1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/hugetlb.h> 38 #include <linux/fs_parser.h> 39 #include <linux/swapfile.h> 40 #include "swap.h" 41 42 static struct vfsmount *shm_mnt; 43 44 #ifdef CONFIG_SHMEM 45 /* 46 * This virtual memory filesystem is heavily based on the ramfs. It 47 * extends ramfs by the ability to use swap and honor resource limits 48 * which makes it a completely usable filesystem. 49 */ 50 51 #include <linux/xattr.h> 52 #include <linux/exportfs.h> 53 #include <linux/posix_acl.h> 54 #include <linux/posix_acl_xattr.h> 55 #include <linux/mman.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 #include <linux/backing-dev.h> 59 #include <linux/shmem_fs.h> 60 #include <linux/writeback.h> 61 #include <linux/pagevec.h> 62 #include <linux/percpu_counter.h> 63 #include <linux/falloc.h> 64 #include <linux/splice.h> 65 #include <linux/security.h> 66 #include <linux/swapops.h> 67 #include <linux/mempolicy.h> 68 #include <linux/namei.h> 69 #include <linux/ctype.h> 70 #include <linux/migrate.h> 71 #include <linux/highmem.h> 72 #include <linux/seq_file.h> 73 #include <linux/magic.h> 74 #include <linux/syscalls.h> 75 #include <linux/fcntl.h> 76 #include <uapi/linux/memfd.h> 77 #include <linux/userfaultfd_k.h> 78 #include <linux/rmap.h> 79 #include <linux/uuid.h> 80 81 #include <linux/uaccess.h> 82 83 #include "internal.h" 84 85 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 86 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 87 88 /* Pretend that each entry is of this size in directory's i_size */ 89 #define BOGO_DIRENT_SIZE 20 90 91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 92 #define SHORT_SYMLINK_LEN 128 93 94 /* 95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 96 * inode->i_private (with i_rwsem making sure that it has only one user at 97 * a time): we would prefer not to enlarge the shmem inode just for that. 98 */ 99 struct shmem_falloc { 100 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 101 pgoff_t start; /* start of range currently being fallocated */ 102 pgoff_t next; /* the next page offset to be fallocated */ 103 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 104 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 105 }; 106 107 struct shmem_options { 108 unsigned long long blocks; 109 unsigned long long inodes; 110 struct mempolicy *mpol; 111 kuid_t uid; 112 kgid_t gid; 113 umode_t mode; 114 bool full_inums; 115 int huge; 116 int seen; 117 #define SHMEM_SEEN_BLOCKS 1 118 #define SHMEM_SEEN_INODES 2 119 #define SHMEM_SEEN_HUGE 4 120 #define SHMEM_SEEN_INUMS 8 121 }; 122 123 #ifdef CONFIG_TMPFS 124 static unsigned long shmem_default_max_blocks(void) 125 { 126 return totalram_pages() / 2; 127 } 128 129 static unsigned long shmem_default_max_inodes(void) 130 { 131 unsigned long nr_pages = totalram_pages(); 132 133 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 134 } 135 #endif 136 137 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 138 struct folio **foliop, enum sgp_type sgp, 139 gfp_t gfp, struct vm_area_struct *vma, 140 vm_fault_t *fault_type); 141 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 142 struct page **pagep, enum sgp_type sgp, 143 gfp_t gfp, struct vm_area_struct *vma, 144 struct vm_fault *vmf, vm_fault_t *fault_type); 145 146 int shmem_getpage(struct inode *inode, pgoff_t index, 147 struct page **pagep, enum sgp_type sgp) 148 { 149 return shmem_getpage_gfp(inode, index, pagep, sgp, 150 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 151 } 152 153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 154 { 155 return sb->s_fs_info; 156 } 157 158 /* 159 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 160 * for shared memory and for shared anonymous (/dev/zero) mappings 161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 162 * consistent with the pre-accounting of private mappings ... 163 */ 164 static inline int shmem_acct_size(unsigned long flags, loff_t size) 165 { 166 return (flags & VM_NORESERVE) ? 167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 168 } 169 170 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 171 { 172 if (!(flags & VM_NORESERVE)) 173 vm_unacct_memory(VM_ACCT(size)); 174 } 175 176 static inline int shmem_reacct_size(unsigned long flags, 177 loff_t oldsize, loff_t newsize) 178 { 179 if (!(flags & VM_NORESERVE)) { 180 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 181 return security_vm_enough_memory_mm(current->mm, 182 VM_ACCT(newsize) - VM_ACCT(oldsize)); 183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 185 } 186 return 0; 187 } 188 189 /* 190 * ... whereas tmpfs objects are accounted incrementally as 191 * pages are allocated, in order to allow large sparse files. 192 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 194 */ 195 static inline int shmem_acct_block(unsigned long flags, long pages) 196 { 197 if (!(flags & VM_NORESERVE)) 198 return 0; 199 200 return security_vm_enough_memory_mm(current->mm, 201 pages * VM_ACCT(PAGE_SIZE)); 202 } 203 204 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 205 { 206 if (flags & VM_NORESERVE) 207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 211 { 212 struct shmem_inode_info *info = SHMEM_I(inode); 213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 214 215 if (shmem_acct_block(info->flags, pages)) 216 return false; 217 218 if (sbinfo->max_blocks) { 219 if (percpu_counter_compare(&sbinfo->used_blocks, 220 sbinfo->max_blocks - pages) > 0) 221 goto unacct; 222 percpu_counter_add(&sbinfo->used_blocks, pages); 223 } 224 225 return true; 226 227 unacct: 228 shmem_unacct_blocks(info->flags, pages); 229 return false; 230 } 231 232 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 233 { 234 struct shmem_inode_info *info = SHMEM_I(inode); 235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 236 237 if (sbinfo->max_blocks) 238 percpu_counter_sub(&sbinfo->used_blocks, pages); 239 shmem_unacct_blocks(info->flags, pages); 240 } 241 242 static const struct super_operations shmem_ops; 243 const struct address_space_operations shmem_aops; 244 static const struct file_operations shmem_file_operations; 245 static const struct inode_operations shmem_inode_operations; 246 static const struct inode_operations shmem_dir_inode_operations; 247 static const struct inode_operations shmem_special_inode_operations; 248 static const struct vm_operations_struct shmem_vm_ops; 249 static struct file_system_type shmem_fs_type; 250 251 bool vma_is_shmem(struct vm_area_struct *vma) 252 { 253 return vma->vm_ops == &shmem_vm_ops; 254 } 255 256 static LIST_HEAD(shmem_swaplist); 257 static DEFINE_MUTEX(shmem_swaplist_mutex); 258 259 /* 260 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 261 * produces a novel ino for the newly allocated inode. 262 * 263 * It may also be called when making a hard link to permit the space needed by 264 * each dentry. However, in that case, no new inode number is needed since that 265 * internally draws from another pool of inode numbers (currently global 266 * get_next_ino()). This case is indicated by passing NULL as inop. 267 */ 268 #define SHMEM_INO_BATCH 1024 269 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 270 { 271 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 272 ino_t ino; 273 274 if (!(sb->s_flags & SB_KERNMOUNT)) { 275 raw_spin_lock(&sbinfo->stat_lock); 276 if (sbinfo->max_inodes) { 277 if (!sbinfo->free_inodes) { 278 raw_spin_unlock(&sbinfo->stat_lock); 279 return -ENOSPC; 280 } 281 sbinfo->free_inodes--; 282 } 283 if (inop) { 284 ino = sbinfo->next_ino++; 285 if (unlikely(is_zero_ino(ino))) 286 ino = sbinfo->next_ino++; 287 if (unlikely(!sbinfo->full_inums && 288 ino > UINT_MAX)) { 289 /* 290 * Emulate get_next_ino uint wraparound for 291 * compatibility 292 */ 293 if (IS_ENABLED(CONFIG_64BIT)) 294 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 295 __func__, MINOR(sb->s_dev)); 296 sbinfo->next_ino = 1; 297 ino = sbinfo->next_ino++; 298 } 299 *inop = ino; 300 } 301 raw_spin_unlock(&sbinfo->stat_lock); 302 } else if (inop) { 303 /* 304 * __shmem_file_setup, one of our callers, is lock-free: it 305 * doesn't hold stat_lock in shmem_reserve_inode since 306 * max_inodes is always 0, and is called from potentially 307 * unknown contexts. As such, use a per-cpu batched allocator 308 * which doesn't require the per-sb stat_lock unless we are at 309 * the batch boundary. 310 * 311 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 312 * shmem mounts are not exposed to userspace, so we don't need 313 * to worry about things like glibc compatibility. 314 */ 315 ino_t *next_ino; 316 317 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 318 ino = *next_ino; 319 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 320 raw_spin_lock(&sbinfo->stat_lock); 321 ino = sbinfo->next_ino; 322 sbinfo->next_ino += SHMEM_INO_BATCH; 323 raw_spin_unlock(&sbinfo->stat_lock); 324 if (unlikely(is_zero_ino(ino))) 325 ino++; 326 } 327 *inop = ino; 328 *next_ino = ++ino; 329 put_cpu(); 330 } 331 332 return 0; 333 } 334 335 static void shmem_free_inode(struct super_block *sb) 336 { 337 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 338 if (sbinfo->max_inodes) { 339 raw_spin_lock(&sbinfo->stat_lock); 340 sbinfo->free_inodes++; 341 raw_spin_unlock(&sbinfo->stat_lock); 342 } 343 } 344 345 /** 346 * shmem_recalc_inode - recalculate the block usage of an inode 347 * @inode: inode to recalc 348 * 349 * We have to calculate the free blocks since the mm can drop 350 * undirtied hole pages behind our back. 351 * 352 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 353 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 354 * 355 * It has to be called with the spinlock held. 356 */ 357 static void shmem_recalc_inode(struct inode *inode) 358 { 359 struct shmem_inode_info *info = SHMEM_I(inode); 360 long freed; 361 362 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 363 if (freed > 0) { 364 info->alloced -= freed; 365 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 366 shmem_inode_unacct_blocks(inode, freed); 367 } 368 } 369 370 bool shmem_charge(struct inode *inode, long pages) 371 { 372 struct shmem_inode_info *info = SHMEM_I(inode); 373 unsigned long flags; 374 375 if (!shmem_inode_acct_block(inode, pages)) 376 return false; 377 378 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 379 inode->i_mapping->nrpages += pages; 380 381 spin_lock_irqsave(&info->lock, flags); 382 info->alloced += pages; 383 inode->i_blocks += pages * BLOCKS_PER_PAGE; 384 shmem_recalc_inode(inode); 385 spin_unlock_irqrestore(&info->lock, flags); 386 387 return true; 388 } 389 390 void shmem_uncharge(struct inode *inode, long pages) 391 { 392 struct shmem_inode_info *info = SHMEM_I(inode); 393 unsigned long flags; 394 395 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 396 397 spin_lock_irqsave(&info->lock, flags); 398 info->alloced -= pages; 399 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 400 shmem_recalc_inode(inode); 401 spin_unlock_irqrestore(&info->lock, flags); 402 403 shmem_inode_unacct_blocks(inode, pages); 404 } 405 406 /* 407 * Replace item expected in xarray by a new item, while holding xa_lock. 408 */ 409 static int shmem_replace_entry(struct address_space *mapping, 410 pgoff_t index, void *expected, void *replacement) 411 { 412 XA_STATE(xas, &mapping->i_pages, index); 413 void *item; 414 415 VM_BUG_ON(!expected); 416 VM_BUG_ON(!replacement); 417 item = xas_load(&xas); 418 if (item != expected) 419 return -ENOENT; 420 xas_store(&xas, replacement); 421 return 0; 422 } 423 424 /* 425 * Sometimes, before we decide whether to proceed or to fail, we must check 426 * that an entry was not already brought back from swap by a racing thread. 427 * 428 * Checking page is not enough: by the time a SwapCache page is locked, it 429 * might be reused, and again be SwapCache, using the same swap as before. 430 */ 431 static bool shmem_confirm_swap(struct address_space *mapping, 432 pgoff_t index, swp_entry_t swap) 433 { 434 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 435 } 436 437 /* 438 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 439 * 440 * SHMEM_HUGE_NEVER: 441 * disables huge pages for the mount; 442 * SHMEM_HUGE_ALWAYS: 443 * enables huge pages for the mount; 444 * SHMEM_HUGE_WITHIN_SIZE: 445 * only allocate huge pages if the page will be fully within i_size, 446 * also respect fadvise()/madvise() hints; 447 * SHMEM_HUGE_ADVISE: 448 * only allocate huge pages if requested with fadvise()/madvise(); 449 */ 450 451 #define SHMEM_HUGE_NEVER 0 452 #define SHMEM_HUGE_ALWAYS 1 453 #define SHMEM_HUGE_WITHIN_SIZE 2 454 #define SHMEM_HUGE_ADVISE 3 455 456 /* 457 * Special values. 458 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 459 * 460 * SHMEM_HUGE_DENY: 461 * disables huge on shm_mnt and all mounts, for emergency use; 462 * SHMEM_HUGE_FORCE: 463 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 464 * 465 */ 466 #define SHMEM_HUGE_DENY (-1) 467 #define SHMEM_HUGE_FORCE (-2) 468 469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 470 /* ifdef here to avoid bloating shmem.o when not necessary */ 471 472 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 473 474 bool shmem_is_huge(struct vm_area_struct *vma, 475 struct inode *inode, pgoff_t index) 476 { 477 loff_t i_size; 478 479 if (!S_ISREG(inode->i_mode)) 480 return false; 481 if (shmem_huge == SHMEM_HUGE_DENY) 482 return false; 483 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) || 484 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))) 485 return false; 486 if (shmem_huge == SHMEM_HUGE_FORCE) 487 return true; 488 489 switch (SHMEM_SB(inode->i_sb)->huge) { 490 case SHMEM_HUGE_ALWAYS: 491 return true; 492 case SHMEM_HUGE_WITHIN_SIZE: 493 index = round_up(index + 1, HPAGE_PMD_NR); 494 i_size = round_up(i_size_read(inode), PAGE_SIZE); 495 if (i_size >> PAGE_SHIFT >= index) 496 return true; 497 fallthrough; 498 case SHMEM_HUGE_ADVISE: 499 if (vma && (vma->vm_flags & VM_HUGEPAGE)) 500 return true; 501 fallthrough; 502 default: 503 return false; 504 } 505 } 506 507 #if defined(CONFIG_SYSFS) 508 static int shmem_parse_huge(const char *str) 509 { 510 if (!strcmp(str, "never")) 511 return SHMEM_HUGE_NEVER; 512 if (!strcmp(str, "always")) 513 return SHMEM_HUGE_ALWAYS; 514 if (!strcmp(str, "within_size")) 515 return SHMEM_HUGE_WITHIN_SIZE; 516 if (!strcmp(str, "advise")) 517 return SHMEM_HUGE_ADVISE; 518 if (!strcmp(str, "deny")) 519 return SHMEM_HUGE_DENY; 520 if (!strcmp(str, "force")) 521 return SHMEM_HUGE_FORCE; 522 return -EINVAL; 523 } 524 #endif 525 526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 527 static const char *shmem_format_huge(int huge) 528 { 529 switch (huge) { 530 case SHMEM_HUGE_NEVER: 531 return "never"; 532 case SHMEM_HUGE_ALWAYS: 533 return "always"; 534 case SHMEM_HUGE_WITHIN_SIZE: 535 return "within_size"; 536 case SHMEM_HUGE_ADVISE: 537 return "advise"; 538 case SHMEM_HUGE_DENY: 539 return "deny"; 540 case SHMEM_HUGE_FORCE: 541 return "force"; 542 default: 543 VM_BUG_ON(1); 544 return "bad_val"; 545 } 546 } 547 #endif 548 549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 550 struct shrink_control *sc, unsigned long nr_to_split) 551 { 552 LIST_HEAD(list), *pos, *next; 553 LIST_HEAD(to_remove); 554 struct inode *inode; 555 struct shmem_inode_info *info; 556 struct folio *folio; 557 unsigned long batch = sc ? sc->nr_to_scan : 128; 558 int split = 0; 559 560 if (list_empty(&sbinfo->shrinklist)) 561 return SHRINK_STOP; 562 563 spin_lock(&sbinfo->shrinklist_lock); 564 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 565 info = list_entry(pos, struct shmem_inode_info, shrinklist); 566 567 /* pin the inode */ 568 inode = igrab(&info->vfs_inode); 569 570 /* inode is about to be evicted */ 571 if (!inode) { 572 list_del_init(&info->shrinklist); 573 goto next; 574 } 575 576 /* Check if there's anything to gain */ 577 if (round_up(inode->i_size, PAGE_SIZE) == 578 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 579 list_move(&info->shrinklist, &to_remove); 580 goto next; 581 } 582 583 list_move(&info->shrinklist, &list); 584 next: 585 sbinfo->shrinklist_len--; 586 if (!--batch) 587 break; 588 } 589 spin_unlock(&sbinfo->shrinklist_lock); 590 591 list_for_each_safe(pos, next, &to_remove) { 592 info = list_entry(pos, struct shmem_inode_info, shrinklist); 593 inode = &info->vfs_inode; 594 list_del_init(&info->shrinklist); 595 iput(inode); 596 } 597 598 list_for_each_safe(pos, next, &list) { 599 int ret; 600 pgoff_t index; 601 602 info = list_entry(pos, struct shmem_inode_info, shrinklist); 603 inode = &info->vfs_inode; 604 605 if (nr_to_split && split >= nr_to_split) 606 goto move_back; 607 608 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 609 folio = filemap_get_folio(inode->i_mapping, index); 610 if (!folio) 611 goto drop; 612 613 /* No huge page at the end of the file: nothing to split */ 614 if (!folio_test_large(folio)) { 615 folio_put(folio); 616 goto drop; 617 } 618 619 /* 620 * Move the inode on the list back to shrinklist if we failed 621 * to lock the page at this time. 622 * 623 * Waiting for the lock may lead to deadlock in the 624 * reclaim path. 625 */ 626 if (!folio_trylock(folio)) { 627 folio_put(folio); 628 goto move_back; 629 } 630 631 ret = split_huge_page(&folio->page); 632 folio_unlock(folio); 633 folio_put(folio); 634 635 /* If split failed move the inode on the list back to shrinklist */ 636 if (ret) 637 goto move_back; 638 639 split++; 640 drop: 641 list_del_init(&info->shrinklist); 642 goto put; 643 move_back: 644 /* 645 * Make sure the inode is either on the global list or deleted 646 * from any local list before iput() since it could be deleted 647 * in another thread once we put the inode (then the local list 648 * is corrupted). 649 */ 650 spin_lock(&sbinfo->shrinklist_lock); 651 list_move(&info->shrinklist, &sbinfo->shrinklist); 652 sbinfo->shrinklist_len++; 653 spin_unlock(&sbinfo->shrinklist_lock); 654 put: 655 iput(inode); 656 } 657 658 return split; 659 } 660 661 static long shmem_unused_huge_scan(struct super_block *sb, 662 struct shrink_control *sc) 663 { 664 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 665 666 if (!READ_ONCE(sbinfo->shrinklist_len)) 667 return SHRINK_STOP; 668 669 return shmem_unused_huge_shrink(sbinfo, sc, 0); 670 } 671 672 static long shmem_unused_huge_count(struct super_block *sb, 673 struct shrink_control *sc) 674 { 675 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 676 return READ_ONCE(sbinfo->shrinklist_len); 677 } 678 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 679 680 #define shmem_huge SHMEM_HUGE_DENY 681 682 bool shmem_is_huge(struct vm_area_struct *vma, 683 struct inode *inode, pgoff_t index) 684 { 685 return false; 686 } 687 688 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 689 struct shrink_control *sc, unsigned long nr_to_split) 690 { 691 return 0; 692 } 693 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 694 695 /* 696 * Like filemap_add_folio, but error if expected item has gone. 697 */ 698 static int shmem_add_to_page_cache(struct folio *folio, 699 struct address_space *mapping, 700 pgoff_t index, void *expected, gfp_t gfp, 701 struct mm_struct *charge_mm) 702 { 703 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 704 long nr = folio_nr_pages(folio); 705 int error; 706 707 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 708 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 709 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 710 VM_BUG_ON(expected && folio_test_large(folio)); 711 712 folio_ref_add(folio, nr); 713 folio->mapping = mapping; 714 folio->index = index; 715 716 if (!folio_test_swapcache(folio)) { 717 error = mem_cgroup_charge(folio, charge_mm, gfp); 718 if (error) { 719 if (folio_test_pmd_mappable(folio)) { 720 count_vm_event(THP_FILE_FALLBACK); 721 count_vm_event(THP_FILE_FALLBACK_CHARGE); 722 } 723 goto error; 724 } 725 } 726 folio_throttle_swaprate(folio, gfp); 727 728 do { 729 xas_lock_irq(&xas); 730 if (expected != xas_find_conflict(&xas)) { 731 xas_set_err(&xas, -EEXIST); 732 goto unlock; 733 } 734 if (expected && xas_find_conflict(&xas)) { 735 xas_set_err(&xas, -EEXIST); 736 goto unlock; 737 } 738 xas_store(&xas, folio); 739 if (xas_error(&xas)) 740 goto unlock; 741 if (folio_test_pmd_mappable(folio)) { 742 count_vm_event(THP_FILE_ALLOC); 743 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 744 } 745 mapping->nrpages += nr; 746 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 747 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 748 unlock: 749 xas_unlock_irq(&xas); 750 } while (xas_nomem(&xas, gfp)); 751 752 if (xas_error(&xas)) { 753 error = xas_error(&xas); 754 goto error; 755 } 756 757 return 0; 758 error: 759 folio->mapping = NULL; 760 folio_ref_sub(folio, nr); 761 return error; 762 } 763 764 /* 765 * Like delete_from_page_cache, but substitutes swap for page. 766 */ 767 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 768 { 769 struct address_space *mapping = page->mapping; 770 int error; 771 772 VM_BUG_ON_PAGE(PageCompound(page), page); 773 774 xa_lock_irq(&mapping->i_pages); 775 error = shmem_replace_entry(mapping, page->index, page, radswap); 776 page->mapping = NULL; 777 mapping->nrpages--; 778 __dec_lruvec_page_state(page, NR_FILE_PAGES); 779 __dec_lruvec_page_state(page, NR_SHMEM); 780 xa_unlock_irq(&mapping->i_pages); 781 put_page(page); 782 BUG_ON(error); 783 } 784 785 /* 786 * Remove swap entry from page cache, free the swap and its page cache. 787 */ 788 static int shmem_free_swap(struct address_space *mapping, 789 pgoff_t index, void *radswap) 790 { 791 void *old; 792 793 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 794 if (old != radswap) 795 return -ENOENT; 796 free_swap_and_cache(radix_to_swp_entry(radswap)); 797 return 0; 798 } 799 800 /* 801 * Determine (in bytes) how many of the shmem object's pages mapped by the 802 * given offsets are swapped out. 803 * 804 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 805 * as long as the inode doesn't go away and racy results are not a problem. 806 */ 807 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 808 pgoff_t start, pgoff_t end) 809 { 810 XA_STATE(xas, &mapping->i_pages, start); 811 struct page *page; 812 unsigned long swapped = 0; 813 814 rcu_read_lock(); 815 xas_for_each(&xas, page, end - 1) { 816 if (xas_retry(&xas, page)) 817 continue; 818 if (xa_is_value(page)) 819 swapped++; 820 821 if (need_resched()) { 822 xas_pause(&xas); 823 cond_resched_rcu(); 824 } 825 } 826 827 rcu_read_unlock(); 828 829 return swapped << PAGE_SHIFT; 830 } 831 832 /* 833 * Determine (in bytes) how many of the shmem object's pages mapped by the 834 * given vma is swapped out. 835 * 836 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 837 * as long as the inode doesn't go away and racy results are not a problem. 838 */ 839 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 840 { 841 struct inode *inode = file_inode(vma->vm_file); 842 struct shmem_inode_info *info = SHMEM_I(inode); 843 struct address_space *mapping = inode->i_mapping; 844 unsigned long swapped; 845 846 /* Be careful as we don't hold info->lock */ 847 swapped = READ_ONCE(info->swapped); 848 849 /* 850 * The easier cases are when the shmem object has nothing in swap, or 851 * the vma maps it whole. Then we can simply use the stats that we 852 * already track. 853 */ 854 if (!swapped) 855 return 0; 856 857 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 858 return swapped << PAGE_SHIFT; 859 860 /* Here comes the more involved part */ 861 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 862 vma->vm_pgoff + vma_pages(vma)); 863 } 864 865 /* 866 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 867 */ 868 void shmem_unlock_mapping(struct address_space *mapping) 869 { 870 struct folio_batch fbatch; 871 pgoff_t index = 0; 872 873 folio_batch_init(&fbatch); 874 /* 875 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 876 */ 877 while (!mapping_unevictable(mapping) && 878 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 879 check_move_unevictable_folios(&fbatch); 880 folio_batch_release(&fbatch); 881 cond_resched(); 882 } 883 } 884 885 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 886 { 887 struct folio *folio; 888 struct page *page; 889 890 /* 891 * At first avoid shmem_getpage(,,,SGP_READ): that fails 892 * beyond i_size, and reports fallocated pages as holes. 893 */ 894 folio = __filemap_get_folio(inode->i_mapping, index, 895 FGP_ENTRY | FGP_LOCK, 0); 896 if (!xa_is_value(folio)) 897 return folio; 898 /* 899 * But read a page back from swap if any of it is within i_size 900 * (although in some cases this is just a waste of time). 901 */ 902 page = NULL; 903 shmem_getpage(inode, index, &page, SGP_READ); 904 return page ? page_folio(page) : NULL; 905 } 906 907 /* 908 * Remove range of pages and swap entries from page cache, and free them. 909 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 910 */ 911 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 912 bool unfalloc) 913 { 914 struct address_space *mapping = inode->i_mapping; 915 struct shmem_inode_info *info = SHMEM_I(inode); 916 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 917 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 918 struct folio_batch fbatch; 919 pgoff_t indices[PAGEVEC_SIZE]; 920 struct folio *folio; 921 bool same_folio; 922 long nr_swaps_freed = 0; 923 pgoff_t index; 924 int i; 925 926 if (lend == -1) 927 end = -1; /* unsigned, so actually very big */ 928 929 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 930 info->fallocend = start; 931 932 folio_batch_init(&fbatch); 933 index = start; 934 while (index < end && find_lock_entries(mapping, index, end - 1, 935 &fbatch, indices)) { 936 for (i = 0; i < folio_batch_count(&fbatch); i++) { 937 folio = fbatch.folios[i]; 938 939 index = indices[i]; 940 941 if (xa_is_value(folio)) { 942 if (unfalloc) 943 continue; 944 nr_swaps_freed += !shmem_free_swap(mapping, 945 index, folio); 946 continue; 947 } 948 index += folio_nr_pages(folio) - 1; 949 950 if (!unfalloc || !folio_test_uptodate(folio)) 951 truncate_inode_folio(mapping, folio); 952 folio_unlock(folio); 953 } 954 folio_batch_remove_exceptionals(&fbatch); 955 folio_batch_release(&fbatch); 956 cond_resched(); 957 index++; 958 } 959 960 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 961 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 962 if (folio) { 963 same_folio = lend < folio_pos(folio) + folio_size(folio); 964 folio_mark_dirty(folio); 965 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 966 start = folio->index + folio_nr_pages(folio); 967 if (same_folio) 968 end = folio->index; 969 } 970 folio_unlock(folio); 971 folio_put(folio); 972 folio = NULL; 973 } 974 975 if (!same_folio) 976 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 977 if (folio) { 978 folio_mark_dirty(folio); 979 if (!truncate_inode_partial_folio(folio, lstart, lend)) 980 end = folio->index; 981 folio_unlock(folio); 982 folio_put(folio); 983 } 984 985 index = start; 986 while (index < end) { 987 cond_resched(); 988 989 if (!find_get_entries(mapping, index, end - 1, &fbatch, 990 indices)) { 991 /* If all gone or hole-punch or unfalloc, we're done */ 992 if (index == start || end != -1) 993 break; 994 /* But if truncating, restart to make sure all gone */ 995 index = start; 996 continue; 997 } 998 for (i = 0; i < folio_batch_count(&fbatch); i++) { 999 folio = fbatch.folios[i]; 1000 1001 index = indices[i]; 1002 if (xa_is_value(folio)) { 1003 if (unfalloc) 1004 continue; 1005 if (shmem_free_swap(mapping, index, folio)) { 1006 /* Swap was replaced by page: retry */ 1007 index--; 1008 break; 1009 } 1010 nr_swaps_freed++; 1011 continue; 1012 } 1013 1014 folio_lock(folio); 1015 1016 if (!unfalloc || !folio_test_uptodate(folio)) { 1017 if (folio_mapping(folio) != mapping) { 1018 /* Page was replaced by swap: retry */ 1019 folio_unlock(folio); 1020 index--; 1021 break; 1022 } 1023 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1024 folio); 1025 truncate_inode_folio(mapping, folio); 1026 } 1027 index = folio->index + folio_nr_pages(folio) - 1; 1028 folio_unlock(folio); 1029 } 1030 folio_batch_remove_exceptionals(&fbatch); 1031 folio_batch_release(&fbatch); 1032 index++; 1033 } 1034 1035 spin_lock_irq(&info->lock); 1036 info->swapped -= nr_swaps_freed; 1037 shmem_recalc_inode(inode); 1038 spin_unlock_irq(&info->lock); 1039 } 1040 1041 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1042 { 1043 shmem_undo_range(inode, lstart, lend, false); 1044 inode->i_ctime = inode->i_mtime = current_time(inode); 1045 } 1046 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1047 1048 static int shmem_getattr(struct user_namespace *mnt_userns, 1049 const struct path *path, struct kstat *stat, 1050 u32 request_mask, unsigned int query_flags) 1051 { 1052 struct inode *inode = path->dentry->d_inode; 1053 struct shmem_inode_info *info = SHMEM_I(inode); 1054 1055 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1056 spin_lock_irq(&info->lock); 1057 shmem_recalc_inode(inode); 1058 spin_unlock_irq(&info->lock); 1059 } 1060 generic_fillattr(&init_user_ns, inode, stat); 1061 1062 if (shmem_is_huge(NULL, inode, 0)) 1063 stat->blksize = HPAGE_PMD_SIZE; 1064 1065 if (request_mask & STATX_BTIME) { 1066 stat->result_mask |= STATX_BTIME; 1067 stat->btime.tv_sec = info->i_crtime.tv_sec; 1068 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1069 } 1070 1071 return 0; 1072 } 1073 1074 static int shmem_setattr(struct user_namespace *mnt_userns, 1075 struct dentry *dentry, struct iattr *attr) 1076 { 1077 struct inode *inode = d_inode(dentry); 1078 struct shmem_inode_info *info = SHMEM_I(inode); 1079 int error; 1080 1081 error = setattr_prepare(&init_user_ns, dentry, attr); 1082 if (error) 1083 return error; 1084 1085 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1086 loff_t oldsize = inode->i_size; 1087 loff_t newsize = attr->ia_size; 1088 1089 /* protected by i_rwsem */ 1090 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1091 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1092 return -EPERM; 1093 1094 if (newsize != oldsize) { 1095 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1096 oldsize, newsize); 1097 if (error) 1098 return error; 1099 i_size_write(inode, newsize); 1100 inode->i_ctime = inode->i_mtime = current_time(inode); 1101 } 1102 if (newsize <= oldsize) { 1103 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1104 if (oldsize > holebegin) 1105 unmap_mapping_range(inode->i_mapping, 1106 holebegin, 0, 1); 1107 if (info->alloced) 1108 shmem_truncate_range(inode, 1109 newsize, (loff_t)-1); 1110 /* unmap again to remove racily COWed private pages */ 1111 if (oldsize > holebegin) 1112 unmap_mapping_range(inode->i_mapping, 1113 holebegin, 0, 1); 1114 } 1115 } 1116 1117 setattr_copy(&init_user_ns, inode, attr); 1118 if (attr->ia_valid & ATTR_MODE) 1119 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode); 1120 return error; 1121 } 1122 1123 static void shmem_evict_inode(struct inode *inode) 1124 { 1125 struct shmem_inode_info *info = SHMEM_I(inode); 1126 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1127 1128 if (shmem_mapping(inode->i_mapping)) { 1129 shmem_unacct_size(info->flags, inode->i_size); 1130 inode->i_size = 0; 1131 mapping_set_exiting(inode->i_mapping); 1132 shmem_truncate_range(inode, 0, (loff_t)-1); 1133 if (!list_empty(&info->shrinklist)) { 1134 spin_lock(&sbinfo->shrinklist_lock); 1135 if (!list_empty(&info->shrinklist)) { 1136 list_del_init(&info->shrinklist); 1137 sbinfo->shrinklist_len--; 1138 } 1139 spin_unlock(&sbinfo->shrinklist_lock); 1140 } 1141 while (!list_empty(&info->swaplist)) { 1142 /* Wait while shmem_unuse() is scanning this inode... */ 1143 wait_var_event(&info->stop_eviction, 1144 !atomic_read(&info->stop_eviction)); 1145 mutex_lock(&shmem_swaplist_mutex); 1146 /* ...but beware of the race if we peeked too early */ 1147 if (!atomic_read(&info->stop_eviction)) 1148 list_del_init(&info->swaplist); 1149 mutex_unlock(&shmem_swaplist_mutex); 1150 } 1151 } 1152 1153 simple_xattrs_free(&info->xattrs); 1154 WARN_ON(inode->i_blocks); 1155 shmem_free_inode(inode->i_sb); 1156 clear_inode(inode); 1157 } 1158 1159 static int shmem_find_swap_entries(struct address_space *mapping, 1160 pgoff_t start, struct folio_batch *fbatch, 1161 pgoff_t *indices, unsigned int type) 1162 { 1163 XA_STATE(xas, &mapping->i_pages, start); 1164 struct folio *folio; 1165 swp_entry_t entry; 1166 1167 rcu_read_lock(); 1168 xas_for_each(&xas, folio, ULONG_MAX) { 1169 if (xas_retry(&xas, folio)) 1170 continue; 1171 1172 if (!xa_is_value(folio)) 1173 continue; 1174 1175 entry = radix_to_swp_entry(folio); 1176 /* 1177 * swapin error entries can be found in the mapping. But they're 1178 * deliberately ignored here as we've done everything we can do. 1179 */ 1180 if (swp_type(entry) != type) 1181 continue; 1182 1183 indices[folio_batch_count(fbatch)] = xas.xa_index; 1184 if (!folio_batch_add(fbatch, folio)) 1185 break; 1186 1187 if (need_resched()) { 1188 xas_pause(&xas); 1189 cond_resched_rcu(); 1190 } 1191 } 1192 rcu_read_unlock(); 1193 1194 return xas.xa_index; 1195 } 1196 1197 /* 1198 * Move the swapped pages for an inode to page cache. Returns the count 1199 * of pages swapped in, or the error in case of failure. 1200 */ 1201 static int shmem_unuse_swap_entries(struct inode *inode, 1202 struct folio_batch *fbatch, pgoff_t *indices) 1203 { 1204 int i = 0; 1205 int ret = 0; 1206 int error = 0; 1207 struct address_space *mapping = inode->i_mapping; 1208 1209 for (i = 0; i < folio_batch_count(fbatch); i++) { 1210 struct folio *folio = fbatch->folios[i]; 1211 1212 if (!xa_is_value(folio)) 1213 continue; 1214 error = shmem_swapin_folio(inode, indices[i], 1215 &folio, SGP_CACHE, 1216 mapping_gfp_mask(mapping), 1217 NULL, NULL); 1218 if (error == 0) { 1219 folio_unlock(folio); 1220 folio_put(folio); 1221 ret++; 1222 } 1223 if (error == -ENOMEM) 1224 break; 1225 error = 0; 1226 } 1227 return error ? error : ret; 1228 } 1229 1230 /* 1231 * If swap found in inode, free it and move page from swapcache to filecache. 1232 */ 1233 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1234 { 1235 struct address_space *mapping = inode->i_mapping; 1236 pgoff_t start = 0; 1237 struct folio_batch fbatch; 1238 pgoff_t indices[PAGEVEC_SIZE]; 1239 int ret = 0; 1240 1241 do { 1242 folio_batch_init(&fbatch); 1243 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1244 if (folio_batch_count(&fbatch) == 0) { 1245 ret = 0; 1246 break; 1247 } 1248 1249 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1250 if (ret < 0) 1251 break; 1252 1253 start = indices[folio_batch_count(&fbatch) - 1]; 1254 } while (true); 1255 1256 return ret; 1257 } 1258 1259 /* 1260 * Read all the shared memory data that resides in the swap 1261 * device 'type' back into memory, so the swap device can be 1262 * unused. 1263 */ 1264 int shmem_unuse(unsigned int type) 1265 { 1266 struct shmem_inode_info *info, *next; 1267 int error = 0; 1268 1269 if (list_empty(&shmem_swaplist)) 1270 return 0; 1271 1272 mutex_lock(&shmem_swaplist_mutex); 1273 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1274 if (!info->swapped) { 1275 list_del_init(&info->swaplist); 1276 continue; 1277 } 1278 /* 1279 * Drop the swaplist mutex while searching the inode for swap; 1280 * but before doing so, make sure shmem_evict_inode() will not 1281 * remove placeholder inode from swaplist, nor let it be freed 1282 * (igrab() would protect from unlink, but not from unmount). 1283 */ 1284 atomic_inc(&info->stop_eviction); 1285 mutex_unlock(&shmem_swaplist_mutex); 1286 1287 error = shmem_unuse_inode(&info->vfs_inode, type); 1288 cond_resched(); 1289 1290 mutex_lock(&shmem_swaplist_mutex); 1291 next = list_next_entry(info, swaplist); 1292 if (!info->swapped) 1293 list_del_init(&info->swaplist); 1294 if (atomic_dec_and_test(&info->stop_eviction)) 1295 wake_up_var(&info->stop_eviction); 1296 if (error) 1297 break; 1298 } 1299 mutex_unlock(&shmem_swaplist_mutex); 1300 1301 return error; 1302 } 1303 1304 /* 1305 * Move the page from the page cache to the swap cache. 1306 */ 1307 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1308 { 1309 struct folio *folio = page_folio(page); 1310 struct shmem_inode_info *info; 1311 struct address_space *mapping; 1312 struct inode *inode; 1313 swp_entry_t swap; 1314 pgoff_t index; 1315 1316 /* 1317 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1318 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1319 * and its shmem_writeback() needs them to be split when swapping. 1320 */ 1321 if (PageTransCompound(page)) { 1322 /* Ensure the subpages are still dirty */ 1323 SetPageDirty(page); 1324 if (split_huge_page(page) < 0) 1325 goto redirty; 1326 ClearPageDirty(page); 1327 } 1328 1329 BUG_ON(!PageLocked(page)); 1330 mapping = page->mapping; 1331 index = page->index; 1332 inode = mapping->host; 1333 info = SHMEM_I(inode); 1334 if (info->flags & VM_LOCKED) 1335 goto redirty; 1336 if (!total_swap_pages) 1337 goto redirty; 1338 1339 /* 1340 * Our capabilities prevent regular writeback or sync from ever calling 1341 * shmem_writepage; but a stacking filesystem might use ->writepage of 1342 * its underlying filesystem, in which case tmpfs should write out to 1343 * swap only in response to memory pressure, and not for the writeback 1344 * threads or sync. 1345 */ 1346 if (!wbc->for_reclaim) { 1347 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1348 goto redirty; 1349 } 1350 1351 /* 1352 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1353 * value into swapfile.c, the only way we can correctly account for a 1354 * fallocated page arriving here is now to initialize it and write it. 1355 * 1356 * That's okay for a page already fallocated earlier, but if we have 1357 * not yet completed the fallocation, then (a) we want to keep track 1358 * of this page in case we have to undo it, and (b) it may not be a 1359 * good idea to continue anyway, once we're pushing into swap. So 1360 * reactivate the page, and let shmem_fallocate() quit when too many. 1361 */ 1362 if (!PageUptodate(page)) { 1363 if (inode->i_private) { 1364 struct shmem_falloc *shmem_falloc; 1365 spin_lock(&inode->i_lock); 1366 shmem_falloc = inode->i_private; 1367 if (shmem_falloc && 1368 !shmem_falloc->waitq && 1369 index >= shmem_falloc->start && 1370 index < shmem_falloc->next) 1371 shmem_falloc->nr_unswapped++; 1372 else 1373 shmem_falloc = NULL; 1374 spin_unlock(&inode->i_lock); 1375 if (shmem_falloc) 1376 goto redirty; 1377 } 1378 clear_highpage(page); 1379 flush_dcache_page(page); 1380 SetPageUptodate(page); 1381 } 1382 1383 swap = folio_alloc_swap(folio); 1384 if (!swap.val) 1385 goto redirty; 1386 1387 /* 1388 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1389 * if it's not already there. Do it now before the page is 1390 * moved to swap cache, when its pagelock no longer protects 1391 * the inode from eviction. But don't unlock the mutex until 1392 * we've incremented swapped, because shmem_unuse_inode() will 1393 * prune a !swapped inode from the swaplist under this mutex. 1394 */ 1395 mutex_lock(&shmem_swaplist_mutex); 1396 if (list_empty(&info->swaplist)) 1397 list_add(&info->swaplist, &shmem_swaplist); 1398 1399 if (add_to_swap_cache(page, swap, 1400 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1401 NULL) == 0) { 1402 spin_lock_irq(&info->lock); 1403 shmem_recalc_inode(inode); 1404 info->swapped++; 1405 spin_unlock_irq(&info->lock); 1406 1407 swap_shmem_alloc(swap); 1408 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1409 1410 mutex_unlock(&shmem_swaplist_mutex); 1411 BUG_ON(page_mapped(page)); 1412 swap_writepage(page, wbc); 1413 return 0; 1414 } 1415 1416 mutex_unlock(&shmem_swaplist_mutex); 1417 put_swap_page(page, swap); 1418 redirty: 1419 set_page_dirty(page); 1420 if (wbc->for_reclaim) 1421 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1422 unlock_page(page); 1423 return 0; 1424 } 1425 1426 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1427 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1428 { 1429 char buffer[64]; 1430 1431 if (!mpol || mpol->mode == MPOL_DEFAULT) 1432 return; /* show nothing */ 1433 1434 mpol_to_str(buffer, sizeof(buffer), mpol); 1435 1436 seq_printf(seq, ",mpol=%s", buffer); 1437 } 1438 1439 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1440 { 1441 struct mempolicy *mpol = NULL; 1442 if (sbinfo->mpol) { 1443 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1444 mpol = sbinfo->mpol; 1445 mpol_get(mpol); 1446 raw_spin_unlock(&sbinfo->stat_lock); 1447 } 1448 return mpol; 1449 } 1450 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1451 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1452 { 1453 } 1454 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1455 { 1456 return NULL; 1457 } 1458 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1459 #ifndef CONFIG_NUMA 1460 #define vm_policy vm_private_data 1461 #endif 1462 1463 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1464 struct shmem_inode_info *info, pgoff_t index) 1465 { 1466 /* Create a pseudo vma that just contains the policy */ 1467 vma_init(vma, NULL); 1468 /* Bias interleave by inode number to distribute better across nodes */ 1469 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1470 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1471 } 1472 1473 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1474 { 1475 /* Drop reference taken by mpol_shared_policy_lookup() */ 1476 mpol_cond_put(vma->vm_policy); 1477 } 1478 1479 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1480 struct shmem_inode_info *info, pgoff_t index) 1481 { 1482 struct vm_area_struct pvma; 1483 struct page *page; 1484 struct vm_fault vmf = { 1485 .vma = &pvma, 1486 }; 1487 1488 shmem_pseudo_vma_init(&pvma, info, index); 1489 page = swap_cluster_readahead(swap, gfp, &vmf); 1490 shmem_pseudo_vma_destroy(&pvma); 1491 1492 return page; 1493 } 1494 1495 /* 1496 * Make sure huge_gfp is always more limited than limit_gfp. 1497 * Some of the flags set permissions, while others set limitations. 1498 */ 1499 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1500 { 1501 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1502 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1503 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1504 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1505 1506 /* Allow allocations only from the originally specified zones. */ 1507 result |= zoneflags; 1508 1509 /* 1510 * Minimize the result gfp by taking the union with the deny flags, 1511 * and the intersection of the allow flags. 1512 */ 1513 result |= (limit_gfp & denyflags); 1514 result |= (huge_gfp & limit_gfp) & allowflags; 1515 1516 return result; 1517 } 1518 1519 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1520 struct shmem_inode_info *info, pgoff_t index) 1521 { 1522 struct vm_area_struct pvma; 1523 struct address_space *mapping = info->vfs_inode.i_mapping; 1524 pgoff_t hindex; 1525 struct folio *folio; 1526 1527 hindex = round_down(index, HPAGE_PMD_NR); 1528 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1529 XA_PRESENT)) 1530 return NULL; 1531 1532 shmem_pseudo_vma_init(&pvma, info, hindex); 1533 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1534 shmem_pseudo_vma_destroy(&pvma); 1535 if (!folio) 1536 count_vm_event(THP_FILE_FALLBACK); 1537 return folio; 1538 } 1539 1540 static struct folio *shmem_alloc_folio(gfp_t gfp, 1541 struct shmem_inode_info *info, pgoff_t index) 1542 { 1543 struct vm_area_struct pvma; 1544 struct folio *folio; 1545 1546 shmem_pseudo_vma_init(&pvma, info, index); 1547 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false); 1548 shmem_pseudo_vma_destroy(&pvma); 1549 1550 return folio; 1551 } 1552 1553 static struct page *shmem_alloc_page(gfp_t gfp, 1554 struct shmem_inode_info *info, pgoff_t index) 1555 { 1556 return &shmem_alloc_folio(gfp, info, index)->page; 1557 } 1558 1559 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode, 1560 pgoff_t index, bool huge) 1561 { 1562 struct shmem_inode_info *info = SHMEM_I(inode); 1563 struct folio *folio; 1564 int nr; 1565 int err = -ENOSPC; 1566 1567 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1568 huge = false; 1569 nr = huge ? HPAGE_PMD_NR : 1; 1570 1571 if (!shmem_inode_acct_block(inode, nr)) 1572 goto failed; 1573 1574 if (huge) 1575 folio = shmem_alloc_hugefolio(gfp, info, index); 1576 else 1577 folio = shmem_alloc_folio(gfp, info, index); 1578 if (folio) { 1579 __folio_set_locked(folio); 1580 __folio_set_swapbacked(folio); 1581 return folio; 1582 } 1583 1584 err = -ENOMEM; 1585 shmem_inode_unacct_blocks(inode, nr); 1586 failed: 1587 return ERR_PTR(err); 1588 } 1589 1590 /* 1591 * When a page is moved from swapcache to shmem filecache (either by the 1592 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1593 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1594 * ignorance of the mapping it belongs to. If that mapping has special 1595 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1596 * we may need to copy to a suitable page before moving to filecache. 1597 * 1598 * In a future release, this may well be extended to respect cpuset and 1599 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1600 * but for now it is a simple matter of zone. 1601 */ 1602 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1603 { 1604 return folio_zonenum(folio) > gfp_zone(gfp); 1605 } 1606 1607 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1608 struct shmem_inode_info *info, pgoff_t index) 1609 { 1610 struct page *oldpage, *newpage; 1611 struct folio *old, *new; 1612 struct address_space *swap_mapping; 1613 swp_entry_t entry; 1614 pgoff_t swap_index; 1615 int error; 1616 1617 oldpage = *pagep; 1618 entry.val = page_private(oldpage); 1619 swap_index = swp_offset(entry); 1620 swap_mapping = page_mapping(oldpage); 1621 1622 /* 1623 * We have arrived here because our zones are constrained, so don't 1624 * limit chance of success by further cpuset and node constraints. 1625 */ 1626 gfp &= ~GFP_CONSTRAINT_MASK; 1627 newpage = shmem_alloc_page(gfp, info, index); 1628 if (!newpage) 1629 return -ENOMEM; 1630 1631 get_page(newpage); 1632 copy_highpage(newpage, oldpage); 1633 flush_dcache_page(newpage); 1634 1635 __SetPageLocked(newpage); 1636 __SetPageSwapBacked(newpage); 1637 SetPageUptodate(newpage); 1638 set_page_private(newpage, entry.val); 1639 SetPageSwapCache(newpage); 1640 1641 /* 1642 * Our caller will very soon move newpage out of swapcache, but it's 1643 * a nice clean interface for us to replace oldpage by newpage there. 1644 */ 1645 xa_lock_irq(&swap_mapping->i_pages); 1646 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1647 if (!error) { 1648 old = page_folio(oldpage); 1649 new = page_folio(newpage); 1650 mem_cgroup_migrate(old, new); 1651 __inc_lruvec_page_state(newpage, NR_FILE_PAGES); 1652 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); 1653 } 1654 xa_unlock_irq(&swap_mapping->i_pages); 1655 1656 if (unlikely(error)) { 1657 /* 1658 * Is this possible? I think not, now that our callers check 1659 * both PageSwapCache and page_private after getting page lock; 1660 * but be defensive. Reverse old to newpage for clear and free. 1661 */ 1662 oldpage = newpage; 1663 } else { 1664 lru_cache_add(newpage); 1665 *pagep = newpage; 1666 } 1667 1668 ClearPageSwapCache(oldpage); 1669 set_page_private(oldpage, 0); 1670 1671 unlock_page(oldpage); 1672 put_page(oldpage); 1673 put_page(oldpage); 1674 return error; 1675 } 1676 1677 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1678 struct folio *folio, swp_entry_t swap) 1679 { 1680 struct address_space *mapping = inode->i_mapping; 1681 struct shmem_inode_info *info = SHMEM_I(inode); 1682 swp_entry_t swapin_error; 1683 void *old; 1684 1685 swapin_error = make_swapin_error_entry(&folio->page); 1686 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1687 swp_to_radix_entry(swap), 1688 swp_to_radix_entry(swapin_error), 0); 1689 if (old != swp_to_radix_entry(swap)) 1690 return; 1691 1692 folio_wait_writeback(folio); 1693 delete_from_swap_cache(&folio->page); 1694 spin_lock_irq(&info->lock); 1695 /* 1696 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't 1697 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in 1698 * shmem_evict_inode. 1699 */ 1700 info->alloced--; 1701 info->swapped--; 1702 shmem_recalc_inode(inode); 1703 spin_unlock_irq(&info->lock); 1704 swap_free(swap); 1705 } 1706 1707 /* 1708 * Swap in the page pointed to by *pagep. 1709 * Caller has to make sure that *pagep contains a valid swapped page. 1710 * Returns 0 and the page in pagep if success. On failure, returns the 1711 * error code and NULL in *pagep. 1712 */ 1713 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1714 struct folio **foliop, enum sgp_type sgp, 1715 gfp_t gfp, struct vm_area_struct *vma, 1716 vm_fault_t *fault_type) 1717 { 1718 struct address_space *mapping = inode->i_mapping; 1719 struct shmem_inode_info *info = SHMEM_I(inode); 1720 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1721 struct page *page; 1722 struct folio *folio = NULL; 1723 swp_entry_t swap; 1724 int error; 1725 1726 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1727 swap = radix_to_swp_entry(*foliop); 1728 *foliop = NULL; 1729 1730 if (is_swapin_error_entry(swap)) 1731 return -EIO; 1732 1733 /* Look it up and read it in.. */ 1734 page = lookup_swap_cache(swap, NULL, 0); 1735 if (!page) { 1736 /* Or update major stats only when swapin succeeds?? */ 1737 if (fault_type) { 1738 *fault_type |= VM_FAULT_MAJOR; 1739 count_vm_event(PGMAJFAULT); 1740 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1741 } 1742 /* Here we actually start the io */ 1743 page = shmem_swapin(swap, gfp, info, index); 1744 if (!page) { 1745 error = -ENOMEM; 1746 goto failed; 1747 } 1748 } 1749 folio = page_folio(page); 1750 1751 /* We have to do this with page locked to prevent races */ 1752 folio_lock(folio); 1753 if (!folio_test_swapcache(folio) || 1754 folio_swap_entry(folio).val != swap.val || 1755 !shmem_confirm_swap(mapping, index, swap)) { 1756 error = -EEXIST; 1757 goto unlock; 1758 } 1759 if (!folio_test_uptodate(folio)) { 1760 error = -EIO; 1761 goto failed; 1762 } 1763 folio_wait_writeback(folio); 1764 1765 /* 1766 * Some architectures may have to restore extra metadata to the 1767 * folio after reading from swap. 1768 */ 1769 arch_swap_restore(swap, folio); 1770 1771 if (shmem_should_replace_folio(folio, gfp)) { 1772 error = shmem_replace_page(&page, gfp, info, index); 1773 if (error) 1774 goto failed; 1775 } 1776 1777 error = shmem_add_to_page_cache(folio, mapping, index, 1778 swp_to_radix_entry(swap), gfp, 1779 charge_mm); 1780 if (error) 1781 goto failed; 1782 1783 spin_lock_irq(&info->lock); 1784 info->swapped--; 1785 shmem_recalc_inode(inode); 1786 spin_unlock_irq(&info->lock); 1787 1788 if (sgp == SGP_WRITE) 1789 folio_mark_accessed(folio); 1790 1791 delete_from_swap_cache(&folio->page); 1792 folio_mark_dirty(folio); 1793 swap_free(swap); 1794 1795 *foliop = folio; 1796 return 0; 1797 failed: 1798 if (!shmem_confirm_swap(mapping, index, swap)) 1799 error = -EEXIST; 1800 if (error == -EIO) 1801 shmem_set_folio_swapin_error(inode, index, folio, swap); 1802 unlock: 1803 if (folio) { 1804 folio_unlock(folio); 1805 folio_put(folio); 1806 } 1807 1808 return error; 1809 } 1810 1811 /* 1812 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1813 * 1814 * If we allocate a new one we do not mark it dirty. That's up to the 1815 * vm. If we swap it in we mark it dirty since we also free the swap 1816 * entry since a page cannot live in both the swap and page cache. 1817 * 1818 * vma, vmf, and fault_type are only supplied by shmem_fault: 1819 * otherwise they are NULL. 1820 */ 1821 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1822 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1823 struct vm_area_struct *vma, struct vm_fault *vmf, 1824 vm_fault_t *fault_type) 1825 { 1826 struct address_space *mapping = inode->i_mapping; 1827 struct shmem_inode_info *info = SHMEM_I(inode); 1828 struct shmem_sb_info *sbinfo; 1829 struct mm_struct *charge_mm; 1830 struct folio *folio; 1831 pgoff_t hindex = index; 1832 gfp_t huge_gfp; 1833 int error; 1834 int once = 0; 1835 int alloced = 0; 1836 1837 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1838 return -EFBIG; 1839 repeat: 1840 if (sgp <= SGP_CACHE && 1841 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1842 return -EINVAL; 1843 } 1844 1845 sbinfo = SHMEM_SB(inode->i_sb); 1846 charge_mm = vma ? vma->vm_mm : NULL; 1847 1848 folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0); 1849 if (folio && vma && userfaultfd_minor(vma)) { 1850 if (!xa_is_value(folio)) { 1851 folio_unlock(folio); 1852 folio_put(folio); 1853 } 1854 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1855 return 0; 1856 } 1857 1858 if (xa_is_value(folio)) { 1859 error = shmem_swapin_folio(inode, index, &folio, 1860 sgp, gfp, vma, fault_type); 1861 if (error == -EEXIST) 1862 goto repeat; 1863 1864 *pagep = &folio->page; 1865 return error; 1866 } 1867 1868 if (folio) { 1869 hindex = folio->index; 1870 if (sgp == SGP_WRITE) 1871 folio_mark_accessed(folio); 1872 if (folio_test_uptodate(folio)) 1873 goto out; 1874 /* fallocated page */ 1875 if (sgp != SGP_READ) 1876 goto clear; 1877 folio_unlock(folio); 1878 folio_put(folio); 1879 } 1880 1881 /* 1882 * SGP_READ: succeed on hole, with NULL page, letting caller zero. 1883 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail. 1884 */ 1885 *pagep = NULL; 1886 if (sgp == SGP_READ) 1887 return 0; 1888 if (sgp == SGP_NOALLOC) 1889 return -ENOENT; 1890 1891 /* 1892 * Fast cache lookup and swap lookup did not find it: allocate. 1893 */ 1894 1895 if (vma && userfaultfd_missing(vma)) { 1896 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1897 return 0; 1898 } 1899 1900 if (!shmem_is_huge(vma, inode, index)) 1901 goto alloc_nohuge; 1902 1903 huge_gfp = vma_thp_gfp_mask(vma); 1904 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 1905 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true); 1906 if (IS_ERR(folio)) { 1907 alloc_nohuge: 1908 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false); 1909 } 1910 if (IS_ERR(folio)) { 1911 int retry = 5; 1912 1913 error = PTR_ERR(folio); 1914 folio = NULL; 1915 if (error != -ENOSPC) 1916 goto unlock; 1917 /* 1918 * Try to reclaim some space by splitting a huge page 1919 * beyond i_size on the filesystem. 1920 */ 1921 while (retry--) { 1922 int ret; 1923 1924 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1925 if (ret == SHRINK_STOP) 1926 break; 1927 if (ret) 1928 goto alloc_nohuge; 1929 } 1930 goto unlock; 1931 } 1932 1933 hindex = round_down(index, folio_nr_pages(folio)); 1934 1935 if (sgp == SGP_WRITE) 1936 __folio_set_referenced(folio); 1937 1938 error = shmem_add_to_page_cache(folio, mapping, hindex, 1939 NULL, gfp & GFP_RECLAIM_MASK, 1940 charge_mm); 1941 if (error) 1942 goto unacct; 1943 folio_add_lru(folio); 1944 1945 spin_lock_irq(&info->lock); 1946 info->alloced += folio_nr_pages(folio); 1947 inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio); 1948 shmem_recalc_inode(inode); 1949 spin_unlock_irq(&info->lock); 1950 alloced = true; 1951 1952 if (folio_test_pmd_mappable(folio) && 1953 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1954 hindex + HPAGE_PMD_NR - 1) { 1955 /* 1956 * Part of the huge page is beyond i_size: subject 1957 * to shrink under memory pressure. 1958 */ 1959 spin_lock(&sbinfo->shrinklist_lock); 1960 /* 1961 * _careful to defend against unlocked access to 1962 * ->shrink_list in shmem_unused_huge_shrink() 1963 */ 1964 if (list_empty_careful(&info->shrinklist)) { 1965 list_add_tail(&info->shrinklist, 1966 &sbinfo->shrinklist); 1967 sbinfo->shrinklist_len++; 1968 } 1969 spin_unlock(&sbinfo->shrinklist_lock); 1970 } 1971 1972 /* 1973 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1974 */ 1975 if (sgp == SGP_FALLOC) 1976 sgp = SGP_WRITE; 1977 clear: 1978 /* 1979 * Let SGP_WRITE caller clear ends if write does not fill page; 1980 * but SGP_FALLOC on a page fallocated earlier must initialize 1981 * it now, lest undo on failure cancel our earlier guarantee. 1982 */ 1983 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 1984 long i, n = folio_nr_pages(folio); 1985 1986 for (i = 0; i < n; i++) 1987 clear_highpage(folio_page(folio, i)); 1988 flush_dcache_folio(folio); 1989 folio_mark_uptodate(folio); 1990 } 1991 1992 /* Perhaps the file has been truncated since we checked */ 1993 if (sgp <= SGP_CACHE && 1994 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1995 if (alloced) { 1996 folio_clear_dirty(folio); 1997 filemap_remove_folio(folio); 1998 spin_lock_irq(&info->lock); 1999 shmem_recalc_inode(inode); 2000 spin_unlock_irq(&info->lock); 2001 } 2002 error = -EINVAL; 2003 goto unlock; 2004 } 2005 out: 2006 *pagep = folio_page(folio, index - hindex); 2007 return 0; 2008 2009 /* 2010 * Error recovery. 2011 */ 2012 unacct: 2013 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio)); 2014 2015 if (folio_test_large(folio)) { 2016 folio_unlock(folio); 2017 folio_put(folio); 2018 goto alloc_nohuge; 2019 } 2020 unlock: 2021 if (folio) { 2022 folio_unlock(folio); 2023 folio_put(folio); 2024 } 2025 if (error == -ENOSPC && !once++) { 2026 spin_lock_irq(&info->lock); 2027 shmem_recalc_inode(inode); 2028 spin_unlock_irq(&info->lock); 2029 goto repeat; 2030 } 2031 if (error == -EEXIST) 2032 goto repeat; 2033 return error; 2034 } 2035 2036 /* 2037 * This is like autoremove_wake_function, but it removes the wait queue 2038 * entry unconditionally - even if something else had already woken the 2039 * target. 2040 */ 2041 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2042 { 2043 int ret = default_wake_function(wait, mode, sync, key); 2044 list_del_init(&wait->entry); 2045 return ret; 2046 } 2047 2048 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2049 { 2050 struct vm_area_struct *vma = vmf->vma; 2051 struct inode *inode = file_inode(vma->vm_file); 2052 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2053 int err; 2054 vm_fault_t ret = VM_FAULT_LOCKED; 2055 2056 /* 2057 * Trinity finds that probing a hole which tmpfs is punching can 2058 * prevent the hole-punch from ever completing: which in turn 2059 * locks writers out with its hold on i_rwsem. So refrain from 2060 * faulting pages into the hole while it's being punched. Although 2061 * shmem_undo_range() does remove the additions, it may be unable to 2062 * keep up, as each new page needs its own unmap_mapping_range() call, 2063 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2064 * 2065 * It does not matter if we sometimes reach this check just before the 2066 * hole-punch begins, so that one fault then races with the punch: 2067 * we just need to make racing faults a rare case. 2068 * 2069 * The implementation below would be much simpler if we just used a 2070 * standard mutex or completion: but we cannot take i_rwsem in fault, 2071 * and bloating every shmem inode for this unlikely case would be sad. 2072 */ 2073 if (unlikely(inode->i_private)) { 2074 struct shmem_falloc *shmem_falloc; 2075 2076 spin_lock(&inode->i_lock); 2077 shmem_falloc = inode->i_private; 2078 if (shmem_falloc && 2079 shmem_falloc->waitq && 2080 vmf->pgoff >= shmem_falloc->start && 2081 vmf->pgoff < shmem_falloc->next) { 2082 struct file *fpin; 2083 wait_queue_head_t *shmem_falloc_waitq; 2084 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2085 2086 ret = VM_FAULT_NOPAGE; 2087 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2088 if (fpin) 2089 ret = VM_FAULT_RETRY; 2090 2091 shmem_falloc_waitq = shmem_falloc->waitq; 2092 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2093 TASK_UNINTERRUPTIBLE); 2094 spin_unlock(&inode->i_lock); 2095 schedule(); 2096 2097 /* 2098 * shmem_falloc_waitq points into the shmem_fallocate() 2099 * stack of the hole-punching task: shmem_falloc_waitq 2100 * is usually invalid by the time we reach here, but 2101 * finish_wait() does not dereference it in that case; 2102 * though i_lock needed lest racing with wake_up_all(). 2103 */ 2104 spin_lock(&inode->i_lock); 2105 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2106 spin_unlock(&inode->i_lock); 2107 2108 if (fpin) 2109 fput(fpin); 2110 return ret; 2111 } 2112 spin_unlock(&inode->i_lock); 2113 } 2114 2115 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE, 2116 gfp, vma, vmf, &ret); 2117 if (err) 2118 return vmf_error(err); 2119 return ret; 2120 } 2121 2122 unsigned long shmem_get_unmapped_area(struct file *file, 2123 unsigned long uaddr, unsigned long len, 2124 unsigned long pgoff, unsigned long flags) 2125 { 2126 unsigned long (*get_area)(struct file *, 2127 unsigned long, unsigned long, unsigned long, unsigned long); 2128 unsigned long addr; 2129 unsigned long offset; 2130 unsigned long inflated_len; 2131 unsigned long inflated_addr; 2132 unsigned long inflated_offset; 2133 2134 if (len > TASK_SIZE) 2135 return -ENOMEM; 2136 2137 get_area = current->mm->get_unmapped_area; 2138 addr = get_area(file, uaddr, len, pgoff, flags); 2139 2140 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2141 return addr; 2142 if (IS_ERR_VALUE(addr)) 2143 return addr; 2144 if (addr & ~PAGE_MASK) 2145 return addr; 2146 if (addr > TASK_SIZE - len) 2147 return addr; 2148 2149 if (shmem_huge == SHMEM_HUGE_DENY) 2150 return addr; 2151 if (len < HPAGE_PMD_SIZE) 2152 return addr; 2153 if (flags & MAP_FIXED) 2154 return addr; 2155 /* 2156 * Our priority is to support MAP_SHARED mapped hugely; 2157 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2158 * But if caller specified an address hint and we allocated area there 2159 * successfully, respect that as before. 2160 */ 2161 if (uaddr == addr) 2162 return addr; 2163 2164 if (shmem_huge != SHMEM_HUGE_FORCE) { 2165 struct super_block *sb; 2166 2167 if (file) { 2168 VM_BUG_ON(file->f_op != &shmem_file_operations); 2169 sb = file_inode(file)->i_sb; 2170 } else { 2171 /* 2172 * Called directly from mm/mmap.c, or drivers/char/mem.c 2173 * for "/dev/zero", to create a shared anonymous object. 2174 */ 2175 if (IS_ERR(shm_mnt)) 2176 return addr; 2177 sb = shm_mnt->mnt_sb; 2178 } 2179 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2180 return addr; 2181 } 2182 2183 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2184 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2185 return addr; 2186 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2187 return addr; 2188 2189 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2190 if (inflated_len > TASK_SIZE) 2191 return addr; 2192 if (inflated_len < len) 2193 return addr; 2194 2195 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2196 if (IS_ERR_VALUE(inflated_addr)) 2197 return addr; 2198 if (inflated_addr & ~PAGE_MASK) 2199 return addr; 2200 2201 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2202 inflated_addr += offset - inflated_offset; 2203 if (inflated_offset > offset) 2204 inflated_addr += HPAGE_PMD_SIZE; 2205 2206 if (inflated_addr > TASK_SIZE - len) 2207 return addr; 2208 return inflated_addr; 2209 } 2210 2211 #ifdef CONFIG_NUMA 2212 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2213 { 2214 struct inode *inode = file_inode(vma->vm_file); 2215 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2216 } 2217 2218 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2219 unsigned long addr) 2220 { 2221 struct inode *inode = file_inode(vma->vm_file); 2222 pgoff_t index; 2223 2224 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2225 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2226 } 2227 #endif 2228 2229 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2230 { 2231 struct inode *inode = file_inode(file); 2232 struct shmem_inode_info *info = SHMEM_I(inode); 2233 int retval = -ENOMEM; 2234 2235 /* 2236 * What serializes the accesses to info->flags? 2237 * ipc_lock_object() when called from shmctl_do_lock(), 2238 * no serialization needed when called from shm_destroy(). 2239 */ 2240 if (lock && !(info->flags & VM_LOCKED)) { 2241 if (!user_shm_lock(inode->i_size, ucounts)) 2242 goto out_nomem; 2243 info->flags |= VM_LOCKED; 2244 mapping_set_unevictable(file->f_mapping); 2245 } 2246 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2247 user_shm_unlock(inode->i_size, ucounts); 2248 info->flags &= ~VM_LOCKED; 2249 mapping_clear_unevictable(file->f_mapping); 2250 } 2251 retval = 0; 2252 2253 out_nomem: 2254 return retval; 2255 } 2256 2257 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2258 { 2259 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2260 int ret; 2261 2262 ret = seal_check_future_write(info->seals, vma); 2263 if (ret) 2264 return ret; 2265 2266 /* arm64 - allow memory tagging on RAM-based files */ 2267 vma->vm_flags |= VM_MTE_ALLOWED; 2268 2269 file_accessed(file); 2270 vma->vm_ops = &shmem_vm_ops; 2271 return 0; 2272 } 2273 2274 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2275 umode_t mode, dev_t dev, unsigned long flags) 2276 { 2277 struct inode *inode; 2278 struct shmem_inode_info *info; 2279 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2280 ino_t ino; 2281 2282 if (shmem_reserve_inode(sb, &ino)) 2283 return NULL; 2284 2285 inode = new_inode(sb); 2286 if (inode) { 2287 inode->i_ino = ino; 2288 inode_init_owner(&init_user_ns, inode, dir, mode); 2289 inode->i_blocks = 0; 2290 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2291 inode->i_generation = prandom_u32(); 2292 info = SHMEM_I(inode); 2293 memset(info, 0, (char *)inode - (char *)info); 2294 spin_lock_init(&info->lock); 2295 atomic_set(&info->stop_eviction, 0); 2296 info->seals = F_SEAL_SEAL; 2297 info->flags = flags & VM_NORESERVE; 2298 info->i_crtime = inode->i_mtime; 2299 INIT_LIST_HEAD(&info->shrinklist); 2300 INIT_LIST_HEAD(&info->swaplist); 2301 simple_xattrs_init(&info->xattrs); 2302 cache_no_acl(inode); 2303 mapping_set_large_folios(inode->i_mapping); 2304 2305 switch (mode & S_IFMT) { 2306 default: 2307 inode->i_op = &shmem_special_inode_operations; 2308 init_special_inode(inode, mode, dev); 2309 break; 2310 case S_IFREG: 2311 inode->i_mapping->a_ops = &shmem_aops; 2312 inode->i_op = &shmem_inode_operations; 2313 inode->i_fop = &shmem_file_operations; 2314 mpol_shared_policy_init(&info->policy, 2315 shmem_get_sbmpol(sbinfo)); 2316 break; 2317 case S_IFDIR: 2318 inc_nlink(inode); 2319 /* Some things misbehave if size == 0 on a directory */ 2320 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2321 inode->i_op = &shmem_dir_inode_operations; 2322 inode->i_fop = &simple_dir_operations; 2323 break; 2324 case S_IFLNK: 2325 /* 2326 * Must not load anything in the rbtree, 2327 * mpol_free_shared_policy will not be called. 2328 */ 2329 mpol_shared_policy_init(&info->policy, NULL); 2330 break; 2331 } 2332 2333 lockdep_annotate_inode_mutex_key(inode); 2334 } else 2335 shmem_free_inode(sb); 2336 return inode; 2337 } 2338 2339 #ifdef CONFIG_USERFAULTFD 2340 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2341 pmd_t *dst_pmd, 2342 struct vm_area_struct *dst_vma, 2343 unsigned long dst_addr, 2344 unsigned long src_addr, 2345 bool zeropage, bool wp_copy, 2346 struct page **pagep) 2347 { 2348 struct inode *inode = file_inode(dst_vma->vm_file); 2349 struct shmem_inode_info *info = SHMEM_I(inode); 2350 struct address_space *mapping = inode->i_mapping; 2351 gfp_t gfp = mapping_gfp_mask(mapping); 2352 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2353 void *page_kaddr; 2354 struct folio *folio; 2355 struct page *page; 2356 int ret; 2357 pgoff_t max_off; 2358 2359 if (!shmem_inode_acct_block(inode, 1)) { 2360 /* 2361 * We may have got a page, returned -ENOENT triggering a retry, 2362 * and now we find ourselves with -ENOMEM. Release the page, to 2363 * avoid a BUG_ON in our caller. 2364 */ 2365 if (unlikely(*pagep)) { 2366 put_page(*pagep); 2367 *pagep = NULL; 2368 } 2369 return -ENOMEM; 2370 } 2371 2372 if (!*pagep) { 2373 ret = -ENOMEM; 2374 page = shmem_alloc_page(gfp, info, pgoff); 2375 if (!page) 2376 goto out_unacct_blocks; 2377 2378 if (!zeropage) { /* COPY */ 2379 page_kaddr = kmap_atomic(page); 2380 ret = copy_from_user(page_kaddr, 2381 (const void __user *)src_addr, 2382 PAGE_SIZE); 2383 kunmap_atomic(page_kaddr); 2384 2385 /* fallback to copy_from_user outside mmap_lock */ 2386 if (unlikely(ret)) { 2387 *pagep = page; 2388 ret = -ENOENT; 2389 /* don't free the page */ 2390 goto out_unacct_blocks; 2391 } 2392 2393 flush_dcache_page(page); 2394 } else { /* ZEROPAGE */ 2395 clear_user_highpage(page, dst_addr); 2396 } 2397 } else { 2398 page = *pagep; 2399 *pagep = NULL; 2400 } 2401 2402 VM_BUG_ON(PageLocked(page)); 2403 VM_BUG_ON(PageSwapBacked(page)); 2404 __SetPageLocked(page); 2405 __SetPageSwapBacked(page); 2406 __SetPageUptodate(page); 2407 2408 ret = -EFAULT; 2409 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2410 if (unlikely(pgoff >= max_off)) 2411 goto out_release; 2412 2413 folio = page_folio(page); 2414 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, 2415 gfp & GFP_RECLAIM_MASK, dst_mm); 2416 if (ret) 2417 goto out_release; 2418 2419 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr, 2420 page, true, wp_copy); 2421 if (ret) 2422 goto out_delete_from_cache; 2423 2424 spin_lock_irq(&info->lock); 2425 info->alloced++; 2426 inode->i_blocks += BLOCKS_PER_PAGE; 2427 shmem_recalc_inode(inode); 2428 spin_unlock_irq(&info->lock); 2429 2430 unlock_page(page); 2431 return 0; 2432 out_delete_from_cache: 2433 delete_from_page_cache(page); 2434 out_release: 2435 unlock_page(page); 2436 put_page(page); 2437 out_unacct_blocks: 2438 shmem_inode_unacct_blocks(inode, 1); 2439 return ret; 2440 } 2441 #endif /* CONFIG_USERFAULTFD */ 2442 2443 #ifdef CONFIG_TMPFS 2444 static const struct inode_operations shmem_symlink_inode_operations; 2445 static const struct inode_operations shmem_short_symlink_operations; 2446 2447 #ifdef CONFIG_TMPFS_XATTR 2448 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2449 #else 2450 #define shmem_initxattrs NULL 2451 #endif 2452 2453 static int 2454 shmem_write_begin(struct file *file, struct address_space *mapping, 2455 loff_t pos, unsigned len, 2456 struct page **pagep, void **fsdata) 2457 { 2458 struct inode *inode = mapping->host; 2459 struct shmem_inode_info *info = SHMEM_I(inode); 2460 pgoff_t index = pos >> PAGE_SHIFT; 2461 int ret = 0; 2462 2463 /* i_rwsem is held by caller */ 2464 if (unlikely(info->seals & (F_SEAL_GROW | 2465 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2466 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2467 return -EPERM; 2468 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2469 return -EPERM; 2470 } 2471 2472 ret = shmem_getpage(inode, index, pagep, SGP_WRITE); 2473 2474 if (ret) 2475 return ret; 2476 2477 if (PageHWPoison(*pagep)) { 2478 unlock_page(*pagep); 2479 put_page(*pagep); 2480 *pagep = NULL; 2481 return -EIO; 2482 } 2483 2484 return 0; 2485 } 2486 2487 static int 2488 shmem_write_end(struct file *file, struct address_space *mapping, 2489 loff_t pos, unsigned len, unsigned copied, 2490 struct page *page, void *fsdata) 2491 { 2492 struct inode *inode = mapping->host; 2493 2494 if (pos + copied > inode->i_size) 2495 i_size_write(inode, pos + copied); 2496 2497 if (!PageUptodate(page)) { 2498 struct page *head = compound_head(page); 2499 if (PageTransCompound(page)) { 2500 int i; 2501 2502 for (i = 0; i < HPAGE_PMD_NR; i++) { 2503 if (head + i == page) 2504 continue; 2505 clear_highpage(head + i); 2506 flush_dcache_page(head + i); 2507 } 2508 } 2509 if (copied < PAGE_SIZE) { 2510 unsigned from = pos & (PAGE_SIZE - 1); 2511 zero_user_segments(page, 0, from, 2512 from + copied, PAGE_SIZE); 2513 } 2514 SetPageUptodate(head); 2515 } 2516 set_page_dirty(page); 2517 unlock_page(page); 2518 put_page(page); 2519 2520 return copied; 2521 } 2522 2523 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2524 { 2525 struct file *file = iocb->ki_filp; 2526 struct inode *inode = file_inode(file); 2527 struct address_space *mapping = inode->i_mapping; 2528 pgoff_t index; 2529 unsigned long offset; 2530 int error = 0; 2531 ssize_t retval = 0; 2532 loff_t *ppos = &iocb->ki_pos; 2533 2534 index = *ppos >> PAGE_SHIFT; 2535 offset = *ppos & ~PAGE_MASK; 2536 2537 for (;;) { 2538 struct page *page = NULL; 2539 pgoff_t end_index; 2540 unsigned long nr, ret; 2541 loff_t i_size = i_size_read(inode); 2542 2543 end_index = i_size >> PAGE_SHIFT; 2544 if (index > end_index) 2545 break; 2546 if (index == end_index) { 2547 nr = i_size & ~PAGE_MASK; 2548 if (nr <= offset) 2549 break; 2550 } 2551 2552 error = shmem_getpage(inode, index, &page, SGP_READ); 2553 if (error) { 2554 if (error == -EINVAL) 2555 error = 0; 2556 break; 2557 } 2558 if (page) { 2559 unlock_page(page); 2560 2561 if (PageHWPoison(page)) { 2562 put_page(page); 2563 error = -EIO; 2564 break; 2565 } 2566 } 2567 2568 /* 2569 * We must evaluate after, since reads (unlike writes) 2570 * are called without i_rwsem protection against truncate 2571 */ 2572 nr = PAGE_SIZE; 2573 i_size = i_size_read(inode); 2574 end_index = i_size >> PAGE_SHIFT; 2575 if (index == end_index) { 2576 nr = i_size & ~PAGE_MASK; 2577 if (nr <= offset) { 2578 if (page) 2579 put_page(page); 2580 break; 2581 } 2582 } 2583 nr -= offset; 2584 2585 if (page) { 2586 /* 2587 * If users can be writing to this page using arbitrary 2588 * virtual addresses, take care about potential aliasing 2589 * before reading the page on the kernel side. 2590 */ 2591 if (mapping_writably_mapped(mapping)) 2592 flush_dcache_page(page); 2593 /* 2594 * Mark the page accessed if we read the beginning. 2595 */ 2596 if (!offset) 2597 mark_page_accessed(page); 2598 /* 2599 * Ok, we have the page, and it's up-to-date, so 2600 * now we can copy it to user space... 2601 */ 2602 ret = copy_page_to_iter(page, offset, nr, to); 2603 put_page(page); 2604 2605 } else if (iter_is_iovec(to)) { 2606 /* 2607 * Copy to user tends to be so well optimized, but 2608 * clear_user() not so much, that it is noticeably 2609 * faster to copy the zero page instead of clearing. 2610 */ 2611 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2612 } else { 2613 /* 2614 * But submitting the same page twice in a row to 2615 * splice() - or others? - can result in confusion: 2616 * so don't attempt that optimization on pipes etc. 2617 */ 2618 ret = iov_iter_zero(nr, to); 2619 } 2620 2621 retval += ret; 2622 offset += ret; 2623 index += offset >> PAGE_SHIFT; 2624 offset &= ~PAGE_MASK; 2625 2626 if (!iov_iter_count(to)) 2627 break; 2628 if (ret < nr) { 2629 error = -EFAULT; 2630 break; 2631 } 2632 cond_resched(); 2633 } 2634 2635 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2636 file_accessed(file); 2637 return retval ? retval : error; 2638 } 2639 2640 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2641 { 2642 struct address_space *mapping = file->f_mapping; 2643 struct inode *inode = mapping->host; 2644 2645 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2646 return generic_file_llseek_size(file, offset, whence, 2647 MAX_LFS_FILESIZE, i_size_read(inode)); 2648 if (offset < 0) 2649 return -ENXIO; 2650 2651 inode_lock(inode); 2652 /* We're holding i_rwsem so we can access i_size directly */ 2653 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2654 if (offset >= 0) 2655 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2656 inode_unlock(inode); 2657 return offset; 2658 } 2659 2660 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2661 loff_t len) 2662 { 2663 struct inode *inode = file_inode(file); 2664 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2665 struct shmem_inode_info *info = SHMEM_I(inode); 2666 struct shmem_falloc shmem_falloc; 2667 pgoff_t start, index, end, undo_fallocend; 2668 int error; 2669 2670 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2671 return -EOPNOTSUPP; 2672 2673 inode_lock(inode); 2674 2675 if (mode & FALLOC_FL_PUNCH_HOLE) { 2676 struct address_space *mapping = file->f_mapping; 2677 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2678 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2679 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2680 2681 /* protected by i_rwsem */ 2682 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2683 error = -EPERM; 2684 goto out; 2685 } 2686 2687 shmem_falloc.waitq = &shmem_falloc_waitq; 2688 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2689 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2690 spin_lock(&inode->i_lock); 2691 inode->i_private = &shmem_falloc; 2692 spin_unlock(&inode->i_lock); 2693 2694 if ((u64)unmap_end > (u64)unmap_start) 2695 unmap_mapping_range(mapping, unmap_start, 2696 1 + unmap_end - unmap_start, 0); 2697 shmem_truncate_range(inode, offset, offset + len - 1); 2698 /* No need to unmap again: hole-punching leaves COWed pages */ 2699 2700 spin_lock(&inode->i_lock); 2701 inode->i_private = NULL; 2702 wake_up_all(&shmem_falloc_waitq); 2703 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2704 spin_unlock(&inode->i_lock); 2705 error = 0; 2706 goto out; 2707 } 2708 2709 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2710 error = inode_newsize_ok(inode, offset + len); 2711 if (error) 2712 goto out; 2713 2714 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2715 error = -EPERM; 2716 goto out; 2717 } 2718 2719 start = offset >> PAGE_SHIFT; 2720 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2721 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2722 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2723 error = -ENOSPC; 2724 goto out; 2725 } 2726 2727 shmem_falloc.waitq = NULL; 2728 shmem_falloc.start = start; 2729 shmem_falloc.next = start; 2730 shmem_falloc.nr_falloced = 0; 2731 shmem_falloc.nr_unswapped = 0; 2732 spin_lock(&inode->i_lock); 2733 inode->i_private = &shmem_falloc; 2734 spin_unlock(&inode->i_lock); 2735 2736 /* 2737 * info->fallocend is only relevant when huge pages might be 2738 * involved: to prevent split_huge_page() freeing fallocated 2739 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 2740 */ 2741 undo_fallocend = info->fallocend; 2742 if (info->fallocend < end) 2743 info->fallocend = end; 2744 2745 for (index = start; index < end; ) { 2746 struct page *page; 2747 2748 /* 2749 * Good, the fallocate(2) manpage permits EINTR: we may have 2750 * been interrupted because we are using up too much memory. 2751 */ 2752 if (signal_pending(current)) 2753 error = -EINTR; 2754 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2755 error = -ENOMEM; 2756 else 2757 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2758 if (error) { 2759 info->fallocend = undo_fallocend; 2760 /* Remove the !PageUptodate pages we added */ 2761 if (index > start) { 2762 shmem_undo_range(inode, 2763 (loff_t)start << PAGE_SHIFT, 2764 ((loff_t)index << PAGE_SHIFT) - 1, true); 2765 } 2766 goto undone; 2767 } 2768 2769 index++; 2770 /* 2771 * Here is a more important optimization than it appears: 2772 * a second SGP_FALLOC on the same huge page will clear it, 2773 * making it PageUptodate and un-undoable if we fail later. 2774 */ 2775 if (PageTransCompound(page)) { 2776 index = round_up(index, HPAGE_PMD_NR); 2777 /* Beware 32-bit wraparound */ 2778 if (!index) 2779 index--; 2780 } 2781 2782 /* 2783 * Inform shmem_writepage() how far we have reached. 2784 * No need for lock or barrier: we have the page lock. 2785 */ 2786 if (!PageUptodate(page)) 2787 shmem_falloc.nr_falloced += index - shmem_falloc.next; 2788 shmem_falloc.next = index; 2789 2790 /* 2791 * If !PageUptodate, leave it that way so that freeable pages 2792 * can be recognized if we need to rollback on error later. 2793 * But set_page_dirty so that memory pressure will swap rather 2794 * than free the pages we are allocating (and SGP_CACHE pages 2795 * might still be clean: we now need to mark those dirty too). 2796 */ 2797 set_page_dirty(page); 2798 unlock_page(page); 2799 put_page(page); 2800 cond_resched(); 2801 } 2802 2803 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2804 i_size_write(inode, offset + len); 2805 inode->i_ctime = current_time(inode); 2806 undone: 2807 spin_lock(&inode->i_lock); 2808 inode->i_private = NULL; 2809 spin_unlock(&inode->i_lock); 2810 out: 2811 inode_unlock(inode); 2812 return error; 2813 } 2814 2815 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2816 { 2817 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2818 2819 buf->f_type = TMPFS_MAGIC; 2820 buf->f_bsize = PAGE_SIZE; 2821 buf->f_namelen = NAME_MAX; 2822 if (sbinfo->max_blocks) { 2823 buf->f_blocks = sbinfo->max_blocks; 2824 buf->f_bavail = 2825 buf->f_bfree = sbinfo->max_blocks - 2826 percpu_counter_sum(&sbinfo->used_blocks); 2827 } 2828 if (sbinfo->max_inodes) { 2829 buf->f_files = sbinfo->max_inodes; 2830 buf->f_ffree = sbinfo->free_inodes; 2831 } 2832 /* else leave those fields 0 like simple_statfs */ 2833 2834 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 2835 2836 return 0; 2837 } 2838 2839 /* 2840 * File creation. Allocate an inode, and we're done.. 2841 */ 2842 static int 2843 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2844 struct dentry *dentry, umode_t mode, dev_t dev) 2845 { 2846 struct inode *inode; 2847 int error = -ENOSPC; 2848 2849 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2850 if (inode) { 2851 error = simple_acl_create(dir, inode); 2852 if (error) 2853 goto out_iput; 2854 error = security_inode_init_security(inode, dir, 2855 &dentry->d_name, 2856 shmem_initxattrs, NULL); 2857 if (error && error != -EOPNOTSUPP) 2858 goto out_iput; 2859 2860 error = 0; 2861 dir->i_size += BOGO_DIRENT_SIZE; 2862 dir->i_ctime = dir->i_mtime = current_time(dir); 2863 d_instantiate(dentry, inode); 2864 dget(dentry); /* Extra count - pin the dentry in core */ 2865 } 2866 return error; 2867 out_iput: 2868 iput(inode); 2869 return error; 2870 } 2871 2872 static int 2873 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 2874 struct dentry *dentry, umode_t mode) 2875 { 2876 struct inode *inode; 2877 int error = -ENOSPC; 2878 2879 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2880 if (inode) { 2881 error = security_inode_init_security(inode, dir, 2882 NULL, 2883 shmem_initxattrs, NULL); 2884 if (error && error != -EOPNOTSUPP) 2885 goto out_iput; 2886 error = simple_acl_create(dir, inode); 2887 if (error) 2888 goto out_iput; 2889 d_tmpfile(dentry, inode); 2890 } 2891 return error; 2892 out_iput: 2893 iput(inode); 2894 return error; 2895 } 2896 2897 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2898 struct dentry *dentry, umode_t mode) 2899 { 2900 int error; 2901 2902 if ((error = shmem_mknod(&init_user_ns, dir, dentry, 2903 mode | S_IFDIR, 0))) 2904 return error; 2905 inc_nlink(dir); 2906 return 0; 2907 } 2908 2909 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir, 2910 struct dentry *dentry, umode_t mode, bool excl) 2911 { 2912 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 2913 } 2914 2915 /* 2916 * Link a file.. 2917 */ 2918 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2919 { 2920 struct inode *inode = d_inode(old_dentry); 2921 int ret = 0; 2922 2923 /* 2924 * No ordinary (disk based) filesystem counts links as inodes; 2925 * but each new link needs a new dentry, pinning lowmem, and 2926 * tmpfs dentries cannot be pruned until they are unlinked. 2927 * But if an O_TMPFILE file is linked into the tmpfs, the 2928 * first link must skip that, to get the accounting right. 2929 */ 2930 if (inode->i_nlink) { 2931 ret = shmem_reserve_inode(inode->i_sb, NULL); 2932 if (ret) 2933 goto out; 2934 } 2935 2936 dir->i_size += BOGO_DIRENT_SIZE; 2937 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2938 inc_nlink(inode); 2939 ihold(inode); /* New dentry reference */ 2940 dget(dentry); /* Extra pinning count for the created dentry */ 2941 d_instantiate(dentry, inode); 2942 out: 2943 return ret; 2944 } 2945 2946 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2947 { 2948 struct inode *inode = d_inode(dentry); 2949 2950 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2951 shmem_free_inode(inode->i_sb); 2952 2953 dir->i_size -= BOGO_DIRENT_SIZE; 2954 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2955 drop_nlink(inode); 2956 dput(dentry); /* Undo the count from "create" - this does all the work */ 2957 return 0; 2958 } 2959 2960 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2961 { 2962 if (!simple_empty(dentry)) 2963 return -ENOTEMPTY; 2964 2965 drop_nlink(d_inode(dentry)); 2966 drop_nlink(dir); 2967 return shmem_unlink(dir, dentry); 2968 } 2969 2970 static int shmem_whiteout(struct user_namespace *mnt_userns, 2971 struct inode *old_dir, struct dentry *old_dentry) 2972 { 2973 struct dentry *whiteout; 2974 int error; 2975 2976 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2977 if (!whiteout) 2978 return -ENOMEM; 2979 2980 error = shmem_mknod(&init_user_ns, old_dir, whiteout, 2981 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2982 dput(whiteout); 2983 if (error) 2984 return error; 2985 2986 /* 2987 * Cheat and hash the whiteout while the old dentry is still in 2988 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2989 * 2990 * d_lookup() will consistently find one of them at this point, 2991 * not sure which one, but that isn't even important. 2992 */ 2993 d_rehash(whiteout); 2994 return 0; 2995 } 2996 2997 /* 2998 * The VFS layer already does all the dentry stuff for rename, 2999 * we just have to decrement the usage count for the target if 3000 * it exists so that the VFS layer correctly free's it when it 3001 * gets overwritten. 3002 */ 3003 static int shmem_rename2(struct user_namespace *mnt_userns, 3004 struct inode *old_dir, struct dentry *old_dentry, 3005 struct inode *new_dir, struct dentry *new_dentry, 3006 unsigned int flags) 3007 { 3008 struct inode *inode = d_inode(old_dentry); 3009 int they_are_dirs = S_ISDIR(inode->i_mode); 3010 3011 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3012 return -EINVAL; 3013 3014 if (flags & RENAME_EXCHANGE) 3015 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 3016 3017 if (!simple_empty(new_dentry)) 3018 return -ENOTEMPTY; 3019 3020 if (flags & RENAME_WHITEOUT) { 3021 int error; 3022 3023 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry); 3024 if (error) 3025 return error; 3026 } 3027 3028 if (d_really_is_positive(new_dentry)) { 3029 (void) shmem_unlink(new_dir, new_dentry); 3030 if (they_are_dirs) { 3031 drop_nlink(d_inode(new_dentry)); 3032 drop_nlink(old_dir); 3033 } 3034 } else if (they_are_dirs) { 3035 drop_nlink(old_dir); 3036 inc_nlink(new_dir); 3037 } 3038 3039 old_dir->i_size -= BOGO_DIRENT_SIZE; 3040 new_dir->i_size += BOGO_DIRENT_SIZE; 3041 old_dir->i_ctime = old_dir->i_mtime = 3042 new_dir->i_ctime = new_dir->i_mtime = 3043 inode->i_ctime = current_time(old_dir); 3044 return 0; 3045 } 3046 3047 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir, 3048 struct dentry *dentry, const char *symname) 3049 { 3050 int error; 3051 int len; 3052 struct inode *inode; 3053 struct page *page; 3054 3055 len = strlen(symname) + 1; 3056 if (len > PAGE_SIZE) 3057 return -ENAMETOOLONG; 3058 3059 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3060 VM_NORESERVE); 3061 if (!inode) 3062 return -ENOSPC; 3063 3064 error = security_inode_init_security(inode, dir, &dentry->d_name, 3065 shmem_initxattrs, NULL); 3066 if (error && error != -EOPNOTSUPP) { 3067 iput(inode); 3068 return error; 3069 } 3070 3071 inode->i_size = len-1; 3072 if (len <= SHORT_SYMLINK_LEN) { 3073 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3074 if (!inode->i_link) { 3075 iput(inode); 3076 return -ENOMEM; 3077 } 3078 inode->i_op = &shmem_short_symlink_operations; 3079 } else { 3080 inode_nohighmem(inode); 3081 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3082 if (error) { 3083 iput(inode); 3084 return error; 3085 } 3086 inode->i_mapping->a_ops = &shmem_aops; 3087 inode->i_op = &shmem_symlink_inode_operations; 3088 memcpy(page_address(page), symname, len); 3089 SetPageUptodate(page); 3090 set_page_dirty(page); 3091 unlock_page(page); 3092 put_page(page); 3093 } 3094 dir->i_size += BOGO_DIRENT_SIZE; 3095 dir->i_ctime = dir->i_mtime = current_time(dir); 3096 d_instantiate(dentry, inode); 3097 dget(dentry); 3098 return 0; 3099 } 3100 3101 static void shmem_put_link(void *arg) 3102 { 3103 mark_page_accessed(arg); 3104 put_page(arg); 3105 } 3106 3107 static const char *shmem_get_link(struct dentry *dentry, 3108 struct inode *inode, 3109 struct delayed_call *done) 3110 { 3111 struct page *page = NULL; 3112 int error; 3113 if (!dentry) { 3114 page = find_get_page(inode->i_mapping, 0); 3115 if (!page) 3116 return ERR_PTR(-ECHILD); 3117 if (PageHWPoison(page) || 3118 !PageUptodate(page)) { 3119 put_page(page); 3120 return ERR_PTR(-ECHILD); 3121 } 3122 } else { 3123 error = shmem_getpage(inode, 0, &page, SGP_READ); 3124 if (error) 3125 return ERR_PTR(error); 3126 if (!page) 3127 return ERR_PTR(-ECHILD); 3128 if (PageHWPoison(page)) { 3129 unlock_page(page); 3130 put_page(page); 3131 return ERR_PTR(-ECHILD); 3132 } 3133 unlock_page(page); 3134 } 3135 set_delayed_call(done, shmem_put_link, page); 3136 return page_address(page); 3137 } 3138 3139 #ifdef CONFIG_TMPFS_XATTR 3140 /* 3141 * Superblocks without xattr inode operations may get some security.* xattr 3142 * support from the LSM "for free". As soon as we have any other xattrs 3143 * like ACLs, we also need to implement the security.* handlers at 3144 * filesystem level, though. 3145 */ 3146 3147 /* 3148 * Callback for security_inode_init_security() for acquiring xattrs. 3149 */ 3150 static int shmem_initxattrs(struct inode *inode, 3151 const struct xattr *xattr_array, 3152 void *fs_info) 3153 { 3154 struct shmem_inode_info *info = SHMEM_I(inode); 3155 const struct xattr *xattr; 3156 struct simple_xattr *new_xattr; 3157 size_t len; 3158 3159 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3160 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3161 if (!new_xattr) 3162 return -ENOMEM; 3163 3164 len = strlen(xattr->name) + 1; 3165 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3166 GFP_KERNEL); 3167 if (!new_xattr->name) { 3168 kvfree(new_xattr); 3169 return -ENOMEM; 3170 } 3171 3172 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3173 XATTR_SECURITY_PREFIX_LEN); 3174 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3175 xattr->name, len); 3176 3177 simple_xattr_list_add(&info->xattrs, new_xattr); 3178 } 3179 3180 return 0; 3181 } 3182 3183 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3184 struct dentry *unused, struct inode *inode, 3185 const char *name, void *buffer, size_t size) 3186 { 3187 struct shmem_inode_info *info = SHMEM_I(inode); 3188 3189 name = xattr_full_name(handler, name); 3190 return simple_xattr_get(&info->xattrs, name, buffer, size); 3191 } 3192 3193 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3194 struct user_namespace *mnt_userns, 3195 struct dentry *unused, struct inode *inode, 3196 const char *name, const void *value, 3197 size_t size, int flags) 3198 { 3199 struct shmem_inode_info *info = SHMEM_I(inode); 3200 3201 name = xattr_full_name(handler, name); 3202 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3203 } 3204 3205 static const struct xattr_handler shmem_security_xattr_handler = { 3206 .prefix = XATTR_SECURITY_PREFIX, 3207 .get = shmem_xattr_handler_get, 3208 .set = shmem_xattr_handler_set, 3209 }; 3210 3211 static const struct xattr_handler shmem_trusted_xattr_handler = { 3212 .prefix = XATTR_TRUSTED_PREFIX, 3213 .get = shmem_xattr_handler_get, 3214 .set = shmem_xattr_handler_set, 3215 }; 3216 3217 static const struct xattr_handler *shmem_xattr_handlers[] = { 3218 #ifdef CONFIG_TMPFS_POSIX_ACL 3219 &posix_acl_access_xattr_handler, 3220 &posix_acl_default_xattr_handler, 3221 #endif 3222 &shmem_security_xattr_handler, 3223 &shmem_trusted_xattr_handler, 3224 NULL 3225 }; 3226 3227 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3228 { 3229 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3230 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3231 } 3232 #endif /* CONFIG_TMPFS_XATTR */ 3233 3234 static const struct inode_operations shmem_short_symlink_operations = { 3235 .getattr = shmem_getattr, 3236 .get_link = simple_get_link, 3237 #ifdef CONFIG_TMPFS_XATTR 3238 .listxattr = shmem_listxattr, 3239 #endif 3240 }; 3241 3242 static const struct inode_operations shmem_symlink_inode_operations = { 3243 .getattr = shmem_getattr, 3244 .get_link = shmem_get_link, 3245 #ifdef CONFIG_TMPFS_XATTR 3246 .listxattr = shmem_listxattr, 3247 #endif 3248 }; 3249 3250 static struct dentry *shmem_get_parent(struct dentry *child) 3251 { 3252 return ERR_PTR(-ESTALE); 3253 } 3254 3255 static int shmem_match(struct inode *ino, void *vfh) 3256 { 3257 __u32 *fh = vfh; 3258 __u64 inum = fh[2]; 3259 inum = (inum << 32) | fh[1]; 3260 return ino->i_ino == inum && fh[0] == ino->i_generation; 3261 } 3262 3263 /* Find any alias of inode, but prefer a hashed alias */ 3264 static struct dentry *shmem_find_alias(struct inode *inode) 3265 { 3266 struct dentry *alias = d_find_alias(inode); 3267 3268 return alias ?: d_find_any_alias(inode); 3269 } 3270 3271 3272 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3273 struct fid *fid, int fh_len, int fh_type) 3274 { 3275 struct inode *inode; 3276 struct dentry *dentry = NULL; 3277 u64 inum; 3278 3279 if (fh_len < 3) 3280 return NULL; 3281 3282 inum = fid->raw[2]; 3283 inum = (inum << 32) | fid->raw[1]; 3284 3285 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3286 shmem_match, fid->raw); 3287 if (inode) { 3288 dentry = shmem_find_alias(inode); 3289 iput(inode); 3290 } 3291 3292 return dentry; 3293 } 3294 3295 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3296 struct inode *parent) 3297 { 3298 if (*len < 3) { 3299 *len = 3; 3300 return FILEID_INVALID; 3301 } 3302 3303 if (inode_unhashed(inode)) { 3304 /* Unfortunately insert_inode_hash is not idempotent, 3305 * so as we hash inodes here rather than at creation 3306 * time, we need a lock to ensure we only try 3307 * to do it once 3308 */ 3309 static DEFINE_SPINLOCK(lock); 3310 spin_lock(&lock); 3311 if (inode_unhashed(inode)) 3312 __insert_inode_hash(inode, 3313 inode->i_ino + inode->i_generation); 3314 spin_unlock(&lock); 3315 } 3316 3317 fh[0] = inode->i_generation; 3318 fh[1] = inode->i_ino; 3319 fh[2] = ((__u64)inode->i_ino) >> 32; 3320 3321 *len = 3; 3322 return 1; 3323 } 3324 3325 static const struct export_operations shmem_export_ops = { 3326 .get_parent = shmem_get_parent, 3327 .encode_fh = shmem_encode_fh, 3328 .fh_to_dentry = shmem_fh_to_dentry, 3329 }; 3330 3331 enum shmem_param { 3332 Opt_gid, 3333 Opt_huge, 3334 Opt_mode, 3335 Opt_mpol, 3336 Opt_nr_blocks, 3337 Opt_nr_inodes, 3338 Opt_size, 3339 Opt_uid, 3340 Opt_inode32, 3341 Opt_inode64, 3342 }; 3343 3344 static const struct constant_table shmem_param_enums_huge[] = { 3345 {"never", SHMEM_HUGE_NEVER }, 3346 {"always", SHMEM_HUGE_ALWAYS }, 3347 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3348 {"advise", SHMEM_HUGE_ADVISE }, 3349 {} 3350 }; 3351 3352 const struct fs_parameter_spec shmem_fs_parameters[] = { 3353 fsparam_u32 ("gid", Opt_gid), 3354 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3355 fsparam_u32oct("mode", Opt_mode), 3356 fsparam_string("mpol", Opt_mpol), 3357 fsparam_string("nr_blocks", Opt_nr_blocks), 3358 fsparam_string("nr_inodes", Opt_nr_inodes), 3359 fsparam_string("size", Opt_size), 3360 fsparam_u32 ("uid", Opt_uid), 3361 fsparam_flag ("inode32", Opt_inode32), 3362 fsparam_flag ("inode64", Opt_inode64), 3363 {} 3364 }; 3365 3366 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3367 { 3368 struct shmem_options *ctx = fc->fs_private; 3369 struct fs_parse_result result; 3370 unsigned long long size; 3371 char *rest; 3372 int opt; 3373 3374 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3375 if (opt < 0) 3376 return opt; 3377 3378 switch (opt) { 3379 case Opt_size: 3380 size = memparse(param->string, &rest); 3381 if (*rest == '%') { 3382 size <<= PAGE_SHIFT; 3383 size *= totalram_pages(); 3384 do_div(size, 100); 3385 rest++; 3386 } 3387 if (*rest) 3388 goto bad_value; 3389 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3390 ctx->seen |= SHMEM_SEEN_BLOCKS; 3391 break; 3392 case Opt_nr_blocks: 3393 ctx->blocks = memparse(param->string, &rest); 3394 if (*rest || ctx->blocks > S64_MAX) 3395 goto bad_value; 3396 ctx->seen |= SHMEM_SEEN_BLOCKS; 3397 break; 3398 case Opt_nr_inodes: 3399 ctx->inodes = memparse(param->string, &rest); 3400 if (*rest) 3401 goto bad_value; 3402 ctx->seen |= SHMEM_SEEN_INODES; 3403 break; 3404 case Opt_mode: 3405 ctx->mode = result.uint_32 & 07777; 3406 break; 3407 case Opt_uid: 3408 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3409 if (!uid_valid(ctx->uid)) 3410 goto bad_value; 3411 break; 3412 case Opt_gid: 3413 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3414 if (!gid_valid(ctx->gid)) 3415 goto bad_value; 3416 break; 3417 case Opt_huge: 3418 ctx->huge = result.uint_32; 3419 if (ctx->huge != SHMEM_HUGE_NEVER && 3420 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3421 has_transparent_hugepage())) 3422 goto unsupported_parameter; 3423 ctx->seen |= SHMEM_SEEN_HUGE; 3424 break; 3425 case Opt_mpol: 3426 if (IS_ENABLED(CONFIG_NUMA)) { 3427 mpol_put(ctx->mpol); 3428 ctx->mpol = NULL; 3429 if (mpol_parse_str(param->string, &ctx->mpol)) 3430 goto bad_value; 3431 break; 3432 } 3433 goto unsupported_parameter; 3434 case Opt_inode32: 3435 ctx->full_inums = false; 3436 ctx->seen |= SHMEM_SEEN_INUMS; 3437 break; 3438 case Opt_inode64: 3439 if (sizeof(ino_t) < 8) { 3440 return invalfc(fc, 3441 "Cannot use inode64 with <64bit inums in kernel\n"); 3442 } 3443 ctx->full_inums = true; 3444 ctx->seen |= SHMEM_SEEN_INUMS; 3445 break; 3446 } 3447 return 0; 3448 3449 unsupported_parameter: 3450 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3451 bad_value: 3452 return invalfc(fc, "Bad value for '%s'", param->key); 3453 } 3454 3455 static int shmem_parse_options(struct fs_context *fc, void *data) 3456 { 3457 char *options = data; 3458 3459 if (options) { 3460 int err = security_sb_eat_lsm_opts(options, &fc->security); 3461 if (err) 3462 return err; 3463 } 3464 3465 while (options != NULL) { 3466 char *this_char = options; 3467 for (;;) { 3468 /* 3469 * NUL-terminate this option: unfortunately, 3470 * mount options form a comma-separated list, 3471 * but mpol's nodelist may also contain commas. 3472 */ 3473 options = strchr(options, ','); 3474 if (options == NULL) 3475 break; 3476 options++; 3477 if (!isdigit(*options)) { 3478 options[-1] = '\0'; 3479 break; 3480 } 3481 } 3482 if (*this_char) { 3483 char *value = strchr(this_char, '='); 3484 size_t len = 0; 3485 int err; 3486 3487 if (value) { 3488 *value++ = '\0'; 3489 len = strlen(value); 3490 } 3491 err = vfs_parse_fs_string(fc, this_char, value, len); 3492 if (err < 0) 3493 return err; 3494 } 3495 } 3496 return 0; 3497 } 3498 3499 /* 3500 * Reconfigure a shmem filesystem. 3501 * 3502 * Note that we disallow change from limited->unlimited blocks/inodes while any 3503 * are in use; but we must separately disallow unlimited->limited, because in 3504 * that case we have no record of how much is already in use. 3505 */ 3506 static int shmem_reconfigure(struct fs_context *fc) 3507 { 3508 struct shmem_options *ctx = fc->fs_private; 3509 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3510 unsigned long inodes; 3511 struct mempolicy *mpol = NULL; 3512 const char *err; 3513 3514 raw_spin_lock(&sbinfo->stat_lock); 3515 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3516 3517 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3518 if (!sbinfo->max_blocks) { 3519 err = "Cannot retroactively limit size"; 3520 goto out; 3521 } 3522 if (percpu_counter_compare(&sbinfo->used_blocks, 3523 ctx->blocks) > 0) { 3524 err = "Too small a size for current use"; 3525 goto out; 3526 } 3527 } 3528 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3529 if (!sbinfo->max_inodes) { 3530 err = "Cannot retroactively limit inodes"; 3531 goto out; 3532 } 3533 if (ctx->inodes < inodes) { 3534 err = "Too few inodes for current use"; 3535 goto out; 3536 } 3537 } 3538 3539 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3540 sbinfo->next_ino > UINT_MAX) { 3541 err = "Current inum too high to switch to 32-bit inums"; 3542 goto out; 3543 } 3544 3545 if (ctx->seen & SHMEM_SEEN_HUGE) 3546 sbinfo->huge = ctx->huge; 3547 if (ctx->seen & SHMEM_SEEN_INUMS) 3548 sbinfo->full_inums = ctx->full_inums; 3549 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3550 sbinfo->max_blocks = ctx->blocks; 3551 if (ctx->seen & SHMEM_SEEN_INODES) { 3552 sbinfo->max_inodes = ctx->inodes; 3553 sbinfo->free_inodes = ctx->inodes - inodes; 3554 } 3555 3556 /* 3557 * Preserve previous mempolicy unless mpol remount option was specified. 3558 */ 3559 if (ctx->mpol) { 3560 mpol = sbinfo->mpol; 3561 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3562 ctx->mpol = NULL; 3563 } 3564 raw_spin_unlock(&sbinfo->stat_lock); 3565 mpol_put(mpol); 3566 return 0; 3567 out: 3568 raw_spin_unlock(&sbinfo->stat_lock); 3569 return invalfc(fc, "%s", err); 3570 } 3571 3572 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3573 { 3574 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3575 3576 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3577 seq_printf(seq, ",size=%luk", 3578 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3579 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3580 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3581 if (sbinfo->mode != (0777 | S_ISVTX)) 3582 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3583 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3584 seq_printf(seq, ",uid=%u", 3585 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3586 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3587 seq_printf(seq, ",gid=%u", 3588 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3589 3590 /* 3591 * Showing inode{64,32} might be useful even if it's the system default, 3592 * since then people don't have to resort to checking both here and 3593 * /proc/config.gz to confirm 64-bit inums were successfully applied 3594 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3595 * 3596 * We hide it when inode64 isn't the default and we are using 32-bit 3597 * inodes, since that probably just means the feature isn't even under 3598 * consideration. 3599 * 3600 * As such: 3601 * 3602 * +-----------------+-----------------+ 3603 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3604 * +------------------+-----------------+-----------------+ 3605 * | full_inums=true | show | show | 3606 * | full_inums=false | show | hide | 3607 * +------------------+-----------------+-----------------+ 3608 * 3609 */ 3610 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3611 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3612 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3613 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3614 if (sbinfo->huge) 3615 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3616 #endif 3617 shmem_show_mpol(seq, sbinfo->mpol); 3618 return 0; 3619 } 3620 3621 #endif /* CONFIG_TMPFS */ 3622 3623 static void shmem_put_super(struct super_block *sb) 3624 { 3625 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3626 3627 free_percpu(sbinfo->ino_batch); 3628 percpu_counter_destroy(&sbinfo->used_blocks); 3629 mpol_put(sbinfo->mpol); 3630 kfree(sbinfo); 3631 sb->s_fs_info = NULL; 3632 } 3633 3634 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3635 { 3636 struct shmem_options *ctx = fc->fs_private; 3637 struct inode *inode; 3638 struct shmem_sb_info *sbinfo; 3639 3640 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3641 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3642 L1_CACHE_BYTES), GFP_KERNEL); 3643 if (!sbinfo) 3644 return -ENOMEM; 3645 3646 sb->s_fs_info = sbinfo; 3647 3648 #ifdef CONFIG_TMPFS 3649 /* 3650 * Per default we only allow half of the physical ram per 3651 * tmpfs instance, limiting inodes to one per page of lowmem; 3652 * but the internal instance is left unlimited. 3653 */ 3654 if (!(sb->s_flags & SB_KERNMOUNT)) { 3655 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3656 ctx->blocks = shmem_default_max_blocks(); 3657 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3658 ctx->inodes = shmem_default_max_inodes(); 3659 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3660 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3661 } else { 3662 sb->s_flags |= SB_NOUSER; 3663 } 3664 sb->s_export_op = &shmem_export_ops; 3665 sb->s_flags |= SB_NOSEC; 3666 #else 3667 sb->s_flags |= SB_NOUSER; 3668 #endif 3669 sbinfo->max_blocks = ctx->blocks; 3670 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3671 if (sb->s_flags & SB_KERNMOUNT) { 3672 sbinfo->ino_batch = alloc_percpu(ino_t); 3673 if (!sbinfo->ino_batch) 3674 goto failed; 3675 } 3676 sbinfo->uid = ctx->uid; 3677 sbinfo->gid = ctx->gid; 3678 sbinfo->full_inums = ctx->full_inums; 3679 sbinfo->mode = ctx->mode; 3680 sbinfo->huge = ctx->huge; 3681 sbinfo->mpol = ctx->mpol; 3682 ctx->mpol = NULL; 3683 3684 raw_spin_lock_init(&sbinfo->stat_lock); 3685 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3686 goto failed; 3687 spin_lock_init(&sbinfo->shrinklist_lock); 3688 INIT_LIST_HEAD(&sbinfo->shrinklist); 3689 3690 sb->s_maxbytes = MAX_LFS_FILESIZE; 3691 sb->s_blocksize = PAGE_SIZE; 3692 sb->s_blocksize_bits = PAGE_SHIFT; 3693 sb->s_magic = TMPFS_MAGIC; 3694 sb->s_op = &shmem_ops; 3695 sb->s_time_gran = 1; 3696 #ifdef CONFIG_TMPFS_XATTR 3697 sb->s_xattr = shmem_xattr_handlers; 3698 #endif 3699 #ifdef CONFIG_TMPFS_POSIX_ACL 3700 sb->s_flags |= SB_POSIXACL; 3701 #endif 3702 uuid_gen(&sb->s_uuid); 3703 3704 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3705 if (!inode) 3706 goto failed; 3707 inode->i_uid = sbinfo->uid; 3708 inode->i_gid = sbinfo->gid; 3709 sb->s_root = d_make_root(inode); 3710 if (!sb->s_root) 3711 goto failed; 3712 return 0; 3713 3714 failed: 3715 shmem_put_super(sb); 3716 return -ENOMEM; 3717 } 3718 3719 static int shmem_get_tree(struct fs_context *fc) 3720 { 3721 return get_tree_nodev(fc, shmem_fill_super); 3722 } 3723 3724 static void shmem_free_fc(struct fs_context *fc) 3725 { 3726 struct shmem_options *ctx = fc->fs_private; 3727 3728 if (ctx) { 3729 mpol_put(ctx->mpol); 3730 kfree(ctx); 3731 } 3732 } 3733 3734 static const struct fs_context_operations shmem_fs_context_ops = { 3735 .free = shmem_free_fc, 3736 .get_tree = shmem_get_tree, 3737 #ifdef CONFIG_TMPFS 3738 .parse_monolithic = shmem_parse_options, 3739 .parse_param = shmem_parse_one, 3740 .reconfigure = shmem_reconfigure, 3741 #endif 3742 }; 3743 3744 static struct kmem_cache *shmem_inode_cachep; 3745 3746 static struct inode *shmem_alloc_inode(struct super_block *sb) 3747 { 3748 struct shmem_inode_info *info; 3749 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 3750 if (!info) 3751 return NULL; 3752 return &info->vfs_inode; 3753 } 3754 3755 static void shmem_free_in_core_inode(struct inode *inode) 3756 { 3757 if (S_ISLNK(inode->i_mode)) 3758 kfree(inode->i_link); 3759 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3760 } 3761 3762 static void shmem_destroy_inode(struct inode *inode) 3763 { 3764 if (S_ISREG(inode->i_mode)) 3765 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3766 } 3767 3768 static void shmem_init_inode(void *foo) 3769 { 3770 struct shmem_inode_info *info = foo; 3771 inode_init_once(&info->vfs_inode); 3772 } 3773 3774 static void shmem_init_inodecache(void) 3775 { 3776 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3777 sizeof(struct shmem_inode_info), 3778 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3779 } 3780 3781 static void shmem_destroy_inodecache(void) 3782 { 3783 kmem_cache_destroy(shmem_inode_cachep); 3784 } 3785 3786 /* Keep the page in page cache instead of truncating it */ 3787 static int shmem_error_remove_page(struct address_space *mapping, 3788 struct page *page) 3789 { 3790 return 0; 3791 } 3792 3793 const struct address_space_operations shmem_aops = { 3794 .writepage = shmem_writepage, 3795 .dirty_folio = noop_dirty_folio, 3796 #ifdef CONFIG_TMPFS 3797 .write_begin = shmem_write_begin, 3798 .write_end = shmem_write_end, 3799 #endif 3800 #ifdef CONFIG_MIGRATION 3801 .migrate_folio = migrate_folio, 3802 #endif 3803 .error_remove_page = shmem_error_remove_page, 3804 }; 3805 EXPORT_SYMBOL(shmem_aops); 3806 3807 static const struct file_operations shmem_file_operations = { 3808 .mmap = shmem_mmap, 3809 .get_unmapped_area = shmem_get_unmapped_area, 3810 #ifdef CONFIG_TMPFS 3811 .llseek = shmem_file_llseek, 3812 .read_iter = shmem_file_read_iter, 3813 .write_iter = generic_file_write_iter, 3814 .fsync = noop_fsync, 3815 .splice_read = generic_file_splice_read, 3816 .splice_write = iter_file_splice_write, 3817 .fallocate = shmem_fallocate, 3818 #endif 3819 }; 3820 3821 static const struct inode_operations shmem_inode_operations = { 3822 .getattr = shmem_getattr, 3823 .setattr = shmem_setattr, 3824 #ifdef CONFIG_TMPFS_XATTR 3825 .listxattr = shmem_listxattr, 3826 .set_acl = simple_set_acl, 3827 #endif 3828 }; 3829 3830 static const struct inode_operations shmem_dir_inode_operations = { 3831 #ifdef CONFIG_TMPFS 3832 .getattr = shmem_getattr, 3833 .create = shmem_create, 3834 .lookup = simple_lookup, 3835 .link = shmem_link, 3836 .unlink = shmem_unlink, 3837 .symlink = shmem_symlink, 3838 .mkdir = shmem_mkdir, 3839 .rmdir = shmem_rmdir, 3840 .mknod = shmem_mknod, 3841 .rename = shmem_rename2, 3842 .tmpfile = shmem_tmpfile, 3843 #endif 3844 #ifdef CONFIG_TMPFS_XATTR 3845 .listxattr = shmem_listxattr, 3846 #endif 3847 #ifdef CONFIG_TMPFS_POSIX_ACL 3848 .setattr = shmem_setattr, 3849 .set_acl = simple_set_acl, 3850 #endif 3851 }; 3852 3853 static const struct inode_operations shmem_special_inode_operations = { 3854 .getattr = shmem_getattr, 3855 #ifdef CONFIG_TMPFS_XATTR 3856 .listxattr = shmem_listxattr, 3857 #endif 3858 #ifdef CONFIG_TMPFS_POSIX_ACL 3859 .setattr = shmem_setattr, 3860 .set_acl = simple_set_acl, 3861 #endif 3862 }; 3863 3864 static const struct super_operations shmem_ops = { 3865 .alloc_inode = shmem_alloc_inode, 3866 .free_inode = shmem_free_in_core_inode, 3867 .destroy_inode = shmem_destroy_inode, 3868 #ifdef CONFIG_TMPFS 3869 .statfs = shmem_statfs, 3870 .show_options = shmem_show_options, 3871 #endif 3872 .evict_inode = shmem_evict_inode, 3873 .drop_inode = generic_delete_inode, 3874 .put_super = shmem_put_super, 3875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3876 .nr_cached_objects = shmem_unused_huge_count, 3877 .free_cached_objects = shmem_unused_huge_scan, 3878 #endif 3879 }; 3880 3881 static const struct vm_operations_struct shmem_vm_ops = { 3882 .fault = shmem_fault, 3883 .map_pages = filemap_map_pages, 3884 #ifdef CONFIG_NUMA 3885 .set_policy = shmem_set_policy, 3886 .get_policy = shmem_get_policy, 3887 #endif 3888 }; 3889 3890 int shmem_init_fs_context(struct fs_context *fc) 3891 { 3892 struct shmem_options *ctx; 3893 3894 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3895 if (!ctx) 3896 return -ENOMEM; 3897 3898 ctx->mode = 0777 | S_ISVTX; 3899 ctx->uid = current_fsuid(); 3900 ctx->gid = current_fsgid(); 3901 3902 fc->fs_private = ctx; 3903 fc->ops = &shmem_fs_context_ops; 3904 return 0; 3905 } 3906 3907 static struct file_system_type shmem_fs_type = { 3908 .owner = THIS_MODULE, 3909 .name = "tmpfs", 3910 .init_fs_context = shmem_init_fs_context, 3911 #ifdef CONFIG_TMPFS 3912 .parameters = shmem_fs_parameters, 3913 #endif 3914 .kill_sb = kill_litter_super, 3915 .fs_flags = FS_USERNS_MOUNT, 3916 }; 3917 3918 void __init shmem_init(void) 3919 { 3920 int error; 3921 3922 shmem_init_inodecache(); 3923 3924 error = register_filesystem(&shmem_fs_type); 3925 if (error) { 3926 pr_err("Could not register tmpfs\n"); 3927 goto out2; 3928 } 3929 3930 shm_mnt = kern_mount(&shmem_fs_type); 3931 if (IS_ERR(shm_mnt)) { 3932 error = PTR_ERR(shm_mnt); 3933 pr_err("Could not kern_mount tmpfs\n"); 3934 goto out1; 3935 } 3936 3937 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3938 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3939 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3940 else 3941 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 3942 #endif 3943 return; 3944 3945 out1: 3946 unregister_filesystem(&shmem_fs_type); 3947 out2: 3948 shmem_destroy_inodecache(); 3949 shm_mnt = ERR_PTR(error); 3950 } 3951 3952 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 3953 static ssize_t shmem_enabled_show(struct kobject *kobj, 3954 struct kobj_attribute *attr, char *buf) 3955 { 3956 static const int values[] = { 3957 SHMEM_HUGE_ALWAYS, 3958 SHMEM_HUGE_WITHIN_SIZE, 3959 SHMEM_HUGE_ADVISE, 3960 SHMEM_HUGE_NEVER, 3961 SHMEM_HUGE_DENY, 3962 SHMEM_HUGE_FORCE, 3963 }; 3964 int len = 0; 3965 int i; 3966 3967 for (i = 0; i < ARRAY_SIZE(values); i++) { 3968 len += sysfs_emit_at(buf, len, 3969 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 3970 i ? " " : "", 3971 shmem_format_huge(values[i])); 3972 } 3973 3974 len += sysfs_emit_at(buf, len, "\n"); 3975 3976 return len; 3977 } 3978 3979 static ssize_t shmem_enabled_store(struct kobject *kobj, 3980 struct kobj_attribute *attr, const char *buf, size_t count) 3981 { 3982 char tmp[16]; 3983 int huge; 3984 3985 if (count + 1 > sizeof(tmp)) 3986 return -EINVAL; 3987 memcpy(tmp, buf, count); 3988 tmp[count] = '\0'; 3989 if (count && tmp[count - 1] == '\n') 3990 tmp[count - 1] = '\0'; 3991 3992 huge = shmem_parse_huge(tmp); 3993 if (huge == -EINVAL) 3994 return -EINVAL; 3995 if (!has_transparent_hugepage() && 3996 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3997 return -EINVAL; 3998 3999 shmem_huge = huge; 4000 if (shmem_huge > SHMEM_HUGE_DENY) 4001 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4002 return count; 4003 } 4004 4005 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4006 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4007 4008 #else /* !CONFIG_SHMEM */ 4009 4010 /* 4011 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4012 * 4013 * This is intended for small system where the benefits of the full 4014 * shmem code (swap-backed and resource-limited) are outweighed by 4015 * their complexity. On systems without swap this code should be 4016 * effectively equivalent, but much lighter weight. 4017 */ 4018 4019 static struct file_system_type shmem_fs_type = { 4020 .name = "tmpfs", 4021 .init_fs_context = ramfs_init_fs_context, 4022 .parameters = ramfs_fs_parameters, 4023 .kill_sb = kill_litter_super, 4024 .fs_flags = FS_USERNS_MOUNT, 4025 }; 4026 4027 void __init shmem_init(void) 4028 { 4029 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4030 4031 shm_mnt = kern_mount(&shmem_fs_type); 4032 BUG_ON(IS_ERR(shm_mnt)); 4033 } 4034 4035 int shmem_unuse(unsigned int type) 4036 { 4037 return 0; 4038 } 4039 4040 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4041 { 4042 return 0; 4043 } 4044 4045 void shmem_unlock_mapping(struct address_space *mapping) 4046 { 4047 } 4048 4049 #ifdef CONFIG_MMU 4050 unsigned long shmem_get_unmapped_area(struct file *file, 4051 unsigned long addr, unsigned long len, 4052 unsigned long pgoff, unsigned long flags) 4053 { 4054 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4055 } 4056 #endif 4057 4058 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4059 { 4060 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4061 } 4062 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4063 4064 #define shmem_vm_ops generic_file_vm_ops 4065 #define shmem_file_operations ramfs_file_operations 4066 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4067 #define shmem_acct_size(flags, size) 0 4068 #define shmem_unacct_size(flags, size) do {} while (0) 4069 4070 #endif /* CONFIG_SHMEM */ 4071 4072 /* common code */ 4073 4074 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4075 unsigned long flags, unsigned int i_flags) 4076 { 4077 struct inode *inode; 4078 struct file *res; 4079 4080 if (IS_ERR(mnt)) 4081 return ERR_CAST(mnt); 4082 4083 if (size < 0 || size > MAX_LFS_FILESIZE) 4084 return ERR_PTR(-EINVAL); 4085 4086 if (shmem_acct_size(flags, size)) 4087 return ERR_PTR(-ENOMEM); 4088 4089 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4090 flags); 4091 if (unlikely(!inode)) { 4092 shmem_unacct_size(flags, size); 4093 return ERR_PTR(-ENOSPC); 4094 } 4095 inode->i_flags |= i_flags; 4096 inode->i_size = size; 4097 clear_nlink(inode); /* It is unlinked */ 4098 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4099 if (!IS_ERR(res)) 4100 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4101 &shmem_file_operations); 4102 if (IS_ERR(res)) 4103 iput(inode); 4104 return res; 4105 } 4106 4107 /** 4108 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4109 * kernel internal. There will be NO LSM permission checks against the 4110 * underlying inode. So users of this interface must do LSM checks at a 4111 * higher layer. The users are the big_key and shm implementations. LSM 4112 * checks are provided at the key or shm level rather than the inode. 4113 * @name: name for dentry (to be seen in /proc/<pid>/maps 4114 * @size: size to be set for the file 4115 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4116 */ 4117 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4118 { 4119 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4120 } 4121 4122 /** 4123 * shmem_file_setup - get an unlinked file living in tmpfs 4124 * @name: name for dentry (to be seen in /proc/<pid>/maps 4125 * @size: size to be set for the file 4126 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4127 */ 4128 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4129 { 4130 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4131 } 4132 EXPORT_SYMBOL_GPL(shmem_file_setup); 4133 4134 /** 4135 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4136 * @mnt: the tmpfs mount where the file will be created 4137 * @name: name for dentry (to be seen in /proc/<pid>/maps 4138 * @size: size to be set for the file 4139 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4140 */ 4141 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4142 loff_t size, unsigned long flags) 4143 { 4144 return __shmem_file_setup(mnt, name, size, flags, 0); 4145 } 4146 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4147 4148 /** 4149 * shmem_zero_setup - setup a shared anonymous mapping 4150 * @vma: the vma to be mmapped is prepared by do_mmap 4151 */ 4152 int shmem_zero_setup(struct vm_area_struct *vma) 4153 { 4154 struct file *file; 4155 loff_t size = vma->vm_end - vma->vm_start; 4156 4157 /* 4158 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4159 * between XFS directory reading and selinux: since this file is only 4160 * accessible to the user through its mapping, use S_PRIVATE flag to 4161 * bypass file security, in the same way as shmem_kernel_file_setup(). 4162 */ 4163 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4164 if (IS_ERR(file)) 4165 return PTR_ERR(file); 4166 4167 if (vma->vm_file) 4168 fput(vma->vm_file); 4169 vma->vm_file = file; 4170 vma->vm_ops = &shmem_vm_ops; 4171 4172 return 0; 4173 } 4174 4175 /** 4176 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4177 * @mapping: the page's address_space 4178 * @index: the page index 4179 * @gfp: the page allocator flags to use if allocating 4180 * 4181 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4182 * with any new page allocations done using the specified allocation flags. 4183 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4184 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4185 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4186 * 4187 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4188 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4189 */ 4190 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4191 pgoff_t index, gfp_t gfp) 4192 { 4193 #ifdef CONFIG_SHMEM 4194 struct inode *inode = mapping->host; 4195 struct page *page; 4196 int error; 4197 4198 BUG_ON(!shmem_mapping(mapping)); 4199 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4200 gfp, NULL, NULL, NULL); 4201 if (error) 4202 return ERR_PTR(error); 4203 4204 unlock_page(page); 4205 if (PageHWPoison(page)) { 4206 put_page(page); 4207 return ERR_PTR(-EIO); 4208 } 4209 4210 return page; 4211 #else 4212 /* 4213 * The tiny !SHMEM case uses ramfs without swap 4214 */ 4215 return read_cache_page_gfp(mapping, index, gfp); 4216 #endif 4217 } 4218 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4219