xref: /linux/mm/shmem.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 
38 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
39 
40 static struct vfsmount *shm_mnt;
41 
42 #ifdef CONFIG_SHMEM
43 /*
44  * This virtual memory filesystem is heavily based on the ramfs. It
45  * extends ramfs by the ability to use swap and honor resource limits
46  * which makes it a completely usable filesystem.
47  */
48 
49 #include <linux/xattr.h>
50 #include <linux/exportfs.h>
51 #include <linux/posix_acl.h>
52 #include <linux/posix_acl_xattr.h>
53 #include <linux/mman.h>
54 #include <linux/string.h>
55 #include <linux/slab.h>
56 #include <linux/backing-dev.h>
57 #include <linux/shmem_fs.h>
58 #include <linux/writeback.h>
59 #include <linux/blkdev.h>
60 #include <linux/pagevec.h>
61 #include <linux/percpu_counter.h>
62 #include <linux/falloc.h>
63 #include <linux/splice.h>
64 #include <linux/security.h>
65 #include <linux/swapops.h>
66 #include <linux/mempolicy.h>
67 #include <linux/namei.h>
68 #include <linux/ctype.h>
69 #include <linux/migrate.h>
70 #include <linux/highmem.h>
71 #include <linux/seq_file.h>
72 #include <linux/magic.h>
73 #include <linux/syscalls.h>
74 #include <linux/fcntl.h>
75 #include <uapi/linux/memfd.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/rmap.h>
78 
79 #include <linux/uaccess.h>
80 #include <asm/pgtable.h>
81 
82 #include "internal.h"
83 
84 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
85 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
86 
87 /* Pretend that each entry is of this size in directory's i_size */
88 #define BOGO_DIRENT_SIZE 20
89 
90 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
91 #define SHORT_SYMLINK_LEN 128
92 
93 /*
94  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
95  * inode->i_private (with i_mutex making sure that it has only one user at
96  * a time): we would prefer not to enlarge the shmem inode just for that.
97  */
98 struct shmem_falloc {
99 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
100 	pgoff_t start;		/* start of range currently being fallocated */
101 	pgoff_t next;		/* the next page offset to be fallocated */
102 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
103 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
104 };
105 
106 #ifdef CONFIG_TMPFS
107 static unsigned long shmem_default_max_blocks(void)
108 {
109 	return totalram_pages / 2;
110 }
111 
112 static unsigned long shmem_default_max_inodes(void)
113 {
114 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
115 }
116 #endif
117 
118 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
119 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
120 				struct shmem_inode_info *info, pgoff_t index);
121 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
122 		struct page **pagep, enum sgp_type sgp,
123 		gfp_t gfp, struct vm_area_struct *vma,
124 		struct vm_fault *vmf, int *fault_type);
125 
126 int shmem_getpage(struct inode *inode, pgoff_t index,
127 		struct page **pagep, enum sgp_type sgp)
128 {
129 	return shmem_getpage_gfp(inode, index, pagep, sgp,
130 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
131 }
132 
133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
134 {
135 	return sb->s_fs_info;
136 }
137 
138 /*
139  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140  * for shared memory and for shared anonymous (/dev/zero) mappings
141  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142  * consistent with the pre-accounting of private mappings ...
143  */
144 static inline int shmem_acct_size(unsigned long flags, loff_t size)
145 {
146 	return (flags & VM_NORESERVE) ?
147 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
148 }
149 
150 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
151 {
152 	if (!(flags & VM_NORESERVE))
153 		vm_unacct_memory(VM_ACCT(size));
154 }
155 
156 static inline int shmem_reacct_size(unsigned long flags,
157 		loff_t oldsize, loff_t newsize)
158 {
159 	if (!(flags & VM_NORESERVE)) {
160 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
161 			return security_vm_enough_memory_mm(current->mm,
162 					VM_ACCT(newsize) - VM_ACCT(oldsize));
163 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
164 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
165 	}
166 	return 0;
167 }
168 
169 /*
170  * ... whereas tmpfs objects are accounted incrementally as
171  * pages are allocated, in order to allow large sparse files.
172  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
173  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
174  */
175 static inline int shmem_acct_block(unsigned long flags, long pages)
176 {
177 	if (!(flags & VM_NORESERVE))
178 		return 0;
179 
180 	return security_vm_enough_memory_mm(current->mm,
181 			pages * VM_ACCT(PAGE_SIZE));
182 }
183 
184 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
185 {
186 	if (flags & VM_NORESERVE)
187 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
188 }
189 
190 static const struct super_operations shmem_ops;
191 static const struct address_space_operations shmem_aops;
192 static const struct file_operations shmem_file_operations;
193 static const struct inode_operations shmem_inode_operations;
194 static const struct inode_operations shmem_dir_inode_operations;
195 static const struct inode_operations shmem_special_inode_operations;
196 static const struct vm_operations_struct shmem_vm_ops;
197 static struct file_system_type shmem_fs_type;
198 
199 bool vma_is_shmem(struct vm_area_struct *vma)
200 {
201 	return vma->vm_ops == &shmem_vm_ops;
202 }
203 
204 static LIST_HEAD(shmem_swaplist);
205 static DEFINE_MUTEX(shmem_swaplist_mutex);
206 
207 static int shmem_reserve_inode(struct super_block *sb)
208 {
209 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
210 	if (sbinfo->max_inodes) {
211 		spin_lock(&sbinfo->stat_lock);
212 		if (!sbinfo->free_inodes) {
213 			spin_unlock(&sbinfo->stat_lock);
214 			return -ENOSPC;
215 		}
216 		sbinfo->free_inodes--;
217 		spin_unlock(&sbinfo->stat_lock);
218 	}
219 	return 0;
220 }
221 
222 static void shmem_free_inode(struct super_block *sb)
223 {
224 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
225 	if (sbinfo->max_inodes) {
226 		spin_lock(&sbinfo->stat_lock);
227 		sbinfo->free_inodes++;
228 		spin_unlock(&sbinfo->stat_lock);
229 	}
230 }
231 
232 /**
233  * shmem_recalc_inode - recalculate the block usage of an inode
234  * @inode: inode to recalc
235  *
236  * We have to calculate the free blocks since the mm can drop
237  * undirtied hole pages behind our back.
238  *
239  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
240  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
241  *
242  * It has to be called with the spinlock held.
243  */
244 static void shmem_recalc_inode(struct inode *inode)
245 {
246 	struct shmem_inode_info *info = SHMEM_I(inode);
247 	long freed;
248 
249 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
250 	if (freed > 0) {
251 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
252 		if (sbinfo->max_blocks)
253 			percpu_counter_add(&sbinfo->used_blocks, -freed);
254 		info->alloced -= freed;
255 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
256 		shmem_unacct_blocks(info->flags, freed);
257 	}
258 }
259 
260 bool shmem_charge(struct inode *inode, long pages)
261 {
262 	struct shmem_inode_info *info = SHMEM_I(inode);
263 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
264 	unsigned long flags;
265 
266 	if (shmem_acct_block(info->flags, pages))
267 		return false;
268 	spin_lock_irqsave(&info->lock, flags);
269 	info->alloced += pages;
270 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
271 	shmem_recalc_inode(inode);
272 	spin_unlock_irqrestore(&info->lock, flags);
273 	inode->i_mapping->nrpages += pages;
274 
275 	if (!sbinfo->max_blocks)
276 		return true;
277 	if (percpu_counter_compare(&sbinfo->used_blocks,
278 				sbinfo->max_blocks - pages) > 0) {
279 		inode->i_mapping->nrpages -= pages;
280 		spin_lock_irqsave(&info->lock, flags);
281 		info->alloced -= pages;
282 		shmem_recalc_inode(inode);
283 		spin_unlock_irqrestore(&info->lock, flags);
284 		shmem_unacct_blocks(info->flags, pages);
285 		return false;
286 	}
287 	percpu_counter_add(&sbinfo->used_blocks, pages);
288 	return true;
289 }
290 
291 void shmem_uncharge(struct inode *inode, long pages)
292 {
293 	struct shmem_inode_info *info = SHMEM_I(inode);
294 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
295 	unsigned long flags;
296 
297 	spin_lock_irqsave(&info->lock, flags);
298 	info->alloced -= pages;
299 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
300 	shmem_recalc_inode(inode);
301 	spin_unlock_irqrestore(&info->lock, flags);
302 
303 	if (sbinfo->max_blocks)
304 		percpu_counter_sub(&sbinfo->used_blocks, pages);
305 	shmem_unacct_blocks(info->flags, pages);
306 }
307 
308 /*
309  * Replace item expected in radix tree by a new item, while holding tree lock.
310  */
311 static int shmem_radix_tree_replace(struct address_space *mapping,
312 			pgoff_t index, void *expected, void *replacement)
313 {
314 	struct radix_tree_node *node;
315 	void **pslot;
316 	void *item;
317 
318 	VM_BUG_ON(!expected);
319 	VM_BUG_ON(!replacement);
320 	item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
321 	if (!item)
322 		return -ENOENT;
323 	if (item != expected)
324 		return -ENOENT;
325 	__radix_tree_replace(&mapping->page_tree, node, pslot,
326 			     replacement, NULL, NULL);
327 	return 0;
328 }
329 
330 /*
331  * Sometimes, before we decide whether to proceed or to fail, we must check
332  * that an entry was not already brought back from swap by a racing thread.
333  *
334  * Checking page is not enough: by the time a SwapCache page is locked, it
335  * might be reused, and again be SwapCache, using the same swap as before.
336  */
337 static bool shmem_confirm_swap(struct address_space *mapping,
338 			       pgoff_t index, swp_entry_t swap)
339 {
340 	void *item;
341 
342 	rcu_read_lock();
343 	item = radix_tree_lookup(&mapping->page_tree, index);
344 	rcu_read_unlock();
345 	return item == swp_to_radix_entry(swap);
346 }
347 
348 /*
349  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
350  *
351  * SHMEM_HUGE_NEVER:
352  *	disables huge pages for the mount;
353  * SHMEM_HUGE_ALWAYS:
354  *	enables huge pages for the mount;
355  * SHMEM_HUGE_WITHIN_SIZE:
356  *	only allocate huge pages if the page will be fully within i_size,
357  *	also respect fadvise()/madvise() hints;
358  * SHMEM_HUGE_ADVISE:
359  *	only allocate huge pages if requested with fadvise()/madvise();
360  */
361 
362 #define SHMEM_HUGE_NEVER	0
363 #define SHMEM_HUGE_ALWAYS	1
364 #define SHMEM_HUGE_WITHIN_SIZE	2
365 #define SHMEM_HUGE_ADVISE	3
366 
367 /*
368  * Special values.
369  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
370  *
371  * SHMEM_HUGE_DENY:
372  *	disables huge on shm_mnt and all mounts, for emergency use;
373  * SHMEM_HUGE_FORCE:
374  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
375  *
376  */
377 #define SHMEM_HUGE_DENY		(-1)
378 #define SHMEM_HUGE_FORCE	(-2)
379 
380 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
381 /* ifdef here to avoid bloating shmem.o when not necessary */
382 
383 int shmem_huge __read_mostly;
384 
385 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
386 static int shmem_parse_huge(const char *str)
387 {
388 	if (!strcmp(str, "never"))
389 		return SHMEM_HUGE_NEVER;
390 	if (!strcmp(str, "always"))
391 		return SHMEM_HUGE_ALWAYS;
392 	if (!strcmp(str, "within_size"))
393 		return SHMEM_HUGE_WITHIN_SIZE;
394 	if (!strcmp(str, "advise"))
395 		return SHMEM_HUGE_ADVISE;
396 	if (!strcmp(str, "deny"))
397 		return SHMEM_HUGE_DENY;
398 	if (!strcmp(str, "force"))
399 		return SHMEM_HUGE_FORCE;
400 	return -EINVAL;
401 }
402 
403 static const char *shmem_format_huge(int huge)
404 {
405 	switch (huge) {
406 	case SHMEM_HUGE_NEVER:
407 		return "never";
408 	case SHMEM_HUGE_ALWAYS:
409 		return "always";
410 	case SHMEM_HUGE_WITHIN_SIZE:
411 		return "within_size";
412 	case SHMEM_HUGE_ADVISE:
413 		return "advise";
414 	case SHMEM_HUGE_DENY:
415 		return "deny";
416 	case SHMEM_HUGE_FORCE:
417 		return "force";
418 	default:
419 		VM_BUG_ON(1);
420 		return "bad_val";
421 	}
422 }
423 #endif
424 
425 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
426 		struct shrink_control *sc, unsigned long nr_to_split)
427 {
428 	LIST_HEAD(list), *pos, *next;
429 	LIST_HEAD(to_remove);
430 	struct inode *inode;
431 	struct shmem_inode_info *info;
432 	struct page *page;
433 	unsigned long batch = sc ? sc->nr_to_scan : 128;
434 	int removed = 0, split = 0;
435 
436 	if (list_empty(&sbinfo->shrinklist))
437 		return SHRINK_STOP;
438 
439 	spin_lock(&sbinfo->shrinklist_lock);
440 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
441 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
442 
443 		/* pin the inode */
444 		inode = igrab(&info->vfs_inode);
445 
446 		/* inode is about to be evicted */
447 		if (!inode) {
448 			list_del_init(&info->shrinklist);
449 			removed++;
450 			goto next;
451 		}
452 
453 		/* Check if there's anything to gain */
454 		if (round_up(inode->i_size, PAGE_SIZE) ==
455 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
456 			list_move(&info->shrinklist, &to_remove);
457 			removed++;
458 			goto next;
459 		}
460 
461 		list_move(&info->shrinklist, &list);
462 next:
463 		if (!--batch)
464 			break;
465 	}
466 	spin_unlock(&sbinfo->shrinklist_lock);
467 
468 	list_for_each_safe(pos, next, &to_remove) {
469 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
470 		inode = &info->vfs_inode;
471 		list_del_init(&info->shrinklist);
472 		iput(inode);
473 	}
474 
475 	list_for_each_safe(pos, next, &list) {
476 		int ret;
477 
478 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
479 		inode = &info->vfs_inode;
480 
481 		if (nr_to_split && split >= nr_to_split) {
482 			iput(inode);
483 			continue;
484 		}
485 
486 		page = find_lock_page(inode->i_mapping,
487 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
488 		if (!page)
489 			goto drop;
490 
491 		if (!PageTransHuge(page)) {
492 			unlock_page(page);
493 			put_page(page);
494 			goto drop;
495 		}
496 
497 		ret = split_huge_page(page);
498 		unlock_page(page);
499 		put_page(page);
500 
501 		if (ret) {
502 			/* split failed: leave it on the list */
503 			iput(inode);
504 			continue;
505 		}
506 
507 		split++;
508 drop:
509 		list_del_init(&info->shrinklist);
510 		removed++;
511 		iput(inode);
512 	}
513 
514 	spin_lock(&sbinfo->shrinklist_lock);
515 	list_splice_tail(&list, &sbinfo->shrinklist);
516 	sbinfo->shrinklist_len -= removed;
517 	spin_unlock(&sbinfo->shrinklist_lock);
518 
519 	return split;
520 }
521 
522 static long shmem_unused_huge_scan(struct super_block *sb,
523 		struct shrink_control *sc)
524 {
525 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
526 
527 	if (!READ_ONCE(sbinfo->shrinklist_len))
528 		return SHRINK_STOP;
529 
530 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
531 }
532 
533 static long shmem_unused_huge_count(struct super_block *sb,
534 		struct shrink_control *sc)
535 {
536 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
537 	return READ_ONCE(sbinfo->shrinklist_len);
538 }
539 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
540 
541 #define shmem_huge SHMEM_HUGE_DENY
542 
543 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
544 		struct shrink_control *sc, unsigned long nr_to_split)
545 {
546 	return 0;
547 }
548 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
549 
550 /*
551  * Like add_to_page_cache_locked, but error if expected item has gone.
552  */
553 static int shmem_add_to_page_cache(struct page *page,
554 				   struct address_space *mapping,
555 				   pgoff_t index, void *expected)
556 {
557 	int error, nr = hpage_nr_pages(page);
558 
559 	VM_BUG_ON_PAGE(PageTail(page), page);
560 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
561 	VM_BUG_ON_PAGE(!PageLocked(page), page);
562 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
563 	VM_BUG_ON(expected && PageTransHuge(page));
564 
565 	page_ref_add(page, nr);
566 	page->mapping = mapping;
567 	page->index = index;
568 
569 	spin_lock_irq(&mapping->tree_lock);
570 	if (PageTransHuge(page)) {
571 		void __rcu **results;
572 		pgoff_t idx;
573 		int i;
574 
575 		error = 0;
576 		if (radix_tree_gang_lookup_slot(&mapping->page_tree,
577 					&results, &idx, index, 1) &&
578 				idx < index + HPAGE_PMD_NR) {
579 			error = -EEXIST;
580 		}
581 
582 		if (!error) {
583 			for (i = 0; i < HPAGE_PMD_NR; i++) {
584 				error = radix_tree_insert(&mapping->page_tree,
585 						index + i, page + i);
586 				VM_BUG_ON(error);
587 			}
588 			count_vm_event(THP_FILE_ALLOC);
589 		}
590 	} else if (!expected) {
591 		error = radix_tree_insert(&mapping->page_tree, index, page);
592 	} else {
593 		error = shmem_radix_tree_replace(mapping, index, expected,
594 								 page);
595 	}
596 
597 	if (!error) {
598 		mapping->nrpages += nr;
599 		if (PageTransHuge(page))
600 			__inc_node_page_state(page, NR_SHMEM_THPS);
601 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
602 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
603 		spin_unlock_irq(&mapping->tree_lock);
604 	} else {
605 		page->mapping = NULL;
606 		spin_unlock_irq(&mapping->tree_lock);
607 		page_ref_sub(page, nr);
608 	}
609 	return error;
610 }
611 
612 /*
613  * Like delete_from_page_cache, but substitutes swap for page.
614  */
615 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
616 {
617 	struct address_space *mapping = page->mapping;
618 	int error;
619 
620 	VM_BUG_ON_PAGE(PageCompound(page), page);
621 
622 	spin_lock_irq(&mapping->tree_lock);
623 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
624 	page->mapping = NULL;
625 	mapping->nrpages--;
626 	__dec_node_page_state(page, NR_FILE_PAGES);
627 	__dec_node_page_state(page, NR_SHMEM);
628 	spin_unlock_irq(&mapping->tree_lock);
629 	put_page(page);
630 	BUG_ON(error);
631 }
632 
633 /*
634  * Remove swap entry from radix tree, free the swap and its page cache.
635  */
636 static int shmem_free_swap(struct address_space *mapping,
637 			   pgoff_t index, void *radswap)
638 {
639 	void *old;
640 
641 	spin_lock_irq(&mapping->tree_lock);
642 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
643 	spin_unlock_irq(&mapping->tree_lock);
644 	if (old != radswap)
645 		return -ENOENT;
646 	free_swap_and_cache(radix_to_swp_entry(radswap));
647 	return 0;
648 }
649 
650 /*
651  * Determine (in bytes) how many of the shmem object's pages mapped by the
652  * given offsets are swapped out.
653  *
654  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
655  * as long as the inode doesn't go away and racy results are not a problem.
656  */
657 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
658 						pgoff_t start, pgoff_t end)
659 {
660 	struct radix_tree_iter iter;
661 	void **slot;
662 	struct page *page;
663 	unsigned long swapped = 0;
664 
665 	rcu_read_lock();
666 
667 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
668 		if (iter.index >= end)
669 			break;
670 
671 		page = radix_tree_deref_slot(slot);
672 
673 		if (radix_tree_deref_retry(page)) {
674 			slot = radix_tree_iter_retry(&iter);
675 			continue;
676 		}
677 
678 		if (radix_tree_exceptional_entry(page))
679 			swapped++;
680 
681 		if (need_resched()) {
682 			slot = radix_tree_iter_resume(slot, &iter);
683 			cond_resched_rcu();
684 		}
685 	}
686 
687 	rcu_read_unlock();
688 
689 	return swapped << PAGE_SHIFT;
690 }
691 
692 /*
693  * Determine (in bytes) how many of the shmem object's pages mapped by the
694  * given vma is swapped out.
695  *
696  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
697  * as long as the inode doesn't go away and racy results are not a problem.
698  */
699 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
700 {
701 	struct inode *inode = file_inode(vma->vm_file);
702 	struct shmem_inode_info *info = SHMEM_I(inode);
703 	struct address_space *mapping = inode->i_mapping;
704 	unsigned long swapped;
705 
706 	/* Be careful as we don't hold info->lock */
707 	swapped = READ_ONCE(info->swapped);
708 
709 	/*
710 	 * The easier cases are when the shmem object has nothing in swap, or
711 	 * the vma maps it whole. Then we can simply use the stats that we
712 	 * already track.
713 	 */
714 	if (!swapped)
715 		return 0;
716 
717 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
718 		return swapped << PAGE_SHIFT;
719 
720 	/* Here comes the more involved part */
721 	return shmem_partial_swap_usage(mapping,
722 			linear_page_index(vma, vma->vm_start),
723 			linear_page_index(vma, vma->vm_end));
724 }
725 
726 /*
727  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
728  */
729 void shmem_unlock_mapping(struct address_space *mapping)
730 {
731 	struct pagevec pvec;
732 	pgoff_t indices[PAGEVEC_SIZE];
733 	pgoff_t index = 0;
734 
735 	pagevec_init(&pvec, 0);
736 	/*
737 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
738 	 */
739 	while (!mapping_unevictable(mapping)) {
740 		/*
741 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
742 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
743 		 */
744 		pvec.nr = find_get_entries(mapping, index,
745 					   PAGEVEC_SIZE, pvec.pages, indices);
746 		if (!pvec.nr)
747 			break;
748 		index = indices[pvec.nr - 1] + 1;
749 		pagevec_remove_exceptionals(&pvec);
750 		check_move_unevictable_pages(pvec.pages, pvec.nr);
751 		pagevec_release(&pvec);
752 		cond_resched();
753 	}
754 }
755 
756 /*
757  * Remove range of pages and swap entries from radix tree, and free them.
758  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
759  */
760 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
761 								 bool unfalloc)
762 {
763 	struct address_space *mapping = inode->i_mapping;
764 	struct shmem_inode_info *info = SHMEM_I(inode);
765 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
766 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
767 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
768 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
769 	struct pagevec pvec;
770 	pgoff_t indices[PAGEVEC_SIZE];
771 	long nr_swaps_freed = 0;
772 	pgoff_t index;
773 	int i;
774 
775 	if (lend == -1)
776 		end = -1;	/* unsigned, so actually very big */
777 
778 	pagevec_init(&pvec, 0);
779 	index = start;
780 	while (index < end) {
781 		pvec.nr = find_get_entries(mapping, index,
782 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
783 			pvec.pages, indices);
784 		if (!pvec.nr)
785 			break;
786 		for (i = 0; i < pagevec_count(&pvec); i++) {
787 			struct page *page = pvec.pages[i];
788 
789 			index = indices[i];
790 			if (index >= end)
791 				break;
792 
793 			if (radix_tree_exceptional_entry(page)) {
794 				if (unfalloc)
795 					continue;
796 				nr_swaps_freed += !shmem_free_swap(mapping,
797 								index, page);
798 				continue;
799 			}
800 
801 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
802 
803 			if (!trylock_page(page))
804 				continue;
805 
806 			if (PageTransTail(page)) {
807 				/* Middle of THP: zero out the page */
808 				clear_highpage(page);
809 				unlock_page(page);
810 				continue;
811 			} else if (PageTransHuge(page)) {
812 				if (index == round_down(end, HPAGE_PMD_NR)) {
813 					/*
814 					 * Range ends in the middle of THP:
815 					 * zero out the page
816 					 */
817 					clear_highpage(page);
818 					unlock_page(page);
819 					continue;
820 				}
821 				index += HPAGE_PMD_NR - 1;
822 				i += HPAGE_PMD_NR - 1;
823 			}
824 
825 			if (!unfalloc || !PageUptodate(page)) {
826 				VM_BUG_ON_PAGE(PageTail(page), page);
827 				if (page_mapping(page) == mapping) {
828 					VM_BUG_ON_PAGE(PageWriteback(page), page);
829 					truncate_inode_page(mapping, page);
830 				}
831 			}
832 			unlock_page(page);
833 		}
834 		pagevec_remove_exceptionals(&pvec);
835 		pagevec_release(&pvec);
836 		cond_resched();
837 		index++;
838 	}
839 
840 	if (partial_start) {
841 		struct page *page = NULL;
842 		shmem_getpage(inode, start - 1, &page, SGP_READ);
843 		if (page) {
844 			unsigned int top = PAGE_SIZE;
845 			if (start > end) {
846 				top = partial_end;
847 				partial_end = 0;
848 			}
849 			zero_user_segment(page, partial_start, top);
850 			set_page_dirty(page);
851 			unlock_page(page);
852 			put_page(page);
853 		}
854 	}
855 	if (partial_end) {
856 		struct page *page = NULL;
857 		shmem_getpage(inode, end, &page, SGP_READ);
858 		if (page) {
859 			zero_user_segment(page, 0, partial_end);
860 			set_page_dirty(page);
861 			unlock_page(page);
862 			put_page(page);
863 		}
864 	}
865 	if (start >= end)
866 		return;
867 
868 	index = start;
869 	while (index < end) {
870 		cond_resched();
871 
872 		pvec.nr = find_get_entries(mapping, index,
873 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
874 				pvec.pages, indices);
875 		if (!pvec.nr) {
876 			/* If all gone or hole-punch or unfalloc, we're done */
877 			if (index == start || end != -1)
878 				break;
879 			/* But if truncating, restart to make sure all gone */
880 			index = start;
881 			continue;
882 		}
883 		for (i = 0; i < pagevec_count(&pvec); i++) {
884 			struct page *page = pvec.pages[i];
885 
886 			index = indices[i];
887 			if (index >= end)
888 				break;
889 
890 			if (radix_tree_exceptional_entry(page)) {
891 				if (unfalloc)
892 					continue;
893 				if (shmem_free_swap(mapping, index, page)) {
894 					/* Swap was replaced by page: retry */
895 					index--;
896 					break;
897 				}
898 				nr_swaps_freed++;
899 				continue;
900 			}
901 
902 			lock_page(page);
903 
904 			if (PageTransTail(page)) {
905 				/* Middle of THP: zero out the page */
906 				clear_highpage(page);
907 				unlock_page(page);
908 				/*
909 				 * Partial thp truncate due 'start' in middle
910 				 * of THP: don't need to look on these pages
911 				 * again on !pvec.nr restart.
912 				 */
913 				if (index != round_down(end, HPAGE_PMD_NR))
914 					start++;
915 				continue;
916 			} else if (PageTransHuge(page)) {
917 				if (index == round_down(end, HPAGE_PMD_NR)) {
918 					/*
919 					 * Range ends in the middle of THP:
920 					 * zero out the page
921 					 */
922 					clear_highpage(page);
923 					unlock_page(page);
924 					continue;
925 				}
926 				index += HPAGE_PMD_NR - 1;
927 				i += HPAGE_PMD_NR - 1;
928 			}
929 
930 			if (!unfalloc || !PageUptodate(page)) {
931 				VM_BUG_ON_PAGE(PageTail(page), page);
932 				if (page_mapping(page) == mapping) {
933 					VM_BUG_ON_PAGE(PageWriteback(page), page);
934 					truncate_inode_page(mapping, page);
935 				} else {
936 					/* Page was replaced by swap: retry */
937 					unlock_page(page);
938 					index--;
939 					break;
940 				}
941 			}
942 			unlock_page(page);
943 		}
944 		pagevec_remove_exceptionals(&pvec);
945 		pagevec_release(&pvec);
946 		index++;
947 	}
948 
949 	spin_lock_irq(&info->lock);
950 	info->swapped -= nr_swaps_freed;
951 	shmem_recalc_inode(inode);
952 	spin_unlock_irq(&info->lock);
953 }
954 
955 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
956 {
957 	shmem_undo_range(inode, lstart, lend, false);
958 	inode->i_ctime = inode->i_mtime = current_time(inode);
959 }
960 EXPORT_SYMBOL_GPL(shmem_truncate_range);
961 
962 static int shmem_getattr(const struct path *path, struct kstat *stat,
963 			 u32 request_mask, unsigned int query_flags)
964 {
965 	struct inode *inode = path->dentry->d_inode;
966 	struct shmem_inode_info *info = SHMEM_I(inode);
967 
968 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
969 		spin_lock_irq(&info->lock);
970 		shmem_recalc_inode(inode);
971 		spin_unlock_irq(&info->lock);
972 	}
973 	generic_fillattr(inode, stat);
974 	return 0;
975 }
976 
977 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
978 {
979 	struct inode *inode = d_inode(dentry);
980 	struct shmem_inode_info *info = SHMEM_I(inode);
981 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
982 	int error;
983 
984 	error = setattr_prepare(dentry, attr);
985 	if (error)
986 		return error;
987 
988 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
989 		loff_t oldsize = inode->i_size;
990 		loff_t newsize = attr->ia_size;
991 
992 		/* protected by i_mutex */
993 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
994 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
995 			return -EPERM;
996 
997 		if (newsize != oldsize) {
998 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
999 					oldsize, newsize);
1000 			if (error)
1001 				return error;
1002 			i_size_write(inode, newsize);
1003 			inode->i_ctime = inode->i_mtime = current_time(inode);
1004 		}
1005 		if (newsize <= oldsize) {
1006 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1007 			if (oldsize > holebegin)
1008 				unmap_mapping_range(inode->i_mapping,
1009 							holebegin, 0, 1);
1010 			if (info->alloced)
1011 				shmem_truncate_range(inode,
1012 							newsize, (loff_t)-1);
1013 			/* unmap again to remove racily COWed private pages */
1014 			if (oldsize > holebegin)
1015 				unmap_mapping_range(inode->i_mapping,
1016 							holebegin, 0, 1);
1017 
1018 			/*
1019 			 * Part of the huge page can be beyond i_size: subject
1020 			 * to shrink under memory pressure.
1021 			 */
1022 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1023 				spin_lock(&sbinfo->shrinklist_lock);
1024 				if (list_empty(&info->shrinklist)) {
1025 					list_add_tail(&info->shrinklist,
1026 							&sbinfo->shrinklist);
1027 					sbinfo->shrinklist_len++;
1028 				}
1029 				spin_unlock(&sbinfo->shrinklist_lock);
1030 			}
1031 		}
1032 	}
1033 
1034 	setattr_copy(inode, attr);
1035 	if (attr->ia_valid & ATTR_MODE)
1036 		error = posix_acl_chmod(inode, inode->i_mode);
1037 	return error;
1038 }
1039 
1040 static void shmem_evict_inode(struct inode *inode)
1041 {
1042 	struct shmem_inode_info *info = SHMEM_I(inode);
1043 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1044 
1045 	if (inode->i_mapping->a_ops == &shmem_aops) {
1046 		shmem_unacct_size(info->flags, inode->i_size);
1047 		inode->i_size = 0;
1048 		shmem_truncate_range(inode, 0, (loff_t)-1);
1049 		if (!list_empty(&info->shrinklist)) {
1050 			spin_lock(&sbinfo->shrinklist_lock);
1051 			if (!list_empty(&info->shrinklist)) {
1052 				list_del_init(&info->shrinklist);
1053 				sbinfo->shrinklist_len--;
1054 			}
1055 			spin_unlock(&sbinfo->shrinklist_lock);
1056 		}
1057 		if (!list_empty(&info->swaplist)) {
1058 			mutex_lock(&shmem_swaplist_mutex);
1059 			list_del_init(&info->swaplist);
1060 			mutex_unlock(&shmem_swaplist_mutex);
1061 		}
1062 	}
1063 
1064 	simple_xattrs_free(&info->xattrs);
1065 	WARN_ON(inode->i_blocks);
1066 	shmem_free_inode(inode->i_sb);
1067 	clear_inode(inode);
1068 }
1069 
1070 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1071 {
1072 	struct radix_tree_iter iter;
1073 	void **slot;
1074 	unsigned long found = -1;
1075 	unsigned int checked = 0;
1076 
1077 	rcu_read_lock();
1078 	radix_tree_for_each_slot(slot, root, &iter, 0) {
1079 		if (*slot == item) {
1080 			found = iter.index;
1081 			break;
1082 		}
1083 		checked++;
1084 		if ((checked % 4096) != 0)
1085 			continue;
1086 		slot = radix_tree_iter_resume(slot, &iter);
1087 		cond_resched_rcu();
1088 	}
1089 
1090 	rcu_read_unlock();
1091 	return found;
1092 }
1093 
1094 /*
1095  * If swap found in inode, free it and move page from swapcache to filecache.
1096  */
1097 static int shmem_unuse_inode(struct shmem_inode_info *info,
1098 			     swp_entry_t swap, struct page **pagep)
1099 {
1100 	struct address_space *mapping = info->vfs_inode.i_mapping;
1101 	void *radswap;
1102 	pgoff_t index;
1103 	gfp_t gfp;
1104 	int error = 0;
1105 
1106 	radswap = swp_to_radix_entry(swap);
1107 	index = find_swap_entry(&mapping->page_tree, radswap);
1108 	if (index == -1)
1109 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1110 
1111 	/*
1112 	 * Move _head_ to start search for next from here.
1113 	 * But be careful: shmem_evict_inode checks list_empty without taking
1114 	 * mutex, and there's an instant in list_move_tail when info->swaplist
1115 	 * would appear empty, if it were the only one on shmem_swaplist.
1116 	 */
1117 	if (shmem_swaplist.next != &info->swaplist)
1118 		list_move_tail(&shmem_swaplist, &info->swaplist);
1119 
1120 	gfp = mapping_gfp_mask(mapping);
1121 	if (shmem_should_replace_page(*pagep, gfp)) {
1122 		mutex_unlock(&shmem_swaplist_mutex);
1123 		error = shmem_replace_page(pagep, gfp, info, index);
1124 		mutex_lock(&shmem_swaplist_mutex);
1125 		/*
1126 		 * We needed to drop mutex to make that restrictive page
1127 		 * allocation, but the inode might have been freed while we
1128 		 * dropped it: although a racing shmem_evict_inode() cannot
1129 		 * complete without emptying the radix_tree, our page lock
1130 		 * on this swapcache page is not enough to prevent that -
1131 		 * free_swap_and_cache() of our swap entry will only
1132 		 * trylock_page(), removing swap from radix_tree whatever.
1133 		 *
1134 		 * We must not proceed to shmem_add_to_page_cache() if the
1135 		 * inode has been freed, but of course we cannot rely on
1136 		 * inode or mapping or info to check that.  However, we can
1137 		 * safely check if our swap entry is still in use (and here
1138 		 * it can't have got reused for another page): if it's still
1139 		 * in use, then the inode cannot have been freed yet, and we
1140 		 * can safely proceed (if it's no longer in use, that tells
1141 		 * nothing about the inode, but we don't need to unuse swap).
1142 		 */
1143 		if (!page_swapcount(*pagep))
1144 			error = -ENOENT;
1145 	}
1146 
1147 	/*
1148 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1149 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1150 	 * beneath us (pagelock doesn't help until the page is in pagecache).
1151 	 */
1152 	if (!error)
1153 		error = shmem_add_to_page_cache(*pagep, mapping, index,
1154 						radswap);
1155 	if (error != -ENOMEM) {
1156 		/*
1157 		 * Truncation and eviction use free_swap_and_cache(), which
1158 		 * only does trylock page: if we raced, best clean up here.
1159 		 */
1160 		delete_from_swap_cache(*pagep);
1161 		set_page_dirty(*pagep);
1162 		if (!error) {
1163 			spin_lock_irq(&info->lock);
1164 			info->swapped--;
1165 			spin_unlock_irq(&info->lock);
1166 			swap_free(swap);
1167 		}
1168 	}
1169 	return error;
1170 }
1171 
1172 /*
1173  * Search through swapped inodes to find and replace swap by page.
1174  */
1175 int shmem_unuse(swp_entry_t swap, struct page *page)
1176 {
1177 	struct list_head *this, *next;
1178 	struct shmem_inode_info *info;
1179 	struct mem_cgroup *memcg;
1180 	int error = 0;
1181 
1182 	/*
1183 	 * There's a faint possibility that swap page was replaced before
1184 	 * caller locked it: caller will come back later with the right page.
1185 	 */
1186 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1187 		goto out;
1188 
1189 	/*
1190 	 * Charge page using GFP_KERNEL while we can wait, before taking
1191 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1192 	 * Charged back to the user (not to caller) when swap account is used.
1193 	 */
1194 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1195 			false);
1196 	if (error)
1197 		goto out;
1198 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
1199 	error = -EAGAIN;
1200 
1201 	mutex_lock(&shmem_swaplist_mutex);
1202 	list_for_each_safe(this, next, &shmem_swaplist) {
1203 		info = list_entry(this, struct shmem_inode_info, swaplist);
1204 		if (info->swapped)
1205 			error = shmem_unuse_inode(info, swap, &page);
1206 		else
1207 			list_del_init(&info->swaplist);
1208 		cond_resched();
1209 		if (error != -EAGAIN)
1210 			break;
1211 		/* found nothing in this: move on to search the next */
1212 	}
1213 	mutex_unlock(&shmem_swaplist_mutex);
1214 
1215 	if (error) {
1216 		if (error != -ENOMEM)
1217 			error = 0;
1218 		mem_cgroup_cancel_charge(page, memcg, false);
1219 	} else
1220 		mem_cgroup_commit_charge(page, memcg, true, false);
1221 out:
1222 	unlock_page(page);
1223 	put_page(page);
1224 	return error;
1225 }
1226 
1227 /*
1228  * Move the page from the page cache to the swap cache.
1229  */
1230 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1231 {
1232 	struct shmem_inode_info *info;
1233 	struct address_space *mapping;
1234 	struct inode *inode;
1235 	swp_entry_t swap;
1236 	pgoff_t index;
1237 
1238 	VM_BUG_ON_PAGE(PageCompound(page), page);
1239 	BUG_ON(!PageLocked(page));
1240 	mapping = page->mapping;
1241 	index = page->index;
1242 	inode = mapping->host;
1243 	info = SHMEM_I(inode);
1244 	if (info->flags & VM_LOCKED)
1245 		goto redirty;
1246 	if (!total_swap_pages)
1247 		goto redirty;
1248 
1249 	/*
1250 	 * Our capabilities prevent regular writeback or sync from ever calling
1251 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1252 	 * its underlying filesystem, in which case tmpfs should write out to
1253 	 * swap only in response to memory pressure, and not for the writeback
1254 	 * threads or sync.
1255 	 */
1256 	if (!wbc->for_reclaim) {
1257 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1258 		goto redirty;
1259 	}
1260 
1261 	/*
1262 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1263 	 * value into swapfile.c, the only way we can correctly account for a
1264 	 * fallocated page arriving here is now to initialize it and write it.
1265 	 *
1266 	 * That's okay for a page already fallocated earlier, but if we have
1267 	 * not yet completed the fallocation, then (a) we want to keep track
1268 	 * of this page in case we have to undo it, and (b) it may not be a
1269 	 * good idea to continue anyway, once we're pushing into swap.  So
1270 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1271 	 */
1272 	if (!PageUptodate(page)) {
1273 		if (inode->i_private) {
1274 			struct shmem_falloc *shmem_falloc;
1275 			spin_lock(&inode->i_lock);
1276 			shmem_falloc = inode->i_private;
1277 			if (shmem_falloc &&
1278 			    !shmem_falloc->waitq &&
1279 			    index >= shmem_falloc->start &&
1280 			    index < shmem_falloc->next)
1281 				shmem_falloc->nr_unswapped++;
1282 			else
1283 				shmem_falloc = NULL;
1284 			spin_unlock(&inode->i_lock);
1285 			if (shmem_falloc)
1286 				goto redirty;
1287 		}
1288 		clear_highpage(page);
1289 		flush_dcache_page(page);
1290 		SetPageUptodate(page);
1291 	}
1292 
1293 	swap = get_swap_page();
1294 	if (!swap.val)
1295 		goto redirty;
1296 
1297 	if (mem_cgroup_try_charge_swap(page, swap))
1298 		goto free_swap;
1299 
1300 	/*
1301 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1302 	 * if it's not already there.  Do it now before the page is
1303 	 * moved to swap cache, when its pagelock no longer protects
1304 	 * the inode from eviction.  But don't unlock the mutex until
1305 	 * we've incremented swapped, because shmem_unuse_inode() will
1306 	 * prune a !swapped inode from the swaplist under this mutex.
1307 	 */
1308 	mutex_lock(&shmem_swaplist_mutex);
1309 	if (list_empty(&info->swaplist))
1310 		list_add_tail(&info->swaplist, &shmem_swaplist);
1311 
1312 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1313 		spin_lock_irq(&info->lock);
1314 		shmem_recalc_inode(inode);
1315 		info->swapped++;
1316 		spin_unlock_irq(&info->lock);
1317 
1318 		swap_shmem_alloc(swap);
1319 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1320 
1321 		mutex_unlock(&shmem_swaplist_mutex);
1322 		BUG_ON(page_mapped(page));
1323 		swap_writepage(page, wbc);
1324 		return 0;
1325 	}
1326 
1327 	mutex_unlock(&shmem_swaplist_mutex);
1328 free_swap:
1329 	swapcache_free(swap);
1330 redirty:
1331 	set_page_dirty(page);
1332 	if (wbc->for_reclaim)
1333 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1334 	unlock_page(page);
1335 	return 0;
1336 }
1337 
1338 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1339 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1340 {
1341 	char buffer[64];
1342 
1343 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1344 		return;		/* show nothing */
1345 
1346 	mpol_to_str(buffer, sizeof(buffer), mpol);
1347 
1348 	seq_printf(seq, ",mpol=%s", buffer);
1349 }
1350 
1351 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1352 {
1353 	struct mempolicy *mpol = NULL;
1354 	if (sbinfo->mpol) {
1355 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1356 		mpol = sbinfo->mpol;
1357 		mpol_get(mpol);
1358 		spin_unlock(&sbinfo->stat_lock);
1359 	}
1360 	return mpol;
1361 }
1362 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1363 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1364 {
1365 }
1366 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1367 {
1368 	return NULL;
1369 }
1370 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1371 #ifndef CONFIG_NUMA
1372 #define vm_policy vm_private_data
1373 #endif
1374 
1375 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1376 		struct shmem_inode_info *info, pgoff_t index)
1377 {
1378 	/* Create a pseudo vma that just contains the policy */
1379 	vma->vm_start = 0;
1380 	/* Bias interleave by inode number to distribute better across nodes */
1381 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1382 	vma->vm_ops = NULL;
1383 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1384 }
1385 
1386 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1387 {
1388 	/* Drop reference taken by mpol_shared_policy_lookup() */
1389 	mpol_cond_put(vma->vm_policy);
1390 }
1391 
1392 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1393 			struct shmem_inode_info *info, pgoff_t index)
1394 {
1395 	struct vm_area_struct pvma;
1396 	struct page *page;
1397 
1398 	shmem_pseudo_vma_init(&pvma, info, index);
1399 	page = swapin_readahead(swap, gfp, &pvma, 0);
1400 	shmem_pseudo_vma_destroy(&pvma);
1401 
1402 	return page;
1403 }
1404 
1405 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1406 		struct shmem_inode_info *info, pgoff_t index)
1407 {
1408 	struct vm_area_struct pvma;
1409 	struct inode *inode = &info->vfs_inode;
1410 	struct address_space *mapping = inode->i_mapping;
1411 	pgoff_t idx, hindex;
1412 	void __rcu **results;
1413 	struct page *page;
1414 
1415 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1416 		return NULL;
1417 
1418 	hindex = round_down(index, HPAGE_PMD_NR);
1419 	rcu_read_lock();
1420 	if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1421 				hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1422 		rcu_read_unlock();
1423 		return NULL;
1424 	}
1425 	rcu_read_unlock();
1426 
1427 	shmem_pseudo_vma_init(&pvma, info, hindex);
1428 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1429 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1430 	shmem_pseudo_vma_destroy(&pvma);
1431 	if (page)
1432 		prep_transhuge_page(page);
1433 	return page;
1434 }
1435 
1436 static struct page *shmem_alloc_page(gfp_t gfp,
1437 			struct shmem_inode_info *info, pgoff_t index)
1438 {
1439 	struct vm_area_struct pvma;
1440 	struct page *page;
1441 
1442 	shmem_pseudo_vma_init(&pvma, info, index);
1443 	page = alloc_page_vma(gfp, &pvma, 0);
1444 	shmem_pseudo_vma_destroy(&pvma);
1445 
1446 	return page;
1447 }
1448 
1449 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1450 		struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1451 		pgoff_t index, bool huge)
1452 {
1453 	struct page *page;
1454 	int nr;
1455 	int err = -ENOSPC;
1456 
1457 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1458 		huge = false;
1459 	nr = huge ? HPAGE_PMD_NR : 1;
1460 
1461 	if (shmem_acct_block(info->flags, nr))
1462 		goto failed;
1463 	if (sbinfo->max_blocks) {
1464 		if (percpu_counter_compare(&sbinfo->used_blocks,
1465 					sbinfo->max_blocks - nr) > 0)
1466 			goto unacct;
1467 		percpu_counter_add(&sbinfo->used_blocks, nr);
1468 	}
1469 
1470 	if (huge)
1471 		page = shmem_alloc_hugepage(gfp, info, index);
1472 	else
1473 		page = shmem_alloc_page(gfp, info, index);
1474 	if (page) {
1475 		__SetPageLocked(page);
1476 		__SetPageSwapBacked(page);
1477 		return page;
1478 	}
1479 
1480 	err = -ENOMEM;
1481 	if (sbinfo->max_blocks)
1482 		percpu_counter_add(&sbinfo->used_blocks, -nr);
1483 unacct:
1484 	shmem_unacct_blocks(info->flags, nr);
1485 failed:
1486 	return ERR_PTR(err);
1487 }
1488 
1489 /*
1490  * When a page is moved from swapcache to shmem filecache (either by the
1491  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1492  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1493  * ignorance of the mapping it belongs to.  If that mapping has special
1494  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1495  * we may need to copy to a suitable page before moving to filecache.
1496  *
1497  * In a future release, this may well be extended to respect cpuset and
1498  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1499  * but for now it is a simple matter of zone.
1500  */
1501 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1502 {
1503 	return page_zonenum(page) > gfp_zone(gfp);
1504 }
1505 
1506 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1507 				struct shmem_inode_info *info, pgoff_t index)
1508 {
1509 	struct page *oldpage, *newpage;
1510 	struct address_space *swap_mapping;
1511 	pgoff_t swap_index;
1512 	int error;
1513 
1514 	oldpage = *pagep;
1515 	swap_index = page_private(oldpage);
1516 	swap_mapping = page_mapping(oldpage);
1517 
1518 	/*
1519 	 * We have arrived here because our zones are constrained, so don't
1520 	 * limit chance of success by further cpuset and node constraints.
1521 	 */
1522 	gfp &= ~GFP_CONSTRAINT_MASK;
1523 	newpage = shmem_alloc_page(gfp, info, index);
1524 	if (!newpage)
1525 		return -ENOMEM;
1526 
1527 	get_page(newpage);
1528 	copy_highpage(newpage, oldpage);
1529 	flush_dcache_page(newpage);
1530 
1531 	__SetPageLocked(newpage);
1532 	__SetPageSwapBacked(newpage);
1533 	SetPageUptodate(newpage);
1534 	set_page_private(newpage, swap_index);
1535 	SetPageSwapCache(newpage);
1536 
1537 	/*
1538 	 * Our caller will very soon move newpage out of swapcache, but it's
1539 	 * a nice clean interface for us to replace oldpage by newpage there.
1540 	 */
1541 	spin_lock_irq(&swap_mapping->tree_lock);
1542 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1543 								   newpage);
1544 	if (!error) {
1545 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1546 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1547 	}
1548 	spin_unlock_irq(&swap_mapping->tree_lock);
1549 
1550 	if (unlikely(error)) {
1551 		/*
1552 		 * Is this possible?  I think not, now that our callers check
1553 		 * both PageSwapCache and page_private after getting page lock;
1554 		 * but be defensive.  Reverse old to newpage for clear and free.
1555 		 */
1556 		oldpage = newpage;
1557 	} else {
1558 		mem_cgroup_migrate(oldpage, newpage);
1559 		lru_cache_add_anon(newpage);
1560 		*pagep = newpage;
1561 	}
1562 
1563 	ClearPageSwapCache(oldpage);
1564 	set_page_private(oldpage, 0);
1565 
1566 	unlock_page(oldpage);
1567 	put_page(oldpage);
1568 	put_page(oldpage);
1569 	return error;
1570 }
1571 
1572 /*
1573  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1574  *
1575  * If we allocate a new one we do not mark it dirty. That's up to the
1576  * vm. If we swap it in we mark it dirty since we also free the swap
1577  * entry since a page cannot live in both the swap and page cache.
1578  *
1579  * fault_mm and fault_type are only supplied by shmem_fault:
1580  * otherwise they are NULL.
1581  */
1582 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1583 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1584 	struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1585 {
1586 	struct address_space *mapping = inode->i_mapping;
1587 	struct shmem_inode_info *info = SHMEM_I(inode);
1588 	struct shmem_sb_info *sbinfo;
1589 	struct mm_struct *charge_mm;
1590 	struct mem_cgroup *memcg;
1591 	struct page *page;
1592 	swp_entry_t swap;
1593 	enum sgp_type sgp_huge = sgp;
1594 	pgoff_t hindex = index;
1595 	int error;
1596 	int once = 0;
1597 	int alloced = 0;
1598 
1599 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1600 		return -EFBIG;
1601 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1602 		sgp = SGP_CACHE;
1603 repeat:
1604 	swap.val = 0;
1605 	page = find_lock_entry(mapping, index);
1606 	if (radix_tree_exceptional_entry(page)) {
1607 		swap = radix_to_swp_entry(page);
1608 		page = NULL;
1609 	}
1610 
1611 	if (sgp <= SGP_CACHE &&
1612 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1613 		error = -EINVAL;
1614 		goto unlock;
1615 	}
1616 
1617 	if (page && sgp == SGP_WRITE)
1618 		mark_page_accessed(page);
1619 
1620 	/* fallocated page? */
1621 	if (page && !PageUptodate(page)) {
1622 		if (sgp != SGP_READ)
1623 			goto clear;
1624 		unlock_page(page);
1625 		put_page(page);
1626 		page = NULL;
1627 	}
1628 	if (page || (sgp == SGP_READ && !swap.val)) {
1629 		*pagep = page;
1630 		return 0;
1631 	}
1632 
1633 	/*
1634 	 * Fast cache lookup did not find it:
1635 	 * bring it back from swap or allocate.
1636 	 */
1637 	sbinfo = SHMEM_SB(inode->i_sb);
1638 	charge_mm = vma ? vma->vm_mm : current->mm;
1639 
1640 	if (swap.val) {
1641 		/* Look it up and read it in.. */
1642 		page = lookup_swap_cache(swap);
1643 		if (!page) {
1644 			/* Or update major stats only when swapin succeeds?? */
1645 			if (fault_type) {
1646 				*fault_type |= VM_FAULT_MAJOR;
1647 				count_vm_event(PGMAJFAULT);
1648 				mem_cgroup_count_vm_event(charge_mm,
1649 							  PGMAJFAULT);
1650 			}
1651 			/* Here we actually start the io */
1652 			page = shmem_swapin(swap, gfp, info, index);
1653 			if (!page) {
1654 				error = -ENOMEM;
1655 				goto failed;
1656 			}
1657 		}
1658 
1659 		/* We have to do this with page locked to prevent races */
1660 		lock_page(page);
1661 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1662 		    !shmem_confirm_swap(mapping, index, swap)) {
1663 			error = -EEXIST;	/* try again */
1664 			goto unlock;
1665 		}
1666 		if (!PageUptodate(page)) {
1667 			error = -EIO;
1668 			goto failed;
1669 		}
1670 		wait_on_page_writeback(page);
1671 
1672 		if (shmem_should_replace_page(page, gfp)) {
1673 			error = shmem_replace_page(&page, gfp, info, index);
1674 			if (error)
1675 				goto failed;
1676 		}
1677 
1678 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1679 				false);
1680 		if (!error) {
1681 			error = shmem_add_to_page_cache(page, mapping, index,
1682 						swp_to_radix_entry(swap));
1683 			/*
1684 			 * We already confirmed swap under page lock, and make
1685 			 * no memory allocation here, so usually no possibility
1686 			 * of error; but free_swap_and_cache() only trylocks a
1687 			 * page, so it is just possible that the entry has been
1688 			 * truncated or holepunched since swap was confirmed.
1689 			 * shmem_undo_range() will have done some of the
1690 			 * unaccounting, now delete_from_swap_cache() will do
1691 			 * the rest.
1692 			 * Reset swap.val? No, leave it so "failed" goes back to
1693 			 * "repeat": reading a hole and writing should succeed.
1694 			 */
1695 			if (error) {
1696 				mem_cgroup_cancel_charge(page, memcg, false);
1697 				delete_from_swap_cache(page);
1698 			}
1699 		}
1700 		if (error)
1701 			goto failed;
1702 
1703 		mem_cgroup_commit_charge(page, memcg, true, false);
1704 
1705 		spin_lock_irq(&info->lock);
1706 		info->swapped--;
1707 		shmem_recalc_inode(inode);
1708 		spin_unlock_irq(&info->lock);
1709 
1710 		if (sgp == SGP_WRITE)
1711 			mark_page_accessed(page);
1712 
1713 		delete_from_swap_cache(page);
1714 		set_page_dirty(page);
1715 		swap_free(swap);
1716 
1717 	} else {
1718 		if (vma && userfaultfd_missing(vma)) {
1719 			*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1720 			return 0;
1721 		}
1722 
1723 		/* shmem_symlink() */
1724 		if (mapping->a_ops != &shmem_aops)
1725 			goto alloc_nohuge;
1726 		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1727 			goto alloc_nohuge;
1728 		if (shmem_huge == SHMEM_HUGE_FORCE)
1729 			goto alloc_huge;
1730 		switch (sbinfo->huge) {
1731 			loff_t i_size;
1732 			pgoff_t off;
1733 		case SHMEM_HUGE_NEVER:
1734 			goto alloc_nohuge;
1735 		case SHMEM_HUGE_WITHIN_SIZE:
1736 			off = round_up(index, HPAGE_PMD_NR);
1737 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1738 			if (i_size >= HPAGE_PMD_SIZE &&
1739 					i_size >> PAGE_SHIFT >= off)
1740 				goto alloc_huge;
1741 			/* fallthrough */
1742 		case SHMEM_HUGE_ADVISE:
1743 			if (sgp_huge == SGP_HUGE)
1744 				goto alloc_huge;
1745 			/* TODO: implement fadvise() hints */
1746 			goto alloc_nohuge;
1747 		}
1748 
1749 alloc_huge:
1750 		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1751 				index, true);
1752 		if (IS_ERR(page)) {
1753 alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1754 					index, false);
1755 		}
1756 		if (IS_ERR(page)) {
1757 			int retry = 5;
1758 			error = PTR_ERR(page);
1759 			page = NULL;
1760 			if (error != -ENOSPC)
1761 				goto failed;
1762 			/*
1763 			 * Try to reclaim some spece by splitting a huge page
1764 			 * beyond i_size on the filesystem.
1765 			 */
1766 			while (retry--) {
1767 				int ret;
1768 				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1769 				if (ret == SHRINK_STOP)
1770 					break;
1771 				if (ret)
1772 					goto alloc_nohuge;
1773 			}
1774 			goto failed;
1775 		}
1776 
1777 		if (PageTransHuge(page))
1778 			hindex = round_down(index, HPAGE_PMD_NR);
1779 		else
1780 			hindex = index;
1781 
1782 		if (sgp == SGP_WRITE)
1783 			__SetPageReferenced(page);
1784 
1785 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1786 				PageTransHuge(page));
1787 		if (error)
1788 			goto unacct;
1789 		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1790 				compound_order(page));
1791 		if (!error) {
1792 			error = shmem_add_to_page_cache(page, mapping, hindex,
1793 							NULL);
1794 			radix_tree_preload_end();
1795 		}
1796 		if (error) {
1797 			mem_cgroup_cancel_charge(page, memcg,
1798 					PageTransHuge(page));
1799 			goto unacct;
1800 		}
1801 		mem_cgroup_commit_charge(page, memcg, false,
1802 				PageTransHuge(page));
1803 		lru_cache_add_anon(page);
1804 
1805 		spin_lock_irq(&info->lock);
1806 		info->alloced += 1 << compound_order(page);
1807 		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1808 		shmem_recalc_inode(inode);
1809 		spin_unlock_irq(&info->lock);
1810 		alloced = true;
1811 
1812 		if (PageTransHuge(page) &&
1813 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1814 				hindex + HPAGE_PMD_NR - 1) {
1815 			/*
1816 			 * Part of the huge page is beyond i_size: subject
1817 			 * to shrink under memory pressure.
1818 			 */
1819 			spin_lock(&sbinfo->shrinklist_lock);
1820 			if (list_empty(&info->shrinklist)) {
1821 				list_add_tail(&info->shrinklist,
1822 						&sbinfo->shrinklist);
1823 				sbinfo->shrinklist_len++;
1824 			}
1825 			spin_unlock(&sbinfo->shrinklist_lock);
1826 		}
1827 
1828 		/*
1829 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1830 		 */
1831 		if (sgp == SGP_FALLOC)
1832 			sgp = SGP_WRITE;
1833 clear:
1834 		/*
1835 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1836 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1837 		 * it now, lest undo on failure cancel our earlier guarantee.
1838 		 */
1839 		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1840 			struct page *head = compound_head(page);
1841 			int i;
1842 
1843 			for (i = 0; i < (1 << compound_order(head)); i++) {
1844 				clear_highpage(head + i);
1845 				flush_dcache_page(head + i);
1846 			}
1847 			SetPageUptodate(head);
1848 		}
1849 	}
1850 
1851 	/* Perhaps the file has been truncated since we checked */
1852 	if (sgp <= SGP_CACHE &&
1853 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1854 		if (alloced) {
1855 			ClearPageDirty(page);
1856 			delete_from_page_cache(page);
1857 			spin_lock_irq(&info->lock);
1858 			shmem_recalc_inode(inode);
1859 			spin_unlock_irq(&info->lock);
1860 		}
1861 		error = -EINVAL;
1862 		goto unlock;
1863 	}
1864 	*pagep = page + index - hindex;
1865 	return 0;
1866 
1867 	/*
1868 	 * Error recovery.
1869 	 */
1870 unacct:
1871 	if (sbinfo->max_blocks)
1872 		percpu_counter_sub(&sbinfo->used_blocks,
1873 				1 << compound_order(page));
1874 	shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1875 
1876 	if (PageTransHuge(page)) {
1877 		unlock_page(page);
1878 		put_page(page);
1879 		goto alloc_nohuge;
1880 	}
1881 failed:
1882 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1883 		error = -EEXIST;
1884 unlock:
1885 	if (page) {
1886 		unlock_page(page);
1887 		put_page(page);
1888 	}
1889 	if (error == -ENOSPC && !once++) {
1890 		spin_lock_irq(&info->lock);
1891 		shmem_recalc_inode(inode);
1892 		spin_unlock_irq(&info->lock);
1893 		goto repeat;
1894 	}
1895 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1896 		goto repeat;
1897 	return error;
1898 }
1899 
1900 /*
1901  * This is like autoremove_wake_function, but it removes the wait queue
1902  * entry unconditionally - even if something else had already woken the
1903  * target.
1904  */
1905 static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1906 {
1907 	int ret = default_wake_function(wait, mode, sync, key);
1908 	list_del_init(&wait->task_list);
1909 	return ret;
1910 }
1911 
1912 static int shmem_fault(struct vm_fault *vmf)
1913 {
1914 	struct vm_area_struct *vma = vmf->vma;
1915 	struct inode *inode = file_inode(vma->vm_file);
1916 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1917 	enum sgp_type sgp;
1918 	int error;
1919 	int ret = VM_FAULT_LOCKED;
1920 
1921 	/*
1922 	 * Trinity finds that probing a hole which tmpfs is punching can
1923 	 * prevent the hole-punch from ever completing: which in turn
1924 	 * locks writers out with its hold on i_mutex.  So refrain from
1925 	 * faulting pages into the hole while it's being punched.  Although
1926 	 * shmem_undo_range() does remove the additions, it may be unable to
1927 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1928 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1929 	 *
1930 	 * It does not matter if we sometimes reach this check just before the
1931 	 * hole-punch begins, so that one fault then races with the punch:
1932 	 * we just need to make racing faults a rare case.
1933 	 *
1934 	 * The implementation below would be much simpler if we just used a
1935 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1936 	 * and bloating every shmem inode for this unlikely case would be sad.
1937 	 */
1938 	if (unlikely(inode->i_private)) {
1939 		struct shmem_falloc *shmem_falloc;
1940 
1941 		spin_lock(&inode->i_lock);
1942 		shmem_falloc = inode->i_private;
1943 		if (shmem_falloc &&
1944 		    shmem_falloc->waitq &&
1945 		    vmf->pgoff >= shmem_falloc->start &&
1946 		    vmf->pgoff < shmem_falloc->next) {
1947 			wait_queue_head_t *shmem_falloc_waitq;
1948 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1949 
1950 			ret = VM_FAULT_NOPAGE;
1951 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1952 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1953 				/* It's polite to up mmap_sem if we can */
1954 				up_read(&vma->vm_mm->mmap_sem);
1955 				ret = VM_FAULT_RETRY;
1956 			}
1957 
1958 			shmem_falloc_waitq = shmem_falloc->waitq;
1959 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1960 					TASK_UNINTERRUPTIBLE);
1961 			spin_unlock(&inode->i_lock);
1962 			schedule();
1963 
1964 			/*
1965 			 * shmem_falloc_waitq points into the shmem_fallocate()
1966 			 * stack of the hole-punching task: shmem_falloc_waitq
1967 			 * is usually invalid by the time we reach here, but
1968 			 * finish_wait() does not dereference it in that case;
1969 			 * though i_lock needed lest racing with wake_up_all().
1970 			 */
1971 			spin_lock(&inode->i_lock);
1972 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1973 			spin_unlock(&inode->i_lock);
1974 			return ret;
1975 		}
1976 		spin_unlock(&inode->i_lock);
1977 	}
1978 
1979 	sgp = SGP_CACHE;
1980 	if (vma->vm_flags & VM_HUGEPAGE)
1981 		sgp = SGP_HUGE;
1982 	else if (vma->vm_flags & VM_NOHUGEPAGE)
1983 		sgp = SGP_NOHUGE;
1984 
1985 	error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1986 				  gfp, vma, vmf, &ret);
1987 	if (error)
1988 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1989 	return ret;
1990 }
1991 
1992 unsigned long shmem_get_unmapped_area(struct file *file,
1993 				      unsigned long uaddr, unsigned long len,
1994 				      unsigned long pgoff, unsigned long flags)
1995 {
1996 	unsigned long (*get_area)(struct file *,
1997 		unsigned long, unsigned long, unsigned long, unsigned long);
1998 	unsigned long addr;
1999 	unsigned long offset;
2000 	unsigned long inflated_len;
2001 	unsigned long inflated_addr;
2002 	unsigned long inflated_offset;
2003 
2004 	if (len > TASK_SIZE)
2005 		return -ENOMEM;
2006 
2007 	get_area = current->mm->get_unmapped_area;
2008 	addr = get_area(file, uaddr, len, pgoff, flags);
2009 
2010 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2011 		return addr;
2012 	if (IS_ERR_VALUE(addr))
2013 		return addr;
2014 	if (addr & ~PAGE_MASK)
2015 		return addr;
2016 	if (addr > TASK_SIZE - len)
2017 		return addr;
2018 
2019 	if (shmem_huge == SHMEM_HUGE_DENY)
2020 		return addr;
2021 	if (len < HPAGE_PMD_SIZE)
2022 		return addr;
2023 	if (flags & MAP_FIXED)
2024 		return addr;
2025 	/*
2026 	 * Our priority is to support MAP_SHARED mapped hugely;
2027 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2028 	 * But if caller specified an address hint, respect that as before.
2029 	 */
2030 	if (uaddr)
2031 		return addr;
2032 
2033 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2034 		struct super_block *sb;
2035 
2036 		if (file) {
2037 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2038 			sb = file_inode(file)->i_sb;
2039 		} else {
2040 			/*
2041 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2042 			 * for "/dev/zero", to create a shared anonymous object.
2043 			 */
2044 			if (IS_ERR(shm_mnt))
2045 				return addr;
2046 			sb = shm_mnt->mnt_sb;
2047 		}
2048 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2049 			return addr;
2050 	}
2051 
2052 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2053 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2054 		return addr;
2055 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2056 		return addr;
2057 
2058 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2059 	if (inflated_len > TASK_SIZE)
2060 		return addr;
2061 	if (inflated_len < len)
2062 		return addr;
2063 
2064 	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2065 	if (IS_ERR_VALUE(inflated_addr))
2066 		return addr;
2067 	if (inflated_addr & ~PAGE_MASK)
2068 		return addr;
2069 
2070 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2071 	inflated_addr += offset - inflated_offset;
2072 	if (inflated_offset > offset)
2073 		inflated_addr += HPAGE_PMD_SIZE;
2074 
2075 	if (inflated_addr > TASK_SIZE - len)
2076 		return addr;
2077 	return inflated_addr;
2078 }
2079 
2080 #ifdef CONFIG_NUMA
2081 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2082 {
2083 	struct inode *inode = file_inode(vma->vm_file);
2084 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2085 }
2086 
2087 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2088 					  unsigned long addr)
2089 {
2090 	struct inode *inode = file_inode(vma->vm_file);
2091 	pgoff_t index;
2092 
2093 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2094 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2095 }
2096 #endif
2097 
2098 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2099 {
2100 	struct inode *inode = file_inode(file);
2101 	struct shmem_inode_info *info = SHMEM_I(inode);
2102 	int retval = -ENOMEM;
2103 
2104 	spin_lock_irq(&info->lock);
2105 	if (lock && !(info->flags & VM_LOCKED)) {
2106 		if (!user_shm_lock(inode->i_size, user))
2107 			goto out_nomem;
2108 		info->flags |= VM_LOCKED;
2109 		mapping_set_unevictable(file->f_mapping);
2110 	}
2111 	if (!lock && (info->flags & VM_LOCKED) && user) {
2112 		user_shm_unlock(inode->i_size, user);
2113 		info->flags &= ~VM_LOCKED;
2114 		mapping_clear_unevictable(file->f_mapping);
2115 	}
2116 	retval = 0;
2117 
2118 out_nomem:
2119 	spin_unlock_irq(&info->lock);
2120 	return retval;
2121 }
2122 
2123 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2124 {
2125 	file_accessed(file);
2126 	vma->vm_ops = &shmem_vm_ops;
2127 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2128 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2129 			(vma->vm_end & HPAGE_PMD_MASK)) {
2130 		khugepaged_enter(vma, vma->vm_flags);
2131 	}
2132 	return 0;
2133 }
2134 
2135 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2136 				     umode_t mode, dev_t dev, unsigned long flags)
2137 {
2138 	struct inode *inode;
2139 	struct shmem_inode_info *info;
2140 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2141 
2142 	if (shmem_reserve_inode(sb))
2143 		return NULL;
2144 
2145 	inode = new_inode(sb);
2146 	if (inode) {
2147 		inode->i_ino = get_next_ino();
2148 		inode_init_owner(inode, dir, mode);
2149 		inode->i_blocks = 0;
2150 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2151 		inode->i_generation = get_seconds();
2152 		info = SHMEM_I(inode);
2153 		memset(info, 0, (char *)inode - (char *)info);
2154 		spin_lock_init(&info->lock);
2155 		info->seals = F_SEAL_SEAL;
2156 		info->flags = flags & VM_NORESERVE;
2157 		INIT_LIST_HEAD(&info->shrinklist);
2158 		INIT_LIST_HEAD(&info->swaplist);
2159 		simple_xattrs_init(&info->xattrs);
2160 		cache_no_acl(inode);
2161 
2162 		switch (mode & S_IFMT) {
2163 		default:
2164 			inode->i_op = &shmem_special_inode_operations;
2165 			init_special_inode(inode, mode, dev);
2166 			break;
2167 		case S_IFREG:
2168 			inode->i_mapping->a_ops = &shmem_aops;
2169 			inode->i_op = &shmem_inode_operations;
2170 			inode->i_fop = &shmem_file_operations;
2171 			mpol_shared_policy_init(&info->policy,
2172 						 shmem_get_sbmpol(sbinfo));
2173 			break;
2174 		case S_IFDIR:
2175 			inc_nlink(inode);
2176 			/* Some things misbehave if size == 0 on a directory */
2177 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2178 			inode->i_op = &shmem_dir_inode_operations;
2179 			inode->i_fop = &simple_dir_operations;
2180 			break;
2181 		case S_IFLNK:
2182 			/*
2183 			 * Must not load anything in the rbtree,
2184 			 * mpol_free_shared_policy will not be called.
2185 			 */
2186 			mpol_shared_policy_init(&info->policy, NULL);
2187 			break;
2188 		}
2189 	} else
2190 		shmem_free_inode(sb);
2191 	return inode;
2192 }
2193 
2194 bool shmem_mapping(struct address_space *mapping)
2195 {
2196 	return mapping->a_ops == &shmem_aops;
2197 }
2198 
2199 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2200 			   pmd_t *dst_pmd,
2201 			   struct vm_area_struct *dst_vma,
2202 			   unsigned long dst_addr,
2203 			   unsigned long src_addr,
2204 			   struct page **pagep)
2205 {
2206 	struct inode *inode = file_inode(dst_vma->vm_file);
2207 	struct shmem_inode_info *info = SHMEM_I(inode);
2208 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2209 	struct address_space *mapping = inode->i_mapping;
2210 	gfp_t gfp = mapping_gfp_mask(mapping);
2211 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2212 	struct mem_cgroup *memcg;
2213 	spinlock_t *ptl;
2214 	void *page_kaddr;
2215 	struct page *page;
2216 	pte_t _dst_pte, *dst_pte;
2217 	int ret;
2218 
2219 	ret = -ENOMEM;
2220 	if (shmem_acct_block(info->flags, 1))
2221 		goto out;
2222 	if (sbinfo->max_blocks) {
2223 		if (percpu_counter_compare(&sbinfo->used_blocks,
2224 					   sbinfo->max_blocks) >= 0)
2225 			goto out_unacct_blocks;
2226 		percpu_counter_inc(&sbinfo->used_blocks);
2227 	}
2228 
2229 	if (!*pagep) {
2230 		page = shmem_alloc_page(gfp, info, pgoff);
2231 		if (!page)
2232 			goto out_dec_used_blocks;
2233 
2234 		page_kaddr = kmap_atomic(page);
2235 		ret = copy_from_user(page_kaddr, (const void __user *)src_addr,
2236 				     PAGE_SIZE);
2237 		kunmap_atomic(page_kaddr);
2238 
2239 		/* fallback to copy_from_user outside mmap_sem */
2240 		if (unlikely(ret)) {
2241 			*pagep = page;
2242 			if (sbinfo->max_blocks)
2243 				percpu_counter_add(&sbinfo->used_blocks, -1);
2244 			shmem_unacct_blocks(info->flags, 1);
2245 			/* don't free the page */
2246 			return -EFAULT;
2247 		}
2248 	} else {
2249 		page = *pagep;
2250 		*pagep = NULL;
2251 	}
2252 
2253 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2254 	__SetPageLocked(page);
2255 	__SetPageSwapBacked(page);
2256 	__SetPageUptodate(page);
2257 
2258 	ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2259 	if (ret)
2260 		goto out_release;
2261 
2262 	ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2263 	if (!ret) {
2264 		ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2265 		radix_tree_preload_end();
2266 	}
2267 	if (ret)
2268 		goto out_release_uncharge;
2269 
2270 	mem_cgroup_commit_charge(page, memcg, false, false);
2271 
2272 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2273 	if (dst_vma->vm_flags & VM_WRITE)
2274 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2275 
2276 	ret = -EEXIST;
2277 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2278 	if (!pte_none(*dst_pte))
2279 		goto out_release_uncharge_unlock;
2280 
2281 	lru_cache_add_anon(page);
2282 
2283 	spin_lock(&info->lock);
2284 	info->alloced++;
2285 	inode->i_blocks += BLOCKS_PER_PAGE;
2286 	shmem_recalc_inode(inode);
2287 	spin_unlock(&info->lock);
2288 
2289 	inc_mm_counter(dst_mm, mm_counter_file(page));
2290 	page_add_file_rmap(page, false);
2291 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2292 
2293 	/* No need to invalidate - it was non-present before */
2294 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2295 	unlock_page(page);
2296 	pte_unmap_unlock(dst_pte, ptl);
2297 	ret = 0;
2298 out:
2299 	return ret;
2300 out_release_uncharge_unlock:
2301 	pte_unmap_unlock(dst_pte, ptl);
2302 out_release_uncharge:
2303 	mem_cgroup_cancel_charge(page, memcg, false);
2304 out_release:
2305 	unlock_page(page);
2306 	put_page(page);
2307 out_dec_used_blocks:
2308 	if (sbinfo->max_blocks)
2309 		percpu_counter_add(&sbinfo->used_blocks, -1);
2310 out_unacct_blocks:
2311 	shmem_unacct_blocks(info->flags, 1);
2312 	goto out;
2313 }
2314 
2315 #ifdef CONFIG_TMPFS
2316 static const struct inode_operations shmem_symlink_inode_operations;
2317 static const struct inode_operations shmem_short_symlink_operations;
2318 
2319 #ifdef CONFIG_TMPFS_XATTR
2320 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2321 #else
2322 #define shmem_initxattrs NULL
2323 #endif
2324 
2325 static int
2326 shmem_write_begin(struct file *file, struct address_space *mapping,
2327 			loff_t pos, unsigned len, unsigned flags,
2328 			struct page **pagep, void **fsdata)
2329 {
2330 	struct inode *inode = mapping->host;
2331 	struct shmem_inode_info *info = SHMEM_I(inode);
2332 	pgoff_t index = pos >> PAGE_SHIFT;
2333 
2334 	/* i_mutex is held by caller */
2335 	if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2336 		if (info->seals & F_SEAL_WRITE)
2337 			return -EPERM;
2338 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2339 			return -EPERM;
2340 	}
2341 
2342 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2343 }
2344 
2345 static int
2346 shmem_write_end(struct file *file, struct address_space *mapping,
2347 			loff_t pos, unsigned len, unsigned copied,
2348 			struct page *page, void *fsdata)
2349 {
2350 	struct inode *inode = mapping->host;
2351 
2352 	if (pos + copied > inode->i_size)
2353 		i_size_write(inode, pos + copied);
2354 
2355 	if (!PageUptodate(page)) {
2356 		struct page *head = compound_head(page);
2357 		if (PageTransCompound(page)) {
2358 			int i;
2359 
2360 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2361 				if (head + i == page)
2362 					continue;
2363 				clear_highpage(head + i);
2364 				flush_dcache_page(head + i);
2365 			}
2366 		}
2367 		if (copied < PAGE_SIZE) {
2368 			unsigned from = pos & (PAGE_SIZE - 1);
2369 			zero_user_segments(page, 0, from,
2370 					from + copied, PAGE_SIZE);
2371 		}
2372 		SetPageUptodate(head);
2373 	}
2374 	set_page_dirty(page);
2375 	unlock_page(page);
2376 	put_page(page);
2377 
2378 	return copied;
2379 }
2380 
2381 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2382 {
2383 	struct file *file = iocb->ki_filp;
2384 	struct inode *inode = file_inode(file);
2385 	struct address_space *mapping = inode->i_mapping;
2386 	pgoff_t index;
2387 	unsigned long offset;
2388 	enum sgp_type sgp = SGP_READ;
2389 	int error = 0;
2390 	ssize_t retval = 0;
2391 	loff_t *ppos = &iocb->ki_pos;
2392 
2393 	/*
2394 	 * Might this read be for a stacking filesystem?  Then when reading
2395 	 * holes of a sparse file, we actually need to allocate those pages,
2396 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2397 	 */
2398 	if (!iter_is_iovec(to))
2399 		sgp = SGP_CACHE;
2400 
2401 	index = *ppos >> PAGE_SHIFT;
2402 	offset = *ppos & ~PAGE_MASK;
2403 
2404 	for (;;) {
2405 		struct page *page = NULL;
2406 		pgoff_t end_index;
2407 		unsigned long nr, ret;
2408 		loff_t i_size = i_size_read(inode);
2409 
2410 		end_index = i_size >> PAGE_SHIFT;
2411 		if (index > end_index)
2412 			break;
2413 		if (index == end_index) {
2414 			nr = i_size & ~PAGE_MASK;
2415 			if (nr <= offset)
2416 				break;
2417 		}
2418 
2419 		error = shmem_getpage(inode, index, &page, sgp);
2420 		if (error) {
2421 			if (error == -EINVAL)
2422 				error = 0;
2423 			break;
2424 		}
2425 		if (page) {
2426 			if (sgp == SGP_CACHE)
2427 				set_page_dirty(page);
2428 			unlock_page(page);
2429 		}
2430 
2431 		/*
2432 		 * We must evaluate after, since reads (unlike writes)
2433 		 * are called without i_mutex protection against truncate
2434 		 */
2435 		nr = PAGE_SIZE;
2436 		i_size = i_size_read(inode);
2437 		end_index = i_size >> PAGE_SHIFT;
2438 		if (index == end_index) {
2439 			nr = i_size & ~PAGE_MASK;
2440 			if (nr <= offset) {
2441 				if (page)
2442 					put_page(page);
2443 				break;
2444 			}
2445 		}
2446 		nr -= offset;
2447 
2448 		if (page) {
2449 			/*
2450 			 * If users can be writing to this page using arbitrary
2451 			 * virtual addresses, take care about potential aliasing
2452 			 * before reading the page on the kernel side.
2453 			 */
2454 			if (mapping_writably_mapped(mapping))
2455 				flush_dcache_page(page);
2456 			/*
2457 			 * Mark the page accessed if we read the beginning.
2458 			 */
2459 			if (!offset)
2460 				mark_page_accessed(page);
2461 		} else {
2462 			page = ZERO_PAGE(0);
2463 			get_page(page);
2464 		}
2465 
2466 		/*
2467 		 * Ok, we have the page, and it's up-to-date, so
2468 		 * now we can copy it to user space...
2469 		 */
2470 		ret = copy_page_to_iter(page, offset, nr, to);
2471 		retval += ret;
2472 		offset += ret;
2473 		index += offset >> PAGE_SHIFT;
2474 		offset &= ~PAGE_MASK;
2475 
2476 		put_page(page);
2477 		if (!iov_iter_count(to))
2478 			break;
2479 		if (ret < nr) {
2480 			error = -EFAULT;
2481 			break;
2482 		}
2483 		cond_resched();
2484 	}
2485 
2486 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2487 	file_accessed(file);
2488 	return retval ? retval : error;
2489 }
2490 
2491 /*
2492  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2493  */
2494 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2495 				    pgoff_t index, pgoff_t end, int whence)
2496 {
2497 	struct page *page;
2498 	struct pagevec pvec;
2499 	pgoff_t indices[PAGEVEC_SIZE];
2500 	bool done = false;
2501 	int i;
2502 
2503 	pagevec_init(&pvec, 0);
2504 	pvec.nr = 1;		/* start small: we may be there already */
2505 	while (!done) {
2506 		pvec.nr = find_get_entries(mapping, index,
2507 					pvec.nr, pvec.pages, indices);
2508 		if (!pvec.nr) {
2509 			if (whence == SEEK_DATA)
2510 				index = end;
2511 			break;
2512 		}
2513 		for (i = 0; i < pvec.nr; i++, index++) {
2514 			if (index < indices[i]) {
2515 				if (whence == SEEK_HOLE) {
2516 					done = true;
2517 					break;
2518 				}
2519 				index = indices[i];
2520 			}
2521 			page = pvec.pages[i];
2522 			if (page && !radix_tree_exceptional_entry(page)) {
2523 				if (!PageUptodate(page))
2524 					page = NULL;
2525 			}
2526 			if (index >= end ||
2527 			    (page && whence == SEEK_DATA) ||
2528 			    (!page && whence == SEEK_HOLE)) {
2529 				done = true;
2530 				break;
2531 			}
2532 		}
2533 		pagevec_remove_exceptionals(&pvec);
2534 		pagevec_release(&pvec);
2535 		pvec.nr = PAGEVEC_SIZE;
2536 		cond_resched();
2537 	}
2538 	return index;
2539 }
2540 
2541 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2542 {
2543 	struct address_space *mapping = file->f_mapping;
2544 	struct inode *inode = mapping->host;
2545 	pgoff_t start, end;
2546 	loff_t new_offset;
2547 
2548 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2549 		return generic_file_llseek_size(file, offset, whence,
2550 					MAX_LFS_FILESIZE, i_size_read(inode));
2551 	inode_lock(inode);
2552 	/* We're holding i_mutex so we can access i_size directly */
2553 
2554 	if (offset < 0)
2555 		offset = -EINVAL;
2556 	else if (offset >= inode->i_size)
2557 		offset = -ENXIO;
2558 	else {
2559 		start = offset >> PAGE_SHIFT;
2560 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2561 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2562 		new_offset <<= PAGE_SHIFT;
2563 		if (new_offset > offset) {
2564 			if (new_offset < inode->i_size)
2565 				offset = new_offset;
2566 			else if (whence == SEEK_DATA)
2567 				offset = -ENXIO;
2568 			else
2569 				offset = inode->i_size;
2570 		}
2571 	}
2572 
2573 	if (offset >= 0)
2574 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2575 	inode_unlock(inode);
2576 	return offset;
2577 }
2578 
2579 /*
2580  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2581  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2582  */
2583 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2584 #define LAST_SCAN               4       /* about 150ms max */
2585 
2586 static void shmem_tag_pins(struct address_space *mapping)
2587 {
2588 	struct radix_tree_iter iter;
2589 	void **slot;
2590 	pgoff_t start;
2591 	struct page *page;
2592 
2593 	lru_add_drain();
2594 	start = 0;
2595 	rcu_read_lock();
2596 
2597 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2598 		page = radix_tree_deref_slot(slot);
2599 		if (!page || radix_tree_exception(page)) {
2600 			if (radix_tree_deref_retry(page)) {
2601 				slot = radix_tree_iter_retry(&iter);
2602 				continue;
2603 			}
2604 		} else if (page_count(page) - page_mapcount(page) > 1) {
2605 			spin_lock_irq(&mapping->tree_lock);
2606 			radix_tree_tag_set(&mapping->page_tree, iter.index,
2607 					   SHMEM_TAG_PINNED);
2608 			spin_unlock_irq(&mapping->tree_lock);
2609 		}
2610 
2611 		if (need_resched()) {
2612 			slot = radix_tree_iter_resume(slot, &iter);
2613 			cond_resched_rcu();
2614 		}
2615 	}
2616 	rcu_read_unlock();
2617 }
2618 
2619 /*
2620  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2621  * via get_user_pages(), drivers might have some pending I/O without any active
2622  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2623  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2624  * them to be dropped.
2625  * The caller must guarantee that no new user will acquire writable references
2626  * to those pages to avoid races.
2627  */
2628 static int shmem_wait_for_pins(struct address_space *mapping)
2629 {
2630 	struct radix_tree_iter iter;
2631 	void **slot;
2632 	pgoff_t start;
2633 	struct page *page;
2634 	int error, scan;
2635 
2636 	shmem_tag_pins(mapping);
2637 
2638 	error = 0;
2639 	for (scan = 0; scan <= LAST_SCAN; scan++) {
2640 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2641 			break;
2642 
2643 		if (!scan)
2644 			lru_add_drain_all();
2645 		else if (schedule_timeout_killable((HZ << scan) / 200))
2646 			scan = LAST_SCAN;
2647 
2648 		start = 0;
2649 		rcu_read_lock();
2650 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2651 					   start, SHMEM_TAG_PINNED) {
2652 
2653 			page = radix_tree_deref_slot(slot);
2654 			if (radix_tree_exception(page)) {
2655 				if (radix_tree_deref_retry(page)) {
2656 					slot = radix_tree_iter_retry(&iter);
2657 					continue;
2658 				}
2659 
2660 				page = NULL;
2661 			}
2662 
2663 			if (page &&
2664 			    page_count(page) - page_mapcount(page) != 1) {
2665 				if (scan < LAST_SCAN)
2666 					goto continue_resched;
2667 
2668 				/*
2669 				 * On the last scan, we clean up all those tags
2670 				 * we inserted; but make a note that we still
2671 				 * found pages pinned.
2672 				 */
2673 				error = -EBUSY;
2674 			}
2675 
2676 			spin_lock_irq(&mapping->tree_lock);
2677 			radix_tree_tag_clear(&mapping->page_tree,
2678 					     iter.index, SHMEM_TAG_PINNED);
2679 			spin_unlock_irq(&mapping->tree_lock);
2680 continue_resched:
2681 			if (need_resched()) {
2682 				slot = radix_tree_iter_resume(slot, &iter);
2683 				cond_resched_rcu();
2684 			}
2685 		}
2686 		rcu_read_unlock();
2687 	}
2688 
2689 	return error;
2690 }
2691 
2692 #define F_ALL_SEALS (F_SEAL_SEAL | \
2693 		     F_SEAL_SHRINK | \
2694 		     F_SEAL_GROW | \
2695 		     F_SEAL_WRITE)
2696 
2697 int shmem_add_seals(struct file *file, unsigned int seals)
2698 {
2699 	struct inode *inode = file_inode(file);
2700 	struct shmem_inode_info *info = SHMEM_I(inode);
2701 	int error;
2702 
2703 	/*
2704 	 * SEALING
2705 	 * Sealing allows multiple parties to share a shmem-file but restrict
2706 	 * access to a specific subset of file operations. Seals can only be
2707 	 * added, but never removed. This way, mutually untrusted parties can
2708 	 * share common memory regions with a well-defined policy. A malicious
2709 	 * peer can thus never perform unwanted operations on a shared object.
2710 	 *
2711 	 * Seals are only supported on special shmem-files and always affect
2712 	 * the whole underlying inode. Once a seal is set, it may prevent some
2713 	 * kinds of access to the file. Currently, the following seals are
2714 	 * defined:
2715 	 *   SEAL_SEAL: Prevent further seals from being set on this file
2716 	 *   SEAL_SHRINK: Prevent the file from shrinking
2717 	 *   SEAL_GROW: Prevent the file from growing
2718 	 *   SEAL_WRITE: Prevent write access to the file
2719 	 *
2720 	 * As we don't require any trust relationship between two parties, we
2721 	 * must prevent seals from being removed. Therefore, sealing a file
2722 	 * only adds a given set of seals to the file, it never touches
2723 	 * existing seals. Furthermore, the "setting seals"-operation can be
2724 	 * sealed itself, which basically prevents any further seal from being
2725 	 * added.
2726 	 *
2727 	 * Semantics of sealing are only defined on volatile files. Only
2728 	 * anonymous shmem files support sealing. More importantly, seals are
2729 	 * never written to disk. Therefore, there's no plan to support it on
2730 	 * other file types.
2731 	 */
2732 
2733 	if (file->f_op != &shmem_file_operations)
2734 		return -EINVAL;
2735 	if (!(file->f_mode & FMODE_WRITE))
2736 		return -EPERM;
2737 	if (seals & ~(unsigned int)F_ALL_SEALS)
2738 		return -EINVAL;
2739 
2740 	inode_lock(inode);
2741 
2742 	if (info->seals & F_SEAL_SEAL) {
2743 		error = -EPERM;
2744 		goto unlock;
2745 	}
2746 
2747 	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2748 		error = mapping_deny_writable(file->f_mapping);
2749 		if (error)
2750 			goto unlock;
2751 
2752 		error = shmem_wait_for_pins(file->f_mapping);
2753 		if (error) {
2754 			mapping_allow_writable(file->f_mapping);
2755 			goto unlock;
2756 		}
2757 	}
2758 
2759 	info->seals |= seals;
2760 	error = 0;
2761 
2762 unlock:
2763 	inode_unlock(inode);
2764 	return error;
2765 }
2766 EXPORT_SYMBOL_GPL(shmem_add_seals);
2767 
2768 int shmem_get_seals(struct file *file)
2769 {
2770 	if (file->f_op != &shmem_file_operations)
2771 		return -EINVAL;
2772 
2773 	return SHMEM_I(file_inode(file))->seals;
2774 }
2775 EXPORT_SYMBOL_GPL(shmem_get_seals);
2776 
2777 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2778 {
2779 	long error;
2780 
2781 	switch (cmd) {
2782 	case F_ADD_SEALS:
2783 		/* disallow upper 32bit */
2784 		if (arg > UINT_MAX)
2785 			return -EINVAL;
2786 
2787 		error = shmem_add_seals(file, arg);
2788 		break;
2789 	case F_GET_SEALS:
2790 		error = shmem_get_seals(file);
2791 		break;
2792 	default:
2793 		error = -EINVAL;
2794 		break;
2795 	}
2796 
2797 	return error;
2798 }
2799 
2800 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2801 							 loff_t len)
2802 {
2803 	struct inode *inode = file_inode(file);
2804 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2805 	struct shmem_inode_info *info = SHMEM_I(inode);
2806 	struct shmem_falloc shmem_falloc;
2807 	pgoff_t start, index, end;
2808 	int error;
2809 
2810 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2811 		return -EOPNOTSUPP;
2812 
2813 	inode_lock(inode);
2814 
2815 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2816 		struct address_space *mapping = file->f_mapping;
2817 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2818 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2819 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2820 
2821 		/* protected by i_mutex */
2822 		if (info->seals & F_SEAL_WRITE) {
2823 			error = -EPERM;
2824 			goto out;
2825 		}
2826 
2827 		shmem_falloc.waitq = &shmem_falloc_waitq;
2828 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2829 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2830 		spin_lock(&inode->i_lock);
2831 		inode->i_private = &shmem_falloc;
2832 		spin_unlock(&inode->i_lock);
2833 
2834 		if ((u64)unmap_end > (u64)unmap_start)
2835 			unmap_mapping_range(mapping, unmap_start,
2836 					    1 + unmap_end - unmap_start, 0);
2837 		shmem_truncate_range(inode, offset, offset + len - 1);
2838 		/* No need to unmap again: hole-punching leaves COWed pages */
2839 
2840 		spin_lock(&inode->i_lock);
2841 		inode->i_private = NULL;
2842 		wake_up_all(&shmem_falloc_waitq);
2843 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
2844 		spin_unlock(&inode->i_lock);
2845 		error = 0;
2846 		goto out;
2847 	}
2848 
2849 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2850 	error = inode_newsize_ok(inode, offset + len);
2851 	if (error)
2852 		goto out;
2853 
2854 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2855 		error = -EPERM;
2856 		goto out;
2857 	}
2858 
2859 	start = offset >> PAGE_SHIFT;
2860 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2861 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2862 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2863 		error = -ENOSPC;
2864 		goto out;
2865 	}
2866 
2867 	shmem_falloc.waitq = NULL;
2868 	shmem_falloc.start = start;
2869 	shmem_falloc.next  = start;
2870 	shmem_falloc.nr_falloced = 0;
2871 	shmem_falloc.nr_unswapped = 0;
2872 	spin_lock(&inode->i_lock);
2873 	inode->i_private = &shmem_falloc;
2874 	spin_unlock(&inode->i_lock);
2875 
2876 	for (index = start; index < end; index++) {
2877 		struct page *page;
2878 
2879 		/*
2880 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2881 		 * been interrupted because we are using up too much memory.
2882 		 */
2883 		if (signal_pending(current))
2884 			error = -EINTR;
2885 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2886 			error = -ENOMEM;
2887 		else
2888 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2889 		if (error) {
2890 			/* Remove the !PageUptodate pages we added */
2891 			if (index > start) {
2892 				shmem_undo_range(inode,
2893 				    (loff_t)start << PAGE_SHIFT,
2894 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2895 			}
2896 			goto undone;
2897 		}
2898 
2899 		/*
2900 		 * Inform shmem_writepage() how far we have reached.
2901 		 * No need for lock or barrier: we have the page lock.
2902 		 */
2903 		shmem_falloc.next++;
2904 		if (!PageUptodate(page))
2905 			shmem_falloc.nr_falloced++;
2906 
2907 		/*
2908 		 * If !PageUptodate, leave it that way so that freeable pages
2909 		 * can be recognized if we need to rollback on error later.
2910 		 * But set_page_dirty so that memory pressure will swap rather
2911 		 * than free the pages we are allocating (and SGP_CACHE pages
2912 		 * might still be clean: we now need to mark those dirty too).
2913 		 */
2914 		set_page_dirty(page);
2915 		unlock_page(page);
2916 		put_page(page);
2917 		cond_resched();
2918 	}
2919 
2920 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2921 		i_size_write(inode, offset + len);
2922 	inode->i_ctime = current_time(inode);
2923 undone:
2924 	spin_lock(&inode->i_lock);
2925 	inode->i_private = NULL;
2926 	spin_unlock(&inode->i_lock);
2927 out:
2928 	inode_unlock(inode);
2929 	return error;
2930 }
2931 
2932 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2933 {
2934 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2935 
2936 	buf->f_type = TMPFS_MAGIC;
2937 	buf->f_bsize = PAGE_SIZE;
2938 	buf->f_namelen = NAME_MAX;
2939 	if (sbinfo->max_blocks) {
2940 		buf->f_blocks = sbinfo->max_blocks;
2941 		buf->f_bavail =
2942 		buf->f_bfree  = sbinfo->max_blocks -
2943 				percpu_counter_sum(&sbinfo->used_blocks);
2944 	}
2945 	if (sbinfo->max_inodes) {
2946 		buf->f_files = sbinfo->max_inodes;
2947 		buf->f_ffree = sbinfo->free_inodes;
2948 	}
2949 	/* else leave those fields 0 like simple_statfs */
2950 	return 0;
2951 }
2952 
2953 /*
2954  * File creation. Allocate an inode, and we're done..
2955  */
2956 static int
2957 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2958 {
2959 	struct inode *inode;
2960 	int error = -ENOSPC;
2961 
2962 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2963 	if (inode) {
2964 		error = simple_acl_create(dir, inode);
2965 		if (error)
2966 			goto out_iput;
2967 		error = security_inode_init_security(inode, dir,
2968 						     &dentry->d_name,
2969 						     shmem_initxattrs, NULL);
2970 		if (error && error != -EOPNOTSUPP)
2971 			goto out_iput;
2972 
2973 		error = 0;
2974 		dir->i_size += BOGO_DIRENT_SIZE;
2975 		dir->i_ctime = dir->i_mtime = current_time(dir);
2976 		d_instantiate(dentry, inode);
2977 		dget(dentry); /* Extra count - pin the dentry in core */
2978 	}
2979 	return error;
2980 out_iput:
2981 	iput(inode);
2982 	return error;
2983 }
2984 
2985 static int
2986 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2987 {
2988 	struct inode *inode;
2989 	int error = -ENOSPC;
2990 
2991 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2992 	if (inode) {
2993 		error = security_inode_init_security(inode, dir,
2994 						     NULL,
2995 						     shmem_initxattrs, NULL);
2996 		if (error && error != -EOPNOTSUPP)
2997 			goto out_iput;
2998 		error = simple_acl_create(dir, inode);
2999 		if (error)
3000 			goto out_iput;
3001 		d_tmpfile(dentry, inode);
3002 	}
3003 	return error;
3004 out_iput:
3005 	iput(inode);
3006 	return error;
3007 }
3008 
3009 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3010 {
3011 	int error;
3012 
3013 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3014 		return error;
3015 	inc_nlink(dir);
3016 	return 0;
3017 }
3018 
3019 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3020 		bool excl)
3021 {
3022 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3023 }
3024 
3025 /*
3026  * Link a file..
3027  */
3028 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3029 {
3030 	struct inode *inode = d_inode(old_dentry);
3031 	int ret;
3032 
3033 	/*
3034 	 * No ordinary (disk based) filesystem counts links as inodes;
3035 	 * but each new link needs a new dentry, pinning lowmem, and
3036 	 * tmpfs dentries cannot be pruned until they are unlinked.
3037 	 */
3038 	ret = shmem_reserve_inode(inode->i_sb);
3039 	if (ret)
3040 		goto out;
3041 
3042 	dir->i_size += BOGO_DIRENT_SIZE;
3043 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3044 	inc_nlink(inode);
3045 	ihold(inode);	/* New dentry reference */
3046 	dget(dentry);		/* Extra pinning count for the created dentry */
3047 	d_instantiate(dentry, inode);
3048 out:
3049 	return ret;
3050 }
3051 
3052 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3053 {
3054 	struct inode *inode = d_inode(dentry);
3055 
3056 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3057 		shmem_free_inode(inode->i_sb);
3058 
3059 	dir->i_size -= BOGO_DIRENT_SIZE;
3060 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3061 	drop_nlink(inode);
3062 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3063 	return 0;
3064 }
3065 
3066 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3067 {
3068 	if (!simple_empty(dentry))
3069 		return -ENOTEMPTY;
3070 
3071 	drop_nlink(d_inode(dentry));
3072 	drop_nlink(dir);
3073 	return shmem_unlink(dir, dentry);
3074 }
3075 
3076 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3077 {
3078 	bool old_is_dir = d_is_dir(old_dentry);
3079 	bool new_is_dir = d_is_dir(new_dentry);
3080 
3081 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3082 		if (old_is_dir) {
3083 			drop_nlink(old_dir);
3084 			inc_nlink(new_dir);
3085 		} else {
3086 			drop_nlink(new_dir);
3087 			inc_nlink(old_dir);
3088 		}
3089 	}
3090 	old_dir->i_ctime = old_dir->i_mtime =
3091 	new_dir->i_ctime = new_dir->i_mtime =
3092 	d_inode(old_dentry)->i_ctime =
3093 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3094 
3095 	return 0;
3096 }
3097 
3098 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3099 {
3100 	struct dentry *whiteout;
3101 	int error;
3102 
3103 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3104 	if (!whiteout)
3105 		return -ENOMEM;
3106 
3107 	error = shmem_mknod(old_dir, whiteout,
3108 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3109 	dput(whiteout);
3110 	if (error)
3111 		return error;
3112 
3113 	/*
3114 	 * Cheat and hash the whiteout while the old dentry is still in
3115 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3116 	 *
3117 	 * d_lookup() will consistently find one of them at this point,
3118 	 * not sure which one, but that isn't even important.
3119 	 */
3120 	d_rehash(whiteout);
3121 	return 0;
3122 }
3123 
3124 /*
3125  * The VFS layer already does all the dentry stuff for rename,
3126  * we just have to decrement the usage count for the target if
3127  * it exists so that the VFS layer correctly free's it when it
3128  * gets overwritten.
3129  */
3130 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3131 {
3132 	struct inode *inode = d_inode(old_dentry);
3133 	int they_are_dirs = S_ISDIR(inode->i_mode);
3134 
3135 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3136 		return -EINVAL;
3137 
3138 	if (flags & RENAME_EXCHANGE)
3139 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3140 
3141 	if (!simple_empty(new_dentry))
3142 		return -ENOTEMPTY;
3143 
3144 	if (flags & RENAME_WHITEOUT) {
3145 		int error;
3146 
3147 		error = shmem_whiteout(old_dir, old_dentry);
3148 		if (error)
3149 			return error;
3150 	}
3151 
3152 	if (d_really_is_positive(new_dentry)) {
3153 		(void) shmem_unlink(new_dir, new_dentry);
3154 		if (they_are_dirs) {
3155 			drop_nlink(d_inode(new_dentry));
3156 			drop_nlink(old_dir);
3157 		}
3158 	} else if (they_are_dirs) {
3159 		drop_nlink(old_dir);
3160 		inc_nlink(new_dir);
3161 	}
3162 
3163 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3164 	new_dir->i_size += BOGO_DIRENT_SIZE;
3165 	old_dir->i_ctime = old_dir->i_mtime =
3166 	new_dir->i_ctime = new_dir->i_mtime =
3167 	inode->i_ctime = current_time(old_dir);
3168 	return 0;
3169 }
3170 
3171 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3172 {
3173 	int error;
3174 	int len;
3175 	struct inode *inode;
3176 	struct page *page;
3177 	struct shmem_inode_info *info;
3178 
3179 	len = strlen(symname) + 1;
3180 	if (len > PAGE_SIZE)
3181 		return -ENAMETOOLONG;
3182 
3183 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3184 	if (!inode)
3185 		return -ENOSPC;
3186 
3187 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3188 					     shmem_initxattrs, NULL);
3189 	if (error) {
3190 		if (error != -EOPNOTSUPP) {
3191 			iput(inode);
3192 			return error;
3193 		}
3194 		error = 0;
3195 	}
3196 
3197 	info = SHMEM_I(inode);
3198 	inode->i_size = len-1;
3199 	if (len <= SHORT_SYMLINK_LEN) {
3200 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3201 		if (!inode->i_link) {
3202 			iput(inode);
3203 			return -ENOMEM;
3204 		}
3205 		inode->i_op = &shmem_short_symlink_operations;
3206 	} else {
3207 		inode_nohighmem(inode);
3208 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3209 		if (error) {
3210 			iput(inode);
3211 			return error;
3212 		}
3213 		inode->i_mapping->a_ops = &shmem_aops;
3214 		inode->i_op = &shmem_symlink_inode_operations;
3215 		memcpy(page_address(page), symname, len);
3216 		SetPageUptodate(page);
3217 		set_page_dirty(page);
3218 		unlock_page(page);
3219 		put_page(page);
3220 	}
3221 	dir->i_size += BOGO_DIRENT_SIZE;
3222 	dir->i_ctime = dir->i_mtime = current_time(dir);
3223 	d_instantiate(dentry, inode);
3224 	dget(dentry);
3225 	return 0;
3226 }
3227 
3228 static void shmem_put_link(void *arg)
3229 {
3230 	mark_page_accessed(arg);
3231 	put_page(arg);
3232 }
3233 
3234 static const char *shmem_get_link(struct dentry *dentry,
3235 				  struct inode *inode,
3236 				  struct delayed_call *done)
3237 {
3238 	struct page *page = NULL;
3239 	int error;
3240 	if (!dentry) {
3241 		page = find_get_page(inode->i_mapping, 0);
3242 		if (!page)
3243 			return ERR_PTR(-ECHILD);
3244 		if (!PageUptodate(page)) {
3245 			put_page(page);
3246 			return ERR_PTR(-ECHILD);
3247 		}
3248 	} else {
3249 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3250 		if (error)
3251 			return ERR_PTR(error);
3252 		unlock_page(page);
3253 	}
3254 	set_delayed_call(done, shmem_put_link, page);
3255 	return page_address(page);
3256 }
3257 
3258 #ifdef CONFIG_TMPFS_XATTR
3259 /*
3260  * Superblocks without xattr inode operations may get some security.* xattr
3261  * support from the LSM "for free". As soon as we have any other xattrs
3262  * like ACLs, we also need to implement the security.* handlers at
3263  * filesystem level, though.
3264  */
3265 
3266 /*
3267  * Callback for security_inode_init_security() for acquiring xattrs.
3268  */
3269 static int shmem_initxattrs(struct inode *inode,
3270 			    const struct xattr *xattr_array,
3271 			    void *fs_info)
3272 {
3273 	struct shmem_inode_info *info = SHMEM_I(inode);
3274 	const struct xattr *xattr;
3275 	struct simple_xattr *new_xattr;
3276 	size_t len;
3277 
3278 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3279 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3280 		if (!new_xattr)
3281 			return -ENOMEM;
3282 
3283 		len = strlen(xattr->name) + 1;
3284 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3285 					  GFP_KERNEL);
3286 		if (!new_xattr->name) {
3287 			kfree(new_xattr);
3288 			return -ENOMEM;
3289 		}
3290 
3291 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3292 		       XATTR_SECURITY_PREFIX_LEN);
3293 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3294 		       xattr->name, len);
3295 
3296 		simple_xattr_list_add(&info->xattrs, new_xattr);
3297 	}
3298 
3299 	return 0;
3300 }
3301 
3302 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3303 				   struct dentry *unused, struct inode *inode,
3304 				   const char *name, void *buffer, size_t size)
3305 {
3306 	struct shmem_inode_info *info = SHMEM_I(inode);
3307 
3308 	name = xattr_full_name(handler, name);
3309 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3310 }
3311 
3312 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3313 				   struct dentry *unused, struct inode *inode,
3314 				   const char *name, const void *value,
3315 				   size_t size, int flags)
3316 {
3317 	struct shmem_inode_info *info = SHMEM_I(inode);
3318 
3319 	name = xattr_full_name(handler, name);
3320 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3321 }
3322 
3323 static const struct xattr_handler shmem_security_xattr_handler = {
3324 	.prefix = XATTR_SECURITY_PREFIX,
3325 	.get = shmem_xattr_handler_get,
3326 	.set = shmem_xattr_handler_set,
3327 };
3328 
3329 static const struct xattr_handler shmem_trusted_xattr_handler = {
3330 	.prefix = XATTR_TRUSTED_PREFIX,
3331 	.get = shmem_xattr_handler_get,
3332 	.set = shmem_xattr_handler_set,
3333 };
3334 
3335 static const struct xattr_handler *shmem_xattr_handlers[] = {
3336 #ifdef CONFIG_TMPFS_POSIX_ACL
3337 	&posix_acl_access_xattr_handler,
3338 	&posix_acl_default_xattr_handler,
3339 #endif
3340 	&shmem_security_xattr_handler,
3341 	&shmem_trusted_xattr_handler,
3342 	NULL
3343 };
3344 
3345 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3346 {
3347 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3348 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3349 }
3350 #endif /* CONFIG_TMPFS_XATTR */
3351 
3352 static const struct inode_operations shmem_short_symlink_operations = {
3353 	.get_link	= simple_get_link,
3354 #ifdef CONFIG_TMPFS_XATTR
3355 	.listxattr	= shmem_listxattr,
3356 #endif
3357 };
3358 
3359 static const struct inode_operations shmem_symlink_inode_operations = {
3360 	.get_link	= shmem_get_link,
3361 #ifdef CONFIG_TMPFS_XATTR
3362 	.listxattr	= shmem_listxattr,
3363 #endif
3364 };
3365 
3366 static struct dentry *shmem_get_parent(struct dentry *child)
3367 {
3368 	return ERR_PTR(-ESTALE);
3369 }
3370 
3371 static int shmem_match(struct inode *ino, void *vfh)
3372 {
3373 	__u32 *fh = vfh;
3374 	__u64 inum = fh[2];
3375 	inum = (inum << 32) | fh[1];
3376 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3377 }
3378 
3379 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3380 		struct fid *fid, int fh_len, int fh_type)
3381 {
3382 	struct inode *inode;
3383 	struct dentry *dentry = NULL;
3384 	u64 inum;
3385 
3386 	if (fh_len < 3)
3387 		return NULL;
3388 
3389 	inum = fid->raw[2];
3390 	inum = (inum << 32) | fid->raw[1];
3391 
3392 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3393 			shmem_match, fid->raw);
3394 	if (inode) {
3395 		dentry = d_find_alias(inode);
3396 		iput(inode);
3397 	}
3398 
3399 	return dentry;
3400 }
3401 
3402 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3403 				struct inode *parent)
3404 {
3405 	if (*len < 3) {
3406 		*len = 3;
3407 		return FILEID_INVALID;
3408 	}
3409 
3410 	if (inode_unhashed(inode)) {
3411 		/* Unfortunately insert_inode_hash is not idempotent,
3412 		 * so as we hash inodes here rather than at creation
3413 		 * time, we need a lock to ensure we only try
3414 		 * to do it once
3415 		 */
3416 		static DEFINE_SPINLOCK(lock);
3417 		spin_lock(&lock);
3418 		if (inode_unhashed(inode))
3419 			__insert_inode_hash(inode,
3420 					    inode->i_ino + inode->i_generation);
3421 		spin_unlock(&lock);
3422 	}
3423 
3424 	fh[0] = inode->i_generation;
3425 	fh[1] = inode->i_ino;
3426 	fh[2] = ((__u64)inode->i_ino) >> 32;
3427 
3428 	*len = 3;
3429 	return 1;
3430 }
3431 
3432 static const struct export_operations shmem_export_ops = {
3433 	.get_parent     = shmem_get_parent,
3434 	.encode_fh      = shmem_encode_fh,
3435 	.fh_to_dentry	= shmem_fh_to_dentry,
3436 };
3437 
3438 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3439 			       bool remount)
3440 {
3441 	char *this_char, *value, *rest;
3442 	struct mempolicy *mpol = NULL;
3443 	uid_t uid;
3444 	gid_t gid;
3445 
3446 	while (options != NULL) {
3447 		this_char = options;
3448 		for (;;) {
3449 			/*
3450 			 * NUL-terminate this option: unfortunately,
3451 			 * mount options form a comma-separated list,
3452 			 * but mpol's nodelist may also contain commas.
3453 			 */
3454 			options = strchr(options, ',');
3455 			if (options == NULL)
3456 				break;
3457 			options++;
3458 			if (!isdigit(*options)) {
3459 				options[-1] = '\0';
3460 				break;
3461 			}
3462 		}
3463 		if (!*this_char)
3464 			continue;
3465 		if ((value = strchr(this_char,'=')) != NULL) {
3466 			*value++ = 0;
3467 		} else {
3468 			pr_err("tmpfs: No value for mount option '%s'\n",
3469 			       this_char);
3470 			goto error;
3471 		}
3472 
3473 		if (!strcmp(this_char,"size")) {
3474 			unsigned long long size;
3475 			size = memparse(value,&rest);
3476 			if (*rest == '%') {
3477 				size <<= PAGE_SHIFT;
3478 				size *= totalram_pages;
3479 				do_div(size, 100);
3480 				rest++;
3481 			}
3482 			if (*rest)
3483 				goto bad_val;
3484 			sbinfo->max_blocks =
3485 				DIV_ROUND_UP(size, PAGE_SIZE);
3486 		} else if (!strcmp(this_char,"nr_blocks")) {
3487 			sbinfo->max_blocks = memparse(value, &rest);
3488 			if (*rest)
3489 				goto bad_val;
3490 		} else if (!strcmp(this_char,"nr_inodes")) {
3491 			sbinfo->max_inodes = memparse(value, &rest);
3492 			if (*rest)
3493 				goto bad_val;
3494 		} else if (!strcmp(this_char,"mode")) {
3495 			if (remount)
3496 				continue;
3497 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3498 			if (*rest)
3499 				goto bad_val;
3500 		} else if (!strcmp(this_char,"uid")) {
3501 			if (remount)
3502 				continue;
3503 			uid = simple_strtoul(value, &rest, 0);
3504 			if (*rest)
3505 				goto bad_val;
3506 			sbinfo->uid = make_kuid(current_user_ns(), uid);
3507 			if (!uid_valid(sbinfo->uid))
3508 				goto bad_val;
3509 		} else if (!strcmp(this_char,"gid")) {
3510 			if (remount)
3511 				continue;
3512 			gid = simple_strtoul(value, &rest, 0);
3513 			if (*rest)
3514 				goto bad_val;
3515 			sbinfo->gid = make_kgid(current_user_ns(), gid);
3516 			if (!gid_valid(sbinfo->gid))
3517 				goto bad_val;
3518 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3519 		} else if (!strcmp(this_char, "huge")) {
3520 			int huge;
3521 			huge = shmem_parse_huge(value);
3522 			if (huge < 0)
3523 				goto bad_val;
3524 			if (!has_transparent_hugepage() &&
3525 					huge != SHMEM_HUGE_NEVER)
3526 				goto bad_val;
3527 			sbinfo->huge = huge;
3528 #endif
3529 #ifdef CONFIG_NUMA
3530 		} else if (!strcmp(this_char,"mpol")) {
3531 			mpol_put(mpol);
3532 			mpol = NULL;
3533 			if (mpol_parse_str(value, &mpol))
3534 				goto bad_val;
3535 #endif
3536 		} else {
3537 			pr_err("tmpfs: Bad mount option %s\n", this_char);
3538 			goto error;
3539 		}
3540 	}
3541 	sbinfo->mpol = mpol;
3542 	return 0;
3543 
3544 bad_val:
3545 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3546 	       value, this_char);
3547 error:
3548 	mpol_put(mpol);
3549 	return 1;
3550 
3551 }
3552 
3553 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3554 {
3555 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3556 	struct shmem_sb_info config = *sbinfo;
3557 	unsigned long inodes;
3558 	int error = -EINVAL;
3559 
3560 	config.mpol = NULL;
3561 	if (shmem_parse_options(data, &config, true))
3562 		return error;
3563 
3564 	spin_lock(&sbinfo->stat_lock);
3565 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3566 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3567 		goto out;
3568 	if (config.max_inodes < inodes)
3569 		goto out;
3570 	/*
3571 	 * Those tests disallow limited->unlimited while any are in use;
3572 	 * but we must separately disallow unlimited->limited, because
3573 	 * in that case we have no record of how much is already in use.
3574 	 */
3575 	if (config.max_blocks && !sbinfo->max_blocks)
3576 		goto out;
3577 	if (config.max_inodes && !sbinfo->max_inodes)
3578 		goto out;
3579 
3580 	error = 0;
3581 	sbinfo->huge = config.huge;
3582 	sbinfo->max_blocks  = config.max_blocks;
3583 	sbinfo->max_inodes  = config.max_inodes;
3584 	sbinfo->free_inodes = config.max_inodes - inodes;
3585 
3586 	/*
3587 	 * Preserve previous mempolicy unless mpol remount option was specified.
3588 	 */
3589 	if (config.mpol) {
3590 		mpol_put(sbinfo->mpol);
3591 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3592 	}
3593 out:
3594 	spin_unlock(&sbinfo->stat_lock);
3595 	return error;
3596 }
3597 
3598 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3599 {
3600 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3601 
3602 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3603 		seq_printf(seq, ",size=%luk",
3604 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3605 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3606 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3607 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3608 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3609 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3610 		seq_printf(seq, ",uid=%u",
3611 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3612 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3613 		seq_printf(seq, ",gid=%u",
3614 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3615 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3616 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3617 	if (sbinfo->huge)
3618 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3619 #endif
3620 	shmem_show_mpol(seq, sbinfo->mpol);
3621 	return 0;
3622 }
3623 
3624 #define MFD_NAME_PREFIX "memfd:"
3625 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3626 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3627 
3628 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3629 
3630 SYSCALL_DEFINE2(memfd_create,
3631 		const char __user *, uname,
3632 		unsigned int, flags)
3633 {
3634 	struct shmem_inode_info *info;
3635 	struct file *file;
3636 	int fd, error;
3637 	char *name;
3638 	long len;
3639 
3640 	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3641 		return -EINVAL;
3642 
3643 	/* length includes terminating zero */
3644 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3645 	if (len <= 0)
3646 		return -EFAULT;
3647 	if (len > MFD_NAME_MAX_LEN + 1)
3648 		return -EINVAL;
3649 
3650 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3651 	if (!name)
3652 		return -ENOMEM;
3653 
3654 	strcpy(name, MFD_NAME_PREFIX);
3655 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3656 		error = -EFAULT;
3657 		goto err_name;
3658 	}
3659 
3660 	/* terminating-zero may have changed after strnlen_user() returned */
3661 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3662 		error = -EFAULT;
3663 		goto err_name;
3664 	}
3665 
3666 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3667 	if (fd < 0) {
3668 		error = fd;
3669 		goto err_name;
3670 	}
3671 
3672 	file = shmem_file_setup(name, 0, VM_NORESERVE);
3673 	if (IS_ERR(file)) {
3674 		error = PTR_ERR(file);
3675 		goto err_fd;
3676 	}
3677 	info = SHMEM_I(file_inode(file));
3678 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3679 	file->f_flags |= O_RDWR | O_LARGEFILE;
3680 	if (flags & MFD_ALLOW_SEALING)
3681 		info->seals &= ~F_SEAL_SEAL;
3682 
3683 	fd_install(fd, file);
3684 	kfree(name);
3685 	return fd;
3686 
3687 err_fd:
3688 	put_unused_fd(fd);
3689 err_name:
3690 	kfree(name);
3691 	return error;
3692 }
3693 
3694 #endif /* CONFIG_TMPFS */
3695 
3696 static void shmem_put_super(struct super_block *sb)
3697 {
3698 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3699 
3700 	percpu_counter_destroy(&sbinfo->used_blocks);
3701 	mpol_put(sbinfo->mpol);
3702 	kfree(sbinfo);
3703 	sb->s_fs_info = NULL;
3704 }
3705 
3706 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3707 {
3708 	struct inode *inode;
3709 	struct shmem_sb_info *sbinfo;
3710 	int err = -ENOMEM;
3711 
3712 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3713 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3714 				L1_CACHE_BYTES), GFP_KERNEL);
3715 	if (!sbinfo)
3716 		return -ENOMEM;
3717 
3718 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3719 	sbinfo->uid = current_fsuid();
3720 	sbinfo->gid = current_fsgid();
3721 	sb->s_fs_info = sbinfo;
3722 
3723 #ifdef CONFIG_TMPFS
3724 	/*
3725 	 * Per default we only allow half of the physical ram per
3726 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3727 	 * but the internal instance is left unlimited.
3728 	 */
3729 	if (!(sb->s_flags & MS_KERNMOUNT)) {
3730 		sbinfo->max_blocks = shmem_default_max_blocks();
3731 		sbinfo->max_inodes = shmem_default_max_inodes();
3732 		if (shmem_parse_options(data, sbinfo, false)) {
3733 			err = -EINVAL;
3734 			goto failed;
3735 		}
3736 	} else {
3737 		sb->s_flags |= MS_NOUSER;
3738 	}
3739 	sb->s_export_op = &shmem_export_ops;
3740 	sb->s_flags |= MS_NOSEC;
3741 #else
3742 	sb->s_flags |= MS_NOUSER;
3743 #endif
3744 
3745 	spin_lock_init(&sbinfo->stat_lock);
3746 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3747 		goto failed;
3748 	sbinfo->free_inodes = sbinfo->max_inodes;
3749 	spin_lock_init(&sbinfo->shrinklist_lock);
3750 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3751 
3752 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3753 	sb->s_blocksize = PAGE_SIZE;
3754 	sb->s_blocksize_bits = PAGE_SHIFT;
3755 	sb->s_magic = TMPFS_MAGIC;
3756 	sb->s_op = &shmem_ops;
3757 	sb->s_time_gran = 1;
3758 #ifdef CONFIG_TMPFS_XATTR
3759 	sb->s_xattr = shmem_xattr_handlers;
3760 #endif
3761 #ifdef CONFIG_TMPFS_POSIX_ACL
3762 	sb->s_flags |= MS_POSIXACL;
3763 #endif
3764 
3765 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3766 	if (!inode)
3767 		goto failed;
3768 	inode->i_uid = sbinfo->uid;
3769 	inode->i_gid = sbinfo->gid;
3770 	sb->s_root = d_make_root(inode);
3771 	if (!sb->s_root)
3772 		goto failed;
3773 	return 0;
3774 
3775 failed:
3776 	shmem_put_super(sb);
3777 	return err;
3778 }
3779 
3780 static struct kmem_cache *shmem_inode_cachep;
3781 
3782 static struct inode *shmem_alloc_inode(struct super_block *sb)
3783 {
3784 	struct shmem_inode_info *info;
3785 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3786 	if (!info)
3787 		return NULL;
3788 	return &info->vfs_inode;
3789 }
3790 
3791 static void shmem_destroy_callback(struct rcu_head *head)
3792 {
3793 	struct inode *inode = container_of(head, struct inode, i_rcu);
3794 	if (S_ISLNK(inode->i_mode))
3795 		kfree(inode->i_link);
3796 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3797 }
3798 
3799 static void shmem_destroy_inode(struct inode *inode)
3800 {
3801 	if (S_ISREG(inode->i_mode))
3802 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3803 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3804 }
3805 
3806 static void shmem_init_inode(void *foo)
3807 {
3808 	struct shmem_inode_info *info = foo;
3809 	inode_init_once(&info->vfs_inode);
3810 }
3811 
3812 static int shmem_init_inodecache(void)
3813 {
3814 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3815 				sizeof(struct shmem_inode_info),
3816 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3817 	return 0;
3818 }
3819 
3820 static void shmem_destroy_inodecache(void)
3821 {
3822 	kmem_cache_destroy(shmem_inode_cachep);
3823 }
3824 
3825 static const struct address_space_operations shmem_aops = {
3826 	.writepage	= shmem_writepage,
3827 	.set_page_dirty	= __set_page_dirty_no_writeback,
3828 #ifdef CONFIG_TMPFS
3829 	.write_begin	= shmem_write_begin,
3830 	.write_end	= shmem_write_end,
3831 #endif
3832 #ifdef CONFIG_MIGRATION
3833 	.migratepage	= migrate_page,
3834 #endif
3835 	.error_remove_page = generic_error_remove_page,
3836 };
3837 
3838 static const struct file_operations shmem_file_operations = {
3839 	.mmap		= shmem_mmap,
3840 	.get_unmapped_area = shmem_get_unmapped_area,
3841 #ifdef CONFIG_TMPFS
3842 	.llseek		= shmem_file_llseek,
3843 	.read_iter	= shmem_file_read_iter,
3844 	.write_iter	= generic_file_write_iter,
3845 	.fsync		= noop_fsync,
3846 	.splice_read	= generic_file_splice_read,
3847 	.splice_write	= iter_file_splice_write,
3848 	.fallocate	= shmem_fallocate,
3849 #endif
3850 };
3851 
3852 static const struct inode_operations shmem_inode_operations = {
3853 	.getattr	= shmem_getattr,
3854 	.setattr	= shmem_setattr,
3855 #ifdef CONFIG_TMPFS_XATTR
3856 	.listxattr	= shmem_listxattr,
3857 	.set_acl	= simple_set_acl,
3858 #endif
3859 };
3860 
3861 static const struct inode_operations shmem_dir_inode_operations = {
3862 #ifdef CONFIG_TMPFS
3863 	.create		= shmem_create,
3864 	.lookup		= simple_lookup,
3865 	.link		= shmem_link,
3866 	.unlink		= shmem_unlink,
3867 	.symlink	= shmem_symlink,
3868 	.mkdir		= shmem_mkdir,
3869 	.rmdir		= shmem_rmdir,
3870 	.mknod		= shmem_mknod,
3871 	.rename		= shmem_rename2,
3872 	.tmpfile	= shmem_tmpfile,
3873 #endif
3874 #ifdef CONFIG_TMPFS_XATTR
3875 	.listxattr	= shmem_listxattr,
3876 #endif
3877 #ifdef CONFIG_TMPFS_POSIX_ACL
3878 	.setattr	= shmem_setattr,
3879 	.set_acl	= simple_set_acl,
3880 #endif
3881 };
3882 
3883 static const struct inode_operations shmem_special_inode_operations = {
3884 #ifdef CONFIG_TMPFS_XATTR
3885 	.listxattr	= shmem_listxattr,
3886 #endif
3887 #ifdef CONFIG_TMPFS_POSIX_ACL
3888 	.setattr	= shmem_setattr,
3889 	.set_acl	= simple_set_acl,
3890 #endif
3891 };
3892 
3893 static const struct super_operations shmem_ops = {
3894 	.alloc_inode	= shmem_alloc_inode,
3895 	.destroy_inode	= shmem_destroy_inode,
3896 #ifdef CONFIG_TMPFS
3897 	.statfs		= shmem_statfs,
3898 	.remount_fs	= shmem_remount_fs,
3899 	.show_options	= shmem_show_options,
3900 #endif
3901 	.evict_inode	= shmem_evict_inode,
3902 	.drop_inode	= generic_delete_inode,
3903 	.put_super	= shmem_put_super,
3904 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3905 	.nr_cached_objects	= shmem_unused_huge_count,
3906 	.free_cached_objects	= shmem_unused_huge_scan,
3907 #endif
3908 };
3909 
3910 static const struct vm_operations_struct shmem_vm_ops = {
3911 	.fault		= shmem_fault,
3912 	.map_pages	= filemap_map_pages,
3913 #ifdef CONFIG_NUMA
3914 	.set_policy     = shmem_set_policy,
3915 	.get_policy     = shmem_get_policy,
3916 #endif
3917 };
3918 
3919 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3920 	int flags, const char *dev_name, void *data)
3921 {
3922 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3923 }
3924 
3925 static struct file_system_type shmem_fs_type = {
3926 	.owner		= THIS_MODULE,
3927 	.name		= "tmpfs",
3928 	.mount		= shmem_mount,
3929 	.kill_sb	= kill_litter_super,
3930 	.fs_flags	= FS_USERNS_MOUNT,
3931 };
3932 
3933 int __init shmem_init(void)
3934 {
3935 	int error;
3936 
3937 	/* If rootfs called this, don't re-init */
3938 	if (shmem_inode_cachep)
3939 		return 0;
3940 
3941 	error = shmem_init_inodecache();
3942 	if (error)
3943 		goto out3;
3944 
3945 	error = register_filesystem(&shmem_fs_type);
3946 	if (error) {
3947 		pr_err("Could not register tmpfs\n");
3948 		goto out2;
3949 	}
3950 
3951 	shm_mnt = kern_mount(&shmem_fs_type);
3952 	if (IS_ERR(shm_mnt)) {
3953 		error = PTR_ERR(shm_mnt);
3954 		pr_err("Could not kern_mount tmpfs\n");
3955 		goto out1;
3956 	}
3957 
3958 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3959 	if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3960 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3961 	else
3962 		shmem_huge = 0; /* just in case it was patched */
3963 #endif
3964 	return 0;
3965 
3966 out1:
3967 	unregister_filesystem(&shmem_fs_type);
3968 out2:
3969 	shmem_destroy_inodecache();
3970 out3:
3971 	shm_mnt = ERR_PTR(error);
3972 	return error;
3973 }
3974 
3975 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3976 static ssize_t shmem_enabled_show(struct kobject *kobj,
3977 		struct kobj_attribute *attr, char *buf)
3978 {
3979 	int values[] = {
3980 		SHMEM_HUGE_ALWAYS,
3981 		SHMEM_HUGE_WITHIN_SIZE,
3982 		SHMEM_HUGE_ADVISE,
3983 		SHMEM_HUGE_NEVER,
3984 		SHMEM_HUGE_DENY,
3985 		SHMEM_HUGE_FORCE,
3986 	};
3987 	int i, count;
3988 
3989 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3990 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3991 
3992 		count += sprintf(buf + count, fmt,
3993 				shmem_format_huge(values[i]));
3994 	}
3995 	buf[count - 1] = '\n';
3996 	return count;
3997 }
3998 
3999 static ssize_t shmem_enabled_store(struct kobject *kobj,
4000 		struct kobj_attribute *attr, const char *buf, size_t count)
4001 {
4002 	char tmp[16];
4003 	int huge;
4004 
4005 	if (count + 1 > sizeof(tmp))
4006 		return -EINVAL;
4007 	memcpy(tmp, buf, count);
4008 	tmp[count] = '\0';
4009 	if (count && tmp[count - 1] == '\n')
4010 		tmp[count - 1] = '\0';
4011 
4012 	huge = shmem_parse_huge(tmp);
4013 	if (huge == -EINVAL)
4014 		return -EINVAL;
4015 	if (!has_transparent_hugepage() &&
4016 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4017 		return -EINVAL;
4018 
4019 	shmem_huge = huge;
4020 	if (shmem_huge < SHMEM_HUGE_DENY)
4021 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4022 	return count;
4023 }
4024 
4025 struct kobj_attribute shmem_enabled_attr =
4026 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4027 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4028 
4029 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4030 bool shmem_huge_enabled(struct vm_area_struct *vma)
4031 {
4032 	struct inode *inode = file_inode(vma->vm_file);
4033 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4034 	loff_t i_size;
4035 	pgoff_t off;
4036 
4037 	if (shmem_huge == SHMEM_HUGE_FORCE)
4038 		return true;
4039 	if (shmem_huge == SHMEM_HUGE_DENY)
4040 		return false;
4041 	switch (sbinfo->huge) {
4042 		case SHMEM_HUGE_NEVER:
4043 			return false;
4044 		case SHMEM_HUGE_ALWAYS:
4045 			return true;
4046 		case SHMEM_HUGE_WITHIN_SIZE:
4047 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4048 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4049 			if (i_size >= HPAGE_PMD_SIZE &&
4050 					i_size >> PAGE_SHIFT >= off)
4051 				return true;
4052 		case SHMEM_HUGE_ADVISE:
4053 			/* TODO: implement fadvise() hints */
4054 			return (vma->vm_flags & VM_HUGEPAGE);
4055 		default:
4056 			VM_BUG_ON(1);
4057 			return false;
4058 	}
4059 }
4060 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4061 
4062 #else /* !CONFIG_SHMEM */
4063 
4064 /*
4065  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4066  *
4067  * This is intended for small system where the benefits of the full
4068  * shmem code (swap-backed and resource-limited) are outweighed by
4069  * their complexity. On systems without swap this code should be
4070  * effectively equivalent, but much lighter weight.
4071  */
4072 
4073 static struct file_system_type shmem_fs_type = {
4074 	.name		= "tmpfs",
4075 	.mount		= ramfs_mount,
4076 	.kill_sb	= kill_litter_super,
4077 	.fs_flags	= FS_USERNS_MOUNT,
4078 };
4079 
4080 int __init shmem_init(void)
4081 {
4082 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4083 
4084 	shm_mnt = kern_mount(&shmem_fs_type);
4085 	BUG_ON(IS_ERR(shm_mnt));
4086 
4087 	return 0;
4088 }
4089 
4090 int shmem_unuse(swp_entry_t swap, struct page *page)
4091 {
4092 	return 0;
4093 }
4094 
4095 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4096 {
4097 	return 0;
4098 }
4099 
4100 void shmem_unlock_mapping(struct address_space *mapping)
4101 {
4102 }
4103 
4104 #ifdef CONFIG_MMU
4105 unsigned long shmem_get_unmapped_area(struct file *file,
4106 				      unsigned long addr, unsigned long len,
4107 				      unsigned long pgoff, unsigned long flags)
4108 {
4109 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4110 }
4111 #endif
4112 
4113 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4114 {
4115 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4116 }
4117 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4118 
4119 #define shmem_vm_ops				generic_file_vm_ops
4120 #define shmem_file_operations			ramfs_file_operations
4121 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4122 #define shmem_acct_size(flags, size)		0
4123 #define shmem_unacct_size(flags, size)		do {} while (0)
4124 
4125 #endif /* CONFIG_SHMEM */
4126 
4127 /* common code */
4128 
4129 static const struct dentry_operations anon_ops = {
4130 	.d_dname = simple_dname
4131 };
4132 
4133 static struct file *__shmem_file_setup(const char *name, loff_t size,
4134 				       unsigned long flags, unsigned int i_flags)
4135 {
4136 	struct file *res;
4137 	struct inode *inode;
4138 	struct path path;
4139 	struct super_block *sb;
4140 	struct qstr this;
4141 
4142 	if (IS_ERR(shm_mnt))
4143 		return ERR_CAST(shm_mnt);
4144 
4145 	if (size < 0 || size > MAX_LFS_FILESIZE)
4146 		return ERR_PTR(-EINVAL);
4147 
4148 	if (shmem_acct_size(flags, size))
4149 		return ERR_PTR(-ENOMEM);
4150 
4151 	res = ERR_PTR(-ENOMEM);
4152 	this.name = name;
4153 	this.len = strlen(name);
4154 	this.hash = 0; /* will go */
4155 	sb = shm_mnt->mnt_sb;
4156 	path.mnt = mntget(shm_mnt);
4157 	path.dentry = d_alloc_pseudo(sb, &this);
4158 	if (!path.dentry)
4159 		goto put_memory;
4160 	d_set_d_op(path.dentry, &anon_ops);
4161 
4162 	res = ERR_PTR(-ENOSPC);
4163 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4164 	if (!inode)
4165 		goto put_memory;
4166 
4167 	inode->i_flags |= i_flags;
4168 	d_instantiate(path.dentry, inode);
4169 	inode->i_size = size;
4170 	clear_nlink(inode);	/* It is unlinked */
4171 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4172 	if (IS_ERR(res))
4173 		goto put_path;
4174 
4175 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4176 		  &shmem_file_operations);
4177 	if (IS_ERR(res))
4178 		goto put_path;
4179 
4180 	return res;
4181 
4182 put_memory:
4183 	shmem_unacct_size(flags, size);
4184 put_path:
4185 	path_put(&path);
4186 	return res;
4187 }
4188 
4189 /**
4190  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4191  * 	kernel internal.  There will be NO LSM permission checks against the
4192  * 	underlying inode.  So users of this interface must do LSM checks at a
4193  *	higher layer.  The users are the big_key and shm implementations.  LSM
4194  *	checks are provided at the key or shm level rather than the inode.
4195  * @name: name for dentry (to be seen in /proc/<pid>/maps
4196  * @size: size to be set for the file
4197  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4198  */
4199 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4200 {
4201 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
4202 }
4203 
4204 /**
4205  * shmem_file_setup - get an unlinked file living in tmpfs
4206  * @name: name for dentry (to be seen in /proc/<pid>/maps
4207  * @size: size to be set for the file
4208  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4209  */
4210 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4211 {
4212 	return __shmem_file_setup(name, size, flags, 0);
4213 }
4214 EXPORT_SYMBOL_GPL(shmem_file_setup);
4215 
4216 /**
4217  * shmem_zero_setup - setup a shared anonymous mapping
4218  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4219  */
4220 int shmem_zero_setup(struct vm_area_struct *vma)
4221 {
4222 	struct file *file;
4223 	loff_t size = vma->vm_end - vma->vm_start;
4224 
4225 	/*
4226 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4227 	 * between XFS directory reading and selinux: since this file is only
4228 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4229 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4230 	 */
4231 	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4232 	if (IS_ERR(file))
4233 		return PTR_ERR(file);
4234 
4235 	if (vma->vm_file)
4236 		fput(vma->vm_file);
4237 	vma->vm_file = file;
4238 	vma->vm_ops = &shmem_vm_ops;
4239 
4240 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4241 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4242 			(vma->vm_end & HPAGE_PMD_MASK)) {
4243 		khugepaged_enter(vma, vma->vm_flags);
4244 	}
4245 
4246 	return 0;
4247 }
4248 
4249 /**
4250  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4251  * @mapping:	the page's address_space
4252  * @index:	the page index
4253  * @gfp:	the page allocator flags to use if allocating
4254  *
4255  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4256  * with any new page allocations done using the specified allocation flags.
4257  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4258  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4259  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4260  *
4261  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4262  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4263  */
4264 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4265 					 pgoff_t index, gfp_t gfp)
4266 {
4267 #ifdef CONFIG_SHMEM
4268 	struct inode *inode = mapping->host;
4269 	struct page *page;
4270 	int error;
4271 
4272 	BUG_ON(mapping->a_ops != &shmem_aops);
4273 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4274 				  gfp, NULL, NULL, NULL);
4275 	if (error)
4276 		page = ERR_PTR(error);
4277 	else
4278 		unlock_page(page);
4279 	return page;
4280 #else
4281 	/*
4282 	 * The tiny !SHMEM case uses ramfs without swap
4283 	 */
4284 	return read_cache_page_gfp(mapping, index, gfp);
4285 #endif
4286 }
4287 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4288