1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include <linux/unicode.h> 44 #include "swap.h" 45 46 static struct vfsmount *shm_mnt __ro_after_init; 47 48 #ifdef CONFIG_SHMEM 49 /* 50 * This virtual memory filesystem is heavily based on the ramfs. It 51 * extends ramfs by the ability to use swap and honor resource limits 52 * which makes it a completely usable filesystem. 53 */ 54 55 #include <linux/xattr.h> 56 #include <linux/exportfs.h> 57 #include <linux/posix_acl.h> 58 #include <linux/posix_acl_xattr.h> 59 #include <linux/mman.h> 60 #include <linux/string.h> 61 #include <linux/slab.h> 62 #include <linux/backing-dev.h> 63 #include <linux/writeback.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 #include <linux/quotaops.h> 83 #include <linux/rcupdate_wait.h> 84 85 #include <linux/uaccess.h> 86 87 #include "internal.h" 88 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Pretend that one inode + its dentry occupy this much memory */ 95 #define BOGO_INODE_SIZE 1024 96 97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 98 #define SHORT_SYMLINK_LEN 128 99 100 /* 101 * shmem_fallocate communicates with shmem_fault or shmem_writeout via 102 * inode->i_private (with i_rwsem making sure that it has only one user at 103 * a time): we would prefer not to enlarge the shmem inode just for that. 104 */ 105 struct shmem_falloc { 106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 107 pgoff_t start; /* start of range currently being fallocated */ 108 pgoff_t next; /* the next page offset to be fallocated */ 109 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 110 pgoff_t nr_unswapped; /* how often writeout refused to swap out */ 111 }; 112 113 struct shmem_options { 114 unsigned long long blocks; 115 unsigned long long inodes; 116 struct mempolicy *mpol; 117 kuid_t uid; 118 kgid_t gid; 119 umode_t mode; 120 bool full_inums; 121 int huge; 122 int seen; 123 bool noswap; 124 unsigned short quota_types; 125 struct shmem_quota_limits qlimits; 126 #if IS_ENABLED(CONFIG_UNICODE) 127 struct unicode_map *encoding; 128 bool strict_encoding; 129 #endif 130 #define SHMEM_SEEN_BLOCKS 1 131 #define SHMEM_SEEN_INODES 2 132 #define SHMEM_SEEN_HUGE 4 133 #define SHMEM_SEEN_INUMS 8 134 #define SHMEM_SEEN_NOSWAP 16 135 #define SHMEM_SEEN_QUOTA 32 136 }; 137 138 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 139 static unsigned long huge_shmem_orders_always __read_mostly; 140 static unsigned long huge_shmem_orders_madvise __read_mostly; 141 static unsigned long huge_shmem_orders_inherit __read_mostly; 142 static unsigned long huge_shmem_orders_within_size __read_mostly; 143 static bool shmem_orders_configured __initdata; 144 #endif 145 146 #ifdef CONFIG_TMPFS 147 static unsigned long shmem_default_max_blocks(void) 148 { 149 return totalram_pages() / 2; 150 } 151 152 static unsigned long shmem_default_max_inodes(void) 153 { 154 unsigned long nr_pages = totalram_pages(); 155 156 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 157 ULONG_MAX / BOGO_INODE_SIZE); 158 } 159 #endif 160 161 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 162 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 163 struct vm_area_struct *vma, vm_fault_t *fault_type); 164 165 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 166 { 167 return sb->s_fs_info; 168 } 169 170 /* 171 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 172 * for shared memory and for shared anonymous (/dev/zero) mappings 173 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 174 * consistent with the pre-accounting of private mappings ... 175 */ 176 static inline int shmem_acct_size(unsigned long flags, loff_t size) 177 { 178 return (flags & VM_NORESERVE) ? 179 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 180 } 181 182 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 183 { 184 if (!(flags & VM_NORESERVE)) 185 vm_unacct_memory(VM_ACCT(size)); 186 } 187 188 static inline int shmem_reacct_size(unsigned long flags, 189 loff_t oldsize, loff_t newsize) 190 { 191 if (!(flags & VM_NORESERVE)) { 192 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 193 return security_vm_enough_memory_mm(current->mm, 194 VM_ACCT(newsize) - VM_ACCT(oldsize)); 195 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 196 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 197 } 198 return 0; 199 } 200 201 /* 202 * ... whereas tmpfs objects are accounted incrementally as 203 * pages are allocated, in order to allow large sparse files. 204 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 205 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 206 */ 207 static inline int shmem_acct_blocks(unsigned long flags, long pages) 208 { 209 if (!(flags & VM_NORESERVE)) 210 return 0; 211 212 return security_vm_enough_memory_mm(current->mm, 213 pages * VM_ACCT(PAGE_SIZE)); 214 } 215 216 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 217 { 218 if (flags & VM_NORESERVE) 219 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 220 } 221 222 static int shmem_inode_acct_blocks(struct inode *inode, long pages) 223 { 224 struct shmem_inode_info *info = SHMEM_I(inode); 225 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 226 int err = -ENOSPC; 227 228 if (shmem_acct_blocks(info->flags, pages)) 229 return err; 230 231 might_sleep(); /* when quotas */ 232 if (sbinfo->max_blocks) { 233 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 234 sbinfo->max_blocks, pages)) 235 goto unacct; 236 237 err = dquot_alloc_block_nodirty(inode, pages); 238 if (err) { 239 percpu_counter_sub(&sbinfo->used_blocks, pages); 240 goto unacct; 241 } 242 } else { 243 err = dquot_alloc_block_nodirty(inode, pages); 244 if (err) 245 goto unacct; 246 } 247 248 return 0; 249 250 unacct: 251 shmem_unacct_blocks(info->flags, pages); 252 return err; 253 } 254 255 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 256 { 257 struct shmem_inode_info *info = SHMEM_I(inode); 258 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 259 260 might_sleep(); /* when quotas */ 261 dquot_free_block_nodirty(inode, pages); 262 263 if (sbinfo->max_blocks) 264 percpu_counter_sub(&sbinfo->used_blocks, pages); 265 shmem_unacct_blocks(info->flags, pages); 266 } 267 268 static const struct super_operations shmem_ops; 269 static const struct address_space_operations shmem_aops; 270 static const struct file_operations shmem_file_operations; 271 static const struct inode_operations shmem_inode_operations; 272 static const struct inode_operations shmem_dir_inode_operations; 273 static const struct inode_operations shmem_special_inode_operations; 274 static const struct vm_operations_struct shmem_vm_ops; 275 static const struct vm_operations_struct shmem_anon_vm_ops; 276 static struct file_system_type shmem_fs_type; 277 278 bool shmem_mapping(const struct address_space *mapping) 279 { 280 return mapping->a_ops == &shmem_aops; 281 } 282 EXPORT_SYMBOL_GPL(shmem_mapping); 283 284 bool vma_is_anon_shmem(const struct vm_area_struct *vma) 285 { 286 return vma->vm_ops == &shmem_anon_vm_ops; 287 } 288 289 bool vma_is_shmem(const struct vm_area_struct *vma) 290 { 291 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 292 } 293 294 static LIST_HEAD(shmem_swaplist); 295 static DEFINE_SPINLOCK(shmem_swaplist_lock); 296 297 #ifdef CONFIG_TMPFS_QUOTA 298 299 static int shmem_enable_quotas(struct super_block *sb, 300 unsigned short quota_types) 301 { 302 int type, err = 0; 303 304 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 305 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 306 if (!(quota_types & (1 << type))) 307 continue; 308 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 309 DQUOT_USAGE_ENABLED | 310 DQUOT_LIMITS_ENABLED); 311 if (err) 312 goto out_err; 313 } 314 return 0; 315 316 out_err: 317 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 318 type, err); 319 for (type--; type >= 0; type--) 320 dquot_quota_off(sb, type); 321 return err; 322 } 323 324 static void shmem_disable_quotas(struct super_block *sb) 325 { 326 int type; 327 328 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 329 dquot_quota_off(sb, type); 330 } 331 332 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 333 { 334 return SHMEM_I(inode)->i_dquot; 335 } 336 #endif /* CONFIG_TMPFS_QUOTA */ 337 338 /* 339 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 340 * produces a novel ino for the newly allocated inode. 341 * 342 * It may also be called when making a hard link to permit the space needed by 343 * each dentry. However, in that case, no new inode number is needed since that 344 * internally draws from another pool of inode numbers (currently global 345 * get_next_ino()). This case is indicated by passing NULL as inop. 346 */ 347 #define SHMEM_INO_BATCH 1024 348 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 349 { 350 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 351 ino_t ino; 352 353 if (!(sb->s_flags & SB_KERNMOUNT)) { 354 raw_spin_lock(&sbinfo->stat_lock); 355 if (sbinfo->max_inodes) { 356 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 357 raw_spin_unlock(&sbinfo->stat_lock); 358 return -ENOSPC; 359 } 360 sbinfo->free_ispace -= BOGO_INODE_SIZE; 361 } 362 if (inop) { 363 ino = sbinfo->next_ino++; 364 if (unlikely(is_zero_ino(ino))) 365 ino = sbinfo->next_ino++; 366 if (unlikely(!sbinfo->full_inums && 367 ino > UINT_MAX)) { 368 /* 369 * Emulate get_next_ino uint wraparound for 370 * compatibility 371 */ 372 if (IS_ENABLED(CONFIG_64BIT)) 373 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 374 __func__, MINOR(sb->s_dev)); 375 sbinfo->next_ino = 1; 376 ino = sbinfo->next_ino++; 377 } 378 *inop = ino; 379 } 380 raw_spin_unlock(&sbinfo->stat_lock); 381 } else if (inop) { 382 /* 383 * __shmem_file_setup, one of our callers, is lock-free: it 384 * doesn't hold stat_lock in shmem_reserve_inode since 385 * max_inodes is always 0, and is called from potentially 386 * unknown contexts. As such, use a per-cpu batched allocator 387 * which doesn't require the per-sb stat_lock unless we are at 388 * the batch boundary. 389 * 390 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 391 * shmem mounts are not exposed to userspace, so we don't need 392 * to worry about things like glibc compatibility. 393 */ 394 ino_t *next_ino; 395 396 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 397 ino = *next_ino; 398 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 399 raw_spin_lock(&sbinfo->stat_lock); 400 ino = sbinfo->next_ino; 401 sbinfo->next_ino += SHMEM_INO_BATCH; 402 raw_spin_unlock(&sbinfo->stat_lock); 403 if (unlikely(is_zero_ino(ino))) 404 ino++; 405 } 406 *inop = ino; 407 *next_ino = ++ino; 408 put_cpu(); 409 } 410 411 return 0; 412 } 413 414 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 415 { 416 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 417 if (sbinfo->max_inodes) { 418 raw_spin_lock(&sbinfo->stat_lock); 419 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 420 raw_spin_unlock(&sbinfo->stat_lock); 421 } 422 } 423 424 /** 425 * shmem_recalc_inode - recalculate the block usage of an inode 426 * @inode: inode to recalc 427 * @alloced: the change in number of pages allocated to inode 428 * @swapped: the change in number of pages swapped from inode 429 * 430 * We have to calculate the free blocks since the mm can drop 431 * undirtied hole pages behind our back. 432 * 433 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 434 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 435 * 436 * Return: true if swapped was incremented from 0, for shmem_writeout(). 437 */ 438 static bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 439 { 440 struct shmem_inode_info *info = SHMEM_I(inode); 441 bool first_swapped = false; 442 long freed; 443 444 spin_lock(&info->lock); 445 info->alloced += alloced; 446 info->swapped += swapped; 447 freed = info->alloced - info->swapped - 448 READ_ONCE(inode->i_mapping->nrpages); 449 /* 450 * Special case: whereas normally shmem_recalc_inode() is called 451 * after i_mapping->nrpages has already been adjusted (up or down), 452 * shmem_writeout() has to raise swapped before nrpages is lowered - 453 * to stop a racing shmem_recalc_inode() from thinking that a page has 454 * been freed. Compensate here, to avoid the need for a followup call. 455 */ 456 if (swapped > 0) { 457 if (info->swapped == swapped) 458 first_swapped = true; 459 freed += swapped; 460 } 461 if (freed > 0) 462 info->alloced -= freed; 463 spin_unlock(&info->lock); 464 465 /* The quota case may block */ 466 if (freed > 0) 467 shmem_inode_unacct_blocks(inode, freed); 468 return first_swapped; 469 } 470 471 bool shmem_charge(struct inode *inode, long pages) 472 { 473 struct address_space *mapping = inode->i_mapping; 474 475 if (shmem_inode_acct_blocks(inode, pages)) 476 return false; 477 478 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 479 xa_lock_irq(&mapping->i_pages); 480 mapping->nrpages += pages; 481 xa_unlock_irq(&mapping->i_pages); 482 483 shmem_recalc_inode(inode, pages, 0); 484 return true; 485 } 486 487 void shmem_uncharge(struct inode *inode, long pages) 488 { 489 /* pages argument is currently unused: keep it to help debugging */ 490 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 491 492 shmem_recalc_inode(inode, 0, 0); 493 } 494 495 /* 496 * Replace item expected in xarray by a new item, while holding xa_lock. 497 */ 498 static int shmem_replace_entry(struct address_space *mapping, 499 pgoff_t index, void *expected, void *replacement) 500 { 501 XA_STATE(xas, &mapping->i_pages, index); 502 void *item; 503 504 VM_BUG_ON(!expected); 505 VM_BUG_ON(!replacement); 506 item = xas_load(&xas); 507 if (item != expected) 508 return -ENOENT; 509 xas_store(&xas, replacement); 510 return 0; 511 } 512 513 /* 514 * Sometimes, before we decide whether to proceed or to fail, we must check 515 * that an entry was not already brought back or split by a racing thread. 516 * 517 * Checking folio is not enough: by the time a swapcache folio is locked, it 518 * might be reused, and again be swapcache, using the same swap as before. 519 * Returns the swap entry's order if it still presents, else returns -1. 520 */ 521 static int shmem_confirm_swap(struct address_space *mapping, pgoff_t index, 522 swp_entry_t swap) 523 { 524 XA_STATE(xas, &mapping->i_pages, index); 525 int ret = -1; 526 void *entry; 527 528 rcu_read_lock(); 529 do { 530 entry = xas_load(&xas); 531 if (entry == swp_to_radix_entry(swap)) 532 ret = xas_get_order(&xas); 533 } while (xas_retry(&xas, entry)); 534 rcu_read_unlock(); 535 return ret; 536 } 537 538 /* 539 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 540 * 541 * SHMEM_HUGE_NEVER: 542 * disables huge pages for the mount; 543 * SHMEM_HUGE_ALWAYS: 544 * enables huge pages for the mount; 545 * SHMEM_HUGE_WITHIN_SIZE: 546 * only allocate huge pages if the page will be fully within i_size, 547 * also respect madvise() hints; 548 * SHMEM_HUGE_ADVISE: 549 * only allocate huge pages if requested with madvise(); 550 */ 551 552 #define SHMEM_HUGE_NEVER 0 553 #define SHMEM_HUGE_ALWAYS 1 554 #define SHMEM_HUGE_WITHIN_SIZE 2 555 #define SHMEM_HUGE_ADVISE 3 556 557 /* 558 * Special values. 559 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 560 * 561 * SHMEM_HUGE_DENY: 562 * disables huge on shm_mnt and all mounts, for emergency use; 563 * SHMEM_HUGE_FORCE: 564 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 565 * 566 */ 567 #define SHMEM_HUGE_DENY (-1) 568 #define SHMEM_HUGE_FORCE (-2) 569 570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 571 /* ifdef here to avoid bloating shmem.o when not necessary */ 572 573 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 574 static int tmpfs_huge __read_mostly = SHMEM_HUGE_NEVER; 575 576 /** 577 * shmem_mapping_size_orders - Get allowable folio orders for the given file size. 578 * @mapping: Target address_space. 579 * @index: The page index. 580 * @write_end: end of a write, could extend inode size. 581 * 582 * This returns huge orders for folios (when supported) based on the file size 583 * which the mapping currently allows at the given index. The index is relevant 584 * due to alignment considerations the mapping might have. The returned order 585 * may be less than the size passed. 586 * 587 * Return: The orders. 588 */ 589 static inline unsigned int 590 shmem_mapping_size_orders(struct address_space *mapping, pgoff_t index, loff_t write_end) 591 { 592 unsigned int order; 593 size_t size; 594 595 if (!mapping_large_folio_support(mapping) || !write_end) 596 return 0; 597 598 /* Calculate the write size based on the write_end */ 599 size = write_end - (index << PAGE_SHIFT); 600 order = filemap_get_order(size); 601 if (!order) 602 return 0; 603 604 /* If we're not aligned, allocate a smaller folio */ 605 if (index & ((1UL << order) - 1)) 606 order = __ffs(index); 607 608 order = min_t(size_t, order, MAX_PAGECACHE_ORDER); 609 return order > 0 ? BIT(order + 1) - 1 : 0; 610 } 611 612 static unsigned int shmem_get_orders_within_size(struct inode *inode, 613 unsigned long within_size_orders, pgoff_t index, 614 loff_t write_end) 615 { 616 pgoff_t aligned_index; 617 unsigned long order; 618 loff_t i_size; 619 620 order = highest_order(within_size_orders); 621 while (within_size_orders) { 622 aligned_index = round_up(index + 1, 1 << order); 623 i_size = max(write_end, i_size_read(inode)); 624 i_size = round_up(i_size, PAGE_SIZE); 625 if (i_size >> PAGE_SHIFT >= aligned_index) 626 return within_size_orders; 627 628 order = next_order(&within_size_orders, order); 629 } 630 631 return 0; 632 } 633 634 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 635 loff_t write_end, bool shmem_huge_force, 636 struct vm_area_struct *vma, 637 vm_flags_t vm_flags) 638 { 639 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ? 640 0 : BIT(HPAGE_PMD_ORDER); 641 unsigned long within_size_orders; 642 643 if (!S_ISREG(inode->i_mode)) 644 return 0; 645 if (shmem_huge == SHMEM_HUGE_DENY) 646 return 0; 647 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 648 return maybe_pmd_order; 649 650 /* 651 * The huge order allocation for anon shmem is controlled through 652 * the mTHP interface, so we still use PMD-sized huge order to 653 * check whether global control is enabled. 654 * 655 * For tmpfs mmap()'s huge order, we still use PMD-sized order to 656 * allocate huge pages due to lack of a write size hint. 657 * 658 * Otherwise, tmpfs will allow getting a highest order hint based on 659 * the size of write and fallocate paths, then will try each allowable 660 * huge orders. 661 */ 662 switch (SHMEM_SB(inode->i_sb)->huge) { 663 case SHMEM_HUGE_ALWAYS: 664 if (vma) 665 return maybe_pmd_order; 666 667 return shmem_mapping_size_orders(inode->i_mapping, index, write_end); 668 case SHMEM_HUGE_WITHIN_SIZE: 669 if (vma) 670 within_size_orders = maybe_pmd_order; 671 else 672 within_size_orders = shmem_mapping_size_orders(inode->i_mapping, 673 index, write_end); 674 675 within_size_orders = shmem_get_orders_within_size(inode, within_size_orders, 676 index, write_end); 677 if (within_size_orders > 0) 678 return within_size_orders; 679 680 fallthrough; 681 case SHMEM_HUGE_ADVISE: 682 if (vm_flags & VM_HUGEPAGE) 683 return maybe_pmd_order; 684 fallthrough; 685 default: 686 return 0; 687 } 688 } 689 690 static int shmem_parse_huge(const char *str) 691 { 692 int huge; 693 694 if (!str) 695 return -EINVAL; 696 697 if (!strcmp(str, "never")) 698 huge = SHMEM_HUGE_NEVER; 699 else if (!strcmp(str, "always")) 700 huge = SHMEM_HUGE_ALWAYS; 701 else if (!strcmp(str, "within_size")) 702 huge = SHMEM_HUGE_WITHIN_SIZE; 703 else if (!strcmp(str, "advise")) 704 huge = SHMEM_HUGE_ADVISE; 705 else if (!strcmp(str, "deny")) 706 huge = SHMEM_HUGE_DENY; 707 else if (!strcmp(str, "force")) 708 huge = SHMEM_HUGE_FORCE; 709 else 710 return -EINVAL; 711 712 if (!has_transparent_hugepage() && 713 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 714 return -EINVAL; 715 716 /* Do not override huge allocation policy with non-PMD sized mTHP */ 717 if (huge == SHMEM_HUGE_FORCE && 718 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER)) 719 return -EINVAL; 720 721 return huge; 722 } 723 724 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 725 static const char *shmem_format_huge(int huge) 726 { 727 switch (huge) { 728 case SHMEM_HUGE_NEVER: 729 return "never"; 730 case SHMEM_HUGE_ALWAYS: 731 return "always"; 732 case SHMEM_HUGE_WITHIN_SIZE: 733 return "within_size"; 734 case SHMEM_HUGE_ADVISE: 735 return "advise"; 736 case SHMEM_HUGE_DENY: 737 return "deny"; 738 case SHMEM_HUGE_FORCE: 739 return "force"; 740 default: 741 VM_BUG_ON(1); 742 return "bad_val"; 743 } 744 } 745 #endif 746 747 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 748 struct shrink_control *sc, unsigned long nr_to_free) 749 { 750 LIST_HEAD(list), *pos, *next; 751 struct inode *inode; 752 struct shmem_inode_info *info; 753 struct folio *folio; 754 unsigned long batch = sc ? sc->nr_to_scan : 128; 755 unsigned long split = 0, freed = 0; 756 757 if (list_empty(&sbinfo->shrinklist)) 758 return SHRINK_STOP; 759 760 spin_lock(&sbinfo->shrinklist_lock); 761 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 762 info = list_entry(pos, struct shmem_inode_info, shrinklist); 763 764 /* pin the inode */ 765 inode = igrab(&info->vfs_inode); 766 767 /* inode is about to be evicted */ 768 if (!inode) { 769 list_del_init(&info->shrinklist); 770 goto next; 771 } 772 773 list_move(&info->shrinklist, &list); 774 next: 775 sbinfo->shrinklist_len--; 776 if (!--batch) 777 break; 778 } 779 spin_unlock(&sbinfo->shrinklist_lock); 780 781 list_for_each_safe(pos, next, &list) { 782 pgoff_t next, end; 783 loff_t i_size; 784 int ret; 785 786 info = list_entry(pos, struct shmem_inode_info, shrinklist); 787 inode = &info->vfs_inode; 788 789 if (nr_to_free && freed >= nr_to_free) 790 goto move_back; 791 792 i_size = i_size_read(inode); 793 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE); 794 if (!folio || xa_is_value(folio)) 795 goto drop; 796 797 /* No large folio at the end of the file: nothing to split */ 798 if (!folio_test_large(folio)) { 799 folio_put(folio); 800 goto drop; 801 } 802 803 /* Check if there is anything to gain from splitting */ 804 next = folio_next_index(folio); 805 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE)); 806 if (end <= folio->index || end >= next) { 807 folio_put(folio); 808 goto drop; 809 } 810 811 /* 812 * Move the inode on the list back to shrinklist if we failed 813 * to lock the page at this time. 814 * 815 * Waiting for the lock may lead to deadlock in the 816 * reclaim path. 817 */ 818 if (!folio_trylock(folio)) { 819 folio_put(folio); 820 goto move_back; 821 } 822 823 ret = split_folio(folio); 824 folio_unlock(folio); 825 folio_put(folio); 826 827 /* If split failed move the inode on the list back to shrinklist */ 828 if (ret) 829 goto move_back; 830 831 freed += next - end; 832 split++; 833 drop: 834 list_del_init(&info->shrinklist); 835 goto put; 836 move_back: 837 /* 838 * Make sure the inode is either on the global list or deleted 839 * from any local list before iput() since it could be deleted 840 * in another thread once we put the inode (then the local list 841 * is corrupted). 842 */ 843 spin_lock(&sbinfo->shrinklist_lock); 844 list_move(&info->shrinklist, &sbinfo->shrinklist); 845 sbinfo->shrinklist_len++; 846 spin_unlock(&sbinfo->shrinklist_lock); 847 put: 848 iput(inode); 849 } 850 851 return split; 852 } 853 854 static long shmem_unused_huge_scan(struct super_block *sb, 855 struct shrink_control *sc) 856 { 857 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 858 859 if (!READ_ONCE(sbinfo->shrinklist_len)) 860 return SHRINK_STOP; 861 862 return shmem_unused_huge_shrink(sbinfo, sc, 0); 863 } 864 865 static long shmem_unused_huge_count(struct super_block *sb, 866 struct shrink_control *sc) 867 { 868 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 869 return READ_ONCE(sbinfo->shrinklist_len); 870 } 871 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 872 873 #define shmem_huge SHMEM_HUGE_DENY 874 875 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 876 struct shrink_control *sc, unsigned long nr_to_free) 877 { 878 return 0; 879 } 880 881 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 882 loff_t write_end, bool shmem_huge_force, 883 struct vm_area_struct *vma, 884 vm_flags_t vm_flags) 885 { 886 return 0; 887 } 888 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 889 890 static void shmem_update_stats(struct folio *folio, int nr_pages) 891 { 892 if (folio_test_pmd_mappable(folio)) 893 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages); 894 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages); 895 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages); 896 } 897 898 /* 899 * Somewhat like filemap_add_folio, but error if expected item has gone. 900 */ 901 static int shmem_add_to_page_cache(struct folio *folio, 902 struct address_space *mapping, 903 pgoff_t index, void *expected, gfp_t gfp) 904 { 905 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 906 unsigned long nr = folio_nr_pages(folio); 907 swp_entry_t iter, swap; 908 void *entry; 909 910 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 911 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 912 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 913 914 folio_ref_add(folio, nr); 915 folio->mapping = mapping; 916 folio->index = index; 917 918 gfp &= GFP_RECLAIM_MASK; 919 folio_throttle_swaprate(folio, gfp); 920 swap = radix_to_swp_entry(expected); 921 922 do { 923 iter = swap; 924 xas_lock_irq(&xas); 925 xas_for_each_conflict(&xas, entry) { 926 /* 927 * The range must either be empty, or filled with 928 * expected swap entries. Shmem swap entries are never 929 * partially freed without split of both entry and 930 * folio, so there shouldn't be any holes. 931 */ 932 if (!expected || entry != swp_to_radix_entry(iter)) { 933 xas_set_err(&xas, -EEXIST); 934 goto unlock; 935 } 936 iter.val += 1 << xas_get_order(&xas); 937 } 938 if (expected && iter.val - nr != swap.val) { 939 xas_set_err(&xas, -EEXIST); 940 goto unlock; 941 } 942 xas_store(&xas, folio); 943 if (xas_error(&xas)) 944 goto unlock; 945 shmem_update_stats(folio, nr); 946 mapping->nrpages += nr; 947 unlock: 948 xas_unlock_irq(&xas); 949 } while (xas_nomem(&xas, gfp)); 950 951 if (xas_error(&xas)) { 952 folio->mapping = NULL; 953 folio_ref_sub(folio, nr); 954 return xas_error(&xas); 955 } 956 957 return 0; 958 } 959 960 /* 961 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 962 */ 963 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 964 { 965 struct address_space *mapping = folio->mapping; 966 long nr = folio_nr_pages(folio); 967 int error; 968 969 xa_lock_irq(&mapping->i_pages); 970 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 971 folio->mapping = NULL; 972 mapping->nrpages -= nr; 973 shmem_update_stats(folio, -nr); 974 xa_unlock_irq(&mapping->i_pages); 975 folio_put_refs(folio, nr); 976 BUG_ON(error); 977 } 978 979 /* 980 * Remove swap entry from page cache, free the swap and its page cache. Returns 981 * the number of pages being freed. 0 means entry not found in XArray (0 pages 982 * being freed). 983 */ 984 static long shmem_free_swap(struct address_space *mapping, 985 pgoff_t index, void *radswap) 986 { 987 int order = xa_get_order(&mapping->i_pages, index); 988 void *old; 989 990 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 991 if (old != radswap) 992 return 0; 993 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order); 994 995 return 1 << order; 996 } 997 998 /* 999 * Determine (in bytes) how many of the shmem object's pages mapped by the 1000 * given offsets are swapped out. 1001 * 1002 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 1003 * as long as the inode doesn't go away and racy results are not a problem. 1004 */ 1005 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 1006 pgoff_t start, pgoff_t end) 1007 { 1008 XA_STATE(xas, &mapping->i_pages, start); 1009 struct folio *folio; 1010 unsigned long swapped = 0; 1011 unsigned long max = end - 1; 1012 1013 rcu_read_lock(); 1014 xas_for_each(&xas, folio, max) { 1015 if (xas_retry(&xas, folio)) 1016 continue; 1017 if (xa_is_value(folio)) 1018 swapped += 1 << xas_get_order(&xas); 1019 if (xas.xa_index == max) 1020 break; 1021 if (need_resched()) { 1022 xas_pause(&xas); 1023 cond_resched_rcu(); 1024 } 1025 } 1026 rcu_read_unlock(); 1027 1028 return swapped << PAGE_SHIFT; 1029 } 1030 1031 /* 1032 * Determine (in bytes) how many of the shmem object's pages mapped by the 1033 * given vma is swapped out. 1034 * 1035 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 1036 * as long as the inode doesn't go away and racy results are not a problem. 1037 */ 1038 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 1039 { 1040 struct inode *inode = file_inode(vma->vm_file); 1041 struct shmem_inode_info *info = SHMEM_I(inode); 1042 struct address_space *mapping = inode->i_mapping; 1043 unsigned long swapped; 1044 1045 /* Be careful as we don't hold info->lock */ 1046 swapped = READ_ONCE(info->swapped); 1047 1048 /* 1049 * The easier cases are when the shmem object has nothing in swap, or 1050 * the vma maps it whole. Then we can simply use the stats that we 1051 * already track. 1052 */ 1053 if (!swapped) 1054 return 0; 1055 1056 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 1057 return swapped << PAGE_SHIFT; 1058 1059 /* Here comes the more involved part */ 1060 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 1061 vma->vm_pgoff + vma_pages(vma)); 1062 } 1063 1064 /* 1065 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 1066 */ 1067 void shmem_unlock_mapping(struct address_space *mapping) 1068 { 1069 struct folio_batch fbatch; 1070 pgoff_t index = 0; 1071 1072 folio_batch_init(&fbatch); 1073 /* 1074 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 1075 */ 1076 while (!mapping_unevictable(mapping) && 1077 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 1078 check_move_unevictable_folios(&fbatch); 1079 folio_batch_release(&fbatch); 1080 cond_resched(); 1081 } 1082 } 1083 1084 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 1085 { 1086 struct folio *folio; 1087 1088 /* 1089 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 1090 * beyond i_size, and reports fallocated folios as holes. 1091 */ 1092 folio = filemap_get_entry(inode->i_mapping, index); 1093 if (!folio) 1094 return folio; 1095 if (!xa_is_value(folio)) { 1096 folio_lock(folio); 1097 if (folio->mapping == inode->i_mapping) 1098 return folio; 1099 /* The folio has been swapped out */ 1100 folio_unlock(folio); 1101 folio_put(folio); 1102 } 1103 /* 1104 * But read a folio back from swap if any of it is within i_size 1105 * (although in some cases this is just a waste of time). 1106 */ 1107 folio = NULL; 1108 shmem_get_folio(inode, index, 0, &folio, SGP_READ); 1109 return folio; 1110 } 1111 1112 /* 1113 * Remove range of pages and swap entries from page cache, and free them. 1114 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 1115 */ 1116 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 1117 bool unfalloc) 1118 { 1119 struct address_space *mapping = inode->i_mapping; 1120 struct shmem_inode_info *info = SHMEM_I(inode); 1121 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 1122 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 1123 struct folio_batch fbatch; 1124 pgoff_t indices[PAGEVEC_SIZE]; 1125 struct folio *folio; 1126 bool same_folio; 1127 long nr_swaps_freed = 0; 1128 pgoff_t index; 1129 int i; 1130 1131 if (lend == -1) 1132 end = -1; /* unsigned, so actually very big */ 1133 1134 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1135 info->fallocend = start; 1136 1137 folio_batch_init(&fbatch); 1138 index = start; 1139 while (index < end && find_lock_entries(mapping, &index, end - 1, 1140 &fbatch, indices)) { 1141 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1142 folio = fbatch.folios[i]; 1143 1144 if (xa_is_value(folio)) { 1145 if (unfalloc) 1146 continue; 1147 nr_swaps_freed += shmem_free_swap(mapping, 1148 indices[i], folio); 1149 continue; 1150 } 1151 1152 if (!unfalloc || !folio_test_uptodate(folio)) 1153 truncate_inode_folio(mapping, folio); 1154 folio_unlock(folio); 1155 } 1156 folio_batch_remove_exceptionals(&fbatch); 1157 folio_batch_release(&fbatch); 1158 cond_resched(); 1159 } 1160 1161 /* 1162 * When undoing a failed fallocate, we want none of the partial folio 1163 * zeroing and splitting below, but shall want to truncate the whole 1164 * folio when !uptodate indicates that it was added by this fallocate, 1165 * even when [lstart, lend] covers only a part of the folio. 1166 */ 1167 if (unfalloc) 1168 goto whole_folios; 1169 1170 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1171 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1172 if (folio) { 1173 same_folio = lend < folio_pos(folio) + folio_size(folio); 1174 folio_mark_dirty(folio); 1175 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1176 start = folio_next_index(folio); 1177 if (same_folio) 1178 end = folio->index; 1179 } 1180 folio_unlock(folio); 1181 folio_put(folio); 1182 folio = NULL; 1183 } 1184 1185 if (!same_folio) 1186 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1187 if (folio) { 1188 folio_mark_dirty(folio); 1189 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1190 end = folio->index; 1191 folio_unlock(folio); 1192 folio_put(folio); 1193 } 1194 1195 whole_folios: 1196 1197 index = start; 1198 while (index < end) { 1199 cond_resched(); 1200 1201 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1202 indices)) { 1203 /* If all gone or hole-punch or unfalloc, we're done */ 1204 if (index == start || end != -1) 1205 break; 1206 /* But if truncating, restart to make sure all gone */ 1207 index = start; 1208 continue; 1209 } 1210 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1211 folio = fbatch.folios[i]; 1212 1213 if (xa_is_value(folio)) { 1214 long swaps_freed; 1215 1216 if (unfalloc) 1217 continue; 1218 swaps_freed = shmem_free_swap(mapping, indices[i], folio); 1219 if (!swaps_freed) { 1220 /* Swap was replaced by page: retry */ 1221 index = indices[i]; 1222 break; 1223 } 1224 nr_swaps_freed += swaps_freed; 1225 continue; 1226 } 1227 1228 folio_lock(folio); 1229 1230 if (!unfalloc || !folio_test_uptodate(folio)) { 1231 if (folio_mapping(folio) != mapping) { 1232 /* Page was replaced by swap: retry */ 1233 folio_unlock(folio); 1234 index = indices[i]; 1235 break; 1236 } 1237 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1238 folio); 1239 1240 if (!folio_test_large(folio)) { 1241 truncate_inode_folio(mapping, folio); 1242 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1243 /* 1244 * If we split a page, reset the loop so 1245 * that we pick up the new sub pages. 1246 * Otherwise the THP was entirely 1247 * dropped or the target range was 1248 * zeroed, so just continue the loop as 1249 * is. 1250 */ 1251 if (!folio_test_large(folio)) { 1252 folio_unlock(folio); 1253 index = start; 1254 break; 1255 } 1256 } 1257 } 1258 folio_unlock(folio); 1259 } 1260 folio_batch_remove_exceptionals(&fbatch); 1261 folio_batch_release(&fbatch); 1262 } 1263 1264 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1265 } 1266 1267 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1268 { 1269 shmem_undo_range(inode, lstart, lend, false); 1270 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1271 inode_inc_iversion(inode); 1272 } 1273 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1274 1275 static int shmem_getattr(struct mnt_idmap *idmap, 1276 const struct path *path, struct kstat *stat, 1277 u32 request_mask, unsigned int query_flags) 1278 { 1279 struct inode *inode = path->dentry->d_inode; 1280 struct shmem_inode_info *info = SHMEM_I(inode); 1281 1282 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1283 shmem_recalc_inode(inode, 0, 0); 1284 1285 if (info->fsflags & FS_APPEND_FL) 1286 stat->attributes |= STATX_ATTR_APPEND; 1287 if (info->fsflags & FS_IMMUTABLE_FL) 1288 stat->attributes |= STATX_ATTR_IMMUTABLE; 1289 if (info->fsflags & FS_NODUMP_FL) 1290 stat->attributes |= STATX_ATTR_NODUMP; 1291 stat->attributes_mask |= (STATX_ATTR_APPEND | 1292 STATX_ATTR_IMMUTABLE | 1293 STATX_ATTR_NODUMP); 1294 generic_fillattr(idmap, request_mask, inode, stat); 1295 1296 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0)) 1297 stat->blksize = HPAGE_PMD_SIZE; 1298 1299 if (request_mask & STATX_BTIME) { 1300 stat->result_mask |= STATX_BTIME; 1301 stat->btime.tv_sec = info->i_crtime.tv_sec; 1302 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1303 } 1304 1305 return 0; 1306 } 1307 1308 static int shmem_setattr(struct mnt_idmap *idmap, 1309 struct dentry *dentry, struct iattr *attr) 1310 { 1311 struct inode *inode = d_inode(dentry); 1312 struct shmem_inode_info *info = SHMEM_I(inode); 1313 int error; 1314 bool update_mtime = false; 1315 bool update_ctime = true; 1316 1317 error = setattr_prepare(idmap, dentry, attr); 1318 if (error) 1319 return error; 1320 1321 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1322 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1323 return -EPERM; 1324 } 1325 } 1326 1327 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1328 loff_t oldsize = inode->i_size; 1329 loff_t newsize = attr->ia_size; 1330 1331 /* protected by i_rwsem */ 1332 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1333 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1334 return -EPERM; 1335 1336 if (newsize != oldsize) { 1337 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1338 oldsize, newsize); 1339 if (error) 1340 return error; 1341 i_size_write(inode, newsize); 1342 update_mtime = true; 1343 } else { 1344 update_ctime = false; 1345 } 1346 if (newsize <= oldsize) { 1347 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1348 if (oldsize > holebegin) 1349 unmap_mapping_range(inode->i_mapping, 1350 holebegin, 0, 1); 1351 if (info->alloced) 1352 shmem_truncate_range(inode, 1353 newsize, (loff_t)-1); 1354 /* unmap again to remove racily COWed private pages */ 1355 if (oldsize > holebegin) 1356 unmap_mapping_range(inode->i_mapping, 1357 holebegin, 0, 1); 1358 } 1359 } 1360 1361 if (is_quota_modification(idmap, inode, attr)) { 1362 error = dquot_initialize(inode); 1363 if (error) 1364 return error; 1365 } 1366 1367 /* Transfer quota accounting */ 1368 if (i_uid_needs_update(idmap, attr, inode) || 1369 i_gid_needs_update(idmap, attr, inode)) { 1370 error = dquot_transfer(idmap, inode, attr); 1371 if (error) 1372 return error; 1373 } 1374 1375 setattr_copy(idmap, inode, attr); 1376 if (attr->ia_valid & ATTR_MODE) 1377 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1378 if (!error && update_ctime) { 1379 inode_set_ctime_current(inode); 1380 if (update_mtime) 1381 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1382 inode_inc_iversion(inode); 1383 } 1384 return error; 1385 } 1386 1387 static void shmem_evict_inode(struct inode *inode) 1388 { 1389 struct shmem_inode_info *info = SHMEM_I(inode); 1390 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1391 size_t freed = 0; 1392 1393 if (shmem_mapping(inode->i_mapping)) { 1394 shmem_unacct_size(info->flags, inode->i_size); 1395 inode->i_size = 0; 1396 mapping_set_exiting(inode->i_mapping); 1397 shmem_truncate_range(inode, 0, (loff_t)-1); 1398 if (!list_empty(&info->shrinklist)) { 1399 spin_lock(&sbinfo->shrinklist_lock); 1400 if (!list_empty(&info->shrinklist)) { 1401 list_del_init(&info->shrinklist); 1402 sbinfo->shrinklist_len--; 1403 } 1404 spin_unlock(&sbinfo->shrinklist_lock); 1405 } 1406 while (!list_empty(&info->swaplist)) { 1407 /* Wait while shmem_unuse() is scanning this inode... */ 1408 wait_var_event(&info->stop_eviction, 1409 !atomic_read(&info->stop_eviction)); 1410 spin_lock(&shmem_swaplist_lock); 1411 /* ...but beware of the race if we peeked too early */ 1412 if (!atomic_read(&info->stop_eviction)) 1413 list_del_init(&info->swaplist); 1414 spin_unlock(&shmem_swaplist_lock); 1415 } 1416 } 1417 1418 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1419 shmem_free_inode(inode->i_sb, freed); 1420 WARN_ON(inode->i_blocks); 1421 clear_inode(inode); 1422 #ifdef CONFIG_TMPFS_QUOTA 1423 dquot_free_inode(inode); 1424 dquot_drop(inode); 1425 #endif 1426 } 1427 1428 static unsigned int shmem_find_swap_entries(struct address_space *mapping, 1429 pgoff_t start, struct folio_batch *fbatch, 1430 pgoff_t *indices, unsigned int type) 1431 { 1432 XA_STATE(xas, &mapping->i_pages, start); 1433 struct folio *folio; 1434 swp_entry_t entry; 1435 1436 rcu_read_lock(); 1437 xas_for_each(&xas, folio, ULONG_MAX) { 1438 if (xas_retry(&xas, folio)) 1439 continue; 1440 1441 if (!xa_is_value(folio)) 1442 continue; 1443 1444 entry = radix_to_swp_entry(folio); 1445 /* 1446 * swapin error entries can be found in the mapping. But they're 1447 * deliberately ignored here as we've done everything we can do. 1448 */ 1449 if (swp_type(entry) != type) 1450 continue; 1451 1452 indices[folio_batch_count(fbatch)] = xas.xa_index; 1453 if (!folio_batch_add(fbatch, folio)) 1454 break; 1455 1456 if (need_resched()) { 1457 xas_pause(&xas); 1458 cond_resched_rcu(); 1459 } 1460 } 1461 rcu_read_unlock(); 1462 1463 return folio_batch_count(fbatch); 1464 } 1465 1466 /* 1467 * Move the swapped pages for an inode to page cache. Returns the count 1468 * of pages swapped in, or the error in case of failure. 1469 */ 1470 static int shmem_unuse_swap_entries(struct inode *inode, 1471 struct folio_batch *fbatch, pgoff_t *indices) 1472 { 1473 int i = 0; 1474 int ret = 0; 1475 int error = 0; 1476 struct address_space *mapping = inode->i_mapping; 1477 1478 for (i = 0; i < folio_batch_count(fbatch); i++) { 1479 struct folio *folio = fbatch->folios[i]; 1480 1481 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1482 mapping_gfp_mask(mapping), NULL, NULL); 1483 if (error == 0) { 1484 folio_unlock(folio); 1485 folio_put(folio); 1486 ret++; 1487 } 1488 if (error == -ENOMEM) 1489 break; 1490 error = 0; 1491 } 1492 return error ? error : ret; 1493 } 1494 1495 /* 1496 * If swap found in inode, free it and move page from swapcache to filecache. 1497 */ 1498 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1499 { 1500 struct address_space *mapping = inode->i_mapping; 1501 pgoff_t start = 0; 1502 struct folio_batch fbatch; 1503 pgoff_t indices[PAGEVEC_SIZE]; 1504 int ret = 0; 1505 1506 do { 1507 folio_batch_init(&fbatch); 1508 if (!shmem_find_swap_entries(mapping, start, &fbatch, 1509 indices, type)) { 1510 ret = 0; 1511 break; 1512 } 1513 1514 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1515 if (ret < 0) 1516 break; 1517 1518 start = indices[folio_batch_count(&fbatch) - 1]; 1519 } while (true); 1520 1521 return ret; 1522 } 1523 1524 /* 1525 * Read all the shared memory data that resides in the swap 1526 * device 'type' back into memory, so the swap device can be 1527 * unused. 1528 */ 1529 int shmem_unuse(unsigned int type) 1530 { 1531 struct shmem_inode_info *info, *next; 1532 int error = 0; 1533 1534 if (list_empty(&shmem_swaplist)) 1535 return 0; 1536 1537 spin_lock(&shmem_swaplist_lock); 1538 start_over: 1539 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1540 if (!info->swapped) { 1541 list_del_init(&info->swaplist); 1542 continue; 1543 } 1544 /* 1545 * Drop the swaplist mutex while searching the inode for swap; 1546 * but before doing so, make sure shmem_evict_inode() will not 1547 * remove placeholder inode from swaplist, nor let it be freed 1548 * (igrab() would protect from unlink, but not from unmount). 1549 */ 1550 atomic_inc(&info->stop_eviction); 1551 spin_unlock(&shmem_swaplist_lock); 1552 1553 error = shmem_unuse_inode(&info->vfs_inode, type); 1554 cond_resched(); 1555 1556 spin_lock(&shmem_swaplist_lock); 1557 if (atomic_dec_and_test(&info->stop_eviction)) 1558 wake_up_var(&info->stop_eviction); 1559 if (error) 1560 break; 1561 if (list_empty(&info->swaplist)) 1562 goto start_over; 1563 next = list_next_entry(info, swaplist); 1564 if (!info->swapped) 1565 list_del_init(&info->swaplist); 1566 } 1567 spin_unlock(&shmem_swaplist_lock); 1568 1569 return error; 1570 } 1571 1572 /** 1573 * shmem_writeout - Write the folio to swap 1574 * @folio: The folio to write 1575 * @plug: swap plug 1576 * @folio_list: list to put back folios on split 1577 * 1578 * Move the folio from the page cache to the swap cache. 1579 */ 1580 int shmem_writeout(struct folio *folio, struct swap_iocb **plug, 1581 struct list_head *folio_list) 1582 { 1583 struct address_space *mapping = folio->mapping; 1584 struct inode *inode = mapping->host; 1585 struct shmem_inode_info *info = SHMEM_I(inode); 1586 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1587 pgoff_t index; 1588 int nr_pages; 1589 bool split = false; 1590 1591 if ((info->flags & VM_LOCKED) || sbinfo->noswap) 1592 goto redirty; 1593 1594 if (!total_swap_pages) 1595 goto redirty; 1596 1597 /* 1598 * If CONFIG_THP_SWAP is not enabled, the large folio should be 1599 * split when swapping. 1600 * 1601 * And shrinkage of pages beyond i_size does not split swap, so 1602 * swapout of a large folio crossing i_size needs to split too 1603 * (unless fallocate has been used to preallocate beyond EOF). 1604 */ 1605 if (folio_test_large(folio)) { 1606 index = shmem_fallocend(inode, 1607 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 1608 if ((index > folio->index && index < folio_next_index(folio)) || 1609 !IS_ENABLED(CONFIG_THP_SWAP)) 1610 split = true; 1611 } 1612 1613 if (split) { 1614 try_split: 1615 /* Ensure the subpages are still dirty */ 1616 folio_test_set_dirty(folio); 1617 if (split_folio_to_list(folio, folio_list)) 1618 goto redirty; 1619 folio_clear_dirty(folio); 1620 } 1621 1622 index = folio->index; 1623 nr_pages = folio_nr_pages(folio); 1624 1625 /* 1626 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1627 * value into swapfile.c, the only way we can correctly account for a 1628 * fallocated folio arriving here is now to initialize it and write it. 1629 * 1630 * That's okay for a folio already fallocated earlier, but if we have 1631 * not yet completed the fallocation, then (a) we want to keep track 1632 * of this folio in case we have to undo it, and (b) it may not be a 1633 * good idea to continue anyway, once we're pushing into swap. So 1634 * reactivate the folio, and let shmem_fallocate() quit when too many. 1635 */ 1636 if (!folio_test_uptodate(folio)) { 1637 if (inode->i_private) { 1638 struct shmem_falloc *shmem_falloc; 1639 spin_lock(&inode->i_lock); 1640 shmem_falloc = inode->i_private; 1641 if (shmem_falloc && 1642 !shmem_falloc->waitq && 1643 index >= shmem_falloc->start && 1644 index < shmem_falloc->next) 1645 shmem_falloc->nr_unswapped += nr_pages; 1646 else 1647 shmem_falloc = NULL; 1648 spin_unlock(&inode->i_lock); 1649 if (shmem_falloc) 1650 goto redirty; 1651 } 1652 folio_zero_range(folio, 0, folio_size(folio)); 1653 flush_dcache_folio(folio); 1654 folio_mark_uptodate(folio); 1655 } 1656 1657 if (!folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN)) { 1658 bool first_swapped = shmem_recalc_inode(inode, 0, nr_pages); 1659 int error; 1660 1661 /* 1662 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1663 * if it's not already there. Do it now before the folio is 1664 * removed from page cache, when its pagelock no longer 1665 * protects the inode from eviction. And do it now, after 1666 * we've incremented swapped, because shmem_unuse() will 1667 * prune a !swapped inode from the swaplist. 1668 */ 1669 if (first_swapped) { 1670 spin_lock(&shmem_swaplist_lock); 1671 if (list_empty(&info->swaplist)) 1672 list_add(&info->swaplist, &shmem_swaplist); 1673 spin_unlock(&shmem_swaplist_lock); 1674 } 1675 1676 swap_shmem_alloc(folio->swap, nr_pages); 1677 shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap)); 1678 1679 BUG_ON(folio_mapped(folio)); 1680 error = swap_writeout(folio, plug); 1681 if (error != AOP_WRITEPAGE_ACTIVATE) { 1682 /* folio has been unlocked */ 1683 return error; 1684 } 1685 1686 /* 1687 * The intention here is to avoid holding on to the swap when 1688 * zswap was unable to compress and unable to writeback; but 1689 * it will be appropriate if other reactivate cases are added. 1690 */ 1691 error = shmem_add_to_page_cache(folio, mapping, index, 1692 swp_to_radix_entry(folio->swap), 1693 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 1694 /* Swap entry might be erased by racing shmem_free_swap() */ 1695 if (!error) { 1696 shmem_recalc_inode(inode, 0, -nr_pages); 1697 swap_free_nr(folio->swap, nr_pages); 1698 } 1699 1700 /* 1701 * The delete_from_swap_cache() below could be left for 1702 * shrink_folio_list()'s folio_free_swap() to dispose of; 1703 * but I'm a little nervous about letting this folio out of 1704 * shmem_writeout() in a hybrid half-tmpfs-half-swap state 1705 * e.g. folio_mapping(folio) might give an unexpected answer. 1706 */ 1707 delete_from_swap_cache(folio); 1708 goto redirty; 1709 } 1710 if (nr_pages > 1) 1711 goto try_split; 1712 redirty: 1713 folio_mark_dirty(folio); 1714 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1715 } 1716 EXPORT_SYMBOL_GPL(shmem_writeout); 1717 1718 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1719 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1720 { 1721 char buffer[64]; 1722 1723 if (!mpol || mpol->mode == MPOL_DEFAULT) 1724 return; /* show nothing */ 1725 1726 mpol_to_str(buffer, sizeof(buffer), mpol); 1727 1728 seq_printf(seq, ",mpol=%s", buffer); 1729 } 1730 1731 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1732 { 1733 struct mempolicy *mpol = NULL; 1734 if (sbinfo->mpol) { 1735 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1736 mpol = sbinfo->mpol; 1737 mpol_get(mpol); 1738 raw_spin_unlock(&sbinfo->stat_lock); 1739 } 1740 return mpol; 1741 } 1742 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1743 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1744 { 1745 } 1746 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1747 { 1748 return NULL; 1749 } 1750 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1751 1752 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1753 pgoff_t index, unsigned int order, pgoff_t *ilx); 1754 1755 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1756 struct shmem_inode_info *info, pgoff_t index) 1757 { 1758 struct mempolicy *mpol; 1759 pgoff_t ilx; 1760 struct folio *folio; 1761 1762 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1763 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1764 mpol_cond_put(mpol); 1765 1766 return folio; 1767 } 1768 1769 /* 1770 * Make sure huge_gfp is always more limited than limit_gfp. 1771 * Some of the flags set permissions, while others set limitations. 1772 */ 1773 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1774 { 1775 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1776 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1777 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1778 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1779 1780 /* Allow allocations only from the originally specified zones. */ 1781 result |= zoneflags; 1782 1783 /* 1784 * Minimize the result gfp by taking the union with the deny flags, 1785 * and the intersection of the allow flags. 1786 */ 1787 result |= (limit_gfp & denyflags); 1788 result |= (huge_gfp & limit_gfp) & allowflags; 1789 1790 return result; 1791 } 1792 1793 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1794 bool shmem_hpage_pmd_enabled(void) 1795 { 1796 if (shmem_huge == SHMEM_HUGE_DENY) 1797 return false; 1798 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always)) 1799 return true; 1800 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise)) 1801 return true; 1802 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size)) 1803 return true; 1804 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) && 1805 shmem_huge != SHMEM_HUGE_NEVER) 1806 return true; 1807 1808 return false; 1809 } 1810 1811 unsigned long shmem_allowable_huge_orders(struct inode *inode, 1812 struct vm_area_struct *vma, pgoff_t index, 1813 loff_t write_end, bool shmem_huge_force) 1814 { 1815 unsigned long mask = READ_ONCE(huge_shmem_orders_always); 1816 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size); 1817 vm_flags_t vm_flags = vma ? vma->vm_flags : 0; 1818 unsigned int global_orders; 1819 1820 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags, shmem_huge_force))) 1821 return 0; 1822 1823 global_orders = shmem_huge_global_enabled(inode, index, write_end, 1824 shmem_huge_force, vma, vm_flags); 1825 /* Tmpfs huge pages allocation */ 1826 if (!vma || !vma_is_anon_shmem(vma)) 1827 return global_orders; 1828 1829 /* 1830 * Following the 'deny' semantics of the top level, force the huge 1831 * option off from all mounts. 1832 */ 1833 if (shmem_huge == SHMEM_HUGE_DENY) 1834 return 0; 1835 1836 /* 1837 * Only allow inherit orders if the top-level value is 'force', which 1838 * means non-PMD sized THP can not override 'huge' mount option now. 1839 */ 1840 if (shmem_huge == SHMEM_HUGE_FORCE) 1841 return READ_ONCE(huge_shmem_orders_inherit); 1842 1843 /* Allow mTHP that will be fully within i_size. */ 1844 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0); 1845 1846 if (vm_flags & VM_HUGEPAGE) 1847 mask |= READ_ONCE(huge_shmem_orders_madvise); 1848 1849 if (global_orders > 0) 1850 mask |= READ_ONCE(huge_shmem_orders_inherit); 1851 1852 return THP_ORDERS_ALL_FILE_DEFAULT & mask; 1853 } 1854 1855 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1856 struct address_space *mapping, pgoff_t index, 1857 unsigned long orders) 1858 { 1859 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1860 pgoff_t aligned_index; 1861 unsigned long pages; 1862 int order; 1863 1864 if (vma) { 1865 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 1866 if (!orders) 1867 return 0; 1868 } 1869 1870 /* Find the highest order that can add into the page cache */ 1871 order = highest_order(orders); 1872 while (orders) { 1873 pages = 1UL << order; 1874 aligned_index = round_down(index, pages); 1875 /* 1876 * Check for conflict before waiting on a huge allocation. 1877 * Conflict might be that a huge page has just been allocated 1878 * and added to page cache by a racing thread, or that there 1879 * is already at least one small page in the huge extent. 1880 * Be careful to retry when appropriate, but not forever! 1881 * Elsewhere -EEXIST would be the right code, but not here. 1882 */ 1883 if (!xa_find(&mapping->i_pages, &aligned_index, 1884 aligned_index + pages - 1, XA_PRESENT)) 1885 break; 1886 order = next_order(&orders, order); 1887 } 1888 1889 return orders; 1890 } 1891 #else 1892 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1893 struct address_space *mapping, pgoff_t index, 1894 unsigned long orders) 1895 { 1896 return 0; 1897 } 1898 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1899 1900 static struct folio *shmem_alloc_folio(gfp_t gfp, int order, 1901 struct shmem_inode_info *info, pgoff_t index) 1902 { 1903 struct mempolicy *mpol; 1904 pgoff_t ilx; 1905 struct folio *folio; 1906 1907 mpol = shmem_get_pgoff_policy(info, index, order, &ilx); 1908 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id()); 1909 mpol_cond_put(mpol); 1910 1911 return folio; 1912 } 1913 1914 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf, 1915 gfp_t gfp, struct inode *inode, pgoff_t index, 1916 struct mm_struct *fault_mm, unsigned long orders) 1917 { 1918 struct address_space *mapping = inode->i_mapping; 1919 struct shmem_inode_info *info = SHMEM_I(inode); 1920 unsigned long suitable_orders = 0; 1921 struct folio *folio = NULL; 1922 long pages; 1923 int error, order; 1924 1925 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1926 orders = 0; 1927 1928 if (orders > 0) { 1929 suitable_orders = shmem_suitable_orders(inode, vmf, 1930 mapping, index, orders); 1931 1932 order = highest_order(suitable_orders); 1933 while (suitable_orders) { 1934 pages = 1UL << order; 1935 index = round_down(index, pages); 1936 folio = shmem_alloc_folio(gfp, order, info, index); 1937 if (folio) 1938 goto allocated; 1939 1940 if (pages == HPAGE_PMD_NR) 1941 count_vm_event(THP_FILE_FALLBACK); 1942 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK); 1943 order = next_order(&suitable_orders, order); 1944 } 1945 } else { 1946 pages = 1; 1947 folio = shmem_alloc_folio(gfp, 0, info, index); 1948 } 1949 if (!folio) 1950 return ERR_PTR(-ENOMEM); 1951 1952 allocated: 1953 __folio_set_locked(folio); 1954 __folio_set_swapbacked(folio); 1955 1956 gfp &= GFP_RECLAIM_MASK; 1957 error = mem_cgroup_charge(folio, fault_mm, gfp); 1958 if (error) { 1959 if (xa_find(&mapping->i_pages, &index, 1960 index + pages - 1, XA_PRESENT)) { 1961 error = -EEXIST; 1962 } else if (pages > 1) { 1963 if (pages == HPAGE_PMD_NR) { 1964 count_vm_event(THP_FILE_FALLBACK); 1965 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1966 } 1967 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK); 1968 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE); 1969 } 1970 goto unlock; 1971 } 1972 1973 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1974 if (error) 1975 goto unlock; 1976 1977 error = shmem_inode_acct_blocks(inode, pages); 1978 if (error) { 1979 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1980 long freed; 1981 /* 1982 * Try to reclaim some space by splitting a few 1983 * large folios beyond i_size on the filesystem. 1984 */ 1985 shmem_unused_huge_shrink(sbinfo, NULL, pages); 1986 /* 1987 * And do a shmem_recalc_inode() to account for freed pages: 1988 * except our folio is there in cache, so not quite balanced. 1989 */ 1990 spin_lock(&info->lock); 1991 freed = pages + info->alloced - info->swapped - 1992 READ_ONCE(mapping->nrpages); 1993 if (freed > 0) 1994 info->alloced -= freed; 1995 spin_unlock(&info->lock); 1996 if (freed > 0) 1997 shmem_inode_unacct_blocks(inode, freed); 1998 error = shmem_inode_acct_blocks(inode, pages); 1999 if (error) { 2000 filemap_remove_folio(folio); 2001 goto unlock; 2002 } 2003 } 2004 2005 shmem_recalc_inode(inode, pages, 0); 2006 folio_add_lru(folio); 2007 return folio; 2008 2009 unlock: 2010 folio_unlock(folio); 2011 folio_put(folio); 2012 return ERR_PTR(error); 2013 } 2014 2015 static struct folio *shmem_swap_alloc_folio(struct inode *inode, 2016 struct vm_area_struct *vma, pgoff_t index, 2017 swp_entry_t entry, int order, gfp_t gfp) 2018 { 2019 struct shmem_inode_info *info = SHMEM_I(inode); 2020 int nr_pages = 1 << order; 2021 struct folio *new; 2022 gfp_t alloc_gfp; 2023 void *shadow; 2024 2025 /* 2026 * We have arrived here because our zones are constrained, so don't 2027 * limit chance of success with further cpuset and node constraints. 2028 */ 2029 gfp &= ~GFP_CONSTRAINT_MASK; 2030 alloc_gfp = gfp; 2031 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 2032 if (WARN_ON_ONCE(order)) 2033 return ERR_PTR(-EINVAL); 2034 } else if (order) { 2035 /* 2036 * If uffd is active for the vma, we need per-page fault 2037 * fidelity to maintain the uffd semantics, then fallback 2038 * to swapin order-0 folio, as well as for zswap case. 2039 * Any existing sub folio in the swap cache also blocks 2040 * mTHP swapin. 2041 */ 2042 if ((vma && unlikely(userfaultfd_armed(vma))) || 2043 !zswap_never_enabled() || 2044 non_swapcache_batch(entry, nr_pages) != nr_pages) 2045 goto fallback; 2046 2047 alloc_gfp = limit_gfp_mask(vma_thp_gfp_mask(vma), gfp); 2048 } 2049 retry: 2050 new = shmem_alloc_folio(alloc_gfp, order, info, index); 2051 if (!new) { 2052 new = ERR_PTR(-ENOMEM); 2053 goto fallback; 2054 } 2055 2056 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL, 2057 alloc_gfp, entry)) { 2058 folio_put(new); 2059 new = ERR_PTR(-ENOMEM); 2060 goto fallback; 2061 } 2062 2063 /* 2064 * Prevent parallel swapin from proceeding with the swap cache flag. 2065 * 2066 * Of course there is another possible concurrent scenario as well, 2067 * that is to say, the swap cache flag of a large folio has already 2068 * been set by swapcache_prepare(), while another thread may have 2069 * already split the large swap entry stored in the shmem mapping. 2070 * In this case, shmem_add_to_page_cache() will help identify the 2071 * concurrent swapin and return -EEXIST. 2072 */ 2073 if (swapcache_prepare(entry, nr_pages)) { 2074 folio_put(new); 2075 new = ERR_PTR(-EEXIST); 2076 /* Try smaller folio to avoid cache conflict */ 2077 goto fallback; 2078 } 2079 2080 __folio_set_locked(new); 2081 __folio_set_swapbacked(new); 2082 new->swap = entry; 2083 2084 memcg1_swapin(entry, nr_pages); 2085 shadow = get_shadow_from_swap_cache(entry); 2086 if (shadow) 2087 workingset_refault(new, shadow); 2088 folio_add_lru(new); 2089 swap_read_folio(new, NULL); 2090 return new; 2091 fallback: 2092 /* Order 0 swapin failed, nothing to fallback to, abort */ 2093 if (!order) 2094 return new; 2095 entry.val += index - round_down(index, nr_pages); 2096 alloc_gfp = gfp; 2097 nr_pages = 1; 2098 order = 0; 2099 goto retry; 2100 } 2101 2102 /* 2103 * When a page is moved from swapcache to shmem filecache (either by the 2104 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 2105 * shmem_unuse_inode()), it may have been read in earlier from swap, in 2106 * ignorance of the mapping it belongs to. If that mapping has special 2107 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 2108 * we may need to copy to a suitable page before moving to filecache. 2109 * 2110 * In a future release, this may well be extended to respect cpuset and 2111 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 2112 * but for now it is a simple matter of zone. 2113 */ 2114 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 2115 { 2116 return folio_zonenum(folio) > gfp_zone(gfp); 2117 } 2118 2119 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 2120 struct shmem_inode_info *info, pgoff_t index, 2121 struct vm_area_struct *vma) 2122 { 2123 struct folio *new, *old = *foliop; 2124 swp_entry_t entry = old->swap; 2125 struct address_space *swap_mapping = swap_address_space(entry); 2126 pgoff_t swap_index = swap_cache_index(entry); 2127 XA_STATE(xas, &swap_mapping->i_pages, swap_index); 2128 int nr_pages = folio_nr_pages(old); 2129 int error = 0, i; 2130 2131 /* 2132 * We have arrived here because our zones are constrained, so don't 2133 * limit chance of success by further cpuset and node constraints. 2134 */ 2135 gfp &= ~GFP_CONSTRAINT_MASK; 2136 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2137 if (nr_pages > 1) { 2138 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 2139 2140 gfp = limit_gfp_mask(huge_gfp, gfp); 2141 } 2142 #endif 2143 2144 new = shmem_alloc_folio(gfp, folio_order(old), info, index); 2145 if (!new) 2146 return -ENOMEM; 2147 2148 folio_ref_add(new, nr_pages); 2149 folio_copy(new, old); 2150 flush_dcache_folio(new); 2151 2152 __folio_set_locked(new); 2153 __folio_set_swapbacked(new); 2154 folio_mark_uptodate(new); 2155 new->swap = entry; 2156 folio_set_swapcache(new); 2157 2158 /* Swap cache still stores N entries instead of a high-order entry */ 2159 xa_lock_irq(&swap_mapping->i_pages); 2160 for (i = 0; i < nr_pages; i++) { 2161 void *item = xas_load(&xas); 2162 2163 if (item != old) { 2164 error = -ENOENT; 2165 break; 2166 } 2167 2168 xas_store(&xas, new); 2169 xas_next(&xas); 2170 } 2171 if (!error) { 2172 mem_cgroup_replace_folio(old, new); 2173 shmem_update_stats(new, nr_pages); 2174 shmem_update_stats(old, -nr_pages); 2175 } 2176 xa_unlock_irq(&swap_mapping->i_pages); 2177 2178 if (unlikely(error)) { 2179 /* 2180 * Is this possible? I think not, now that our callers 2181 * check both the swapcache flag and folio->private 2182 * after getting the folio lock; but be defensive. 2183 * Reverse old to newpage for clear and free. 2184 */ 2185 old = new; 2186 } else { 2187 folio_add_lru(new); 2188 *foliop = new; 2189 } 2190 2191 folio_clear_swapcache(old); 2192 old->private = NULL; 2193 2194 folio_unlock(old); 2195 /* 2196 * The old folio are removed from swap cache, drop the 'nr_pages' 2197 * reference, as well as one temporary reference getting from swap 2198 * cache. 2199 */ 2200 folio_put_refs(old, nr_pages + 1); 2201 return error; 2202 } 2203 2204 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 2205 struct folio *folio, swp_entry_t swap, 2206 bool skip_swapcache) 2207 { 2208 struct address_space *mapping = inode->i_mapping; 2209 swp_entry_t swapin_error; 2210 void *old; 2211 int nr_pages; 2212 2213 swapin_error = make_poisoned_swp_entry(); 2214 old = xa_cmpxchg_irq(&mapping->i_pages, index, 2215 swp_to_radix_entry(swap), 2216 swp_to_radix_entry(swapin_error), 0); 2217 if (old != swp_to_radix_entry(swap)) 2218 return; 2219 2220 nr_pages = folio_nr_pages(folio); 2221 folio_wait_writeback(folio); 2222 if (!skip_swapcache) 2223 delete_from_swap_cache(folio); 2224 /* 2225 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 2226 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 2227 * in shmem_evict_inode(). 2228 */ 2229 shmem_recalc_inode(inode, -nr_pages, -nr_pages); 2230 swap_free_nr(swap, nr_pages); 2231 } 2232 2233 static int shmem_split_large_entry(struct inode *inode, pgoff_t index, 2234 swp_entry_t swap, gfp_t gfp) 2235 { 2236 struct address_space *mapping = inode->i_mapping; 2237 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0); 2238 int split_order = 0, entry_order; 2239 int i; 2240 2241 /* Convert user data gfp flags to xarray node gfp flags */ 2242 gfp &= GFP_RECLAIM_MASK; 2243 2244 for (;;) { 2245 void *old = NULL; 2246 int cur_order; 2247 pgoff_t swap_index; 2248 2249 xas_lock_irq(&xas); 2250 old = xas_load(&xas); 2251 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) { 2252 xas_set_err(&xas, -EEXIST); 2253 goto unlock; 2254 } 2255 2256 entry_order = xas_get_order(&xas); 2257 2258 if (!entry_order) 2259 goto unlock; 2260 2261 /* Try to split large swap entry in pagecache */ 2262 cur_order = entry_order; 2263 swap_index = round_down(index, 1 << entry_order); 2264 2265 split_order = xas_try_split_min_order(cur_order); 2266 2267 while (cur_order > 0) { 2268 pgoff_t aligned_index = 2269 round_down(index, 1 << cur_order); 2270 pgoff_t swap_offset = aligned_index - swap_index; 2271 2272 xas_set_order(&xas, index, split_order); 2273 xas_try_split(&xas, old, cur_order); 2274 if (xas_error(&xas)) 2275 goto unlock; 2276 2277 /* 2278 * Re-set the swap entry after splitting, and the swap 2279 * offset of the original large entry must be continuous. 2280 */ 2281 for (i = 0; i < 1 << cur_order; 2282 i += (1 << split_order)) { 2283 swp_entry_t tmp; 2284 2285 tmp = swp_entry(swp_type(swap), 2286 swp_offset(swap) + swap_offset + 2287 i); 2288 __xa_store(&mapping->i_pages, aligned_index + i, 2289 swp_to_radix_entry(tmp), 0); 2290 } 2291 cur_order = split_order; 2292 split_order = xas_try_split_min_order(split_order); 2293 } 2294 2295 unlock: 2296 xas_unlock_irq(&xas); 2297 2298 if (!xas_nomem(&xas, gfp)) 2299 break; 2300 } 2301 2302 if (xas_error(&xas)) 2303 return xas_error(&xas); 2304 2305 return 0; 2306 } 2307 2308 /* 2309 * Swap in the folio pointed to by *foliop. 2310 * Caller has to make sure that *foliop contains a valid swapped folio. 2311 * Returns 0 and the folio in foliop if success. On failure, returns the 2312 * error code and NULL in *foliop. 2313 */ 2314 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 2315 struct folio **foliop, enum sgp_type sgp, 2316 gfp_t gfp, struct vm_area_struct *vma, 2317 vm_fault_t *fault_type) 2318 { 2319 struct address_space *mapping = inode->i_mapping; 2320 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL; 2321 struct shmem_inode_info *info = SHMEM_I(inode); 2322 swp_entry_t swap, index_entry; 2323 struct swap_info_struct *si; 2324 struct folio *folio = NULL; 2325 bool skip_swapcache = false; 2326 int error, nr_pages, order; 2327 pgoff_t offset; 2328 2329 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 2330 index_entry = radix_to_swp_entry(*foliop); 2331 swap = index_entry; 2332 *foliop = NULL; 2333 2334 if (is_poisoned_swp_entry(index_entry)) 2335 return -EIO; 2336 2337 si = get_swap_device(index_entry); 2338 order = shmem_confirm_swap(mapping, index, index_entry); 2339 if (unlikely(!si)) { 2340 if (order < 0) 2341 return -EEXIST; 2342 else 2343 return -EINVAL; 2344 } 2345 if (unlikely(order < 0)) { 2346 put_swap_device(si); 2347 return -EEXIST; 2348 } 2349 2350 /* index may point to the middle of a large entry, get the sub entry */ 2351 if (order) { 2352 offset = index - round_down(index, 1 << order); 2353 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2354 } 2355 2356 /* Look it up and read it in.. */ 2357 folio = swap_cache_get_folio(swap, NULL, 0); 2358 if (!folio) { 2359 if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) { 2360 /* Direct swapin skipping swap cache & readahead */ 2361 folio = shmem_swap_alloc_folio(inode, vma, index, 2362 index_entry, order, gfp); 2363 if (IS_ERR(folio)) { 2364 error = PTR_ERR(folio); 2365 folio = NULL; 2366 goto failed; 2367 } 2368 skip_swapcache = true; 2369 } else { 2370 /* Cached swapin only supports order 0 folio */ 2371 folio = shmem_swapin_cluster(swap, gfp, info, index); 2372 if (!folio) { 2373 error = -ENOMEM; 2374 goto failed; 2375 } 2376 } 2377 if (fault_type) { 2378 *fault_type |= VM_FAULT_MAJOR; 2379 count_vm_event(PGMAJFAULT); 2380 count_memcg_event_mm(fault_mm, PGMAJFAULT); 2381 } 2382 } 2383 2384 if (order > folio_order(folio)) { 2385 /* 2386 * Swapin may get smaller folios due to various reasons: 2387 * It may fallback to order 0 due to memory pressure or race, 2388 * swap readahead may swap in order 0 folios into swapcache 2389 * asynchronously, while the shmem mapping can still stores 2390 * large swap entries. In such cases, we should split the 2391 * large swap entry to prevent possible data corruption. 2392 */ 2393 error = shmem_split_large_entry(inode, index, index_entry, gfp); 2394 if (error) 2395 goto failed_nolock; 2396 } 2397 2398 /* 2399 * If the folio is large, round down swap and index by folio size. 2400 * No matter what race occurs, the swap layer ensures we either get 2401 * a valid folio that has its swap entry aligned by size, or a 2402 * temporarily invalid one which we'll abort very soon and retry. 2403 * 2404 * shmem_add_to_page_cache ensures the whole range contains expected 2405 * entries and prevents any corruption, so any race split is fine 2406 * too, it will succeed as long as the entries are still there. 2407 */ 2408 nr_pages = folio_nr_pages(folio); 2409 if (nr_pages > 1) { 2410 swap.val = round_down(swap.val, nr_pages); 2411 index = round_down(index, nr_pages); 2412 } 2413 2414 /* 2415 * We have to do this with the folio locked to prevent races. 2416 * The shmem_confirm_swap below only checks if the first swap 2417 * entry matches the folio, that's enough to ensure the folio 2418 * is not used outside of shmem, as shmem swap entries 2419 * and swap cache folios are never partially freed. 2420 */ 2421 folio_lock(folio); 2422 if ((!skip_swapcache && !folio_test_swapcache(folio)) || 2423 shmem_confirm_swap(mapping, index, swap) < 0 || 2424 folio->swap.val != swap.val) { 2425 error = -EEXIST; 2426 goto unlock; 2427 } 2428 if (!folio_test_uptodate(folio)) { 2429 error = -EIO; 2430 goto failed; 2431 } 2432 folio_wait_writeback(folio); 2433 2434 /* 2435 * Some architectures may have to restore extra metadata to the 2436 * folio after reading from swap. 2437 */ 2438 arch_swap_restore(folio_swap(swap, folio), folio); 2439 2440 if (shmem_should_replace_folio(folio, gfp)) { 2441 error = shmem_replace_folio(&folio, gfp, info, index, vma); 2442 if (error) 2443 goto failed; 2444 } 2445 2446 error = shmem_add_to_page_cache(folio, mapping, index, 2447 swp_to_radix_entry(swap), gfp); 2448 if (error) 2449 goto failed; 2450 2451 shmem_recalc_inode(inode, 0, -nr_pages); 2452 2453 if (sgp == SGP_WRITE) 2454 folio_mark_accessed(folio); 2455 2456 if (skip_swapcache) { 2457 folio->swap.val = 0; 2458 swapcache_clear(si, swap, nr_pages); 2459 } else { 2460 delete_from_swap_cache(folio); 2461 } 2462 folio_mark_dirty(folio); 2463 swap_free_nr(swap, nr_pages); 2464 put_swap_device(si); 2465 2466 *foliop = folio; 2467 return 0; 2468 failed: 2469 if (shmem_confirm_swap(mapping, index, swap) < 0) 2470 error = -EEXIST; 2471 if (error == -EIO) 2472 shmem_set_folio_swapin_error(inode, index, folio, swap, 2473 skip_swapcache); 2474 unlock: 2475 if (folio) 2476 folio_unlock(folio); 2477 failed_nolock: 2478 if (skip_swapcache) 2479 swapcache_clear(si, folio->swap, folio_nr_pages(folio)); 2480 if (folio) 2481 folio_put(folio); 2482 put_swap_device(si); 2483 2484 return error; 2485 } 2486 2487 /* 2488 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 2489 * 2490 * If we allocate a new one we do not mark it dirty. That's up to the 2491 * vm. If we swap it in we mark it dirty since we also free the swap 2492 * entry since a page cannot live in both the swap and page cache. 2493 * 2494 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 2495 */ 2496 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 2497 loff_t write_end, struct folio **foliop, enum sgp_type sgp, 2498 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type) 2499 { 2500 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 2501 struct mm_struct *fault_mm; 2502 struct folio *folio; 2503 int error; 2504 bool alloced; 2505 unsigned long orders = 0; 2506 2507 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 2508 return -EINVAL; 2509 2510 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 2511 return -EFBIG; 2512 repeat: 2513 if (sgp <= SGP_CACHE && 2514 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 2515 return -EINVAL; 2516 2517 alloced = false; 2518 fault_mm = vma ? vma->vm_mm : NULL; 2519 2520 folio = filemap_get_entry(inode->i_mapping, index); 2521 if (folio && vma && userfaultfd_minor(vma)) { 2522 if (!xa_is_value(folio)) 2523 folio_put(folio); 2524 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 2525 return 0; 2526 } 2527 2528 if (xa_is_value(folio)) { 2529 error = shmem_swapin_folio(inode, index, &folio, 2530 sgp, gfp, vma, fault_type); 2531 if (error == -EEXIST) 2532 goto repeat; 2533 2534 *foliop = folio; 2535 return error; 2536 } 2537 2538 if (folio) { 2539 folio_lock(folio); 2540 2541 /* Has the folio been truncated or swapped out? */ 2542 if (unlikely(folio->mapping != inode->i_mapping)) { 2543 folio_unlock(folio); 2544 folio_put(folio); 2545 goto repeat; 2546 } 2547 if (sgp == SGP_WRITE) 2548 folio_mark_accessed(folio); 2549 if (folio_test_uptodate(folio)) 2550 goto out; 2551 /* fallocated folio */ 2552 if (sgp != SGP_READ) 2553 goto clear; 2554 folio_unlock(folio); 2555 folio_put(folio); 2556 } 2557 2558 /* 2559 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2560 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2561 */ 2562 *foliop = NULL; 2563 if (sgp == SGP_READ) 2564 return 0; 2565 if (sgp == SGP_NOALLOC) 2566 return -ENOENT; 2567 2568 /* 2569 * Fast cache lookup and swap lookup did not find it: allocate. 2570 */ 2571 2572 if (vma && userfaultfd_missing(vma)) { 2573 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2574 return 0; 2575 } 2576 2577 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */ 2578 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false); 2579 if (orders > 0) { 2580 gfp_t huge_gfp; 2581 2582 huge_gfp = vma_thp_gfp_mask(vma); 2583 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2584 folio = shmem_alloc_and_add_folio(vmf, huge_gfp, 2585 inode, index, fault_mm, orders); 2586 if (!IS_ERR(folio)) { 2587 if (folio_test_pmd_mappable(folio)) 2588 count_vm_event(THP_FILE_ALLOC); 2589 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC); 2590 goto alloced; 2591 } 2592 if (PTR_ERR(folio) == -EEXIST) 2593 goto repeat; 2594 } 2595 2596 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0); 2597 if (IS_ERR(folio)) { 2598 error = PTR_ERR(folio); 2599 if (error == -EEXIST) 2600 goto repeat; 2601 folio = NULL; 2602 goto unlock; 2603 } 2604 2605 alloced: 2606 alloced = true; 2607 if (folio_test_large(folio) && 2608 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2609 folio_next_index(folio)) { 2610 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2611 struct shmem_inode_info *info = SHMEM_I(inode); 2612 /* 2613 * Part of the large folio is beyond i_size: subject 2614 * to shrink under memory pressure. 2615 */ 2616 spin_lock(&sbinfo->shrinklist_lock); 2617 /* 2618 * _careful to defend against unlocked access to 2619 * ->shrink_list in shmem_unused_huge_shrink() 2620 */ 2621 if (list_empty_careful(&info->shrinklist)) { 2622 list_add_tail(&info->shrinklist, 2623 &sbinfo->shrinklist); 2624 sbinfo->shrinklist_len++; 2625 } 2626 spin_unlock(&sbinfo->shrinklist_lock); 2627 } 2628 2629 if (sgp == SGP_WRITE) 2630 folio_set_referenced(folio); 2631 /* 2632 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2633 */ 2634 if (sgp == SGP_FALLOC) 2635 sgp = SGP_WRITE; 2636 clear: 2637 /* 2638 * Let SGP_WRITE caller clear ends if write does not fill folio; 2639 * but SGP_FALLOC on a folio fallocated earlier must initialize 2640 * it now, lest undo on failure cancel our earlier guarantee. 2641 */ 2642 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2643 long i, n = folio_nr_pages(folio); 2644 2645 for (i = 0; i < n; i++) 2646 clear_highpage(folio_page(folio, i)); 2647 flush_dcache_folio(folio); 2648 folio_mark_uptodate(folio); 2649 } 2650 2651 /* Perhaps the file has been truncated since we checked */ 2652 if (sgp <= SGP_CACHE && 2653 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2654 error = -EINVAL; 2655 goto unlock; 2656 } 2657 out: 2658 *foliop = folio; 2659 return 0; 2660 2661 /* 2662 * Error recovery. 2663 */ 2664 unlock: 2665 if (alloced) 2666 filemap_remove_folio(folio); 2667 shmem_recalc_inode(inode, 0, 0); 2668 if (folio) { 2669 folio_unlock(folio); 2670 folio_put(folio); 2671 } 2672 return error; 2673 } 2674 2675 /** 2676 * shmem_get_folio - find, and lock a shmem folio. 2677 * @inode: inode to search 2678 * @index: the page index. 2679 * @write_end: end of a write, could extend inode size 2680 * @foliop: pointer to the folio if found 2681 * @sgp: SGP_* flags to control behavior 2682 * 2683 * Looks up the page cache entry at @inode & @index. If a folio is 2684 * present, it is returned locked with an increased refcount. 2685 * 2686 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2687 * before unlocking the folio to ensure that the folio is not reclaimed. 2688 * There is no need to reserve space before calling folio_mark_dirty(). 2689 * 2690 * When no folio is found, the behavior depends on @sgp: 2691 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2692 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2693 * - for all other flags a new folio is allocated, inserted into the 2694 * page cache and returned locked in @foliop. 2695 * 2696 * Context: May sleep. 2697 * Return: 0 if successful, else a negative error code. 2698 */ 2699 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end, 2700 struct folio **foliop, enum sgp_type sgp) 2701 { 2702 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp, 2703 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2704 } 2705 EXPORT_SYMBOL_GPL(shmem_get_folio); 2706 2707 /* 2708 * This is like autoremove_wake_function, but it removes the wait queue 2709 * entry unconditionally - even if something else had already woken the 2710 * target. 2711 */ 2712 static int synchronous_wake_function(wait_queue_entry_t *wait, 2713 unsigned int mode, int sync, void *key) 2714 { 2715 int ret = default_wake_function(wait, mode, sync, key); 2716 list_del_init(&wait->entry); 2717 return ret; 2718 } 2719 2720 /* 2721 * Trinity finds that probing a hole which tmpfs is punching can 2722 * prevent the hole-punch from ever completing: which in turn 2723 * locks writers out with its hold on i_rwsem. So refrain from 2724 * faulting pages into the hole while it's being punched. Although 2725 * shmem_undo_range() does remove the additions, it may be unable to 2726 * keep up, as each new page needs its own unmap_mapping_range() call, 2727 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2728 * 2729 * It does not matter if we sometimes reach this check just before the 2730 * hole-punch begins, so that one fault then races with the punch: 2731 * we just need to make racing faults a rare case. 2732 * 2733 * The implementation below would be much simpler if we just used a 2734 * standard mutex or completion: but we cannot take i_rwsem in fault, 2735 * and bloating every shmem inode for this unlikely case would be sad. 2736 */ 2737 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2738 { 2739 struct shmem_falloc *shmem_falloc; 2740 struct file *fpin = NULL; 2741 vm_fault_t ret = 0; 2742 2743 spin_lock(&inode->i_lock); 2744 shmem_falloc = inode->i_private; 2745 if (shmem_falloc && 2746 shmem_falloc->waitq && 2747 vmf->pgoff >= shmem_falloc->start && 2748 vmf->pgoff < shmem_falloc->next) { 2749 wait_queue_head_t *shmem_falloc_waitq; 2750 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2751 2752 ret = VM_FAULT_NOPAGE; 2753 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2754 shmem_falloc_waitq = shmem_falloc->waitq; 2755 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2756 TASK_UNINTERRUPTIBLE); 2757 spin_unlock(&inode->i_lock); 2758 schedule(); 2759 2760 /* 2761 * shmem_falloc_waitq points into the shmem_fallocate() 2762 * stack of the hole-punching task: shmem_falloc_waitq 2763 * is usually invalid by the time we reach here, but 2764 * finish_wait() does not dereference it in that case; 2765 * though i_lock needed lest racing with wake_up_all(). 2766 */ 2767 spin_lock(&inode->i_lock); 2768 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2769 } 2770 spin_unlock(&inode->i_lock); 2771 if (fpin) { 2772 fput(fpin); 2773 ret = VM_FAULT_RETRY; 2774 } 2775 return ret; 2776 } 2777 2778 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2779 { 2780 struct inode *inode = file_inode(vmf->vma->vm_file); 2781 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2782 struct folio *folio = NULL; 2783 vm_fault_t ret = 0; 2784 int err; 2785 2786 /* 2787 * Trinity finds that probing a hole which tmpfs is punching can 2788 * prevent the hole-punch from ever completing: noted in i_private. 2789 */ 2790 if (unlikely(inode->i_private)) { 2791 ret = shmem_falloc_wait(vmf, inode); 2792 if (ret) 2793 return ret; 2794 } 2795 2796 WARN_ON_ONCE(vmf->page != NULL); 2797 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE, 2798 gfp, vmf, &ret); 2799 if (err) 2800 return vmf_error(err); 2801 if (folio) { 2802 vmf->page = folio_file_page(folio, vmf->pgoff); 2803 ret |= VM_FAULT_LOCKED; 2804 } 2805 return ret; 2806 } 2807 2808 unsigned long shmem_get_unmapped_area(struct file *file, 2809 unsigned long uaddr, unsigned long len, 2810 unsigned long pgoff, unsigned long flags) 2811 { 2812 unsigned long addr; 2813 unsigned long offset; 2814 unsigned long inflated_len; 2815 unsigned long inflated_addr; 2816 unsigned long inflated_offset; 2817 unsigned long hpage_size; 2818 2819 if (len > TASK_SIZE) 2820 return -ENOMEM; 2821 2822 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff, 2823 flags); 2824 2825 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2826 return addr; 2827 if (IS_ERR_VALUE(addr)) 2828 return addr; 2829 if (addr & ~PAGE_MASK) 2830 return addr; 2831 if (addr > TASK_SIZE - len) 2832 return addr; 2833 2834 if (shmem_huge == SHMEM_HUGE_DENY) 2835 return addr; 2836 if (flags & MAP_FIXED) 2837 return addr; 2838 /* 2839 * Our priority is to support MAP_SHARED mapped hugely; 2840 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2841 * But if caller specified an address hint and we allocated area there 2842 * successfully, respect that as before. 2843 */ 2844 if (uaddr == addr) 2845 return addr; 2846 2847 hpage_size = HPAGE_PMD_SIZE; 2848 if (shmem_huge != SHMEM_HUGE_FORCE) { 2849 struct super_block *sb; 2850 unsigned long __maybe_unused hpage_orders; 2851 int order = 0; 2852 2853 if (file) { 2854 VM_BUG_ON(file->f_op != &shmem_file_operations); 2855 sb = file_inode(file)->i_sb; 2856 } else { 2857 /* 2858 * Called directly from mm/mmap.c, or drivers/char/mem.c 2859 * for "/dev/zero", to create a shared anonymous object. 2860 */ 2861 if (IS_ERR(shm_mnt)) 2862 return addr; 2863 sb = shm_mnt->mnt_sb; 2864 2865 /* 2866 * Find the highest mTHP order used for anonymous shmem to 2867 * provide a suitable alignment address. 2868 */ 2869 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2870 hpage_orders = READ_ONCE(huge_shmem_orders_always); 2871 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size); 2872 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise); 2873 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 2874 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit); 2875 2876 if (hpage_orders > 0) { 2877 order = highest_order(hpage_orders); 2878 hpage_size = PAGE_SIZE << order; 2879 } 2880 #endif 2881 } 2882 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order) 2883 return addr; 2884 } 2885 2886 if (len < hpage_size) 2887 return addr; 2888 2889 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1); 2890 if (offset && offset + len < 2 * hpage_size) 2891 return addr; 2892 if ((addr & (hpage_size - 1)) == offset) 2893 return addr; 2894 2895 inflated_len = len + hpage_size - PAGE_SIZE; 2896 if (inflated_len > TASK_SIZE) 2897 return addr; 2898 if (inflated_len < len) 2899 return addr; 2900 2901 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr, 2902 inflated_len, 0, flags); 2903 if (IS_ERR_VALUE(inflated_addr)) 2904 return addr; 2905 if (inflated_addr & ~PAGE_MASK) 2906 return addr; 2907 2908 inflated_offset = inflated_addr & (hpage_size - 1); 2909 inflated_addr += offset - inflated_offset; 2910 if (inflated_offset > offset) 2911 inflated_addr += hpage_size; 2912 2913 if (inflated_addr > TASK_SIZE - len) 2914 return addr; 2915 return inflated_addr; 2916 } 2917 2918 #ifdef CONFIG_NUMA 2919 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2920 { 2921 struct inode *inode = file_inode(vma->vm_file); 2922 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2923 } 2924 2925 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2926 unsigned long addr, pgoff_t *ilx) 2927 { 2928 struct inode *inode = file_inode(vma->vm_file); 2929 pgoff_t index; 2930 2931 /* 2932 * Bias interleave by inode number to distribute better across nodes; 2933 * but this interface is independent of which page order is used, so 2934 * supplies only that bias, letting caller apply the offset (adjusted 2935 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2936 */ 2937 *ilx = inode->i_ino; 2938 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2939 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2940 } 2941 2942 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2943 pgoff_t index, unsigned int order, pgoff_t *ilx) 2944 { 2945 struct mempolicy *mpol; 2946 2947 /* Bias interleave by inode number to distribute better across nodes */ 2948 *ilx = info->vfs_inode.i_ino + (index >> order); 2949 2950 mpol = mpol_shared_policy_lookup(&info->policy, index); 2951 return mpol ? mpol : get_task_policy(current); 2952 } 2953 #else 2954 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2955 pgoff_t index, unsigned int order, pgoff_t *ilx) 2956 { 2957 *ilx = 0; 2958 return NULL; 2959 } 2960 #endif /* CONFIG_NUMA */ 2961 2962 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2963 { 2964 struct inode *inode = file_inode(file); 2965 struct shmem_inode_info *info = SHMEM_I(inode); 2966 int retval = -ENOMEM; 2967 2968 /* 2969 * What serializes the accesses to info->flags? 2970 * ipc_lock_object() when called from shmctl_do_lock(), 2971 * no serialization needed when called from shm_destroy(). 2972 */ 2973 if (lock && !(info->flags & VM_LOCKED)) { 2974 if (!user_shm_lock(inode->i_size, ucounts)) 2975 goto out_nomem; 2976 info->flags |= VM_LOCKED; 2977 mapping_set_unevictable(file->f_mapping); 2978 } 2979 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2980 user_shm_unlock(inode->i_size, ucounts); 2981 info->flags &= ~VM_LOCKED; 2982 mapping_clear_unevictable(file->f_mapping); 2983 } 2984 retval = 0; 2985 2986 out_nomem: 2987 return retval; 2988 } 2989 2990 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2991 { 2992 struct inode *inode = file_inode(file); 2993 2994 file_accessed(file); 2995 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2996 if (inode->i_nlink) 2997 vma->vm_ops = &shmem_vm_ops; 2998 else 2999 vma->vm_ops = &shmem_anon_vm_ops; 3000 return 0; 3001 } 3002 3003 static int shmem_file_open(struct inode *inode, struct file *file) 3004 { 3005 file->f_mode |= FMODE_CAN_ODIRECT; 3006 return generic_file_open(inode, file); 3007 } 3008 3009 #ifdef CONFIG_TMPFS_XATTR 3010 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 3011 3012 #if IS_ENABLED(CONFIG_UNICODE) 3013 /* 3014 * shmem_inode_casefold_flags - Deal with casefold file attribute flag 3015 * 3016 * The casefold file attribute needs some special checks. I can just be added to 3017 * an empty dir, and can't be removed from a non-empty dir. 3018 */ 3019 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 3020 struct dentry *dentry, unsigned int *i_flags) 3021 { 3022 unsigned int old = inode->i_flags; 3023 struct super_block *sb = inode->i_sb; 3024 3025 if (fsflags & FS_CASEFOLD_FL) { 3026 if (!(old & S_CASEFOLD)) { 3027 if (!sb->s_encoding) 3028 return -EOPNOTSUPP; 3029 3030 if (!S_ISDIR(inode->i_mode)) 3031 return -ENOTDIR; 3032 3033 if (dentry && !simple_empty(dentry)) 3034 return -ENOTEMPTY; 3035 } 3036 3037 *i_flags = *i_flags | S_CASEFOLD; 3038 } else if (old & S_CASEFOLD) { 3039 if (dentry && !simple_empty(dentry)) 3040 return -ENOTEMPTY; 3041 } 3042 3043 return 0; 3044 } 3045 #else 3046 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 3047 struct dentry *dentry, unsigned int *i_flags) 3048 { 3049 if (fsflags & FS_CASEFOLD_FL) 3050 return -EOPNOTSUPP; 3051 3052 return 0; 3053 } 3054 #endif 3055 3056 /* 3057 * chattr's fsflags are unrelated to extended attributes, 3058 * but tmpfs has chosen to enable them under the same config option. 3059 */ 3060 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3061 { 3062 unsigned int i_flags = 0; 3063 int ret; 3064 3065 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags); 3066 if (ret) 3067 return ret; 3068 3069 if (fsflags & FS_NOATIME_FL) 3070 i_flags |= S_NOATIME; 3071 if (fsflags & FS_APPEND_FL) 3072 i_flags |= S_APPEND; 3073 if (fsflags & FS_IMMUTABLE_FL) 3074 i_flags |= S_IMMUTABLE; 3075 /* 3076 * But FS_NODUMP_FL does not require any action in i_flags. 3077 */ 3078 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD); 3079 3080 return 0; 3081 } 3082 #else 3083 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3084 { 3085 } 3086 #define shmem_initxattrs NULL 3087 #endif 3088 3089 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 3090 { 3091 return &SHMEM_I(inode)->dir_offsets; 3092 } 3093 3094 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 3095 struct super_block *sb, 3096 struct inode *dir, umode_t mode, 3097 dev_t dev, unsigned long flags) 3098 { 3099 struct inode *inode; 3100 struct shmem_inode_info *info; 3101 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3102 ino_t ino; 3103 int err; 3104 3105 err = shmem_reserve_inode(sb, &ino); 3106 if (err) 3107 return ERR_PTR(err); 3108 3109 inode = new_inode(sb); 3110 if (!inode) { 3111 shmem_free_inode(sb, 0); 3112 return ERR_PTR(-ENOSPC); 3113 } 3114 3115 inode->i_ino = ino; 3116 inode_init_owner(idmap, inode, dir, mode); 3117 inode->i_blocks = 0; 3118 simple_inode_init_ts(inode); 3119 inode->i_generation = get_random_u32(); 3120 info = SHMEM_I(inode); 3121 memset(info, 0, (char *)inode - (char *)info); 3122 spin_lock_init(&info->lock); 3123 atomic_set(&info->stop_eviction, 0); 3124 info->seals = F_SEAL_SEAL; 3125 info->flags = flags & VM_NORESERVE; 3126 info->i_crtime = inode_get_mtime(inode); 3127 info->fsflags = (dir == NULL) ? 0 : 3128 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 3129 if (info->fsflags) 3130 shmem_set_inode_flags(inode, info->fsflags, NULL); 3131 INIT_LIST_HEAD(&info->shrinklist); 3132 INIT_LIST_HEAD(&info->swaplist); 3133 simple_xattrs_init(&info->xattrs); 3134 cache_no_acl(inode); 3135 if (sbinfo->noswap) 3136 mapping_set_unevictable(inode->i_mapping); 3137 3138 /* Don't consider 'deny' for emergencies and 'force' for testing */ 3139 if (sbinfo->huge) 3140 mapping_set_large_folios(inode->i_mapping); 3141 3142 switch (mode & S_IFMT) { 3143 default: 3144 inode->i_op = &shmem_special_inode_operations; 3145 init_special_inode(inode, mode, dev); 3146 break; 3147 case S_IFREG: 3148 inode->i_mapping->a_ops = &shmem_aops; 3149 inode->i_op = &shmem_inode_operations; 3150 inode->i_fop = &shmem_file_operations; 3151 mpol_shared_policy_init(&info->policy, 3152 shmem_get_sbmpol(sbinfo)); 3153 break; 3154 case S_IFDIR: 3155 inc_nlink(inode); 3156 /* Some things misbehave if size == 0 on a directory */ 3157 inode->i_size = 2 * BOGO_DIRENT_SIZE; 3158 inode->i_op = &shmem_dir_inode_operations; 3159 inode->i_fop = &simple_offset_dir_operations; 3160 simple_offset_init(shmem_get_offset_ctx(inode)); 3161 break; 3162 case S_IFLNK: 3163 /* 3164 * Must not load anything in the rbtree, 3165 * mpol_free_shared_policy will not be called. 3166 */ 3167 mpol_shared_policy_init(&info->policy, NULL); 3168 break; 3169 } 3170 3171 lockdep_annotate_inode_mutex_key(inode); 3172 return inode; 3173 } 3174 3175 #ifdef CONFIG_TMPFS_QUOTA 3176 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3177 struct super_block *sb, struct inode *dir, 3178 umode_t mode, dev_t dev, unsigned long flags) 3179 { 3180 int err; 3181 struct inode *inode; 3182 3183 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3184 if (IS_ERR(inode)) 3185 return inode; 3186 3187 err = dquot_initialize(inode); 3188 if (err) 3189 goto errout; 3190 3191 err = dquot_alloc_inode(inode); 3192 if (err) { 3193 dquot_drop(inode); 3194 goto errout; 3195 } 3196 return inode; 3197 3198 errout: 3199 inode->i_flags |= S_NOQUOTA; 3200 iput(inode); 3201 return ERR_PTR(err); 3202 } 3203 #else 3204 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3205 struct super_block *sb, struct inode *dir, 3206 umode_t mode, dev_t dev, unsigned long flags) 3207 { 3208 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3209 } 3210 #endif /* CONFIG_TMPFS_QUOTA */ 3211 3212 #ifdef CONFIG_USERFAULTFD 3213 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 3214 struct vm_area_struct *dst_vma, 3215 unsigned long dst_addr, 3216 unsigned long src_addr, 3217 uffd_flags_t flags, 3218 struct folio **foliop) 3219 { 3220 struct inode *inode = file_inode(dst_vma->vm_file); 3221 struct shmem_inode_info *info = SHMEM_I(inode); 3222 struct address_space *mapping = inode->i_mapping; 3223 gfp_t gfp = mapping_gfp_mask(mapping); 3224 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 3225 void *page_kaddr; 3226 struct folio *folio; 3227 int ret; 3228 pgoff_t max_off; 3229 3230 if (shmem_inode_acct_blocks(inode, 1)) { 3231 /* 3232 * We may have got a page, returned -ENOENT triggering a retry, 3233 * and now we find ourselves with -ENOMEM. Release the page, to 3234 * avoid a BUG_ON in our caller. 3235 */ 3236 if (unlikely(*foliop)) { 3237 folio_put(*foliop); 3238 *foliop = NULL; 3239 } 3240 return -ENOMEM; 3241 } 3242 3243 if (!*foliop) { 3244 ret = -ENOMEM; 3245 folio = shmem_alloc_folio(gfp, 0, info, pgoff); 3246 if (!folio) 3247 goto out_unacct_blocks; 3248 3249 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 3250 page_kaddr = kmap_local_folio(folio, 0); 3251 /* 3252 * The read mmap_lock is held here. Despite the 3253 * mmap_lock being read recursive a deadlock is still 3254 * possible if a writer has taken a lock. For example: 3255 * 3256 * process A thread 1 takes read lock on own mmap_lock 3257 * process A thread 2 calls mmap, blocks taking write lock 3258 * process B thread 1 takes page fault, read lock on own mmap lock 3259 * process B thread 2 calls mmap, blocks taking write lock 3260 * process A thread 1 blocks taking read lock on process B 3261 * process B thread 1 blocks taking read lock on process A 3262 * 3263 * Disable page faults to prevent potential deadlock 3264 * and retry the copy outside the mmap_lock. 3265 */ 3266 pagefault_disable(); 3267 ret = copy_from_user(page_kaddr, 3268 (const void __user *)src_addr, 3269 PAGE_SIZE); 3270 pagefault_enable(); 3271 kunmap_local(page_kaddr); 3272 3273 /* fallback to copy_from_user outside mmap_lock */ 3274 if (unlikely(ret)) { 3275 *foliop = folio; 3276 ret = -ENOENT; 3277 /* don't free the page */ 3278 goto out_unacct_blocks; 3279 } 3280 3281 flush_dcache_folio(folio); 3282 } else { /* ZEROPAGE */ 3283 clear_user_highpage(&folio->page, dst_addr); 3284 } 3285 } else { 3286 folio = *foliop; 3287 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 3288 *foliop = NULL; 3289 } 3290 3291 VM_BUG_ON(folio_test_locked(folio)); 3292 VM_BUG_ON(folio_test_swapbacked(folio)); 3293 __folio_set_locked(folio); 3294 __folio_set_swapbacked(folio); 3295 __folio_mark_uptodate(folio); 3296 3297 ret = -EFAULT; 3298 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3299 if (unlikely(pgoff >= max_off)) 3300 goto out_release; 3301 3302 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 3303 if (ret) 3304 goto out_release; 3305 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 3306 if (ret) 3307 goto out_release; 3308 3309 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 3310 &folio->page, true, flags); 3311 if (ret) 3312 goto out_delete_from_cache; 3313 3314 shmem_recalc_inode(inode, 1, 0); 3315 folio_unlock(folio); 3316 return 0; 3317 out_delete_from_cache: 3318 filemap_remove_folio(folio); 3319 out_release: 3320 folio_unlock(folio); 3321 folio_put(folio); 3322 out_unacct_blocks: 3323 shmem_inode_unacct_blocks(inode, 1); 3324 return ret; 3325 } 3326 #endif /* CONFIG_USERFAULTFD */ 3327 3328 #ifdef CONFIG_TMPFS 3329 static const struct inode_operations shmem_symlink_inode_operations; 3330 static const struct inode_operations shmem_short_symlink_operations; 3331 3332 static int 3333 shmem_write_begin(const struct kiocb *iocb, struct address_space *mapping, 3334 loff_t pos, unsigned len, 3335 struct folio **foliop, void **fsdata) 3336 { 3337 struct inode *inode = mapping->host; 3338 struct shmem_inode_info *info = SHMEM_I(inode); 3339 pgoff_t index = pos >> PAGE_SHIFT; 3340 struct folio *folio; 3341 int ret = 0; 3342 3343 /* i_rwsem is held by caller */ 3344 if (unlikely(info->seals & (F_SEAL_GROW | 3345 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 3346 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 3347 return -EPERM; 3348 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 3349 return -EPERM; 3350 } 3351 3352 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE); 3353 if (ret) 3354 return ret; 3355 3356 if (folio_contain_hwpoisoned_page(folio)) { 3357 folio_unlock(folio); 3358 folio_put(folio); 3359 return -EIO; 3360 } 3361 3362 *foliop = folio; 3363 return 0; 3364 } 3365 3366 static int 3367 shmem_write_end(const struct kiocb *iocb, struct address_space *mapping, 3368 loff_t pos, unsigned len, unsigned copied, 3369 struct folio *folio, void *fsdata) 3370 { 3371 struct inode *inode = mapping->host; 3372 3373 if (pos + copied > inode->i_size) 3374 i_size_write(inode, pos + copied); 3375 3376 if (!folio_test_uptodate(folio)) { 3377 if (copied < folio_size(folio)) { 3378 size_t from = offset_in_folio(folio, pos); 3379 folio_zero_segments(folio, 0, from, 3380 from + copied, folio_size(folio)); 3381 } 3382 folio_mark_uptodate(folio); 3383 } 3384 folio_mark_dirty(folio); 3385 folio_unlock(folio); 3386 folio_put(folio); 3387 3388 return copied; 3389 } 3390 3391 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3392 { 3393 struct file *file = iocb->ki_filp; 3394 struct inode *inode = file_inode(file); 3395 struct address_space *mapping = inode->i_mapping; 3396 pgoff_t index; 3397 unsigned long offset; 3398 int error = 0; 3399 ssize_t retval = 0; 3400 3401 for (;;) { 3402 struct folio *folio = NULL; 3403 struct page *page = NULL; 3404 unsigned long nr, ret; 3405 loff_t end_offset, i_size = i_size_read(inode); 3406 bool fallback_page_copy = false; 3407 size_t fsize; 3408 3409 if (unlikely(iocb->ki_pos >= i_size)) 3410 break; 3411 3412 index = iocb->ki_pos >> PAGE_SHIFT; 3413 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3414 if (error) { 3415 if (error == -EINVAL) 3416 error = 0; 3417 break; 3418 } 3419 if (folio) { 3420 folio_unlock(folio); 3421 3422 page = folio_file_page(folio, index); 3423 if (PageHWPoison(page)) { 3424 folio_put(folio); 3425 error = -EIO; 3426 break; 3427 } 3428 3429 if (folio_test_large(folio) && 3430 folio_test_has_hwpoisoned(folio)) 3431 fallback_page_copy = true; 3432 } 3433 3434 /* 3435 * We must evaluate after, since reads (unlike writes) 3436 * are called without i_rwsem protection against truncate 3437 */ 3438 i_size = i_size_read(inode); 3439 if (unlikely(iocb->ki_pos >= i_size)) { 3440 if (folio) 3441 folio_put(folio); 3442 break; 3443 } 3444 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count); 3445 if (folio && likely(!fallback_page_copy)) 3446 fsize = folio_size(folio); 3447 else 3448 fsize = PAGE_SIZE; 3449 offset = iocb->ki_pos & (fsize - 1); 3450 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset); 3451 3452 if (folio) { 3453 /* 3454 * If users can be writing to this page using arbitrary 3455 * virtual addresses, take care about potential aliasing 3456 * before reading the page on the kernel side. 3457 */ 3458 if (mapping_writably_mapped(mapping)) { 3459 if (likely(!fallback_page_copy)) 3460 flush_dcache_folio(folio); 3461 else 3462 flush_dcache_page(page); 3463 } 3464 3465 /* 3466 * Mark the folio accessed if we read the beginning. 3467 */ 3468 if (!offset) 3469 folio_mark_accessed(folio); 3470 /* 3471 * Ok, we have the page, and it's up-to-date, so 3472 * now we can copy it to user space... 3473 */ 3474 if (likely(!fallback_page_copy)) 3475 ret = copy_folio_to_iter(folio, offset, nr, to); 3476 else 3477 ret = copy_page_to_iter(page, offset, nr, to); 3478 folio_put(folio); 3479 } else if (user_backed_iter(to)) { 3480 /* 3481 * Copy to user tends to be so well optimized, but 3482 * clear_user() not so much, that it is noticeably 3483 * faster to copy the zero page instead of clearing. 3484 */ 3485 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 3486 } else { 3487 /* 3488 * But submitting the same page twice in a row to 3489 * splice() - or others? - can result in confusion: 3490 * so don't attempt that optimization on pipes etc. 3491 */ 3492 ret = iov_iter_zero(nr, to); 3493 } 3494 3495 retval += ret; 3496 iocb->ki_pos += ret; 3497 3498 if (!iov_iter_count(to)) 3499 break; 3500 if (ret < nr) { 3501 error = -EFAULT; 3502 break; 3503 } 3504 cond_resched(); 3505 } 3506 3507 file_accessed(file); 3508 return retval ? retval : error; 3509 } 3510 3511 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3512 { 3513 struct file *file = iocb->ki_filp; 3514 struct inode *inode = file->f_mapping->host; 3515 ssize_t ret; 3516 3517 inode_lock(inode); 3518 ret = generic_write_checks(iocb, from); 3519 if (ret <= 0) 3520 goto unlock; 3521 ret = file_remove_privs(file); 3522 if (ret) 3523 goto unlock; 3524 ret = file_update_time(file); 3525 if (ret) 3526 goto unlock; 3527 ret = generic_perform_write(iocb, from); 3528 unlock: 3529 inode_unlock(inode); 3530 return ret; 3531 } 3532 3533 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 3534 struct pipe_buffer *buf) 3535 { 3536 return true; 3537 } 3538 3539 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 3540 struct pipe_buffer *buf) 3541 { 3542 } 3543 3544 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 3545 struct pipe_buffer *buf) 3546 { 3547 return false; 3548 } 3549 3550 static const struct pipe_buf_operations zero_pipe_buf_ops = { 3551 .release = zero_pipe_buf_release, 3552 .try_steal = zero_pipe_buf_try_steal, 3553 .get = zero_pipe_buf_get, 3554 }; 3555 3556 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 3557 loff_t fpos, size_t size) 3558 { 3559 size_t offset = fpos & ~PAGE_MASK; 3560 3561 size = min_t(size_t, size, PAGE_SIZE - offset); 3562 3563 if (!pipe_is_full(pipe)) { 3564 struct pipe_buffer *buf = pipe_head_buf(pipe); 3565 3566 *buf = (struct pipe_buffer) { 3567 .ops = &zero_pipe_buf_ops, 3568 .page = ZERO_PAGE(0), 3569 .offset = offset, 3570 .len = size, 3571 }; 3572 pipe->head++; 3573 } 3574 3575 return size; 3576 } 3577 3578 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 3579 struct pipe_inode_info *pipe, 3580 size_t len, unsigned int flags) 3581 { 3582 struct inode *inode = file_inode(in); 3583 struct address_space *mapping = inode->i_mapping; 3584 struct folio *folio = NULL; 3585 size_t total_spliced = 0, used, npages, n, part; 3586 loff_t isize; 3587 int error = 0; 3588 3589 /* Work out how much data we can actually add into the pipe */ 3590 used = pipe_buf_usage(pipe); 3591 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3592 len = min_t(size_t, len, npages * PAGE_SIZE); 3593 3594 do { 3595 bool fallback_page_splice = false; 3596 struct page *page = NULL; 3597 pgoff_t index; 3598 size_t size; 3599 3600 if (*ppos >= i_size_read(inode)) 3601 break; 3602 3603 index = *ppos >> PAGE_SHIFT; 3604 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3605 if (error) { 3606 if (error == -EINVAL) 3607 error = 0; 3608 break; 3609 } 3610 if (folio) { 3611 folio_unlock(folio); 3612 3613 page = folio_file_page(folio, index); 3614 if (PageHWPoison(page)) { 3615 error = -EIO; 3616 break; 3617 } 3618 3619 if (folio_test_large(folio) && 3620 folio_test_has_hwpoisoned(folio)) 3621 fallback_page_splice = true; 3622 } 3623 3624 /* 3625 * i_size must be checked after we know the pages are Uptodate. 3626 * 3627 * Checking i_size after the check allows us to calculate 3628 * the correct value for "nr", which means the zero-filled 3629 * part of the page is not copied back to userspace (unless 3630 * another truncate extends the file - this is desired though). 3631 */ 3632 isize = i_size_read(inode); 3633 if (unlikely(*ppos >= isize)) 3634 break; 3635 /* 3636 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned 3637 * pages. 3638 */ 3639 size = len; 3640 if (unlikely(fallback_page_splice)) { 3641 size_t offset = *ppos & ~PAGE_MASK; 3642 3643 size = umin(size, PAGE_SIZE - offset); 3644 } 3645 part = min_t(loff_t, isize - *ppos, size); 3646 3647 if (folio) { 3648 /* 3649 * If users can be writing to this page using arbitrary 3650 * virtual addresses, take care about potential aliasing 3651 * before reading the page on the kernel side. 3652 */ 3653 if (mapping_writably_mapped(mapping)) { 3654 if (likely(!fallback_page_splice)) 3655 flush_dcache_folio(folio); 3656 else 3657 flush_dcache_page(page); 3658 } 3659 folio_mark_accessed(folio); 3660 /* 3661 * Ok, we have the page, and it's up-to-date, so we can 3662 * now splice it into the pipe. 3663 */ 3664 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3665 folio_put(folio); 3666 folio = NULL; 3667 } else { 3668 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3669 } 3670 3671 if (!n) 3672 break; 3673 len -= n; 3674 total_spliced += n; 3675 *ppos += n; 3676 in->f_ra.prev_pos = *ppos; 3677 if (pipe_is_full(pipe)) 3678 break; 3679 3680 cond_resched(); 3681 } while (len); 3682 3683 if (folio) 3684 folio_put(folio); 3685 3686 file_accessed(in); 3687 return total_spliced ? total_spliced : error; 3688 } 3689 3690 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3691 { 3692 struct address_space *mapping = file->f_mapping; 3693 struct inode *inode = mapping->host; 3694 3695 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3696 return generic_file_llseek_size(file, offset, whence, 3697 MAX_LFS_FILESIZE, i_size_read(inode)); 3698 if (offset < 0) 3699 return -ENXIO; 3700 3701 inode_lock(inode); 3702 /* We're holding i_rwsem so we can access i_size directly */ 3703 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3704 if (offset >= 0) 3705 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3706 inode_unlock(inode); 3707 return offset; 3708 } 3709 3710 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3711 loff_t len) 3712 { 3713 struct inode *inode = file_inode(file); 3714 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3715 struct shmem_inode_info *info = SHMEM_I(inode); 3716 struct shmem_falloc shmem_falloc; 3717 pgoff_t start, index, end, undo_fallocend; 3718 int error; 3719 3720 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3721 return -EOPNOTSUPP; 3722 3723 inode_lock(inode); 3724 3725 if (mode & FALLOC_FL_PUNCH_HOLE) { 3726 struct address_space *mapping = file->f_mapping; 3727 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3728 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3729 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3730 3731 /* protected by i_rwsem */ 3732 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3733 error = -EPERM; 3734 goto out; 3735 } 3736 3737 shmem_falloc.waitq = &shmem_falloc_waitq; 3738 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3739 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3740 spin_lock(&inode->i_lock); 3741 inode->i_private = &shmem_falloc; 3742 spin_unlock(&inode->i_lock); 3743 3744 if ((u64)unmap_end > (u64)unmap_start) 3745 unmap_mapping_range(mapping, unmap_start, 3746 1 + unmap_end - unmap_start, 0); 3747 shmem_truncate_range(inode, offset, offset + len - 1); 3748 /* No need to unmap again: hole-punching leaves COWed pages */ 3749 3750 spin_lock(&inode->i_lock); 3751 inode->i_private = NULL; 3752 wake_up_all(&shmem_falloc_waitq); 3753 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3754 spin_unlock(&inode->i_lock); 3755 error = 0; 3756 goto out; 3757 } 3758 3759 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3760 error = inode_newsize_ok(inode, offset + len); 3761 if (error) 3762 goto out; 3763 3764 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3765 error = -EPERM; 3766 goto out; 3767 } 3768 3769 start = offset >> PAGE_SHIFT; 3770 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3771 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3772 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3773 error = -ENOSPC; 3774 goto out; 3775 } 3776 3777 shmem_falloc.waitq = NULL; 3778 shmem_falloc.start = start; 3779 shmem_falloc.next = start; 3780 shmem_falloc.nr_falloced = 0; 3781 shmem_falloc.nr_unswapped = 0; 3782 spin_lock(&inode->i_lock); 3783 inode->i_private = &shmem_falloc; 3784 spin_unlock(&inode->i_lock); 3785 3786 /* 3787 * info->fallocend is only relevant when huge pages might be 3788 * involved: to prevent split_huge_page() freeing fallocated 3789 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3790 */ 3791 undo_fallocend = info->fallocend; 3792 if (info->fallocend < end) 3793 info->fallocend = end; 3794 3795 for (index = start; index < end; ) { 3796 struct folio *folio; 3797 3798 /* 3799 * Check for fatal signal so that we abort early in OOM 3800 * situations. We don't want to abort in case of non-fatal 3801 * signals as large fallocate can take noticeable time and 3802 * e.g. periodic timers may result in fallocate constantly 3803 * restarting. 3804 */ 3805 if (fatal_signal_pending(current)) 3806 error = -EINTR; 3807 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3808 error = -ENOMEM; 3809 else 3810 error = shmem_get_folio(inode, index, offset + len, 3811 &folio, SGP_FALLOC); 3812 if (error) { 3813 info->fallocend = undo_fallocend; 3814 /* Remove the !uptodate folios we added */ 3815 if (index > start) { 3816 shmem_undo_range(inode, 3817 (loff_t)start << PAGE_SHIFT, 3818 ((loff_t)index << PAGE_SHIFT) - 1, true); 3819 } 3820 goto undone; 3821 } 3822 3823 /* 3824 * Here is a more important optimization than it appears: 3825 * a second SGP_FALLOC on the same large folio will clear it, 3826 * making it uptodate and un-undoable if we fail later. 3827 */ 3828 index = folio_next_index(folio); 3829 /* Beware 32-bit wraparound */ 3830 if (!index) 3831 index--; 3832 3833 /* 3834 * Inform shmem_writeout() how far we have reached. 3835 * No need for lock or barrier: we have the page lock. 3836 */ 3837 if (!folio_test_uptodate(folio)) 3838 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3839 shmem_falloc.next = index; 3840 3841 /* 3842 * If !uptodate, leave it that way so that freeable folios 3843 * can be recognized if we need to rollback on error later. 3844 * But mark it dirty so that memory pressure will swap rather 3845 * than free the folios we are allocating (and SGP_CACHE folios 3846 * might still be clean: we now need to mark those dirty too). 3847 */ 3848 folio_mark_dirty(folio); 3849 folio_unlock(folio); 3850 folio_put(folio); 3851 cond_resched(); 3852 } 3853 3854 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3855 i_size_write(inode, offset + len); 3856 undone: 3857 spin_lock(&inode->i_lock); 3858 inode->i_private = NULL; 3859 spin_unlock(&inode->i_lock); 3860 out: 3861 if (!error) 3862 file_modified(file); 3863 inode_unlock(inode); 3864 return error; 3865 } 3866 3867 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3868 { 3869 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3870 3871 buf->f_type = TMPFS_MAGIC; 3872 buf->f_bsize = PAGE_SIZE; 3873 buf->f_namelen = NAME_MAX; 3874 if (sbinfo->max_blocks) { 3875 buf->f_blocks = sbinfo->max_blocks; 3876 buf->f_bavail = 3877 buf->f_bfree = sbinfo->max_blocks - 3878 percpu_counter_sum(&sbinfo->used_blocks); 3879 } 3880 if (sbinfo->max_inodes) { 3881 buf->f_files = sbinfo->max_inodes; 3882 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3883 } 3884 /* else leave those fields 0 like simple_statfs */ 3885 3886 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3887 3888 return 0; 3889 } 3890 3891 /* 3892 * File creation. Allocate an inode, and we're done.. 3893 */ 3894 static int 3895 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3896 struct dentry *dentry, umode_t mode, dev_t dev) 3897 { 3898 struct inode *inode; 3899 int error; 3900 3901 if (!generic_ci_validate_strict_name(dir, &dentry->d_name)) 3902 return -EINVAL; 3903 3904 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3905 if (IS_ERR(inode)) 3906 return PTR_ERR(inode); 3907 3908 error = simple_acl_create(dir, inode); 3909 if (error) 3910 goto out_iput; 3911 error = security_inode_init_security(inode, dir, &dentry->d_name, 3912 shmem_initxattrs, NULL); 3913 if (error && error != -EOPNOTSUPP) 3914 goto out_iput; 3915 3916 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3917 if (error) 3918 goto out_iput; 3919 3920 dir->i_size += BOGO_DIRENT_SIZE; 3921 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3922 inode_inc_iversion(dir); 3923 3924 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3925 d_add(dentry, inode); 3926 else 3927 d_instantiate(dentry, inode); 3928 3929 dget(dentry); /* Extra count - pin the dentry in core */ 3930 return error; 3931 3932 out_iput: 3933 iput(inode); 3934 return error; 3935 } 3936 3937 static int 3938 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3939 struct file *file, umode_t mode) 3940 { 3941 struct inode *inode; 3942 int error; 3943 3944 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3945 if (IS_ERR(inode)) { 3946 error = PTR_ERR(inode); 3947 goto err_out; 3948 } 3949 error = security_inode_init_security(inode, dir, NULL, 3950 shmem_initxattrs, NULL); 3951 if (error && error != -EOPNOTSUPP) 3952 goto out_iput; 3953 error = simple_acl_create(dir, inode); 3954 if (error) 3955 goto out_iput; 3956 d_tmpfile(file, inode); 3957 3958 err_out: 3959 return finish_open_simple(file, error); 3960 out_iput: 3961 iput(inode); 3962 return error; 3963 } 3964 3965 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3966 struct dentry *dentry, umode_t mode) 3967 { 3968 int error; 3969 3970 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3971 if (error) 3972 return ERR_PTR(error); 3973 inc_nlink(dir); 3974 return NULL; 3975 } 3976 3977 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3978 struct dentry *dentry, umode_t mode, bool excl) 3979 { 3980 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3981 } 3982 3983 /* 3984 * Link a file.. 3985 */ 3986 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3987 struct dentry *dentry) 3988 { 3989 struct inode *inode = d_inode(old_dentry); 3990 int ret = 0; 3991 3992 /* 3993 * No ordinary (disk based) filesystem counts links as inodes; 3994 * but each new link needs a new dentry, pinning lowmem, and 3995 * tmpfs dentries cannot be pruned until they are unlinked. 3996 * But if an O_TMPFILE file is linked into the tmpfs, the 3997 * first link must skip that, to get the accounting right. 3998 */ 3999 if (inode->i_nlink) { 4000 ret = shmem_reserve_inode(inode->i_sb, NULL); 4001 if (ret) 4002 goto out; 4003 } 4004 4005 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 4006 if (ret) { 4007 if (inode->i_nlink) 4008 shmem_free_inode(inode->i_sb, 0); 4009 goto out; 4010 } 4011 4012 dir->i_size += BOGO_DIRENT_SIZE; 4013 inode_set_mtime_to_ts(dir, 4014 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 4015 inode_inc_iversion(dir); 4016 inc_nlink(inode); 4017 ihold(inode); /* New dentry reference */ 4018 dget(dentry); /* Extra pinning count for the created dentry */ 4019 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 4020 d_add(dentry, inode); 4021 else 4022 d_instantiate(dentry, inode); 4023 out: 4024 return ret; 4025 } 4026 4027 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 4028 { 4029 struct inode *inode = d_inode(dentry); 4030 4031 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 4032 shmem_free_inode(inode->i_sb, 0); 4033 4034 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 4035 4036 dir->i_size -= BOGO_DIRENT_SIZE; 4037 inode_set_mtime_to_ts(dir, 4038 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 4039 inode_inc_iversion(dir); 4040 drop_nlink(inode); 4041 dput(dentry); /* Undo the count from "create" - does all the work */ 4042 4043 /* 4044 * For now, VFS can't deal with case-insensitive negative dentries, so 4045 * we invalidate them 4046 */ 4047 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 4048 d_invalidate(dentry); 4049 4050 return 0; 4051 } 4052 4053 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 4054 { 4055 if (!simple_empty(dentry)) 4056 return -ENOTEMPTY; 4057 4058 drop_nlink(d_inode(dentry)); 4059 drop_nlink(dir); 4060 return shmem_unlink(dir, dentry); 4061 } 4062 4063 static int shmem_whiteout(struct mnt_idmap *idmap, 4064 struct inode *old_dir, struct dentry *old_dentry) 4065 { 4066 struct dentry *whiteout; 4067 int error; 4068 4069 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 4070 if (!whiteout) 4071 return -ENOMEM; 4072 4073 error = shmem_mknod(idmap, old_dir, whiteout, 4074 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4075 dput(whiteout); 4076 if (error) 4077 return error; 4078 4079 /* 4080 * Cheat and hash the whiteout while the old dentry is still in 4081 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 4082 * 4083 * d_lookup() will consistently find one of them at this point, 4084 * not sure which one, but that isn't even important. 4085 */ 4086 d_rehash(whiteout); 4087 return 0; 4088 } 4089 4090 /* 4091 * The VFS layer already does all the dentry stuff for rename, 4092 * we just have to decrement the usage count for the target if 4093 * it exists so that the VFS layer correctly free's it when it 4094 * gets overwritten. 4095 */ 4096 static int shmem_rename2(struct mnt_idmap *idmap, 4097 struct inode *old_dir, struct dentry *old_dentry, 4098 struct inode *new_dir, struct dentry *new_dentry, 4099 unsigned int flags) 4100 { 4101 struct inode *inode = d_inode(old_dentry); 4102 int they_are_dirs = S_ISDIR(inode->i_mode); 4103 int error; 4104 4105 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4106 return -EINVAL; 4107 4108 if (flags & RENAME_EXCHANGE) 4109 return simple_offset_rename_exchange(old_dir, old_dentry, 4110 new_dir, new_dentry); 4111 4112 if (!simple_empty(new_dentry)) 4113 return -ENOTEMPTY; 4114 4115 if (flags & RENAME_WHITEOUT) { 4116 error = shmem_whiteout(idmap, old_dir, old_dentry); 4117 if (error) 4118 return error; 4119 } 4120 4121 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 4122 if (error) 4123 return error; 4124 4125 if (d_really_is_positive(new_dentry)) { 4126 (void) shmem_unlink(new_dir, new_dentry); 4127 if (they_are_dirs) { 4128 drop_nlink(d_inode(new_dentry)); 4129 drop_nlink(old_dir); 4130 } 4131 } else if (they_are_dirs) { 4132 drop_nlink(old_dir); 4133 inc_nlink(new_dir); 4134 } 4135 4136 old_dir->i_size -= BOGO_DIRENT_SIZE; 4137 new_dir->i_size += BOGO_DIRENT_SIZE; 4138 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 4139 inode_inc_iversion(old_dir); 4140 inode_inc_iversion(new_dir); 4141 return 0; 4142 } 4143 4144 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 4145 struct dentry *dentry, const char *symname) 4146 { 4147 int error; 4148 int len; 4149 struct inode *inode; 4150 struct folio *folio; 4151 char *link; 4152 4153 len = strlen(symname) + 1; 4154 if (len > PAGE_SIZE) 4155 return -ENAMETOOLONG; 4156 4157 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 4158 VM_NORESERVE); 4159 if (IS_ERR(inode)) 4160 return PTR_ERR(inode); 4161 4162 error = security_inode_init_security(inode, dir, &dentry->d_name, 4163 shmem_initxattrs, NULL); 4164 if (error && error != -EOPNOTSUPP) 4165 goto out_iput; 4166 4167 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 4168 if (error) 4169 goto out_iput; 4170 4171 inode->i_size = len-1; 4172 if (len <= SHORT_SYMLINK_LEN) { 4173 link = kmemdup(symname, len, GFP_KERNEL); 4174 if (!link) { 4175 error = -ENOMEM; 4176 goto out_remove_offset; 4177 } 4178 inode->i_op = &shmem_short_symlink_operations; 4179 inode_set_cached_link(inode, link, len - 1); 4180 } else { 4181 inode_nohighmem(inode); 4182 inode->i_mapping->a_ops = &shmem_aops; 4183 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE); 4184 if (error) 4185 goto out_remove_offset; 4186 inode->i_op = &shmem_symlink_inode_operations; 4187 memcpy(folio_address(folio), symname, len); 4188 folio_mark_uptodate(folio); 4189 folio_mark_dirty(folio); 4190 folio_unlock(folio); 4191 folio_put(folio); 4192 } 4193 dir->i_size += BOGO_DIRENT_SIZE; 4194 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 4195 inode_inc_iversion(dir); 4196 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 4197 d_add(dentry, inode); 4198 else 4199 d_instantiate(dentry, inode); 4200 dget(dentry); 4201 return 0; 4202 4203 out_remove_offset: 4204 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 4205 out_iput: 4206 iput(inode); 4207 return error; 4208 } 4209 4210 static void shmem_put_link(void *arg) 4211 { 4212 folio_mark_accessed(arg); 4213 folio_put(arg); 4214 } 4215 4216 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 4217 struct delayed_call *done) 4218 { 4219 struct folio *folio = NULL; 4220 int error; 4221 4222 if (!dentry) { 4223 folio = filemap_get_folio(inode->i_mapping, 0); 4224 if (IS_ERR(folio)) 4225 return ERR_PTR(-ECHILD); 4226 if (PageHWPoison(folio_page(folio, 0)) || 4227 !folio_test_uptodate(folio)) { 4228 folio_put(folio); 4229 return ERR_PTR(-ECHILD); 4230 } 4231 } else { 4232 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ); 4233 if (error) 4234 return ERR_PTR(error); 4235 if (!folio) 4236 return ERR_PTR(-ECHILD); 4237 if (PageHWPoison(folio_page(folio, 0))) { 4238 folio_unlock(folio); 4239 folio_put(folio); 4240 return ERR_PTR(-ECHILD); 4241 } 4242 folio_unlock(folio); 4243 } 4244 set_delayed_call(done, shmem_put_link, folio); 4245 return folio_address(folio); 4246 } 4247 4248 #ifdef CONFIG_TMPFS_XATTR 4249 4250 static int shmem_fileattr_get(struct dentry *dentry, struct file_kattr *fa) 4251 { 4252 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4253 4254 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 4255 4256 return 0; 4257 } 4258 4259 static int shmem_fileattr_set(struct mnt_idmap *idmap, 4260 struct dentry *dentry, struct file_kattr *fa) 4261 { 4262 struct inode *inode = d_inode(dentry); 4263 struct shmem_inode_info *info = SHMEM_I(inode); 4264 int ret, flags; 4265 4266 if (fileattr_has_fsx(fa)) 4267 return -EOPNOTSUPP; 4268 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 4269 return -EOPNOTSUPP; 4270 4271 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 4272 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 4273 4274 ret = shmem_set_inode_flags(inode, flags, dentry); 4275 4276 if (ret) 4277 return ret; 4278 4279 info->fsflags = flags; 4280 4281 inode_set_ctime_current(inode); 4282 inode_inc_iversion(inode); 4283 return 0; 4284 } 4285 4286 /* 4287 * Superblocks without xattr inode operations may get some security.* xattr 4288 * support from the LSM "for free". As soon as we have any other xattrs 4289 * like ACLs, we also need to implement the security.* handlers at 4290 * filesystem level, though. 4291 */ 4292 4293 /* 4294 * Callback for security_inode_init_security() for acquiring xattrs. 4295 */ 4296 static int shmem_initxattrs(struct inode *inode, 4297 const struct xattr *xattr_array, void *fs_info) 4298 { 4299 struct shmem_inode_info *info = SHMEM_I(inode); 4300 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4301 const struct xattr *xattr; 4302 struct simple_xattr *new_xattr; 4303 size_t ispace = 0; 4304 size_t len; 4305 4306 if (sbinfo->max_inodes) { 4307 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4308 ispace += simple_xattr_space(xattr->name, 4309 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 4310 } 4311 if (ispace) { 4312 raw_spin_lock(&sbinfo->stat_lock); 4313 if (sbinfo->free_ispace < ispace) 4314 ispace = 0; 4315 else 4316 sbinfo->free_ispace -= ispace; 4317 raw_spin_unlock(&sbinfo->stat_lock); 4318 if (!ispace) 4319 return -ENOSPC; 4320 } 4321 } 4322 4323 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4324 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 4325 if (!new_xattr) 4326 break; 4327 4328 len = strlen(xattr->name) + 1; 4329 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 4330 GFP_KERNEL_ACCOUNT); 4331 if (!new_xattr->name) { 4332 kvfree(new_xattr); 4333 break; 4334 } 4335 4336 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 4337 XATTR_SECURITY_PREFIX_LEN); 4338 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 4339 xattr->name, len); 4340 4341 simple_xattr_add(&info->xattrs, new_xattr); 4342 } 4343 4344 if (xattr->name != NULL) { 4345 if (ispace) { 4346 raw_spin_lock(&sbinfo->stat_lock); 4347 sbinfo->free_ispace += ispace; 4348 raw_spin_unlock(&sbinfo->stat_lock); 4349 } 4350 simple_xattrs_free(&info->xattrs, NULL); 4351 return -ENOMEM; 4352 } 4353 4354 return 0; 4355 } 4356 4357 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 4358 struct dentry *unused, struct inode *inode, 4359 const char *name, void *buffer, size_t size) 4360 { 4361 struct shmem_inode_info *info = SHMEM_I(inode); 4362 4363 name = xattr_full_name(handler, name); 4364 return simple_xattr_get(&info->xattrs, name, buffer, size); 4365 } 4366 4367 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 4368 struct mnt_idmap *idmap, 4369 struct dentry *unused, struct inode *inode, 4370 const char *name, const void *value, 4371 size_t size, int flags) 4372 { 4373 struct shmem_inode_info *info = SHMEM_I(inode); 4374 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4375 struct simple_xattr *old_xattr; 4376 size_t ispace = 0; 4377 4378 name = xattr_full_name(handler, name); 4379 if (value && sbinfo->max_inodes) { 4380 ispace = simple_xattr_space(name, size); 4381 raw_spin_lock(&sbinfo->stat_lock); 4382 if (sbinfo->free_ispace < ispace) 4383 ispace = 0; 4384 else 4385 sbinfo->free_ispace -= ispace; 4386 raw_spin_unlock(&sbinfo->stat_lock); 4387 if (!ispace) 4388 return -ENOSPC; 4389 } 4390 4391 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 4392 if (!IS_ERR(old_xattr)) { 4393 ispace = 0; 4394 if (old_xattr && sbinfo->max_inodes) 4395 ispace = simple_xattr_space(old_xattr->name, 4396 old_xattr->size); 4397 simple_xattr_free(old_xattr); 4398 old_xattr = NULL; 4399 inode_set_ctime_current(inode); 4400 inode_inc_iversion(inode); 4401 } 4402 if (ispace) { 4403 raw_spin_lock(&sbinfo->stat_lock); 4404 sbinfo->free_ispace += ispace; 4405 raw_spin_unlock(&sbinfo->stat_lock); 4406 } 4407 return PTR_ERR(old_xattr); 4408 } 4409 4410 static const struct xattr_handler shmem_security_xattr_handler = { 4411 .prefix = XATTR_SECURITY_PREFIX, 4412 .get = shmem_xattr_handler_get, 4413 .set = shmem_xattr_handler_set, 4414 }; 4415 4416 static const struct xattr_handler shmem_trusted_xattr_handler = { 4417 .prefix = XATTR_TRUSTED_PREFIX, 4418 .get = shmem_xattr_handler_get, 4419 .set = shmem_xattr_handler_set, 4420 }; 4421 4422 static const struct xattr_handler shmem_user_xattr_handler = { 4423 .prefix = XATTR_USER_PREFIX, 4424 .get = shmem_xattr_handler_get, 4425 .set = shmem_xattr_handler_set, 4426 }; 4427 4428 static const struct xattr_handler * const shmem_xattr_handlers[] = { 4429 &shmem_security_xattr_handler, 4430 &shmem_trusted_xattr_handler, 4431 &shmem_user_xattr_handler, 4432 NULL 4433 }; 4434 4435 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 4436 { 4437 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4438 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 4439 } 4440 #endif /* CONFIG_TMPFS_XATTR */ 4441 4442 static const struct inode_operations shmem_short_symlink_operations = { 4443 .getattr = shmem_getattr, 4444 .setattr = shmem_setattr, 4445 .get_link = simple_get_link, 4446 #ifdef CONFIG_TMPFS_XATTR 4447 .listxattr = shmem_listxattr, 4448 #endif 4449 }; 4450 4451 static const struct inode_operations shmem_symlink_inode_operations = { 4452 .getattr = shmem_getattr, 4453 .setattr = shmem_setattr, 4454 .get_link = shmem_get_link, 4455 #ifdef CONFIG_TMPFS_XATTR 4456 .listxattr = shmem_listxattr, 4457 #endif 4458 }; 4459 4460 static struct dentry *shmem_get_parent(struct dentry *child) 4461 { 4462 return ERR_PTR(-ESTALE); 4463 } 4464 4465 static int shmem_match(struct inode *ino, void *vfh) 4466 { 4467 __u32 *fh = vfh; 4468 __u64 inum = fh[2]; 4469 inum = (inum << 32) | fh[1]; 4470 return ino->i_ino == inum && fh[0] == ino->i_generation; 4471 } 4472 4473 /* Find any alias of inode, but prefer a hashed alias */ 4474 static struct dentry *shmem_find_alias(struct inode *inode) 4475 { 4476 struct dentry *alias = d_find_alias(inode); 4477 4478 return alias ?: d_find_any_alias(inode); 4479 } 4480 4481 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 4482 struct fid *fid, int fh_len, int fh_type) 4483 { 4484 struct inode *inode; 4485 struct dentry *dentry = NULL; 4486 u64 inum; 4487 4488 if (fh_len < 3) 4489 return NULL; 4490 4491 inum = fid->raw[2]; 4492 inum = (inum << 32) | fid->raw[1]; 4493 4494 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 4495 shmem_match, fid->raw); 4496 if (inode) { 4497 dentry = shmem_find_alias(inode); 4498 iput(inode); 4499 } 4500 4501 return dentry; 4502 } 4503 4504 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 4505 struct inode *parent) 4506 { 4507 if (*len < 3) { 4508 *len = 3; 4509 return FILEID_INVALID; 4510 } 4511 4512 if (inode_unhashed(inode)) { 4513 /* Unfortunately insert_inode_hash is not idempotent, 4514 * so as we hash inodes here rather than at creation 4515 * time, we need a lock to ensure we only try 4516 * to do it once 4517 */ 4518 static DEFINE_SPINLOCK(lock); 4519 spin_lock(&lock); 4520 if (inode_unhashed(inode)) 4521 __insert_inode_hash(inode, 4522 inode->i_ino + inode->i_generation); 4523 spin_unlock(&lock); 4524 } 4525 4526 fh[0] = inode->i_generation; 4527 fh[1] = inode->i_ino; 4528 fh[2] = ((__u64)inode->i_ino) >> 32; 4529 4530 *len = 3; 4531 return 1; 4532 } 4533 4534 static const struct export_operations shmem_export_ops = { 4535 .get_parent = shmem_get_parent, 4536 .encode_fh = shmem_encode_fh, 4537 .fh_to_dentry = shmem_fh_to_dentry, 4538 }; 4539 4540 enum shmem_param { 4541 Opt_gid, 4542 Opt_huge, 4543 Opt_mode, 4544 Opt_mpol, 4545 Opt_nr_blocks, 4546 Opt_nr_inodes, 4547 Opt_size, 4548 Opt_uid, 4549 Opt_inode32, 4550 Opt_inode64, 4551 Opt_noswap, 4552 Opt_quota, 4553 Opt_usrquota, 4554 Opt_grpquota, 4555 Opt_usrquota_block_hardlimit, 4556 Opt_usrquota_inode_hardlimit, 4557 Opt_grpquota_block_hardlimit, 4558 Opt_grpquota_inode_hardlimit, 4559 Opt_casefold_version, 4560 Opt_casefold, 4561 Opt_strict_encoding, 4562 }; 4563 4564 static const struct constant_table shmem_param_enums_huge[] = { 4565 {"never", SHMEM_HUGE_NEVER }, 4566 {"always", SHMEM_HUGE_ALWAYS }, 4567 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 4568 {"advise", SHMEM_HUGE_ADVISE }, 4569 {} 4570 }; 4571 4572 const struct fs_parameter_spec shmem_fs_parameters[] = { 4573 fsparam_gid ("gid", Opt_gid), 4574 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 4575 fsparam_u32oct("mode", Opt_mode), 4576 fsparam_string("mpol", Opt_mpol), 4577 fsparam_string("nr_blocks", Opt_nr_blocks), 4578 fsparam_string("nr_inodes", Opt_nr_inodes), 4579 fsparam_string("size", Opt_size), 4580 fsparam_uid ("uid", Opt_uid), 4581 fsparam_flag ("inode32", Opt_inode32), 4582 fsparam_flag ("inode64", Opt_inode64), 4583 fsparam_flag ("noswap", Opt_noswap), 4584 #ifdef CONFIG_TMPFS_QUOTA 4585 fsparam_flag ("quota", Opt_quota), 4586 fsparam_flag ("usrquota", Opt_usrquota), 4587 fsparam_flag ("grpquota", Opt_grpquota), 4588 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 4589 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 4590 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 4591 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 4592 #endif 4593 fsparam_string("casefold", Opt_casefold_version), 4594 fsparam_flag ("casefold", Opt_casefold), 4595 fsparam_flag ("strict_encoding", Opt_strict_encoding), 4596 {} 4597 }; 4598 4599 #if IS_ENABLED(CONFIG_UNICODE) 4600 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4601 bool latest_version) 4602 { 4603 struct shmem_options *ctx = fc->fs_private; 4604 int version = UTF8_LATEST; 4605 struct unicode_map *encoding; 4606 char *version_str = param->string + 5; 4607 4608 if (!latest_version) { 4609 if (strncmp(param->string, "utf8-", 5)) 4610 return invalfc(fc, "Only UTF-8 encodings are supported " 4611 "in the format: utf8-<version number>"); 4612 4613 version = utf8_parse_version(version_str); 4614 if (version < 0) 4615 return invalfc(fc, "Invalid UTF-8 version: %s", version_str); 4616 } 4617 4618 encoding = utf8_load(version); 4619 4620 if (IS_ERR(encoding)) { 4621 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n", 4622 unicode_major(version), unicode_minor(version), 4623 unicode_rev(version)); 4624 } 4625 4626 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n", 4627 unicode_major(version), unicode_minor(version), unicode_rev(version)); 4628 4629 ctx->encoding = encoding; 4630 4631 return 0; 4632 } 4633 #else 4634 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4635 bool latest_version) 4636 { 4637 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4638 } 4639 #endif 4640 4641 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 4642 { 4643 struct shmem_options *ctx = fc->fs_private; 4644 struct fs_parse_result result; 4645 unsigned long long size; 4646 char *rest; 4647 int opt; 4648 kuid_t kuid; 4649 kgid_t kgid; 4650 4651 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 4652 if (opt < 0) 4653 return opt; 4654 4655 switch (opt) { 4656 case Opt_size: 4657 size = memparse(param->string, &rest); 4658 if (*rest == '%') { 4659 size <<= PAGE_SHIFT; 4660 size *= totalram_pages(); 4661 do_div(size, 100); 4662 rest++; 4663 } 4664 if (*rest) 4665 goto bad_value; 4666 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 4667 ctx->seen |= SHMEM_SEEN_BLOCKS; 4668 break; 4669 case Opt_nr_blocks: 4670 ctx->blocks = memparse(param->string, &rest); 4671 if (*rest || ctx->blocks > LONG_MAX) 4672 goto bad_value; 4673 ctx->seen |= SHMEM_SEEN_BLOCKS; 4674 break; 4675 case Opt_nr_inodes: 4676 ctx->inodes = memparse(param->string, &rest); 4677 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 4678 goto bad_value; 4679 ctx->seen |= SHMEM_SEEN_INODES; 4680 break; 4681 case Opt_mode: 4682 ctx->mode = result.uint_32 & 07777; 4683 break; 4684 case Opt_uid: 4685 kuid = result.uid; 4686 4687 /* 4688 * The requested uid must be representable in the 4689 * filesystem's idmapping. 4690 */ 4691 if (!kuid_has_mapping(fc->user_ns, kuid)) 4692 goto bad_value; 4693 4694 ctx->uid = kuid; 4695 break; 4696 case Opt_gid: 4697 kgid = result.gid; 4698 4699 /* 4700 * The requested gid must be representable in the 4701 * filesystem's idmapping. 4702 */ 4703 if (!kgid_has_mapping(fc->user_ns, kgid)) 4704 goto bad_value; 4705 4706 ctx->gid = kgid; 4707 break; 4708 case Opt_huge: 4709 ctx->huge = result.uint_32; 4710 if (ctx->huge != SHMEM_HUGE_NEVER && 4711 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4712 has_transparent_hugepage())) 4713 goto unsupported_parameter; 4714 ctx->seen |= SHMEM_SEEN_HUGE; 4715 break; 4716 case Opt_mpol: 4717 if (IS_ENABLED(CONFIG_NUMA)) { 4718 mpol_put(ctx->mpol); 4719 ctx->mpol = NULL; 4720 if (mpol_parse_str(param->string, &ctx->mpol)) 4721 goto bad_value; 4722 break; 4723 } 4724 goto unsupported_parameter; 4725 case Opt_inode32: 4726 ctx->full_inums = false; 4727 ctx->seen |= SHMEM_SEEN_INUMS; 4728 break; 4729 case Opt_inode64: 4730 if (sizeof(ino_t) < 8) { 4731 return invalfc(fc, 4732 "Cannot use inode64 with <64bit inums in kernel\n"); 4733 } 4734 ctx->full_inums = true; 4735 ctx->seen |= SHMEM_SEEN_INUMS; 4736 break; 4737 case Opt_noswap: 4738 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4739 return invalfc(fc, 4740 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4741 } 4742 ctx->noswap = true; 4743 ctx->seen |= SHMEM_SEEN_NOSWAP; 4744 break; 4745 case Opt_quota: 4746 if (fc->user_ns != &init_user_ns) 4747 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4748 ctx->seen |= SHMEM_SEEN_QUOTA; 4749 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4750 break; 4751 case Opt_usrquota: 4752 if (fc->user_ns != &init_user_ns) 4753 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4754 ctx->seen |= SHMEM_SEEN_QUOTA; 4755 ctx->quota_types |= QTYPE_MASK_USR; 4756 break; 4757 case Opt_grpquota: 4758 if (fc->user_ns != &init_user_ns) 4759 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4760 ctx->seen |= SHMEM_SEEN_QUOTA; 4761 ctx->quota_types |= QTYPE_MASK_GRP; 4762 break; 4763 case Opt_usrquota_block_hardlimit: 4764 size = memparse(param->string, &rest); 4765 if (*rest || !size) 4766 goto bad_value; 4767 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4768 return invalfc(fc, 4769 "User quota block hardlimit too large."); 4770 ctx->qlimits.usrquota_bhardlimit = size; 4771 break; 4772 case Opt_grpquota_block_hardlimit: 4773 size = memparse(param->string, &rest); 4774 if (*rest || !size) 4775 goto bad_value; 4776 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4777 return invalfc(fc, 4778 "Group quota block hardlimit too large."); 4779 ctx->qlimits.grpquota_bhardlimit = size; 4780 break; 4781 case Opt_usrquota_inode_hardlimit: 4782 size = memparse(param->string, &rest); 4783 if (*rest || !size) 4784 goto bad_value; 4785 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4786 return invalfc(fc, 4787 "User quota inode hardlimit too large."); 4788 ctx->qlimits.usrquota_ihardlimit = size; 4789 break; 4790 case Opt_grpquota_inode_hardlimit: 4791 size = memparse(param->string, &rest); 4792 if (*rest || !size) 4793 goto bad_value; 4794 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4795 return invalfc(fc, 4796 "Group quota inode hardlimit too large."); 4797 ctx->qlimits.grpquota_ihardlimit = size; 4798 break; 4799 case Opt_casefold_version: 4800 return shmem_parse_opt_casefold(fc, param, false); 4801 case Opt_casefold: 4802 return shmem_parse_opt_casefold(fc, param, true); 4803 case Opt_strict_encoding: 4804 #if IS_ENABLED(CONFIG_UNICODE) 4805 ctx->strict_encoding = true; 4806 break; 4807 #else 4808 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4809 #endif 4810 } 4811 return 0; 4812 4813 unsupported_parameter: 4814 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4815 bad_value: 4816 return invalfc(fc, "Bad value for '%s'", param->key); 4817 } 4818 4819 static char *shmem_next_opt(char **s) 4820 { 4821 char *sbegin = *s; 4822 char *p; 4823 4824 if (sbegin == NULL) 4825 return NULL; 4826 4827 /* 4828 * NUL-terminate this option: unfortunately, 4829 * mount options form a comma-separated list, 4830 * but mpol's nodelist may also contain commas. 4831 */ 4832 for (;;) { 4833 p = strchr(*s, ','); 4834 if (p == NULL) 4835 break; 4836 *s = p + 1; 4837 if (!isdigit(*(p+1))) { 4838 *p = '\0'; 4839 return sbegin; 4840 } 4841 } 4842 4843 *s = NULL; 4844 return sbegin; 4845 } 4846 4847 static int shmem_parse_monolithic(struct fs_context *fc, void *data) 4848 { 4849 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt); 4850 } 4851 4852 /* 4853 * Reconfigure a shmem filesystem. 4854 */ 4855 static int shmem_reconfigure(struct fs_context *fc) 4856 { 4857 struct shmem_options *ctx = fc->fs_private; 4858 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4859 unsigned long used_isp; 4860 struct mempolicy *mpol = NULL; 4861 const char *err; 4862 4863 raw_spin_lock(&sbinfo->stat_lock); 4864 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4865 4866 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4867 if (!sbinfo->max_blocks) { 4868 err = "Cannot retroactively limit size"; 4869 goto out; 4870 } 4871 if (percpu_counter_compare(&sbinfo->used_blocks, 4872 ctx->blocks) > 0) { 4873 err = "Too small a size for current use"; 4874 goto out; 4875 } 4876 } 4877 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4878 if (!sbinfo->max_inodes) { 4879 err = "Cannot retroactively limit inodes"; 4880 goto out; 4881 } 4882 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4883 err = "Too few inodes for current use"; 4884 goto out; 4885 } 4886 } 4887 4888 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4889 sbinfo->next_ino > UINT_MAX) { 4890 err = "Current inum too high to switch to 32-bit inums"; 4891 goto out; 4892 } 4893 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4894 err = "Cannot disable swap on remount"; 4895 goto out; 4896 } 4897 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4898 err = "Cannot enable swap on remount if it was disabled on first mount"; 4899 goto out; 4900 } 4901 4902 if (ctx->seen & SHMEM_SEEN_QUOTA && 4903 !sb_any_quota_loaded(fc->root->d_sb)) { 4904 err = "Cannot enable quota on remount"; 4905 goto out; 4906 } 4907 4908 #ifdef CONFIG_TMPFS_QUOTA 4909 #define CHANGED_LIMIT(name) \ 4910 (ctx->qlimits.name## hardlimit && \ 4911 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4912 4913 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4914 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4915 err = "Cannot change global quota limit on remount"; 4916 goto out; 4917 } 4918 #endif /* CONFIG_TMPFS_QUOTA */ 4919 4920 if (ctx->seen & SHMEM_SEEN_HUGE) 4921 sbinfo->huge = ctx->huge; 4922 if (ctx->seen & SHMEM_SEEN_INUMS) 4923 sbinfo->full_inums = ctx->full_inums; 4924 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4925 sbinfo->max_blocks = ctx->blocks; 4926 if (ctx->seen & SHMEM_SEEN_INODES) { 4927 sbinfo->max_inodes = ctx->inodes; 4928 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4929 } 4930 4931 /* 4932 * Preserve previous mempolicy unless mpol remount option was specified. 4933 */ 4934 if (ctx->mpol) { 4935 mpol = sbinfo->mpol; 4936 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4937 ctx->mpol = NULL; 4938 } 4939 4940 if (ctx->noswap) 4941 sbinfo->noswap = true; 4942 4943 raw_spin_unlock(&sbinfo->stat_lock); 4944 mpol_put(mpol); 4945 return 0; 4946 out: 4947 raw_spin_unlock(&sbinfo->stat_lock); 4948 return invalfc(fc, "%s", err); 4949 } 4950 4951 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4952 { 4953 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4954 struct mempolicy *mpol; 4955 4956 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4957 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4958 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4959 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4960 if (sbinfo->mode != (0777 | S_ISVTX)) 4961 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4962 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4963 seq_printf(seq, ",uid=%u", 4964 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4965 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4966 seq_printf(seq, ",gid=%u", 4967 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4968 4969 /* 4970 * Showing inode{64,32} might be useful even if it's the system default, 4971 * since then people don't have to resort to checking both here and 4972 * /proc/config.gz to confirm 64-bit inums were successfully applied 4973 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4974 * 4975 * We hide it when inode64 isn't the default and we are using 32-bit 4976 * inodes, since that probably just means the feature isn't even under 4977 * consideration. 4978 * 4979 * As such: 4980 * 4981 * +-----------------+-----------------+ 4982 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4983 * +------------------+-----------------+-----------------+ 4984 * | full_inums=true | show | show | 4985 * | full_inums=false | show | hide | 4986 * +------------------+-----------------+-----------------+ 4987 * 4988 */ 4989 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4990 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4991 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4992 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4993 if (sbinfo->huge) 4994 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4995 #endif 4996 mpol = shmem_get_sbmpol(sbinfo); 4997 shmem_show_mpol(seq, mpol); 4998 mpol_put(mpol); 4999 if (sbinfo->noswap) 5000 seq_printf(seq, ",noswap"); 5001 #ifdef CONFIG_TMPFS_QUOTA 5002 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 5003 seq_printf(seq, ",usrquota"); 5004 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 5005 seq_printf(seq, ",grpquota"); 5006 if (sbinfo->qlimits.usrquota_bhardlimit) 5007 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 5008 sbinfo->qlimits.usrquota_bhardlimit); 5009 if (sbinfo->qlimits.grpquota_bhardlimit) 5010 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 5011 sbinfo->qlimits.grpquota_bhardlimit); 5012 if (sbinfo->qlimits.usrquota_ihardlimit) 5013 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 5014 sbinfo->qlimits.usrquota_ihardlimit); 5015 if (sbinfo->qlimits.grpquota_ihardlimit) 5016 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 5017 sbinfo->qlimits.grpquota_ihardlimit); 5018 #endif 5019 return 0; 5020 } 5021 5022 #endif /* CONFIG_TMPFS */ 5023 5024 static void shmem_put_super(struct super_block *sb) 5025 { 5026 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 5027 5028 #if IS_ENABLED(CONFIG_UNICODE) 5029 if (sb->s_encoding) 5030 utf8_unload(sb->s_encoding); 5031 #endif 5032 5033 #ifdef CONFIG_TMPFS_QUOTA 5034 shmem_disable_quotas(sb); 5035 #endif 5036 free_percpu(sbinfo->ino_batch); 5037 percpu_counter_destroy(&sbinfo->used_blocks); 5038 mpol_put(sbinfo->mpol); 5039 kfree(sbinfo); 5040 sb->s_fs_info = NULL; 5041 } 5042 5043 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS) 5044 static const struct dentry_operations shmem_ci_dentry_ops = { 5045 .d_hash = generic_ci_d_hash, 5046 .d_compare = generic_ci_d_compare, 5047 }; 5048 #endif 5049 5050 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 5051 { 5052 struct shmem_options *ctx = fc->fs_private; 5053 struct inode *inode; 5054 struct shmem_sb_info *sbinfo; 5055 int error = -ENOMEM; 5056 5057 /* Round up to L1_CACHE_BYTES to resist false sharing */ 5058 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 5059 L1_CACHE_BYTES), GFP_KERNEL); 5060 if (!sbinfo) 5061 return error; 5062 5063 sb->s_fs_info = sbinfo; 5064 5065 #ifdef CONFIG_TMPFS 5066 /* 5067 * Per default we only allow half of the physical ram per 5068 * tmpfs instance, limiting inodes to one per page of lowmem; 5069 * but the internal instance is left unlimited. 5070 */ 5071 if (!(sb->s_flags & SB_KERNMOUNT)) { 5072 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 5073 ctx->blocks = shmem_default_max_blocks(); 5074 if (!(ctx->seen & SHMEM_SEEN_INODES)) 5075 ctx->inodes = shmem_default_max_inodes(); 5076 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 5077 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 5078 sbinfo->noswap = ctx->noswap; 5079 } else { 5080 sb->s_flags |= SB_NOUSER; 5081 } 5082 sb->s_export_op = &shmem_export_ops; 5083 sb->s_flags |= SB_NOSEC; 5084 5085 #if IS_ENABLED(CONFIG_UNICODE) 5086 if (!ctx->encoding && ctx->strict_encoding) { 5087 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n"); 5088 error = -EINVAL; 5089 goto failed; 5090 } 5091 5092 if (ctx->encoding) { 5093 sb->s_encoding = ctx->encoding; 5094 set_default_d_op(sb, &shmem_ci_dentry_ops); 5095 if (ctx->strict_encoding) 5096 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL; 5097 } 5098 #endif 5099 5100 #else 5101 sb->s_flags |= SB_NOUSER; 5102 #endif /* CONFIG_TMPFS */ 5103 sb->s_d_flags |= DCACHE_DONTCACHE; 5104 sbinfo->max_blocks = ctx->blocks; 5105 sbinfo->max_inodes = ctx->inodes; 5106 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 5107 if (sb->s_flags & SB_KERNMOUNT) { 5108 sbinfo->ino_batch = alloc_percpu(ino_t); 5109 if (!sbinfo->ino_batch) 5110 goto failed; 5111 } 5112 sbinfo->uid = ctx->uid; 5113 sbinfo->gid = ctx->gid; 5114 sbinfo->full_inums = ctx->full_inums; 5115 sbinfo->mode = ctx->mode; 5116 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5117 if (ctx->seen & SHMEM_SEEN_HUGE) 5118 sbinfo->huge = ctx->huge; 5119 else 5120 sbinfo->huge = tmpfs_huge; 5121 #endif 5122 sbinfo->mpol = ctx->mpol; 5123 ctx->mpol = NULL; 5124 5125 raw_spin_lock_init(&sbinfo->stat_lock); 5126 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 5127 goto failed; 5128 spin_lock_init(&sbinfo->shrinklist_lock); 5129 INIT_LIST_HEAD(&sbinfo->shrinklist); 5130 5131 sb->s_maxbytes = MAX_LFS_FILESIZE; 5132 sb->s_blocksize = PAGE_SIZE; 5133 sb->s_blocksize_bits = PAGE_SHIFT; 5134 sb->s_magic = TMPFS_MAGIC; 5135 sb->s_op = &shmem_ops; 5136 sb->s_time_gran = 1; 5137 #ifdef CONFIG_TMPFS_XATTR 5138 sb->s_xattr = shmem_xattr_handlers; 5139 #endif 5140 #ifdef CONFIG_TMPFS_POSIX_ACL 5141 sb->s_flags |= SB_POSIXACL; 5142 #endif 5143 uuid_t uuid; 5144 uuid_gen(&uuid); 5145 super_set_uuid(sb, uuid.b, sizeof(uuid)); 5146 5147 #ifdef CONFIG_TMPFS_QUOTA 5148 if (ctx->seen & SHMEM_SEEN_QUOTA) { 5149 sb->dq_op = &shmem_quota_operations; 5150 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5151 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 5152 5153 /* Copy the default limits from ctx into sbinfo */ 5154 memcpy(&sbinfo->qlimits, &ctx->qlimits, 5155 sizeof(struct shmem_quota_limits)); 5156 5157 if (shmem_enable_quotas(sb, ctx->quota_types)) 5158 goto failed; 5159 } 5160 #endif /* CONFIG_TMPFS_QUOTA */ 5161 5162 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 5163 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 5164 if (IS_ERR(inode)) { 5165 error = PTR_ERR(inode); 5166 goto failed; 5167 } 5168 inode->i_uid = sbinfo->uid; 5169 inode->i_gid = sbinfo->gid; 5170 sb->s_root = d_make_root(inode); 5171 if (!sb->s_root) 5172 goto failed; 5173 return 0; 5174 5175 failed: 5176 shmem_put_super(sb); 5177 return error; 5178 } 5179 5180 static int shmem_get_tree(struct fs_context *fc) 5181 { 5182 return get_tree_nodev(fc, shmem_fill_super); 5183 } 5184 5185 static void shmem_free_fc(struct fs_context *fc) 5186 { 5187 struct shmem_options *ctx = fc->fs_private; 5188 5189 if (ctx) { 5190 mpol_put(ctx->mpol); 5191 kfree(ctx); 5192 } 5193 } 5194 5195 static const struct fs_context_operations shmem_fs_context_ops = { 5196 .free = shmem_free_fc, 5197 .get_tree = shmem_get_tree, 5198 #ifdef CONFIG_TMPFS 5199 .parse_monolithic = shmem_parse_monolithic, 5200 .parse_param = shmem_parse_one, 5201 .reconfigure = shmem_reconfigure, 5202 #endif 5203 }; 5204 5205 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 5206 5207 static struct inode *shmem_alloc_inode(struct super_block *sb) 5208 { 5209 struct shmem_inode_info *info; 5210 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 5211 if (!info) 5212 return NULL; 5213 return &info->vfs_inode; 5214 } 5215 5216 static void shmem_free_in_core_inode(struct inode *inode) 5217 { 5218 if (S_ISLNK(inode->i_mode)) 5219 kfree(inode->i_link); 5220 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 5221 } 5222 5223 static void shmem_destroy_inode(struct inode *inode) 5224 { 5225 if (S_ISREG(inode->i_mode)) 5226 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 5227 if (S_ISDIR(inode->i_mode)) 5228 simple_offset_destroy(shmem_get_offset_ctx(inode)); 5229 } 5230 5231 static void shmem_init_inode(void *foo) 5232 { 5233 struct shmem_inode_info *info = foo; 5234 inode_init_once(&info->vfs_inode); 5235 } 5236 5237 static void __init shmem_init_inodecache(void) 5238 { 5239 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 5240 sizeof(struct shmem_inode_info), 5241 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 5242 } 5243 5244 static void __init shmem_destroy_inodecache(void) 5245 { 5246 kmem_cache_destroy(shmem_inode_cachep); 5247 } 5248 5249 /* Keep the page in page cache instead of truncating it */ 5250 static int shmem_error_remove_folio(struct address_space *mapping, 5251 struct folio *folio) 5252 { 5253 return 0; 5254 } 5255 5256 static const struct address_space_operations shmem_aops = { 5257 .dirty_folio = noop_dirty_folio, 5258 #ifdef CONFIG_TMPFS 5259 .write_begin = shmem_write_begin, 5260 .write_end = shmem_write_end, 5261 #endif 5262 #ifdef CONFIG_MIGRATION 5263 .migrate_folio = migrate_folio, 5264 #endif 5265 .error_remove_folio = shmem_error_remove_folio, 5266 }; 5267 5268 static const struct file_operations shmem_file_operations = { 5269 .mmap = shmem_mmap, 5270 .open = shmem_file_open, 5271 .get_unmapped_area = shmem_get_unmapped_area, 5272 #ifdef CONFIG_TMPFS 5273 .llseek = shmem_file_llseek, 5274 .read_iter = shmem_file_read_iter, 5275 .write_iter = shmem_file_write_iter, 5276 .fsync = noop_fsync, 5277 .splice_read = shmem_file_splice_read, 5278 .splice_write = iter_file_splice_write, 5279 .fallocate = shmem_fallocate, 5280 #endif 5281 }; 5282 5283 static const struct inode_operations shmem_inode_operations = { 5284 .getattr = shmem_getattr, 5285 .setattr = shmem_setattr, 5286 #ifdef CONFIG_TMPFS_XATTR 5287 .listxattr = shmem_listxattr, 5288 .set_acl = simple_set_acl, 5289 .fileattr_get = shmem_fileattr_get, 5290 .fileattr_set = shmem_fileattr_set, 5291 #endif 5292 }; 5293 5294 static const struct inode_operations shmem_dir_inode_operations = { 5295 #ifdef CONFIG_TMPFS 5296 .getattr = shmem_getattr, 5297 .create = shmem_create, 5298 .lookup = simple_lookup, 5299 .link = shmem_link, 5300 .unlink = shmem_unlink, 5301 .symlink = shmem_symlink, 5302 .mkdir = shmem_mkdir, 5303 .rmdir = shmem_rmdir, 5304 .mknod = shmem_mknod, 5305 .rename = shmem_rename2, 5306 .tmpfile = shmem_tmpfile, 5307 .get_offset_ctx = shmem_get_offset_ctx, 5308 #endif 5309 #ifdef CONFIG_TMPFS_XATTR 5310 .listxattr = shmem_listxattr, 5311 .fileattr_get = shmem_fileattr_get, 5312 .fileattr_set = shmem_fileattr_set, 5313 #endif 5314 #ifdef CONFIG_TMPFS_POSIX_ACL 5315 .setattr = shmem_setattr, 5316 .set_acl = simple_set_acl, 5317 #endif 5318 }; 5319 5320 static const struct inode_operations shmem_special_inode_operations = { 5321 .getattr = shmem_getattr, 5322 #ifdef CONFIG_TMPFS_XATTR 5323 .listxattr = shmem_listxattr, 5324 #endif 5325 #ifdef CONFIG_TMPFS_POSIX_ACL 5326 .setattr = shmem_setattr, 5327 .set_acl = simple_set_acl, 5328 #endif 5329 }; 5330 5331 static const struct super_operations shmem_ops = { 5332 .alloc_inode = shmem_alloc_inode, 5333 .free_inode = shmem_free_in_core_inode, 5334 .destroy_inode = shmem_destroy_inode, 5335 #ifdef CONFIG_TMPFS 5336 .statfs = shmem_statfs, 5337 .show_options = shmem_show_options, 5338 #endif 5339 #ifdef CONFIG_TMPFS_QUOTA 5340 .get_dquots = shmem_get_dquots, 5341 #endif 5342 .evict_inode = shmem_evict_inode, 5343 .drop_inode = generic_delete_inode, 5344 .put_super = shmem_put_super, 5345 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5346 .nr_cached_objects = shmem_unused_huge_count, 5347 .free_cached_objects = shmem_unused_huge_scan, 5348 #endif 5349 }; 5350 5351 static const struct vm_operations_struct shmem_vm_ops = { 5352 .fault = shmem_fault, 5353 .map_pages = filemap_map_pages, 5354 #ifdef CONFIG_NUMA 5355 .set_policy = shmem_set_policy, 5356 .get_policy = shmem_get_policy, 5357 #endif 5358 }; 5359 5360 static const struct vm_operations_struct shmem_anon_vm_ops = { 5361 .fault = shmem_fault, 5362 .map_pages = filemap_map_pages, 5363 #ifdef CONFIG_NUMA 5364 .set_policy = shmem_set_policy, 5365 .get_policy = shmem_get_policy, 5366 #endif 5367 }; 5368 5369 int shmem_init_fs_context(struct fs_context *fc) 5370 { 5371 struct shmem_options *ctx; 5372 5373 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 5374 if (!ctx) 5375 return -ENOMEM; 5376 5377 ctx->mode = 0777 | S_ISVTX; 5378 ctx->uid = current_fsuid(); 5379 ctx->gid = current_fsgid(); 5380 5381 #if IS_ENABLED(CONFIG_UNICODE) 5382 ctx->encoding = NULL; 5383 #endif 5384 5385 fc->fs_private = ctx; 5386 fc->ops = &shmem_fs_context_ops; 5387 #ifdef CONFIG_TMPFS 5388 fc->sb_flags |= SB_I_VERSION; 5389 #endif 5390 return 0; 5391 } 5392 5393 static struct file_system_type shmem_fs_type = { 5394 .owner = THIS_MODULE, 5395 .name = "tmpfs", 5396 .init_fs_context = shmem_init_fs_context, 5397 #ifdef CONFIG_TMPFS 5398 .parameters = shmem_fs_parameters, 5399 #endif 5400 .kill_sb = kill_litter_super, 5401 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME, 5402 }; 5403 5404 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5405 5406 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \ 5407 { \ 5408 .attr = { .name = __stringify(_name), .mode = _mode }, \ 5409 .show = _show, \ 5410 .store = _store, \ 5411 } 5412 5413 #define TMPFS_ATTR_W(_name, _store) \ 5414 static struct kobj_attribute tmpfs_attr_##_name = \ 5415 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store) 5416 5417 #define TMPFS_ATTR_RW(_name, _show, _store) \ 5418 static struct kobj_attribute tmpfs_attr_##_name = \ 5419 __INIT_KOBJ_ATTR(_name, 0644, _show, _store) 5420 5421 #define TMPFS_ATTR_RO(_name, _show) \ 5422 static struct kobj_attribute tmpfs_attr_##_name = \ 5423 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL) 5424 5425 #if IS_ENABLED(CONFIG_UNICODE) 5426 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a, 5427 char *buf) 5428 { 5429 return sysfs_emit(buf, "supported\n"); 5430 } 5431 TMPFS_ATTR_RO(casefold, casefold_show); 5432 #endif 5433 5434 static struct attribute *tmpfs_attributes[] = { 5435 #if IS_ENABLED(CONFIG_UNICODE) 5436 &tmpfs_attr_casefold.attr, 5437 #endif 5438 NULL 5439 }; 5440 5441 static const struct attribute_group tmpfs_attribute_group = { 5442 .attrs = tmpfs_attributes, 5443 .name = "features" 5444 }; 5445 5446 static struct kobject *tmpfs_kobj; 5447 5448 static int __init tmpfs_sysfs_init(void) 5449 { 5450 int ret; 5451 5452 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj); 5453 if (!tmpfs_kobj) 5454 return -ENOMEM; 5455 5456 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group); 5457 if (ret) 5458 kobject_put(tmpfs_kobj); 5459 5460 return ret; 5461 } 5462 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */ 5463 5464 void __init shmem_init(void) 5465 { 5466 int error; 5467 5468 shmem_init_inodecache(); 5469 5470 #ifdef CONFIG_TMPFS_QUOTA 5471 register_quota_format(&shmem_quota_format); 5472 #endif 5473 5474 error = register_filesystem(&shmem_fs_type); 5475 if (error) { 5476 pr_err("Could not register tmpfs\n"); 5477 goto out2; 5478 } 5479 5480 shm_mnt = kern_mount(&shmem_fs_type); 5481 if (IS_ERR(shm_mnt)) { 5482 error = PTR_ERR(shm_mnt); 5483 pr_err("Could not kern_mount tmpfs\n"); 5484 goto out1; 5485 } 5486 5487 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5488 error = tmpfs_sysfs_init(); 5489 if (error) { 5490 pr_err("Could not init tmpfs sysfs\n"); 5491 goto out1; 5492 } 5493 #endif 5494 5495 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5496 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 5497 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5498 else 5499 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 5500 5501 /* 5502 * Default to setting PMD-sized THP to inherit the global setting and 5503 * disable all other multi-size THPs. 5504 */ 5505 if (!shmem_orders_configured) 5506 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER); 5507 #endif 5508 return; 5509 5510 out1: 5511 unregister_filesystem(&shmem_fs_type); 5512 out2: 5513 #ifdef CONFIG_TMPFS_QUOTA 5514 unregister_quota_format(&shmem_quota_format); 5515 #endif 5516 shmem_destroy_inodecache(); 5517 shm_mnt = ERR_PTR(error); 5518 } 5519 5520 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 5521 static ssize_t shmem_enabled_show(struct kobject *kobj, 5522 struct kobj_attribute *attr, char *buf) 5523 { 5524 static const int values[] = { 5525 SHMEM_HUGE_ALWAYS, 5526 SHMEM_HUGE_WITHIN_SIZE, 5527 SHMEM_HUGE_ADVISE, 5528 SHMEM_HUGE_NEVER, 5529 SHMEM_HUGE_DENY, 5530 SHMEM_HUGE_FORCE, 5531 }; 5532 int len = 0; 5533 int i; 5534 5535 for (i = 0; i < ARRAY_SIZE(values); i++) { 5536 len += sysfs_emit_at(buf, len, 5537 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 5538 i ? " " : "", shmem_format_huge(values[i])); 5539 } 5540 len += sysfs_emit_at(buf, len, "\n"); 5541 5542 return len; 5543 } 5544 5545 static ssize_t shmem_enabled_store(struct kobject *kobj, 5546 struct kobj_attribute *attr, const char *buf, size_t count) 5547 { 5548 char tmp[16]; 5549 int huge, err; 5550 5551 if (count + 1 > sizeof(tmp)) 5552 return -EINVAL; 5553 memcpy(tmp, buf, count); 5554 tmp[count] = '\0'; 5555 if (count && tmp[count - 1] == '\n') 5556 tmp[count - 1] = '\0'; 5557 5558 huge = shmem_parse_huge(tmp); 5559 if (huge == -EINVAL) 5560 return huge; 5561 5562 shmem_huge = huge; 5563 if (shmem_huge > SHMEM_HUGE_DENY) 5564 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5565 5566 err = start_stop_khugepaged(); 5567 return err ? err : count; 5568 } 5569 5570 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 5571 static DEFINE_SPINLOCK(huge_shmem_orders_lock); 5572 5573 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj, 5574 struct kobj_attribute *attr, char *buf) 5575 { 5576 int order = to_thpsize(kobj)->order; 5577 const char *output; 5578 5579 if (test_bit(order, &huge_shmem_orders_always)) 5580 output = "[always] inherit within_size advise never"; 5581 else if (test_bit(order, &huge_shmem_orders_inherit)) 5582 output = "always [inherit] within_size advise never"; 5583 else if (test_bit(order, &huge_shmem_orders_within_size)) 5584 output = "always inherit [within_size] advise never"; 5585 else if (test_bit(order, &huge_shmem_orders_madvise)) 5586 output = "always inherit within_size [advise] never"; 5587 else 5588 output = "always inherit within_size advise [never]"; 5589 5590 return sysfs_emit(buf, "%s\n", output); 5591 } 5592 5593 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj, 5594 struct kobj_attribute *attr, 5595 const char *buf, size_t count) 5596 { 5597 int order = to_thpsize(kobj)->order; 5598 ssize_t ret = count; 5599 5600 if (sysfs_streq(buf, "always")) { 5601 spin_lock(&huge_shmem_orders_lock); 5602 clear_bit(order, &huge_shmem_orders_inherit); 5603 clear_bit(order, &huge_shmem_orders_madvise); 5604 clear_bit(order, &huge_shmem_orders_within_size); 5605 set_bit(order, &huge_shmem_orders_always); 5606 spin_unlock(&huge_shmem_orders_lock); 5607 } else if (sysfs_streq(buf, "inherit")) { 5608 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5609 if (shmem_huge == SHMEM_HUGE_FORCE && 5610 order != HPAGE_PMD_ORDER) 5611 return -EINVAL; 5612 5613 spin_lock(&huge_shmem_orders_lock); 5614 clear_bit(order, &huge_shmem_orders_always); 5615 clear_bit(order, &huge_shmem_orders_madvise); 5616 clear_bit(order, &huge_shmem_orders_within_size); 5617 set_bit(order, &huge_shmem_orders_inherit); 5618 spin_unlock(&huge_shmem_orders_lock); 5619 } else if (sysfs_streq(buf, "within_size")) { 5620 spin_lock(&huge_shmem_orders_lock); 5621 clear_bit(order, &huge_shmem_orders_always); 5622 clear_bit(order, &huge_shmem_orders_inherit); 5623 clear_bit(order, &huge_shmem_orders_madvise); 5624 set_bit(order, &huge_shmem_orders_within_size); 5625 spin_unlock(&huge_shmem_orders_lock); 5626 } else if (sysfs_streq(buf, "advise")) { 5627 spin_lock(&huge_shmem_orders_lock); 5628 clear_bit(order, &huge_shmem_orders_always); 5629 clear_bit(order, &huge_shmem_orders_inherit); 5630 clear_bit(order, &huge_shmem_orders_within_size); 5631 set_bit(order, &huge_shmem_orders_madvise); 5632 spin_unlock(&huge_shmem_orders_lock); 5633 } else if (sysfs_streq(buf, "never")) { 5634 spin_lock(&huge_shmem_orders_lock); 5635 clear_bit(order, &huge_shmem_orders_always); 5636 clear_bit(order, &huge_shmem_orders_inherit); 5637 clear_bit(order, &huge_shmem_orders_within_size); 5638 clear_bit(order, &huge_shmem_orders_madvise); 5639 spin_unlock(&huge_shmem_orders_lock); 5640 } else { 5641 ret = -EINVAL; 5642 } 5643 5644 if (ret > 0) { 5645 int err = start_stop_khugepaged(); 5646 5647 if (err) 5648 ret = err; 5649 } 5650 return ret; 5651 } 5652 5653 struct kobj_attribute thpsize_shmem_enabled_attr = 5654 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store); 5655 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 5656 5657 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 5658 5659 static int __init setup_transparent_hugepage_shmem(char *str) 5660 { 5661 int huge; 5662 5663 huge = shmem_parse_huge(str); 5664 if (huge == -EINVAL) { 5665 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n"); 5666 return huge; 5667 } 5668 5669 shmem_huge = huge; 5670 return 1; 5671 } 5672 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem); 5673 5674 static int __init setup_transparent_hugepage_tmpfs(char *str) 5675 { 5676 int huge; 5677 5678 huge = shmem_parse_huge(str); 5679 if (huge < 0) { 5680 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n"); 5681 return huge; 5682 } 5683 5684 tmpfs_huge = huge; 5685 return 1; 5686 } 5687 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs); 5688 5689 static char str_dup[PAGE_SIZE] __initdata; 5690 static int __init setup_thp_shmem(char *str) 5691 { 5692 char *token, *range, *policy, *subtoken; 5693 unsigned long always, inherit, madvise, within_size; 5694 char *start_size, *end_size; 5695 int start, end, nr; 5696 char *p; 5697 5698 if (!str || strlen(str) + 1 > PAGE_SIZE) 5699 goto err; 5700 strscpy(str_dup, str); 5701 5702 always = huge_shmem_orders_always; 5703 inherit = huge_shmem_orders_inherit; 5704 madvise = huge_shmem_orders_madvise; 5705 within_size = huge_shmem_orders_within_size; 5706 p = str_dup; 5707 while ((token = strsep(&p, ";")) != NULL) { 5708 range = strsep(&token, ":"); 5709 policy = token; 5710 5711 if (!policy) 5712 goto err; 5713 5714 while ((subtoken = strsep(&range, ",")) != NULL) { 5715 if (strchr(subtoken, '-')) { 5716 start_size = strsep(&subtoken, "-"); 5717 end_size = subtoken; 5718 5719 start = get_order_from_str(start_size, 5720 THP_ORDERS_ALL_FILE_DEFAULT); 5721 end = get_order_from_str(end_size, 5722 THP_ORDERS_ALL_FILE_DEFAULT); 5723 } else { 5724 start_size = end_size = subtoken; 5725 start = end = get_order_from_str(subtoken, 5726 THP_ORDERS_ALL_FILE_DEFAULT); 5727 } 5728 5729 if (start < 0) { 5730 pr_err("invalid size %s in thp_shmem boot parameter\n", 5731 start_size); 5732 goto err; 5733 } 5734 5735 if (end < 0) { 5736 pr_err("invalid size %s in thp_shmem boot parameter\n", 5737 end_size); 5738 goto err; 5739 } 5740 5741 if (start > end) 5742 goto err; 5743 5744 nr = end - start + 1; 5745 if (!strcmp(policy, "always")) { 5746 bitmap_set(&always, start, nr); 5747 bitmap_clear(&inherit, start, nr); 5748 bitmap_clear(&madvise, start, nr); 5749 bitmap_clear(&within_size, start, nr); 5750 } else if (!strcmp(policy, "advise")) { 5751 bitmap_set(&madvise, start, nr); 5752 bitmap_clear(&inherit, start, nr); 5753 bitmap_clear(&always, start, nr); 5754 bitmap_clear(&within_size, start, nr); 5755 } else if (!strcmp(policy, "inherit")) { 5756 bitmap_set(&inherit, start, nr); 5757 bitmap_clear(&madvise, start, nr); 5758 bitmap_clear(&always, start, nr); 5759 bitmap_clear(&within_size, start, nr); 5760 } else if (!strcmp(policy, "within_size")) { 5761 bitmap_set(&within_size, start, nr); 5762 bitmap_clear(&inherit, start, nr); 5763 bitmap_clear(&madvise, start, nr); 5764 bitmap_clear(&always, start, nr); 5765 } else if (!strcmp(policy, "never")) { 5766 bitmap_clear(&inherit, start, nr); 5767 bitmap_clear(&madvise, start, nr); 5768 bitmap_clear(&always, start, nr); 5769 bitmap_clear(&within_size, start, nr); 5770 } else { 5771 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy); 5772 goto err; 5773 } 5774 } 5775 } 5776 5777 huge_shmem_orders_always = always; 5778 huge_shmem_orders_madvise = madvise; 5779 huge_shmem_orders_inherit = inherit; 5780 huge_shmem_orders_within_size = within_size; 5781 shmem_orders_configured = true; 5782 return 1; 5783 5784 err: 5785 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str); 5786 return 0; 5787 } 5788 __setup("thp_shmem=", setup_thp_shmem); 5789 5790 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5791 5792 #else /* !CONFIG_SHMEM */ 5793 5794 /* 5795 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 5796 * 5797 * This is intended for small system where the benefits of the full 5798 * shmem code (swap-backed and resource-limited) are outweighed by 5799 * their complexity. On systems without swap this code should be 5800 * effectively equivalent, but much lighter weight. 5801 */ 5802 5803 static struct file_system_type shmem_fs_type = { 5804 .name = "tmpfs", 5805 .init_fs_context = ramfs_init_fs_context, 5806 .parameters = ramfs_fs_parameters, 5807 .kill_sb = ramfs_kill_sb, 5808 .fs_flags = FS_USERNS_MOUNT, 5809 }; 5810 5811 void __init shmem_init(void) 5812 { 5813 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 5814 5815 shm_mnt = kern_mount(&shmem_fs_type); 5816 BUG_ON(IS_ERR(shm_mnt)); 5817 } 5818 5819 int shmem_unuse(unsigned int type) 5820 { 5821 return 0; 5822 } 5823 5824 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 5825 { 5826 return 0; 5827 } 5828 5829 void shmem_unlock_mapping(struct address_space *mapping) 5830 { 5831 } 5832 5833 #ifdef CONFIG_MMU 5834 unsigned long shmem_get_unmapped_area(struct file *file, 5835 unsigned long addr, unsigned long len, 5836 unsigned long pgoff, unsigned long flags) 5837 { 5838 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags); 5839 } 5840 #endif 5841 5842 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 5843 { 5844 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 5845 } 5846 EXPORT_SYMBOL_GPL(shmem_truncate_range); 5847 5848 #define shmem_vm_ops generic_file_vm_ops 5849 #define shmem_anon_vm_ops generic_file_vm_ops 5850 #define shmem_file_operations ramfs_file_operations 5851 #define shmem_acct_size(flags, size) 0 5852 #define shmem_unacct_size(flags, size) do {} while (0) 5853 5854 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 5855 struct super_block *sb, struct inode *dir, 5856 umode_t mode, dev_t dev, unsigned long flags) 5857 { 5858 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 5859 return inode ? inode : ERR_PTR(-ENOSPC); 5860 } 5861 5862 #endif /* CONFIG_SHMEM */ 5863 5864 /* common code */ 5865 5866 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 5867 loff_t size, unsigned long flags, unsigned int i_flags) 5868 { 5869 struct inode *inode; 5870 struct file *res; 5871 5872 if (IS_ERR(mnt)) 5873 return ERR_CAST(mnt); 5874 5875 if (size < 0 || size > MAX_LFS_FILESIZE) 5876 return ERR_PTR(-EINVAL); 5877 5878 if (is_idmapped_mnt(mnt)) 5879 return ERR_PTR(-EINVAL); 5880 5881 if (shmem_acct_size(flags, size)) 5882 return ERR_PTR(-ENOMEM); 5883 5884 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 5885 S_IFREG | S_IRWXUGO, 0, flags); 5886 if (IS_ERR(inode)) { 5887 shmem_unacct_size(flags, size); 5888 return ERR_CAST(inode); 5889 } 5890 inode->i_flags |= i_flags; 5891 inode->i_size = size; 5892 clear_nlink(inode); /* It is unlinked */ 5893 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 5894 if (!IS_ERR(res)) 5895 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 5896 &shmem_file_operations); 5897 if (IS_ERR(res)) 5898 iput(inode); 5899 return res; 5900 } 5901 5902 /** 5903 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 5904 * kernel internal. There will be NO LSM permission checks against the 5905 * underlying inode. So users of this interface must do LSM checks at a 5906 * higher layer. The users are the big_key and shm implementations. LSM 5907 * checks are provided at the key or shm level rather than the inode. 5908 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5909 * @size: size to be set for the file 5910 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5911 */ 5912 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 5913 { 5914 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 5915 } 5916 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 5917 5918 /** 5919 * shmem_file_setup - get an unlinked file living in tmpfs 5920 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5921 * @size: size to be set for the file 5922 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5923 */ 5924 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 5925 { 5926 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 5927 } 5928 EXPORT_SYMBOL_GPL(shmem_file_setup); 5929 5930 /** 5931 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 5932 * @mnt: the tmpfs mount where the file will be created 5933 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5934 * @size: size to be set for the file 5935 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5936 */ 5937 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 5938 loff_t size, unsigned long flags) 5939 { 5940 return __shmem_file_setup(mnt, name, size, flags, 0); 5941 } 5942 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 5943 5944 /** 5945 * shmem_zero_setup - setup a shared anonymous mapping 5946 * @vma: the vma to be mmapped is prepared by do_mmap 5947 */ 5948 int shmem_zero_setup(struct vm_area_struct *vma) 5949 { 5950 struct file *file; 5951 loff_t size = vma->vm_end - vma->vm_start; 5952 5953 /* 5954 * Cloning a new file under mmap_lock leads to a lock ordering conflict 5955 * between XFS directory reading and selinux: since this file is only 5956 * accessible to the user through its mapping, use S_PRIVATE flag to 5957 * bypass file security, in the same way as shmem_kernel_file_setup(). 5958 */ 5959 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 5960 if (IS_ERR(file)) 5961 return PTR_ERR(file); 5962 5963 if (vma->vm_file) 5964 fput(vma->vm_file); 5965 vma->vm_file = file; 5966 vma->vm_ops = &shmem_anon_vm_ops; 5967 5968 return 0; 5969 } 5970 5971 /** 5972 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 5973 * @mapping: the folio's address_space 5974 * @index: the folio index 5975 * @gfp: the page allocator flags to use if allocating 5976 * 5977 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 5978 * with any new page allocations done using the specified allocation flags. 5979 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 5980 * suit tmpfs, since it may have pages in swapcache, and needs to find those 5981 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 5982 * 5983 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 5984 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 5985 */ 5986 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 5987 pgoff_t index, gfp_t gfp) 5988 { 5989 #ifdef CONFIG_SHMEM 5990 struct inode *inode = mapping->host; 5991 struct folio *folio; 5992 int error; 5993 5994 error = shmem_get_folio_gfp(inode, index, i_size_read(inode), 5995 &folio, SGP_CACHE, gfp, NULL, NULL); 5996 if (error) 5997 return ERR_PTR(error); 5998 5999 folio_unlock(folio); 6000 return folio; 6001 #else 6002 /* 6003 * The tiny !SHMEM case uses ramfs without swap 6004 */ 6005 return mapping_read_folio_gfp(mapping, index, gfp); 6006 #endif 6007 } 6008 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 6009 6010 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 6011 pgoff_t index, gfp_t gfp) 6012 { 6013 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 6014 struct page *page; 6015 6016 if (IS_ERR(folio)) 6017 return &folio->page; 6018 6019 page = folio_file_page(folio, index); 6020 if (PageHWPoison(page)) { 6021 folio_put(folio); 6022 return ERR_PTR(-EIO); 6023 } 6024 6025 return page; 6026 } 6027 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 6028