xref: /linux/mm/shmem.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * This file is released under the GPL.
18  */
19 
20 /*
21  * This virtual memory filesystem is heavily based on the ramfs. It
22  * extends ramfs by the ability to use swap and honor resource limits
23  * which makes it a completely usable filesystem.
24  */
25 
26 #include <linux/config.h>
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/devfs_fs_kernel.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/mman.h>
33 #include <linux/file.h>
34 #include <linux/swap.h>
35 #include <linux/pagemap.h>
36 #include <linux/string.h>
37 #include <linux/slab.h>
38 #include <linux/backing-dev.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/mount.h>
41 #include <linux/writeback.h>
42 #include <linux/vfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/security.h>
45 #include <linux/swapops.h>
46 #include <linux/mempolicy.h>
47 #include <linux/namei.h>
48 #include <linux/ctype.h>
49 #include <asm/uaccess.h>
50 #include <asm/div64.h>
51 #include <asm/pgtable.h>
52 
53 /* This magic number is used in glibc for posix shared memory */
54 #define TMPFS_MAGIC	0x01021994
55 
56 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
57 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
58 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
59 
60 #define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
61 #define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
62 
63 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
64 
65 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
66 #define SHMEM_PAGEIN	 VM_READ
67 #define SHMEM_TRUNCATE	 VM_WRITE
68 
69 /* Definition to limit shmem_truncate's steps between cond_rescheds */
70 #define LATENCY_LIMIT	 64
71 
72 /* Pretend that each entry is of this size in directory's i_size */
73 #define BOGO_DIRENT_SIZE 20
74 
75 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
76 enum sgp_type {
77 	SGP_QUICK,	/* don't try more than file page cache lookup */
78 	SGP_READ,	/* don't exceed i_size, don't allocate page */
79 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
80 	SGP_WRITE,	/* may exceed i_size, may allocate page */
81 };
82 
83 static int shmem_getpage(struct inode *inode, unsigned long idx,
84 			 struct page **pagep, enum sgp_type sgp, int *type);
85 
86 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
87 {
88 	/*
89 	 * The above definition of ENTRIES_PER_PAGE, and the use of
90 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
91 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
92 	 */
93 	return alloc_pages(gfp_mask, PAGE_CACHE_SHIFT-PAGE_SHIFT);
94 }
95 
96 static inline void shmem_dir_free(struct page *page)
97 {
98 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
99 }
100 
101 static struct page **shmem_dir_map(struct page *page)
102 {
103 	return (struct page **)kmap_atomic(page, KM_USER0);
104 }
105 
106 static inline void shmem_dir_unmap(struct page **dir)
107 {
108 	kunmap_atomic(dir, KM_USER0);
109 }
110 
111 static swp_entry_t *shmem_swp_map(struct page *page)
112 {
113 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
114 }
115 
116 static inline void shmem_swp_balance_unmap(void)
117 {
118 	/*
119 	 * When passing a pointer to an i_direct entry, to code which
120 	 * also handles indirect entries and so will shmem_swp_unmap,
121 	 * we must arrange for the preempt count to remain in balance.
122 	 * What kmap_atomic of a lowmem page does depends on config
123 	 * and architecture, so pretend to kmap_atomic some lowmem page.
124 	 */
125 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
126 }
127 
128 static inline void shmem_swp_unmap(swp_entry_t *entry)
129 {
130 	kunmap_atomic(entry, KM_USER1);
131 }
132 
133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
134 {
135 	return sb->s_fs_info;
136 }
137 
138 /*
139  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140  * for shared memory and for shared anonymous (/dev/zero) mappings
141  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142  * consistent with the pre-accounting of private mappings ...
143  */
144 static inline int shmem_acct_size(unsigned long flags, loff_t size)
145 {
146 	return (flags & VM_ACCOUNT)?
147 		security_vm_enough_memory(VM_ACCT(size)): 0;
148 }
149 
150 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
151 {
152 	if (flags & VM_ACCOUNT)
153 		vm_unacct_memory(VM_ACCT(size));
154 }
155 
156 /*
157  * ... whereas tmpfs objects are accounted incrementally as
158  * pages are allocated, in order to allow huge sparse files.
159  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
160  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
161  */
162 static inline int shmem_acct_block(unsigned long flags)
163 {
164 	return (flags & VM_ACCOUNT)?
165 		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
166 }
167 
168 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
169 {
170 	if (!(flags & VM_ACCOUNT))
171 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
172 }
173 
174 static struct super_operations shmem_ops;
175 static struct address_space_operations shmem_aops;
176 static struct file_operations shmem_file_operations;
177 static struct inode_operations shmem_inode_operations;
178 static struct inode_operations shmem_dir_inode_operations;
179 static struct vm_operations_struct shmem_vm_ops;
180 
181 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
182 	.ra_pages	= 0,	/* No readahead */
183 	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
184 	.unplug_io_fn	= default_unplug_io_fn,
185 };
186 
187 static LIST_HEAD(shmem_swaplist);
188 static DEFINE_SPINLOCK(shmem_swaplist_lock);
189 
190 static void shmem_free_blocks(struct inode *inode, long pages)
191 {
192 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
193 	if (sbinfo->max_blocks) {
194 		spin_lock(&sbinfo->stat_lock);
195 		sbinfo->free_blocks += pages;
196 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
197 		spin_unlock(&sbinfo->stat_lock);
198 	}
199 }
200 
201 /*
202  * shmem_recalc_inode - recalculate the size of an inode
203  *
204  * @inode: inode to recalc
205  *
206  * We have to calculate the free blocks since the mm can drop
207  * undirtied hole pages behind our back.
208  *
209  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
210  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
211  *
212  * It has to be called with the spinlock held.
213  */
214 static void shmem_recalc_inode(struct inode *inode)
215 {
216 	struct shmem_inode_info *info = SHMEM_I(inode);
217 	long freed;
218 
219 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
220 	if (freed > 0) {
221 		info->alloced -= freed;
222 		shmem_unacct_blocks(info->flags, freed);
223 		shmem_free_blocks(inode, freed);
224 	}
225 }
226 
227 /*
228  * shmem_swp_entry - find the swap vector position in the info structure
229  *
230  * @info:  info structure for the inode
231  * @index: index of the page to find
232  * @page:  optional page to add to the structure. Has to be preset to
233  *         all zeros
234  *
235  * If there is no space allocated yet it will return NULL when
236  * page is NULL, else it will use the page for the needed block,
237  * setting it to NULL on return to indicate that it has been used.
238  *
239  * The swap vector is organized the following way:
240  *
241  * There are SHMEM_NR_DIRECT entries directly stored in the
242  * shmem_inode_info structure. So small files do not need an addional
243  * allocation.
244  *
245  * For pages with index > SHMEM_NR_DIRECT there is the pointer
246  * i_indirect which points to a page which holds in the first half
247  * doubly indirect blocks, in the second half triple indirect blocks:
248  *
249  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
250  * following layout (for SHMEM_NR_DIRECT == 16):
251  *
252  * i_indirect -> dir --> 16-19
253  * 	      |	     +-> 20-23
254  * 	      |
255  * 	      +-->dir2 --> 24-27
256  * 	      |	       +-> 28-31
257  * 	      |	       +-> 32-35
258  * 	      |	       +-> 36-39
259  * 	      |
260  * 	      +-->dir3 --> 40-43
261  * 	       	       +-> 44-47
262  * 	      	       +-> 48-51
263  * 	      	       +-> 52-55
264  */
265 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
266 {
267 	unsigned long offset;
268 	struct page **dir;
269 	struct page *subdir;
270 
271 	if (index < SHMEM_NR_DIRECT) {
272 		shmem_swp_balance_unmap();
273 		return info->i_direct+index;
274 	}
275 	if (!info->i_indirect) {
276 		if (page) {
277 			info->i_indirect = *page;
278 			*page = NULL;
279 		}
280 		return NULL;			/* need another page */
281 	}
282 
283 	index -= SHMEM_NR_DIRECT;
284 	offset = index % ENTRIES_PER_PAGE;
285 	index /= ENTRIES_PER_PAGE;
286 	dir = shmem_dir_map(info->i_indirect);
287 
288 	if (index >= ENTRIES_PER_PAGE/2) {
289 		index -= ENTRIES_PER_PAGE/2;
290 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
291 		index %= ENTRIES_PER_PAGE;
292 		subdir = *dir;
293 		if (!subdir) {
294 			if (page) {
295 				*dir = *page;
296 				*page = NULL;
297 			}
298 			shmem_dir_unmap(dir);
299 			return NULL;		/* need another page */
300 		}
301 		shmem_dir_unmap(dir);
302 		dir = shmem_dir_map(subdir);
303 	}
304 
305 	dir += index;
306 	subdir = *dir;
307 	if (!subdir) {
308 		if (!page || !(subdir = *page)) {
309 			shmem_dir_unmap(dir);
310 			return NULL;		/* need a page */
311 		}
312 		*dir = subdir;
313 		*page = NULL;
314 	}
315 	shmem_dir_unmap(dir);
316 	return shmem_swp_map(subdir) + offset;
317 }
318 
319 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
320 {
321 	long incdec = value? 1: -1;
322 
323 	entry->val = value;
324 	info->swapped += incdec;
325 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
326 		struct page *page = kmap_atomic_to_page(entry);
327 		set_page_private(page, page_private(page) + incdec);
328 	}
329 }
330 
331 /*
332  * shmem_swp_alloc - get the position of the swap entry for the page.
333  *                   If it does not exist allocate the entry.
334  *
335  * @info:	info structure for the inode
336  * @index:	index of the page to find
337  * @sgp:	check and recheck i_size? skip allocation?
338  */
339 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
340 {
341 	struct inode *inode = &info->vfs_inode;
342 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
343 	struct page *page = NULL;
344 	swp_entry_t *entry;
345 
346 	if (sgp != SGP_WRITE &&
347 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
348 		return ERR_PTR(-EINVAL);
349 
350 	while (!(entry = shmem_swp_entry(info, index, &page))) {
351 		if (sgp == SGP_READ)
352 			return shmem_swp_map(ZERO_PAGE(0));
353 		/*
354 		 * Test free_blocks against 1 not 0, since we have 1 data
355 		 * page (and perhaps indirect index pages) yet to allocate:
356 		 * a waste to allocate index if we cannot allocate data.
357 		 */
358 		if (sbinfo->max_blocks) {
359 			spin_lock(&sbinfo->stat_lock);
360 			if (sbinfo->free_blocks <= 1) {
361 				spin_unlock(&sbinfo->stat_lock);
362 				return ERR_PTR(-ENOSPC);
363 			}
364 			sbinfo->free_blocks--;
365 			inode->i_blocks += BLOCKS_PER_PAGE;
366 			spin_unlock(&sbinfo->stat_lock);
367 		}
368 
369 		spin_unlock(&info->lock);
370 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | __GFP_ZERO);
371 		if (page)
372 			set_page_private(page, 0);
373 		spin_lock(&info->lock);
374 
375 		if (!page) {
376 			shmem_free_blocks(inode, 1);
377 			return ERR_PTR(-ENOMEM);
378 		}
379 		if (sgp != SGP_WRITE &&
380 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
381 			entry = ERR_PTR(-EINVAL);
382 			break;
383 		}
384 		if (info->next_index <= index)
385 			info->next_index = index + 1;
386 	}
387 	if (page) {
388 		/* another task gave its page, or truncated the file */
389 		shmem_free_blocks(inode, 1);
390 		shmem_dir_free(page);
391 	}
392 	if (info->next_index <= index && !IS_ERR(entry))
393 		info->next_index = index + 1;
394 	return entry;
395 }
396 
397 /*
398  * shmem_free_swp - free some swap entries in a directory
399  *
400  * @dir:   pointer to the directory
401  * @edir:  pointer after last entry of the directory
402  */
403 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir)
404 {
405 	swp_entry_t *ptr;
406 	int freed = 0;
407 
408 	for (ptr = dir; ptr < edir; ptr++) {
409 		if (ptr->val) {
410 			free_swap_and_cache(*ptr);
411 			*ptr = (swp_entry_t){0};
412 			freed++;
413 		}
414 	}
415 	return freed;
416 }
417 
418 static int shmem_map_and_free_swp(struct page *subdir,
419 		int offset, int limit, struct page ***dir)
420 {
421 	swp_entry_t *ptr;
422 	int freed = 0;
423 
424 	ptr = shmem_swp_map(subdir);
425 	for (; offset < limit; offset += LATENCY_LIMIT) {
426 		int size = limit - offset;
427 		if (size > LATENCY_LIMIT)
428 			size = LATENCY_LIMIT;
429 		freed += shmem_free_swp(ptr+offset, ptr+offset+size);
430 		if (need_resched()) {
431 			shmem_swp_unmap(ptr);
432 			if (*dir) {
433 				shmem_dir_unmap(*dir);
434 				*dir = NULL;
435 			}
436 			cond_resched();
437 			ptr = shmem_swp_map(subdir);
438 		}
439 	}
440 	shmem_swp_unmap(ptr);
441 	return freed;
442 }
443 
444 static void shmem_free_pages(struct list_head *next)
445 {
446 	struct page *page;
447 	int freed = 0;
448 
449 	do {
450 		page = container_of(next, struct page, lru);
451 		next = next->next;
452 		shmem_dir_free(page);
453 		freed++;
454 		if (freed >= LATENCY_LIMIT) {
455 			cond_resched();
456 			freed = 0;
457 		}
458 	} while (next);
459 }
460 
461 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
462 {
463 	struct shmem_inode_info *info = SHMEM_I(inode);
464 	unsigned long idx;
465 	unsigned long size;
466 	unsigned long limit;
467 	unsigned long stage;
468 	unsigned long diroff;
469 	struct page **dir;
470 	struct page *topdir;
471 	struct page *middir;
472 	struct page *subdir;
473 	swp_entry_t *ptr;
474 	LIST_HEAD(pages_to_free);
475 	long nr_pages_to_free = 0;
476 	long nr_swaps_freed = 0;
477 	int offset;
478 	int freed;
479 	int punch_hole = 0;
480 
481 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
482 	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
483 	if (idx >= info->next_index)
484 		return;
485 
486 	spin_lock(&info->lock);
487 	info->flags |= SHMEM_TRUNCATE;
488 	if (likely(end == (loff_t) -1)) {
489 		limit = info->next_index;
490 		info->next_index = idx;
491 	} else {
492 		limit = (end + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
493 		if (limit > info->next_index)
494 			limit = info->next_index;
495 		punch_hole = 1;
496 	}
497 
498 	topdir = info->i_indirect;
499 	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
500 		info->i_indirect = NULL;
501 		nr_pages_to_free++;
502 		list_add(&topdir->lru, &pages_to_free);
503 	}
504 	spin_unlock(&info->lock);
505 
506 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
507 		ptr = info->i_direct;
508 		size = limit;
509 		if (size > SHMEM_NR_DIRECT)
510 			size = SHMEM_NR_DIRECT;
511 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size);
512 	}
513 	if (!topdir)
514 		goto done2;
515 
516 	BUG_ON(limit <= SHMEM_NR_DIRECT);
517 	limit -= SHMEM_NR_DIRECT;
518 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
519 	offset = idx % ENTRIES_PER_PAGE;
520 	idx -= offset;
521 
522 	dir = shmem_dir_map(topdir);
523 	stage = ENTRIES_PER_PAGEPAGE/2;
524 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
525 		middir = topdir;
526 		diroff = idx/ENTRIES_PER_PAGE;
527 	} else {
528 		dir += ENTRIES_PER_PAGE/2;
529 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
530 		while (stage <= idx)
531 			stage += ENTRIES_PER_PAGEPAGE;
532 		middir = *dir;
533 		if (*dir) {
534 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
535 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
536 			if (!diroff && !offset) {
537 				*dir = NULL;
538 				nr_pages_to_free++;
539 				list_add(&middir->lru, &pages_to_free);
540 			}
541 			shmem_dir_unmap(dir);
542 			dir = shmem_dir_map(middir);
543 		} else {
544 			diroff = 0;
545 			offset = 0;
546 			idx = stage;
547 		}
548 	}
549 
550 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
551 		if (unlikely(idx == stage)) {
552 			shmem_dir_unmap(dir);
553 			dir = shmem_dir_map(topdir) +
554 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
555 			while (!*dir) {
556 				dir++;
557 				idx += ENTRIES_PER_PAGEPAGE;
558 				if (idx >= limit)
559 					goto done1;
560 			}
561 			stage = idx + ENTRIES_PER_PAGEPAGE;
562 			middir = *dir;
563 			*dir = NULL;
564 			nr_pages_to_free++;
565 			list_add(&middir->lru, &pages_to_free);
566 			shmem_dir_unmap(dir);
567 			cond_resched();
568 			dir = shmem_dir_map(middir);
569 			diroff = 0;
570 		}
571 		subdir = dir[diroff];
572 		if (subdir && page_private(subdir)) {
573 			size = limit - idx;
574 			if (size > ENTRIES_PER_PAGE)
575 				size = ENTRIES_PER_PAGE;
576 			freed = shmem_map_and_free_swp(subdir,
577 						offset, size, &dir);
578 			if (!dir)
579 				dir = shmem_dir_map(middir);
580 			nr_swaps_freed += freed;
581 			if (offset)
582 				spin_lock(&info->lock);
583 			set_page_private(subdir, page_private(subdir) - freed);
584 			if (offset)
585 				spin_unlock(&info->lock);
586 			if (!punch_hole)
587 				BUG_ON(page_private(subdir) > offset);
588 		}
589 		if (offset)
590 			offset = 0;
591 		else if (subdir && !page_private(subdir)) {
592 			dir[diroff] = NULL;
593 			nr_pages_to_free++;
594 			list_add(&subdir->lru, &pages_to_free);
595 		}
596 	}
597 done1:
598 	shmem_dir_unmap(dir);
599 done2:
600 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
601 		/*
602 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
603 		 * may have swizzled a page in from swap since vmtruncate or
604 		 * generic_delete_inode did it, before we lowered next_index.
605 		 * Also, though shmem_getpage checks i_size before adding to
606 		 * cache, no recheck after: so fix the narrow window there too.
607 		 */
608 		truncate_inode_pages_range(inode->i_mapping, start, end);
609 	}
610 
611 	spin_lock(&info->lock);
612 	info->flags &= ~SHMEM_TRUNCATE;
613 	info->swapped -= nr_swaps_freed;
614 	if (nr_pages_to_free)
615 		shmem_free_blocks(inode, nr_pages_to_free);
616 	shmem_recalc_inode(inode);
617 	spin_unlock(&info->lock);
618 
619 	/*
620 	 * Empty swap vector directory pages to be freed?
621 	 */
622 	if (!list_empty(&pages_to_free)) {
623 		pages_to_free.prev->next = NULL;
624 		shmem_free_pages(pages_to_free.next);
625 	}
626 }
627 
628 static void shmem_truncate(struct inode *inode)
629 {
630 	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
631 }
632 
633 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
634 {
635 	struct inode *inode = dentry->d_inode;
636 	struct page *page = NULL;
637 	int error;
638 
639 	if (attr->ia_valid & ATTR_SIZE) {
640 		if (attr->ia_size < inode->i_size) {
641 			/*
642 			 * If truncating down to a partial page, then
643 			 * if that page is already allocated, hold it
644 			 * in memory until the truncation is over, so
645 			 * truncate_partial_page cannnot miss it were
646 			 * it assigned to swap.
647 			 */
648 			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
649 				(void) shmem_getpage(inode,
650 					attr->ia_size>>PAGE_CACHE_SHIFT,
651 						&page, SGP_READ, NULL);
652 			}
653 			/*
654 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
655 			 * detect if any pages might have been added to cache
656 			 * after truncate_inode_pages.  But we needn't bother
657 			 * if it's being fully truncated to zero-length: the
658 			 * nrpages check is efficient enough in that case.
659 			 */
660 			if (attr->ia_size) {
661 				struct shmem_inode_info *info = SHMEM_I(inode);
662 				spin_lock(&info->lock);
663 				info->flags &= ~SHMEM_PAGEIN;
664 				spin_unlock(&info->lock);
665 			}
666 		}
667 	}
668 
669 	error = inode_change_ok(inode, attr);
670 	if (!error)
671 		error = inode_setattr(inode, attr);
672 	if (page)
673 		page_cache_release(page);
674 	return error;
675 }
676 
677 static void shmem_delete_inode(struct inode *inode)
678 {
679 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
680 	struct shmem_inode_info *info = SHMEM_I(inode);
681 
682 	if (inode->i_op->truncate == shmem_truncate) {
683 		truncate_inode_pages(inode->i_mapping, 0);
684 		shmem_unacct_size(info->flags, inode->i_size);
685 		inode->i_size = 0;
686 		shmem_truncate(inode);
687 		if (!list_empty(&info->swaplist)) {
688 			spin_lock(&shmem_swaplist_lock);
689 			list_del_init(&info->swaplist);
690 			spin_unlock(&shmem_swaplist_lock);
691 		}
692 	}
693 	BUG_ON(inode->i_blocks);
694 	if (sbinfo->max_inodes) {
695 		spin_lock(&sbinfo->stat_lock);
696 		sbinfo->free_inodes++;
697 		spin_unlock(&sbinfo->stat_lock);
698 	}
699 	clear_inode(inode);
700 }
701 
702 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
703 {
704 	swp_entry_t *ptr;
705 
706 	for (ptr = dir; ptr < edir; ptr++) {
707 		if (ptr->val == entry.val)
708 			return ptr - dir;
709 	}
710 	return -1;
711 }
712 
713 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
714 {
715 	struct inode *inode;
716 	unsigned long idx;
717 	unsigned long size;
718 	unsigned long limit;
719 	unsigned long stage;
720 	struct page **dir;
721 	struct page *subdir;
722 	swp_entry_t *ptr;
723 	int offset;
724 
725 	idx = 0;
726 	ptr = info->i_direct;
727 	spin_lock(&info->lock);
728 	limit = info->next_index;
729 	size = limit;
730 	if (size > SHMEM_NR_DIRECT)
731 		size = SHMEM_NR_DIRECT;
732 	offset = shmem_find_swp(entry, ptr, ptr+size);
733 	if (offset >= 0) {
734 		shmem_swp_balance_unmap();
735 		goto found;
736 	}
737 	if (!info->i_indirect)
738 		goto lost2;
739 
740 	dir = shmem_dir_map(info->i_indirect);
741 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
742 
743 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
744 		if (unlikely(idx == stage)) {
745 			shmem_dir_unmap(dir-1);
746 			dir = shmem_dir_map(info->i_indirect) +
747 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
748 			while (!*dir) {
749 				dir++;
750 				idx += ENTRIES_PER_PAGEPAGE;
751 				if (idx >= limit)
752 					goto lost1;
753 			}
754 			stage = idx + ENTRIES_PER_PAGEPAGE;
755 			subdir = *dir;
756 			shmem_dir_unmap(dir);
757 			dir = shmem_dir_map(subdir);
758 		}
759 		subdir = *dir;
760 		if (subdir && page_private(subdir)) {
761 			ptr = shmem_swp_map(subdir);
762 			size = limit - idx;
763 			if (size > ENTRIES_PER_PAGE)
764 				size = ENTRIES_PER_PAGE;
765 			offset = shmem_find_swp(entry, ptr, ptr+size);
766 			if (offset >= 0) {
767 				shmem_dir_unmap(dir);
768 				goto found;
769 			}
770 			shmem_swp_unmap(ptr);
771 		}
772 	}
773 lost1:
774 	shmem_dir_unmap(dir-1);
775 lost2:
776 	spin_unlock(&info->lock);
777 	return 0;
778 found:
779 	idx += offset;
780 	inode = &info->vfs_inode;
781 	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
782 		info->flags |= SHMEM_PAGEIN;
783 		shmem_swp_set(info, ptr + offset, 0);
784 	}
785 	shmem_swp_unmap(ptr);
786 	spin_unlock(&info->lock);
787 	/*
788 	 * Decrement swap count even when the entry is left behind:
789 	 * try_to_unuse will skip over mms, then reincrement count.
790 	 */
791 	swap_free(entry);
792 	return 1;
793 }
794 
795 /*
796  * shmem_unuse() search for an eventually swapped out shmem page.
797  */
798 int shmem_unuse(swp_entry_t entry, struct page *page)
799 {
800 	struct list_head *p, *next;
801 	struct shmem_inode_info *info;
802 	int found = 0;
803 
804 	spin_lock(&shmem_swaplist_lock);
805 	list_for_each_safe(p, next, &shmem_swaplist) {
806 		info = list_entry(p, struct shmem_inode_info, swaplist);
807 		if (!info->swapped)
808 			list_del_init(&info->swaplist);
809 		else if (shmem_unuse_inode(info, entry, page)) {
810 			/* move head to start search for next from here */
811 			list_move_tail(&shmem_swaplist, &info->swaplist);
812 			found = 1;
813 			break;
814 		}
815 	}
816 	spin_unlock(&shmem_swaplist_lock);
817 	return found;
818 }
819 
820 /*
821  * Move the page from the page cache to the swap cache.
822  */
823 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
824 {
825 	struct shmem_inode_info *info;
826 	swp_entry_t *entry, swap;
827 	struct address_space *mapping;
828 	unsigned long index;
829 	struct inode *inode;
830 
831 	BUG_ON(!PageLocked(page));
832 	BUG_ON(page_mapped(page));
833 
834 	mapping = page->mapping;
835 	index = page->index;
836 	inode = mapping->host;
837 	info = SHMEM_I(inode);
838 	if (info->flags & VM_LOCKED)
839 		goto redirty;
840 	swap = get_swap_page();
841 	if (!swap.val)
842 		goto redirty;
843 
844 	spin_lock(&info->lock);
845 	shmem_recalc_inode(inode);
846 	if (index >= info->next_index) {
847 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
848 		goto unlock;
849 	}
850 	entry = shmem_swp_entry(info, index, NULL);
851 	BUG_ON(!entry);
852 	BUG_ON(entry->val);
853 
854 	if (move_to_swap_cache(page, swap) == 0) {
855 		shmem_swp_set(info, entry, swap.val);
856 		shmem_swp_unmap(entry);
857 		spin_unlock(&info->lock);
858 		if (list_empty(&info->swaplist)) {
859 			spin_lock(&shmem_swaplist_lock);
860 			/* move instead of add in case we're racing */
861 			list_move_tail(&info->swaplist, &shmem_swaplist);
862 			spin_unlock(&shmem_swaplist_lock);
863 		}
864 		unlock_page(page);
865 		return 0;
866 	}
867 
868 	shmem_swp_unmap(entry);
869 unlock:
870 	spin_unlock(&info->lock);
871 	swap_free(swap);
872 redirty:
873 	set_page_dirty(page);
874 	return AOP_WRITEPAGE_ACTIVATE;	/* Return with the page locked */
875 }
876 
877 #ifdef CONFIG_NUMA
878 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
879 {
880 	char *nodelist = strchr(value, ':');
881 	int err = 1;
882 
883 	if (nodelist) {
884 		/* NUL-terminate policy string */
885 		*nodelist++ = '\0';
886 		if (nodelist_parse(nodelist, *policy_nodes))
887 			goto out;
888 	}
889 	if (!strcmp(value, "default")) {
890 		*policy = MPOL_DEFAULT;
891 		/* Don't allow a nodelist */
892 		if (!nodelist)
893 			err = 0;
894 	} else if (!strcmp(value, "prefer")) {
895 		*policy = MPOL_PREFERRED;
896 		/* Insist on a nodelist of one node only */
897 		if (nodelist) {
898 			char *rest = nodelist;
899 			while (isdigit(*rest))
900 				rest++;
901 			if (!*rest)
902 				err = 0;
903 		}
904 	} else if (!strcmp(value, "bind")) {
905 		*policy = MPOL_BIND;
906 		/* Insist on a nodelist */
907 		if (nodelist)
908 			err = 0;
909 	} else if (!strcmp(value, "interleave")) {
910 		*policy = MPOL_INTERLEAVE;
911 		/* Default to nodes online if no nodelist */
912 		if (!nodelist)
913 			*policy_nodes = node_online_map;
914 		err = 0;
915 	}
916 out:
917 	/* Restore string for error message */
918 	if (nodelist)
919 		*--nodelist = ':';
920 	return err;
921 }
922 
923 static struct page *shmem_swapin_async(struct shared_policy *p,
924 				       swp_entry_t entry, unsigned long idx)
925 {
926 	struct page *page;
927 	struct vm_area_struct pvma;
928 
929 	/* Create a pseudo vma that just contains the policy */
930 	memset(&pvma, 0, sizeof(struct vm_area_struct));
931 	pvma.vm_end = PAGE_SIZE;
932 	pvma.vm_pgoff = idx;
933 	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
934 	page = read_swap_cache_async(entry, &pvma, 0);
935 	mpol_free(pvma.vm_policy);
936 	return page;
937 }
938 
939 struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
940 			  unsigned long idx)
941 {
942 	struct shared_policy *p = &info->policy;
943 	int i, num;
944 	struct page *page;
945 	unsigned long offset;
946 
947 	num = valid_swaphandles(entry, &offset);
948 	for (i = 0; i < num; offset++, i++) {
949 		page = shmem_swapin_async(p,
950 				swp_entry(swp_type(entry), offset), idx);
951 		if (!page)
952 			break;
953 		page_cache_release(page);
954 	}
955 	lru_add_drain();	/* Push any new pages onto the LRU now */
956 	return shmem_swapin_async(p, entry, idx);
957 }
958 
959 static struct page *
960 shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
961 		 unsigned long idx)
962 {
963 	struct vm_area_struct pvma;
964 	struct page *page;
965 
966 	memset(&pvma, 0, sizeof(struct vm_area_struct));
967 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
968 	pvma.vm_pgoff = idx;
969 	pvma.vm_end = PAGE_SIZE;
970 	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
971 	mpol_free(pvma.vm_policy);
972 	return page;
973 }
974 #else
975 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
976 {
977 	return 1;
978 }
979 
980 static inline struct page *
981 shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
982 {
983 	swapin_readahead(entry, 0, NULL);
984 	return read_swap_cache_async(entry, NULL, 0);
985 }
986 
987 static inline struct page *
988 shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
989 {
990 	return alloc_page(gfp | __GFP_ZERO);
991 }
992 #endif
993 
994 /*
995  * shmem_getpage - either get the page from swap or allocate a new one
996  *
997  * If we allocate a new one we do not mark it dirty. That's up to the
998  * vm. If we swap it in we mark it dirty since we also free the swap
999  * entry since a page cannot live in both the swap and page cache
1000  */
1001 static int shmem_getpage(struct inode *inode, unsigned long idx,
1002 			struct page **pagep, enum sgp_type sgp, int *type)
1003 {
1004 	struct address_space *mapping = inode->i_mapping;
1005 	struct shmem_inode_info *info = SHMEM_I(inode);
1006 	struct shmem_sb_info *sbinfo;
1007 	struct page *filepage = *pagep;
1008 	struct page *swappage;
1009 	swp_entry_t *entry;
1010 	swp_entry_t swap;
1011 	int error;
1012 
1013 	if (idx >= SHMEM_MAX_INDEX)
1014 		return -EFBIG;
1015 	/*
1016 	 * Normally, filepage is NULL on entry, and either found
1017 	 * uptodate immediately, or allocated and zeroed, or read
1018 	 * in under swappage, which is then assigned to filepage.
1019 	 * But shmem_prepare_write passes in a locked filepage,
1020 	 * which may be found not uptodate by other callers too,
1021 	 * and may need to be copied from the swappage read in.
1022 	 */
1023 repeat:
1024 	if (!filepage)
1025 		filepage = find_lock_page(mapping, idx);
1026 	if (filepage && PageUptodate(filepage))
1027 		goto done;
1028 	error = 0;
1029 	if (sgp == SGP_QUICK)
1030 		goto failed;
1031 
1032 	spin_lock(&info->lock);
1033 	shmem_recalc_inode(inode);
1034 	entry = shmem_swp_alloc(info, idx, sgp);
1035 	if (IS_ERR(entry)) {
1036 		spin_unlock(&info->lock);
1037 		error = PTR_ERR(entry);
1038 		goto failed;
1039 	}
1040 	swap = *entry;
1041 
1042 	if (swap.val) {
1043 		/* Look it up and read it in.. */
1044 		swappage = lookup_swap_cache(swap);
1045 		if (!swappage) {
1046 			shmem_swp_unmap(entry);
1047 			spin_unlock(&info->lock);
1048 			/* here we actually do the io */
1049 			if (type && *type == VM_FAULT_MINOR) {
1050 				inc_page_state(pgmajfault);
1051 				*type = VM_FAULT_MAJOR;
1052 			}
1053 			swappage = shmem_swapin(info, swap, idx);
1054 			if (!swappage) {
1055 				spin_lock(&info->lock);
1056 				entry = shmem_swp_alloc(info, idx, sgp);
1057 				if (IS_ERR(entry))
1058 					error = PTR_ERR(entry);
1059 				else {
1060 					if (entry->val == swap.val)
1061 						error = -ENOMEM;
1062 					shmem_swp_unmap(entry);
1063 				}
1064 				spin_unlock(&info->lock);
1065 				if (error)
1066 					goto failed;
1067 				goto repeat;
1068 			}
1069 			wait_on_page_locked(swappage);
1070 			page_cache_release(swappage);
1071 			goto repeat;
1072 		}
1073 
1074 		/* We have to do this with page locked to prevent races */
1075 		if (TestSetPageLocked(swappage)) {
1076 			shmem_swp_unmap(entry);
1077 			spin_unlock(&info->lock);
1078 			wait_on_page_locked(swappage);
1079 			page_cache_release(swappage);
1080 			goto repeat;
1081 		}
1082 		if (!PageSwapCache(swappage)) {
1083 			/* Page migration has occured */
1084 			shmem_swp_unmap(entry);
1085 			spin_unlock(&info->lock);
1086 			unlock_page(swappage);
1087 			page_cache_release(swappage);
1088 			goto repeat;
1089 		}
1090 		if (PageWriteback(swappage)) {
1091 			shmem_swp_unmap(entry);
1092 			spin_unlock(&info->lock);
1093 			wait_on_page_writeback(swappage);
1094 			unlock_page(swappage);
1095 			page_cache_release(swappage);
1096 			goto repeat;
1097 		}
1098 		if (!PageUptodate(swappage)) {
1099 			shmem_swp_unmap(entry);
1100 			spin_unlock(&info->lock);
1101 			unlock_page(swappage);
1102 			page_cache_release(swappage);
1103 			error = -EIO;
1104 			goto failed;
1105 		}
1106 
1107 		if (filepage) {
1108 			shmem_swp_set(info, entry, 0);
1109 			shmem_swp_unmap(entry);
1110 			delete_from_swap_cache(swappage);
1111 			spin_unlock(&info->lock);
1112 			copy_highpage(filepage, swappage);
1113 			unlock_page(swappage);
1114 			page_cache_release(swappage);
1115 			flush_dcache_page(filepage);
1116 			SetPageUptodate(filepage);
1117 			set_page_dirty(filepage);
1118 			swap_free(swap);
1119 		} else if (!(error = move_from_swap_cache(
1120 				swappage, idx, mapping))) {
1121 			info->flags |= SHMEM_PAGEIN;
1122 			shmem_swp_set(info, entry, 0);
1123 			shmem_swp_unmap(entry);
1124 			spin_unlock(&info->lock);
1125 			filepage = swappage;
1126 			swap_free(swap);
1127 		} else {
1128 			shmem_swp_unmap(entry);
1129 			spin_unlock(&info->lock);
1130 			unlock_page(swappage);
1131 			page_cache_release(swappage);
1132 			if (error == -ENOMEM) {
1133 				/* let kswapd refresh zone for GFP_ATOMICs */
1134 				blk_congestion_wait(WRITE, HZ/50);
1135 			}
1136 			goto repeat;
1137 		}
1138 	} else if (sgp == SGP_READ && !filepage) {
1139 		shmem_swp_unmap(entry);
1140 		filepage = find_get_page(mapping, idx);
1141 		if (filepage &&
1142 		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1143 			spin_unlock(&info->lock);
1144 			wait_on_page_locked(filepage);
1145 			page_cache_release(filepage);
1146 			filepage = NULL;
1147 			goto repeat;
1148 		}
1149 		spin_unlock(&info->lock);
1150 	} else {
1151 		shmem_swp_unmap(entry);
1152 		sbinfo = SHMEM_SB(inode->i_sb);
1153 		if (sbinfo->max_blocks) {
1154 			spin_lock(&sbinfo->stat_lock);
1155 			if (sbinfo->free_blocks == 0 ||
1156 			    shmem_acct_block(info->flags)) {
1157 				spin_unlock(&sbinfo->stat_lock);
1158 				spin_unlock(&info->lock);
1159 				error = -ENOSPC;
1160 				goto failed;
1161 			}
1162 			sbinfo->free_blocks--;
1163 			inode->i_blocks += BLOCKS_PER_PAGE;
1164 			spin_unlock(&sbinfo->stat_lock);
1165 		} else if (shmem_acct_block(info->flags)) {
1166 			spin_unlock(&info->lock);
1167 			error = -ENOSPC;
1168 			goto failed;
1169 		}
1170 
1171 		if (!filepage) {
1172 			spin_unlock(&info->lock);
1173 			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1174 						    info,
1175 						    idx);
1176 			if (!filepage) {
1177 				shmem_unacct_blocks(info->flags, 1);
1178 				shmem_free_blocks(inode, 1);
1179 				error = -ENOMEM;
1180 				goto failed;
1181 			}
1182 
1183 			spin_lock(&info->lock);
1184 			entry = shmem_swp_alloc(info, idx, sgp);
1185 			if (IS_ERR(entry))
1186 				error = PTR_ERR(entry);
1187 			else {
1188 				swap = *entry;
1189 				shmem_swp_unmap(entry);
1190 			}
1191 			if (error || swap.val || 0 != add_to_page_cache_lru(
1192 					filepage, mapping, idx, GFP_ATOMIC)) {
1193 				spin_unlock(&info->lock);
1194 				page_cache_release(filepage);
1195 				shmem_unacct_blocks(info->flags, 1);
1196 				shmem_free_blocks(inode, 1);
1197 				filepage = NULL;
1198 				if (error)
1199 					goto failed;
1200 				goto repeat;
1201 			}
1202 			info->flags |= SHMEM_PAGEIN;
1203 		}
1204 
1205 		info->alloced++;
1206 		spin_unlock(&info->lock);
1207 		flush_dcache_page(filepage);
1208 		SetPageUptodate(filepage);
1209 	}
1210 done:
1211 	if (*pagep != filepage) {
1212 		unlock_page(filepage);
1213 		*pagep = filepage;
1214 	}
1215 	return 0;
1216 
1217 failed:
1218 	if (*pagep != filepage) {
1219 		unlock_page(filepage);
1220 		page_cache_release(filepage);
1221 	}
1222 	return error;
1223 }
1224 
1225 struct page *shmem_nopage(struct vm_area_struct *vma, unsigned long address, int *type)
1226 {
1227 	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1228 	struct page *page = NULL;
1229 	unsigned long idx;
1230 	int error;
1231 
1232 	idx = (address - vma->vm_start) >> PAGE_SHIFT;
1233 	idx += vma->vm_pgoff;
1234 	idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
1235 	if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1236 		return NOPAGE_SIGBUS;
1237 
1238 	error = shmem_getpage(inode, idx, &page, SGP_CACHE, type);
1239 	if (error)
1240 		return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
1241 
1242 	mark_page_accessed(page);
1243 	return page;
1244 }
1245 
1246 static int shmem_populate(struct vm_area_struct *vma,
1247 	unsigned long addr, unsigned long len,
1248 	pgprot_t prot, unsigned long pgoff, int nonblock)
1249 {
1250 	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1251 	struct mm_struct *mm = vma->vm_mm;
1252 	enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE;
1253 	unsigned long size;
1254 
1255 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1256 	if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size)
1257 		return -EINVAL;
1258 
1259 	while ((long) len > 0) {
1260 		struct page *page = NULL;
1261 		int err;
1262 		/*
1263 		 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1264 		 */
1265 		err = shmem_getpage(inode, pgoff, &page, sgp, NULL);
1266 		if (err)
1267 			return err;
1268 		/* Page may still be null, but only if nonblock was set. */
1269 		if (page) {
1270 			mark_page_accessed(page);
1271 			err = install_page(mm, vma, addr, page, prot);
1272 			if (err) {
1273 				page_cache_release(page);
1274 				return err;
1275 			}
1276 		} else if (vma->vm_flags & VM_NONLINEAR) {
1277 			/* No page was found just because we can't read it in
1278 			 * now (being here implies nonblock != 0), but the page
1279 			 * may exist, so set the PTE to fault it in later. */
1280     			err = install_file_pte(mm, vma, addr, pgoff, prot);
1281 			if (err)
1282 	    			return err;
1283 		}
1284 
1285 		len -= PAGE_SIZE;
1286 		addr += PAGE_SIZE;
1287 		pgoff++;
1288 	}
1289 	return 0;
1290 }
1291 
1292 #ifdef CONFIG_NUMA
1293 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1294 {
1295 	struct inode *i = vma->vm_file->f_dentry->d_inode;
1296 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1297 }
1298 
1299 struct mempolicy *
1300 shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1301 {
1302 	struct inode *i = vma->vm_file->f_dentry->d_inode;
1303 	unsigned long idx;
1304 
1305 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1306 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1307 }
1308 #endif
1309 
1310 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1311 {
1312 	struct inode *inode = file->f_dentry->d_inode;
1313 	struct shmem_inode_info *info = SHMEM_I(inode);
1314 	int retval = -ENOMEM;
1315 
1316 	spin_lock(&info->lock);
1317 	if (lock && !(info->flags & VM_LOCKED)) {
1318 		if (!user_shm_lock(inode->i_size, user))
1319 			goto out_nomem;
1320 		info->flags |= VM_LOCKED;
1321 	}
1322 	if (!lock && (info->flags & VM_LOCKED) && user) {
1323 		user_shm_unlock(inode->i_size, user);
1324 		info->flags &= ~VM_LOCKED;
1325 	}
1326 	retval = 0;
1327 out_nomem:
1328 	spin_unlock(&info->lock);
1329 	return retval;
1330 }
1331 
1332 int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1333 {
1334 	file_accessed(file);
1335 	vma->vm_ops = &shmem_vm_ops;
1336 	return 0;
1337 }
1338 
1339 static struct inode *
1340 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1341 {
1342 	struct inode *inode;
1343 	struct shmem_inode_info *info;
1344 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1345 
1346 	if (sbinfo->max_inodes) {
1347 		spin_lock(&sbinfo->stat_lock);
1348 		if (!sbinfo->free_inodes) {
1349 			spin_unlock(&sbinfo->stat_lock);
1350 			return NULL;
1351 		}
1352 		sbinfo->free_inodes--;
1353 		spin_unlock(&sbinfo->stat_lock);
1354 	}
1355 
1356 	inode = new_inode(sb);
1357 	if (inode) {
1358 		inode->i_mode = mode;
1359 		inode->i_uid = current->fsuid;
1360 		inode->i_gid = current->fsgid;
1361 		inode->i_blksize = PAGE_CACHE_SIZE;
1362 		inode->i_blocks = 0;
1363 		inode->i_mapping->a_ops = &shmem_aops;
1364 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1365 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1366 		info = SHMEM_I(inode);
1367 		memset(info, 0, (char *)inode - (char *)info);
1368 		spin_lock_init(&info->lock);
1369 		INIT_LIST_HEAD(&info->swaplist);
1370 
1371 		switch (mode & S_IFMT) {
1372 		default:
1373 			init_special_inode(inode, mode, dev);
1374 			break;
1375 		case S_IFREG:
1376 			inode->i_op = &shmem_inode_operations;
1377 			inode->i_fop = &shmem_file_operations;
1378 			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1379 							&sbinfo->policy_nodes);
1380 			break;
1381 		case S_IFDIR:
1382 			inode->i_nlink++;
1383 			/* Some things misbehave if size == 0 on a directory */
1384 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1385 			inode->i_op = &shmem_dir_inode_operations;
1386 			inode->i_fop = &simple_dir_operations;
1387 			break;
1388 		case S_IFLNK:
1389 			/*
1390 			 * Must not load anything in the rbtree,
1391 			 * mpol_free_shared_policy will not be called.
1392 			 */
1393 			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1394 						NULL);
1395 			break;
1396 		}
1397 	} else if (sbinfo->max_inodes) {
1398 		spin_lock(&sbinfo->stat_lock);
1399 		sbinfo->free_inodes++;
1400 		spin_unlock(&sbinfo->stat_lock);
1401 	}
1402 	return inode;
1403 }
1404 
1405 #ifdef CONFIG_TMPFS
1406 static struct inode_operations shmem_symlink_inode_operations;
1407 static struct inode_operations shmem_symlink_inline_operations;
1408 
1409 /*
1410  * Normally tmpfs makes no use of shmem_prepare_write, but it
1411  * lets a tmpfs file be used read-write below the loop driver.
1412  */
1413 static int
1414 shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1415 {
1416 	struct inode *inode = page->mapping->host;
1417 	return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1418 }
1419 
1420 static ssize_t
1421 shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1422 {
1423 	struct inode	*inode = file->f_dentry->d_inode;
1424 	loff_t		pos;
1425 	unsigned long	written;
1426 	ssize_t		err;
1427 
1428 	if ((ssize_t) count < 0)
1429 		return -EINVAL;
1430 
1431 	if (!access_ok(VERIFY_READ, buf, count))
1432 		return -EFAULT;
1433 
1434 	mutex_lock(&inode->i_mutex);
1435 
1436 	pos = *ppos;
1437 	written = 0;
1438 
1439 	err = generic_write_checks(file, &pos, &count, 0);
1440 	if (err || !count)
1441 		goto out;
1442 
1443 	err = remove_suid(file->f_dentry);
1444 	if (err)
1445 		goto out;
1446 
1447 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1448 
1449 	do {
1450 		struct page *page = NULL;
1451 		unsigned long bytes, index, offset;
1452 		char *kaddr;
1453 		int left;
1454 
1455 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1456 		index = pos >> PAGE_CACHE_SHIFT;
1457 		bytes = PAGE_CACHE_SIZE - offset;
1458 		if (bytes > count)
1459 			bytes = count;
1460 
1461 		/*
1462 		 * We don't hold page lock across copy from user -
1463 		 * what would it guard against? - so no deadlock here.
1464 		 * But it still may be a good idea to prefault below.
1465 		 */
1466 
1467 		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1468 		if (err)
1469 			break;
1470 
1471 		left = bytes;
1472 		if (PageHighMem(page)) {
1473 			volatile unsigned char dummy;
1474 			__get_user(dummy, buf);
1475 			__get_user(dummy, buf + bytes - 1);
1476 
1477 			kaddr = kmap_atomic(page, KM_USER0);
1478 			left = __copy_from_user_inatomic(kaddr + offset,
1479 							buf, bytes);
1480 			kunmap_atomic(kaddr, KM_USER0);
1481 		}
1482 		if (left) {
1483 			kaddr = kmap(page);
1484 			left = __copy_from_user(kaddr + offset, buf, bytes);
1485 			kunmap(page);
1486 		}
1487 
1488 		written += bytes;
1489 		count -= bytes;
1490 		pos += bytes;
1491 		buf += bytes;
1492 		if (pos > inode->i_size)
1493 			i_size_write(inode, pos);
1494 
1495 		flush_dcache_page(page);
1496 		set_page_dirty(page);
1497 		mark_page_accessed(page);
1498 		page_cache_release(page);
1499 
1500 		if (left) {
1501 			pos -= left;
1502 			written -= left;
1503 			err = -EFAULT;
1504 			break;
1505 		}
1506 
1507 		/*
1508 		 * Our dirty pages are not counted in nr_dirty,
1509 		 * and we do not attempt to balance dirty pages.
1510 		 */
1511 
1512 		cond_resched();
1513 	} while (count);
1514 
1515 	*ppos = pos;
1516 	if (written)
1517 		err = written;
1518 out:
1519 	mutex_unlock(&inode->i_mutex);
1520 	return err;
1521 }
1522 
1523 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1524 {
1525 	struct inode *inode = filp->f_dentry->d_inode;
1526 	struct address_space *mapping = inode->i_mapping;
1527 	unsigned long index, offset;
1528 
1529 	index = *ppos >> PAGE_CACHE_SHIFT;
1530 	offset = *ppos & ~PAGE_CACHE_MASK;
1531 
1532 	for (;;) {
1533 		struct page *page = NULL;
1534 		unsigned long end_index, nr, ret;
1535 		loff_t i_size = i_size_read(inode);
1536 
1537 		end_index = i_size >> PAGE_CACHE_SHIFT;
1538 		if (index > end_index)
1539 			break;
1540 		if (index == end_index) {
1541 			nr = i_size & ~PAGE_CACHE_MASK;
1542 			if (nr <= offset)
1543 				break;
1544 		}
1545 
1546 		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1547 		if (desc->error) {
1548 			if (desc->error == -EINVAL)
1549 				desc->error = 0;
1550 			break;
1551 		}
1552 
1553 		/*
1554 		 * We must evaluate after, since reads (unlike writes)
1555 		 * are called without i_mutex protection against truncate
1556 		 */
1557 		nr = PAGE_CACHE_SIZE;
1558 		i_size = i_size_read(inode);
1559 		end_index = i_size >> PAGE_CACHE_SHIFT;
1560 		if (index == end_index) {
1561 			nr = i_size & ~PAGE_CACHE_MASK;
1562 			if (nr <= offset) {
1563 				if (page)
1564 					page_cache_release(page);
1565 				break;
1566 			}
1567 		}
1568 		nr -= offset;
1569 
1570 		if (page) {
1571 			/*
1572 			 * If users can be writing to this page using arbitrary
1573 			 * virtual addresses, take care about potential aliasing
1574 			 * before reading the page on the kernel side.
1575 			 */
1576 			if (mapping_writably_mapped(mapping))
1577 				flush_dcache_page(page);
1578 			/*
1579 			 * Mark the page accessed if we read the beginning.
1580 			 */
1581 			if (!offset)
1582 				mark_page_accessed(page);
1583 		} else {
1584 			page = ZERO_PAGE(0);
1585 			page_cache_get(page);
1586 		}
1587 
1588 		/*
1589 		 * Ok, we have the page, and it's up-to-date, so
1590 		 * now we can copy it to user space...
1591 		 *
1592 		 * The actor routine returns how many bytes were actually used..
1593 		 * NOTE! This may not be the same as how much of a user buffer
1594 		 * we filled up (we may be padding etc), so we can only update
1595 		 * "pos" here (the actor routine has to update the user buffer
1596 		 * pointers and the remaining count).
1597 		 */
1598 		ret = actor(desc, page, offset, nr);
1599 		offset += ret;
1600 		index += offset >> PAGE_CACHE_SHIFT;
1601 		offset &= ~PAGE_CACHE_MASK;
1602 
1603 		page_cache_release(page);
1604 		if (ret != nr || !desc->count)
1605 			break;
1606 
1607 		cond_resched();
1608 	}
1609 
1610 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1611 	file_accessed(filp);
1612 }
1613 
1614 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1615 {
1616 	read_descriptor_t desc;
1617 
1618 	if ((ssize_t) count < 0)
1619 		return -EINVAL;
1620 	if (!access_ok(VERIFY_WRITE, buf, count))
1621 		return -EFAULT;
1622 	if (!count)
1623 		return 0;
1624 
1625 	desc.written = 0;
1626 	desc.count = count;
1627 	desc.arg.buf = buf;
1628 	desc.error = 0;
1629 
1630 	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1631 	if (desc.written)
1632 		return desc.written;
1633 	return desc.error;
1634 }
1635 
1636 static ssize_t shmem_file_sendfile(struct file *in_file, loff_t *ppos,
1637 			 size_t count, read_actor_t actor, void *target)
1638 {
1639 	read_descriptor_t desc;
1640 
1641 	if (!count)
1642 		return 0;
1643 
1644 	desc.written = 0;
1645 	desc.count = count;
1646 	desc.arg.data = target;
1647 	desc.error = 0;
1648 
1649 	do_shmem_file_read(in_file, ppos, &desc, actor);
1650 	if (desc.written)
1651 		return desc.written;
1652 	return desc.error;
1653 }
1654 
1655 static int shmem_statfs(struct super_block *sb, struct kstatfs *buf)
1656 {
1657 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1658 
1659 	buf->f_type = TMPFS_MAGIC;
1660 	buf->f_bsize = PAGE_CACHE_SIZE;
1661 	buf->f_namelen = NAME_MAX;
1662 	spin_lock(&sbinfo->stat_lock);
1663 	if (sbinfo->max_blocks) {
1664 		buf->f_blocks = sbinfo->max_blocks;
1665 		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1666 	}
1667 	if (sbinfo->max_inodes) {
1668 		buf->f_files = sbinfo->max_inodes;
1669 		buf->f_ffree = sbinfo->free_inodes;
1670 	}
1671 	/* else leave those fields 0 like simple_statfs */
1672 	spin_unlock(&sbinfo->stat_lock);
1673 	return 0;
1674 }
1675 
1676 /*
1677  * File creation. Allocate an inode, and we're done..
1678  */
1679 static int
1680 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1681 {
1682 	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1683 	int error = -ENOSPC;
1684 
1685 	if (inode) {
1686 		error = security_inode_init_security(inode, dir, NULL, NULL,
1687 						     NULL);
1688 		if (error) {
1689 			if (error != -EOPNOTSUPP) {
1690 				iput(inode);
1691 				return error;
1692 			}
1693 			error = 0;
1694 		}
1695 		if (dir->i_mode & S_ISGID) {
1696 			inode->i_gid = dir->i_gid;
1697 			if (S_ISDIR(mode))
1698 				inode->i_mode |= S_ISGID;
1699 		}
1700 		dir->i_size += BOGO_DIRENT_SIZE;
1701 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1702 		d_instantiate(dentry, inode);
1703 		dget(dentry); /* Extra count - pin the dentry in core */
1704 	}
1705 	return error;
1706 }
1707 
1708 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1709 {
1710 	int error;
1711 
1712 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1713 		return error;
1714 	dir->i_nlink++;
1715 	return 0;
1716 }
1717 
1718 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1719 		struct nameidata *nd)
1720 {
1721 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1722 }
1723 
1724 /*
1725  * Link a file..
1726  */
1727 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1728 {
1729 	struct inode *inode = old_dentry->d_inode;
1730 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1731 
1732 	/*
1733 	 * No ordinary (disk based) filesystem counts links as inodes;
1734 	 * but each new link needs a new dentry, pinning lowmem, and
1735 	 * tmpfs dentries cannot be pruned until they are unlinked.
1736 	 */
1737 	if (sbinfo->max_inodes) {
1738 		spin_lock(&sbinfo->stat_lock);
1739 		if (!sbinfo->free_inodes) {
1740 			spin_unlock(&sbinfo->stat_lock);
1741 			return -ENOSPC;
1742 		}
1743 		sbinfo->free_inodes--;
1744 		spin_unlock(&sbinfo->stat_lock);
1745 	}
1746 
1747 	dir->i_size += BOGO_DIRENT_SIZE;
1748 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1749 	inode->i_nlink++;
1750 	atomic_inc(&inode->i_count);	/* New dentry reference */
1751 	dget(dentry);		/* Extra pinning count for the created dentry */
1752 	d_instantiate(dentry, inode);
1753 	return 0;
1754 }
1755 
1756 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1757 {
1758 	struct inode *inode = dentry->d_inode;
1759 
1760 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1761 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1762 		if (sbinfo->max_inodes) {
1763 			spin_lock(&sbinfo->stat_lock);
1764 			sbinfo->free_inodes++;
1765 			spin_unlock(&sbinfo->stat_lock);
1766 		}
1767 	}
1768 
1769 	dir->i_size -= BOGO_DIRENT_SIZE;
1770 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1771 	inode->i_nlink--;
1772 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1773 	return 0;
1774 }
1775 
1776 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1777 {
1778 	if (!simple_empty(dentry))
1779 		return -ENOTEMPTY;
1780 
1781 	dir->i_nlink--;
1782 	return shmem_unlink(dir, dentry);
1783 }
1784 
1785 /*
1786  * The VFS layer already does all the dentry stuff for rename,
1787  * we just have to decrement the usage count for the target if
1788  * it exists so that the VFS layer correctly free's it when it
1789  * gets overwritten.
1790  */
1791 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1792 {
1793 	struct inode *inode = old_dentry->d_inode;
1794 	int they_are_dirs = S_ISDIR(inode->i_mode);
1795 
1796 	if (!simple_empty(new_dentry))
1797 		return -ENOTEMPTY;
1798 
1799 	if (new_dentry->d_inode) {
1800 		(void) shmem_unlink(new_dir, new_dentry);
1801 		if (they_are_dirs)
1802 			old_dir->i_nlink--;
1803 	} else if (they_are_dirs) {
1804 		old_dir->i_nlink--;
1805 		new_dir->i_nlink++;
1806 	}
1807 
1808 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1809 	new_dir->i_size += BOGO_DIRENT_SIZE;
1810 	old_dir->i_ctime = old_dir->i_mtime =
1811 	new_dir->i_ctime = new_dir->i_mtime =
1812 	inode->i_ctime = CURRENT_TIME;
1813 	return 0;
1814 }
1815 
1816 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1817 {
1818 	int error;
1819 	int len;
1820 	struct inode *inode;
1821 	struct page *page = NULL;
1822 	char *kaddr;
1823 	struct shmem_inode_info *info;
1824 
1825 	len = strlen(symname) + 1;
1826 	if (len > PAGE_CACHE_SIZE)
1827 		return -ENAMETOOLONG;
1828 
1829 	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1830 	if (!inode)
1831 		return -ENOSPC;
1832 
1833 	error = security_inode_init_security(inode, dir, NULL, NULL,
1834 					     NULL);
1835 	if (error) {
1836 		if (error != -EOPNOTSUPP) {
1837 			iput(inode);
1838 			return error;
1839 		}
1840 		error = 0;
1841 	}
1842 
1843 	info = SHMEM_I(inode);
1844 	inode->i_size = len-1;
1845 	if (len <= (char *)inode - (char *)info) {
1846 		/* do it inline */
1847 		memcpy(info, symname, len);
1848 		inode->i_op = &shmem_symlink_inline_operations;
1849 	} else {
1850 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1851 		if (error) {
1852 			iput(inode);
1853 			return error;
1854 		}
1855 		inode->i_op = &shmem_symlink_inode_operations;
1856 		kaddr = kmap_atomic(page, KM_USER0);
1857 		memcpy(kaddr, symname, len);
1858 		kunmap_atomic(kaddr, KM_USER0);
1859 		set_page_dirty(page);
1860 		page_cache_release(page);
1861 	}
1862 	if (dir->i_mode & S_ISGID)
1863 		inode->i_gid = dir->i_gid;
1864 	dir->i_size += BOGO_DIRENT_SIZE;
1865 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1866 	d_instantiate(dentry, inode);
1867 	dget(dentry);
1868 	return 0;
1869 }
1870 
1871 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1872 {
1873 	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1874 	return NULL;
1875 }
1876 
1877 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1878 {
1879 	struct page *page = NULL;
1880 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1881 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1882 	return page;
1883 }
1884 
1885 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1886 {
1887 	if (!IS_ERR(nd_get_link(nd))) {
1888 		struct page *page = cookie;
1889 		kunmap(page);
1890 		mark_page_accessed(page);
1891 		page_cache_release(page);
1892 	}
1893 }
1894 
1895 static struct inode_operations shmem_symlink_inline_operations = {
1896 	.readlink	= generic_readlink,
1897 	.follow_link	= shmem_follow_link_inline,
1898 };
1899 
1900 static struct inode_operations shmem_symlink_inode_operations = {
1901 	.truncate	= shmem_truncate,
1902 	.readlink	= generic_readlink,
1903 	.follow_link	= shmem_follow_link,
1904 	.put_link	= shmem_put_link,
1905 };
1906 
1907 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
1908 	gid_t *gid, unsigned long *blocks, unsigned long *inodes,
1909 	int *policy, nodemask_t *policy_nodes)
1910 {
1911 	char *this_char, *value, *rest;
1912 
1913 	while (options != NULL) {
1914 		this_char = options;
1915 		for (;;) {
1916 			/*
1917 			 * NUL-terminate this option: unfortunately,
1918 			 * mount options form a comma-separated list,
1919 			 * but mpol's nodelist may also contain commas.
1920 			 */
1921 			options = strchr(options, ',');
1922 			if (options == NULL)
1923 				break;
1924 			options++;
1925 			if (!isdigit(*options)) {
1926 				options[-1] = '\0';
1927 				break;
1928 			}
1929 		}
1930 		if (!*this_char)
1931 			continue;
1932 		if ((value = strchr(this_char,'=')) != NULL) {
1933 			*value++ = 0;
1934 		} else {
1935 			printk(KERN_ERR
1936 			    "tmpfs: No value for mount option '%s'\n",
1937 			    this_char);
1938 			return 1;
1939 		}
1940 
1941 		if (!strcmp(this_char,"size")) {
1942 			unsigned long long size;
1943 			size = memparse(value,&rest);
1944 			if (*rest == '%') {
1945 				size <<= PAGE_SHIFT;
1946 				size *= totalram_pages;
1947 				do_div(size, 100);
1948 				rest++;
1949 			}
1950 			if (*rest)
1951 				goto bad_val;
1952 			*blocks = size >> PAGE_CACHE_SHIFT;
1953 		} else if (!strcmp(this_char,"nr_blocks")) {
1954 			*blocks = memparse(value,&rest);
1955 			if (*rest)
1956 				goto bad_val;
1957 		} else if (!strcmp(this_char,"nr_inodes")) {
1958 			*inodes = memparse(value,&rest);
1959 			if (*rest)
1960 				goto bad_val;
1961 		} else if (!strcmp(this_char,"mode")) {
1962 			if (!mode)
1963 				continue;
1964 			*mode = simple_strtoul(value,&rest,8);
1965 			if (*rest)
1966 				goto bad_val;
1967 		} else if (!strcmp(this_char,"uid")) {
1968 			if (!uid)
1969 				continue;
1970 			*uid = simple_strtoul(value,&rest,0);
1971 			if (*rest)
1972 				goto bad_val;
1973 		} else if (!strcmp(this_char,"gid")) {
1974 			if (!gid)
1975 				continue;
1976 			*gid = simple_strtoul(value,&rest,0);
1977 			if (*rest)
1978 				goto bad_val;
1979 		} else if (!strcmp(this_char,"mpol")) {
1980 			if (shmem_parse_mpol(value,policy,policy_nodes))
1981 				goto bad_val;
1982 		} else {
1983 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
1984 			       this_char);
1985 			return 1;
1986 		}
1987 	}
1988 	return 0;
1989 
1990 bad_val:
1991 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
1992 	       value, this_char);
1993 	return 1;
1994 
1995 }
1996 
1997 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
1998 {
1999 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2000 	unsigned long max_blocks = sbinfo->max_blocks;
2001 	unsigned long max_inodes = sbinfo->max_inodes;
2002 	int policy = sbinfo->policy;
2003 	nodemask_t policy_nodes = sbinfo->policy_nodes;
2004 	unsigned long blocks;
2005 	unsigned long inodes;
2006 	int error = -EINVAL;
2007 
2008 	if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2009 				&max_inodes, &policy, &policy_nodes))
2010 		return error;
2011 
2012 	spin_lock(&sbinfo->stat_lock);
2013 	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2014 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2015 	if (max_blocks < blocks)
2016 		goto out;
2017 	if (max_inodes < inodes)
2018 		goto out;
2019 	/*
2020 	 * Those tests also disallow limited->unlimited while any are in
2021 	 * use, so i_blocks will always be zero when max_blocks is zero;
2022 	 * but we must separately disallow unlimited->limited, because
2023 	 * in that case we have no record of how much is already in use.
2024 	 */
2025 	if (max_blocks && !sbinfo->max_blocks)
2026 		goto out;
2027 	if (max_inodes && !sbinfo->max_inodes)
2028 		goto out;
2029 
2030 	error = 0;
2031 	sbinfo->max_blocks  = max_blocks;
2032 	sbinfo->free_blocks = max_blocks - blocks;
2033 	sbinfo->max_inodes  = max_inodes;
2034 	sbinfo->free_inodes = max_inodes - inodes;
2035 	sbinfo->policy = policy;
2036 	sbinfo->policy_nodes = policy_nodes;
2037 out:
2038 	spin_unlock(&sbinfo->stat_lock);
2039 	return error;
2040 }
2041 #endif
2042 
2043 static void shmem_put_super(struct super_block *sb)
2044 {
2045 	kfree(sb->s_fs_info);
2046 	sb->s_fs_info = NULL;
2047 }
2048 
2049 static int shmem_fill_super(struct super_block *sb,
2050 			    void *data, int silent)
2051 {
2052 	struct inode *inode;
2053 	struct dentry *root;
2054 	int mode   = S_IRWXUGO | S_ISVTX;
2055 	uid_t uid = current->fsuid;
2056 	gid_t gid = current->fsgid;
2057 	int err = -ENOMEM;
2058 	struct shmem_sb_info *sbinfo;
2059 	unsigned long blocks = 0;
2060 	unsigned long inodes = 0;
2061 	int policy = MPOL_DEFAULT;
2062 	nodemask_t policy_nodes = node_online_map;
2063 
2064 #ifdef CONFIG_TMPFS
2065 	/*
2066 	 * Per default we only allow half of the physical ram per
2067 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2068 	 * but the internal instance is left unlimited.
2069 	 */
2070 	if (!(sb->s_flags & MS_NOUSER)) {
2071 		blocks = totalram_pages / 2;
2072 		inodes = totalram_pages - totalhigh_pages;
2073 		if (inodes > blocks)
2074 			inodes = blocks;
2075 		if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2076 					&inodes, &policy, &policy_nodes))
2077 			return -EINVAL;
2078 	}
2079 #else
2080 	sb->s_flags |= MS_NOUSER;
2081 #endif
2082 
2083 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2084 	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2085 				L1_CACHE_BYTES), GFP_KERNEL);
2086 	if (!sbinfo)
2087 		return -ENOMEM;
2088 
2089 	spin_lock_init(&sbinfo->stat_lock);
2090 	sbinfo->max_blocks = blocks;
2091 	sbinfo->free_blocks = blocks;
2092 	sbinfo->max_inodes = inodes;
2093 	sbinfo->free_inodes = inodes;
2094 	sbinfo->policy = policy;
2095 	sbinfo->policy_nodes = policy_nodes;
2096 
2097 	sb->s_fs_info = sbinfo;
2098 	sb->s_maxbytes = SHMEM_MAX_BYTES;
2099 	sb->s_blocksize = PAGE_CACHE_SIZE;
2100 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2101 	sb->s_magic = TMPFS_MAGIC;
2102 	sb->s_op = &shmem_ops;
2103 
2104 	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2105 	if (!inode)
2106 		goto failed;
2107 	inode->i_uid = uid;
2108 	inode->i_gid = gid;
2109 	root = d_alloc_root(inode);
2110 	if (!root)
2111 		goto failed_iput;
2112 	sb->s_root = root;
2113 	return 0;
2114 
2115 failed_iput:
2116 	iput(inode);
2117 failed:
2118 	shmem_put_super(sb);
2119 	return err;
2120 }
2121 
2122 static struct kmem_cache *shmem_inode_cachep;
2123 
2124 static struct inode *shmem_alloc_inode(struct super_block *sb)
2125 {
2126 	struct shmem_inode_info *p;
2127 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, SLAB_KERNEL);
2128 	if (!p)
2129 		return NULL;
2130 	return &p->vfs_inode;
2131 }
2132 
2133 static void shmem_destroy_inode(struct inode *inode)
2134 {
2135 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2136 		/* only struct inode is valid if it's an inline symlink */
2137 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2138 	}
2139 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2140 }
2141 
2142 static void init_once(void *foo, struct kmem_cache *cachep,
2143 		      unsigned long flags)
2144 {
2145 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2146 
2147 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2148 	    SLAB_CTOR_CONSTRUCTOR) {
2149 		inode_init_once(&p->vfs_inode);
2150 	}
2151 }
2152 
2153 static int init_inodecache(void)
2154 {
2155 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2156 				sizeof(struct shmem_inode_info),
2157 				0, 0, init_once, NULL);
2158 	if (shmem_inode_cachep == NULL)
2159 		return -ENOMEM;
2160 	return 0;
2161 }
2162 
2163 static void destroy_inodecache(void)
2164 {
2165 	if (kmem_cache_destroy(shmem_inode_cachep))
2166 		printk(KERN_INFO "shmem_inode_cache: not all structures were freed\n");
2167 }
2168 
2169 static struct address_space_operations shmem_aops = {
2170 	.writepage	= shmem_writepage,
2171 	.set_page_dirty	= __set_page_dirty_nobuffers,
2172 #ifdef CONFIG_TMPFS
2173 	.prepare_write	= shmem_prepare_write,
2174 	.commit_write	= simple_commit_write,
2175 #endif
2176 };
2177 
2178 static struct file_operations shmem_file_operations = {
2179 	.mmap		= shmem_mmap,
2180 #ifdef CONFIG_TMPFS
2181 	.llseek		= generic_file_llseek,
2182 	.read		= shmem_file_read,
2183 	.write		= shmem_file_write,
2184 	.fsync		= simple_sync_file,
2185 	.sendfile	= shmem_file_sendfile,
2186 #endif
2187 };
2188 
2189 static struct inode_operations shmem_inode_operations = {
2190 	.truncate	= shmem_truncate,
2191 	.setattr	= shmem_notify_change,
2192 	.truncate_range	= shmem_truncate_range,
2193 };
2194 
2195 static struct inode_operations shmem_dir_inode_operations = {
2196 #ifdef CONFIG_TMPFS
2197 	.create		= shmem_create,
2198 	.lookup		= simple_lookup,
2199 	.link		= shmem_link,
2200 	.unlink		= shmem_unlink,
2201 	.symlink	= shmem_symlink,
2202 	.mkdir		= shmem_mkdir,
2203 	.rmdir		= shmem_rmdir,
2204 	.mknod		= shmem_mknod,
2205 	.rename		= shmem_rename,
2206 #endif
2207 };
2208 
2209 static struct super_operations shmem_ops = {
2210 	.alloc_inode	= shmem_alloc_inode,
2211 	.destroy_inode	= shmem_destroy_inode,
2212 #ifdef CONFIG_TMPFS
2213 	.statfs		= shmem_statfs,
2214 	.remount_fs	= shmem_remount_fs,
2215 #endif
2216 	.delete_inode	= shmem_delete_inode,
2217 	.drop_inode	= generic_delete_inode,
2218 	.put_super	= shmem_put_super,
2219 };
2220 
2221 static struct vm_operations_struct shmem_vm_ops = {
2222 	.nopage		= shmem_nopage,
2223 	.populate	= shmem_populate,
2224 #ifdef CONFIG_NUMA
2225 	.set_policy     = shmem_set_policy,
2226 	.get_policy     = shmem_get_policy,
2227 #endif
2228 };
2229 
2230 
2231 static struct super_block *shmem_get_sb(struct file_system_type *fs_type,
2232 	int flags, const char *dev_name, void *data)
2233 {
2234 	return get_sb_nodev(fs_type, flags, data, shmem_fill_super);
2235 }
2236 
2237 static struct file_system_type tmpfs_fs_type = {
2238 	.owner		= THIS_MODULE,
2239 	.name		= "tmpfs",
2240 	.get_sb		= shmem_get_sb,
2241 	.kill_sb	= kill_litter_super,
2242 };
2243 static struct vfsmount *shm_mnt;
2244 
2245 static int __init init_tmpfs(void)
2246 {
2247 	int error;
2248 
2249 	error = init_inodecache();
2250 	if (error)
2251 		goto out3;
2252 
2253 	error = register_filesystem(&tmpfs_fs_type);
2254 	if (error) {
2255 		printk(KERN_ERR "Could not register tmpfs\n");
2256 		goto out2;
2257 	}
2258 #ifdef CONFIG_TMPFS
2259 	devfs_mk_dir("shm");
2260 #endif
2261 	shm_mnt = do_kern_mount(tmpfs_fs_type.name, MS_NOUSER,
2262 				tmpfs_fs_type.name, NULL);
2263 	if (IS_ERR(shm_mnt)) {
2264 		error = PTR_ERR(shm_mnt);
2265 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2266 		goto out1;
2267 	}
2268 	return 0;
2269 
2270 out1:
2271 	unregister_filesystem(&tmpfs_fs_type);
2272 out2:
2273 	destroy_inodecache();
2274 out3:
2275 	shm_mnt = ERR_PTR(error);
2276 	return error;
2277 }
2278 module_init(init_tmpfs)
2279 
2280 /*
2281  * shmem_file_setup - get an unlinked file living in tmpfs
2282  *
2283  * @name: name for dentry (to be seen in /proc/<pid>/maps
2284  * @size: size to be set for the file
2285  *
2286  */
2287 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2288 {
2289 	int error;
2290 	struct file *file;
2291 	struct inode *inode;
2292 	struct dentry *dentry, *root;
2293 	struct qstr this;
2294 
2295 	if (IS_ERR(shm_mnt))
2296 		return (void *)shm_mnt;
2297 
2298 	if (size < 0 || size > SHMEM_MAX_BYTES)
2299 		return ERR_PTR(-EINVAL);
2300 
2301 	if (shmem_acct_size(flags, size))
2302 		return ERR_PTR(-ENOMEM);
2303 
2304 	error = -ENOMEM;
2305 	this.name = name;
2306 	this.len = strlen(name);
2307 	this.hash = 0; /* will go */
2308 	root = shm_mnt->mnt_root;
2309 	dentry = d_alloc(root, &this);
2310 	if (!dentry)
2311 		goto put_memory;
2312 
2313 	error = -ENFILE;
2314 	file = get_empty_filp();
2315 	if (!file)
2316 		goto put_dentry;
2317 
2318 	error = -ENOSPC;
2319 	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2320 	if (!inode)
2321 		goto close_file;
2322 
2323 	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2324 	d_instantiate(dentry, inode);
2325 	inode->i_size = size;
2326 	inode->i_nlink = 0;	/* It is unlinked */
2327 	file->f_vfsmnt = mntget(shm_mnt);
2328 	file->f_dentry = dentry;
2329 	file->f_mapping = inode->i_mapping;
2330 	file->f_op = &shmem_file_operations;
2331 	file->f_mode = FMODE_WRITE | FMODE_READ;
2332 	return file;
2333 
2334 close_file:
2335 	put_filp(file);
2336 put_dentry:
2337 	dput(dentry);
2338 put_memory:
2339 	shmem_unacct_size(flags, size);
2340 	return ERR_PTR(error);
2341 }
2342 
2343 /*
2344  * shmem_zero_setup - setup a shared anonymous mapping
2345  *
2346  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2347  */
2348 int shmem_zero_setup(struct vm_area_struct *vma)
2349 {
2350 	struct file *file;
2351 	loff_t size = vma->vm_end - vma->vm_start;
2352 
2353 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2354 	if (IS_ERR(file))
2355 		return PTR_ERR(file);
2356 
2357 	if (vma->vm_file)
2358 		fput(vma->vm_file);
2359 	vma->vm_file = file;
2360 	vma->vm_ops = &shmem_vm_ops;
2361 	return 0;
2362 }
2363