_file);
2372 	pgoff_t index;
2373 
2374 	/*
2375 	 * Bias interleave by inode number to distribute better across nodes;
2376 	 * but this interface is independent of which page order is used, so
2377 	 * supplies only that bias, letting caller apply the offset (adjusted
2378 	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2379 	 */
2380 	*ilx = inode->i_ino;
2381 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2382 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2383 }
2384 
2385 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2386 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2387 {
2388 	struct mempolicy *mpol;
2389 
2390 	/* Bias interleave by inode number to distribute better across nodes */
2391 	*ilx = info->vfs_inode.i_ino + (index >> order);
2392 
2393 	mpol = mpol_shared_policy_lookup(&info->policy, index);
2394 	return mpol ? mpol : get_task_policy(current);
2395 }
2396 #else
2397 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2398 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2399 {
2400 	*ilx = 0;
2401 	return NULL;
2402 }
2403 #endif /* CONFIG_NUMA */
2404 
2405 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2406 {
2407 	struct inode *inode = file_inode(file);
2408 	struct shmem_inode_info *info = SHMEM_I(inode);
2409 	int retval = -ENOMEM;
2410 
2411 	/*
2412 	 * What serializes the accesses to info->flags?
2413 	 * ipc_lock_object() when called from shmctl_do_lock(),
2414 	 * no serialization needed when called from shm_destroy().
2415 	 */
2416 	if (lock && !(info->flags & VM_LOCKED)) {
2417 		if (!user_shm_lock(inode->i_size, ucounts))
2418 			goto out_nomem;
2419 		info->flags |= VM_LOCKED;
2420 		mapping_set_unevictable(file->f_mapping);
2421 	}
2422 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2423 		user_shm_unlock(inode->i_size, ucounts);
2424 		info->flags &= ~VM_LOCKED;
2425 		mapping_clear_unevictable(file->f_mapping);
2426 	}
2427 	retval = 0;
2428 
2429 out_nomem:
2430 	return retval;
2431 }
2432 
2433 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2434 {
2435 	struct inode *inode = file_inode(file);
2436 	struct shmem_inode_info *info = SHMEM_I(inode);
2437 	int ret;
2438 
2439 	ret = seal_check_write(info->seals, vma);
2440 	if (ret)
2441 		return ret;
2442 
2443 	/* arm64 - allow memory tagging on RAM-based files */
2444 	vm_flags_set(vma, VM_MTE_ALLOWED);
2445 
2446 	file_accessed(file);
2447 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2448 	if (inode->i_nlink)
2449 		vma->vm_ops = &shmem_vm_ops;
2450 	else
2451 		vma->vm_ops = &shmem_anon_vm_ops;
2452 	return 0;
2453 }
2454 
2455 static int shmem_file_open(struct inode *inode, struct file *file)
2456 {
2457 	file->f_mode |= FMODE_CAN_ODIRECT;
2458 	return generic_file_open(inode, file);
2459 }
2460 
2461 #ifdef CONFIG_TMPFS_XATTR
2462 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2463 
2464 /*
2465  * chattr's fsflags are unrelated to extended attributes,
2466  * but tmpfs has chosen to enable them under the same config option.
2467  */
2468 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2469 {
2470 	unsigned int i_flags = 0;
2471 
2472 	if (fsflags & FS_NOATIME_FL)
2473 		i_flags |= S_NOATIME;
2474 	if (fsflags & FS_APPEND_FL)
2475 		i_flags |= S_APPEND;
2476 	if (fsflags & FS_IMMUTABLE_FL)
2477 		i_flags |= S_IMMUTABLE;
2478 	/*
2479 	 * But FS_NODUMP_FL does not require any action in i_flags.
2480 	 */
2481 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2482 }
2483 #else
2484 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2485 {
2486 }
2487 #define shmem_initxattrs NULL
2488 #endif
2489 
2490 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2491 {
2492 	return &SHMEM_I(inode)->dir_offsets;
2493 }
2494 
2495 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2496 					     struct super_block *sb,
2497 					     struct inode *dir, umode_t mode,
2498 					     dev_t dev, unsigned long flags)
2499 {
2500 	struct inode *inode;
2501 	struct shmem_inode_info *info;
2502 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2503 	ino_t ino;
2504 	int err;
2505 
2506 	err = shmem_reserve_inode(sb, &ino);
2507 	if (err)
2508 		return ERR_PTR(err);
2509 
2510 	inode = new_inode(sb);
2511 	if (!inode) {
2512 		shmem_free_inode(sb, 0);
2513 		return ERR_PTR(-ENOSPC);
2514 	}
2515 
2516 	inode->i_ino = ino;
2517 	inode_init_owner(idmap, inode, dir, mode);
2518 	inode->i_blocks = 0;
2519 	simple_inode_init_ts(inode);
2520 	inode->i_generation = get_random_u32();
2521 	info = SHMEM_I(inode);
2522 	memset(info, 0, (char *)inode - (char *)info);
2523 	spin_lock_init(&info->lock);
2524 	atomic_set(&info->stop_eviction, 0);
2525 	info->seals = F_SEAL_SEAL;
2526 	info->flags = flags & VM_NORESERVE;
2527 	info->i_crtime = inode_get_mtime(inode);
2528 	info->fsflags = (dir == NULL) ? 0 :
2529 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2530 	if (info->fsflags)
2531 		shmem_set_inode_flags(inode, info->fsflags);
2532 	INIT_LIST_HEAD(&info->shrinklist);
2533 	INIT_LIST_HEAD(&info->swaplist);
2534 	simple_xattrs_init(&info->xattrs);
2535 	cache_no_acl(inode);
2536 	if (sbinfo->noswap)
2537 		mapping_set_unevictable(inode->i_mapping);
2538 	mapping_set_large_folios(inode->i_mapping);
2539 
2540 	switch (mode & S_IFMT) {
2541 	default:
2542 		inode->i_op = &shmem_special_inode_operations;
2543 		init_special_inode(inode, mode, dev);
2544 		break;
2545 	case S_IFREG:
2546 		inode->i_mapping->a_ops = &shmem_aops;
2547 		inode->i_op = &shmem_inode_operations;
2548 		inode->i_fop = &shmem_file_operations;
2549 		mpol_shared_policy_init(&info->policy,
2550 					 shmem_get_sbmpol(sbinfo));
2551 		break;
2552 	case S_IFDIR:
2553 		inc_nlink(inode);
2554 		/* Some things misbehave if size == 0 on a directory */
2555 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2556 		inode->i_op = &shmem_dir_inode_operations;
2557 		inode->i_fop = &simple_offset_dir_operations;
2558 		simple_offset_init(shmem_get_offset_ctx(inode));
2559 		break;
2560 	case S_IFLNK:
2561 		/*
2562 		 * Must not load anything in the rbtree,
2563 		 * mpol_free_shared_policy will not be called.
2564 		 */
2565 		mpol_shared_policy_init(&info->policy, NULL);
2566 		break;
2567 	}
2568 
2569 	lockdep_annotate_inode_mutex_key(inode);
2570 	return inode;
2571 }
2572 
2573 #ifdef CONFIG_TMPFS_QUOTA
2574 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2575 				     struct super_block *sb, struct inode *dir,
2576 				     umode_t mode, dev_t dev, unsigned long flags)
2577 {
2578 	int err;
2579 	struct inode *inode;
2580 
2581 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2582 	if (IS_ERR(inode))
2583 		return inode;
2584 
2585 	err = dquot_initialize(inode);
2586 	if (err)
2587 		goto errout;
2588 
2589 	err = dquot_alloc_inode(inode);
2590 	if (err) {
2591 		dquot_drop(inode);
2592 		goto errout;
2593 	}
2594 	return inode;
2595 
2596 errout:
2597 	inode->i_flags |= S_NOQUOTA;
2598 	iput(inode);
2599 	return ERR_PTR(err);
2600 }
2601 #else
2602 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2603 				     struct super_block *sb, struct inode *dir,
2604 				     umode_t mode, dev_t dev, unsigned long flags)
2605 {
2606 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2607 }
2608 #endif /* CONFIG_TMPFS_QUOTA */
2609 
2610 #ifdef CONFIG_USERFAULTFD
2611 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2612 			   struct vm_area_struct *dst_vma,
2613 			   unsigned long dst_addr,
2614 			   unsigned long src_addr,
2615 			   uffd_flags_t flags,
2616 			   struct folio **foliop)
2617 {
2618 	struct inode *inode = file_inode(dst_vma->vm_file);
2619 	struct shmem_inode_info *info = SHMEM_I(inode);
2620 	struct address_space *mapping = inode->i_mapping;
2621 	gfp_t gfp = mapping_gfp_mask(mapping);
2622 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2623 	void *page_kaddr;
2624 	struct folio *folio;
2625 	int ret;
2626 	pgoff_t max_off;
2627 
2628 	if (shmem_inode_acct_blocks(inode, 1)) {
2629 		/*
2630 		 * We may have got a page, returned -ENOENT triggering a retry,
2631 		 * and now we find ourselves with -ENOMEM. Release the page, to
2632 		 * avoid a BUG_ON in our caller.
2633 		 */
2634 		if (unlikely(*foliop)) {
2635 			folio_put(*foliop);
2636 			*foliop = NULL;
2637 		}
2638 		return -ENOMEM;
2639 	}
2640 
2641 	if (!*foliop) {
2642 		ret = -ENOMEM;
2643 		folio = shmem_alloc_folio(gfp, info, pgoff);
2644 		if (!folio)
2645 			goto out_unacct_blocks;
2646 
2647 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2648 			page_kaddr = kmap_local_folio(folio, 0);
2649 			/*
2650 			 * The read mmap_lock is held here.  Despite the
2651 			 * mmap_lock being read recursive a deadlock is still
2652 			 * possible if a writer has taken a lock.  For example:
2653 			 *
2654 			 * process A thread 1 takes read lock on own mmap_lock
2655 			 * process A thread 2 calls mmap, blocks taking write lock
2656 			 * process B thread 1 takes page fault, read lock on own mmap lock
2657 			 * process B thread 2 calls mmap, blocks taking write lock
2658 			 * process A thread 1 blocks taking read lock on process B
2659 			 * process B thread 1 blocks taking read lock on process A
2660 			 *
2661 			 * Disable page faults to prevent potential deadlock
2662 			 * and retry the copy outside the mmap_lock.
2663 			 */
2664 			pagefault_disable();
2665 			ret = copy_from_user(page_kaddr,
2666 					     (const void __user *)src_addr,
2667 					     PAGE_SIZE);
2668 			pagefault_enable();
2669 			kunmap_local(page_kaddr);
2670 
2671 			/* fallback to copy_from_user outside mmap_lock */
2672 			if (unlikely(ret)) {
2673 				*foliop = folio;
2674 				ret = -ENOENT;
2675 				/* don't free the page */
2676 				goto out_unacct_blocks;
2677 			}
2678 
2679 			flush_dcache_folio(folio);
2680 		} else {		/* ZEROPAGE */
2681 			clear_user_highpage(&folio->page, dst_addr);
2682 		}
2683 	} else {
2684 		folio = *foliop;
2685 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2686 		*foliop = NULL;
2687 	}
2688 
2689 	VM_BUG_ON(folio_test_locked(folio));
2690 	VM_BUG_ON(folio_test_swapbacked(folio));
2691 	__folio_set_locked(folio);
2692 	__folio_set_swapbacked(folio);
2693 	__folio_mark_uptodate(folio);
2694 
2695 	ret = -EFAULT;
2696 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2697 	if (unlikely(pgoff >= max_off))
2698 		goto out_release;
2699 
2700 	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
2701 	if (ret)
2702 		goto out_release;
2703 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
2704 	if (ret)
2705 		goto out_release;
2706 
2707 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2708 				       &folio->page, true, flags);
2709 	if (ret)
2710 		goto out_delete_from_cache;
2711 
2712 	shmem_recalc_inode(inode, 1, 0);
2713 	folio_unlock(folio);
2714 	return 0;
2715 out_delete_from_cache:
2716 	filemap_remove_folio(folio);
2717 out_release:
2718 	folio_unlock(folio);
2719 	folio_put(folio);
2720 out_unacct_blocks:
2721 	shmem_inode_unacct_blocks(inode, 1);
2722 	return ret;
2723 }
2724 #endif /* CONFIG_USERFAULTFD */
2725 
2726 #ifdef CONFIG_TMPFS
2727 static const struct inode_operations shmem_symlink_inode_operations;
2728 static const struct inode_operations shmem_short_symlink_operations;
2729 
2730 static int
2731 shmem_write_begin(struct file *file, struct address_space *mapping,
2732 			loff_t pos, unsigned len,
2733 			struct page **pagep, void **fsdata)
2734 {
2735 	struct inode *inode = mapping->host;
2736 	struct shmem_inode_info *info = SHMEM_I(inode);
2737 	pgoff_t index = pos >> PAGE_SHIFT;
2738 	struct folio *folio;
2739 	int ret = 0;
2740 
2741 	/* i_rwsem is held by caller */
2742 	if (unlikely(info->seals & (F_SEAL_GROW |
2743 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2744 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2745 			return -EPERM;
2746 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2747 			return -EPERM;
2748 	}
2749 
2750 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2751 	if (ret)
2752 		return ret;
2753 
2754 	*pagep = folio_file_page(folio, index);
2755 	if (PageHWPoison(*pagep)) {
2756 		folio_unlock(folio);
2757 		folio_put(folio);
2758 		*pagep = NULL;
2759 		return -EIO;
2760 	}
2761 
2762 	return 0;
2763 }
2764 
2765 static int
2766 shmem_write_end(struct file *file, struct address_space *mapping,
2767 			loff_t pos, unsigned len, unsigned copied,
2768 			struct page *page, void *fsdata)
2769 {
2770 	struct folio *folio = page_folio(page);
2771 	struct inode *inode = mapping->host;
2772 
2773 	if (pos + copied > inode->i_size)
2774 		i_size_write(inode, pos + copied);
2775 
2776 	if (!folio_test_uptodate(folio)) {
2777 		if (copied < folio_size(folio)) {
2778 			size_t from = offset_in_folio(folio, pos);
2779 			folio_zero_segments(folio, 0, from,
2780 					from + copied, folio_size(folio));
2781 		}
2782 		folio_mark_uptodate(folio);
2783 	}
2784 	folio_mark_dirty(folio);
2785 	folio_unlock(folio);
2786 	folio_put(folio);
2787 
2788 	return copied;
2789 }
2790 
2791 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2792 {
2793 	struct file *file = iocb->ki_filp;
2794 	struct inode *inode = file_inode(file);
2795 	struct address_space *mapping = inode->i_mapping;
2796 	pgoff_t index;
2797 	unsigned long offset;
2798 	int error = 0;
2799 	ssize_t retval = 0;
2800 	loff_t *ppos = &iocb->ki_pos;
2801 
2802 	index = *ppos >> PAGE_SHIFT;
2803 	offset = *ppos & ~PAGE_MASK;
2804 
2805 	for (;;) {
2806 		struct folio *folio = NULL;
2807 		struct page *page = NULL;
2808 		pgoff_t end_index;
2809 		unsigned long nr, ret;
2810 		loff_t i_size = i_size_read(inode);
2811 
2812 		end_index = i_size >> PAGE_SHIFT;
2813 		if (index > end_index)
2814 			break;
2815 		if (index == end_index) {
2816 			nr = i_size & ~PAGE_MASK;
2817 			if (nr <= offset)
2818 				break;
2819 		}
2820 
2821 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2822 		if (error) {
2823 			if (error == -EINVAL)
2824 				error = 0;
2825 			break;
2826 		}
2827 		if (folio) {
2828 			folio_unlock(folio);
2829 
2830 			page = folio_file_page(folio, index);
2831 			if (PageHWPoison(page)) {
2832 				folio_put(folio);
2833 				error = -EIO;
2834 				break;
2835 			}
2836 		}
2837 
2838 		/*
2839 		 * We must evaluate after, since reads (unlike writes)
2840 		 * are called without i_rwsem protection against truncate
2841 		 */
2842 		nr = PAGE_SIZE;
2843 		i_size = i_size_read(inode);
2844 		end_index = i_size >> PAGE_SHIFT;
2845 		if (index == end_index) {
2846 			nr = i_size & ~PAGE_MASK;
2847 			if (nr <= offset) {
2848 				if (folio)
2849 					folio_put(folio);
2850 				break;
2851 			}
2852 		}
2853 		nr -= offset;
2854 
2855 		if (folio) {
2856 			/*
2857 			 * If users can be writing to this page using arbitrary
2858 			 * virtual addresses, take care about potential aliasing
2859 			 * before reading the page on the kernel side.
2860 			 */
2861 			if (mapping_writably_mapped(mapping))
2862 				flush_dcache_page(page);
2863 			/*
2864 			 * Mark the page accessed if we read the beginning.
2865 			 */
2866 			if (!offset)
2867 				folio_mark_accessed(folio);
2868 			/*
2869 			 * Ok, we have the page, and it's up-to-date, so
2870 			 * now we can copy it to user space...
2871 			 */
2872 			ret = copy_page_to_iter(page, offset, nr, to);
2873 			folio_put(folio);
2874 
2875 		} else if (user_backed_iter(to)) {
2876 			/*
2877 			 * Copy to user tends to be so well optimized, but
2878 			 * clear_user() not so much, that it is noticeably
2879 			 * faster to copy the zero page instead of clearing.
2880 			 */
2881 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2882 		} else {
2883 			/*
2884 			 * But submitting the same page twice in a row to
2885 			 * splice() - or others? - can result in confusion:
2886 			 * so don't attempt that optimization on pipes etc.
2887 			 */
2888 			ret = iov_iter_zero(nr, to);
2889 		}
2890 
2891 		retval += ret;
2892 		offset += ret;
2893 		index += offset >> PAGE_SHIFT;
2894 		offset &= ~PAGE_MASK;
2895 
2896 		if (!iov_iter_count(to))
2897 			break;
2898 		if (ret < nr) {
2899 			error = -EFAULT;
2900 			break;
2901 		}
2902 		cond_resched();
2903 	}
2904 
2905 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2906 	file_accessed(file);
2907 	return retval ? retval : error;
2908 }
2909 
2910 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2911 {
2912 	struct file *file = iocb->ki_filp;
2913 	struct inode *inode = file->f_mapping->host;
2914 	ssize_t ret;
2915 
2916 	inode_lock(inode);
2917 	ret = generic_write_checks(iocb, from);
2918 	if (ret <= 0)
2919 		goto unlock;
2920 	ret = file_remove_privs(file);
2921 	if (ret)
2922 		goto unlock;
2923 	ret = file_update_time(file);
2924 	if (ret)
2925 		goto unlock;
2926 	ret = generic_perform_write(iocb, from);
2927 unlock:
2928 	inode_unlock(inode);
2929 	return ret;
2930 }
2931 
2932 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
2933 			      struct pipe_buffer *buf)
2934 {
2935 	return true;
2936 }
2937 
2938 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
2939 				  struct pipe_buffer *buf)
2940 {
2941 }
2942 
2943 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
2944 				    struct pipe_buffer *buf)
2945 {
2946 	return false;
2947 }
2948 
2949 static const struct pipe_buf_operations zero_pipe_buf_ops = {
2950 	.release	= zero_pipe_buf_release,
2951 	.try_steal	= zero_pipe_buf_try_steal,
2952 	.get		= zero_pipe_buf_get,
2953 };
2954 
2955 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
2956 					loff_t fpos, size_t size)
2957 {
2958 	size_t offset = fpos & ~PAGE_MASK;
2959 
2960 	size = min_t(size_t, size, PAGE_SIZE - offset);
2961 
2962 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2963 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2964 
2965 		*buf = (struct pipe_buffer) {
2966 			.ops	= &zero_pipe_buf_ops,
2967 			.page	= ZERO_PAGE(0),
2968 			.offset	= offset,
2969 			.len	= size,
2970 		};
2971 		pipe->head++;
2972 	}
2973 
2974 	return size;
2975 }
2976 
2977 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2978 				      struct pipe_inode_info *pipe,
2979 				      size_t len, unsigned int flags)
2980 {
2981 	struct inode *inode = file_inode(in);
2982 	struct address_space *mapping = inode->i_mapping;
2983 	struct folio *folio = NULL;
2984 	size_t total_spliced = 0, used, npages, n, part;
2985 	loff_t isize;
2986 	int error = 0;
2987 
2988 	/* Work out how much data we can actually add into the pipe */
2989 	used = pipe_occupancy(pipe->head, pipe->tail);
2990 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2991 	len = min_t(size_t, len, npages * PAGE_SIZE);
2992 
2993 	do {
2994 		if (*ppos >= i_size_read(inode))
2995 			break;
2996 
2997 		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
2998 					SGP_READ);
2999 		if (error) {
3000 			if (error == -EINVAL)
3001 				error = 0;
3002 			break;
3003 		}
3004 		if (folio) {
3005 			folio_unlock(folio);
3006 
3007 			if (folio_test_hwpoison(folio) ||
3008 			    (folio_test_large(folio) &&
3009 			     folio_test_has_hwpoisoned(folio))) {
3010 				error = -EIO;
3011 				break;
3012 			}
3013 		}
3014 
3015 		/*
3016 		 * i_size must be checked after we know the pages are Uptodate.
3017 		 *
3018 		 * Checking i_size after the check allows us to calculate
3019 		 * the correct value for "nr", which means the zero-filled
3020 		 * part of the page is not copied back to userspace (unless
3021 		 * another truncate extends the file - this is desired though).
3022 		 */
3023 		isize = i_size_read(inode);
3024 		if (unlikely(*ppos >= isize))
3025 			break;
3026 		part = min_t(loff_t, isize - *ppos, len);
3027 
3028 		if (folio) {
3029 			/*
3030 			 * If users can be writing to this page using arbitrary
3031 			 * virtual addresses, take care about potential aliasing
3032 			 * before reading the page on the kernel side.
3033 			 */
3034 			if (mapping_writably_mapped(mapping))
3035 				flush_dcache_folio(folio);
3036 			folio_mark_accessed(folio);
3037 			/*
3038 			 * Ok, we have the page, and it's up-to-date, so we can
3039 			 * now splice it into the pipe.
3040 			 */
3041 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3042 			folio_put(folio);
3043 			folio = NULL;
3044 		} else {
3045 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3046 		}
3047 
3048 		if (!n)
3049 			break;
3050 		len -= n;
3051 		total_spliced += n;
3052 		*ppos += n;
3053 		in->f_ra.prev_pos = *ppos;
3054 		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3055 			break;
3056 
3057 		cond_resched();
3058 	} while (len);
3059 
3060 	if (folio)
3061 		folio_put(folio);
3062 
3063 	file_accessed(in);
3064 	return total_spliced ? total_spliced : error;
3065 }
3066 
3067 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3068 {
3069 	struct address_space *mapping = file->f_mapping;
3070 	struct inode *inode = mapping->host;
3071 
3072 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3073 		return generic_file_llseek_size(file, offset, whence,
3074 					MAX_LFS_FILESIZE, i_size_read(inode));
3075 	if (offset < 0)
3076 		return -ENXIO;
3077 
3078 	inode_lock(inode);
3079 	/* We're holding i_rwsem so we can access i_size directly */
3080 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3081 	if (offset >= 0)
3082 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3083 	inode_unlock(inode);
3084 	return offset;
3085 }
3086 
3087 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3088 							 loff_t len)
3089 {
3090 	struct inode *inode = file_inode(file);
3091 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3092 	struct shmem_inode_info *info = SHMEM_I(inode);
3093 	struct shmem_falloc shmem_falloc;
3094 	pgoff_t start, index, end, undo_fallocend;
3095 	int error;
3096 
3097 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3098 		return -EOPNOTSUPP;
3099 
3100 	inode_lock(inode);
3101 
3102 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3103 		struct address_space *mapping = file->f_mapping;
3104 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3105 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3106 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3107 
3108 		/* protected by i_rwsem */
3109 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3110 			error = -EPERM;
3111 			goto out;
3112 		}
3113 
3114 		shmem_falloc.waitq = &shmem_falloc_waitq;
3115 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3116 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3117 		spin_lock(&inode->i_lock);
3118 		inode->i_private = &shmem_falloc;
3119 		spin_unlock(&inode->i_lock);
3120 
3121 		if ((u64)unmap_end > (u64)unmap_start)
3122 			unmap_mapping_range(mapping, unmap_start,
3123 					    1 + unmap_end - unmap_start, 0);
3124 		shmem_truncate_range(inode, offset, offset + len - 1);
3125 		/* No need to unmap again: hole-punching leaves COWed pages */
3126 
3127 		spin_lock(&inode->i_lock);
3128 		inode->i_private = NULL;
3129 		wake_up_all(&shmem_falloc_waitq);
3130 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3131 		spin_unlock(&inode->i_lock);
3132 		error = 0;
3133 		goto out;
3134 	}
3135 
3136 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3137 	error = inode_newsize_ok(inode, offset + len);
3138 	if (error)
3139 		goto out;
3140 
3141 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3142 		error = -EPERM;
3143 		goto out;
3144 	}
3145 
3146 	start = offset >> PAGE_SHIFT;
3147 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3148 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3149 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3150 		error = -ENOSPC;
3151 		goto out;
3152 	}
3153 
3154 	shmem_falloc.waitq = NULL;
3155 	shmem_falloc.start = start;
3156 	shmem_falloc.next  = start;
3157 	shmem_falloc.nr_falloced = 0;
3158 	shmem_falloc.nr_unswapped = 0;
3159 	spin_lock(&inode->i_lock);
3160 	inode->i_private = &shmem_falloc;
3161 	spin_unlock(&inode->i_lock);
3162 
3163 	/*
3164 	 * info->fallocend is only relevant when huge pages might be
3165 	 * involved: to prevent split_huge_page() freeing fallocated
3166 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3167 	 */
3168 	undo_fallocend = info->fallocend;
3169 	if (info->fallocend < end)
3170 		info->fallocend = end;
3171 
3172 	for (index = start; index < end; ) {
3173 		struct folio *folio;
3174 
3175 		/*
3176 		 * Good, the fallocate(2) manpage permits EINTR: we may have
3177 		 * been interrupted because we are using up too much memory.
3178 		 */
3179 		if (signal_pending(current))
3180 			error = -EINTR;
3181 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3182 			error = -ENOMEM;
3183 		else
3184 			error = shmem_get_folio(inode, index, &folio,
3185 						SGP_FALLOC);
3186 		if (error) {
3187 			info->fallocend = undo_fallocend;
3188 			/* Remove the !uptodate folios we added */
3189 			if (index > start) {
3190 				shmem_undo_range(inode,
3191 				    (loff_t)start << PAGE_SHIFT,
3192 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3193 			}
3194 			goto undone;
3195 		}
3196 
3197 		/*
3198 		 * Here is a more important optimization than it appears:
3199 		 * a second SGP_FALLOC on the same large folio will clear it,
3200 		 * making it uptodate and un-undoable if we fail later.
3201 		 */
3202 		index = folio_next_index(folio);
3203 		/* Beware 32-bit wraparound */
3204 		if (!index)
3205 			index--;
3206 
3207 		/*
3208 		 * Inform shmem_writepage() how far we have reached.
3209 		 * No need for lock or barrier: we have the page lock.
3210 		 */
3211 		if (!folio_test_uptodate(folio))
3212 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3213 		shmem_falloc.next = index;
3214 
3215 		/*
3216 		 * If !uptodate, leave it that way so that freeable folios
3217 		 * can be recognized if we need to rollback on error later.
3218 		 * But mark it dirty so that memory pressure will swap rather
3219 		 * than free the folios we are allocating (and SGP_CACHE folios
3220 		 * might still be clean: we now need to mark those dirty too).
3221 		 */
3222 		folio_mark_dirty(folio);
3223 		folio_unlock(folio);
3224 		folio_put(folio);
3225 		cond_resched();
3226 	}
3227 
3228 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3229 		i_size_write(inode, offset + len);
3230 undone:
3231 	spin_lock(&inode->i_lock);
3232 	inode->i_private = NULL;
3233 	spin_unlock(&inode->i_lock);
3234 out:
3235 	if (!error)
3236 		file_modified(file);
3237 	inode_unlock(inode);
3238 	return error;
3239 }
3240 
3241 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3242 {
3243 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3244 
3245 	buf->f_type = TMPFS_MAGIC;
3246 	buf->f_bsize = PAGE_SIZE;
3247 	buf->f_namelen = NAME_MAX;
3248 	if (sbinfo->max_blocks) {
3249 		buf->f_blocks = sbinfo->max_blocks;
3250 		buf->f_bavail =
3251 		buf->f_bfree  = sbinfo->max_blocks -
3252 				percpu_counter_sum(&sbinfo->used_blocks);
3253 	}
3254 	if (sbinfo->max_inodes) {
3255 		buf->f_files = sbinfo->max_inodes;
3256 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3257 	}
3258 	/* else leave those fields 0 like simple_statfs */
3259 
3260 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3261 
3262 	return 0;
3263 }
3264 
3265 /*
3266  * File creation. Allocate an inode, and we're done..
3267  */
3268 static int
3269 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3270 	    struct dentry *dentry, umode_t mode, dev_t dev)
3271 {
3272 	struct inode *inode;
3273 	int error;
3274 
3275 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3276 	if (IS_ERR(inode))
3277 		return PTR_ERR(inode);
3278 
3279 	error = simple_acl_create(dir, inode);
3280 	if (error)
3281 		goto out_iput;
3282 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3283 					     shmem_initxattrs, NULL);
3284 	if (error && error != -EOPNOTSUPP)
3285 		goto out_iput;
3286 
3287 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3288 	if (error)
3289 		goto out_iput;
3290 
3291 	dir->i_size += BOGO_DIRENT_SIZE;
3292 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3293 	inode_inc_iversion(dir);
3294 	d_instantiate(dentry, inode);
3295 	dget(dentry); /* Extra count - pin the dentry in core */
3296 	return error;
3297 
3298 out_iput:
3299 	iput(inode);
3300 	return error;
3301 }
3302 
3303 static int
3304 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3305 	      struct file *file, umode_t mode)
3306 {
3307 	struct inode *inode;
3308 	int error;
3309 
3310 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3311 	if (IS_ERR(inode)) {
3312 		error = PTR_ERR(inode);
3313 		goto err_out;
3314 	}
3315 	error = security_inode_init_security(inode, dir, NULL,
3316 					     shmem_initxattrs, NULL);
3317 	if (error && error != -EOPNOTSUPP)
3318 		goto out_iput;
3319 	error = simple_acl_create(dir, inode);
3320 	if (error)
3321 		goto out_iput;
3322 	d_tmpfile(file, inode);
3323 
3324 err_out:
3325 	return finish_open_simple(file, error);
3326 out_iput:
3327 	iput(inode);
3328 	return error;
3329 }
3330 
3331 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3332 		       struct dentry *dentry, umode_t mode)
3333 {
3334 	int error;
3335 
3336 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3337 	if (error)
3338 		return error;
3339 	inc_nlink(dir);
3340 	return 0;
3341 }
3342 
3343 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3344 			struct dentry *dentry, umode_t mode, bool excl)
3345 {
3346 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3347 }
3348 
3349 /*
3350  * Link a file..
3351  */
3352 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3353 		      struct dentry *dentry)
3354 {
3355 	struct inode *inode = d_inode(old_dentry);
3356 	int ret = 0;
3357 
3358 	/*
3359 	 * No ordinary (disk based) filesystem counts links as inodes;
3360 	 * but each new link needs a new dentry, pinning lowmem, and
3361 	 * tmpfs dentries cannot be pruned until they are unlinked.
3362 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3363 	 * first link must skip that, to get the accounting right.
3364 	 */
3365 	if (inode->i_nlink) {
3366 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3367 		if (ret)
3368 			goto out;
3369 	}
3370 
3371 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3372 	if (ret) {
3373 		if (inode->i_nlink)
3374 			shmem_free_inode(inode->i_sb, 0);
3375 		goto out;
3376 	}
3377 
3378 	dir->i_size += BOGO_DIRENT_SIZE;
3379 	inode_set_mtime_to_ts(dir,
3380 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3381 	inode_inc_iversion(dir);
3382 	inc_nlink(inode);
3383 	ihold(inode);	/* New dentry reference */
3384 	dget(dentry);	/* Extra pinning count for the created dentry */
3385 	d_instantiate(dentry, inode);
3386 out:
3387 	return ret;
3388 }
3389 
3390 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3391 {
3392 	struct inode *inode = d_inode(dentry);
3393 
3394 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3395 		shmem_free_inode(inode->i_sb, 0);
3396 
3397 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3398 
3399 	dir->i_size -= BOGO_DIRENT_SIZE;
3400 	inode_set_mtime_to_ts(dir,
3401 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3402 	inode_inc_iversion(dir);
3403 	drop_nlink(inode);
3404 	dput(dentry);	/* Undo the count from "create" - does all the work */
3405 	return 0;
3406 }
3407 
3408 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3409 {
3410 	if (!simple_offset_empty(dentry))
3411 		return -ENOTEMPTY;
3412 
3413 	drop_nlink(d_inode(dentry));
3414 	drop_nlink(dir);
3415 	return shmem_unlink(dir, dentry);
3416 }
3417 
3418 static int shmem_whiteout(struct mnt_idmap *idmap,
3419 			  struct inode *old_dir, struct dentry *old_dentry)
3420 {
3421 	struct dentry *whiteout;
3422 	int error;
3423 
3424 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3425 	if (!whiteout)
3426 		return -ENOMEM;
3427 
3428 	error = shmem_mknod(idmap, old_dir, whiteout,
3429 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3430 	dput(whiteout);
3431 	if (error)
3432 		return error;
3433 
3434 	/*
3435 	 * Cheat and hash the whiteout while the old dentry is still in
3436 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3437 	 *
3438 	 * d_lookup() will consistently find one of them at this point,
3439 	 * not sure which one, but that isn't even important.
3440 	 */
3441 	d_rehash(whiteout);
3442 	return 0;
3443 }
3444 
3445 /*
3446  * The VFS layer already does all the dentry stuff for rename,
3447  * we just have to decrement the usage count for the target if
3448  * it exists so that the VFS layer correctly free's it when it
3449  * gets overwritten.
3450  */
3451 static int shmem_rename2(struct mnt_idmap *idmap,
3452 			 struct inode *old_dir, struct dentry *old_dentry,
3453 			 struct inode *new_dir, struct dentry *new_dentry,
3454 			 unsigned int flags)
3455 {
3456 	struct inode *inode = d_inode(old_dentry);
3457 	int they_are_dirs = S_ISDIR(inode->i_mode);
3458 	int error;
3459 
3460 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3461 		return -EINVAL;
3462 
3463 	if (flags & RENAME_EXCHANGE)
3464 		return simple_offset_rename_exchange(old_dir, old_dentry,
3465 						     new_dir, new_dentry);
3466 
3467 	if (!simple_offset_empty(new_dentry))
3468 		return -ENOTEMPTY;
3469 
3470 	if (flags & RENAME_WHITEOUT) {
3471 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3472 		if (error)
3473 			return error;
3474 	}
3475 
3476 	simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry);
3477 	error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry);
3478 	if (error)
3479 		return error;
3480 
3481 	if (d_really_is_positive(new_dentry)) {
3482 		(void) shmem_unlink(new_dir, new_dentry);
3483 		if (they_are_dirs) {
3484 			drop_nlink(d_inode(new_dentry));
3485 			drop_nlink(old_dir);
3486 		}
3487 	} else if (they_are_dirs) {
3488 		drop_nlink(old_dir);
3489 		inc_nlink(new_dir);
3490 	}
3491 
3492 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3493 	new_dir->i_size += BOGO_DIRENT_SIZE;
3494 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3495 	inode_inc_iversion(old_dir);
3496 	inode_inc_iversion(new_dir);
3497 	return 0;
3498 }
3499 
3500 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3501 			 struct dentry *dentry, const char *symname)
3502 {
3503 	int error;
3504 	int len;
3505 	struct inode *inode;
3506 	struct folio *folio;
3507 
3508 	len = strlen(symname) + 1;
3509 	if (len > PAGE_SIZE)
3510 		return -ENAMETOOLONG;
3511 
3512 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3513 				VM_NORESERVE);
3514 	if (IS_ERR(inode))
3515 		return PTR_ERR(inode);
3516 
3517 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3518 					     shmem_initxattrs, NULL);
3519 	if (error && error != -EOPNOTSUPP)
3520 		goto out_iput;
3521 
3522 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3523 	if (error)
3524 		goto out_iput;
3525 
3526 	inode->i_size = len-1;
3527 	if (len <= SHORT_SYMLINK_LEN) {
3528 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3529 		if (!inode->i_link) {
3530 			error = -ENOMEM;
3531 			goto out_remove_offset;
3532 		}
3533 		inode->i_op = &shmem_short_symlink_operations;
3534 	} else {
3535 		inode_nohighmem(inode);
3536 		inode->i_mapping->a_ops = &shmem_aops;
3537 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3538 		if (error)
3539 			goto out_remove_offset;
3540 		inode->i_op = &shmem_symlink_inode_operations;
3541 		memcpy(folio_address(folio), symname, len);
3542 		folio_mark_uptodate(folio);
3543 		folio_mark_dirty(folio);
3544 		folio_unlock(folio);
3545 		folio_put(folio);
3546 	}
3547 	dir->i_size += BOGO_DIRENT_SIZE;
3548 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3549 	inode_inc_iversion(dir);
3550 	d_instantiate(dentry, inode);
3551 	dget(dentry);
3552 	return 0;
3553 
3554 out_remove_offset:
3555 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3556 out_iput:
3557 	iput(inode);
3558 	return error;
3559 }
3560 
3561 static void shmem_put_link(void *arg)
3562 {
3563 	folio_mark_accessed(arg);
3564 	folio_put(arg);
3565 }
3566 
3567 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3568 				  struct delayed_call *done)
3569 {
3570 	struct folio *folio = NULL;
3571 	int error;
3572 
3573 	if (!dentry) {
3574 		folio = filemap_get_folio(inode->i_mapping, 0);
3575 		if (IS_ERR(folio))
3576 			return ERR_PTR(-ECHILD);
3577 		if (PageHWPoison(folio_page(folio, 0)) ||
3578 		    !folio_test_uptodate(folio)) {
3579 			folio_put(folio);
3580 			return ERR_PTR(-ECHILD);
3581 		}
3582 	} else {
3583 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3584 		if (error)
3585 			return ERR_PTR(error);
3586 		if (!folio)
3587 			return ERR_PTR(-ECHILD);
3588 		if (PageHWPoison(folio_page(folio, 0))) {
3589 			folio_unlock(folio);
3590 			folio_put(folio);
3591 			return ERR_PTR(-ECHILD);
3592 		}
3593 		folio_unlock(folio);
3594 	}
3595 	set_delayed_call(done, shmem_put_link, folio);
3596 	return folio_address(folio);
3597 }
3598 
3599 #ifdef CONFIG_TMPFS_XATTR
3600 
3601 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3602 {
3603 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3604 
3605 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3606 
3607 	return 0;
3608 }
3609 
3610 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3611 			      struct dentry *dentry, struct fileattr *fa)
3612 {
3613 	struct inode *inode = d_inode(dentry);
3614 	struct shmem_inode_info *info = SHMEM_I(inode);
3615 
3616 	if (fileattr_has_fsx(fa))
3617 		return -EOPNOTSUPP;
3618 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3619 		return -EOPNOTSUPP;
3620 
3621 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3622 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3623 
3624 	shmem_set_inode_flags(inode, info->fsflags);
3625 	inode_set_ctime_current(inode);
3626 	inode_inc_iversion(inode);
3627 	return 0;
3628 }
3629 
3630 /*
3631  * Superblocks without xattr inode operations may get some security.* xattr
3632  * support from the LSM "for free". As soon as we have any other xattrs
3633  * like ACLs, we also need to implement the security.* handlers at
3634  * filesystem level, though.
3635  */
3636 
3637 /*
3638  * Callback for security_inode_init_security() for acquiring xattrs.
3639  */
3640 static int shmem_initxattrs(struct inode *inode,
3641 			    const struct xattr *xattr_array, void *fs_info)
3642 {
3643 	struct shmem_inode_info *info = SHMEM_I(inode);
3644 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3645 	const struct xattr *xattr;
3646 	struct simple_xattr *new_xattr;
3647 	size_t ispace = 0;
3648 	size_t len;
3649 
3650 	if (sbinfo->max_inodes) {
3651 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3652 			ispace += simple_xattr_space(xattr->name,
3653 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3654 		}
3655 		if (ispace) {
3656 			raw_spin_lock(&sbinfo->stat_lock);
3657 			if (sbinfo->free_ispace < ispace)
3658 				ispace = 0;
3659 			else
3660 				sbinfo->free_ispace -= ispace;
3661 			raw_spin_unlock(&sbinfo->stat_lock);
3662 			if (!ispace)
3663 				return -ENOSPC;
3664 		}
3665 	}
3666 
3667 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3668 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3669 		if (!new_xattr)
3670 			break;
3671 
3672 		len = strlen(xattr->name) + 1;
3673 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3674 					  GFP_KERNEL_ACCOUNT);
3675 		if (!new_xattr->name) {
3676 			kvfree(new_xattr);
3677 			break;
3678 		}
3679 
3680 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3681 		       XATTR_SECURITY_PREFIX_LEN);
3682 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3683 		       xattr->name, len);
3684 
3685 		simple_xattr_add(&info->xattrs, new_xattr);
3686 	}
3687 
3688 	if (xattr->name != NULL) {
3689 		if (ispace) {
3690 			raw_spin_lock(&sbinfo->stat_lock);
3691 			sbinfo->free_ispace += ispace;
3692 			raw_spin_unlock(&sbinfo->stat_lock);
3693 		}
3694 		simple_xattrs_free(&info->xattrs, NULL);
3695 		return -ENOMEM;
3696 	}
3697 
3698 	return 0;
3699 }
3700 
3701 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3702 				   struct dentry *unused, struct inode *inode,
3703 				   const char *name, void *buffer, size_t size)
3704 {
3705 	struct shmem_inode_info *info = SHMEM_I(inode);
3706 
3707 	name = xattr_full_name(handler, name);
3708 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3709 }
3710 
3711 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3712 				   struct mnt_idmap *idmap,
3713 				   struct dentry *unused, struct inode *inode,
3714 				   const char *name, const void *value,
3715 				   size_t size, int flags)
3716 {
3717 	struct shmem_inode_info *info = SHMEM_I(inode);
3718 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3719 	struct simple_xattr *old_xattr;
3720 	size_t ispace = 0;
3721 
3722 	name = xattr_full_name(handler, name);
3723 	if (value && sbinfo->max_inodes) {
3724 		ispace = simple_xattr_space(name, size);
3725 		raw_spin_lock(&sbinfo->stat_lock);
3726 		if (sbinfo->free_ispace < ispace)
3727 			ispace = 0;
3728 		else
3729 			sbinfo->free_ispace -= ispace;
3730 		raw_spin_unlock(&sbinfo->stat_lock);
3731 		if (!ispace)
3732 			return -ENOSPC;
3733 	}
3734 
3735 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
3736 	if (!IS_ERR(old_xattr)) {
3737 		ispace = 0;
3738 		if (old_xattr && sbinfo->max_inodes)
3739 			ispace = simple_xattr_space(old_xattr->name,
3740 						    old_xattr->size);
3741 		simple_xattr_free(old_xattr);
3742 		old_xattr = NULL;
3743 		inode_set_ctime_current(inode);
3744 		inode_inc_iversion(inode);
3745 	}
3746 	if (ispace) {
3747 		raw_spin_lock(&sbinfo->stat_lock);
3748 		sbinfo->free_ispace += ispace;
3749 		raw_spin_unlock(&sbinfo->stat_lock);
3750 	}
3751 	return PTR_ERR(old_xattr);
3752 }
3753 
3754 static const struct xattr_handler shmem_security_xattr_handler = {
3755 	.prefix = XATTR_SECURITY_PREFIX,
3756 	.get = shmem_xattr_handler_get,
3757 	.set = shmem_xattr_handler_set,
3758 };
3759 
3760 static const struct xattr_handler shmem_trusted_xattr_handler = {
3761 	.prefix = XATTR_TRUSTED_PREFIX,
3762 	.get = shmem_xattr_handler_get,
3763 	.set = shmem_xattr_handler_set,
3764 };
3765 
3766 static const struct xattr_handler shmem_user_xattr_handler = {
3767 	.prefix = XATTR_USER_PREFIX,
3768 	.get = shmem_xattr_handler_get,
3769 	.set = shmem_xattr_handler_set,
3770 };
3771 
3772 static const struct xattr_handler * const shmem_xattr_handlers[] = {
3773 	&shmem_security_xattr_handler,
3774 	&shmem_trusted_xattr_handler,
3775 	&shmem_user_xattr_handler,
3776 	NULL
3777 };
3778 
3779 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3780 {
3781 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3782 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3783 }
3784 #endif /* CONFIG_TMPFS_XATTR */
3785 
3786 static const struct inode_operations shmem_short_symlink_operations = {
3787 	.getattr	= shmem_getattr,
3788 	.setattr	= shmem_setattr,
3789 	.get_link	= simple_get_link,
3790 #ifdef CONFIG_TMPFS_XATTR
3791 	.listxattr	= shmem_listxattr,
3792 #endif
3793 };
3794 
3795 static const struct inode_operations shmem_symlink_inode_operations = {
3796 	.getattr	= shmem_getattr,
3797 	.setattr	= shmem_setattr,
3798 	.get_link	= shmem_get_link,
3799 #ifdef CONFIG_TMPFS_XATTR
3800 	.listxattr	= shmem_listxattr,
3801 #endif
3802 };
3803 
3804 static struct dentry *shmem_get_parent(struct dentry *child)
3805 {
3806 	return ERR_PTR(-ESTALE);
3807 }
3808 
3809 static int shmem_match(struct inode *ino, void *vfh)
3810 {
3811 	__u32 *fh = vfh;
3812 	__u64 inum = fh[2];
3813 	inum = (inum << 32) | fh[1];
3814 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3815 }
3816 
3817 /* Find any alias of inode, but prefer a hashed alias */
3818 static struct dentry *shmem_find_alias(struct inode *inode)
3819 {
3820 	struct dentry *alias = d_find_alias(inode);
3821 
3822 	return alias ?: d_find_any_alias(inode);
3823 }
3824 
3825 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3826 		struct fid *fid, int fh_len, int fh_type)
3827 {
3828 	struct inode *inode;
3829 	struct dentry *dentry = NULL;
3830 	u64 inum;
3831 
3832 	if (fh_len < 3)
3833 		return NULL;
3834 
3835 	inum = fid->raw[2];
3836 	inum = (inum << 32) | fid->raw[1];
3837 
3838 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3839 			shmem_match, fid->raw);
3840 	if (inode) {
3841 		dentry = shmem_find_alias(inode);
3842 		iput(inode);
3843 	}
3844 
3845 	return dentry;
3846 }
3847 
3848 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3849 				struct inode *parent)
3850 {
3851 	if (*len < 3) {
3852 		*len = 3;
3853 		return FILEID_INVALID;
3854 	}
3855 
3856 	if (inode_unhashed(inode)) {
3857 		/* Unfortunately insert_inode_hash is not idempotent,
3858 		 * so as we hash inodes here rather than at creation
3859 		 * time, we need a lock to ensure we only try
3860 		 * to do it once
3861 		 */
3862 		static DEFINE_SPINLOCK(lock);
3863 		spin_lock(&lock);
3864 		if (inode_unhashed(inode))
3865 			__insert_inode_hash(inode,
3866 					    inode->i_ino + inode->i_generation);
3867 		spin_unlock(&lock);
3868 	}
3869 
3870 	fh[0] = inode->i_generation;
3871 	fh[1] = inode->i_ino;
3872 	fh[2] = ((__u64)inode->i_ino) >> 32;
3873 
3874 	*len = 3;
3875 	return 1;
3876 }
3877 
3878 static const struct export_operations shmem_export_ops = {
3879 	.get_parent     = shmem_get_parent,
3880 	.encode_fh      = shmem_encode_fh,
3881 	.fh_to_dentry	= shmem_fh_to_dentry,
3882 };
3883 
3884 enum shmem_param {
3885 	Opt_gid,
3886 	Opt_huge,
3887 	Opt_mode,
3888 	Opt_mpol,
3889 	Opt_nr_blocks,
3890 	Opt_nr_inodes,
3891 	Opt_size,
3892 	Opt_uid,
3893 	Opt_inode32,
3894 	Opt_inode64,
3895 	Opt_noswap,
3896 	Opt_quota,
3897 	Opt_usrquota,
3898 	Opt_grpquota,
3899 	Opt_usrquota_block_hardlimit,
3900 	Opt_usrquota_inode_hardlimit,
3901 	Opt_grpquota_block_hardlimit,
3902 	Opt_grpquota_inode_hardlimit,
3903 };
3904 
3905 static const struct constant_table shmem_param_enums_huge[] = {
3906 	{"never",	SHMEM_HUGE_NEVER },
3907 	{"always",	SHMEM_HUGE_ALWAYS },
3908 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3909 	{"advise",	SHMEM_HUGE_ADVISE },
3910 	{}
3911 };
3912 
3913 const struct fs_parameter_spec shmem_fs_parameters[] = {
3914 	fsparam_u32   ("gid",		Opt_gid),
3915 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3916 	fsparam_u32oct("mode",		Opt_mode),
3917 	fsparam_string("mpol",		Opt_mpol),
3918 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3919 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3920 	fsparam_string("size",		Opt_size),
3921 	fsparam_u32   ("uid",		Opt_uid),
3922 	fsparam_flag  ("inode32",	Opt_inode32),
3923 	fsparam_flag  ("inode64",	Opt_inode64),
3924 	fsparam_flag  ("noswap",	Opt_noswap),
3925 #ifdef CONFIG_TMPFS_QUOTA
3926 	fsparam_flag  ("quota",		Opt_quota),
3927 	fsparam_flag  ("usrquota",	Opt_usrquota),
3928 	fsparam_flag  ("grpquota",	Opt_grpquota),
3929 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
3930 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
3931 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
3932 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
3933 #endif
3934 	{}
3935 };
3936 
3937 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3938 {
3939 	struct shmem_options *ctx = fc->fs_private;
3940 	struct fs_parse_result result;
3941 	unsigned long long size;
3942 	char *rest;
3943 	int opt;
3944 	kuid_t kuid;
3945 	kgid_t kgid;
3946 
3947 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3948 	if (opt < 0)
3949 		return opt;
3950 
3951 	switch (opt) {
3952 	case Opt_size:
3953 		size = memparse(param->string, &rest);
3954 		if (*rest == '%') {
3955 			size <<= PAGE_SHIFT;
3956 			size *= totalram_pages();
3957 			do_div(size, 100);
3958 			rest++;
3959 		}
3960 		if (*rest)
3961 			goto bad_value;
3962 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3963 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3964 		break;
3965 	case Opt_nr_blocks:
3966 		ctx->blocks = memparse(param->string, &rest);
3967 		if (*rest || ctx->blocks > LONG_MAX)
3968 			goto bad_value;
3969 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3970 		break;
3971 	case Opt_nr_inodes:
3972 		ctx->inodes = memparse(param->string, &rest);
3973 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
3974 			goto bad_value;
3975 		ctx->seen |= SHMEM_SEEN_INODES;
3976 		break;
3977 	case Opt_mode:
3978 		ctx->mode = result.uint_32 & 07777;
3979 		break;
3980 	case Opt_uid:
3981 		kuid = make_kuid(current_user_ns(), result.uint_32);
3982 		if (!uid_valid(kuid))
3983 			goto bad_value;
3984 
3985 		/*
3986 		 * The requested uid must be representable in the
3987 		 * filesystem's idmapping.
3988 		 */
3989 		if (!kuid_has_mapping(fc->user_ns, kuid))
3990 			goto bad_value;
3991 
3992 		ctx->uid = kuid;
3993 		break;
3994 	case Opt_gid:
3995 		kgid = make_kgid(current_user_ns(), result.uint_32);
3996 		if (!gid_valid(kgid))
3997 			goto bad_value;
3998 
3999 		/*
4000 		 * The requested gid must be representable in the
4001 		 * filesystem's idmapping.
4002 		 */
4003 		if (!kgid_has_mapping(fc->user_ns, kgid))
4004 			goto bad_value;
4005 
4006 		ctx->gid = kgid;
4007 		break;
4008 	case Opt_huge:
4009 		ctx->huge = result.uint_32;
4010 		if (ctx->huge != SHMEM_HUGE_NEVER &&
4011 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4012 		      has_transparent_hugepage()))
4013 			goto unsupported_parameter;
4014 		ctx->seen |= SHMEM_SEEN_HUGE;
4015 		break;
4016 	case Opt_mpol:
4017 		if (IS_ENABLED(CONFIG_NUMA)) {
4018 			mpol_put(ctx->mpol);
4019 			ctx->mpol = NULL;
4020 			if (mpol_parse_str(param->string, &ctx->mpol))
4021 				goto bad_value;
4022 			break;
4023 		}
4024 		goto unsupported_parameter;
4025 	case Opt_inode32:
4026 		ctx->full_inums = false;
4027 		ctx->seen |= SHMEM_SEEN_INUMS;
4028 		break;
4029 	case Opt_inode64:
4030 		if (sizeof(ino_t) < 8) {
4031 			return invalfc(fc,
4032 				       "Cannot use inode64 with <64bit inums in kernel\n");
4033 		}
4034 		ctx->full_inums = true;
4035 		ctx->seen |= SHMEM_SEEN_INUMS;
4036 		break;
4037 	case Opt_noswap:
4038 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4039 			return invalfc(fc,
4040 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4041 		}
4042 		ctx->noswap = true;
4043 		ctx->seen |= SHMEM_SEEN_NOSWAP;
4044 		break;
4045 	case Opt_quota:
4046 		if (fc->user_ns != &init_user_ns)
4047 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4048 		ctx->seen |= SHMEM_SEEN_QUOTA;
4049 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4050 		break;
4051 	case Opt_usrquota:
4052 		if (fc->user_ns != &init_user_ns)
4053 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4054 		ctx->seen |= SHMEM_SEEN_QUOTA;
4055 		ctx->quota_types |= QTYPE_MASK_USR;
4056 		break;
4057 	case Opt_grpquota:
4058 		if (fc->user_ns != &init_user_ns)
4059 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4060 		ctx->seen |= SHMEM_SEEN_QUOTA;
4061 		ctx->quota_types |= QTYPE_MASK_GRP;
4062 		break;
4063 	case Opt_usrquota_block_hardlimit:
4064 		size = memparse(param->string, &rest);
4065 		if (*rest || !size)
4066 			goto bad_value;
4067 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4068 			return invalfc(fc,
4069 				       "User quota block hardlimit too large.");
4070 		ctx->qlimits.usrquota_bhardlimit = size;
4071 		break;
4072 	case Opt_grpquota_block_hardlimit:
4073 		size = memparse(param->string, &rest);
4074 		if (*rest || !size)
4075 			goto bad_value;
4076 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4077 			return invalfc(fc,
4078 				       "Group quota block hardlimit too large.");
4079 		ctx->qlimits.grpquota_bhardlimit = size;
4080 		break;
4081 	case Opt_usrquota_inode_hardlimit:
4082 		size = memparse(param->string, &rest);
4083 		if (*rest || !size)
4084 			goto bad_value;
4085 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4086 			return invalfc(fc,
4087 				       "User quota inode hardlimit too large.");
4088 		ctx->qlimits.usrquota_ihardlimit = size;
4089 		break;
4090 	case Opt_grpquota_inode_hardlimit:
4091 		size = memparse(param->string, &rest);
4092 		if (*rest || !size)
4093 			goto bad_value;
4094 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4095 			return invalfc(fc,
4096 				       "Group quota inode hardlimit too large.");
4097 		ctx->qlimits.grpquota_ihardlimit = size;
4098 		break;
4099 	}
4100 	return 0;
4101 
4102 unsupported_parameter:
4103 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4104 bad_value:
4105 	return invalfc(fc, "Bad value for '%s'", param->key);
4106 }
4107 
4108 static int shmem_parse_options(struct fs_context *fc, void *data)
4109 {
4110 	char *options = data;
4111 
4112 	if (options) {
4113 		int err = security_sb_eat_lsm_opts(options, &fc->security);
4114 		if (err)
4115 			return err;
4116 	}
4117 
4118 	while (options != NULL) {
4119 		char *this_char = options;
4120 		for (;;) {
4121 			/*
4122 			 * NUL-terminate this option: unfortunately,
4123 			 * mount options form a comma-separated list,
4124 			 * but mpol's nodelist may also contain commas.
4125 			 */
4126 			options = strchr(options, ',');
4127 			if (options == NULL)
4128 				break;
4129 			options++;
4130 			if (!isdigit(*options)) {
4131 				options[-1] = '\0';
4132 				break;
4133 			}
4134 		}
4135 		if (*this_char) {
4136 			char *value = strchr(this_char, '=');
4137 			size_t len = 0;
4138 			int err;
4139 
4140 			if (value) {
4141 				*value++ = '\0';
4142 				len = strlen(value);
4143 			}
4144 			err = vfs_parse_fs_string(fc, this_char, value, len);
4145 			if (err < 0)
4146 				return err;
4147 		}
4148 	}
4149 	return 0;
4150 }
4151 
4152 /*
4153  * Reconfigure a shmem filesystem.
4154  */
4155 static int shmem_reconfigure(struct fs_context *fc)
4156 {
4157 	struct shmem_options *ctx = fc->fs_private;
4158 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4159 	unsigned long used_isp;
4160 	struct mempolicy *mpol = NULL;
4161 	const char *err;
4162 
4163 	raw_spin_lock(&sbinfo->stat_lock);
4164 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4165 
4166 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4167 		if (!sbinfo->max_blocks) {
4168 			err = "Cannot retroactively limit size";
4169 			goto out;
4170 		}
4171 		if (percpu_counter_compare(&sbinfo->used_blocks,
4172 					   ctx->blocks) > 0) {
4173 			err = "Too small a size for current use";
4174 			goto out;
4175 		}
4176 	}
4177 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4178 		if (!sbinfo->max_inodes) {
4179 			err = "Cannot retroactively limit inodes";
4180 			goto out;
4181 		}
4182 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4183 			err = "Too few inodes for current use";
4184 			goto out;
4185 		}
4186 	}
4187 
4188 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4189 	    sbinfo->next_ino > UINT_MAX) {
4190 		err = "Current inum too high to switch to 32-bit inums";
4191 		goto out;
4192 	}
4193 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4194 		err = "Cannot disable swap on remount";
4195 		goto out;
4196 	}
4197 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4198 		err = "Cannot enable swap on remount if it was disabled on first mount";
4199 		goto out;
4200 	}
4201 
4202 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4203 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4204 		err = "Cannot enable quota on remount";
4205 		goto out;
4206 	}
4207 
4208 #ifdef CONFIG_TMPFS_QUOTA
4209 #define CHANGED_LIMIT(name)						\
4210 	(ctx->qlimits.name## hardlimit &&				\
4211 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4212 
4213 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4214 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4215 		err = "Cannot change global quota limit on remount";
4216 		goto out;
4217 	}
4218 #endif /* CONFIG_TMPFS_QUOTA */
4219 
4220 	if (ctx->seen & SHMEM_SEEN_HUGE)
4221 		sbinfo->huge = ctx->huge;
4222 	if (ctx->seen & SHMEM_SEEN_INUMS)
4223 		sbinfo->full_inums = ctx->full_inums;
4224 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4225 		sbinfo->max_blocks  = ctx->blocks;
4226 	if (ctx->seen & SHMEM_SEEN_INODES) {
4227 		sbinfo->max_inodes  = ctx->inodes;
4228 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4229 	}
4230 
4231 	/*
4232 	 * Preserve previous mempolicy unless mpol remount option was specified.
4233 	 */
4234 	if (ctx->mpol) {
4235 		mpol = sbinfo->mpol;
4236 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4237 		ctx->mpol = NULL;
4238 	}
4239 
4240 	if (ctx->noswap)
4241 		sbinfo->noswap = true;
4242 
4243 	raw_spin_unlock(&sbinfo->stat_lock);
4244 	mpol_put(mpol);
4245 	return 0;
4246 out:
4247 	raw_spin_unlock(&sbinfo->stat_lock);
4248 	return invalfc(fc, "%s", err);
4249 }
4250 
4251 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4252 {
4253 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4254 	struct mempolicy *mpol;
4255 
4256 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4257 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4258 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4259 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4260 	if (sbinfo->mode != (0777 | S_ISVTX))
4261 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4262 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4263 		seq_printf(seq, ",uid=%u",
4264 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4265 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4266 		seq_printf(seq, ",gid=%u",
4267 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4268 
4269 	/*
4270 	 * Showing inode{64,32} might be useful even if it's the system default,
4271 	 * since then people don't have to resort to checking both here and
4272 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4273 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4274 	 *
4275 	 * We hide it when inode64 isn't the default and we are using 32-bit
4276 	 * inodes, since that probably just means the feature isn't even under
4277 	 * consideration.
4278 	 *
4279 	 * As such:
4280 	 *
4281 	 *                     +-----------------+-----------------+
4282 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4283 	 *  +------------------+-----------------+-----------------+
4284 	 *  | full_inums=true  | show            | show            |
4285 	 *  | full_inums=false | show            | hide            |
4286 	 *  +------------------+-----------------+-----------------+
4287 	 *
4288 	 */
4289 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4290 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4291 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4292 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4293 	if (sbinfo->huge)
4294 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4295 #endif
4296 	mpol = shmem_get_sbmpol(sbinfo);
4297 	shmem_show_mpol(seq, mpol);
4298 	mpol_put(mpol);
4299 	if (sbinfo->noswap)
4300 		seq_printf(seq, ",noswap");
4301 #ifdef CONFIG_TMPFS_QUOTA
4302 	if (sb_has_quota_active(root->d_sb, USRQUOTA))
4303 		seq_printf(seq, ",usrquota");
4304 	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4305 		seq_printf(seq, ",grpquota");
4306 	if (sbinfo->qlimits.usrquota_bhardlimit)
4307 		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4308 			   sbinfo->qlimits.usrquota_bhardlimit);
4309 	if (sbinfo->qlimits.grpquota_bhardlimit)
4310 		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4311 			   sbinfo->qlimits.grpquota_bhardlimit);
4312 	if (sbinfo->qlimits.usrquota_ihardlimit)
4313 		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4314 			   sbinfo->qlimits.usrquota_ihardlimit);
4315 	if (sbinfo->qlimits.grpquota_ihardlimit)
4316 		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4317 			   sbinfo->qlimits.grpquota_ihardlimit);
4318 #endif
4319 	return 0;
4320 }
4321 
4322 #endif /* CONFIG_TMPFS */
4323 
4324 static void shmem_put_super(struct super_block *sb)
4325 {
4326 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4327 
4328 #ifdef CONFIG_TMPFS_QUOTA
4329 	shmem_disable_quotas(sb);
4330 #endif
4331 	free_percpu(sbinfo->ino_batch);
4332 	percpu_counter_destroy(&sbinfo->used_blocks);
4333 	mpol_put(sbinfo->mpol);
4334 	kfree(sbinfo);
4335 	sb->s_fs_info = NULL;
4336 }
4337 
4338 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4339 {
4340 	struct shmem_options *ctx = fc->fs_private;
4341 	struct inode *inode;
4342 	struct shmem_sb_info *sbinfo;
4343 	int error = -ENOMEM;
4344 
4345 	/* Round up to L1_CACHE_BYTES to resist false sharing */
4346 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4347 				L1_CACHE_BYTES), GFP_KERNEL);
4348 	if (!sbinfo)
4349 		return error;
4350 
4351 	sb->s_fs_info = sbinfo;
4352 
4353 #ifdef CONFIG_TMPFS
4354 	/*
4355 	 * Per default we only allow half of the physical ram per
4356 	 * tmpfs instance, limiting inodes to one per page of lowmem;
4357 	 * but the internal instance is left unlimited.
4358 	 */
4359 	if (!(sb->s_flags & SB_KERNMOUNT)) {
4360 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4361 			ctx->blocks = shmem_default_max_blocks();
4362 		if (!(ctx->seen & SHMEM_SEEN_INODES))
4363 			ctx->inodes = shmem_default_max_inodes();
4364 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4365 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4366 		sbinfo->noswap = ctx->noswap;
4367 	} else {
4368 		sb->s_flags |= SB_NOUSER;
4369 	}
4370 	sb->s_export_op = &shmem_export_ops;
4371 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4372 #else
4373 	sb->s_flags |= SB_NOUSER;
4374 #endif
4375 	sbinfo->max_blocks = ctx->blocks;
4376 	sbinfo->max_inodes = ctx->inodes;
4377 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4378 	if (sb->s_flags & SB_KERNMOUNT) {
4379 		sbinfo->ino_batch = alloc_percpu(ino_t);
4380 		if (!sbinfo->ino_batch)
4381 			goto failed;
4382 	}
4383 	sbinfo->uid = ctx->uid;
4384 	sbinfo->gid = ctx->gid;
4385 	sbinfo->full_inums = ctx->full_inums;
4386 	sbinfo->mode = ctx->mode;
4387 	sbinfo->huge = ctx->huge;
4388 	sbinfo->mpol = ctx->mpol;
4389 	ctx->mpol = NULL;
4390 
4391 	raw_spin_lock_init(&sbinfo->stat_lock);
4392 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4393 		goto failed;
4394 	spin_lock_init(&sbinfo->shrinklist_lock);
4395 	INIT_LIST_HEAD(&sbinfo->shrinklist);
4396 
4397 	sb->s_maxbytes = MAX_LFS_FILESIZE;
4398 	sb->s_blocksize = PAGE_SIZE;
4399 	sb->s_blocksize_bits = PAGE_SHIFT;
4400 	sb->s_magic = TMPFS_MAGIC;
4401 	sb->s_op = &shmem_ops;
4402 	sb->s_time_gran = 1;
4403 #ifdef CONFIG_TMPFS_XATTR
4404 	sb->s_xattr = shmem_xattr_handlers;
4405 #endif
4406 #ifdef CONFIG_TMPFS_POSIX_ACL
4407 	sb->s_flags |= SB_POSIXACL;
4408 #endif
4409 	uuid_t uuid;
4410 	uuid_gen(&uuid);
4411 	super_set_uuid(sb, uuid.b, sizeof(uuid));
4412 
4413 #ifdef CONFIG_TMPFS_QUOTA
4414 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4415 		sb->dq_op = &shmem_quota_operations;
4416 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4417 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4418 
4419 		/* Copy the default limits from ctx into sbinfo */
4420 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4421 		       sizeof(struct shmem_quota_limits));
4422 
4423 		if (shmem_enable_quotas(sb, ctx->quota_types))
4424 			goto failed;
4425 	}
4426 #endif /* CONFIG_TMPFS_QUOTA */
4427 
4428 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
4429 				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
4430 	if (IS_ERR(inode)) {
4431 		error = PTR_ERR(inode);
4432 		goto failed;
4433 	}
4434 	inode->i_uid = sbinfo->uid;
4435 	inode->i_gid = sbinfo->gid;
4436 	sb->s_root = d_make_root(inode);
4437 	if (!sb->s_root)
4438 		goto failed;
4439 	return 0;
4440 
4441 failed:
4442 	shmem_put_super(sb);
4443 	return error;
4444 }
4445 
4446 static int shmem_get_tree(struct fs_context *fc)
4447 {
4448 	return get_tree_nodev(fc, shmem_fill_super);
4449 }
4450 
4451 static void shmem_free_fc(struct fs_context *fc)
4452 {
4453 	struct shmem_options *ctx = fc->fs_private;
4454 
4455 	if (ctx) {
4456 		mpol_put(ctx->mpol);
4457 		kfree(ctx);
4458 	}
4459 }
4460 
4461 static const struct fs_context_operations shmem_fs_context_ops = {
4462 	.free			= shmem_free_fc,
4463 	.get_tree		= shmem_get_tree,
4464 #ifdef CONFIG_TMPFS
4465 	.parse_monolithic	= shmem_parse_options,
4466 	.parse_param		= shmem_parse_one,
4467 	.reconfigure		= shmem_reconfigure,
4468 #endif
4469 };
4470 
4471 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4472 
4473 static struct inode *shmem_alloc_inode(struct super_block *sb)
4474 {
4475 	struct shmem_inode_info *info;
4476 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4477 	if (!info)
4478 		return NULL;
4479 	return &info->vfs_inode;
4480 }
4481 
4482 static void shmem_free_in_core_inode(struct inode *inode)
4483 {
4484 	if (S_ISLNK(inode->i_mode))
4485 		kfree(inode->i_link);
4486 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4487 }
4488 
4489 static void shmem_destroy_inode(struct inode *inode)
4490 {
4491 	if (S_ISREG(inode->i_mode))
4492 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4493 	if (S_ISDIR(inode->i_mode))
4494 		simple_offset_destroy(shmem_get_offset_ctx(inode));
4495 }
4496 
4497 static void shmem_init_inode(void *foo)
4498 {
4499 	struct shmem_inode_info *info = foo;
4500 	inode_init_once(&info->vfs_inode);
4501 }
4502 
4503 static void __init shmem_init_inodecache(void)
4504 {
4505 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4506 				sizeof(struct shmem_inode_info),
4507 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4508 }
4509 
4510 static void __init shmem_destroy_inodecache(void)
4511 {
4512 	kmem_cache_destroy(shmem_inode_cachep);
4513 }
4514 
4515 /* Keep the page in page cache instead of truncating it */
4516 static int shmem_error_remove_folio(struct address_space *mapping,
4517 				   struct folio *folio)
4518 {
4519 	return 0;
4520 }
4521 
4522 static const struct address_space_operations shmem_aops = {
4523 	.writepage	= shmem_writepage,
4524 	.dirty_folio	= noop_dirty_folio,
4525 #ifdef CONFIG_TMPFS
4526 	.write_begin	= shmem_write_begin,
4527 	.write_end	= shmem_write_end,
4528 #endif
4529 #ifdef CONFIG_MIGRATION
4530 	.migrate_folio	= migrate_folio,
4531 #endif
4532 	.error_remove_folio = shmem_error_remove_folio,
4533 };
4534 
4535 static const struct file_operations shmem_file_operations = {
4536 	.mmap		= shmem_mmap,
4537 	.open		= shmem_file_open,
4538 	.get_unmapped_area = shmem_get_unmapped_area,
4539 #ifdef CONFIG_TMPFS
4540 	.llseek		= shmem_file_llseek,
4541 	.read_iter	= shmem_file_read_iter,
4542 	.write_iter	= shmem_file_write_iter,
4543 	.fsync		= noop_fsync,
4544 	.splice_read	= shmem_file_splice_read,
4545 	.splice_write	= iter_file_splice_write,
4546 	.fallocate	= shmem_fallocate,
4547 #endif
4548 };
4549 
4550 static const struct inode_operations shmem_inode_operations = {
4551 	.getattr	= shmem_getattr,
4552 	.setattr	= shmem_setattr,
4553 #ifdef CONFIG_TMPFS_XATTR
4554 	.listxattr	= shmem_listxattr,
4555 	.set_acl	= simple_set_acl,
4556 	.fileattr_get	= shmem_fileattr_get,
4557 	.fileattr_set	= shmem_fileattr_set,
4558 #endif
4559 };
4560 
4561 static const struct inode_operations shmem_dir_inode_operations = {
4562 #ifdef CONFIG_TMPFS
4563 	.getattr	= shmem_getattr,
4564 	.create		= shmem_create,
4565 	.lookup		= simple_lookup,
4566 	.link		= shmem_link,
4567 	.unlink		= shmem_unlink,
4568 	.symlink	= shmem_symlink,
4569 	.mkdir		= shmem_mkdir,
4570 	.rmdir		= shmem_rmdir,
4571 	.mknod		= shmem_mknod,
4572 	.rename		= shmem_rename2,
4573 	.tmpfile	= shmem_tmpfile,
4574 	.get_offset_ctx	= shmem_get_offset_ctx,
4575 #endif
4576 #ifdef CONFIG_TMPFS_XATTR
4577 	.listxattr	= shmem_listxattr,
4578 	.fileattr_get	= shmem_fileattr_get,
4579 	.fileattr_set	= shmem_fileattr_set,
4580 #endif
4581 #ifdef CONFIG_TMPFS_POSIX_ACL
4582 	.setattr	= shmem_setattr,
4583 	.set_acl	= simple_set_acl,
4584 #endif
4585 };
4586 
4587 static const struct inode_operations shmem_special_inode_operations = {
4588 	.getattr	= shmem_getattr,
4589 #ifdef CONFIG_TMPFS_XATTR
4590 	.listxattr	= shmem_listxattr,
4591 #endif
4592 #ifdef CONFIG_TMPFS_POSIX_ACL
4593 	.setattr	= shmem_setattr,
4594 	.set_acl	= simple_set_acl,
4595 #endif
4596 };
4597 
4598 static const struct super_operations shmem_ops = {
4599 	.alloc_inode	= shmem_alloc_inode,
4600 	.free_inode	= shmem_free_in_core_inode,
4601 	.destroy_inode	= shmem_destroy_inode,
4602 #ifdef CONFIG_TMPFS
4603 	.statfs		= shmem_statfs,
4604 	.show_options	= shmem_show_options,
4605 #endif
4606 #ifdef CONFIG_TMPFS_QUOTA
4607 	.get_dquots	= shmem_get_dquots,
4608 #endif
4609 	.evict_inode	= shmem_evict_inode,
4610 	.drop_inode	= generic_delete_inode,
4611 	.put_super	= shmem_put_super,
4612 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4613 	.nr_cached_objects	= shmem_unused_huge_count,
4614 	.free_cached_objects	= shmem_unused_huge_scan,
4615 #endif
4616 };
4617 
4618 static const struct vm_operations_struct shmem_vm_ops = {
4619 	.fault		= shmem_fault,
4620 	.map_pages	= filemap_map_pages,
4621 #ifdef CONFIG_NUMA
4622 	.set_policy     = shmem_set_policy,
4623 	.get_policy     = shmem_get_policy,
4624 #endif
4625 };
4626 
4627 static const struct vm_operations_struct shmem_anon_vm_ops = {
4628 	.fault		= shmem_fault,
4629 	.map_pages	= filemap_map_pages,
4630 #ifdef CONFIG_NUMA
4631 	.set_policy     = shmem_set_policy,
4632 	.get_policy     = shmem_get_policy,
4633 #endif
4634 };
4635 
4636 int shmem_init_fs_context(struct fs_context *fc)
4637 {
4638 	struct shmem_options *ctx;
4639 
4640 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4641 	if (!ctx)
4642 		return -ENOMEM;
4643 
4644 	ctx->mode = 0777 | S_ISVTX;
4645 	ctx->uid = current_fsuid();
4646 	ctx->gid = current_fsgid();
4647 
4648 	fc->fs_private = ctx;
4649 	fc->ops = &shmem_fs_context_ops;
4650 	return 0;
4651 }
4652 
4653 static struct file_system_type shmem_fs_type = {
4654 	.owner		= THIS_MODULE,
4655 	.name		= "tmpfs",
4656 	.init_fs_context = shmem_init_fs_context,
4657 #ifdef CONFIG_TMPFS
4658 	.parameters	= shmem_fs_parameters,
4659 #endif
4660 	.kill_sb	= kill_litter_super,
4661 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4662 };
4663 
4664 void __init shmem_init(void)
4665 {
4666 	int error;
4667 
4668 	shmem_init_inodecache();
4669 
4670 #ifdef CONFIG_TMPFS_QUOTA
4671 	error = register_quota_format(&shmem_quota_format);
4672 	if (error < 0) {
4673 		pr_err("Could not register quota format\n");
4674 		goto out3;
4675 	}
4676 #endif
4677 
4678 	error = register_filesystem(&shmem_fs_type);
4679 	if (error) {
4680 		pr_err("Could not register tmpfs\n");
4681 		goto out2;
4682 	}
4683 
4684 	shm_mnt = kern_mount(&shmem_fs_type);
4685 	if (IS_ERR(shm_mnt)) {
4686 		error = PTR_ERR(shm_mnt);
4687 		pr_err("Could not kern_mount tmpfs\n");
4688 		goto out1;
4689 	}
4690 
4691 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4692 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4693 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4694 	else
4695 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4696 #endif
4697 	return;
4698 
4699 out1:
4700 	unregister_filesystem(&shmem_fs_type);
4701 out2:
4702 #ifdef CONFIG_TMPFS_QUOTA
4703 	unregister_quota_format(&shmem_quota_format);
4704 out3:
4705 #endif
4706 	shmem_destroy_inodecache();
4707 	shm_mnt = ERR_PTR(error);
4708 }
4709 
4710 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4711 static ssize_t shmem_enabled_show(struct kobject *kobj,
4712 				  struct kobj_attribute *attr, char *buf)
4713 {
4714 	static const int values[] = {
4715 		SHMEM_HUGE_ALWAYS,
4716 		SHMEM_HUGE_WITHIN_SIZE,
4717 		SHMEM_HUGE_ADVISE,
4718 		SHMEM_HUGE_NEVER,
4719 		SHMEM_HUGE_DENY,
4720 		SHMEM_HUGE_FORCE,
4721 	};
4722 	int len = 0;
4723 	int i;
4724 
4725 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4726 		len += sysfs_emit_at(buf, len,
4727 				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4728 				i ? " " : "", shmem_format_huge(values[i]));
4729 	}
4730 	len += sysfs_emit_at(buf, len, "\n");
4731 
4732 	return len;
4733 }
4734 
4735 static ssize_t shmem_enabled_store(struct kobject *kobj,
4736 		struct kobj_attribute *attr, const char *buf, size_t count)
4737 {
4738 	char tmp[16];
4739 	int huge;
4740 
4741 	if (count + 1 > sizeof(tmp))
4742 		return -EINVAL;
4743 	memcpy(tmp, buf, count);
4744 	tmp[count] = '\0';
4745 	if (count && tmp[count - 1] == '\n')
4746 		tmp[count - 1] = '\0';
4747 
4748 	huge = shmem_parse_huge(tmp);
4749 	if (huge == -EINVAL)
4750 		return -EINVAL;
4751 	if (!has_transparent_hugepage() &&
4752 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4753 		return -EINVAL;
4754 
4755 	shmem_huge = huge;
4756 	if (shmem_huge > SHMEM_HUGE_DENY)
4757 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4758 	return count;
4759 }
4760 
4761 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4762 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4763 
4764 #else /* !CONFIG_SHMEM */
4765 
4766 /*
4767  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4768  *
4769  * This is intended for small system where the benefits of the full
4770  * shmem code (swap-backed and resource-limited) are outweighed by
4771  * their complexity. On systems without swap this code should be
4772  * effectively equivalent, but much lighter weight.
4773  */
4774 
4775 static struct file_system_type shmem_fs_type = {
4776 	.name		= "tmpfs",
4777 	.init_fs_context = ramfs_init_fs_context,
4778 	.parameters	= ramfs_fs_parameters,
4779 	.kill_sb	= ramfs_kill_sb,
4780 	.fs_flags	= FS_USERNS_MOUNT,
4781 };
4782 
4783 void __init shmem_init(void)
4784 {
4785 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4786 
4787 	shm_mnt = kern_mount(&shmem_fs_type);
4788 	BUG_ON(IS_ERR(shm_mnt));
4789 }
4790 
4791 int shmem_unuse(unsigned int type)
4792 {
4793 	return 0;
4794 }
4795 
4796 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4797 {
4798 	return 0;
4799 }
4800 
4801 void shmem_unlock_mapping(struct address_space *mapping)
4802 {
4803 }
4804 
4805 #ifdef CONFIG_MMU
4806 unsigned long shmem_get_unmapped_area(struct file *file,
4807 				      unsigned long addr, unsigned long len,
4808 				      unsigned long pgoff, unsigned long flags)
4809 {
4810 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4811 }
4812 #endif
4813 
4814 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4815 {
4816 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4817 }
4818 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4819 
4820 #define shmem_vm_ops				generic_file_vm_ops
4821 #define shmem_anon_vm_ops			generic_file_vm_ops
4822 #define shmem_file_operations			ramfs_file_operations
4823 #define shmem_acct_size(flags, size)		0
4824 #define shmem_unacct_size(flags, size)		do {} while (0)
4825 
4826 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
4827 				struct super_block *sb, struct inode *dir,
4828 				umode_t mode, dev_t dev, unsigned long flags)
4829 {
4830 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
4831 	return inode ? inode : ERR_PTR(-ENOSPC);
4832 }
4833 
4834 #endif /* CONFIG_SHMEM */
4835 
4836 /* common code */
4837 
4838 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
4839 			loff_t size, unsigned long flags, unsigned int i_flags)
4840 {
4841 	struct inode *inode;
4842 	struct file *res;
4843 
4844 	if (IS_ERR(mnt))
4845 		return ERR_CAST(mnt);
4846 
4847 	if (size < 0 || size > MAX_LFS_FILESIZE)
4848 		return ERR_PTR(-EINVAL);
4849 
4850 	if (shmem_acct_size(flags, size))
4851 		return ERR_PTR(-ENOMEM);
4852 
4853 	if (is_idmapped_mnt(mnt))
4854 		return ERR_PTR(-EINVAL);
4855 
4856 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4857 				S_IFREG | S_IRWXUGO, 0, flags);
4858 	if (IS_ERR(inode)) {
4859 		shmem_unacct_size(flags, size);
4860 		return ERR_CAST(inode);
4861 	}
4862 	inode->i_flags |= i_flags;
4863 	inode->i_size = size;
4864 	clear_nlink(inode);	/* It is unlinked */
4865 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4866 	if (!IS_ERR(res))
4867 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4868 				&shmem_file_operations);
4869 	if (IS_ERR(res))
4870 		iput(inode);
4871 	return res;
4872 }
4873 
4874 /**
4875  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4876  * 	kernel internal.  There will be NO LSM permission checks against the
4877  * 	underlying inode.  So users of this interface must do LSM checks at a
4878  *	higher layer.  The users are the big_key and shm implementations.  LSM
4879  *	checks are provided at the key or shm level rather than the inode.
4880  * @name: name for dentry (to be seen in /proc/<pid>/maps
4881  * @size: size to be set for the file
4882  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4883  */
4884 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4885 {
4886 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4887 }
4888 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
4889 
4890 /**
4891  * shmem_file_setup - get an unlinked file living in tmpfs
4892  * @name: name for dentry (to be seen in /proc/<pid>/maps
4893  * @size: size to be set for the file
4894  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4895  */
4896 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4897 {
4898 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4899 }
4900 EXPORT_SYMBOL_GPL(shmem_file_setup);
4901 
4902 /**
4903  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4904  * @mnt: the tmpfs mount where the file will be created
4905  * @name: name for dentry (to be seen in /proc/<pid>/maps
4906  * @size: size to be set for the file
4907  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4908  */
4909 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4910 				       loff_t size, unsigned long flags)
4911 {
4912 	return __shmem_file_setup(mnt, name, size, flags, 0);
4913 }
4914 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4915 
4916 /**
4917  * shmem_zero_setup - setup a shared anonymous mapping
4918  * @vma: the vma to be mmapped is prepared by do_mmap
4919  */
4920 int shmem_zero_setup(struct vm_area_struct *vma)
4921 {
4922 	struct file *file;
4923 	loff_t size = vma->vm_end - vma->vm_start;
4924 
4925 	/*
4926 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4927 	 * between XFS directory reading and selinux: since this file is only
4928 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4929 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4930 	 */
4931 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4932 	if (IS_ERR(file))
4933 		return PTR_ERR(file);
4934 
4935 	if (vma->vm_file)
4936 		fput(vma->vm_file);
4937 	vma->vm_file = file;
4938 	vma->vm_ops = &shmem_anon_vm_ops;
4939 
4940 	return 0;
4941 }
4942 
4943 /**
4944  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4945  * @mapping:	the folio's address_space
4946  * @index:	the folio index
4947  * @gfp:	the page allocator flags to use if allocating
4948  *
4949  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4950  * with any new page allocations done using the specified allocation flags.
4951  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4952  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4953  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4954  *
4955  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4956  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4957  */
4958 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4959 		pgoff_t index, gfp_t gfp)
4960 {
4961 #ifdef CONFIG_SHMEM
4962 	struct inode *inode = mapping->host;
4963 	struct folio *folio;
4964 	int error;
4965 
4966 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4967 				    gfp, NULL, NULL);
4968 	if (error)
4969 		return ERR_PTR(error);
4970 
4971 	folio_unlock(folio);
4972 	return folio;
4973 #else
4974 	/*
4975 	 * The tiny !SHMEM case uses ramfs without swap
4976 	 */
4977 	return mapping_read_folio_gfp(mapping, index, gfp);
4978 #endif
4979 }
4980 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4981 
4982 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4983 					 pgoff_t index, gfp_t gfp)
4984 {
4985 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4986 	struct page *page;
4987 
4988 	if (IS_ERR(folio))
4989 		return &folio->page;
4990 
4991 	page = folio_file_page(folio, index);
4992 	if (PageHWPoison(page)) {
4993 		folio_put(folio);
4994 		return ERR_PTR(-EIO);
4995 	}
4996 
4997 	return page;
4998 }
4999 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5000