xref: /linux/mm/shmem.c (revision e488d4f5d6e4cd1e728ba4ddbdcd7ef5f4d13a21)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/hugetlb.h>
38 #include <linux/fs_parser.h>
39 #include <linux/swapfile.h>
40 #include "swap.h"
41 
42 static struct vfsmount *shm_mnt;
43 
44 #ifdef CONFIG_SHMEM
45 /*
46  * This virtual memory filesystem is heavily based on the ramfs. It
47  * extends ramfs by the ability to use swap and honor resource limits
48  * which makes it a completely usable filesystem.
49  */
50 
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80 
81 #include <linux/uaccess.h>
82 
83 #include "internal.h"
84 
85 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
86 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
87 
88 /* Pretend that each entry is of this size in directory's i_size */
89 #define BOGO_DIRENT_SIZE 20
90 
91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92 #define SHORT_SYMLINK_LEN 128
93 
94 /*
95  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96  * inode->i_private (with i_rwsem making sure that it has only one user at
97  * a time): we would prefer not to enlarge the shmem inode just for that.
98  */
99 struct shmem_falloc {
100 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
101 	pgoff_t start;		/* start of range currently being fallocated */
102 	pgoff_t next;		/* the next page offset to be fallocated */
103 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
104 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
105 };
106 
107 struct shmem_options {
108 	unsigned long long blocks;
109 	unsigned long long inodes;
110 	struct mempolicy *mpol;
111 	kuid_t uid;
112 	kgid_t gid;
113 	umode_t mode;
114 	bool full_inums;
115 	int huge;
116 	int seen;
117 #define SHMEM_SEEN_BLOCKS 1
118 #define SHMEM_SEEN_INODES 2
119 #define SHMEM_SEEN_HUGE 4
120 #define SHMEM_SEEN_INUMS 8
121 };
122 
123 #ifdef CONFIG_TMPFS
124 static unsigned long shmem_default_max_blocks(void)
125 {
126 	return totalram_pages() / 2;
127 }
128 
129 static unsigned long shmem_default_max_inodes(void)
130 {
131 	unsigned long nr_pages = totalram_pages();
132 
133 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
134 }
135 #endif
136 
137 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
138 			     struct folio **foliop, enum sgp_type sgp,
139 			     gfp_t gfp, struct vm_area_struct *vma,
140 			     vm_fault_t *fault_type);
141 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
142 		struct page **pagep, enum sgp_type sgp,
143 		gfp_t gfp, struct vm_area_struct *vma,
144 		struct vm_fault *vmf, vm_fault_t *fault_type);
145 
146 int shmem_getpage(struct inode *inode, pgoff_t index,
147 		struct page **pagep, enum sgp_type sgp)
148 {
149 	return shmem_getpage_gfp(inode, index, pagep, sgp,
150 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
151 }
152 
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 	return sb->s_fs_info;
156 }
157 
158 /*
159  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160  * for shared memory and for shared anonymous (/dev/zero) mappings
161  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162  * consistent with the pre-accounting of private mappings ...
163  */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 	return (flags & VM_NORESERVE) ?
167 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169 
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 	if (!(flags & VM_NORESERVE))
173 		vm_unacct_memory(VM_ACCT(size));
174 }
175 
176 static inline int shmem_reacct_size(unsigned long flags,
177 		loff_t oldsize, loff_t newsize)
178 {
179 	if (!(flags & VM_NORESERVE)) {
180 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 			return security_vm_enough_memory_mm(current->mm,
182 					VM_ACCT(newsize) - VM_ACCT(oldsize));
183 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 	}
186 	return 0;
187 }
188 
189 /*
190  * ... whereas tmpfs objects are accounted incrementally as
191  * pages are allocated, in order to allow large sparse files.
192  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194  */
195 static inline int shmem_acct_block(unsigned long flags, long pages)
196 {
197 	if (!(flags & VM_NORESERVE))
198 		return 0;
199 
200 	return security_vm_enough_memory_mm(current->mm,
201 			pages * VM_ACCT(PAGE_SIZE));
202 }
203 
204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206 	if (flags & VM_NORESERVE)
207 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
211 {
212 	struct shmem_inode_info *info = SHMEM_I(inode);
213 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 
215 	if (shmem_acct_block(info->flags, pages))
216 		return false;
217 
218 	if (sbinfo->max_blocks) {
219 		if (percpu_counter_compare(&sbinfo->used_blocks,
220 					   sbinfo->max_blocks - pages) > 0)
221 			goto unacct;
222 		percpu_counter_add(&sbinfo->used_blocks, pages);
223 	}
224 
225 	return true;
226 
227 unacct:
228 	shmem_unacct_blocks(info->flags, pages);
229 	return false;
230 }
231 
232 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
233 {
234 	struct shmem_inode_info *info = SHMEM_I(inode);
235 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
236 
237 	if (sbinfo->max_blocks)
238 		percpu_counter_sub(&sbinfo->used_blocks, pages);
239 	shmem_unacct_blocks(info->flags, pages);
240 }
241 
242 static const struct super_operations shmem_ops;
243 const struct address_space_operations shmem_aops;
244 static const struct file_operations shmem_file_operations;
245 static const struct inode_operations shmem_inode_operations;
246 static const struct inode_operations shmem_dir_inode_operations;
247 static const struct inode_operations shmem_special_inode_operations;
248 static const struct vm_operations_struct shmem_vm_ops;
249 static struct file_system_type shmem_fs_type;
250 
251 bool vma_is_shmem(struct vm_area_struct *vma)
252 {
253 	return vma->vm_ops == &shmem_vm_ops;
254 }
255 
256 static LIST_HEAD(shmem_swaplist);
257 static DEFINE_MUTEX(shmem_swaplist_mutex);
258 
259 /*
260  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
261  * produces a novel ino for the newly allocated inode.
262  *
263  * It may also be called when making a hard link to permit the space needed by
264  * each dentry. However, in that case, no new inode number is needed since that
265  * internally draws from another pool of inode numbers (currently global
266  * get_next_ino()). This case is indicated by passing NULL as inop.
267  */
268 #define SHMEM_INO_BATCH 1024
269 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
270 {
271 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
272 	ino_t ino;
273 
274 	if (!(sb->s_flags & SB_KERNMOUNT)) {
275 		raw_spin_lock(&sbinfo->stat_lock);
276 		if (sbinfo->max_inodes) {
277 			if (!sbinfo->free_inodes) {
278 				raw_spin_unlock(&sbinfo->stat_lock);
279 				return -ENOSPC;
280 			}
281 			sbinfo->free_inodes--;
282 		}
283 		if (inop) {
284 			ino = sbinfo->next_ino++;
285 			if (unlikely(is_zero_ino(ino)))
286 				ino = sbinfo->next_ino++;
287 			if (unlikely(!sbinfo->full_inums &&
288 				     ino > UINT_MAX)) {
289 				/*
290 				 * Emulate get_next_ino uint wraparound for
291 				 * compatibility
292 				 */
293 				if (IS_ENABLED(CONFIG_64BIT))
294 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
295 						__func__, MINOR(sb->s_dev));
296 				sbinfo->next_ino = 1;
297 				ino = sbinfo->next_ino++;
298 			}
299 			*inop = ino;
300 		}
301 		raw_spin_unlock(&sbinfo->stat_lock);
302 	} else if (inop) {
303 		/*
304 		 * __shmem_file_setup, one of our callers, is lock-free: it
305 		 * doesn't hold stat_lock in shmem_reserve_inode since
306 		 * max_inodes is always 0, and is called from potentially
307 		 * unknown contexts. As such, use a per-cpu batched allocator
308 		 * which doesn't require the per-sb stat_lock unless we are at
309 		 * the batch boundary.
310 		 *
311 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
312 		 * shmem mounts are not exposed to userspace, so we don't need
313 		 * to worry about things like glibc compatibility.
314 		 */
315 		ino_t *next_ino;
316 
317 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
318 		ino = *next_ino;
319 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
320 			raw_spin_lock(&sbinfo->stat_lock);
321 			ino = sbinfo->next_ino;
322 			sbinfo->next_ino += SHMEM_INO_BATCH;
323 			raw_spin_unlock(&sbinfo->stat_lock);
324 			if (unlikely(is_zero_ino(ino)))
325 				ino++;
326 		}
327 		*inop = ino;
328 		*next_ino = ++ino;
329 		put_cpu();
330 	}
331 
332 	return 0;
333 }
334 
335 static void shmem_free_inode(struct super_block *sb)
336 {
337 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
338 	if (sbinfo->max_inodes) {
339 		raw_spin_lock(&sbinfo->stat_lock);
340 		sbinfo->free_inodes++;
341 		raw_spin_unlock(&sbinfo->stat_lock);
342 	}
343 }
344 
345 /**
346  * shmem_recalc_inode - recalculate the block usage of an inode
347  * @inode: inode to recalc
348  *
349  * We have to calculate the free blocks since the mm can drop
350  * undirtied hole pages behind our back.
351  *
352  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
353  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
354  *
355  * It has to be called with the spinlock held.
356  */
357 static void shmem_recalc_inode(struct inode *inode)
358 {
359 	struct shmem_inode_info *info = SHMEM_I(inode);
360 	long freed;
361 
362 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
363 	if (freed > 0) {
364 		info->alloced -= freed;
365 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
366 		shmem_inode_unacct_blocks(inode, freed);
367 	}
368 }
369 
370 bool shmem_charge(struct inode *inode, long pages)
371 {
372 	struct shmem_inode_info *info = SHMEM_I(inode);
373 	unsigned long flags;
374 
375 	if (!shmem_inode_acct_block(inode, pages))
376 		return false;
377 
378 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
379 	inode->i_mapping->nrpages += pages;
380 
381 	spin_lock_irqsave(&info->lock, flags);
382 	info->alloced += pages;
383 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
384 	shmem_recalc_inode(inode);
385 	spin_unlock_irqrestore(&info->lock, flags);
386 
387 	return true;
388 }
389 
390 void shmem_uncharge(struct inode *inode, long pages)
391 {
392 	struct shmem_inode_info *info = SHMEM_I(inode);
393 	unsigned long flags;
394 
395 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
396 
397 	spin_lock_irqsave(&info->lock, flags);
398 	info->alloced -= pages;
399 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
400 	shmem_recalc_inode(inode);
401 	spin_unlock_irqrestore(&info->lock, flags);
402 
403 	shmem_inode_unacct_blocks(inode, pages);
404 }
405 
406 /*
407  * Replace item expected in xarray by a new item, while holding xa_lock.
408  */
409 static int shmem_replace_entry(struct address_space *mapping,
410 			pgoff_t index, void *expected, void *replacement)
411 {
412 	XA_STATE(xas, &mapping->i_pages, index);
413 	void *item;
414 
415 	VM_BUG_ON(!expected);
416 	VM_BUG_ON(!replacement);
417 	item = xas_load(&xas);
418 	if (item != expected)
419 		return -ENOENT;
420 	xas_store(&xas, replacement);
421 	return 0;
422 }
423 
424 /*
425  * Sometimes, before we decide whether to proceed or to fail, we must check
426  * that an entry was not already brought back from swap by a racing thread.
427  *
428  * Checking page is not enough: by the time a SwapCache page is locked, it
429  * might be reused, and again be SwapCache, using the same swap as before.
430  */
431 static bool shmem_confirm_swap(struct address_space *mapping,
432 			       pgoff_t index, swp_entry_t swap)
433 {
434 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
435 }
436 
437 /*
438  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
439  *
440  * SHMEM_HUGE_NEVER:
441  *	disables huge pages for the mount;
442  * SHMEM_HUGE_ALWAYS:
443  *	enables huge pages for the mount;
444  * SHMEM_HUGE_WITHIN_SIZE:
445  *	only allocate huge pages if the page will be fully within i_size,
446  *	also respect fadvise()/madvise() hints;
447  * SHMEM_HUGE_ADVISE:
448  *	only allocate huge pages if requested with fadvise()/madvise();
449  */
450 
451 #define SHMEM_HUGE_NEVER	0
452 #define SHMEM_HUGE_ALWAYS	1
453 #define SHMEM_HUGE_WITHIN_SIZE	2
454 #define SHMEM_HUGE_ADVISE	3
455 
456 /*
457  * Special values.
458  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
459  *
460  * SHMEM_HUGE_DENY:
461  *	disables huge on shm_mnt and all mounts, for emergency use;
462  * SHMEM_HUGE_FORCE:
463  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
464  *
465  */
466 #define SHMEM_HUGE_DENY		(-1)
467 #define SHMEM_HUGE_FORCE	(-2)
468 
469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
470 /* ifdef here to avoid bloating shmem.o when not necessary */
471 
472 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
473 
474 bool shmem_is_huge(struct vm_area_struct *vma,
475 		   struct inode *inode, pgoff_t index)
476 {
477 	loff_t i_size;
478 
479 	if (!S_ISREG(inode->i_mode))
480 		return false;
481 	if (shmem_huge == SHMEM_HUGE_DENY)
482 		return false;
483 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
484 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
485 		return false;
486 	if (shmem_huge == SHMEM_HUGE_FORCE)
487 		return true;
488 
489 	switch (SHMEM_SB(inode->i_sb)->huge) {
490 	case SHMEM_HUGE_ALWAYS:
491 		return true;
492 	case SHMEM_HUGE_WITHIN_SIZE:
493 		index = round_up(index + 1, HPAGE_PMD_NR);
494 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
495 		if (i_size >> PAGE_SHIFT >= index)
496 			return true;
497 		fallthrough;
498 	case SHMEM_HUGE_ADVISE:
499 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
500 			return true;
501 		fallthrough;
502 	default:
503 		return false;
504 	}
505 }
506 
507 #if defined(CONFIG_SYSFS)
508 static int shmem_parse_huge(const char *str)
509 {
510 	if (!strcmp(str, "never"))
511 		return SHMEM_HUGE_NEVER;
512 	if (!strcmp(str, "always"))
513 		return SHMEM_HUGE_ALWAYS;
514 	if (!strcmp(str, "within_size"))
515 		return SHMEM_HUGE_WITHIN_SIZE;
516 	if (!strcmp(str, "advise"))
517 		return SHMEM_HUGE_ADVISE;
518 	if (!strcmp(str, "deny"))
519 		return SHMEM_HUGE_DENY;
520 	if (!strcmp(str, "force"))
521 		return SHMEM_HUGE_FORCE;
522 	return -EINVAL;
523 }
524 #endif
525 
526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
527 static const char *shmem_format_huge(int huge)
528 {
529 	switch (huge) {
530 	case SHMEM_HUGE_NEVER:
531 		return "never";
532 	case SHMEM_HUGE_ALWAYS:
533 		return "always";
534 	case SHMEM_HUGE_WITHIN_SIZE:
535 		return "within_size";
536 	case SHMEM_HUGE_ADVISE:
537 		return "advise";
538 	case SHMEM_HUGE_DENY:
539 		return "deny";
540 	case SHMEM_HUGE_FORCE:
541 		return "force";
542 	default:
543 		VM_BUG_ON(1);
544 		return "bad_val";
545 	}
546 }
547 #endif
548 
549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
550 		struct shrink_control *sc, unsigned long nr_to_split)
551 {
552 	LIST_HEAD(list), *pos, *next;
553 	LIST_HEAD(to_remove);
554 	struct inode *inode;
555 	struct shmem_inode_info *info;
556 	struct folio *folio;
557 	unsigned long batch = sc ? sc->nr_to_scan : 128;
558 	int split = 0;
559 
560 	if (list_empty(&sbinfo->shrinklist))
561 		return SHRINK_STOP;
562 
563 	spin_lock(&sbinfo->shrinklist_lock);
564 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
565 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 
567 		/* pin the inode */
568 		inode = igrab(&info->vfs_inode);
569 
570 		/* inode is about to be evicted */
571 		if (!inode) {
572 			list_del_init(&info->shrinklist);
573 			goto next;
574 		}
575 
576 		/* Check if there's anything to gain */
577 		if (round_up(inode->i_size, PAGE_SIZE) ==
578 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579 			list_move(&info->shrinklist, &to_remove);
580 			goto next;
581 		}
582 
583 		list_move(&info->shrinklist, &list);
584 next:
585 		sbinfo->shrinklist_len--;
586 		if (!--batch)
587 			break;
588 	}
589 	spin_unlock(&sbinfo->shrinklist_lock);
590 
591 	list_for_each_safe(pos, next, &to_remove) {
592 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
593 		inode = &info->vfs_inode;
594 		list_del_init(&info->shrinklist);
595 		iput(inode);
596 	}
597 
598 	list_for_each_safe(pos, next, &list) {
599 		int ret;
600 		pgoff_t index;
601 
602 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
603 		inode = &info->vfs_inode;
604 
605 		if (nr_to_split && split >= nr_to_split)
606 			goto move_back;
607 
608 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
609 		folio = filemap_get_folio(inode->i_mapping, index);
610 		if (!folio)
611 			goto drop;
612 
613 		/* No huge page at the end of the file: nothing to split */
614 		if (!folio_test_large(folio)) {
615 			folio_put(folio);
616 			goto drop;
617 		}
618 
619 		/*
620 		 * Move the inode on the list back to shrinklist if we failed
621 		 * to lock the page at this time.
622 		 *
623 		 * Waiting for the lock may lead to deadlock in the
624 		 * reclaim path.
625 		 */
626 		if (!folio_trylock(folio)) {
627 			folio_put(folio);
628 			goto move_back;
629 		}
630 
631 		ret = split_huge_page(&folio->page);
632 		folio_unlock(folio);
633 		folio_put(folio);
634 
635 		/* If split failed move the inode on the list back to shrinklist */
636 		if (ret)
637 			goto move_back;
638 
639 		split++;
640 drop:
641 		list_del_init(&info->shrinklist);
642 		goto put;
643 move_back:
644 		/*
645 		 * Make sure the inode is either on the global list or deleted
646 		 * from any local list before iput() since it could be deleted
647 		 * in another thread once we put the inode (then the local list
648 		 * is corrupted).
649 		 */
650 		spin_lock(&sbinfo->shrinklist_lock);
651 		list_move(&info->shrinklist, &sbinfo->shrinklist);
652 		sbinfo->shrinklist_len++;
653 		spin_unlock(&sbinfo->shrinklist_lock);
654 put:
655 		iput(inode);
656 	}
657 
658 	return split;
659 }
660 
661 static long shmem_unused_huge_scan(struct super_block *sb,
662 		struct shrink_control *sc)
663 {
664 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
665 
666 	if (!READ_ONCE(sbinfo->shrinklist_len))
667 		return SHRINK_STOP;
668 
669 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
670 }
671 
672 static long shmem_unused_huge_count(struct super_block *sb,
673 		struct shrink_control *sc)
674 {
675 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
676 	return READ_ONCE(sbinfo->shrinklist_len);
677 }
678 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
679 
680 #define shmem_huge SHMEM_HUGE_DENY
681 
682 bool shmem_is_huge(struct vm_area_struct *vma,
683 		   struct inode *inode, pgoff_t index)
684 {
685 	return false;
686 }
687 
688 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
689 		struct shrink_control *sc, unsigned long nr_to_split)
690 {
691 	return 0;
692 }
693 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
694 
695 /*
696  * Like filemap_add_folio, but error if expected item has gone.
697  */
698 static int shmem_add_to_page_cache(struct folio *folio,
699 				   struct address_space *mapping,
700 				   pgoff_t index, void *expected, gfp_t gfp,
701 				   struct mm_struct *charge_mm)
702 {
703 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
704 	long nr = folio_nr_pages(folio);
705 	int error;
706 
707 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
708 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
709 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
710 	VM_BUG_ON(expected && folio_test_large(folio));
711 
712 	folio_ref_add(folio, nr);
713 	folio->mapping = mapping;
714 	folio->index = index;
715 
716 	if (!folio_test_swapcache(folio)) {
717 		error = mem_cgroup_charge(folio, charge_mm, gfp);
718 		if (error) {
719 			if (folio_test_pmd_mappable(folio)) {
720 				count_vm_event(THP_FILE_FALLBACK);
721 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
722 			}
723 			goto error;
724 		}
725 	}
726 	folio_throttle_swaprate(folio, gfp);
727 
728 	do {
729 		xas_lock_irq(&xas);
730 		if (expected != xas_find_conflict(&xas)) {
731 			xas_set_err(&xas, -EEXIST);
732 			goto unlock;
733 		}
734 		if (expected && xas_find_conflict(&xas)) {
735 			xas_set_err(&xas, -EEXIST);
736 			goto unlock;
737 		}
738 		xas_store(&xas, folio);
739 		if (xas_error(&xas))
740 			goto unlock;
741 		if (folio_test_pmd_mappable(folio)) {
742 			count_vm_event(THP_FILE_ALLOC);
743 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
744 		}
745 		mapping->nrpages += nr;
746 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
747 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
748 unlock:
749 		xas_unlock_irq(&xas);
750 	} while (xas_nomem(&xas, gfp));
751 
752 	if (xas_error(&xas)) {
753 		error = xas_error(&xas);
754 		goto error;
755 	}
756 
757 	return 0;
758 error:
759 	folio->mapping = NULL;
760 	folio_ref_sub(folio, nr);
761 	return error;
762 }
763 
764 /*
765  * Like delete_from_page_cache, but substitutes swap for page.
766  */
767 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
768 {
769 	struct address_space *mapping = page->mapping;
770 	int error;
771 
772 	VM_BUG_ON_PAGE(PageCompound(page), page);
773 
774 	xa_lock_irq(&mapping->i_pages);
775 	error = shmem_replace_entry(mapping, page->index, page, radswap);
776 	page->mapping = NULL;
777 	mapping->nrpages--;
778 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
779 	__dec_lruvec_page_state(page, NR_SHMEM);
780 	xa_unlock_irq(&mapping->i_pages);
781 	put_page(page);
782 	BUG_ON(error);
783 }
784 
785 /*
786  * Remove swap entry from page cache, free the swap and its page cache.
787  */
788 static int shmem_free_swap(struct address_space *mapping,
789 			   pgoff_t index, void *radswap)
790 {
791 	void *old;
792 
793 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
794 	if (old != radswap)
795 		return -ENOENT;
796 	free_swap_and_cache(radix_to_swp_entry(radswap));
797 	return 0;
798 }
799 
800 /*
801  * Determine (in bytes) how many of the shmem object's pages mapped by the
802  * given offsets are swapped out.
803  *
804  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
805  * as long as the inode doesn't go away and racy results are not a problem.
806  */
807 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
808 						pgoff_t start, pgoff_t end)
809 {
810 	XA_STATE(xas, &mapping->i_pages, start);
811 	struct page *page;
812 	unsigned long swapped = 0;
813 
814 	rcu_read_lock();
815 	xas_for_each(&xas, page, end - 1) {
816 		if (xas_retry(&xas, page))
817 			continue;
818 		if (xa_is_value(page))
819 			swapped++;
820 
821 		if (need_resched()) {
822 			xas_pause(&xas);
823 			cond_resched_rcu();
824 		}
825 	}
826 
827 	rcu_read_unlock();
828 
829 	return swapped << PAGE_SHIFT;
830 }
831 
832 /*
833  * Determine (in bytes) how many of the shmem object's pages mapped by the
834  * given vma is swapped out.
835  *
836  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
837  * as long as the inode doesn't go away and racy results are not a problem.
838  */
839 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
840 {
841 	struct inode *inode = file_inode(vma->vm_file);
842 	struct shmem_inode_info *info = SHMEM_I(inode);
843 	struct address_space *mapping = inode->i_mapping;
844 	unsigned long swapped;
845 
846 	/* Be careful as we don't hold info->lock */
847 	swapped = READ_ONCE(info->swapped);
848 
849 	/*
850 	 * The easier cases are when the shmem object has nothing in swap, or
851 	 * the vma maps it whole. Then we can simply use the stats that we
852 	 * already track.
853 	 */
854 	if (!swapped)
855 		return 0;
856 
857 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
858 		return swapped << PAGE_SHIFT;
859 
860 	/* Here comes the more involved part */
861 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
862 					vma->vm_pgoff + vma_pages(vma));
863 }
864 
865 /*
866  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
867  */
868 void shmem_unlock_mapping(struct address_space *mapping)
869 {
870 	struct folio_batch fbatch;
871 	pgoff_t index = 0;
872 
873 	folio_batch_init(&fbatch);
874 	/*
875 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
876 	 */
877 	while (!mapping_unevictable(mapping) &&
878 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
879 		check_move_unevictable_folios(&fbatch);
880 		folio_batch_release(&fbatch);
881 		cond_resched();
882 	}
883 }
884 
885 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
886 {
887 	struct folio *folio;
888 	struct page *page;
889 
890 	/*
891 	 * At first avoid shmem_getpage(,,,SGP_READ): that fails
892 	 * beyond i_size, and reports fallocated pages as holes.
893 	 */
894 	folio = __filemap_get_folio(inode->i_mapping, index,
895 					FGP_ENTRY | FGP_LOCK, 0);
896 	if (!xa_is_value(folio))
897 		return folio;
898 	/*
899 	 * But read a page back from swap if any of it is within i_size
900 	 * (although in some cases this is just a waste of time).
901 	 */
902 	page = NULL;
903 	shmem_getpage(inode, index, &page, SGP_READ);
904 	return page ? page_folio(page) : NULL;
905 }
906 
907 /*
908  * Remove range of pages and swap entries from page cache, and free them.
909  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
910  */
911 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
912 								 bool unfalloc)
913 {
914 	struct address_space *mapping = inode->i_mapping;
915 	struct shmem_inode_info *info = SHMEM_I(inode);
916 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
917 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
918 	struct folio_batch fbatch;
919 	pgoff_t indices[PAGEVEC_SIZE];
920 	struct folio *folio;
921 	bool same_folio;
922 	long nr_swaps_freed = 0;
923 	pgoff_t index;
924 	int i;
925 
926 	if (lend == -1)
927 		end = -1;	/* unsigned, so actually very big */
928 
929 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
930 		info->fallocend = start;
931 
932 	folio_batch_init(&fbatch);
933 	index = start;
934 	while (index < end && find_lock_entries(mapping, index, end - 1,
935 			&fbatch, indices)) {
936 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
937 			folio = fbatch.folios[i];
938 
939 			index = indices[i];
940 
941 			if (xa_is_value(folio)) {
942 				if (unfalloc)
943 					continue;
944 				nr_swaps_freed += !shmem_free_swap(mapping,
945 								index, folio);
946 				continue;
947 			}
948 			index += folio_nr_pages(folio) - 1;
949 
950 			if (!unfalloc || !folio_test_uptodate(folio))
951 				truncate_inode_folio(mapping, folio);
952 			folio_unlock(folio);
953 		}
954 		folio_batch_remove_exceptionals(&fbatch);
955 		folio_batch_release(&fbatch);
956 		cond_resched();
957 		index++;
958 	}
959 
960 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
961 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
962 	if (folio) {
963 		same_folio = lend < folio_pos(folio) + folio_size(folio);
964 		folio_mark_dirty(folio);
965 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
966 			start = folio->index + folio_nr_pages(folio);
967 			if (same_folio)
968 				end = folio->index;
969 		}
970 		folio_unlock(folio);
971 		folio_put(folio);
972 		folio = NULL;
973 	}
974 
975 	if (!same_folio)
976 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
977 	if (folio) {
978 		folio_mark_dirty(folio);
979 		if (!truncate_inode_partial_folio(folio, lstart, lend))
980 			end = folio->index;
981 		folio_unlock(folio);
982 		folio_put(folio);
983 	}
984 
985 	index = start;
986 	while (index < end) {
987 		cond_resched();
988 
989 		if (!find_get_entries(mapping, index, end - 1, &fbatch,
990 				indices)) {
991 			/* If all gone or hole-punch or unfalloc, we're done */
992 			if (index == start || end != -1)
993 				break;
994 			/* But if truncating, restart to make sure all gone */
995 			index = start;
996 			continue;
997 		}
998 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
999 			folio = fbatch.folios[i];
1000 
1001 			index = indices[i];
1002 			if (xa_is_value(folio)) {
1003 				if (unfalloc)
1004 					continue;
1005 				if (shmem_free_swap(mapping, index, folio)) {
1006 					/* Swap was replaced by page: retry */
1007 					index--;
1008 					break;
1009 				}
1010 				nr_swaps_freed++;
1011 				continue;
1012 			}
1013 
1014 			folio_lock(folio);
1015 
1016 			if (!unfalloc || !folio_test_uptodate(folio)) {
1017 				if (folio_mapping(folio) != mapping) {
1018 					/* Page was replaced by swap: retry */
1019 					folio_unlock(folio);
1020 					index--;
1021 					break;
1022 				}
1023 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1024 						folio);
1025 				truncate_inode_folio(mapping, folio);
1026 			}
1027 			index = folio->index + folio_nr_pages(folio) - 1;
1028 			folio_unlock(folio);
1029 		}
1030 		folio_batch_remove_exceptionals(&fbatch);
1031 		folio_batch_release(&fbatch);
1032 		index++;
1033 	}
1034 
1035 	spin_lock_irq(&info->lock);
1036 	info->swapped -= nr_swaps_freed;
1037 	shmem_recalc_inode(inode);
1038 	spin_unlock_irq(&info->lock);
1039 }
1040 
1041 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1042 {
1043 	shmem_undo_range(inode, lstart, lend, false);
1044 	inode->i_ctime = inode->i_mtime = current_time(inode);
1045 }
1046 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1047 
1048 static int shmem_getattr(struct user_namespace *mnt_userns,
1049 			 const struct path *path, struct kstat *stat,
1050 			 u32 request_mask, unsigned int query_flags)
1051 {
1052 	struct inode *inode = path->dentry->d_inode;
1053 	struct shmem_inode_info *info = SHMEM_I(inode);
1054 
1055 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1056 		spin_lock_irq(&info->lock);
1057 		shmem_recalc_inode(inode);
1058 		spin_unlock_irq(&info->lock);
1059 	}
1060 	generic_fillattr(&init_user_ns, inode, stat);
1061 
1062 	if (shmem_is_huge(NULL, inode, 0))
1063 		stat->blksize = HPAGE_PMD_SIZE;
1064 
1065 	if (request_mask & STATX_BTIME) {
1066 		stat->result_mask |= STATX_BTIME;
1067 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1068 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1069 	}
1070 
1071 	return 0;
1072 }
1073 
1074 static int shmem_setattr(struct user_namespace *mnt_userns,
1075 			 struct dentry *dentry, struct iattr *attr)
1076 {
1077 	struct inode *inode = d_inode(dentry);
1078 	struct shmem_inode_info *info = SHMEM_I(inode);
1079 	int error;
1080 
1081 	error = setattr_prepare(&init_user_ns, dentry, attr);
1082 	if (error)
1083 		return error;
1084 
1085 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1086 		loff_t oldsize = inode->i_size;
1087 		loff_t newsize = attr->ia_size;
1088 
1089 		/* protected by i_rwsem */
1090 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1091 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1092 			return -EPERM;
1093 
1094 		if (newsize != oldsize) {
1095 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1096 					oldsize, newsize);
1097 			if (error)
1098 				return error;
1099 			i_size_write(inode, newsize);
1100 			inode->i_ctime = inode->i_mtime = current_time(inode);
1101 		}
1102 		if (newsize <= oldsize) {
1103 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1104 			if (oldsize > holebegin)
1105 				unmap_mapping_range(inode->i_mapping,
1106 							holebegin, 0, 1);
1107 			if (info->alloced)
1108 				shmem_truncate_range(inode,
1109 							newsize, (loff_t)-1);
1110 			/* unmap again to remove racily COWed private pages */
1111 			if (oldsize > holebegin)
1112 				unmap_mapping_range(inode->i_mapping,
1113 							holebegin, 0, 1);
1114 		}
1115 	}
1116 
1117 	setattr_copy(&init_user_ns, inode, attr);
1118 	if (attr->ia_valid & ATTR_MODE)
1119 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1120 	return error;
1121 }
1122 
1123 static void shmem_evict_inode(struct inode *inode)
1124 {
1125 	struct shmem_inode_info *info = SHMEM_I(inode);
1126 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1127 
1128 	if (shmem_mapping(inode->i_mapping)) {
1129 		shmem_unacct_size(info->flags, inode->i_size);
1130 		inode->i_size = 0;
1131 		mapping_set_exiting(inode->i_mapping);
1132 		shmem_truncate_range(inode, 0, (loff_t)-1);
1133 		if (!list_empty(&info->shrinklist)) {
1134 			spin_lock(&sbinfo->shrinklist_lock);
1135 			if (!list_empty(&info->shrinklist)) {
1136 				list_del_init(&info->shrinklist);
1137 				sbinfo->shrinklist_len--;
1138 			}
1139 			spin_unlock(&sbinfo->shrinklist_lock);
1140 		}
1141 		while (!list_empty(&info->swaplist)) {
1142 			/* Wait while shmem_unuse() is scanning this inode... */
1143 			wait_var_event(&info->stop_eviction,
1144 				       !atomic_read(&info->stop_eviction));
1145 			mutex_lock(&shmem_swaplist_mutex);
1146 			/* ...but beware of the race if we peeked too early */
1147 			if (!atomic_read(&info->stop_eviction))
1148 				list_del_init(&info->swaplist);
1149 			mutex_unlock(&shmem_swaplist_mutex);
1150 		}
1151 	}
1152 
1153 	simple_xattrs_free(&info->xattrs);
1154 	WARN_ON(inode->i_blocks);
1155 	shmem_free_inode(inode->i_sb);
1156 	clear_inode(inode);
1157 }
1158 
1159 static int shmem_find_swap_entries(struct address_space *mapping,
1160 				   pgoff_t start, struct folio_batch *fbatch,
1161 				   pgoff_t *indices, unsigned int type)
1162 {
1163 	XA_STATE(xas, &mapping->i_pages, start);
1164 	struct folio *folio;
1165 	swp_entry_t entry;
1166 
1167 	rcu_read_lock();
1168 	xas_for_each(&xas, folio, ULONG_MAX) {
1169 		if (xas_retry(&xas, folio))
1170 			continue;
1171 
1172 		if (!xa_is_value(folio))
1173 			continue;
1174 
1175 		entry = radix_to_swp_entry(folio);
1176 		/*
1177 		 * swapin error entries can be found in the mapping. But they're
1178 		 * deliberately ignored here as we've done everything we can do.
1179 		 */
1180 		if (swp_type(entry) != type)
1181 			continue;
1182 
1183 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1184 		if (!folio_batch_add(fbatch, folio))
1185 			break;
1186 
1187 		if (need_resched()) {
1188 			xas_pause(&xas);
1189 			cond_resched_rcu();
1190 		}
1191 	}
1192 	rcu_read_unlock();
1193 
1194 	return xas.xa_index;
1195 }
1196 
1197 /*
1198  * Move the swapped pages for an inode to page cache. Returns the count
1199  * of pages swapped in, or the error in case of failure.
1200  */
1201 static int shmem_unuse_swap_entries(struct inode *inode,
1202 		struct folio_batch *fbatch, pgoff_t *indices)
1203 {
1204 	int i = 0;
1205 	int ret = 0;
1206 	int error = 0;
1207 	struct address_space *mapping = inode->i_mapping;
1208 
1209 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1210 		struct folio *folio = fbatch->folios[i];
1211 
1212 		if (!xa_is_value(folio))
1213 			continue;
1214 		error = shmem_swapin_folio(inode, indices[i],
1215 					  &folio, SGP_CACHE,
1216 					  mapping_gfp_mask(mapping),
1217 					  NULL, NULL);
1218 		if (error == 0) {
1219 			folio_unlock(folio);
1220 			folio_put(folio);
1221 			ret++;
1222 		}
1223 		if (error == -ENOMEM)
1224 			break;
1225 		error = 0;
1226 	}
1227 	return error ? error : ret;
1228 }
1229 
1230 /*
1231  * If swap found in inode, free it and move page from swapcache to filecache.
1232  */
1233 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1234 {
1235 	struct address_space *mapping = inode->i_mapping;
1236 	pgoff_t start = 0;
1237 	struct folio_batch fbatch;
1238 	pgoff_t indices[PAGEVEC_SIZE];
1239 	int ret = 0;
1240 
1241 	do {
1242 		folio_batch_init(&fbatch);
1243 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1244 		if (folio_batch_count(&fbatch) == 0) {
1245 			ret = 0;
1246 			break;
1247 		}
1248 
1249 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1250 		if (ret < 0)
1251 			break;
1252 
1253 		start = indices[folio_batch_count(&fbatch) - 1];
1254 	} while (true);
1255 
1256 	return ret;
1257 }
1258 
1259 /*
1260  * Read all the shared memory data that resides in the swap
1261  * device 'type' back into memory, so the swap device can be
1262  * unused.
1263  */
1264 int shmem_unuse(unsigned int type)
1265 {
1266 	struct shmem_inode_info *info, *next;
1267 	int error = 0;
1268 
1269 	if (list_empty(&shmem_swaplist))
1270 		return 0;
1271 
1272 	mutex_lock(&shmem_swaplist_mutex);
1273 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1274 		if (!info->swapped) {
1275 			list_del_init(&info->swaplist);
1276 			continue;
1277 		}
1278 		/*
1279 		 * Drop the swaplist mutex while searching the inode for swap;
1280 		 * but before doing so, make sure shmem_evict_inode() will not
1281 		 * remove placeholder inode from swaplist, nor let it be freed
1282 		 * (igrab() would protect from unlink, but not from unmount).
1283 		 */
1284 		atomic_inc(&info->stop_eviction);
1285 		mutex_unlock(&shmem_swaplist_mutex);
1286 
1287 		error = shmem_unuse_inode(&info->vfs_inode, type);
1288 		cond_resched();
1289 
1290 		mutex_lock(&shmem_swaplist_mutex);
1291 		next = list_next_entry(info, swaplist);
1292 		if (!info->swapped)
1293 			list_del_init(&info->swaplist);
1294 		if (atomic_dec_and_test(&info->stop_eviction))
1295 			wake_up_var(&info->stop_eviction);
1296 		if (error)
1297 			break;
1298 	}
1299 	mutex_unlock(&shmem_swaplist_mutex);
1300 
1301 	return error;
1302 }
1303 
1304 /*
1305  * Move the page from the page cache to the swap cache.
1306  */
1307 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1308 {
1309 	struct folio *folio = page_folio(page);
1310 	struct shmem_inode_info *info;
1311 	struct address_space *mapping;
1312 	struct inode *inode;
1313 	swp_entry_t swap;
1314 	pgoff_t index;
1315 
1316 	/*
1317 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1318 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1319 	 * and its shmem_writeback() needs them to be split when swapping.
1320 	 */
1321 	if (PageTransCompound(page)) {
1322 		/* Ensure the subpages are still dirty */
1323 		SetPageDirty(page);
1324 		if (split_huge_page(page) < 0)
1325 			goto redirty;
1326 		ClearPageDirty(page);
1327 	}
1328 
1329 	BUG_ON(!PageLocked(page));
1330 	mapping = page->mapping;
1331 	index = page->index;
1332 	inode = mapping->host;
1333 	info = SHMEM_I(inode);
1334 	if (info->flags & VM_LOCKED)
1335 		goto redirty;
1336 	if (!total_swap_pages)
1337 		goto redirty;
1338 
1339 	/*
1340 	 * Our capabilities prevent regular writeback or sync from ever calling
1341 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1342 	 * its underlying filesystem, in which case tmpfs should write out to
1343 	 * swap only in response to memory pressure, and not for the writeback
1344 	 * threads or sync.
1345 	 */
1346 	if (!wbc->for_reclaim) {
1347 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1348 		goto redirty;
1349 	}
1350 
1351 	/*
1352 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1353 	 * value into swapfile.c, the only way we can correctly account for a
1354 	 * fallocated page arriving here is now to initialize it and write it.
1355 	 *
1356 	 * That's okay for a page already fallocated earlier, but if we have
1357 	 * not yet completed the fallocation, then (a) we want to keep track
1358 	 * of this page in case we have to undo it, and (b) it may not be a
1359 	 * good idea to continue anyway, once we're pushing into swap.  So
1360 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1361 	 */
1362 	if (!PageUptodate(page)) {
1363 		if (inode->i_private) {
1364 			struct shmem_falloc *shmem_falloc;
1365 			spin_lock(&inode->i_lock);
1366 			shmem_falloc = inode->i_private;
1367 			if (shmem_falloc &&
1368 			    !shmem_falloc->waitq &&
1369 			    index >= shmem_falloc->start &&
1370 			    index < shmem_falloc->next)
1371 				shmem_falloc->nr_unswapped++;
1372 			else
1373 				shmem_falloc = NULL;
1374 			spin_unlock(&inode->i_lock);
1375 			if (shmem_falloc)
1376 				goto redirty;
1377 		}
1378 		clear_highpage(page);
1379 		flush_dcache_page(page);
1380 		SetPageUptodate(page);
1381 	}
1382 
1383 	swap = folio_alloc_swap(folio);
1384 	if (!swap.val)
1385 		goto redirty;
1386 
1387 	/*
1388 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1389 	 * if it's not already there.  Do it now before the page is
1390 	 * moved to swap cache, when its pagelock no longer protects
1391 	 * the inode from eviction.  But don't unlock the mutex until
1392 	 * we've incremented swapped, because shmem_unuse_inode() will
1393 	 * prune a !swapped inode from the swaplist under this mutex.
1394 	 */
1395 	mutex_lock(&shmem_swaplist_mutex);
1396 	if (list_empty(&info->swaplist))
1397 		list_add(&info->swaplist, &shmem_swaplist);
1398 
1399 	if (add_to_swap_cache(page, swap,
1400 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1401 			NULL) == 0) {
1402 		spin_lock_irq(&info->lock);
1403 		shmem_recalc_inode(inode);
1404 		info->swapped++;
1405 		spin_unlock_irq(&info->lock);
1406 
1407 		swap_shmem_alloc(swap);
1408 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1409 
1410 		mutex_unlock(&shmem_swaplist_mutex);
1411 		BUG_ON(page_mapped(page));
1412 		swap_writepage(page, wbc);
1413 		return 0;
1414 	}
1415 
1416 	mutex_unlock(&shmem_swaplist_mutex);
1417 	put_swap_page(page, swap);
1418 redirty:
1419 	set_page_dirty(page);
1420 	if (wbc->for_reclaim)
1421 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1422 	unlock_page(page);
1423 	return 0;
1424 }
1425 
1426 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1427 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1428 {
1429 	char buffer[64];
1430 
1431 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1432 		return;		/* show nothing */
1433 
1434 	mpol_to_str(buffer, sizeof(buffer), mpol);
1435 
1436 	seq_printf(seq, ",mpol=%s", buffer);
1437 }
1438 
1439 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1440 {
1441 	struct mempolicy *mpol = NULL;
1442 	if (sbinfo->mpol) {
1443 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1444 		mpol = sbinfo->mpol;
1445 		mpol_get(mpol);
1446 		raw_spin_unlock(&sbinfo->stat_lock);
1447 	}
1448 	return mpol;
1449 }
1450 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1451 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1452 {
1453 }
1454 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1455 {
1456 	return NULL;
1457 }
1458 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1459 #ifndef CONFIG_NUMA
1460 #define vm_policy vm_private_data
1461 #endif
1462 
1463 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1464 		struct shmem_inode_info *info, pgoff_t index)
1465 {
1466 	/* Create a pseudo vma that just contains the policy */
1467 	vma_init(vma, NULL);
1468 	/* Bias interleave by inode number to distribute better across nodes */
1469 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1470 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1471 }
1472 
1473 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1474 {
1475 	/* Drop reference taken by mpol_shared_policy_lookup() */
1476 	mpol_cond_put(vma->vm_policy);
1477 }
1478 
1479 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1480 			struct shmem_inode_info *info, pgoff_t index)
1481 {
1482 	struct vm_area_struct pvma;
1483 	struct page *page;
1484 	struct vm_fault vmf = {
1485 		.vma = &pvma,
1486 	};
1487 
1488 	shmem_pseudo_vma_init(&pvma, info, index);
1489 	page = swap_cluster_readahead(swap, gfp, &vmf);
1490 	shmem_pseudo_vma_destroy(&pvma);
1491 
1492 	return page;
1493 }
1494 
1495 /*
1496  * Make sure huge_gfp is always more limited than limit_gfp.
1497  * Some of the flags set permissions, while others set limitations.
1498  */
1499 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1500 {
1501 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1502 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1503 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1504 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1505 
1506 	/* Allow allocations only from the originally specified zones. */
1507 	result |= zoneflags;
1508 
1509 	/*
1510 	 * Minimize the result gfp by taking the union with the deny flags,
1511 	 * and the intersection of the allow flags.
1512 	 */
1513 	result |= (limit_gfp & denyflags);
1514 	result |= (huge_gfp & limit_gfp) & allowflags;
1515 
1516 	return result;
1517 }
1518 
1519 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1520 		struct shmem_inode_info *info, pgoff_t index)
1521 {
1522 	struct vm_area_struct pvma;
1523 	struct address_space *mapping = info->vfs_inode.i_mapping;
1524 	pgoff_t hindex;
1525 	struct folio *folio;
1526 
1527 	hindex = round_down(index, HPAGE_PMD_NR);
1528 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1529 								XA_PRESENT))
1530 		return NULL;
1531 
1532 	shmem_pseudo_vma_init(&pvma, info, hindex);
1533 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1534 	shmem_pseudo_vma_destroy(&pvma);
1535 	if (!folio)
1536 		count_vm_event(THP_FILE_FALLBACK);
1537 	return folio;
1538 }
1539 
1540 static struct folio *shmem_alloc_folio(gfp_t gfp,
1541 			struct shmem_inode_info *info, pgoff_t index)
1542 {
1543 	struct vm_area_struct pvma;
1544 	struct folio *folio;
1545 
1546 	shmem_pseudo_vma_init(&pvma, info, index);
1547 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1548 	shmem_pseudo_vma_destroy(&pvma);
1549 
1550 	return folio;
1551 }
1552 
1553 static struct page *shmem_alloc_page(gfp_t gfp,
1554 			struct shmem_inode_info *info, pgoff_t index)
1555 {
1556 	return &shmem_alloc_folio(gfp, info, index)->page;
1557 }
1558 
1559 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1560 		pgoff_t index, bool huge)
1561 {
1562 	struct shmem_inode_info *info = SHMEM_I(inode);
1563 	struct folio *folio;
1564 	int nr;
1565 	int err = -ENOSPC;
1566 
1567 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1568 		huge = false;
1569 	nr = huge ? HPAGE_PMD_NR : 1;
1570 
1571 	if (!shmem_inode_acct_block(inode, nr))
1572 		goto failed;
1573 
1574 	if (huge)
1575 		folio = shmem_alloc_hugefolio(gfp, info, index);
1576 	else
1577 		folio = shmem_alloc_folio(gfp, info, index);
1578 	if (folio) {
1579 		__folio_set_locked(folio);
1580 		__folio_set_swapbacked(folio);
1581 		return folio;
1582 	}
1583 
1584 	err = -ENOMEM;
1585 	shmem_inode_unacct_blocks(inode, nr);
1586 failed:
1587 	return ERR_PTR(err);
1588 }
1589 
1590 /*
1591  * When a page is moved from swapcache to shmem filecache (either by the
1592  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1593  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1594  * ignorance of the mapping it belongs to.  If that mapping has special
1595  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1596  * we may need to copy to a suitable page before moving to filecache.
1597  *
1598  * In a future release, this may well be extended to respect cpuset and
1599  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1600  * but for now it is a simple matter of zone.
1601  */
1602 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1603 {
1604 	return folio_zonenum(folio) > gfp_zone(gfp);
1605 }
1606 
1607 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1608 				struct shmem_inode_info *info, pgoff_t index)
1609 {
1610 	struct page *oldpage, *newpage;
1611 	struct folio *old, *new;
1612 	struct address_space *swap_mapping;
1613 	swp_entry_t entry;
1614 	pgoff_t swap_index;
1615 	int error;
1616 
1617 	oldpage = *pagep;
1618 	entry.val = page_private(oldpage);
1619 	swap_index = swp_offset(entry);
1620 	swap_mapping = page_mapping(oldpage);
1621 
1622 	/*
1623 	 * We have arrived here because our zones are constrained, so don't
1624 	 * limit chance of success by further cpuset and node constraints.
1625 	 */
1626 	gfp &= ~GFP_CONSTRAINT_MASK;
1627 	newpage = shmem_alloc_page(gfp, info, index);
1628 	if (!newpage)
1629 		return -ENOMEM;
1630 
1631 	get_page(newpage);
1632 	copy_highpage(newpage, oldpage);
1633 	flush_dcache_page(newpage);
1634 
1635 	__SetPageLocked(newpage);
1636 	__SetPageSwapBacked(newpage);
1637 	SetPageUptodate(newpage);
1638 	set_page_private(newpage, entry.val);
1639 	SetPageSwapCache(newpage);
1640 
1641 	/*
1642 	 * Our caller will very soon move newpage out of swapcache, but it's
1643 	 * a nice clean interface for us to replace oldpage by newpage there.
1644 	 */
1645 	xa_lock_irq(&swap_mapping->i_pages);
1646 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1647 	if (!error) {
1648 		old = page_folio(oldpage);
1649 		new = page_folio(newpage);
1650 		mem_cgroup_migrate(old, new);
1651 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1652 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1653 	}
1654 	xa_unlock_irq(&swap_mapping->i_pages);
1655 
1656 	if (unlikely(error)) {
1657 		/*
1658 		 * Is this possible?  I think not, now that our callers check
1659 		 * both PageSwapCache and page_private after getting page lock;
1660 		 * but be defensive.  Reverse old to newpage for clear and free.
1661 		 */
1662 		oldpage = newpage;
1663 	} else {
1664 		lru_cache_add(newpage);
1665 		*pagep = newpage;
1666 	}
1667 
1668 	ClearPageSwapCache(oldpage);
1669 	set_page_private(oldpage, 0);
1670 
1671 	unlock_page(oldpage);
1672 	put_page(oldpage);
1673 	put_page(oldpage);
1674 	return error;
1675 }
1676 
1677 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1678 					 struct folio *folio, swp_entry_t swap)
1679 {
1680 	struct address_space *mapping = inode->i_mapping;
1681 	struct shmem_inode_info *info = SHMEM_I(inode);
1682 	swp_entry_t swapin_error;
1683 	void *old;
1684 
1685 	swapin_error = make_swapin_error_entry(&folio->page);
1686 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1687 			     swp_to_radix_entry(swap),
1688 			     swp_to_radix_entry(swapin_error), 0);
1689 	if (old != swp_to_radix_entry(swap))
1690 		return;
1691 
1692 	folio_wait_writeback(folio);
1693 	delete_from_swap_cache(&folio->page);
1694 	spin_lock_irq(&info->lock);
1695 	/*
1696 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1697 	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1698 	 * shmem_evict_inode.
1699 	 */
1700 	info->alloced--;
1701 	info->swapped--;
1702 	shmem_recalc_inode(inode);
1703 	spin_unlock_irq(&info->lock);
1704 	swap_free(swap);
1705 }
1706 
1707 /*
1708  * Swap in the page pointed to by *pagep.
1709  * Caller has to make sure that *pagep contains a valid swapped page.
1710  * Returns 0 and the page in pagep if success. On failure, returns the
1711  * error code and NULL in *pagep.
1712  */
1713 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1714 			     struct folio **foliop, enum sgp_type sgp,
1715 			     gfp_t gfp, struct vm_area_struct *vma,
1716 			     vm_fault_t *fault_type)
1717 {
1718 	struct address_space *mapping = inode->i_mapping;
1719 	struct shmem_inode_info *info = SHMEM_I(inode);
1720 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1721 	struct page *page;
1722 	struct folio *folio = NULL;
1723 	swp_entry_t swap;
1724 	int error;
1725 
1726 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1727 	swap = radix_to_swp_entry(*foliop);
1728 	*foliop = NULL;
1729 
1730 	if (is_swapin_error_entry(swap))
1731 		return -EIO;
1732 
1733 	/* Look it up and read it in.. */
1734 	page = lookup_swap_cache(swap, NULL, 0);
1735 	if (!page) {
1736 		/* Or update major stats only when swapin succeeds?? */
1737 		if (fault_type) {
1738 			*fault_type |= VM_FAULT_MAJOR;
1739 			count_vm_event(PGMAJFAULT);
1740 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1741 		}
1742 		/* Here we actually start the io */
1743 		page = shmem_swapin(swap, gfp, info, index);
1744 		if (!page) {
1745 			error = -ENOMEM;
1746 			goto failed;
1747 		}
1748 	}
1749 	folio = page_folio(page);
1750 
1751 	/* We have to do this with page locked to prevent races */
1752 	folio_lock(folio);
1753 	if (!folio_test_swapcache(folio) ||
1754 	    folio_swap_entry(folio).val != swap.val ||
1755 	    !shmem_confirm_swap(mapping, index, swap)) {
1756 		error = -EEXIST;
1757 		goto unlock;
1758 	}
1759 	if (!folio_test_uptodate(folio)) {
1760 		error = -EIO;
1761 		goto failed;
1762 	}
1763 	folio_wait_writeback(folio);
1764 
1765 	/*
1766 	 * Some architectures may have to restore extra metadata to the
1767 	 * folio after reading from swap.
1768 	 */
1769 	arch_swap_restore(swap, folio);
1770 
1771 	if (shmem_should_replace_folio(folio, gfp)) {
1772 		error = shmem_replace_page(&page, gfp, info, index);
1773 		if (error)
1774 			goto failed;
1775 	}
1776 
1777 	error = shmem_add_to_page_cache(folio, mapping, index,
1778 					swp_to_radix_entry(swap), gfp,
1779 					charge_mm);
1780 	if (error)
1781 		goto failed;
1782 
1783 	spin_lock_irq(&info->lock);
1784 	info->swapped--;
1785 	shmem_recalc_inode(inode);
1786 	spin_unlock_irq(&info->lock);
1787 
1788 	if (sgp == SGP_WRITE)
1789 		folio_mark_accessed(folio);
1790 
1791 	delete_from_swap_cache(&folio->page);
1792 	folio_mark_dirty(folio);
1793 	swap_free(swap);
1794 
1795 	*foliop = folio;
1796 	return 0;
1797 failed:
1798 	if (!shmem_confirm_swap(mapping, index, swap))
1799 		error = -EEXIST;
1800 	if (error == -EIO)
1801 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1802 unlock:
1803 	if (folio) {
1804 		folio_unlock(folio);
1805 		folio_put(folio);
1806 	}
1807 
1808 	return error;
1809 }
1810 
1811 /*
1812  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1813  *
1814  * If we allocate a new one we do not mark it dirty. That's up to the
1815  * vm. If we swap it in we mark it dirty since we also free the swap
1816  * entry since a page cannot live in both the swap and page cache.
1817  *
1818  * vma, vmf, and fault_type are only supplied by shmem_fault:
1819  * otherwise they are NULL.
1820  */
1821 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1822 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1823 	struct vm_area_struct *vma, struct vm_fault *vmf,
1824 			vm_fault_t *fault_type)
1825 {
1826 	struct address_space *mapping = inode->i_mapping;
1827 	struct shmem_inode_info *info = SHMEM_I(inode);
1828 	struct shmem_sb_info *sbinfo;
1829 	struct mm_struct *charge_mm;
1830 	struct folio *folio;
1831 	pgoff_t hindex = index;
1832 	gfp_t huge_gfp;
1833 	int error;
1834 	int once = 0;
1835 	int alloced = 0;
1836 
1837 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1838 		return -EFBIG;
1839 repeat:
1840 	if (sgp <= SGP_CACHE &&
1841 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1842 		return -EINVAL;
1843 	}
1844 
1845 	sbinfo = SHMEM_SB(inode->i_sb);
1846 	charge_mm = vma ? vma->vm_mm : NULL;
1847 
1848 	folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1849 	if (folio && vma && userfaultfd_minor(vma)) {
1850 		if (!xa_is_value(folio)) {
1851 			folio_unlock(folio);
1852 			folio_put(folio);
1853 		}
1854 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1855 		return 0;
1856 	}
1857 
1858 	if (xa_is_value(folio)) {
1859 		error = shmem_swapin_folio(inode, index, &folio,
1860 					  sgp, gfp, vma, fault_type);
1861 		if (error == -EEXIST)
1862 			goto repeat;
1863 
1864 		*pagep = &folio->page;
1865 		return error;
1866 	}
1867 
1868 	if (folio) {
1869 		hindex = folio->index;
1870 		if (sgp == SGP_WRITE)
1871 			folio_mark_accessed(folio);
1872 		if (folio_test_uptodate(folio))
1873 			goto out;
1874 		/* fallocated page */
1875 		if (sgp != SGP_READ)
1876 			goto clear;
1877 		folio_unlock(folio);
1878 		folio_put(folio);
1879 	}
1880 
1881 	/*
1882 	 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1883 	 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1884 	 */
1885 	*pagep = NULL;
1886 	if (sgp == SGP_READ)
1887 		return 0;
1888 	if (sgp == SGP_NOALLOC)
1889 		return -ENOENT;
1890 
1891 	/*
1892 	 * Fast cache lookup and swap lookup did not find it: allocate.
1893 	 */
1894 
1895 	if (vma && userfaultfd_missing(vma)) {
1896 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1897 		return 0;
1898 	}
1899 
1900 	if (!shmem_is_huge(vma, inode, index))
1901 		goto alloc_nohuge;
1902 
1903 	huge_gfp = vma_thp_gfp_mask(vma);
1904 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1905 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1906 	if (IS_ERR(folio)) {
1907 alloc_nohuge:
1908 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1909 	}
1910 	if (IS_ERR(folio)) {
1911 		int retry = 5;
1912 
1913 		error = PTR_ERR(folio);
1914 		folio = NULL;
1915 		if (error != -ENOSPC)
1916 			goto unlock;
1917 		/*
1918 		 * Try to reclaim some space by splitting a huge page
1919 		 * beyond i_size on the filesystem.
1920 		 */
1921 		while (retry--) {
1922 			int ret;
1923 
1924 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1925 			if (ret == SHRINK_STOP)
1926 				break;
1927 			if (ret)
1928 				goto alloc_nohuge;
1929 		}
1930 		goto unlock;
1931 	}
1932 
1933 	hindex = round_down(index, folio_nr_pages(folio));
1934 
1935 	if (sgp == SGP_WRITE)
1936 		__folio_set_referenced(folio);
1937 
1938 	error = shmem_add_to_page_cache(folio, mapping, hindex,
1939 					NULL, gfp & GFP_RECLAIM_MASK,
1940 					charge_mm);
1941 	if (error)
1942 		goto unacct;
1943 	folio_add_lru(folio);
1944 
1945 	spin_lock_irq(&info->lock);
1946 	info->alloced += folio_nr_pages(folio);
1947 	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1948 	shmem_recalc_inode(inode);
1949 	spin_unlock_irq(&info->lock);
1950 	alloced = true;
1951 
1952 	if (folio_test_pmd_mappable(folio) &&
1953 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1954 			hindex + HPAGE_PMD_NR - 1) {
1955 		/*
1956 		 * Part of the huge page is beyond i_size: subject
1957 		 * to shrink under memory pressure.
1958 		 */
1959 		spin_lock(&sbinfo->shrinklist_lock);
1960 		/*
1961 		 * _careful to defend against unlocked access to
1962 		 * ->shrink_list in shmem_unused_huge_shrink()
1963 		 */
1964 		if (list_empty_careful(&info->shrinklist)) {
1965 			list_add_tail(&info->shrinklist,
1966 				      &sbinfo->shrinklist);
1967 			sbinfo->shrinklist_len++;
1968 		}
1969 		spin_unlock(&sbinfo->shrinklist_lock);
1970 	}
1971 
1972 	/*
1973 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1974 	 */
1975 	if (sgp == SGP_FALLOC)
1976 		sgp = SGP_WRITE;
1977 clear:
1978 	/*
1979 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1980 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1981 	 * it now, lest undo on failure cancel our earlier guarantee.
1982 	 */
1983 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1984 		long i, n = folio_nr_pages(folio);
1985 
1986 		for (i = 0; i < n; i++)
1987 			clear_highpage(folio_page(folio, i));
1988 		flush_dcache_folio(folio);
1989 		folio_mark_uptodate(folio);
1990 	}
1991 
1992 	/* Perhaps the file has been truncated since we checked */
1993 	if (sgp <= SGP_CACHE &&
1994 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1995 		if (alloced) {
1996 			folio_clear_dirty(folio);
1997 			filemap_remove_folio(folio);
1998 			spin_lock_irq(&info->lock);
1999 			shmem_recalc_inode(inode);
2000 			spin_unlock_irq(&info->lock);
2001 		}
2002 		error = -EINVAL;
2003 		goto unlock;
2004 	}
2005 out:
2006 	*pagep = folio_page(folio, index - hindex);
2007 	return 0;
2008 
2009 	/*
2010 	 * Error recovery.
2011 	 */
2012 unacct:
2013 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2014 
2015 	if (folio_test_large(folio)) {
2016 		folio_unlock(folio);
2017 		folio_put(folio);
2018 		goto alloc_nohuge;
2019 	}
2020 unlock:
2021 	if (folio) {
2022 		folio_unlock(folio);
2023 		folio_put(folio);
2024 	}
2025 	if (error == -ENOSPC && !once++) {
2026 		spin_lock_irq(&info->lock);
2027 		shmem_recalc_inode(inode);
2028 		spin_unlock_irq(&info->lock);
2029 		goto repeat;
2030 	}
2031 	if (error == -EEXIST)
2032 		goto repeat;
2033 	return error;
2034 }
2035 
2036 /*
2037  * This is like autoremove_wake_function, but it removes the wait queue
2038  * entry unconditionally - even if something else had already woken the
2039  * target.
2040  */
2041 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2042 {
2043 	int ret = default_wake_function(wait, mode, sync, key);
2044 	list_del_init(&wait->entry);
2045 	return ret;
2046 }
2047 
2048 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2049 {
2050 	struct vm_area_struct *vma = vmf->vma;
2051 	struct inode *inode = file_inode(vma->vm_file);
2052 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2053 	int err;
2054 	vm_fault_t ret = VM_FAULT_LOCKED;
2055 
2056 	/*
2057 	 * Trinity finds that probing a hole which tmpfs is punching can
2058 	 * prevent the hole-punch from ever completing: which in turn
2059 	 * locks writers out with its hold on i_rwsem.  So refrain from
2060 	 * faulting pages into the hole while it's being punched.  Although
2061 	 * shmem_undo_range() does remove the additions, it may be unable to
2062 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2063 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2064 	 *
2065 	 * It does not matter if we sometimes reach this check just before the
2066 	 * hole-punch begins, so that one fault then races with the punch:
2067 	 * we just need to make racing faults a rare case.
2068 	 *
2069 	 * The implementation below would be much simpler if we just used a
2070 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2071 	 * and bloating every shmem inode for this unlikely case would be sad.
2072 	 */
2073 	if (unlikely(inode->i_private)) {
2074 		struct shmem_falloc *shmem_falloc;
2075 
2076 		spin_lock(&inode->i_lock);
2077 		shmem_falloc = inode->i_private;
2078 		if (shmem_falloc &&
2079 		    shmem_falloc->waitq &&
2080 		    vmf->pgoff >= shmem_falloc->start &&
2081 		    vmf->pgoff < shmem_falloc->next) {
2082 			struct file *fpin;
2083 			wait_queue_head_t *shmem_falloc_waitq;
2084 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2085 
2086 			ret = VM_FAULT_NOPAGE;
2087 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2088 			if (fpin)
2089 				ret = VM_FAULT_RETRY;
2090 
2091 			shmem_falloc_waitq = shmem_falloc->waitq;
2092 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2093 					TASK_UNINTERRUPTIBLE);
2094 			spin_unlock(&inode->i_lock);
2095 			schedule();
2096 
2097 			/*
2098 			 * shmem_falloc_waitq points into the shmem_fallocate()
2099 			 * stack of the hole-punching task: shmem_falloc_waitq
2100 			 * is usually invalid by the time we reach here, but
2101 			 * finish_wait() does not dereference it in that case;
2102 			 * though i_lock needed lest racing with wake_up_all().
2103 			 */
2104 			spin_lock(&inode->i_lock);
2105 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2106 			spin_unlock(&inode->i_lock);
2107 
2108 			if (fpin)
2109 				fput(fpin);
2110 			return ret;
2111 		}
2112 		spin_unlock(&inode->i_lock);
2113 	}
2114 
2115 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2116 				  gfp, vma, vmf, &ret);
2117 	if (err)
2118 		return vmf_error(err);
2119 	return ret;
2120 }
2121 
2122 unsigned long shmem_get_unmapped_area(struct file *file,
2123 				      unsigned long uaddr, unsigned long len,
2124 				      unsigned long pgoff, unsigned long flags)
2125 {
2126 	unsigned long (*get_area)(struct file *,
2127 		unsigned long, unsigned long, unsigned long, unsigned long);
2128 	unsigned long addr;
2129 	unsigned long offset;
2130 	unsigned long inflated_len;
2131 	unsigned long inflated_addr;
2132 	unsigned long inflated_offset;
2133 
2134 	if (len > TASK_SIZE)
2135 		return -ENOMEM;
2136 
2137 	get_area = current->mm->get_unmapped_area;
2138 	addr = get_area(file, uaddr, len, pgoff, flags);
2139 
2140 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2141 		return addr;
2142 	if (IS_ERR_VALUE(addr))
2143 		return addr;
2144 	if (addr & ~PAGE_MASK)
2145 		return addr;
2146 	if (addr > TASK_SIZE - len)
2147 		return addr;
2148 
2149 	if (shmem_huge == SHMEM_HUGE_DENY)
2150 		return addr;
2151 	if (len < HPAGE_PMD_SIZE)
2152 		return addr;
2153 	if (flags & MAP_FIXED)
2154 		return addr;
2155 	/*
2156 	 * Our priority is to support MAP_SHARED mapped hugely;
2157 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2158 	 * But if caller specified an address hint and we allocated area there
2159 	 * successfully, respect that as before.
2160 	 */
2161 	if (uaddr == addr)
2162 		return addr;
2163 
2164 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2165 		struct super_block *sb;
2166 
2167 		if (file) {
2168 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2169 			sb = file_inode(file)->i_sb;
2170 		} else {
2171 			/*
2172 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2173 			 * for "/dev/zero", to create a shared anonymous object.
2174 			 */
2175 			if (IS_ERR(shm_mnt))
2176 				return addr;
2177 			sb = shm_mnt->mnt_sb;
2178 		}
2179 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2180 			return addr;
2181 	}
2182 
2183 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2184 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2185 		return addr;
2186 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2187 		return addr;
2188 
2189 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2190 	if (inflated_len > TASK_SIZE)
2191 		return addr;
2192 	if (inflated_len < len)
2193 		return addr;
2194 
2195 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2196 	if (IS_ERR_VALUE(inflated_addr))
2197 		return addr;
2198 	if (inflated_addr & ~PAGE_MASK)
2199 		return addr;
2200 
2201 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2202 	inflated_addr += offset - inflated_offset;
2203 	if (inflated_offset > offset)
2204 		inflated_addr += HPAGE_PMD_SIZE;
2205 
2206 	if (inflated_addr > TASK_SIZE - len)
2207 		return addr;
2208 	return inflated_addr;
2209 }
2210 
2211 #ifdef CONFIG_NUMA
2212 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2213 {
2214 	struct inode *inode = file_inode(vma->vm_file);
2215 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2216 }
2217 
2218 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2219 					  unsigned long addr)
2220 {
2221 	struct inode *inode = file_inode(vma->vm_file);
2222 	pgoff_t index;
2223 
2224 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2225 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2226 }
2227 #endif
2228 
2229 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2230 {
2231 	struct inode *inode = file_inode(file);
2232 	struct shmem_inode_info *info = SHMEM_I(inode);
2233 	int retval = -ENOMEM;
2234 
2235 	/*
2236 	 * What serializes the accesses to info->flags?
2237 	 * ipc_lock_object() when called from shmctl_do_lock(),
2238 	 * no serialization needed when called from shm_destroy().
2239 	 */
2240 	if (lock && !(info->flags & VM_LOCKED)) {
2241 		if (!user_shm_lock(inode->i_size, ucounts))
2242 			goto out_nomem;
2243 		info->flags |= VM_LOCKED;
2244 		mapping_set_unevictable(file->f_mapping);
2245 	}
2246 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2247 		user_shm_unlock(inode->i_size, ucounts);
2248 		info->flags &= ~VM_LOCKED;
2249 		mapping_clear_unevictable(file->f_mapping);
2250 	}
2251 	retval = 0;
2252 
2253 out_nomem:
2254 	return retval;
2255 }
2256 
2257 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2258 {
2259 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2260 	int ret;
2261 
2262 	ret = seal_check_future_write(info->seals, vma);
2263 	if (ret)
2264 		return ret;
2265 
2266 	/* arm64 - allow memory tagging on RAM-based files */
2267 	vma->vm_flags |= VM_MTE_ALLOWED;
2268 
2269 	file_accessed(file);
2270 	vma->vm_ops = &shmem_vm_ops;
2271 	return 0;
2272 }
2273 
2274 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2275 				     umode_t mode, dev_t dev, unsigned long flags)
2276 {
2277 	struct inode *inode;
2278 	struct shmem_inode_info *info;
2279 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2280 	ino_t ino;
2281 
2282 	if (shmem_reserve_inode(sb, &ino))
2283 		return NULL;
2284 
2285 	inode = new_inode(sb);
2286 	if (inode) {
2287 		inode->i_ino = ino;
2288 		inode_init_owner(&init_user_ns, inode, dir, mode);
2289 		inode->i_blocks = 0;
2290 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2291 		inode->i_generation = prandom_u32();
2292 		info = SHMEM_I(inode);
2293 		memset(info, 0, (char *)inode - (char *)info);
2294 		spin_lock_init(&info->lock);
2295 		atomic_set(&info->stop_eviction, 0);
2296 		info->seals = F_SEAL_SEAL;
2297 		info->flags = flags & VM_NORESERVE;
2298 		info->i_crtime = inode->i_mtime;
2299 		INIT_LIST_HEAD(&info->shrinklist);
2300 		INIT_LIST_HEAD(&info->swaplist);
2301 		simple_xattrs_init(&info->xattrs);
2302 		cache_no_acl(inode);
2303 		mapping_set_large_folios(inode->i_mapping);
2304 
2305 		switch (mode & S_IFMT) {
2306 		default:
2307 			inode->i_op = &shmem_special_inode_operations;
2308 			init_special_inode(inode, mode, dev);
2309 			break;
2310 		case S_IFREG:
2311 			inode->i_mapping->a_ops = &shmem_aops;
2312 			inode->i_op = &shmem_inode_operations;
2313 			inode->i_fop = &shmem_file_operations;
2314 			mpol_shared_policy_init(&info->policy,
2315 						 shmem_get_sbmpol(sbinfo));
2316 			break;
2317 		case S_IFDIR:
2318 			inc_nlink(inode);
2319 			/* Some things misbehave if size == 0 on a directory */
2320 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2321 			inode->i_op = &shmem_dir_inode_operations;
2322 			inode->i_fop = &simple_dir_operations;
2323 			break;
2324 		case S_IFLNK:
2325 			/*
2326 			 * Must not load anything in the rbtree,
2327 			 * mpol_free_shared_policy will not be called.
2328 			 */
2329 			mpol_shared_policy_init(&info->policy, NULL);
2330 			break;
2331 		}
2332 
2333 		lockdep_annotate_inode_mutex_key(inode);
2334 	} else
2335 		shmem_free_inode(sb);
2336 	return inode;
2337 }
2338 
2339 #ifdef CONFIG_USERFAULTFD
2340 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2341 			   pmd_t *dst_pmd,
2342 			   struct vm_area_struct *dst_vma,
2343 			   unsigned long dst_addr,
2344 			   unsigned long src_addr,
2345 			   bool zeropage, bool wp_copy,
2346 			   struct page **pagep)
2347 {
2348 	struct inode *inode = file_inode(dst_vma->vm_file);
2349 	struct shmem_inode_info *info = SHMEM_I(inode);
2350 	struct address_space *mapping = inode->i_mapping;
2351 	gfp_t gfp = mapping_gfp_mask(mapping);
2352 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2353 	void *page_kaddr;
2354 	struct folio *folio;
2355 	struct page *page;
2356 	int ret;
2357 	pgoff_t max_off;
2358 
2359 	if (!shmem_inode_acct_block(inode, 1)) {
2360 		/*
2361 		 * We may have got a page, returned -ENOENT triggering a retry,
2362 		 * and now we find ourselves with -ENOMEM. Release the page, to
2363 		 * avoid a BUG_ON in our caller.
2364 		 */
2365 		if (unlikely(*pagep)) {
2366 			put_page(*pagep);
2367 			*pagep = NULL;
2368 		}
2369 		return -ENOMEM;
2370 	}
2371 
2372 	if (!*pagep) {
2373 		ret = -ENOMEM;
2374 		page = shmem_alloc_page(gfp, info, pgoff);
2375 		if (!page)
2376 			goto out_unacct_blocks;
2377 
2378 		if (!zeropage) {	/* COPY */
2379 			page_kaddr = kmap_atomic(page);
2380 			ret = copy_from_user(page_kaddr,
2381 					     (const void __user *)src_addr,
2382 					     PAGE_SIZE);
2383 			kunmap_atomic(page_kaddr);
2384 
2385 			/* fallback to copy_from_user outside mmap_lock */
2386 			if (unlikely(ret)) {
2387 				*pagep = page;
2388 				ret = -ENOENT;
2389 				/* don't free the page */
2390 				goto out_unacct_blocks;
2391 			}
2392 
2393 			flush_dcache_page(page);
2394 		} else {		/* ZEROPAGE */
2395 			clear_user_highpage(page, dst_addr);
2396 		}
2397 	} else {
2398 		page = *pagep;
2399 		*pagep = NULL;
2400 	}
2401 
2402 	VM_BUG_ON(PageLocked(page));
2403 	VM_BUG_ON(PageSwapBacked(page));
2404 	__SetPageLocked(page);
2405 	__SetPageSwapBacked(page);
2406 	__SetPageUptodate(page);
2407 
2408 	ret = -EFAULT;
2409 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2410 	if (unlikely(pgoff >= max_off))
2411 		goto out_release;
2412 
2413 	folio = page_folio(page);
2414 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2415 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2416 	if (ret)
2417 		goto out_release;
2418 
2419 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2420 				       page, true, wp_copy);
2421 	if (ret)
2422 		goto out_delete_from_cache;
2423 
2424 	spin_lock_irq(&info->lock);
2425 	info->alloced++;
2426 	inode->i_blocks += BLOCKS_PER_PAGE;
2427 	shmem_recalc_inode(inode);
2428 	spin_unlock_irq(&info->lock);
2429 
2430 	unlock_page(page);
2431 	return 0;
2432 out_delete_from_cache:
2433 	delete_from_page_cache(page);
2434 out_release:
2435 	unlock_page(page);
2436 	put_page(page);
2437 out_unacct_blocks:
2438 	shmem_inode_unacct_blocks(inode, 1);
2439 	return ret;
2440 }
2441 #endif /* CONFIG_USERFAULTFD */
2442 
2443 #ifdef CONFIG_TMPFS
2444 static const struct inode_operations shmem_symlink_inode_operations;
2445 static const struct inode_operations shmem_short_symlink_operations;
2446 
2447 #ifdef CONFIG_TMPFS_XATTR
2448 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2449 #else
2450 #define shmem_initxattrs NULL
2451 #endif
2452 
2453 static int
2454 shmem_write_begin(struct file *file, struct address_space *mapping,
2455 			loff_t pos, unsigned len,
2456 			struct page **pagep, void **fsdata)
2457 {
2458 	struct inode *inode = mapping->host;
2459 	struct shmem_inode_info *info = SHMEM_I(inode);
2460 	pgoff_t index = pos >> PAGE_SHIFT;
2461 	int ret = 0;
2462 
2463 	/* i_rwsem is held by caller */
2464 	if (unlikely(info->seals & (F_SEAL_GROW |
2465 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2466 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2467 			return -EPERM;
2468 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2469 			return -EPERM;
2470 	}
2471 
2472 	ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2473 
2474 	if (ret)
2475 		return ret;
2476 
2477 	if (PageHWPoison(*pagep)) {
2478 		unlock_page(*pagep);
2479 		put_page(*pagep);
2480 		*pagep = NULL;
2481 		return -EIO;
2482 	}
2483 
2484 	return 0;
2485 }
2486 
2487 static int
2488 shmem_write_end(struct file *file, struct address_space *mapping,
2489 			loff_t pos, unsigned len, unsigned copied,
2490 			struct page *page, void *fsdata)
2491 {
2492 	struct inode *inode = mapping->host;
2493 
2494 	if (pos + copied > inode->i_size)
2495 		i_size_write(inode, pos + copied);
2496 
2497 	if (!PageUptodate(page)) {
2498 		struct page *head = compound_head(page);
2499 		if (PageTransCompound(page)) {
2500 			int i;
2501 
2502 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2503 				if (head + i == page)
2504 					continue;
2505 				clear_highpage(head + i);
2506 				flush_dcache_page(head + i);
2507 			}
2508 		}
2509 		if (copied < PAGE_SIZE) {
2510 			unsigned from = pos & (PAGE_SIZE - 1);
2511 			zero_user_segments(page, 0, from,
2512 					from + copied, PAGE_SIZE);
2513 		}
2514 		SetPageUptodate(head);
2515 	}
2516 	set_page_dirty(page);
2517 	unlock_page(page);
2518 	put_page(page);
2519 
2520 	return copied;
2521 }
2522 
2523 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2524 {
2525 	struct file *file = iocb->ki_filp;
2526 	struct inode *inode = file_inode(file);
2527 	struct address_space *mapping = inode->i_mapping;
2528 	pgoff_t index;
2529 	unsigned long offset;
2530 	int error = 0;
2531 	ssize_t retval = 0;
2532 	loff_t *ppos = &iocb->ki_pos;
2533 
2534 	index = *ppos >> PAGE_SHIFT;
2535 	offset = *ppos & ~PAGE_MASK;
2536 
2537 	for (;;) {
2538 		struct page *page = NULL;
2539 		pgoff_t end_index;
2540 		unsigned long nr, ret;
2541 		loff_t i_size = i_size_read(inode);
2542 
2543 		end_index = i_size >> PAGE_SHIFT;
2544 		if (index > end_index)
2545 			break;
2546 		if (index == end_index) {
2547 			nr = i_size & ~PAGE_MASK;
2548 			if (nr <= offset)
2549 				break;
2550 		}
2551 
2552 		error = shmem_getpage(inode, index, &page, SGP_READ);
2553 		if (error) {
2554 			if (error == -EINVAL)
2555 				error = 0;
2556 			break;
2557 		}
2558 		if (page) {
2559 			unlock_page(page);
2560 
2561 			if (PageHWPoison(page)) {
2562 				put_page(page);
2563 				error = -EIO;
2564 				break;
2565 			}
2566 		}
2567 
2568 		/*
2569 		 * We must evaluate after, since reads (unlike writes)
2570 		 * are called without i_rwsem protection against truncate
2571 		 */
2572 		nr = PAGE_SIZE;
2573 		i_size = i_size_read(inode);
2574 		end_index = i_size >> PAGE_SHIFT;
2575 		if (index == end_index) {
2576 			nr = i_size & ~PAGE_MASK;
2577 			if (nr <= offset) {
2578 				if (page)
2579 					put_page(page);
2580 				break;
2581 			}
2582 		}
2583 		nr -= offset;
2584 
2585 		if (page) {
2586 			/*
2587 			 * If users can be writing to this page using arbitrary
2588 			 * virtual addresses, take care about potential aliasing
2589 			 * before reading the page on the kernel side.
2590 			 */
2591 			if (mapping_writably_mapped(mapping))
2592 				flush_dcache_page(page);
2593 			/*
2594 			 * Mark the page accessed if we read the beginning.
2595 			 */
2596 			if (!offset)
2597 				mark_page_accessed(page);
2598 			/*
2599 			 * Ok, we have the page, and it's up-to-date, so
2600 			 * now we can copy it to user space...
2601 			 */
2602 			ret = copy_page_to_iter(page, offset, nr, to);
2603 			put_page(page);
2604 
2605 		} else if (iter_is_iovec(to)) {
2606 			/*
2607 			 * Copy to user tends to be so well optimized, but
2608 			 * clear_user() not so much, that it is noticeably
2609 			 * faster to copy the zero page instead of clearing.
2610 			 */
2611 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2612 		} else {
2613 			/*
2614 			 * But submitting the same page twice in a row to
2615 			 * splice() - or others? - can result in confusion:
2616 			 * so don't attempt that optimization on pipes etc.
2617 			 */
2618 			ret = iov_iter_zero(nr, to);
2619 		}
2620 
2621 		retval += ret;
2622 		offset += ret;
2623 		index += offset >> PAGE_SHIFT;
2624 		offset &= ~PAGE_MASK;
2625 
2626 		if (!iov_iter_count(to))
2627 			break;
2628 		if (ret < nr) {
2629 			error = -EFAULT;
2630 			break;
2631 		}
2632 		cond_resched();
2633 	}
2634 
2635 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2636 	file_accessed(file);
2637 	return retval ? retval : error;
2638 }
2639 
2640 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2641 {
2642 	struct address_space *mapping = file->f_mapping;
2643 	struct inode *inode = mapping->host;
2644 
2645 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2646 		return generic_file_llseek_size(file, offset, whence,
2647 					MAX_LFS_FILESIZE, i_size_read(inode));
2648 	if (offset < 0)
2649 		return -ENXIO;
2650 
2651 	inode_lock(inode);
2652 	/* We're holding i_rwsem so we can access i_size directly */
2653 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2654 	if (offset >= 0)
2655 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2656 	inode_unlock(inode);
2657 	return offset;
2658 }
2659 
2660 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2661 							 loff_t len)
2662 {
2663 	struct inode *inode = file_inode(file);
2664 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2665 	struct shmem_inode_info *info = SHMEM_I(inode);
2666 	struct shmem_falloc shmem_falloc;
2667 	pgoff_t start, index, end, undo_fallocend;
2668 	int error;
2669 
2670 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2671 		return -EOPNOTSUPP;
2672 
2673 	inode_lock(inode);
2674 
2675 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2676 		struct address_space *mapping = file->f_mapping;
2677 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2678 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2679 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2680 
2681 		/* protected by i_rwsem */
2682 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2683 			error = -EPERM;
2684 			goto out;
2685 		}
2686 
2687 		shmem_falloc.waitq = &shmem_falloc_waitq;
2688 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2689 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2690 		spin_lock(&inode->i_lock);
2691 		inode->i_private = &shmem_falloc;
2692 		spin_unlock(&inode->i_lock);
2693 
2694 		if ((u64)unmap_end > (u64)unmap_start)
2695 			unmap_mapping_range(mapping, unmap_start,
2696 					    1 + unmap_end - unmap_start, 0);
2697 		shmem_truncate_range(inode, offset, offset + len - 1);
2698 		/* No need to unmap again: hole-punching leaves COWed pages */
2699 
2700 		spin_lock(&inode->i_lock);
2701 		inode->i_private = NULL;
2702 		wake_up_all(&shmem_falloc_waitq);
2703 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2704 		spin_unlock(&inode->i_lock);
2705 		error = 0;
2706 		goto out;
2707 	}
2708 
2709 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2710 	error = inode_newsize_ok(inode, offset + len);
2711 	if (error)
2712 		goto out;
2713 
2714 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2715 		error = -EPERM;
2716 		goto out;
2717 	}
2718 
2719 	start = offset >> PAGE_SHIFT;
2720 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2721 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2722 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2723 		error = -ENOSPC;
2724 		goto out;
2725 	}
2726 
2727 	shmem_falloc.waitq = NULL;
2728 	shmem_falloc.start = start;
2729 	shmem_falloc.next  = start;
2730 	shmem_falloc.nr_falloced = 0;
2731 	shmem_falloc.nr_unswapped = 0;
2732 	spin_lock(&inode->i_lock);
2733 	inode->i_private = &shmem_falloc;
2734 	spin_unlock(&inode->i_lock);
2735 
2736 	/*
2737 	 * info->fallocend is only relevant when huge pages might be
2738 	 * involved: to prevent split_huge_page() freeing fallocated
2739 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2740 	 */
2741 	undo_fallocend = info->fallocend;
2742 	if (info->fallocend < end)
2743 		info->fallocend = end;
2744 
2745 	for (index = start; index < end; ) {
2746 		struct page *page;
2747 
2748 		/*
2749 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2750 		 * been interrupted because we are using up too much memory.
2751 		 */
2752 		if (signal_pending(current))
2753 			error = -EINTR;
2754 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2755 			error = -ENOMEM;
2756 		else
2757 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2758 		if (error) {
2759 			info->fallocend = undo_fallocend;
2760 			/* Remove the !PageUptodate pages we added */
2761 			if (index > start) {
2762 				shmem_undo_range(inode,
2763 				    (loff_t)start << PAGE_SHIFT,
2764 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2765 			}
2766 			goto undone;
2767 		}
2768 
2769 		index++;
2770 		/*
2771 		 * Here is a more important optimization than it appears:
2772 		 * a second SGP_FALLOC on the same huge page will clear it,
2773 		 * making it PageUptodate and un-undoable if we fail later.
2774 		 */
2775 		if (PageTransCompound(page)) {
2776 			index = round_up(index, HPAGE_PMD_NR);
2777 			/* Beware 32-bit wraparound */
2778 			if (!index)
2779 				index--;
2780 		}
2781 
2782 		/*
2783 		 * Inform shmem_writepage() how far we have reached.
2784 		 * No need for lock or barrier: we have the page lock.
2785 		 */
2786 		if (!PageUptodate(page))
2787 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2788 		shmem_falloc.next = index;
2789 
2790 		/*
2791 		 * If !PageUptodate, leave it that way so that freeable pages
2792 		 * can be recognized if we need to rollback on error later.
2793 		 * But set_page_dirty so that memory pressure will swap rather
2794 		 * than free the pages we are allocating (and SGP_CACHE pages
2795 		 * might still be clean: we now need to mark those dirty too).
2796 		 */
2797 		set_page_dirty(page);
2798 		unlock_page(page);
2799 		put_page(page);
2800 		cond_resched();
2801 	}
2802 
2803 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2804 		i_size_write(inode, offset + len);
2805 	inode->i_ctime = current_time(inode);
2806 undone:
2807 	spin_lock(&inode->i_lock);
2808 	inode->i_private = NULL;
2809 	spin_unlock(&inode->i_lock);
2810 out:
2811 	inode_unlock(inode);
2812 	return error;
2813 }
2814 
2815 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2816 {
2817 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2818 
2819 	buf->f_type = TMPFS_MAGIC;
2820 	buf->f_bsize = PAGE_SIZE;
2821 	buf->f_namelen = NAME_MAX;
2822 	if (sbinfo->max_blocks) {
2823 		buf->f_blocks = sbinfo->max_blocks;
2824 		buf->f_bavail =
2825 		buf->f_bfree  = sbinfo->max_blocks -
2826 				percpu_counter_sum(&sbinfo->used_blocks);
2827 	}
2828 	if (sbinfo->max_inodes) {
2829 		buf->f_files = sbinfo->max_inodes;
2830 		buf->f_ffree = sbinfo->free_inodes;
2831 	}
2832 	/* else leave those fields 0 like simple_statfs */
2833 
2834 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2835 
2836 	return 0;
2837 }
2838 
2839 /*
2840  * File creation. Allocate an inode, and we're done..
2841  */
2842 static int
2843 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2844 	    struct dentry *dentry, umode_t mode, dev_t dev)
2845 {
2846 	struct inode *inode;
2847 	int error = -ENOSPC;
2848 
2849 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2850 	if (inode) {
2851 		error = simple_acl_create(dir, inode);
2852 		if (error)
2853 			goto out_iput;
2854 		error = security_inode_init_security(inode, dir,
2855 						     &dentry->d_name,
2856 						     shmem_initxattrs, NULL);
2857 		if (error && error != -EOPNOTSUPP)
2858 			goto out_iput;
2859 
2860 		error = 0;
2861 		dir->i_size += BOGO_DIRENT_SIZE;
2862 		dir->i_ctime = dir->i_mtime = current_time(dir);
2863 		d_instantiate(dentry, inode);
2864 		dget(dentry); /* Extra count - pin the dentry in core */
2865 	}
2866 	return error;
2867 out_iput:
2868 	iput(inode);
2869 	return error;
2870 }
2871 
2872 static int
2873 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2874 	      struct dentry *dentry, umode_t mode)
2875 {
2876 	struct inode *inode;
2877 	int error = -ENOSPC;
2878 
2879 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2880 	if (inode) {
2881 		error = security_inode_init_security(inode, dir,
2882 						     NULL,
2883 						     shmem_initxattrs, NULL);
2884 		if (error && error != -EOPNOTSUPP)
2885 			goto out_iput;
2886 		error = simple_acl_create(dir, inode);
2887 		if (error)
2888 			goto out_iput;
2889 		d_tmpfile(dentry, inode);
2890 	}
2891 	return error;
2892 out_iput:
2893 	iput(inode);
2894 	return error;
2895 }
2896 
2897 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2898 		       struct dentry *dentry, umode_t mode)
2899 {
2900 	int error;
2901 
2902 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2903 				 mode | S_IFDIR, 0)))
2904 		return error;
2905 	inc_nlink(dir);
2906 	return 0;
2907 }
2908 
2909 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2910 			struct dentry *dentry, umode_t mode, bool excl)
2911 {
2912 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2913 }
2914 
2915 /*
2916  * Link a file..
2917  */
2918 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2919 {
2920 	struct inode *inode = d_inode(old_dentry);
2921 	int ret = 0;
2922 
2923 	/*
2924 	 * No ordinary (disk based) filesystem counts links as inodes;
2925 	 * but each new link needs a new dentry, pinning lowmem, and
2926 	 * tmpfs dentries cannot be pruned until they are unlinked.
2927 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2928 	 * first link must skip that, to get the accounting right.
2929 	 */
2930 	if (inode->i_nlink) {
2931 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2932 		if (ret)
2933 			goto out;
2934 	}
2935 
2936 	dir->i_size += BOGO_DIRENT_SIZE;
2937 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2938 	inc_nlink(inode);
2939 	ihold(inode);	/* New dentry reference */
2940 	dget(dentry);		/* Extra pinning count for the created dentry */
2941 	d_instantiate(dentry, inode);
2942 out:
2943 	return ret;
2944 }
2945 
2946 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2947 {
2948 	struct inode *inode = d_inode(dentry);
2949 
2950 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2951 		shmem_free_inode(inode->i_sb);
2952 
2953 	dir->i_size -= BOGO_DIRENT_SIZE;
2954 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2955 	drop_nlink(inode);
2956 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2957 	return 0;
2958 }
2959 
2960 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2961 {
2962 	if (!simple_empty(dentry))
2963 		return -ENOTEMPTY;
2964 
2965 	drop_nlink(d_inode(dentry));
2966 	drop_nlink(dir);
2967 	return shmem_unlink(dir, dentry);
2968 }
2969 
2970 static int shmem_whiteout(struct user_namespace *mnt_userns,
2971 			  struct inode *old_dir, struct dentry *old_dentry)
2972 {
2973 	struct dentry *whiteout;
2974 	int error;
2975 
2976 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2977 	if (!whiteout)
2978 		return -ENOMEM;
2979 
2980 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2981 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2982 	dput(whiteout);
2983 	if (error)
2984 		return error;
2985 
2986 	/*
2987 	 * Cheat and hash the whiteout while the old dentry is still in
2988 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2989 	 *
2990 	 * d_lookup() will consistently find one of them at this point,
2991 	 * not sure which one, but that isn't even important.
2992 	 */
2993 	d_rehash(whiteout);
2994 	return 0;
2995 }
2996 
2997 /*
2998  * The VFS layer already does all the dentry stuff for rename,
2999  * we just have to decrement the usage count for the target if
3000  * it exists so that the VFS layer correctly free's it when it
3001  * gets overwritten.
3002  */
3003 static int shmem_rename2(struct user_namespace *mnt_userns,
3004 			 struct inode *old_dir, struct dentry *old_dentry,
3005 			 struct inode *new_dir, struct dentry *new_dentry,
3006 			 unsigned int flags)
3007 {
3008 	struct inode *inode = d_inode(old_dentry);
3009 	int they_are_dirs = S_ISDIR(inode->i_mode);
3010 
3011 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3012 		return -EINVAL;
3013 
3014 	if (flags & RENAME_EXCHANGE)
3015 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3016 
3017 	if (!simple_empty(new_dentry))
3018 		return -ENOTEMPTY;
3019 
3020 	if (flags & RENAME_WHITEOUT) {
3021 		int error;
3022 
3023 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3024 		if (error)
3025 			return error;
3026 	}
3027 
3028 	if (d_really_is_positive(new_dentry)) {
3029 		(void) shmem_unlink(new_dir, new_dentry);
3030 		if (they_are_dirs) {
3031 			drop_nlink(d_inode(new_dentry));
3032 			drop_nlink(old_dir);
3033 		}
3034 	} else if (they_are_dirs) {
3035 		drop_nlink(old_dir);
3036 		inc_nlink(new_dir);
3037 	}
3038 
3039 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3040 	new_dir->i_size += BOGO_DIRENT_SIZE;
3041 	old_dir->i_ctime = old_dir->i_mtime =
3042 	new_dir->i_ctime = new_dir->i_mtime =
3043 	inode->i_ctime = current_time(old_dir);
3044 	return 0;
3045 }
3046 
3047 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3048 			 struct dentry *dentry, const char *symname)
3049 {
3050 	int error;
3051 	int len;
3052 	struct inode *inode;
3053 	struct page *page;
3054 
3055 	len = strlen(symname) + 1;
3056 	if (len > PAGE_SIZE)
3057 		return -ENAMETOOLONG;
3058 
3059 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3060 				VM_NORESERVE);
3061 	if (!inode)
3062 		return -ENOSPC;
3063 
3064 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3065 					     shmem_initxattrs, NULL);
3066 	if (error && error != -EOPNOTSUPP) {
3067 		iput(inode);
3068 		return error;
3069 	}
3070 
3071 	inode->i_size = len-1;
3072 	if (len <= SHORT_SYMLINK_LEN) {
3073 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3074 		if (!inode->i_link) {
3075 			iput(inode);
3076 			return -ENOMEM;
3077 		}
3078 		inode->i_op = &shmem_short_symlink_operations;
3079 	} else {
3080 		inode_nohighmem(inode);
3081 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3082 		if (error) {
3083 			iput(inode);
3084 			return error;
3085 		}
3086 		inode->i_mapping->a_ops = &shmem_aops;
3087 		inode->i_op = &shmem_symlink_inode_operations;
3088 		memcpy(page_address(page), symname, len);
3089 		SetPageUptodate(page);
3090 		set_page_dirty(page);
3091 		unlock_page(page);
3092 		put_page(page);
3093 	}
3094 	dir->i_size += BOGO_DIRENT_SIZE;
3095 	dir->i_ctime = dir->i_mtime = current_time(dir);
3096 	d_instantiate(dentry, inode);
3097 	dget(dentry);
3098 	return 0;
3099 }
3100 
3101 static void shmem_put_link(void *arg)
3102 {
3103 	mark_page_accessed(arg);
3104 	put_page(arg);
3105 }
3106 
3107 static const char *shmem_get_link(struct dentry *dentry,
3108 				  struct inode *inode,
3109 				  struct delayed_call *done)
3110 {
3111 	struct page *page = NULL;
3112 	int error;
3113 	if (!dentry) {
3114 		page = find_get_page(inode->i_mapping, 0);
3115 		if (!page)
3116 			return ERR_PTR(-ECHILD);
3117 		if (PageHWPoison(page) ||
3118 		    !PageUptodate(page)) {
3119 			put_page(page);
3120 			return ERR_PTR(-ECHILD);
3121 		}
3122 	} else {
3123 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3124 		if (error)
3125 			return ERR_PTR(error);
3126 		if (!page)
3127 			return ERR_PTR(-ECHILD);
3128 		if (PageHWPoison(page)) {
3129 			unlock_page(page);
3130 			put_page(page);
3131 			return ERR_PTR(-ECHILD);
3132 		}
3133 		unlock_page(page);
3134 	}
3135 	set_delayed_call(done, shmem_put_link, page);
3136 	return page_address(page);
3137 }
3138 
3139 #ifdef CONFIG_TMPFS_XATTR
3140 /*
3141  * Superblocks without xattr inode operations may get some security.* xattr
3142  * support from the LSM "for free". As soon as we have any other xattrs
3143  * like ACLs, we also need to implement the security.* handlers at
3144  * filesystem level, though.
3145  */
3146 
3147 /*
3148  * Callback for security_inode_init_security() for acquiring xattrs.
3149  */
3150 static int shmem_initxattrs(struct inode *inode,
3151 			    const struct xattr *xattr_array,
3152 			    void *fs_info)
3153 {
3154 	struct shmem_inode_info *info = SHMEM_I(inode);
3155 	const struct xattr *xattr;
3156 	struct simple_xattr *new_xattr;
3157 	size_t len;
3158 
3159 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3160 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3161 		if (!new_xattr)
3162 			return -ENOMEM;
3163 
3164 		len = strlen(xattr->name) + 1;
3165 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3166 					  GFP_KERNEL);
3167 		if (!new_xattr->name) {
3168 			kvfree(new_xattr);
3169 			return -ENOMEM;
3170 		}
3171 
3172 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3173 		       XATTR_SECURITY_PREFIX_LEN);
3174 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3175 		       xattr->name, len);
3176 
3177 		simple_xattr_list_add(&info->xattrs, new_xattr);
3178 	}
3179 
3180 	return 0;
3181 }
3182 
3183 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3184 				   struct dentry *unused, struct inode *inode,
3185 				   const char *name, void *buffer, size_t size)
3186 {
3187 	struct shmem_inode_info *info = SHMEM_I(inode);
3188 
3189 	name = xattr_full_name(handler, name);
3190 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3191 }
3192 
3193 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3194 				   struct user_namespace *mnt_userns,
3195 				   struct dentry *unused, struct inode *inode,
3196 				   const char *name, const void *value,
3197 				   size_t size, int flags)
3198 {
3199 	struct shmem_inode_info *info = SHMEM_I(inode);
3200 
3201 	name = xattr_full_name(handler, name);
3202 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3203 }
3204 
3205 static const struct xattr_handler shmem_security_xattr_handler = {
3206 	.prefix = XATTR_SECURITY_PREFIX,
3207 	.get = shmem_xattr_handler_get,
3208 	.set = shmem_xattr_handler_set,
3209 };
3210 
3211 static const struct xattr_handler shmem_trusted_xattr_handler = {
3212 	.prefix = XATTR_TRUSTED_PREFIX,
3213 	.get = shmem_xattr_handler_get,
3214 	.set = shmem_xattr_handler_set,
3215 };
3216 
3217 static const struct xattr_handler *shmem_xattr_handlers[] = {
3218 #ifdef CONFIG_TMPFS_POSIX_ACL
3219 	&posix_acl_access_xattr_handler,
3220 	&posix_acl_default_xattr_handler,
3221 #endif
3222 	&shmem_security_xattr_handler,
3223 	&shmem_trusted_xattr_handler,
3224 	NULL
3225 };
3226 
3227 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3228 {
3229 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3230 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3231 }
3232 #endif /* CONFIG_TMPFS_XATTR */
3233 
3234 static const struct inode_operations shmem_short_symlink_operations = {
3235 	.getattr	= shmem_getattr,
3236 	.get_link	= simple_get_link,
3237 #ifdef CONFIG_TMPFS_XATTR
3238 	.listxattr	= shmem_listxattr,
3239 #endif
3240 };
3241 
3242 static const struct inode_operations shmem_symlink_inode_operations = {
3243 	.getattr	= shmem_getattr,
3244 	.get_link	= shmem_get_link,
3245 #ifdef CONFIG_TMPFS_XATTR
3246 	.listxattr	= shmem_listxattr,
3247 #endif
3248 };
3249 
3250 static struct dentry *shmem_get_parent(struct dentry *child)
3251 {
3252 	return ERR_PTR(-ESTALE);
3253 }
3254 
3255 static int shmem_match(struct inode *ino, void *vfh)
3256 {
3257 	__u32 *fh = vfh;
3258 	__u64 inum = fh[2];
3259 	inum = (inum << 32) | fh[1];
3260 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3261 }
3262 
3263 /* Find any alias of inode, but prefer a hashed alias */
3264 static struct dentry *shmem_find_alias(struct inode *inode)
3265 {
3266 	struct dentry *alias = d_find_alias(inode);
3267 
3268 	return alias ?: d_find_any_alias(inode);
3269 }
3270 
3271 
3272 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3273 		struct fid *fid, int fh_len, int fh_type)
3274 {
3275 	struct inode *inode;
3276 	struct dentry *dentry = NULL;
3277 	u64 inum;
3278 
3279 	if (fh_len < 3)
3280 		return NULL;
3281 
3282 	inum = fid->raw[2];
3283 	inum = (inum << 32) | fid->raw[1];
3284 
3285 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3286 			shmem_match, fid->raw);
3287 	if (inode) {
3288 		dentry = shmem_find_alias(inode);
3289 		iput(inode);
3290 	}
3291 
3292 	return dentry;
3293 }
3294 
3295 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3296 				struct inode *parent)
3297 {
3298 	if (*len < 3) {
3299 		*len = 3;
3300 		return FILEID_INVALID;
3301 	}
3302 
3303 	if (inode_unhashed(inode)) {
3304 		/* Unfortunately insert_inode_hash is not idempotent,
3305 		 * so as we hash inodes here rather than at creation
3306 		 * time, we need a lock to ensure we only try
3307 		 * to do it once
3308 		 */
3309 		static DEFINE_SPINLOCK(lock);
3310 		spin_lock(&lock);
3311 		if (inode_unhashed(inode))
3312 			__insert_inode_hash(inode,
3313 					    inode->i_ino + inode->i_generation);
3314 		spin_unlock(&lock);
3315 	}
3316 
3317 	fh[0] = inode->i_generation;
3318 	fh[1] = inode->i_ino;
3319 	fh[2] = ((__u64)inode->i_ino) >> 32;
3320 
3321 	*len = 3;
3322 	return 1;
3323 }
3324 
3325 static const struct export_operations shmem_export_ops = {
3326 	.get_parent     = shmem_get_parent,
3327 	.encode_fh      = shmem_encode_fh,
3328 	.fh_to_dentry	= shmem_fh_to_dentry,
3329 };
3330 
3331 enum shmem_param {
3332 	Opt_gid,
3333 	Opt_huge,
3334 	Opt_mode,
3335 	Opt_mpol,
3336 	Opt_nr_blocks,
3337 	Opt_nr_inodes,
3338 	Opt_size,
3339 	Opt_uid,
3340 	Opt_inode32,
3341 	Opt_inode64,
3342 };
3343 
3344 static const struct constant_table shmem_param_enums_huge[] = {
3345 	{"never",	SHMEM_HUGE_NEVER },
3346 	{"always",	SHMEM_HUGE_ALWAYS },
3347 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3348 	{"advise",	SHMEM_HUGE_ADVISE },
3349 	{}
3350 };
3351 
3352 const struct fs_parameter_spec shmem_fs_parameters[] = {
3353 	fsparam_u32   ("gid",		Opt_gid),
3354 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3355 	fsparam_u32oct("mode",		Opt_mode),
3356 	fsparam_string("mpol",		Opt_mpol),
3357 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3358 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3359 	fsparam_string("size",		Opt_size),
3360 	fsparam_u32   ("uid",		Opt_uid),
3361 	fsparam_flag  ("inode32",	Opt_inode32),
3362 	fsparam_flag  ("inode64",	Opt_inode64),
3363 	{}
3364 };
3365 
3366 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3367 {
3368 	struct shmem_options *ctx = fc->fs_private;
3369 	struct fs_parse_result result;
3370 	unsigned long long size;
3371 	char *rest;
3372 	int opt;
3373 
3374 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3375 	if (opt < 0)
3376 		return opt;
3377 
3378 	switch (opt) {
3379 	case Opt_size:
3380 		size = memparse(param->string, &rest);
3381 		if (*rest == '%') {
3382 			size <<= PAGE_SHIFT;
3383 			size *= totalram_pages();
3384 			do_div(size, 100);
3385 			rest++;
3386 		}
3387 		if (*rest)
3388 			goto bad_value;
3389 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3390 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3391 		break;
3392 	case Opt_nr_blocks:
3393 		ctx->blocks = memparse(param->string, &rest);
3394 		if (*rest || ctx->blocks > S64_MAX)
3395 			goto bad_value;
3396 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3397 		break;
3398 	case Opt_nr_inodes:
3399 		ctx->inodes = memparse(param->string, &rest);
3400 		if (*rest)
3401 			goto bad_value;
3402 		ctx->seen |= SHMEM_SEEN_INODES;
3403 		break;
3404 	case Opt_mode:
3405 		ctx->mode = result.uint_32 & 07777;
3406 		break;
3407 	case Opt_uid:
3408 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3409 		if (!uid_valid(ctx->uid))
3410 			goto bad_value;
3411 		break;
3412 	case Opt_gid:
3413 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3414 		if (!gid_valid(ctx->gid))
3415 			goto bad_value;
3416 		break;
3417 	case Opt_huge:
3418 		ctx->huge = result.uint_32;
3419 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3420 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3421 		      has_transparent_hugepage()))
3422 			goto unsupported_parameter;
3423 		ctx->seen |= SHMEM_SEEN_HUGE;
3424 		break;
3425 	case Opt_mpol:
3426 		if (IS_ENABLED(CONFIG_NUMA)) {
3427 			mpol_put(ctx->mpol);
3428 			ctx->mpol = NULL;
3429 			if (mpol_parse_str(param->string, &ctx->mpol))
3430 				goto bad_value;
3431 			break;
3432 		}
3433 		goto unsupported_parameter;
3434 	case Opt_inode32:
3435 		ctx->full_inums = false;
3436 		ctx->seen |= SHMEM_SEEN_INUMS;
3437 		break;
3438 	case Opt_inode64:
3439 		if (sizeof(ino_t) < 8) {
3440 			return invalfc(fc,
3441 				       "Cannot use inode64 with <64bit inums in kernel\n");
3442 		}
3443 		ctx->full_inums = true;
3444 		ctx->seen |= SHMEM_SEEN_INUMS;
3445 		break;
3446 	}
3447 	return 0;
3448 
3449 unsupported_parameter:
3450 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3451 bad_value:
3452 	return invalfc(fc, "Bad value for '%s'", param->key);
3453 }
3454 
3455 static int shmem_parse_options(struct fs_context *fc, void *data)
3456 {
3457 	char *options = data;
3458 
3459 	if (options) {
3460 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3461 		if (err)
3462 			return err;
3463 	}
3464 
3465 	while (options != NULL) {
3466 		char *this_char = options;
3467 		for (;;) {
3468 			/*
3469 			 * NUL-terminate this option: unfortunately,
3470 			 * mount options form a comma-separated list,
3471 			 * but mpol's nodelist may also contain commas.
3472 			 */
3473 			options = strchr(options, ',');
3474 			if (options == NULL)
3475 				break;
3476 			options++;
3477 			if (!isdigit(*options)) {
3478 				options[-1] = '\0';
3479 				break;
3480 			}
3481 		}
3482 		if (*this_char) {
3483 			char *value = strchr(this_char, '=');
3484 			size_t len = 0;
3485 			int err;
3486 
3487 			if (value) {
3488 				*value++ = '\0';
3489 				len = strlen(value);
3490 			}
3491 			err = vfs_parse_fs_string(fc, this_char, value, len);
3492 			if (err < 0)
3493 				return err;
3494 		}
3495 	}
3496 	return 0;
3497 }
3498 
3499 /*
3500  * Reconfigure a shmem filesystem.
3501  *
3502  * Note that we disallow change from limited->unlimited blocks/inodes while any
3503  * are in use; but we must separately disallow unlimited->limited, because in
3504  * that case we have no record of how much is already in use.
3505  */
3506 static int shmem_reconfigure(struct fs_context *fc)
3507 {
3508 	struct shmem_options *ctx = fc->fs_private;
3509 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3510 	unsigned long inodes;
3511 	struct mempolicy *mpol = NULL;
3512 	const char *err;
3513 
3514 	raw_spin_lock(&sbinfo->stat_lock);
3515 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3516 
3517 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3518 		if (!sbinfo->max_blocks) {
3519 			err = "Cannot retroactively limit size";
3520 			goto out;
3521 		}
3522 		if (percpu_counter_compare(&sbinfo->used_blocks,
3523 					   ctx->blocks) > 0) {
3524 			err = "Too small a size for current use";
3525 			goto out;
3526 		}
3527 	}
3528 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3529 		if (!sbinfo->max_inodes) {
3530 			err = "Cannot retroactively limit inodes";
3531 			goto out;
3532 		}
3533 		if (ctx->inodes < inodes) {
3534 			err = "Too few inodes for current use";
3535 			goto out;
3536 		}
3537 	}
3538 
3539 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3540 	    sbinfo->next_ino > UINT_MAX) {
3541 		err = "Current inum too high to switch to 32-bit inums";
3542 		goto out;
3543 	}
3544 
3545 	if (ctx->seen & SHMEM_SEEN_HUGE)
3546 		sbinfo->huge = ctx->huge;
3547 	if (ctx->seen & SHMEM_SEEN_INUMS)
3548 		sbinfo->full_inums = ctx->full_inums;
3549 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3550 		sbinfo->max_blocks  = ctx->blocks;
3551 	if (ctx->seen & SHMEM_SEEN_INODES) {
3552 		sbinfo->max_inodes  = ctx->inodes;
3553 		sbinfo->free_inodes = ctx->inodes - inodes;
3554 	}
3555 
3556 	/*
3557 	 * Preserve previous mempolicy unless mpol remount option was specified.
3558 	 */
3559 	if (ctx->mpol) {
3560 		mpol = sbinfo->mpol;
3561 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3562 		ctx->mpol = NULL;
3563 	}
3564 	raw_spin_unlock(&sbinfo->stat_lock);
3565 	mpol_put(mpol);
3566 	return 0;
3567 out:
3568 	raw_spin_unlock(&sbinfo->stat_lock);
3569 	return invalfc(fc, "%s", err);
3570 }
3571 
3572 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3573 {
3574 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3575 
3576 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3577 		seq_printf(seq, ",size=%luk",
3578 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3579 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3580 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3581 	if (sbinfo->mode != (0777 | S_ISVTX))
3582 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3583 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3584 		seq_printf(seq, ",uid=%u",
3585 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3586 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3587 		seq_printf(seq, ",gid=%u",
3588 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3589 
3590 	/*
3591 	 * Showing inode{64,32} might be useful even if it's the system default,
3592 	 * since then people don't have to resort to checking both here and
3593 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3594 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3595 	 *
3596 	 * We hide it when inode64 isn't the default and we are using 32-bit
3597 	 * inodes, since that probably just means the feature isn't even under
3598 	 * consideration.
3599 	 *
3600 	 * As such:
3601 	 *
3602 	 *                     +-----------------+-----------------+
3603 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3604 	 *  +------------------+-----------------+-----------------+
3605 	 *  | full_inums=true  | show            | show            |
3606 	 *  | full_inums=false | show            | hide            |
3607 	 *  +------------------+-----------------+-----------------+
3608 	 *
3609 	 */
3610 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3611 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3612 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3613 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3614 	if (sbinfo->huge)
3615 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3616 #endif
3617 	shmem_show_mpol(seq, sbinfo->mpol);
3618 	return 0;
3619 }
3620 
3621 #endif /* CONFIG_TMPFS */
3622 
3623 static void shmem_put_super(struct super_block *sb)
3624 {
3625 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3626 
3627 	free_percpu(sbinfo->ino_batch);
3628 	percpu_counter_destroy(&sbinfo->used_blocks);
3629 	mpol_put(sbinfo->mpol);
3630 	kfree(sbinfo);
3631 	sb->s_fs_info = NULL;
3632 }
3633 
3634 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3635 {
3636 	struct shmem_options *ctx = fc->fs_private;
3637 	struct inode *inode;
3638 	struct shmem_sb_info *sbinfo;
3639 
3640 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3641 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3642 				L1_CACHE_BYTES), GFP_KERNEL);
3643 	if (!sbinfo)
3644 		return -ENOMEM;
3645 
3646 	sb->s_fs_info = sbinfo;
3647 
3648 #ifdef CONFIG_TMPFS
3649 	/*
3650 	 * Per default we only allow half of the physical ram per
3651 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3652 	 * but the internal instance is left unlimited.
3653 	 */
3654 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3655 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3656 			ctx->blocks = shmem_default_max_blocks();
3657 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3658 			ctx->inodes = shmem_default_max_inodes();
3659 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3660 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3661 	} else {
3662 		sb->s_flags |= SB_NOUSER;
3663 	}
3664 	sb->s_export_op = &shmem_export_ops;
3665 	sb->s_flags |= SB_NOSEC;
3666 #else
3667 	sb->s_flags |= SB_NOUSER;
3668 #endif
3669 	sbinfo->max_blocks = ctx->blocks;
3670 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3671 	if (sb->s_flags & SB_KERNMOUNT) {
3672 		sbinfo->ino_batch = alloc_percpu(ino_t);
3673 		if (!sbinfo->ino_batch)
3674 			goto failed;
3675 	}
3676 	sbinfo->uid = ctx->uid;
3677 	sbinfo->gid = ctx->gid;
3678 	sbinfo->full_inums = ctx->full_inums;
3679 	sbinfo->mode = ctx->mode;
3680 	sbinfo->huge = ctx->huge;
3681 	sbinfo->mpol = ctx->mpol;
3682 	ctx->mpol = NULL;
3683 
3684 	raw_spin_lock_init(&sbinfo->stat_lock);
3685 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3686 		goto failed;
3687 	spin_lock_init(&sbinfo->shrinklist_lock);
3688 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3689 
3690 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3691 	sb->s_blocksize = PAGE_SIZE;
3692 	sb->s_blocksize_bits = PAGE_SHIFT;
3693 	sb->s_magic = TMPFS_MAGIC;
3694 	sb->s_op = &shmem_ops;
3695 	sb->s_time_gran = 1;
3696 #ifdef CONFIG_TMPFS_XATTR
3697 	sb->s_xattr = shmem_xattr_handlers;
3698 #endif
3699 #ifdef CONFIG_TMPFS_POSIX_ACL
3700 	sb->s_flags |= SB_POSIXACL;
3701 #endif
3702 	uuid_gen(&sb->s_uuid);
3703 
3704 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3705 	if (!inode)
3706 		goto failed;
3707 	inode->i_uid = sbinfo->uid;
3708 	inode->i_gid = sbinfo->gid;
3709 	sb->s_root = d_make_root(inode);
3710 	if (!sb->s_root)
3711 		goto failed;
3712 	return 0;
3713 
3714 failed:
3715 	shmem_put_super(sb);
3716 	return -ENOMEM;
3717 }
3718 
3719 static int shmem_get_tree(struct fs_context *fc)
3720 {
3721 	return get_tree_nodev(fc, shmem_fill_super);
3722 }
3723 
3724 static void shmem_free_fc(struct fs_context *fc)
3725 {
3726 	struct shmem_options *ctx = fc->fs_private;
3727 
3728 	if (ctx) {
3729 		mpol_put(ctx->mpol);
3730 		kfree(ctx);
3731 	}
3732 }
3733 
3734 static const struct fs_context_operations shmem_fs_context_ops = {
3735 	.free			= shmem_free_fc,
3736 	.get_tree		= shmem_get_tree,
3737 #ifdef CONFIG_TMPFS
3738 	.parse_monolithic	= shmem_parse_options,
3739 	.parse_param		= shmem_parse_one,
3740 	.reconfigure		= shmem_reconfigure,
3741 #endif
3742 };
3743 
3744 static struct kmem_cache *shmem_inode_cachep;
3745 
3746 static struct inode *shmem_alloc_inode(struct super_block *sb)
3747 {
3748 	struct shmem_inode_info *info;
3749 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3750 	if (!info)
3751 		return NULL;
3752 	return &info->vfs_inode;
3753 }
3754 
3755 static void shmem_free_in_core_inode(struct inode *inode)
3756 {
3757 	if (S_ISLNK(inode->i_mode))
3758 		kfree(inode->i_link);
3759 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3760 }
3761 
3762 static void shmem_destroy_inode(struct inode *inode)
3763 {
3764 	if (S_ISREG(inode->i_mode))
3765 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3766 }
3767 
3768 static void shmem_init_inode(void *foo)
3769 {
3770 	struct shmem_inode_info *info = foo;
3771 	inode_init_once(&info->vfs_inode);
3772 }
3773 
3774 static void shmem_init_inodecache(void)
3775 {
3776 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3777 				sizeof(struct shmem_inode_info),
3778 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3779 }
3780 
3781 static void shmem_destroy_inodecache(void)
3782 {
3783 	kmem_cache_destroy(shmem_inode_cachep);
3784 }
3785 
3786 /* Keep the page in page cache instead of truncating it */
3787 static int shmem_error_remove_page(struct address_space *mapping,
3788 				   struct page *page)
3789 {
3790 	return 0;
3791 }
3792 
3793 const struct address_space_operations shmem_aops = {
3794 	.writepage	= shmem_writepage,
3795 	.dirty_folio	= noop_dirty_folio,
3796 #ifdef CONFIG_TMPFS
3797 	.write_begin	= shmem_write_begin,
3798 	.write_end	= shmem_write_end,
3799 #endif
3800 #ifdef CONFIG_MIGRATION
3801 	.migrate_folio	= migrate_folio,
3802 #endif
3803 	.error_remove_page = shmem_error_remove_page,
3804 };
3805 EXPORT_SYMBOL(shmem_aops);
3806 
3807 static const struct file_operations shmem_file_operations = {
3808 	.mmap		= shmem_mmap,
3809 	.get_unmapped_area = shmem_get_unmapped_area,
3810 #ifdef CONFIG_TMPFS
3811 	.llseek		= shmem_file_llseek,
3812 	.read_iter	= shmem_file_read_iter,
3813 	.write_iter	= generic_file_write_iter,
3814 	.fsync		= noop_fsync,
3815 	.splice_read	= generic_file_splice_read,
3816 	.splice_write	= iter_file_splice_write,
3817 	.fallocate	= shmem_fallocate,
3818 #endif
3819 };
3820 
3821 static const struct inode_operations shmem_inode_operations = {
3822 	.getattr	= shmem_getattr,
3823 	.setattr	= shmem_setattr,
3824 #ifdef CONFIG_TMPFS_XATTR
3825 	.listxattr	= shmem_listxattr,
3826 	.set_acl	= simple_set_acl,
3827 #endif
3828 };
3829 
3830 static const struct inode_operations shmem_dir_inode_operations = {
3831 #ifdef CONFIG_TMPFS
3832 	.getattr	= shmem_getattr,
3833 	.create		= shmem_create,
3834 	.lookup		= simple_lookup,
3835 	.link		= shmem_link,
3836 	.unlink		= shmem_unlink,
3837 	.symlink	= shmem_symlink,
3838 	.mkdir		= shmem_mkdir,
3839 	.rmdir		= shmem_rmdir,
3840 	.mknod		= shmem_mknod,
3841 	.rename		= shmem_rename2,
3842 	.tmpfile	= shmem_tmpfile,
3843 #endif
3844 #ifdef CONFIG_TMPFS_XATTR
3845 	.listxattr	= shmem_listxattr,
3846 #endif
3847 #ifdef CONFIG_TMPFS_POSIX_ACL
3848 	.setattr	= shmem_setattr,
3849 	.set_acl	= simple_set_acl,
3850 #endif
3851 };
3852 
3853 static const struct inode_operations shmem_special_inode_operations = {
3854 	.getattr	= shmem_getattr,
3855 #ifdef CONFIG_TMPFS_XATTR
3856 	.listxattr	= shmem_listxattr,
3857 #endif
3858 #ifdef CONFIG_TMPFS_POSIX_ACL
3859 	.setattr	= shmem_setattr,
3860 	.set_acl	= simple_set_acl,
3861 #endif
3862 };
3863 
3864 static const struct super_operations shmem_ops = {
3865 	.alloc_inode	= shmem_alloc_inode,
3866 	.free_inode	= shmem_free_in_core_inode,
3867 	.destroy_inode	= shmem_destroy_inode,
3868 #ifdef CONFIG_TMPFS
3869 	.statfs		= shmem_statfs,
3870 	.show_options	= shmem_show_options,
3871 #endif
3872 	.evict_inode	= shmem_evict_inode,
3873 	.drop_inode	= generic_delete_inode,
3874 	.put_super	= shmem_put_super,
3875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3876 	.nr_cached_objects	= shmem_unused_huge_count,
3877 	.free_cached_objects	= shmem_unused_huge_scan,
3878 #endif
3879 };
3880 
3881 static const struct vm_operations_struct shmem_vm_ops = {
3882 	.fault		= shmem_fault,
3883 	.map_pages	= filemap_map_pages,
3884 #ifdef CONFIG_NUMA
3885 	.set_policy     = shmem_set_policy,
3886 	.get_policy     = shmem_get_policy,
3887 #endif
3888 };
3889 
3890 int shmem_init_fs_context(struct fs_context *fc)
3891 {
3892 	struct shmem_options *ctx;
3893 
3894 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3895 	if (!ctx)
3896 		return -ENOMEM;
3897 
3898 	ctx->mode = 0777 | S_ISVTX;
3899 	ctx->uid = current_fsuid();
3900 	ctx->gid = current_fsgid();
3901 
3902 	fc->fs_private = ctx;
3903 	fc->ops = &shmem_fs_context_ops;
3904 	return 0;
3905 }
3906 
3907 static struct file_system_type shmem_fs_type = {
3908 	.owner		= THIS_MODULE,
3909 	.name		= "tmpfs",
3910 	.init_fs_context = shmem_init_fs_context,
3911 #ifdef CONFIG_TMPFS
3912 	.parameters	= shmem_fs_parameters,
3913 #endif
3914 	.kill_sb	= kill_litter_super,
3915 	.fs_flags	= FS_USERNS_MOUNT,
3916 };
3917 
3918 void __init shmem_init(void)
3919 {
3920 	int error;
3921 
3922 	shmem_init_inodecache();
3923 
3924 	error = register_filesystem(&shmem_fs_type);
3925 	if (error) {
3926 		pr_err("Could not register tmpfs\n");
3927 		goto out2;
3928 	}
3929 
3930 	shm_mnt = kern_mount(&shmem_fs_type);
3931 	if (IS_ERR(shm_mnt)) {
3932 		error = PTR_ERR(shm_mnt);
3933 		pr_err("Could not kern_mount tmpfs\n");
3934 		goto out1;
3935 	}
3936 
3937 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3938 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3939 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3940 	else
3941 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3942 #endif
3943 	return;
3944 
3945 out1:
3946 	unregister_filesystem(&shmem_fs_type);
3947 out2:
3948 	shmem_destroy_inodecache();
3949 	shm_mnt = ERR_PTR(error);
3950 }
3951 
3952 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3953 static ssize_t shmem_enabled_show(struct kobject *kobj,
3954 				  struct kobj_attribute *attr, char *buf)
3955 {
3956 	static const int values[] = {
3957 		SHMEM_HUGE_ALWAYS,
3958 		SHMEM_HUGE_WITHIN_SIZE,
3959 		SHMEM_HUGE_ADVISE,
3960 		SHMEM_HUGE_NEVER,
3961 		SHMEM_HUGE_DENY,
3962 		SHMEM_HUGE_FORCE,
3963 	};
3964 	int len = 0;
3965 	int i;
3966 
3967 	for (i = 0; i < ARRAY_SIZE(values); i++) {
3968 		len += sysfs_emit_at(buf, len,
3969 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3970 				     i ? " " : "",
3971 				     shmem_format_huge(values[i]));
3972 	}
3973 
3974 	len += sysfs_emit_at(buf, len, "\n");
3975 
3976 	return len;
3977 }
3978 
3979 static ssize_t shmem_enabled_store(struct kobject *kobj,
3980 		struct kobj_attribute *attr, const char *buf, size_t count)
3981 {
3982 	char tmp[16];
3983 	int huge;
3984 
3985 	if (count + 1 > sizeof(tmp))
3986 		return -EINVAL;
3987 	memcpy(tmp, buf, count);
3988 	tmp[count] = '\0';
3989 	if (count && tmp[count - 1] == '\n')
3990 		tmp[count - 1] = '\0';
3991 
3992 	huge = shmem_parse_huge(tmp);
3993 	if (huge == -EINVAL)
3994 		return -EINVAL;
3995 	if (!has_transparent_hugepage() &&
3996 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3997 		return -EINVAL;
3998 
3999 	shmem_huge = huge;
4000 	if (shmem_huge > SHMEM_HUGE_DENY)
4001 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4002 	return count;
4003 }
4004 
4005 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4006 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4007 
4008 #else /* !CONFIG_SHMEM */
4009 
4010 /*
4011  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4012  *
4013  * This is intended for small system where the benefits of the full
4014  * shmem code (swap-backed and resource-limited) are outweighed by
4015  * their complexity. On systems without swap this code should be
4016  * effectively equivalent, but much lighter weight.
4017  */
4018 
4019 static struct file_system_type shmem_fs_type = {
4020 	.name		= "tmpfs",
4021 	.init_fs_context = ramfs_init_fs_context,
4022 	.parameters	= ramfs_fs_parameters,
4023 	.kill_sb	= kill_litter_super,
4024 	.fs_flags	= FS_USERNS_MOUNT,
4025 };
4026 
4027 void __init shmem_init(void)
4028 {
4029 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4030 
4031 	shm_mnt = kern_mount(&shmem_fs_type);
4032 	BUG_ON(IS_ERR(shm_mnt));
4033 }
4034 
4035 int shmem_unuse(unsigned int type)
4036 {
4037 	return 0;
4038 }
4039 
4040 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4041 {
4042 	return 0;
4043 }
4044 
4045 void shmem_unlock_mapping(struct address_space *mapping)
4046 {
4047 }
4048 
4049 #ifdef CONFIG_MMU
4050 unsigned long shmem_get_unmapped_area(struct file *file,
4051 				      unsigned long addr, unsigned long len,
4052 				      unsigned long pgoff, unsigned long flags)
4053 {
4054 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4055 }
4056 #endif
4057 
4058 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4059 {
4060 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4061 }
4062 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4063 
4064 #define shmem_vm_ops				generic_file_vm_ops
4065 #define shmem_file_operations			ramfs_file_operations
4066 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4067 #define shmem_acct_size(flags, size)		0
4068 #define shmem_unacct_size(flags, size)		do {} while (0)
4069 
4070 #endif /* CONFIG_SHMEM */
4071 
4072 /* common code */
4073 
4074 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4075 				       unsigned long flags, unsigned int i_flags)
4076 {
4077 	struct inode *inode;
4078 	struct file *res;
4079 
4080 	if (IS_ERR(mnt))
4081 		return ERR_CAST(mnt);
4082 
4083 	if (size < 0 || size > MAX_LFS_FILESIZE)
4084 		return ERR_PTR(-EINVAL);
4085 
4086 	if (shmem_acct_size(flags, size))
4087 		return ERR_PTR(-ENOMEM);
4088 
4089 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4090 				flags);
4091 	if (unlikely(!inode)) {
4092 		shmem_unacct_size(flags, size);
4093 		return ERR_PTR(-ENOSPC);
4094 	}
4095 	inode->i_flags |= i_flags;
4096 	inode->i_size = size;
4097 	clear_nlink(inode);	/* It is unlinked */
4098 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4099 	if (!IS_ERR(res))
4100 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4101 				&shmem_file_operations);
4102 	if (IS_ERR(res))
4103 		iput(inode);
4104 	return res;
4105 }
4106 
4107 /**
4108  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4109  * 	kernel internal.  There will be NO LSM permission checks against the
4110  * 	underlying inode.  So users of this interface must do LSM checks at a
4111  *	higher layer.  The users are the big_key and shm implementations.  LSM
4112  *	checks are provided at the key or shm level rather than the inode.
4113  * @name: name for dentry (to be seen in /proc/<pid>/maps
4114  * @size: size to be set for the file
4115  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4116  */
4117 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4118 {
4119 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4120 }
4121 
4122 /**
4123  * shmem_file_setup - get an unlinked file living in tmpfs
4124  * @name: name for dentry (to be seen in /proc/<pid>/maps
4125  * @size: size to be set for the file
4126  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4127  */
4128 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4129 {
4130 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4131 }
4132 EXPORT_SYMBOL_GPL(shmem_file_setup);
4133 
4134 /**
4135  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4136  * @mnt: the tmpfs mount where the file will be created
4137  * @name: name for dentry (to be seen in /proc/<pid>/maps
4138  * @size: size to be set for the file
4139  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4140  */
4141 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4142 				       loff_t size, unsigned long flags)
4143 {
4144 	return __shmem_file_setup(mnt, name, size, flags, 0);
4145 }
4146 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4147 
4148 /**
4149  * shmem_zero_setup - setup a shared anonymous mapping
4150  * @vma: the vma to be mmapped is prepared by do_mmap
4151  */
4152 int shmem_zero_setup(struct vm_area_struct *vma)
4153 {
4154 	struct file *file;
4155 	loff_t size = vma->vm_end - vma->vm_start;
4156 
4157 	/*
4158 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4159 	 * between XFS directory reading and selinux: since this file is only
4160 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4161 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4162 	 */
4163 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4164 	if (IS_ERR(file))
4165 		return PTR_ERR(file);
4166 
4167 	if (vma->vm_file)
4168 		fput(vma->vm_file);
4169 	vma->vm_file = file;
4170 	vma->vm_ops = &shmem_vm_ops;
4171 
4172 	return 0;
4173 }
4174 
4175 /**
4176  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4177  * @mapping:	the page's address_space
4178  * @index:	the page index
4179  * @gfp:	the page allocator flags to use if allocating
4180  *
4181  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4182  * with any new page allocations done using the specified allocation flags.
4183  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4184  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4185  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4186  *
4187  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4188  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4189  */
4190 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4191 					 pgoff_t index, gfp_t gfp)
4192 {
4193 #ifdef CONFIG_SHMEM
4194 	struct inode *inode = mapping->host;
4195 	struct page *page;
4196 	int error;
4197 
4198 	BUG_ON(!shmem_mapping(mapping));
4199 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4200 				  gfp, NULL, NULL, NULL);
4201 	if (error)
4202 		return ERR_PTR(error);
4203 
4204 	unlock_page(page);
4205 	if (PageHWPoison(page)) {
4206 		put_page(page);
4207 		return ERR_PTR(-EIO);
4208 	}
4209 
4210 	return page;
4211 #else
4212 	/*
4213 	 * The tiny !SHMEM case uses ramfs without swap
4214 	 */
4215 	return read_cache_page_gfp(mapping, index, gfp);
4216 #endif
4217 }
4218 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4219