xref: /linux/mm/shmem.c (revision d8b762070c3fde224f8b9ea3cf59bc41a5a3eb57)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44 
45 static struct vfsmount *shm_mnt __ro_after_init;
46 
47 #ifdef CONFIG_SHMEM
48 /*
49  * This virtual memory filesystem is heavily based on the ramfs. It
50  * extends ramfs by the ability to use swap and honor resource limits
51  * which makes it a completely usable filesystem.
52  */
53 
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 #include <linux/quotaops.h>
82 #include <linux/rcupdate_wait.h>
83 
84 #include <linux/uaccess.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Pretend that one inode + its dentry occupy this much memory */
95 #define BOGO_INODE_SIZE 1024
96 
97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98 #define SHORT_SYMLINK_LEN 128
99 
100 /*
101  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
102  * inode->i_private (with i_rwsem making sure that it has only one user at
103  * a time): we would prefer not to enlarge the shmem inode just for that.
104  */
105 struct shmem_falloc {
106 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 	pgoff_t start;		/* start of range currently being fallocated */
108 	pgoff_t next;		/* the next page offset to be fallocated */
109 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
110 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
111 };
112 
113 struct shmem_options {
114 	unsigned long long blocks;
115 	unsigned long long inodes;
116 	struct mempolicy *mpol;
117 	kuid_t uid;
118 	kgid_t gid;
119 	umode_t mode;
120 	bool full_inums;
121 	int huge;
122 	int seen;
123 	bool noswap;
124 	unsigned short quota_types;
125 	struct shmem_quota_limits qlimits;
126 #define SHMEM_SEEN_BLOCKS 1
127 #define SHMEM_SEEN_INODES 2
128 #define SHMEM_SEEN_HUGE 4
129 #define SHMEM_SEEN_INUMS 8
130 #define SHMEM_SEEN_NOSWAP 16
131 #define SHMEM_SEEN_QUOTA 32
132 };
133 
134 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
135 static unsigned long huge_shmem_orders_always __read_mostly;
136 static unsigned long huge_shmem_orders_madvise __read_mostly;
137 static unsigned long huge_shmem_orders_inherit __read_mostly;
138 static unsigned long huge_shmem_orders_within_size __read_mostly;
139 #endif
140 
141 #ifdef CONFIG_TMPFS
142 static unsigned long shmem_default_max_blocks(void)
143 {
144 	return totalram_pages() / 2;
145 }
146 
147 static unsigned long shmem_default_max_inodes(void)
148 {
149 	unsigned long nr_pages = totalram_pages();
150 
151 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
152 			ULONG_MAX / BOGO_INODE_SIZE);
153 }
154 #endif
155 
156 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
157 			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
158 			struct mm_struct *fault_mm, vm_fault_t *fault_type);
159 
160 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
161 {
162 	return sb->s_fs_info;
163 }
164 
165 /*
166  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
167  * for shared memory and for shared anonymous (/dev/zero) mappings
168  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
169  * consistent with the pre-accounting of private mappings ...
170  */
171 static inline int shmem_acct_size(unsigned long flags, loff_t size)
172 {
173 	return (flags & VM_NORESERVE) ?
174 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
175 }
176 
177 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
178 {
179 	if (!(flags & VM_NORESERVE))
180 		vm_unacct_memory(VM_ACCT(size));
181 }
182 
183 static inline int shmem_reacct_size(unsigned long flags,
184 		loff_t oldsize, loff_t newsize)
185 {
186 	if (!(flags & VM_NORESERVE)) {
187 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
188 			return security_vm_enough_memory_mm(current->mm,
189 					VM_ACCT(newsize) - VM_ACCT(oldsize));
190 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
191 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
192 	}
193 	return 0;
194 }
195 
196 /*
197  * ... whereas tmpfs objects are accounted incrementally as
198  * pages are allocated, in order to allow large sparse files.
199  * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
200  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
201  */
202 static inline int shmem_acct_blocks(unsigned long flags, long pages)
203 {
204 	if (!(flags & VM_NORESERVE))
205 		return 0;
206 
207 	return security_vm_enough_memory_mm(current->mm,
208 			pages * VM_ACCT(PAGE_SIZE));
209 }
210 
211 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
212 {
213 	if (flags & VM_NORESERVE)
214 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
215 }
216 
217 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
218 {
219 	struct shmem_inode_info *info = SHMEM_I(inode);
220 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
221 	int err = -ENOSPC;
222 
223 	if (shmem_acct_blocks(info->flags, pages))
224 		return err;
225 
226 	might_sleep();	/* when quotas */
227 	if (sbinfo->max_blocks) {
228 		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
229 						sbinfo->max_blocks, pages))
230 			goto unacct;
231 
232 		err = dquot_alloc_block_nodirty(inode, pages);
233 		if (err) {
234 			percpu_counter_sub(&sbinfo->used_blocks, pages);
235 			goto unacct;
236 		}
237 	} else {
238 		err = dquot_alloc_block_nodirty(inode, pages);
239 		if (err)
240 			goto unacct;
241 	}
242 
243 	return 0;
244 
245 unacct:
246 	shmem_unacct_blocks(info->flags, pages);
247 	return err;
248 }
249 
250 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
251 {
252 	struct shmem_inode_info *info = SHMEM_I(inode);
253 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
254 
255 	might_sleep();	/* when quotas */
256 	dquot_free_block_nodirty(inode, pages);
257 
258 	if (sbinfo->max_blocks)
259 		percpu_counter_sub(&sbinfo->used_blocks, pages);
260 	shmem_unacct_blocks(info->flags, pages);
261 }
262 
263 static const struct super_operations shmem_ops;
264 static const struct address_space_operations shmem_aops;
265 static const struct file_operations shmem_file_operations;
266 static const struct inode_operations shmem_inode_operations;
267 static const struct inode_operations shmem_dir_inode_operations;
268 static const struct inode_operations shmem_special_inode_operations;
269 static const struct vm_operations_struct shmem_vm_ops;
270 static const struct vm_operations_struct shmem_anon_vm_ops;
271 static struct file_system_type shmem_fs_type;
272 
273 bool shmem_mapping(struct address_space *mapping)
274 {
275 	return mapping->a_ops == &shmem_aops;
276 }
277 EXPORT_SYMBOL_GPL(shmem_mapping);
278 
279 bool vma_is_anon_shmem(struct vm_area_struct *vma)
280 {
281 	return vma->vm_ops == &shmem_anon_vm_ops;
282 }
283 
284 bool vma_is_shmem(struct vm_area_struct *vma)
285 {
286 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
287 }
288 
289 static LIST_HEAD(shmem_swaplist);
290 static DEFINE_MUTEX(shmem_swaplist_mutex);
291 
292 #ifdef CONFIG_TMPFS_QUOTA
293 
294 static int shmem_enable_quotas(struct super_block *sb,
295 			       unsigned short quota_types)
296 {
297 	int type, err = 0;
298 
299 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
300 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
301 		if (!(quota_types & (1 << type)))
302 			continue;
303 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
304 					  DQUOT_USAGE_ENABLED |
305 					  DQUOT_LIMITS_ENABLED);
306 		if (err)
307 			goto out_err;
308 	}
309 	return 0;
310 
311 out_err:
312 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
313 		type, err);
314 	for (type--; type >= 0; type--)
315 		dquot_quota_off(sb, type);
316 	return err;
317 }
318 
319 static void shmem_disable_quotas(struct super_block *sb)
320 {
321 	int type;
322 
323 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
324 		dquot_quota_off(sb, type);
325 }
326 
327 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
328 {
329 	return SHMEM_I(inode)->i_dquot;
330 }
331 #endif /* CONFIG_TMPFS_QUOTA */
332 
333 /*
334  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
335  * produces a novel ino for the newly allocated inode.
336  *
337  * It may also be called when making a hard link to permit the space needed by
338  * each dentry. However, in that case, no new inode number is needed since that
339  * internally draws from another pool of inode numbers (currently global
340  * get_next_ino()). This case is indicated by passing NULL as inop.
341  */
342 #define SHMEM_INO_BATCH 1024
343 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
344 {
345 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
346 	ino_t ino;
347 
348 	if (!(sb->s_flags & SB_KERNMOUNT)) {
349 		raw_spin_lock(&sbinfo->stat_lock);
350 		if (sbinfo->max_inodes) {
351 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
352 				raw_spin_unlock(&sbinfo->stat_lock);
353 				return -ENOSPC;
354 			}
355 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
356 		}
357 		if (inop) {
358 			ino = sbinfo->next_ino++;
359 			if (unlikely(is_zero_ino(ino)))
360 				ino = sbinfo->next_ino++;
361 			if (unlikely(!sbinfo->full_inums &&
362 				     ino > UINT_MAX)) {
363 				/*
364 				 * Emulate get_next_ino uint wraparound for
365 				 * compatibility
366 				 */
367 				if (IS_ENABLED(CONFIG_64BIT))
368 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
369 						__func__, MINOR(sb->s_dev));
370 				sbinfo->next_ino = 1;
371 				ino = sbinfo->next_ino++;
372 			}
373 			*inop = ino;
374 		}
375 		raw_spin_unlock(&sbinfo->stat_lock);
376 	} else if (inop) {
377 		/*
378 		 * __shmem_file_setup, one of our callers, is lock-free: it
379 		 * doesn't hold stat_lock in shmem_reserve_inode since
380 		 * max_inodes is always 0, and is called from potentially
381 		 * unknown contexts. As such, use a per-cpu batched allocator
382 		 * which doesn't require the per-sb stat_lock unless we are at
383 		 * the batch boundary.
384 		 *
385 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
386 		 * shmem mounts are not exposed to userspace, so we don't need
387 		 * to worry about things like glibc compatibility.
388 		 */
389 		ino_t *next_ino;
390 
391 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
392 		ino = *next_ino;
393 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
394 			raw_spin_lock(&sbinfo->stat_lock);
395 			ino = sbinfo->next_ino;
396 			sbinfo->next_ino += SHMEM_INO_BATCH;
397 			raw_spin_unlock(&sbinfo->stat_lock);
398 			if (unlikely(is_zero_ino(ino)))
399 				ino++;
400 		}
401 		*inop = ino;
402 		*next_ino = ++ino;
403 		put_cpu();
404 	}
405 
406 	return 0;
407 }
408 
409 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
410 {
411 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
412 	if (sbinfo->max_inodes) {
413 		raw_spin_lock(&sbinfo->stat_lock);
414 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
415 		raw_spin_unlock(&sbinfo->stat_lock);
416 	}
417 }
418 
419 /**
420  * shmem_recalc_inode - recalculate the block usage of an inode
421  * @inode: inode to recalc
422  * @alloced: the change in number of pages allocated to inode
423  * @swapped: the change in number of pages swapped from inode
424  *
425  * We have to calculate the free blocks since the mm can drop
426  * undirtied hole pages behind our back.
427  *
428  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
429  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
430  */
431 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
432 {
433 	struct shmem_inode_info *info = SHMEM_I(inode);
434 	long freed;
435 
436 	spin_lock(&info->lock);
437 	info->alloced += alloced;
438 	info->swapped += swapped;
439 	freed = info->alloced - info->swapped -
440 		READ_ONCE(inode->i_mapping->nrpages);
441 	/*
442 	 * Special case: whereas normally shmem_recalc_inode() is called
443 	 * after i_mapping->nrpages has already been adjusted (up or down),
444 	 * shmem_writepage() has to raise swapped before nrpages is lowered -
445 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
446 	 * been freed.  Compensate here, to avoid the need for a followup call.
447 	 */
448 	if (swapped > 0)
449 		freed += swapped;
450 	if (freed > 0)
451 		info->alloced -= freed;
452 	spin_unlock(&info->lock);
453 
454 	/* The quota case may block */
455 	if (freed > 0)
456 		shmem_inode_unacct_blocks(inode, freed);
457 }
458 
459 bool shmem_charge(struct inode *inode, long pages)
460 {
461 	struct address_space *mapping = inode->i_mapping;
462 
463 	if (shmem_inode_acct_blocks(inode, pages))
464 		return false;
465 
466 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
467 	xa_lock_irq(&mapping->i_pages);
468 	mapping->nrpages += pages;
469 	xa_unlock_irq(&mapping->i_pages);
470 
471 	shmem_recalc_inode(inode, pages, 0);
472 	return true;
473 }
474 
475 void shmem_uncharge(struct inode *inode, long pages)
476 {
477 	/* pages argument is currently unused: keep it to help debugging */
478 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
479 
480 	shmem_recalc_inode(inode, 0, 0);
481 }
482 
483 /*
484  * Replace item expected in xarray by a new item, while holding xa_lock.
485  */
486 static int shmem_replace_entry(struct address_space *mapping,
487 			pgoff_t index, void *expected, void *replacement)
488 {
489 	XA_STATE(xas, &mapping->i_pages, index);
490 	void *item;
491 
492 	VM_BUG_ON(!expected);
493 	VM_BUG_ON(!replacement);
494 	item = xas_load(&xas);
495 	if (item != expected)
496 		return -ENOENT;
497 	xas_store(&xas, replacement);
498 	return 0;
499 }
500 
501 /*
502  * Sometimes, before we decide whether to proceed or to fail, we must check
503  * that an entry was not already brought back from swap by a racing thread.
504  *
505  * Checking page is not enough: by the time a SwapCache page is locked, it
506  * might be reused, and again be SwapCache, using the same swap as before.
507  */
508 static bool shmem_confirm_swap(struct address_space *mapping,
509 			       pgoff_t index, swp_entry_t swap)
510 {
511 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
512 }
513 
514 /*
515  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
516  *
517  * SHMEM_HUGE_NEVER:
518  *	disables huge pages for the mount;
519  * SHMEM_HUGE_ALWAYS:
520  *	enables huge pages for the mount;
521  * SHMEM_HUGE_WITHIN_SIZE:
522  *	only allocate huge pages if the page will be fully within i_size,
523  *	also respect fadvise()/madvise() hints;
524  * SHMEM_HUGE_ADVISE:
525  *	only allocate huge pages if requested with fadvise()/madvise();
526  */
527 
528 #define SHMEM_HUGE_NEVER	0
529 #define SHMEM_HUGE_ALWAYS	1
530 #define SHMEM_HUGE_WITHIN_SIZE	2
531 #define SHMEM_HUGE_ADVISE	3
532 
533 /*
534  * Special values.
535  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
536  *
537  * SHMEM_HUGE_DENY:
538  *	disables huge on shm_mnt and all mounts, for emergency use;
539  * SHMEM_HUGE_FORCE:
540  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
541  *
542  */
543 #define SHMEM_HUGE_DENY		(-1)
544 #define SHMEM_HUGE_FORCE	(-2)
545 
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 /* ifdef here to avoid bloating shmem.o when not necessary */
548 
549 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
550 
551 static bool __shmem_is_huge(struct inode *inode, pgoff_t index,
552 			    bool shmem_huge_force, struct mm_struct *mm,
553 			    unsigned long vm_flags)
554 {
555 	loff_t i_size;
556 
557 	if (!S_ISREG(inode->i_mode))
558 		return false;
559 	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
560 		return false;
561 	if (shmem_huge == SHMEM_HUGE_DENY)
562 		return false;
563 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
564 		return true;
565 
566 	switch (SHMEM_SB(inode->i_sb)->huge) {
567 	case SHMEM_HUGE_ALWAYS:
568 		return true;
569 	case SHMEM_HUGE_WITHIN_SIZE:
570 		index = round_up(index + 1, HPAGE_PMD_NR);
571 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
572 		if (i_size >> PAGE_SHIFT >= index)
573 			return true;
574 		fallthrough;
575 	case SHMEM_HUGE_ADVISE:
576 		if (mm && (vm_flags & VM_HUGEPAGE))
577 			return true;
578 		fallthrough;
579 	default:
580 		return false;
581 	}
582 }
583 
584 bool shmem_is_huge(struct inode *inode, pgoff_t index,
585 		   bool shmem_huge_force, struct mm_struct *mm,
586 		   unsigned long vm_flags)
587 {
588 	if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER)
589 		return false;
590 
591 	return __shmem_is_huge(inode, index, shmem_huge_force, mm, vm_flags);
592 }
593 
594 #if defined(CONFIG_SYSFS)
595 static int shmem_parse_huge(const char *str)
596 {
597 	if (!strcmp(str, "never"))
598 		return SHMEM_HUGE_NEVER;
599 	if (!strcmp(str, "always"))
600 		return SHMEM_HUGE_ALWAYS;
601 	if (!strcmp(str, "within_size"))
602 		return SHMEM_HUGE_WITHIN_SIZE;
603 	if (!strcmp(str, "advise"))
604 		return SHMEM_HUGE_ADVISE;
605 	if (!strcmp(str, "deny"))
606 		return SHMEM_HUGE_DENY;
607 	if (!strcmp(str, "force"))
608 		return SHMEM_HUGE_FORCE;
609 	return -EINVAL;
610 }
611 #endif
612 
613 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
614 static const char *shmem_format_huge(int huge)
615 {
616 	switch (huge) {
617 	case SHMEM_HUGE_NEVER:
618 		return "never";
619 	case SHMEM_HUGE_ALWAYS:
620 		return "always";
621 	case SHMEM_HUGE_WITHIN_SIZE:
622 		return "within_size";
623 	case SHMEM_HUGE_ADVISE:
624 		return "advise";
625 	case SHMEM_HUGE_DENY:
626 		return "deny";
627 	case SHMEM_HUGE_FORCE:
628 		return "force";
629 	default:
630 		VM_BUG_ON(1);
631 		return "bad_val";
632 	}
633 }
634 #endif
635 
636 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
637 		struct shrink_control *sc, unsigned long nr_to_split)
638 {
639 	LIST_HEAD(list), *pos, *next;
640 	LIST_HEAD(to_remove);
641 	struct inode *inode;
642 	struct shmem_inode_info *info;
643 	struct folio *folio;
644 	unsigned long batch = sc ? sc->nr_to_scan : 128;
645 	int split = 0;
646 
647 	if (list_empty(&sbinfo->shrinklist))
648 		return SHRINK_STOP;
649 
650 	spin_lock(&sbinfo->shrinklist_lock);
651 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
652 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
653 
654 		/* pin the inode */
655 		inode = igrab(&info->vfs_inode);
656 
657 		/* inode is about to be evicted */
658 		if (!inode) {
659 			list_del_init(&info->shrinklist);
660 			goto next;
661 		}
662 
663 		/* Check if there's anything to gain */
664 		if (round_up(inode->i_size, PAGE_SIZE) ==
665 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
666 			list_move(&info->shrinklist, &to_remove);
667 			goto next;
668 		}
669 
670 		list_move(&info->shrinklist, &list);
671 next:
672 		sbinfo->shrinklist_len--;
673 		if (!--batch)
674 			break;
675 	}
676 	spin_unlock(&sbinfo->shrinklist_lock);
677 
678 	list_for_each_safe(pos, next, &to_remove) {
679 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
680 		inode = &info->vfs_inode;
681 		list_del_init(&info->shrinklist);
682 		iput(inode);
683 	}
684 
685 	list_for_each_safe(pos, next, &list) {
686 		int ret;
687 		pgoff_t index;
688 
689 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
690 		inode = &info->vfs_inode;
691 
692 		if (nr_to_split && split >= nr_to_split)
693 			goto move_back;
694 
695 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
696 		folio = filemap_get_folio(inode->i_mapping, index);
697 		if (IS_ERR(folio))
698 			goto drop;
699 
700 		/* No huge page at the end of the file: nothing to split */
701 		if (!folio_test_large(folio)) {
702 			folio_put(folio);
703 			goto drop;
704 		}
705 
706 		/*
707 		 * Move the inode on the list back to shrinklist if we failed
708 		 * to lock the page at this time.
709 		 *
710 		 * Waiting for the lock may lead to deadlock in the
711 		 * reclaim path.
712 		 */
713 		if (!folio_trylock(folio)) {
714 			folio_put(folio);
715 			goto move_back;
716 		}
717 
718 		ret = split_folio(folio);
719 		folio_unlock(folio);
720 		folio_put(folio);
721 
722 		/* If split failed move the inode on the list back to shrinklist */
723 		if (ret)
724 			goto move_back;
725 
726 		split++;
727 drop:
728 		list_del_init(&info->shrinklist);
729 		goto put;
730 move_back:
731 		/*
732 		 * Make sure the inode is either on the global list or deleted
733 		 * from any local list before iput() since it could be deleted
734 		 * in another thread once we put the inode (then the local list
735 		 * is corrupted).
736 		 */
737 		spin_lock(&sbinfo->shrinklist_lock);
738 		list_move(&info->shrinklist, &sbinfo->shrinklist);
739 		sbinfo->shrinklist_len++;
740 		spin_unlock(&sbinfo->shrinklist_lock);
741 put:
742 		iput(inode);
743 	}
744 
745 	return split;
746 }
747 
748 static long shmem_unused_huge_scan(struct super_block *sb,
749 		struct shrink_control *sc)
750 {
751 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
752 
753 	if (!READ_ONCE(sbinfo->shrinklist_len))
754 		return SHRINK_STOP;
755 
756 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
757 }
758 
759 static long shmem_unused_huge_count(struct super_block *sb,
760 		struct shrink_control *sc)
761 {
762 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
763 	return READ_ONCE(sbinfo->shrinklist_len);
764 }
765 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
766 
767 #define shmem_huge SHMEM_HUGE_DENY
768 
769 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
770 		struct shrink_control *sc, unsigned long nr_to_split)
771 {
772 	return 0;
773 }
774 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
775 
776 /*
777  * Somewhat like filemap_add_folio, but error if expected item has gone.
778  */
779 static int shmem_add_to_page_cache(struct folio *folio,
780 				   struct address_space *mapping,
781 				   pgoff_t index, void *expected, gfp_t gfp)
782 {
783 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
784 	long nr = folio_nr_pages(folio);
785 
786 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
787 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
788 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
789 	VM_BUG_ON(expected && folio_test_large(folio));
790 
791 	folio_ref_add(folio, nr);
792 	folio->mapping = mapping;
793 	folio->index = index;
794 
795 	gfp &= GFP_RECLAIM_MASK;
796 	folio_throttle_swaprate(folio, gfp);
797 
798 	do {
799 		xas_lock_irq(&xas);
800 		if (expected != xas_find_conflict(&xas)) {
801 			xas_set_err(&xas, -EEXIST);
802 			goto unlock;
803 		}
804 		if (expected && xas_find_conflict(&xas)) {
805 			xas_set_err(&xas, -EEXIST);
806 			goto unlock;
807 		}
808 		xas_store(&xas, folio);
809 		if (xas_error(&xas))
810 			goto unlock;
811 		if (folio_test_pmd_mappable(folio))
812 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
813 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
814 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
815 		mapping->nrpages += nr;
816 unlock:
817 		xas_unlock_irq(&xas);
818 	} while (xas_nomem(&xas, gfp));
819 
820 	if (xas_error(&xas)) {
821 		folio->mapping = NULL;
822 		folio_ref_sub(folio, nr);
823 		return xas_error(&xas);
824 	}
825 
826 	return 0;
827 }
828 
829 /*
830  * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
831  */
832 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
833 {
834 	struct address_space *mapping = folio->mapping;
835 	long nr = folio_nr_pages(folio);
836 	int error;
837 
838 	xa_lock_irq(&mapping->i_pages);
839 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
840 	folio->mapping = NULL;
841 	mapping->nrpages -= nr;
842 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
843 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
844 	xa_unlock_irq(&mapping->i_pages);
845 	folio_put(folio);
846 	BUG_ON(error);
847 }
848 
849 /*
850  * Remove swap entry from page cache, free the swap and its page cache.
851  */
852 static int shmem_free_swap(struct address_space *mapping,
853 			   pgoff_t index, void *radswap)
854 {
855 	void *old;
856 
857 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
858 	if (old != radswap)
859 		return -ENOENT;
860 	free_swap_and_cache(radix_to_swp_entry(radswap));
861 	return 0;
862 }
863 
864 /*
865  * Determine (in bytes) how many of the shmem object's pages mapped by the
866  * given offsets are swapped out.
867  *
868  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
869  * as long as the inode doesn't go away and racy results are not a problem.
870  */
871 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
872 						pgoff_t start, pgoff_t end)
873 {
874 	XA_STATE(xas, &mapping->i_pages, start);
875 	struct page *page;
876 	unsigned long swapped = 0;
877 	unsigned long max = end - 1;
878 
879 	rcu_read_lock();
880 	xas_for_each(&xas, page, max) {
881 		if (xas_retry(&xas, page))
882 			continue;
883 		if (xa_is_value(page))
884 			swapped++;
885 		if (xas.xa_index == max)
886 			break;
887 		if (need_resched()) {
888 			xas_pause(&xas);
889 			cond_resched_rcu();
890 		}
891 	}
892 	rcu_read_unlock();
893 
894 	return swapped << PAGE_SHIFT;
895 }
896 
897 /*
898  * Determine (in bytes) how many of the shmem object's pages mapped by the
899  * given vma is swapped out.
900  *
901  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
902  * as long as the inode doesn't go away and racy results are not a problem.
903  */
904 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
905 {
906 	struct inode *inode = file_inode(vma->vm_file);
907 	struct shmem_inode_info *info = SHMEM_I(inode);
908 	struct address_space *mapping = inode->i_mapping;
909 	unsigned long swapped;
910 
911 	/* Be careful as we don't hold info->lock */
912 	swapped = READ_ONCE(info->swapped);
913 
914 	/*
915 	 * The easier cases are when the shmem object has nothing in swap, or
916 	 * the vma maps it whole. Then we can simply use the stats that we
917 	 * already track.
918 	 */
919 	if (!swapped)
920 		return 0;
921 
922 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
923 		return swapped << PAGE_SHIFT;
924 
925 	/* Here comes the more involved part */
926 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
927 					vma->vm_pgoff + vma_pages(vma));
928 }
929 
930 /*
931  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
932  */
933 void shmem_unlock_mapping(struct address_space *mapping)
934 {
935 	struct folio_batch fbatch;
936 	pgoff_t index = 0;
937 
938 	folio_batch_init(&fbatch);
939 	/*
940 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
941 	 */
942 	while (!mapping_unevictable(mapping) &&
943 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
944 		check_move_unevictable_folios(&fbatch);
945 		folio_batch_release(&fbatch);
946 		cond_resched();
947 	}
948 }
949 
950 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
951 {
952 	struct folio *folio;
953 
954 	/*
955 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
956 	 * beyond i_size, and reports fallocated folios as holes.
957 	 */
958 	folio = filemap_get_entry(inode->i_mapping, index);
959 	if (!folio)
960 		return folio;
961 	if (!xa_is_value(folio)) {
962 		folio_lock(folio);
963 		if (folio->mapping == inode->i_mapping)
964 			return folio;
965 		/* The folio has been swapped out */
966 		folio_unlock(folio);
967 		folio_put(folio);
968 	}
969 	/*
970 	 * But read a folio back from swap if any of it is within i_size
971 	 * (although in some cases this is just a waste of time).
972 	 */
973 	folio = NULL;
974 	shmem_get_folio(inode, index, &folio, SGP_READ);
975 	return folio;
976 }
977 
978 /*
979  * Remove range of pages and swap entries from page cache, and free them.
980  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
981  */
982 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
983 								 bool unfalloc)
984 {
985 	struct address_space *mapping = inode->i_mapping;
986 	struct shmem_inode_info *info = SHMEM_I(inode);
987 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
988 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
989 	struct folio_batch fbatch;
990 	pgoff_t indices[PAGEVEC_SIZE];
991 	struct folio *folio;
992 	bool same_folio;
993 	long nr_swaps_freed = 0;
994 	pgoff_t index;
995 	int i;
996 
997 	if (lend == -1)
998 		end = -1;	/* unsigned, so actually very big */
999 
1000 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1001 		info->fallocend = start;
1002 
1003 	folio_batch_init(&fbatch);
1004 	index = start;
1005 	while (index < end && find_lock_entries(mapping, &index, end - 1,
1006 			&fbatch, indices)) {
1007 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1008 			folio = fbatch.folios[i];
1009 
1010 			if (xa_is_value(folio)) {
1011 				if (unfalloc)
1012 					continue;
1013 				nr_swaps_freed += !shmem_free_swap(mapping,
1014 							indices[i], folio);
1015 				continue;
1016 			}
1017 
1018 			if (!unfalloc || !folio_test_uptodate(folio))
1019 				truncate_inode_folio(mapping, folio);
1020 			folio_unlock(folio);
1021 		}
1022 		folio_batch_remove_exceptionals(&fbatch);
1023 		folio_batch_release(&fbatch);
1024 		cond_resched();
1025 	}
1026 
1027 	/*
1028 	 * When undoing a failed fallocate, we want none of the partial folio
1029 	 * zeroing and splitting below, but shall want to truncate the whole
1030 	 * folio when !uptodate indicates that it was added by this fallocate,
1031 	 * even when [lstart, lend] covers only a part of the folio.
1032 	 */
1033 	if (unfalloc)
1034 		goto whole_folios;
1035 
1036 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1037 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1038 	if (folio) {
1039 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1040 		folio_mark_dirty(folio);
1041 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1042 			start = folio_next_index(folio);
1043 			if (same_folio)
1044 				end = folio->index;
1045 		}
1046 		folio_unlock(folio);
1047 		folio_put(folio);
1048 		folio = NULL;
1049 	}
1050 
1051 	if (!same_folio)
1052 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1053 	if (folio) {
1054 		folio_mark_dirty(folio);
1055 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1056 			end = folio->index;
1057 		folio_unlock(folio);
1058 		folio_put(folio);
1059 	}
1060 
1061 whole_folios:
1062 
1063 	index = start;
1064 	while (index < end) {
1065 		cond_resched();
1066 
1067 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1068 				indices)) {
1069 			/* If all gone or hole-punch or unfalloc, we're done */
1070 			if (index == start || end != -1)
1071 				break;
1072 			/* But if truncating, restart to make sure all gone */
1073 			index = start;
1074 			continue;
1075 		}
1076 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1077 			folio = fbatch.folios[i];
1078 
1079 			if (xa_is_value(folio)) {
1080 				if (unfalloc)
1081 					continue;
1082 				if (shmem_free_swap(mapping, indices[i], folio)) {
1083 					/* Swap was replaced by page: retry */
1084 					index = indices[i];
1085 					break;
1086 				}
1087 				nr_swaps_freed++;
1088 				continue;
1089 			}
1090 
1091 			folio_lock(folio);
1092 
1093 			if (!unfalloc || !folio_test_uptodate(folio)) {
1094 				if (folio_mapping(folio) != mapping) {
1095 					/* Page was replaced by swap: retry */
1096 					folio_unlock(folio);
1097 					index = indices[i];
1098 					break;
1099 				}
1100 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1101 						folio);
1102 
1103 				if (!folio_test_large(folio)) {
1104 					truncate_inode_folio(mapping, folio);
1105 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1106 					/*
1107 					 * If we split a page, reset the loop so
1108 					 * that we pick up the new sub pages.
1109 					 * Otherwise the THP was entirely
1110 					 * dropped or the target range was
1111 					 * zeroed, so just continue the loop as
1112 					 * is.
1113 					 */
1114 					if (!folio_test_large(folio)) {
1115 						folio_unlock(folio);
1116 						index = start;
1117 						break;
1118 					}
1119 				}
1120 			}
1121 			folio_unlock(folio);
1122 		}
1123 		folio_batch_remove_exceptionals(&fbatch);
1124 		folio_batch_release(&fbatch);
1125 	}
1126 
1127 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1128 }
1129 
1130 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1131 {
1132 	shmem_undo_range(inode, lstart, lend, false);
1133 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1134 	inode_inc_iversion(inode);
1135 }
1136 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1137 
1138 static int shmem_getattr(struct mnt_idmap *idmap,
1139 			 const struct path *path, struct kstat *stat,
1140 			 u32 request_mask, unsigned int query_flags)
1141 {
1142 	struct inode *inode = path->dentry->d_inode;
1143 	struct shmem_inode_info *info = SHMEM_I(inode);
1144 
1145 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1146 		shmem_recalc_inode(inode, 0, 0);
1147 
1148 	if (info->fsflags & FS_APPEND_FL)
1149 		stat->attributes |= STATX_ATTR_APPEND;
1150 	if (info->fsflags & FS_IMMUTABLE_FL)
1151 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1152 	if (info->fsflags & FS_NODUMP_FL)
1153 		stat->attributes |= STATX_ATTR_NODUMP;
1154 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1155 			STATX_ATTR_IMMUTABLE |
1156 			STATX_ATTR_NODUMP);
1157 	generic_fillattr(idmap, request_mask, inode, stat);
1158 
1159 	if (shmem_is_huge(inode, 0, false, NULL, 0))
1160 		stat->blksize = HPAGE_PMD_SIZE;
1161 
1162 	if (request_mask & STATX_BTIME) {
1163 		stat->result_mask |= STATX_BTIME;
1164 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1165 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1166 	}
1167 
1168 	return 0;
1169 }
1170 
1171 static int shmem_setattr(struct mnt_idmap *idmap,
1172 			 struct dentry *dentry, struct iattr *attr)
1173 {
1174 	struct inode *inode = d_inode(dentry);
1175 	struct shmem_inode_info *info = SHMEM_I(inode);
1176 	int error;
1177 	bool update_mtime = false;
1178 	bool update_ctime = true;
1179 
1180 	error = setattr_prepare(idmap, dentry, attr);
1181 	if (error)
1182 		return error;
1183 
1184 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1185 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1186 			return -EPERM;
1187 		}
1188 	}
1189 
1190 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1191 		loff_t oldsize = inode->i_size;
1192 		loff_t newsize = attr->ia_size;
1193 
1194 		/* protected by i_rwsem */
1195 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1196 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1197 			return -EPERM;
1198 
1199 		if (newsize != oldsize) {
1200 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1201 					oldsize, newsize);
1202 			if (error)
1203 				return error;
1204 			i_size_write(inode, newsize);
1205 			update_mtime = true;
1206 		} else {
1207 			update_ctime = false;
1208 		}
1209 		if (newsize <= oldsize) {
1210 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1211 			if (oldsize > holebegin)
1212 				unmap_mapping_range(inode->i_mapping,
1213 							holebegin, 0, 1);
1214 			if (info->alloced)
1215 				shmem_truncate_range(inode,
1216 							newsize, (loff_t)-1);
1217 			/* unmap again to remove racily COWed private pages */
1218 			if (oldsize > holebegin)
1219 				unmap_mapping_range(inode->i_mapping,
1220 							holebegin, 0, 1);
1221 		}
1222 	}
1223 
1224 	if (is_quota_modification(idmap, inode, attr)) {
1225 		error = dquot_initialize(inode);
1226 		if (error)
1227 			return error;
1228 	}
1229 
1230 	/* Transfer quota accounting */
1231 	if (i_uid_needs_update(idmap, attr, inode) ||
1232 	    i_gid_needs_update(idmap, attr, inode)) {
1233 		error = dquot_transfer(idmap, inode, attr);
1234 		if (error)
1235 			return error;
1236 	}
1237 
1238 	setattr_copy(idmap, inode, attr);
1239 	if (attr->ia_valid & ATTR_MODE)
1240 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1241 	if (!error && update_ctime) {
1242 		inode_set_ctime_current(inode);
1243 		if (update_mtime)
1244 			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1245 		inode_inc_iversion(inode);
1246 	}
1247 	return error;
1248 }
1249 
1250 static void shmem_evict_inode(struct inode *inode)
1251 {
1252 	struct shmem_inode_info *info = SHMEM_I(inode);
1253 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1254 	size_t freed = 0;
1255 
1256 	if (shmem_mapping(inode->i_mapping)) {
1257 		shmem_unacct_size(info->flags, inode->i_size);
1258 		inode->i_size = 0;
1259 		mapping_set_exiting(inode->i_mapping);
1260 		shmem_truncate_range(inode, 0, (loff_t)-1);
1261 		if (!list_empty(&info->shrinklist)) {
1262 			spin_lock(&sbinfo->shrinklist_lock);
1263 			if (!list_empty(&info->shrinklist)) {
1264 				list_del_init(&info->shrinklist);
1265 				sbinfo->shrinklist_len--;
1266 			}
1267 			spin_unlock(&sbinfo->shrinklist_lock);
1268 		}
1269 		while (!list_empty(&info->swaplist)) {
1270 			/* Wait while shmem_unuse() is scanning this inode... */
1271 			wait_var_event(&info->stop_eviction,
1272 				       !atomic_read(&info->stop_eviction));
1273 			mutex_lock(&shmem_swaplist_mutex);
1274 			/* ...but beware of the race if we peeked too early */
1275 			if (!atomic_read(&info->stop_eviction))
1276 				list_del_init(&info->swaplist);
1277 			mutex_unlock(&shmem_swaplist_mutex);
1278 		}
1279 	}
1280 
1281 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1282 	shmem_free_inode(inode->i_sb, freed);
1283 	WARN_ON(inode->i_blocks);
1284 	clear_inode(inode);
1285 #ifdef CONFIG_TMPFS_QUOTA
1286 	dquot_free_inode(inode);
1287 	dquot_drop(inode);
1288 #endif
1289 }
1290 
1291 static int shmem_find_swap_entries(struct address_space *mapping,
1292 				   pgoff_t start, struct folio_batch *fbatch,
1293 				   pgoff_t *indices, unsigned int type)
1294 {
1295 	XA_STATE(xas, &mapping->i_pages, start);
1296 	struct folio *folio;
1297 	swp_entry_t entry;
1298 
1299 	rcu_read_lock();
1300 	xas_for_each(&xas, folio, ULONG_MAX) {
1301 		if (xas_retry(&xas, folio))
1302 			continue;
1303 
1304 		if (!xa_is_value(folio))
1305 			continue;
1306 
1307 		entry = radix_to_swp_entry(folio);
1308 		/*
1309 		 * swapin error entries can be found in the mapping. But they're
1310 		 * deliberately ignored here as we've done everything we can do.
1311 		 */
1312 		if (swp_type(entry) != type)
1313 			continue;
1314 
1315 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1316 		if (!folio_batch_add(fbatch, folio))
1317 			break;
1318 
1319 		if (need_resched()) {
1320 			xas_pause(&xas);
1321 			cond_resched_rcu();
1322 		}
1323 	}
1324 	rcu_read_unlock();
1325 
1326 	return xas.xa_index;
1327 }
1328 
1329 /*
1330  * Move the swapped pages for an inode to page cache. Returns the count
1331  * of pages swapped in, or the error in case of failure.
1332  */
1333 static int shmem_unuse_swap_entries(struct inode *inode,
1334 		struct folio_batch *fbatch, pgoff_t *indices)
1335 {
1336 	int i = 0;
1337 	int ret = 0;
1338 	int error = 0;
1339 	struct address_space *mapping = inode->i_mapping;
1340 
1341 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1342 		struct folio *folio = fbatch->folios[i];
1343 
1344 		if (!xa_is_value(folio))
1345 			continue;
1346 		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1347 					mapping_gfp_mask(mapping), NULL, NULL);
1348 		if (error == 0) {
1349 			folio_unlock(folio);
1350 			folio_put(folio);
1351 			ret++;
1352 		}
1353 		if (error == -ENOMEM)
1354 			break;
1355 		error = 0;
1356 	}
1357 	return error ? error : ret;
1358 }
1359 
1360 /*
1361  * If swap found in inode, free it and move page from swapcache to filecache.
1362  */
1363 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1364 {
1365 	struct address_space *mapping = inode->i_mapping;
1366 	pgoff_t start = 0;
1367 	struct folio_batch fbatch;
1368 	pgoff_t indices[PAGEVEC_SIZE];
1369 	int ret = 0;
1370 
1371 	do {
1372 		folio_batch_init(&fbatch);
1373 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1374 		if (folio_batch_count(&fbatch) == 0) {
1375 			ret = 0;
1376 			break;
1377 		}
1378 
1379 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1380 		if (ret < 0)
1381 			break;
1382 
1383 		start = indices[folio_batch_count(&fbatch) - 1];
1384 	} while (true);
1385 
1386 	return ret;
1387 }
1388 
1389 /*
1390  * Read all the shared memory data that resides in the swap
1391  * device 'type' back into memory, so the swap device can be
1392  * unused.
1393  */
1394 int shmem_unuse(unsigned int type)
1395 {
1396 	struct shmem_inode_info *info, *next;
1397 	int error = 0;
1398 
1399 	if (list_empty(&shmem_swaplist))
1400 		return 0;
1401 
1402 	mutex_lock(&shmem_swaplist_mutex);
1403 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1404 		if (!info->swapped) {
1405 			list_del_init(&info->swaplist);
1406 			continue;
1407 		}
1408 		/*
1409 		 * Drop the swaplist mutex while searching the inode for swap;
1410 		 * but before doing so, make sure shmem_evict_inode() will not
1411 		 * remove placeholder inode from swaplist, nor let it be freed
1412 		 * (igrab() would protect from unlink, but not from unmount).
1413 		 */
1414 		atomic_inc(&info->stop_eviction);
1415 		mutex_unlock(&shmem_swaplist_mutex);
1416 
1417 		error = shmem_unuse_inode(&info->vfs_inode, type);
1418 		cond_resched();
1419 
1420 		mutex_lock(&shmem_swaplist_mutex);
1421 		next = list_next_entry(info, swaplist);
1422 		if (!info->swapped)
1423 			list_del_init(&info->swaplist);
1424 		if (atomic_dec_and_test(&info->stop_eviction))
1425 			wake_up_var(&info->stop_eviction);
1426 		if (error)
1427 			break;
1428 	}
1429 	mutex_unlock(&shmem_swaplist_mutex);
1430 
1431 	return error;
1432 }
1433 
1434 /*
1435  * Move the page from the page cache to the swap cache.
1436  */
1437 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1438 {
1439 	struct folio *folio = page_folio(page);
1440 	struct address_space *mapping = folio->mapping;
1441 	struct inode *inode = mapping->host;
1442 	struct shmem_inode_info *info = SHMEM_I(inode);
1443 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1444 	swp_entry_t swap;
1445 	pgoff_t index;
1446 
1447 	/*
1448 	 * Our capabilities prevent regular writeback or sync from ever calling
1449 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1450 	 * its underlying filesystem, in which case tmpfs should write out to
1451 	 * swap only in response to memory pressure, and not for the writeback
1452 	 * threads or sync.
1453 	 */
1454 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1455 		goto redirty;
1456 
1457 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1458 		goto redirty;
1459 
1460 	if (!total_swap_pages)
1461 		goto redirty;
1462 
1463 	/*
1464 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1465 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1466 	 * and its shmem_writeback() needs them to be split when swapping.
1467 	 */
1468 	if (folio_test_large(folio)) {
1469 		/* Ensure the subpages are still dirty */
1470 		folio_test_set_dirty(folio);
1471 		if (split_huge_page(page) < 0)
1472 			goto redirty;
1473 		folio = page_folio(page);
1474 		folio_clear_dirty(folio);
1475 	}
1476 
1477 	index = folio->index;
1478 
1479 	/*
1480 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1481 	 * value into swapfile.c, the only way we can correctly account for a
1482 	 * fallocated folio arriving here is now to initialize it and write it.
1483 	 *
1484 	 * That's okay for a folio already fallocated earlier, but if we have
1485 	 * not yet completed the fallocation, then (a) we want to keep track
1486 	 * of this folio in case we have to undo it, and (b) it may not be a
1487 	 * good idea to continue anyway, once we're pushing into swap.  So
1488 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1489 	 */
1490 	if (!folio_test_uptodate(folio)) {
1491 		if (inode->i_private) {
1492 			struct shmem_falloc *shmem_falloc;
1493 			spin_lock(&inode->i_lock);
1494 			shmem_falloc = inode->i_private;
1495 			if (shmem_falloc &&
1496 			    !shmem_falloc->waitq &&
1497 			    index >= shmem_falloc->start &&
1498 			    index < shmem_falloc->next)
1499 				shmem_falloc->nr_unswapped++;
1500 			else
1501 				shmem_falloc = NULL;
1502 			spin_unlock(&inode->i_lock);
1503 			if (shmem_falloc)
1504 				goto redirty;
1505 		}
1506 		folio_zero_range(folio, 0, folio_size(folio));
1507 		flush_dcache_folio(folio);
1508 		folio_mark_uptodate(folio);
1509 	}
1510 
1511 	swap = folio_alloc_swap(folio);
1512 	if (!swap.val)
1513 		goto redirty;
1514 
1515 	/*
1516 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1517 	 * if it's not already there.  Do it now before the folio is
1518 	 * moved to swap cache, when its pagelock no longer protects
1519 	 * the inode from eviction.  But don't unlock the mutex until
1520 	 * we've incremented swapped, because shmem_unuse_inode() will
1521 	 * prune a !swapped inode from the swaplist under this mutex.
1522 	 */
1523 	mutex_lock(&shmem_swaplist_mutex);
1524 	if (list_empty(&info->swaplist))
1525 		list_add(&info->swaplist, &shmem_swaplist);
1526 
1527 	if (add_to_swap_cache(folio, swap,
1528 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1529 			NULL) == 0) {
1530 		shmem_recalc_inode(inode, 0, 1);
1531 		swap_shmem_alloc(swap);
1532 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1533 
1534 		mutex_unlock(&shmem_swaplist_mutex);
1535 		BUG_ON(folio_mapped(folio));
1536 		return swap_writepage(&folio->page, wbc);
1537 	}
1538 
1539 	mutex_unlock(&shmem_swaplist_mutex);
1540 	put_swap_folio(folio, swap);
1541 redirty:
1542 	folio_mark_dirty(folio);
1543 	if (wbc->for_reclaim)
1544 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1545 	folio_unlock(folio);
1546 	return 0;
1547 }
1548 
1549 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1550 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1551 {
1552 	char buffer[64];
1553 
1554 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1555 		return;		/* show nothing */
1556 
1557 	mpol_to_str(buffer, sizeof(buffer), mpol);
1558 
1559 	seq_printf(seq, ",mpol=%s", buffer);
1560 }
1561 
1562 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1563 {
1564 	struct mempolicy *mpol = NULL;
1565 	if (sbinfo->mpol) {
1566 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1567 		mpol = sbinfo->mpol;
1568 		mpol_get(mpol);
1569 		raw_spin_unlock(&sbinfo->stat_lock);
1570 	}
1571 	return mpol;
1572 }
1573 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1574 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1575 {
1576 }
1577 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1578 {
1579 	return NULL;
1580 }
1581 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1582 
1583 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1584 			pgoff_t index, unsigned int order, pgoff_t *ilx);
1585 
1586 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1587 			struct shmem_inode_info *info, pgoff_t index)
1588 {
1589 	struct mempolicy *mpol;
1590 	pgoff_t ilx;
1591 	struct folio *folio;
1592 
1593 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1594 	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1595 	mpol_cond_put(mpol);
1596 
1597 	return folio;
1598 }
1599 
1600 /*
1601  * Make sure huge_gfp is always more limited than limit_gfp.
1602  * Some of the flags set permissions, while others set limitations.
1603  */
1604 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1605 {
1606 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1607 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1608 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1609 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1610 
1611 	/* Allow allocations only from the originally specified zones. */
1612 	result |= zoneflags;
1613 
1614 	/*
1615 	 * Minimize the result gfp by taking the union with the deny flags,
1616 	 * and the intersection of the allow flags.
1617 	 */
1618 	result |= (limit_gfp & denyflags);
1619 	result |= (huge_gfp & limit_gfp) & allowflags;
1620 
1621 	return result;
1622 }
1623 
1624 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1625 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1626 				struct vm_area_struct *vma, pgoff_t index,
1627 				bool global_huge)
1628 {
1629 	unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1630 	unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1631 	unsigned long vm_flags = vma->vm_flags;
1632 	loff_t i_size;
1633 	int order;
1634 
1635 	if ((vm_flags & VM_NOHUGEPAGE) ||
1636 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
1637 		return 0;
1638 
1639 	/* If the hardware/firmware marked hugepage support disabled. */
1640 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
1641 		return 0;
1642 
1643 	/*
1644 	 * Following the 'deny' semantics of the top level, force the huge
1645 	 * option off from all mounts.
1646 	 */
1647 	if (shmem_huge == SHMEM_HUGE_DENY)
1648 		return 0;
1649 
1650 	/*
1651 	 * Only allow inherit orders if the top-level value is 'force', which
1652 	 * means non-PMD sized THP can not override 'huge' mount option now.
1653 	 */
1654 	if (shmem_huge == SHMEM_HUGE_FORCE)
1655 		return READ_ONCE(huge_shmem_orders_inherit);
1656 
1657 	/* Allow mTHP that will be fully within i_size. */
1658 	order = highest_order(within_size_orders);
1659 	while (within_size_orders) {
1660 		index = round_up(index + 1, order);
1661 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1662 		if (i_size >> PAGE_SHIFT >= index) {
1663 			mask |= within_size_orders;
1664 			break;
1665 		}
1666 
1667 		order = next_order(&within_size_orders, order);
1668 	}
1669 
1670 	if (vm_flags & VM_HUGEPAGE)
1671 		mask |= READ_ONCE(huge_shmem_orders_madvise);
1672 
1673 	if (global_huge)
1674 		mask |= READ_ONCE(huge_shmem_orders_inherit);
1675 
1676 	return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1677 }
1678 
1679 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1680 					   struct address_space *mapping, pgoff_t index,
1681 					   unsigned long orders)
1682 {
1683 	struct vm_area_struct *vma = vmf->vma;
1684 	pgoff_t aligned_index;
1685 	unsigned long pages;
1686 	int order;
1687 
1688 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1689 	if (!orders)
1690 		return 0;
1691 
1692 	/* Find the highest order that can add into the page cache */
1693 	order = highest_order(orders);
1694 	while (orders) {
1695 		pages = 1UL << order;
1696 		aligned_index = round_down(index, pages);
1697 		if (!xa_find(&mapping->i_pages, &aligned_index,
1698 			     aligned_index + pages - 1, XA_PRESENT))
1699 			break;
1700 		order = next_order(&orders, order);
1701 	}
1702 
1703 	return orders;
1704 }
1705 #else
1706 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1707 					   struct address_space *mapping, pgoff_t index,
1708 					   unsigned long orders)
1709 {
1710 	return 0;
1711 }
1712 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1713 
1714 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1715 		struct shmem_inode_info *info, pgoff_t index)
1716 {
1717 	struct mempolicy *mpol;
1718 	pgoff_t ilx;
1719 	struct folio *folio;
1720 
1721 	mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1722 	folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1723 	mpol_cond_put(mpol);
1724 
1725 	return folio;
1726 }
1727 
1728 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1729 		gfp_t gfp, struct inode *inode, pgoff_t index,
1730 		struct mm_struct *fault_mm, unsigned long orders)
1731 {
1732 	struct address_space *mapping = inode->i_mapping;
1733 	struct shmem_inode_info *info = SHMEM_I(inode);
1734 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1735 	unsigned long suitable_orders = 0;
1736 	struct folio *folio = NULL;
1737 	long pages;
1738 	int error, order;
1739 
1740 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1741 		orders = 0;
1742 
1743 	if (orders > 0) {
1744 		if (vma && vma_is_anon_shmem(vma)) {
1745 			suitable_orders = shmem_suitable_orders(inode, vmf,
1746 							mapping, index, orders);
1747 		} else if (orders & BIT(HPAGE_PMD_ORDER)) {
1748 			pages = HPAGE_PMD_NR;
1749 			suitable_orders = BIT(HPAGE_PMD_ORDER);
1750 			index = round_down(index, HPAGE_PMD_NR);
1751 
1752 			/*
1753 			 * Check for conflict before waiting on a huge allocation.
1754 			 * Conflict might be that a huge page has just been allocated
1755 			 * and added to page cache by a racing thread, or that there
1756 			 * is already at least one small page in the huge extent.
1757 			 * Be careful to retry when appropriate, but not forever!
1758 			 * Elsewhere -EEXIST would be the right code, but not here.
1759 			 */
1760 			if (xa_find(&mapping->i_pages, &index,
1761 				    index + HPAGE_PMD_NR - 1, XA_PRESENT))
1762 				return ERR_PTR(-E2BIG);
1763 		}
1764 
1765 		order = highest_order(suitable_orders);
1766 		while (suitable_orders) {
1767 			pages = 1UL << order;
1768 			index = round_down(index, pages);
1769 			folio = shmem_alloc_folio(gfp, order, info, index);
1770 			if (folio)
1771 				goto allocated;
1772 
1773 			if (pages == HPAGE_PMD_NR)
1774 				count_vm_event(THP_FILE_FALLBACK);
1775 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1776 			count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1777 #endif
1778 			order = next_order(&suitable_orders, order);
1779 		}
1780 	} else {
1781 		pages = 1;
1782 		folio = shmem_alloc_folio(gfp, 0, info, index);
1783 	}
1784 	if (!folio)
1785 		return ERR_PTR(-ENOMEM);
1786 
1787 allocated:
1788 	__folio_set_locked(folio);
1789 	__folio_set_swapbacked(folio);
1790 
1791 	gfp &= GFP_RECLAIM_MASK;
1792 	error = mem_cgroup_charge(folio, fault_mm, gfp);
1793 	if (error) {
1794 		if (xa_find(&mapping->i_pages, &index,
1795 				index + pages - 1, XA_PRESENT)) {
1796 			error = -EEXIST;
1797 		} else if (pages > 1) {
1798 			if (pages == HPAGE_PMD_NR) {
1799 				count_vm_event(THP_FILE_FALLBACK);
1800 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
1801 			}
1802 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1803 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1804 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1805 #endif
1806 		}
1807 		goto unlock;
1808 	}
1809 
1810 	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1811 	if (error)
1812 		goto unlock;
1813 
1814 	error = shmem_inode_acct_blocks(inode, pages);
1815 	if (error) {
1816 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1817 		long freed;
1818 		/*
1819 		 * Try to reclaim some space by splitting a few
1820 		 * large folios beyond i_size on the filesystem.
1821 		 */
1822 		shmem_unused_huge_shrink(sbinfo, NULL, 2);
1823 		/*
1824 		 * And do a shmem_recalc_inode() to account for freed pages:
1825 		 * except our folio is there in cache, so not quite balanced.
1826 		 */
1827 		spin_lock(&info->lock);
1828 		freed = pages + info->alloced - info->swapped -
1829 			READ_ONCE(mapping->nrpages);
1830 		if (freed > 0)
1831 			info->alloced -= freed;
1832 		spin_unlock(&info->lock);
1833 		if (freed > 0)
1834 			shmem_inode_unacct_blocks(inode, freed);
1835 		error = shmem_inode_acct_blocks(inode, pages);
1836 		if (error) {
1837 			filemap_remove_folio(folio);
1838 			goto unlock;
1839 		}
1840 	}
1841 
1842 	shmem_recalc_inode(inode, pages, 0);
1843 	folio_add_lru(folio);
1844 	return folio;
1845 
1846 unlock:
1847 	folio_unlock(folio);
1848 	folio_put(folio);
1849 	return ERR_PTR(error);
1850 }
1851 
1852 /*
1853  * When a page is moved from swapcache to shmem filecache (either by the
1854  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1855  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1856  * ignorance of the mapping it belongs to.  If that mapping has special
1857  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1858  * we may need to copy to a suitable page before moving to filecache.
1859  *
1860  * In a future release, this may well be extended to respect cpuset and
1861  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1862  * but for now it is a simple matter of zone.
1863  */
1864 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1865 {
1866 	return folio_zonenum(folio) > gfp_zone(gfp);
1867 }
1868 
1869 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1870 				struct shmem_inode_info *info, pgoff_t index)
1871 {
1872 	struct folio *old, *new;
1873 	struct address_space *swap_mapping;
1874 	swp_entry_t entry;
1875 	pgoff_t swap_index;
1876 	int error;
1877 
1878 	old = *foliop;
1879 	entry = old->swap;
1880 	swap_index = swap_cache_index(entry);
1881 	swap_mapping = swap_address_space(entry);
1882 
1883 	/*
1884 	 * We have arrived here because our zones are constrained, so don't
1885 	 * limit chance of success by further cpuset and node constraints.
1886 	 */
1887 	gfp &= ~GFP_CONSTRAINT_MASK;
1888 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1889 	new = shmem_alloc_folio(gfp, 0, info, index);
1890 	if (!new)
1891 		return -ENOMEM;
1892 
1893 	folio_get(new);
1894 	folio_copy(new, old);
1895 	flush_dcache_folio(new);
1896 
1897 	__folio_set_locked(new);
1898 	__folio_set_swapbacked(new);
1899 	folio_mark_uptodate(new);
1900 	new->swap = entry;
1901 	folio_set_swapcache(new);
1902 
1903 	/*
1904 	 * Our caller will very soon move newpage out of swapcache, but it's
1905 	 * a nice clean interface for us to replace oldpage by newpage there.
1906 	 */
1907 	xa_lock_irq(&swap_mapping->i_pages);
1908 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1909 	if (!error) {
1910 		mem_cgroup_replace_folio(old, new);
1911 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1912 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1913 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1914 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1915 	}
1916 	xa_unlock_irq(&swap_mapping->i_pages);
1917 
1918 	if (unlikely(error)) {
1919 		/*
1920 		 * Is this possible?  I think not, now that our callers check
1921 		 * both PageSwapCache and page_private after getting page lock;
1922 		 * but be defensive.  Reverse old to newpage for clear and free.
1923 		 */
1924 		old = new;
1925 	} else {
1926 		folio_add_lru(new);
1927 		*foliop = new;
1928 	}
1929 
1930 	folio_clear_swapcache(old);
1931 	old->private = NULL;
1932 
1933 	folio_unlock(old);
1934 	folio_put_refs(old, 2);
1935 	return error;
1936 }
1937 
1938 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1939 					 struct folio *folio, swp_entry_t swap)
1940 {
1941 	struct address_space *mapping = inode->i_mapping;
1942 	swp_entry_t swapin_error;
1943 	void *old;
1944 
1945 	swapin_error = make_poisoned_swp_entry();
1946 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1947 			     swp_to_radix_entry(swap),
1948 			     swp_to_radix_entry(swapin_error), 0);
1949 	if (old != swp_to_radix_entry(swap))
1950 		return;
1951 
1952 	folio_wait_writeback(folio);
1953 	delete_from_swap_cache(folio);
1954 	/*
1955 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
1956 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
1957 	 * in shmem_evict_inode().
1958 	 */
1959 	shmem_recalc_inode(inode, -1, -1);
1960 	swap_free(swap);
1961 }
1962 
1963 /*
1964  * Swap in the folio pointed to by *foliop.
1965  * Caller has to make sure that *foliop contains a valid swapped folio.
1966  * Returns 0 and the folio in foliop if success. On failure, returns the
1967  * error code and NULL in *foliop.
1968  */
1969 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1970 			     struct folio **foliop, enum sgp_type sgp,
1971 			     gfp_t gfp, struct mm_struct *fault_mm,
1972 			     vm_fault_t *fault_type)
1973 {
1974 	struct address_space *mapping = inode->i_mapping;
1975 	struct shmem_inode_info *info = SHMEM_I(inode);
1976 	struct swap_info_struct *si;
1977 	struct folio *folio = NULL;
1978 	swp_entry_t swap;
1979 	int error;
1980 
1981 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1982 	swap = radix_to_swp_entry(*foliop);
1983 	*foliop = NULL;
1984 
1985 	if (is_poisoned_swp_entry(swap))
1986 		return -EIO;
1987 
1988 	si = get_swap_device(swap);
1989 	if (!si) {
1990 		if (!shmem_confirm_swap(mapping, index, swap))
1991 			return -EEXIST;
1992 		else
1993 			return -EINVAL;
1994 	}
1995 
1996 	/* Look it up and read it in.. */
1997 	folio = swap_cache_get_folio(swap, NULL, 0);
1998 	if (!folio) {
1999 		/* Or update major stats only when swapin succeeds?? */
2000 		if (fault_type) {
2001 			*fault_type |= VM_FAULT_MAJOR;
2002 			count_vm_event(PGMAJFAULT);
2003 			count_memcg_event_mm(fault_mm, PGMAJFAULT);
2004 		}
2005 		/* Here we actually start the io */
2006 		folio = shmem_swapin_cluster(swap, gfp, info, index);
2007 		if (!folio) {
2008 			error = -ENOMEM;
2009 			goto failed;
2010 		}
2011 	}
2012 
2013 	/* We have to do this with folio locked to prevent races */
2014 	folio_lock(folio);
2015 	if (!folio_test_swapcache(folio) ||
2016 	    folio->swap.val != swap.val ||
2017 	    !shmem_confirm_swap(mapping, index, swap)) {
2018 		error = -EEXIST;
2019 		goto unlock;
2020 	}
2021 	if (!folio_test_uptodate(folio)) {
2022 		error = -EIO;
2023 		goto failed;
2024 	}
2025 	folio_wait_writeback(folio);
2026 
2027 	/*
2028 	 * Some architectures may have to restore extra metadata to the
2029 	 * folio after reading from swap.
2030 	 */
2031 	arch_swap_restore(folio_swap(swap, folio), folio);
2032 
2033 	if (shmem_should_replace_folio(folio, gfp)) {
2034 		error = shmem_replace_folio(&folio, gfp, info, index);
2035 		if (error)
2036 			goto failed;
2037 	}
2038 
2039 	error = shmem_add_to_page_cache(folio, mapping, index,
2040 					swp_to_radix_entry(swap), gfp);
2041 	if (error)
2042 		goto failed;
2043 
2044 	shmem_recalc_inode(inode, 0, -1);
2045 
2046 	if (sgp == SGP_WRITE)
2047 		folio_mark_accessed(folio);
2048 
2049 	delete_from_swap_cache(folio);
2050 	folio_mark_dirty(folio);
2051 	swap_free(swap);
2052 	put_swap_device(si);
2053 
2054 	*foliop = folio;
2055 	return 0;
2056 failed:
2057 	if (!shmem_confirm_swap(mapping, index, swap))
2058 		error = -EEXIST;
2059 	if (error == -EIO)
2060 		shmem_set_folio_swapin_error(inode, index, folio, swap);
2061 unlock:
2062 	if (folio) {
2063 		folio_unlock(folio);
2064 		folio_put(folio);
2065 	}
2066 	put_swap_device(si);
2067 
2068 	return error;
2069 }
2070 
2071 /*
2072  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2073  *
2074  * If we allocate a new one we do not mark it dirty. That's up to the
2075  * vm. If we swap it in we mark it dirty since we also free the swap
2076  * entry since a page cannot live in both the swap and page cache.
2077  *
2078  * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2079  */
2080 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2081 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
2082 		struct vm_fault *vmf, vm_fault_t *fault_type)
2083 {
2084 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2085 	struct mm_struct *fault_mm;
2086 	struct folio *folio;
2087 	int error;
2088 	bool alloced, huge;
2089 	unsigned long orders = 0;
2090 
2091 	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2092 		return -EINVAL;
2093 
2094 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2095 		return -EFBIG;
2096 repeat:
2097 	if (sgp <= SGP_CACHE &&
2098 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2099 		return -EINVAL;
2100 
2101 	alloced = false;
2102 	fault_mm = vma ? vma->vm_mm : NULL;
2103 
2104 	folio = filemap_get_entry(inode->i_mapping, index);
2105 	if (folio && vma && userfaultfd_minor(vma)) {
2106 		if (!xa_is_value(folio))
2107 			folio_put(folio);
2108 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2109 		return 0;
2110 	}
2111 
2112 	if (xa_is_value(folio)) {
2113 		error = shmem_swapin_folio(inode, index, &folio,
2114 					   sgp, gfp, fault_mm, fault_type);
2115 		if (error == -EEXIST)
2116 			goto repeat;
2117 
2118 		*foliop = folio;
2119 		return error;
2120 	}
2121 
2122 	if (folio) {
2123 		folio_lock(folio);
2124 
2125 		/* Has the folio been truncated or swapped out? */
2126 		if (unlikely(folio->mapping != inode->i_mapping)) {
2127 			folio_unlock(folio);
2128 			folio_put(folio);
2129 			goto repeat;
2130 		}
2131 		if (sgp == SGP_WRITE)
2132 			folio_mark_accessed(folio);
2133 		if (folio_test_uptodate(folio))
2134 			goto out;
2135 		/* fallocated folio */
2136 		if (sgp != SGP_READ)
2137 			goto clear;
2138 		folio_unlock(folio);
2139 		folio_put(folio);
2140 	}
2141 
2142 	/*
2143 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2144 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2145 	 */
2146 	*foliop = NULL;
2147 	if (sgp == SGP_READ)
2148 		return 0;
2149 	if (sgp == SGP_NOALLOC)
2150 		return -ENOENT;
2151 
2152 	/*
2153 	 * Fast cache lookup and swap lookup did not find it: allocate.
2154 	 */
2155 
2156 	if (vma && userfaultfd_missing(vma)) {
2157 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2158 		return 0;
2159 	}
2160 
2161 	huge = shmem_is_huge(inode, index, false, fault_mm,
2162 			     vma ? vma->vm_flags : 0);
2163 	/* Find hugepage orders that are allowed for anonymous shmem. */
2164 	if (vma && vma_is_anon_shmem(vma))
2165 		orders = shmem_allowable_huge_orders(inode, vma, index, huge);
2166 	else if (huge)
2167 		orders = BIT(HPAGE_PMD_ORDER);
2168 
2169 	if (orders > 0) {
2170 		gfp_t huge_gfp;
2171 
2172 		huge_gfp = vma_thp_gfp_mask(vma);
2173 		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2174 		folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2175 				inode, index, fault_mm, orders);
2176 		if (!IS_ERR(folio)) {
2177 			if (folio_test_pmd_mappable(folio))
2178 				count_vm_event(THP_FILE_ALLOC);
2179 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2180 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2181 #endif
2182 			goto alloced;
2183 		}
2184 		if (PTR_ERR(folio) == -EEXIST)
2185 			goto repeat;
2186 	}
2187 
2188 	folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2189 	if (IS_ERR(folio)) {
2190 		error = PTR_ERR(folio);
2191 		if (error == -EEXIST)
2192 			goto repeat;
2193 		folio = NULL;
2194 		goto unlock;
2195 	}
2196 
2197 alloced:
2198 	alloced = true;
2199 	if (folio_test_large(folio) &&
2200 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2201 					folio_next_index(folio) - 1) {
2202 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2203 		struct shmem_inode_info *info = SHMEM_I(inode);
2204 		/*
2205 		 * Part of the large folio is beyond i_size: subject
2206 		 * to shrink under memory pressure.
2207 		 */
2208 		spin_lock(&sbinfo->shrinklist_lock);
2209 		/*
2210 		 * _careful to defend against unlocked access to
2211 		 * ->shrink_list in shmem_unused_huge_shrink()
2212 		 */
2213 		if (list_empty_careful(&info->shrinklist)) {
2214 			list_add_tail(&info->shrinklist,
2215 				      &sbinfo->shrinklist);
2216 			sbinfo->shrinklist_len++;
2217 		}
2218 		spin_unlock(&sbinfo->shrinklist_lock);
2219 	}
2220 
2221 	if (sgp == SGP_WRITE)
2222 		folio_set_referenced(folio);
2223 	/*
2224 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2225 	 */
2226 	if (sgp == SGP_FALLOC)
2227 		sgp = SGP_WRITE;
2228 clear:
2229 	/*
2230 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2231 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2232 	 * it now, lest undo on failure cancel our earlier guarantee.
2233 	 */
2234 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2235 		long i, n = folio_nr_pages(folio);
2236 
2237 		for (i = 0; i < n; i++)
2238 			clear_highpage(folio_page(folio, i));
2239 		flush_dcache_folio(folio);
2240 		folio_mark_uptodate(folio);
2241 	}
2242 
2243 	/* Perhaps the file has been truncated since we checked */
2244 	if (sgp <= SGP_CACHE &&
2245 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2246 		error = -EINVAL;
2247 		goto unlock;
2248 	}
2249 out:
2250 	*foliop = folio;
2251 	return 0;
2252 
2253 	/*
2254 	 * Error recovery.
2255 	 */
2256 unlock:
2257 	if (alloced)
2258 		filemap_remove_folio(folio);
2259 	shmem_recalc_inode(inode, 0, 0);
2260 	if (folio) {
2261 		folio_unlock(folio);
2262 		folio_put(folio);
2263 	}
2264 	return error;
2265 }
2266 
2267 /**
2268  * shmem_get_folio - find, and lock a shmem folio.
2269  * @inode:	inode to search
2270  * @index:	the page index.
2271  * @foliop:	pointer to the folio if found
2272  * @sgp:	SGP_* flags to control behavior
2273  *
2274  * Looks up the page cache entry at @inode & @index.  If a folio is
2275  * present, it is returned locked with an increased refcount.
2276  *
2277  * If the caller modifies data in the folio, it must call folio_mark_dirty()
2278  * before unlocking the folio to ensure that the folio is not reclaimed.
2279  * There is no need to reserve space before calling folio_mark_dirty().
2280  *
2281  * When no folio is found, the behavior depends on @sgp:
2282  *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2283  *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2284  *  - for all other flags a new folio is allocated, inserted into the
2285  *    page cache and returned locked in @foliop.
2286  *
2287  * Context: May sleep.
2288  * Return: 0 if successful, else a negative error code.
2289  */
2290 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2291 		enum sgp_type sgp)
2292 {
2293 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2294 			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2295 }
2296 EXPORT_SYMBOL_GPL(shmem_get_folio);
2297 
2298 /*
2299  * This is like autoremove_wake_function, but it removes the wait queue
2300  * entry unconditionally - even if something else had already woken the
2301  * target.
2302  */
2303 static int synchronous_wake_function(wait_queue_entry_t *wait,
2304 			unsigned int mode, int sync, void *key)
2305 {
2306 	int ret = default_wake_function(wait, mode, sync, key);
2307 	list_del_init(&wait->entry);
2308 	return ret;
2309 }
2310 
2311 /*
2312  * Trinity finds that probing a hole which tmpfs is punching can
2313  * prevent the hole-punch from ever completing: which in turn
2314  * locks writers out with its hold on i_rwsem.  So refrain from
2315  * faulting pages into the hole while it's being punched.  Although
2316  * shmem_undo_range() does remove the additions, it may be unable to
2317  * keep up, as each new page needs its own unmap_mapping_range() call,
2318  * and the i_mmap tree grows ever slower to scan if new vmas are added.
2319  *
2320  * It does not matter if we sometimes reach this check just before the
2321  * hole-punch begins, so that one fault then races with the punch:
2322  * we just need to make racing faults a rare case.
2323  *
2324  * The implementation below would be much simpler if we just used a
2325  * standard mutex or completion: but we cannot take i_rwsem in fault,
2326  * and bloating every shmem inode for this unlikely case would be sad.
2327  */
2328 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2329 {
2330 	struct shmem_falloc *shmem_falloc;
2331 	struct file *fpin = NULL;
2332 	vm_fault_t ret = 0;
2333 
2334 	spin_lock(&inode->i_lock);
2335 	shmem_falloc = inode->i_private;
2336 	if (shmem_falloc &&
2337 	    shmem_falloc->waitq &&
2338 	    vmf->pgoff >= shmem_falloc->start &&
2339 	    vmf->pgoff < shmem_falloc->next) {
2340 		wait_queue_head_t *shmem_falloc_waitq;
2341 		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2342 
2343 		ret = VM_FAULT_NOPAGE;
2344 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2345 		shmem_falloc_waitq = shmem_falloc->waitq;
2346 		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2347 				TASK_UNINTERRUPTIBLE);
2348 		spin_unlock(&inode->i_lock);
2349 		schedule();
2350 
2351 		/*
2352 		 * shmem_falloc_waitq points into the shmem_fallocate()
2353 		 * stack of the hole-punching task: shmem_falloc_waitq
2354 		 * is usually invalid by the time we reach here, but
2355 		 * finish_wait() does not dereference it in that case;
2356 		 * though i_lock needed lest racing with wake_up_all().
2357 		 */
2358 		spin_lock(&inode->i_lock);
2359 		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2360 	}
2361 	spin_unlock(&inode->i_lock);
2362 	if (fpin) {
2363 		fput(fpin);
2364 		ret = VM_FAULT_RETRY;
2365 	}
2366 	return ret;
2367 }
2368 
2369 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2370 {
2371 	struct inode *inode = file_inode(vmf->vma->vm_file);
2372 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2373 	struct folio *folio = NULL;
2374 	vm_fault_t ret = 0;
2375 	int err;
2376 
2377 	/*
2378 	 * Trinity finds that probing a hole which tmpfs is punching can
2379 	 * prevent the hole-punch from ever completing: noted in i_private.
2380 	 */
2381 	if (unlikely(inode->i_private)) {
2382 		ret = shmem_falloc_wait(vmf, inode);
2383 		if (ret)
2384 			return ret;
2385 	}
2386 
2387 	WARN_ON_ONCE(vmf->page != NULL);
2388 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2389 				  gfp, vmf, &ret);
2390 	if (err)
2391 		return vmf_error(err);
2392 	if (folio) {
2393 		vmf->page = folio_file_page(folio, vmf->pgoff);
2394 		ret |= VM_FAULT_LOCKED;
2395 	}
2396 	return ret;
2397 }
2398 
2399 unsigned long shmem_get_unmapped_area(struct file *file,
2400 				      unsigned long uaddr, unsigned long len,
2401 				      unsigned long pgoff, unsigned long flags)
2402 {
2403 	unsigned long addr;
2404 	unsigned long offset;
2405 	unsigned long inflated_len;
2406 	unsigned long inflated_addr;
2407 	unsigned long inflated_offset;
2408 	unsigned long hpage_size;
2409 
2410 	if (len > TASK_SIZE)
2411 		return -ENOMEM;
2412 
2413 	addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2414 				    flags);
2415 
2416 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2417 		return addr;
2418 	if (IS_ERR_VALUE(addr))
2419 		return addr;
2420 	if (addr & ~PAGE_MASK)
2421 		return addr;
2422 	if (addr > TASK_SIZE - len)
2423 		return addr;
2424 
2425 	if (shmem_huge == SHMEM_HUGE_DENY)
2426 		return addr;
2427 	if (flags & MAP_FIXED)
2428 		return addr;
2429 	/*
2430 	 * Our priority is to support MAP_SHARED mapped hugely;
2431 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2432 	 * But if caller specified an address hint and we allocated area there
2433 	 * successfully, respect that as before.
2434 	 */
2435 	if (uaddr == addr)
2436 		return addr;
2437 
2438 	hpage_size = HPAGE_PMD_SIZE;
2439 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2440 		struct super_block *sb;
2441 		unsigned long __maybe_unused hpage_orders;
2442 		int order = 0;
2443 
2444 		if (file) {
2445 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2446 			sb = file_inode(file)->i_sb;
2447 		} else {
2448 			/*
2449 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2450 			 * for "/dev/zero", to create a shared anonymous object.
2451 			 */
2452 			if (IS_ERR(shm_mnt))
2453 				return addr;
2454 			sb = shm_mnt->mnt_sb;
2455 
2456 			/*
2457 			 * Find the highest mTHP order used for anonymous shmem to
2458 			 * provide a suitable alignment address.
2459 			 */
2460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2461 			hpage_orders = READ_ONCE(huge_shmem_orders_always);
2462 			hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2463 			hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2464 			if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2465 				hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2466 
2467 			if (hpage_orders > 0) {
2468 				order = highest_order(hpage_orders);
2469 				hpage_size = PAGE_SIZE << order;
2470 			}
2471 #endif
2472 		}
2473 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2474 			return addr;
2475 	}
2476 
2477 	if (len < hpage_size)
2478 		return addr;
2479 
2480 	offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2481 	if (offset && offset + len < 2 * hpage_size)
2482 		return addr;
2483 	if ((addr & (hpage_size - 1)) == offset)
2484 		return addr;
2485 
2486 	inflated_len = len + hpage_size - PAGE_SIZE;
2487 	if (inflated_len > TASK_SIZE)
2488 		return addr;
2489 	if (inflated_len < len)
2490 		return addr;
2491 
2492 	inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2493 					     inflated_len, 0, flags);
2494 	if (IS_ERR_VALUE(inflated_addr))
2495 		return addr;
2496 	if (inflated_addr & ~PAGE_MASK)
2497 		return addr;
2498 
2499 	inflated_offset = inflated_addr & (hpage_size - 1);
2500 	inflated_addr += offset - inflated_offset;
2501 	if (inflated_offset > offset)
2502 		inflated_addr += hpage_size;
2503 
2504 	if (inflated_addr > TASK_SIZE - len)
2505 		return addr;
2506 	return inflated_addr;
2507 }
2508 
2509 #ifdef CONFIG_NUMA
2510 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2511 {
2512 	struct inode *inode = file_inode(vma->vm_file);
2513 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2514 }
2515 
2516 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2517 					  unsigned long addr, pgoff_t *ilx)
2518 {
2519 	struct inode *inode = file_inode(vma->vm_file);
2520 	pgoff_t index;
2521 
2522 	/*
2523 	 * Bias interleave by inode number to distribute better across nodes;
2524 	 * but this interface is independent of which page order is used, so
2525 	 * supplies only that bias, letting caller apply the offset (adjusted
2526 	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2527 	 */
2528 	*ilx = inode->i_ino;
2529 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2530 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2531 }
2532 
2533 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2534 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2535 {
2536 	struct mempolicy *mpol;
2537 
2538 	/* Bias interleave by inode number to distribute better across nodes */
2539 	*ilx = info->vfs_inode.i_ino + (index >> order);
2540 
2541 	mpol = mpol_shared_policy_lookup(&info->policy, index);
2542 	return mpol ? mpol : get_task_policy(current);
2543 }
2544 #else
2545 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2546 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2547 {
2548 	*ilx = 0;
2549 	return NULL;
2550 }
2551 #endif /* CONFIG_NUMA */
2552 
2553 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2554 {
2555 	struct inode *inode = file_inode(file);
2556 	struct shmem_inode_info *info = SHMEM_I(inode);
2557 	int retval = -ENOMEM;
2558 
2559 	/*
2560 	 * What serializes the accesses to info->flags?
2561 	 * ipc_lock_object() when called from shmctl_do_lock(),
2562 	 * no serialization needed when called from shm_destroy().
2563 	 */
2564 	if (lock && !(info->flags & VM_LOCKED)) {
2565 		if (!user_shm_lock(inode->i_size, ucounts))
2566 			goto out_nomem;
2567 		info->flags |= VM_LOCKED;
2568 		mapping_set_unevictable(file->f_mapping);
2569 	}
2570 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2571 		user_shm_unlock(inode->i_size, ucounts);
2572 		info->flags &= ~VM_LOCKED;
2573 		mapping_clear_unevictable(file->f_mapping);
2574 	}
2575 	retval = 0;
2576 
2577 out_nomem:
2578 	return retval;
2579 }
2580 
2581 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2582 {
2583 	struct inode *inode = file_inode(file);
2584 	struct shmem_inode_info *info = SHMEM_I(inode);
2585 	int ret;
2586 
2587 	ret = seal_check_write(info->seals, vma);
2588 	if (ret)
2589 		return ret;
2590 
2591 	/* arm64 - allow memory tagging on RAM-based files */
2592 	vm_flags_set(vma, VM_MTE_ALLOWED);
2593 
2594 	file_accessed(file);
2595 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2596 	if (inode->i_nlink)
2597 		vma->vm_ops = &shmem_vm_ops;
2598 	else
2599 		vma->vm_ops = &shmem_anon_vm_ops;
2600 	return 0;
2601 }
2602 
2603 static int shmem_file_open(struct inode *inode, struct file *file)
2604 {
2605 	file->f_mode |= FMODE_CAN_ODIRECT;
2606 	return generic_file_open(inode, file);
2607 }
2608 
2609 #ifdef CONFIG_TMPFS_XATTR
2610 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2611 
2612 /*
2613  * chattr's fsflags are unrelated to extended attributes,
2614  * but tmpfs has chosen to enable them under the same config option.
2615  */
2616 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2617 {
2618 	unsigned int i_flags = 0;
2619 
2620 	if (fsflags & FS_NOATIME_FL)
2621 		i_flags |= S_NOATIME;
2622 	if (fsflags & FS_APPEND_FL)
2623 		i_flags |= S_APPEND;
2624 	if (fsflags & FS_IMMUTABLE_FL)
2625 		i_flags |= S_IMMUTABLE;
2626 	/*
2627 	 * But FS_NODUMP_FL does not require any action in i_flags.
2628 	 */
2629 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2630 }
2631 #else
2632 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2633 {
2634 }
2635 #define shmem_initxattrs NULL
2636 #endif
2637 
2638 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2639 {
2640 	return &SHMEM_I(inode)->dir_offsets;
2641 }
2642 
2643 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2644 					     struct super_block *sb,
2645 					     struct inode *dir, umode_t mode,
2646 					     dev_t dev, unsigned long flags)
2647 {
2648 	struct inode *inode;
2649 	struct shmem_inode_info *info;
2650 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2651 	ino_t ino;
2652 	int err;
2653 
2654 	err = shmem_reserve_inode(sb, &ino);
2655 	if (err)
2656 		return ERR_PTR(err);
2657 
2658 	inode = new_inode(sb);
2659 	if (!inode) {
2660 		shmem_free_inode(sb, 0);
2661 		return ERR_PTR(-ENOSPC);
2662 	}
2663 
2664 	inode->i_ino = ino;
2665 	inode_init_owner(idmap, inode, dir, mode);
2666 	inode->i_blocks = 0;
2667 	simple_inode_init_ts(inode);
2668 	inode->i_generation = get_random_u32();
2669 	info = SHMEM_I(inode);
2670 	memset(info, 0, (char *)inode - (char *)info);
2671 	spin_lock_init(&info->lock);
2672 	atomic_set(&info->stop_eviction, 0);
2673 	info->seals = F_SEAL_SEAL;
2674 	info->flags = flags & VM_NORESERVE;
2675 	info->i_crtime = inode_get_mtime(inode);
2676 	info->fsflags = (dir == NULL) ? 0 :
2677 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2678 	if (info->fsflags)
2679 		shmem_set_inode_flags(inode, info->fsflags);
2680 	INIT_LIST_HEAD(&info->shrinklist);
2681 	INIT_LIST_HEAD(&info->swaplist);
2682 	simple_xattrs_init(&info->xattrs);
2683 	cache_no_acl(inode);
2684 	if (sbinfo->noswap)
2685 		mapping_set_unevictable(inode->i_mapping);
2686 	mapping_set_large_folios(inode->i_mapping);
2687 
2688 	switch (mode & S_IFMT) {
2689 	default:
2690 		inode->i_op = &shmem_special_inode_operations;
2691 		init_special_inode(inode, mode, dev);
2692 		break;
2693 	case S_IFREG:
2694 		inode->i_mapping->a_ops = &shmem_aops;
2695 		inode->i_op = &shmem_inode_operations;
2696 		inode->i_fop = &shmem_file_operations;
2697 		mpol_shared_policy_init(&info->policy,
2698 					 shmem_get_sbmpol(sbinfo));
2699 		break;
2700 	case S_IFDIR:
2701 		inc_nlink(inode);
2702 		/* Some things misbehave if size == 0 on a directory */
2703 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2704 		inode->i_op = &shmem_dir_inode_operations;
2705 		inode->i_fop = &simple_offset_dir_operations;
2706 		simple_offset_init(shmem_get_offset_ctx(inode));
2707 		break;
2708 	case S_IFLNK:
2709 		/*
2710 		 * Must not load anything in the rbtree,
2711 		 * mpol_free_shared_policy will not be called.
2712 		 */
2713 		mpol_shared_policy_init(&info->policy, NULL);
2714 		break;
2715 	}
2716 
2717 	lockdep_annotate_inode_mutex_key(inode);
2718 	return inode;
2719 }
2720 
2721 #ifdef CONFIG_TMPFS_QUOTA
2722 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2723 				     struct super_block *sb, struct inode *dir,
2724 				     umode_t mode, dev_t dev, unsigned long flags)
2725 {
2726 	int err;
2727 	struct inode *inode;
2728 
2729 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2730 	if (IS_ERR(inode))
2731 		return inode;
2732 
2733 	err = dquot_initialize(inode);
2734 	if (err)
2735 		goto errout;
2736 
2737 	err = dquot_alloc_inode(inode);
2738 	if (err) {
2739 		dquot_drop(inode);
2740 		goto errout;
2741 	}
2742 	return inode;
2743 
2744 errout:
2745 	inode->i_flags |= S_NOQUOTA;
2746 	iput(inode);
2747 	return ERR_PTR(err);
2748 }
2749 #else
2750 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2751 				     struct super_block *sb, struct inode *dir,
2752 				     umode_t mode, dev_t dev, unsigned long flags)
2753 {
2754 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2755 }
2756 #endif /* CONFIG_TMPFS_QUOTA */
2757 
2758 #ifdef CONFIG_USERFAULTFD
2759 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2760 			   struct vm_area_struct *dst_vma,
2761 			   unsigned long dst_addr,
2762 			   unsigned long src_addr,
2763 			   uffd_flags_t flags,
2764 			   struct folio **foliop)
2765 {
2766 	struct inode *inode = file_inode(dst_vma->vm_file);
2767 	struct shmem_inode_info *info = SHMEM_I(inode);
2768 	struct address_space *mapping = inode->i_mapping;
2769 	gfp_t gfp = mapping_gfp_mask(mapping);
2770 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2771 	void *page_kaddr;
2772 	struct folio *folio;
2773 	int ret;
2774 	pgoff_t max_off;
2775 
2776 	if (shmem_inode_acct_blocks(inode, 1)) {
2777 		/*
2778 		 * We may have got a page, returned -ENOENT triggering a retry,
2779 		 * and now we find ourselves with -ENOMEM. Release the page, to
2780 		 * avoid a BUG_ON in our caller.
2781 		 */
2782 		if (unlikely(*foliop)) {
2783 			folio_put(*foliop);
2784 			*foliop = NULL;
2785 		}
2786 		return -ENOMEM;
2787 	}
2788 
2789 	if (!*foliop) {
2790 		ret = -ENOMEM;
2791 		folio = shmem_alloc_folio(gfp, 0, info, pgoff);
2792 		if (!folio)
2793 			goto out_unacct_blocks;
2794 
2795 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2796 			page_kaddr = kmap_local_folio(folio, 0);
2797 			/*
2798 			 * The read mmap_lock is held here.  Despite the
2799 			 * mmap_lock being read recursive a deadlock is still
2800 			 * possible if a writer has taken a lock.  For example:
2801 			 *
2802 			 * process A thread 1 takes read lock on own mmap_lock
2803 			 * process A thread 2 calls mmap, blocks taking write lock
2804 			 * process B thread 1 takes page fault, read lock on own mmap lock
2805 			 * process B thread 2 calls mmap, blocks taking write lock
2806 			 * process A thread 1 blocks taking read lock on process B
2807 			 * process B thread 1 blocks taking read lock on process A
2808 			 *
2809 			 * Disable page faults to prevent potential deadlock
2810 			 * and retry the copy outside the mmap_lock.
2811 			 */
2812 			pagefault_disable();
2813 			ret = copy_from_user(page_kaddr,
2814 					     (const void __user *)src_addr,
2815 					     PAGE_SIZE);
2816 			pagefault_enable();
2817 			kunmap_local(page_kaddr);
2818 
2819 			/* fallback to copy_from_user outside mmap_lock */
2820 			if (unlikely(ret)) {
2821 				*foliop = folio;
2822 				ret = -ENOENT;
2823 				/* don't free the page */
2824 				goto out_unacct_blocks;
2825 			}
2826 
2827 			flush_dcache_folio(folio);
2828 		} else {		/* ZEROPAGE */
2829 			clear_user_highpage(&folio->page, dst_addr);
2830 		}
2831 	} else {
2832 		folio = *foliop;
2833 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2834 		*foliop = NULL;
2835 	}
2836 
2837 	VM_BUG_ON(folio_test_locked(folio));
2838 	VM_BUG_ON(folio_test_swapbacked(folio));
2839 	__folio_set_locked(folio);
2840 	__folio_set_swapbacked(folio);
2841 	__folio_mark_uptodate(folio);
2842 
2843 	ret = -EFAULT;
2844 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2845 	if (unlikely(pgoff >= max_off))
2846 		goto out_release;
2847 
2848 	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
2849 	if (ret)
2850 		goto out_release;
2851 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
2852 	if (ret)
2853 		goto out_release;
2854 
2855 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2856 				       &folio->page, true, flags);
2857 	if (ret)
2858 		goto out_delete_from_cache;
2859 
2860 	shmem_recalc_inode(inode, 1, 0);
2861 	folio_unlock(folio);
2862 	return 0;
2863 out_delete_from_cache:
2864 	filemap_remove_folio(folio);
2865 out_release:
2866 	folio_unlock(folio);
2867 	folio_put(folio);
2868 out_unacct_blocks:
2869 	shmem_inode_unacct_blocks(inode, 1);
2870 	return ret;
2871 }
2872 #endif /* CONFIG_USERFAULTFD */
2873 
2874 #ifdef CONFIG_TMPFS
2875 static const struct inode_operations shmem_symlink_inode_operations;
2876 static const struct inode_operations shmem_short_symlink_operations;
2877 
2878 static int
2879 shmem_write_begin(struct file *file, struct address_space *mapping,
2880 			loff_t pos, unsigned len,
2881 			struct page **pagep, void **fsdata)
2882 {
2883 	struct inode *inode = mapping->host;
2884 	struct shmem_inode_info *info = SHMEM_I(inode);
2885 	pgoff_t index = pos >> PAGE_SHIFT;
2886 	struct folio *folio;
2887 	int ret = 0;
2888 
2889 	/* i_rwsem is held by caller */
2890 	if (unlikely(info->seals & (F_SEAL_GROW |
2891 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2892 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2893 			return -EPERM;
2894 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2895 			return -EPERM;
2896 	}
2897 
2898 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2899 	if (ret)
2900 		return ret;
2901 
2902 	*pagep = folio_file_page(folio, index);
2903 	if (PageHWPoison(*pagep)) {
2904 		folio_unlock(folio);
2905 		folio_put(folio);
2906 		*pagep = NULL;
2907 		return -EIO;
2908 	}
2909 
2910 	return 0;
2911 }
2912 
2913 static int
2914 shmem_write_end(struct file *file, struct address_space *mapping,
2915 			loff_t pos, unsigned len, unsigned copied,
2916 			struct page *page, void *fsdata)
2917 {
2918 	struct folio *folio = page_folio(page);
2919 	struct inode *inode = mapping->host;
2920 
2921 	if (pos + copied > inode->i_size)
2922 		i_size_write(inode, pos + copied);
2923 
2924 	if (!folio_test_uptodate(folio)) {
2925 		if (copied < folio_size(folio)) {
2926 			size_t from = offset_in_folio(folio, pos);
2927 			folio_zero_segments(folio, 0, from,
2928 					from + copied, folio_size(folio));
2929 		}
2930 		folio_mark_uptodate(folio);
2931 	}
2932 	folio_mark_dirty(folio);
2933 	folio_unlock(folio);
2934 	folio_put(folio);
2935 
2936 	return copied;
2937 }
2938 
2939 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2940 {
2941 	struct file *file = iocb->ki_filp;
2942 	struct inode *inode = file_inode(file);
2943 	struct address_space *mapping = inode->i_mapping;
2944 	pgoff_t index;
2945 	unsigned long offset;
2946 	int error = 0;
2947 	ssize_t retval = 0;
2948 	loff_t *ppos = &iocb->ki_pos;
2949 
2950 	index = *ppos >> PAGE_SHIFT;
2951 	offset = *ppos & ~PAGE_MASK;
2952 
2953 	for (;;) {
2954 		struct folio *folio = NULL;
2955 		struct page *page = NULL;
2956 		pgoff_t end_index;
2957 		unsigned long nr, ret;
2958 		loff_t i_size = i_size_read(inode);
2959 
2960 		end_index = i_size >> PAGE_SHIFT;
2961 		if (index > end_index)
2962 			break;
2963 		if (index == end_index) {
2964 			nr = i_size & ~PAGE_MASK;
2965 			if (nr <= offset)
2966 				break;
2967 		}
2968 
2969 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2970 		if (error) {
2971 			if (error == -EINVAL)
2972 				error = 0;
2973 			break;
2974 		}
2975 		if (folio) {
2976 			folio_unlock(folio);
2977 
2978 			page = folio_file_page(folio, index);
2979 			if (PageHWPoison(page)) {
2980 				folio_put(folio);
2981 				error = -EIO;
2982 				break;
2983 			}
2984 		}
2985 
2986 		/*
2987 		 * We must evaluate after, since reads (unlike writes)
2988 		 * are called without i_rwsem protection against truncate
2989 		 */
2990 		nr = PAGE_SIZE;
2991 		i_size = i_size_read(inode);
2992 		end_index = i_size >> PAGE_SHIFT;
2993 		if (index == end_index) {
2994 			nr = i_size & ~PAGE_MASK;
2995 			if (nr <= offset) {
2996 				if (folio)
2997 					folio_put(folio);
2998 				break;
2999 			}
3000 		}
3001 		nr -= offset;
3002 
3003 		if (folio) {
3004 			/*
3005 			 * If users can be writing to this page using arbitrary
3006 			 * virtual addresses, take care about potential aliasing
3007 			 * before reading the page on the kernel side.
3008 			 */
3009 			if (mapping_writably_mapped(mapping))
3010 				flush_dcache_page(page);
3011 			/*
3012 			 * Mark the page accessed if we read the beginning.
3013 			 */
3014 			if (!offset)
3015 				folio_mark_accessed(folio);
3016 			/*
3017 			 * Ok, we have the page, and it's up-to-date, so
3018 			 * now we can copy it to user space...
3019 			 */
3020 			ret = copy_page_to_iter(page, offset, nr, to);
3021 			folio_put(folio);
3022 
3023 		} else if (user_backed_iter(to)) {
3024 			/*
3025 			 * Copy to user tends to be so well optimized, but
3026 			 * clear_user() not so much, that it is noticeably
3027 			 * faster to copy the zero page instead of clearing.
3028 			 */
3029 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3030 		} else {
3031 			/*
3032 			 * But submitting the same page twice in a row to
3033 			 * splice() - or others? - can result in confusion:
3034 			 * so don't attempt that optimization on pipes etc.
3035 			 */
3036 			ret = iov_iter_zero(nr, to);
3037 		}
3038 
3039 		retval += ret;
3040 		offset += ret;
3041 		index += offset >> PAGE_SHIFT;
3042 		offset &= ~PAGE_MASK;
3043 
3044 		if (!iov_iter_count(to))
3045 			break;
3046 		if (ret < nr) {
3047 			error = -EFAULT;
3048 			break;
3049 		}
3050 		cond_resched();
3051 	}
3052 
3053 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
3054 	file_accessed(file);
3055 	return retval ? retval : error;
3056 }
3057 
3058 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3059 {
3060 	struct file *file = iocb->ki_filp;
3061 	struct inode *inode = file->f_mapping->host;
3062 	ssize_t ret;
3063 
3064 	inode_lock(inode);
3065 	ret = generic_write_checks(iocb, from);
3066 	if (ret <= 0)
3067 		goto unlock;
3068 	ret = file_remove_privs(file);
3069 	if (ret)
3070 		goto unlock;
3071 	ret = file_update_time(file);
3072 	if (ret)
3073 		goto unlock;
3074 	ret = generic_perform_write(iocb, from);
3075 unlock:
3076 	inode_unlock(inode);
3077 	return ret;
3078 }
3079 
3080 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3081 			      struct pipe_buffer *buf)
3082 {
3083 	return true;
3084 }
3085 
3086 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3087 				  struct pipe_buffer *buf)
3088 {
3089 }
3090 
3091 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3092 				    struct pipe_buffer *buf)
3093 {
3094 	return false;
3095 }
3096 
3097 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3098 	.release	= zero_pipe_buf_release,
3099 	.try_steal	= zero_pipe_buf_try_steal,
3100 	.get		= zero_pipe_buf_get,
3101 };
3102 
3103 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3104 					loff_t fpos, size_t size)
3105 {
3106 	size_t offset = fpos & ~PAGE_MASK;
3107 
3108 	size = min_t(size_t, size, PAGE_SIZE - offset);
3109 
3110 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
3111 		struct pipe_buffer *buf = pipe_head_buf(pipe);
3112 
3113 		*buf = (struct pipe_buffer) {
3114 			.ops	= &zero_pipe_buf_ops,
3115 			.page	= ZERO_PAGE(0),
3116 			.offset	= offset,
3117 			.len	= size,
3118 		};
3119 		pipe->head++;
3120 	}
3121 
3122 	return size;
3123 }
3124 
3125 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3126 				      struct pipe_inode_info *pipe,
3127 				      size_t len, unsigned int flags)
3128 {
3129 	struct inode *inode = file_inode(in);
3130 	struct address_space *mapping = inode->i_mapping;
3131 	struct folio *folio = NULL;
3132 	size_t total_spliced = 0, used, npages, n, part;
3133 	loff_t isize;
3134 	int error = 0;
3135 
3136 	/* Work out how much data we can actually add into the pipe */
3137 	used = pipe_occupancy(pipe->head, pipe->tail);
3138 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
3139 	len = min_t(size_t, len, npages * PAGE_SIZE);
3140 
3141 	do {
3142 		if (*ppos >= i_size_read(inode))
3143 			break;
3144 
3145 		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
3146 					SGP_READ);
3147 		if (error) {
3148 			if (error == -EINVAL)
3149 				error = 0;
3150 			break;
3151 		}
3152 		if (folio) {
3153 			folio_unlock(folio);
3154 
3155 			if (folio_test_hwpoison(folio) ||
3156 			    (folio_test_large(folio) &&
3157 			     folio_test_has_hwpoisoned(folio))) {
3158 				error = -EIO;
3159 				break;
3160 			}
3161 		}
3162 
3163 		/*
3164 		 * i_size must be checked after we know the pages are Uptodate.
3165 		 *
3166 		 * Checking i_size after the check allows us to calculate
3167 		 * the correct value for "nr", which means the zero-filled
3168 		 * part of the page is not copied back to userspace (unless
3169 		 * another truncate extends the file - this is desired though).
3170 		 */
3171 		isize = i_size_read(inode);
3172 		if (unlikely(*ppos >= isize))
3173 			break;
3174 		part = min_t(loff_t, isize - *ppos, len);
3175 
3176 		if (folio) {
3177 			/*
3178 			 * If users can be writing to this page using arbitrary
3179 			 * virtual addresses, take care about potential aliasing
3180 			 * before reading the page on the kernel side.
3181 			 */
3182 			if (mapping_writably_mapped(mapping))
3183 				flush_dcache_folio(folio);
3184 			folio_mark_accessed(folio);
3185 			/*
3186 			 * Ok, we have the page, and it's up-to-date, so we can
3187 			 * now splice it into the pipe.
3188 			 */
3189 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3190 			folio_put(folio);
3191 			folio = NULL;
3192 		} else {
3193 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3194 		}
3195 
3196 		if (!n)
3197 			break;
3198 		len -= n;
3199 		total_spliced += n;
3200 		*ppos += n;
3201 		in->f_ra.prev_pos = *ppos;
3202 		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3203 			break;
3204 
3205 		cond_resched();
3206 	} while (len);
3207 
3208 	if (folio)
3209 		folio_put(folio);
3210 
3211 	file_accessed(in);
3212 	return total_spliced ? total_spliced : error;
3213 }
3214 
3215 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3216 {
3217 	struct address_space *mapping = file->f_mapping;
3218 	struct inode *inode = mapping->host;
3219 
3220 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3221 		return generic_file_llseek_size(file, offset, whence,
3222 					MAX_LFS_FILESIZE, i_size_read(inode));
3223 	if (offset < 0)
3224 		return -ENXIO;
3225 
3226 	inode_lock(inode);
3227 	/* We're holding i_rwsem so we can access i_size directly */
3228 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3229 	if (offset >= 0)
3230 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3231 	inode_unlock(inode);
3232 	return offset;
3233 }
3234 
3235 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3236 							 loff_t len)
3237 {
3238 	struct inode *inode = file_inode(file);
3239 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3240 	struct shmem_inode_info *info = SHMEM_I(inode);
3241 	struct shmem_falloc shmem_falloc;
3242 	pgoff_t start, index, end, undo_fallocend;
3243 	int error;
3244 
3245 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3246 		return -EOPNOTSUPP;
3247 
3248 	inode_lock(inode);
3249 
3250 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3251 		struct address_space *mapping = file->f_mapping;
3252 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3253 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3254 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3255 
3256 		/* protected by i_rwsem */
3257 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3258 			error = -EPERM;
3259 			goto out;
3260 		}
3261 
3262 		shmem_falloc.waitq = &shmem_falloc_waitq;
3263 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3264 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3265 		spin_lock(&inode->i_lock);
3266 		inode->i_private = &shmem_falloc;
3267 		spin_unlock(&inode->i_lock);
3268 
3269 		if ((u64)unmap_end > (u64)unmap_start)
3270 			unmap_mapping_range(mapping, unmap_start,
3271 					    1 + unmap_end - unmap_start, 0);
3272 		shmem_truncate_range(inode, offset, offset + len - 1);
3273 		/* No need to unmap again: hole-punching leaves COWed pages */
3274 
3275 		spin_lock(&inode->i_lock);
3276 		inode->i_private = NULL;
3277 		wake_up_all(&shmem_falloc_waitq);
3278 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3279 		spin_unlock(&inode->i_lock);
3280 		error = 0;
3281 		goto out;
3282 	}
3283 
3284 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3285 	error = inode_newsize_ok(inode, offset + len);
3286 	if (error)
3287 		goto out;
3288 
3289 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3290 		error = -EPERM;
3291 		goto out;
3292 	}
3293 
3294 	start = offset >> PAGE_SHIFT;
3295 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3296 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3297 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3298 		error = -ENOSPC;
3299 		goto out;
3300 	}
3301 
3302 	shmem_falloc.waitq = NULL;
3303 	shmem_falloc.start = start;
3304 	shmem_falloc.next  = start;
3305 	shmem_falloc.nr_falloced = 0;
3306 	shmem_falloc.nr_unswapped = 0;
3307 	spin_lock(&inode->i_lock);
3308 	inode->i_private = &shmem_falloc;
3309 	spin_unlock(&inode->i_lock);
3310 
3311 	/*
3312 	 * info->fallocend is only relevant when huge pages might be
3313 	 * involved: to prevent split_huge_page() freeing fallocated
3314 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3315 	 */
3316 	undo_fallocend = info->fallocend;
3317 	if (info->fallocend < end)
3318 		info->fallocend = end;
3319 
3320 	for (index = start; index < end; ) {
3321 		struct folio *folio;
3322 
3323 		/*
3324 		 * Check for fatal signal so that we abort early in OOM
3325 		 * situations. We don't want to abort in case of non-fatal
3326 		 * signals as large fallocate can take noticeable time and
3327 		 * e.g. periodic timers may result in fallocate constantly
3328 		 * restarting.
3329 		 */
3330 		if (fatal_signal_pending(current))
3331 			error = -EINTR;
3332 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3333 			error = -ENOMEM;
3334 		else
3335 			error = shmem_get_folio(inode, index, &folio,
3336 						SGP_FALLOC);
3337 		if (error) {
3338 			info->fallocend = undo_fallocend;
3339 			/* Remove the !uptodate folios we added */
3340 			if (index > start) {
3341 				shmem_undo_range(inode,
3342 				    (loff_t)start << PAGE_SHIFT,
3343 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3344 			}
3345 			goto undone;
3346 		}
3347 
3348 		/*
3349 		 * Here is a more important optimization than it appears:
3350 		 * a second SGP_FALLOC on the same large folio will clear it,
3351 		 * making it uptodate and un-undoable if we fail later.
3352 		 */
3353 		index = folio_next_index(folio);
3354 		/* Beware 32-bit wraparound */
3355 		if (!index)
3356 			index--;
3357 
3358 		/*
3359 		 * Inform shmem_writepage() how far we have reached.
3360 		 * No need for lock or barrier: we have the page lock.
3361 		 */
3362 		if (!folio_test_uptodate(folio))
3363 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3364 		shmem_falloc.next = index;
3365 
3366 		/*
3367 		 * If !uptodate, leave it that way so that freeable folios
3368 		 * can be recognized if we need to rollback on error later.
3369 		 * But mark it dirty so that memory pressure will swap rather
3370 		 * than free the folios we are allocating (and SGP_CACHE folios
3371 		 * might still be clean: we now need to mark those dirty too).
3372 		 */
3373 		folio_mark_dirty(folio);
3374 		folio_unlock(folio);
3375 		folio_put(folio);
3376 		cond_resched();
3377 	}
3378 
3379 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3380 		i_size_write(inode, offset + len);
3381 undone:
3382 	spin_lock(&inode->i_lock);
3383 	inode->i_private = NULL;
3384 	spin_unlock(&inode->i_lock);
3385 out:
3386 	if (!error)
3387 		file_modified(file);
3388 	inode_unlock(inode);
3389 	return error;
3390 }
3391 
3392 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3393 {
3394 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3395 
3396 	buf->f_type = TMPFS_MAGIC;
3397 	buf->f_bsize = PAGE_SIZE;
3398 	buf->f_namelen = NAME_MAX;
3399 	if (sbinfo->max_blocks) {
3400 		buf->f_blocks = sbinfo->max_blocks;
3401 		buf->f_bavail =
3402 		buf->f_bfree  = sbinfo->max_blocks -
3403 				percpu_counter_sum(&sbinfo->used_blocks);
3404 	}
3405 	if (sbinfo->max_inodes) {
3406 		buf->f_files = sbinfo->max_inodes;
3407 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3408 	}
3409 	/* else leave those fields 0 like simple_statfs */
3410 
3411 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3412 
3413 	return 0;
3414 }
3415 
3416 /*
3417  * File creation. Allocate an inode, and we're done..
3418  */
3419 static int
3420 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3421 	    struct dentry *dentry, umode_t mode, dev_t dev)
3422 {
3423 	struct inode *inode;
3424 	int error;
3425 
3426 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3427 	if (IS_ERR(inode))
3428 		return PTR_ERR(inode);
3429 
3430 	error = simple_acl_create(dir, inode);
3431 	if (error)
3432 		goto out_iput;
3433 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3434 					     shmem_initxattrs, NULL);
3435 	if (error && error != -EOPNOTSUPP)
3436 		goto out_iput;
3437 
3438 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3439 	if (error)
3440 		goto out_iput;
3441 
3442 	dir->i_size += BOGO_DIRENT_SIZE;
3443 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3444 	inode_inc_iversion(dir);
3445 	d_instantiate(dentry, inode);
3446 	dget(dentry); /* Extra count - pin the dentry in core */
3447 	return error;
3448 
3449 out_iput:
3450 	iput(inode);
3451 	return error;
3452 }
3453 
3454 static int
3455 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3456 	      struct file *file, umode_t mode)
3457 {
3458 	struct inode *inode;
3459 	int error;
3460 
3461 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3462 	if (IS_ERR(inode)) {
3463 		error = PTR_ERR(inode);
3464 		goto err_out;
3465 	}
3466 	error = security_inode_init_security(inode, dir, NULL,
3467 					     shmem_initxattrs, NULL);
3468 	if (error && error != -EOPNOTSUPP)
3469 		goto out_iput;
3470 	error = simple_acl_create(dir, inode);
3471 	if (error)
3472 		goto out_iput;
3473 	d_tmpfile(file, inode);
3474 
3475 err_out:
3476 	return finish_open_simple(file, error);
3477 out_iput:
3478 	iput(inode);
3479 	return error;
3480 }
3481 
3482 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3483 		       struct dentry *dentry, umode_t mode)
3484 {
3485 	int error;
3486 
3487 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3488 	if (error)
3489 		return error;
3490 	inc_nlink(dir);
3491 	return 0;
3492 }
3493 
3494 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3495 			struct dentry *dentry, umode_t mode, bool excl)
3496 {
3497 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3498 }
3499 
3500 /*
3501  * Link a file..
3502  */
3503 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3504 		      struct dentry *dentry)
3505 {
3506 	struct inode *inode = d_inode(old_dentry);
3507 	int ret = 0;
3508 
3509 	/*
3510 	 * No ordinary (disk based) filesystem counts links as inodes;
3511 	 * but each new link needs a new dentry, pinning lowmem, and
3512 	 * tmpfs dentries cannot be pruned until they are unlinked.
3513 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3514 	 * first link must skip that, to get the accounting right.
3515 	 */
3516 	if (inode->i_nlink) {
3517 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3518 		if (ret)
3519 			goto out;
3520 	}
3521 
3522 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3523 	if (ret) {
3524 		if (inode->i_nlink)
3525 			shmem_free_inode(inode->i_sb, 0);
3526 		goto out;
3527 	}
3528 
3529 	dir->i_size += BOGO_DIRENT_SIZE;
3530 	inode_set_mtime_to_ts(dir,
3531 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3532 	inode_inc_iversion(dir);
3533 	inc_nlink(inode);
3534 	ihold(inode);	/* New dentry reference */
3535 	dget(dentry);	/* Extra pinning count for the created dentry */
3536 	d_instantiate(dentry, inode);
3537 out:
3538 	return ret;
3539 }
3540 
3541 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3542 {
3543 	struct inode *inode = d_inode(dentry);
3544 
3545 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3546 		shmem_free_inode(inode->i_sb, 0);
3547 
3548 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3549 
3550 	dir->i_size -= BOGO_DIRENT_SIZE;
3551 	inode_set_mtime_to_ts(dir,
3552 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3553 	inode_inc_iversion(dir);
3554 	drop_nlink(inode);
3555 	dput(dentry);	/* Undo the count from "create" - does all the work */
3556 	return 0;
3557 }
3558 
3559 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3560 {
3561 	if (!simple_offset_empty(dentry))
3562 		return -ENOTEMPTY;
3563 
3564 	drop_nlink(d_inode(dentry));
3565 	drop_nlink(dir);
3566 	return shmem_unlink(dir, dentry);
3567 }
3568 
3569 static int shmem_whiteout(struct mnt_idmap *idmap,
3570 			  struct inode *old_dir, struct dentry *old_dentry)
3571 {
3572 	struct dentry *whiteout;
3573 	int error;
3574 
3575 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3576 	if (!whiteout)
3577 		return -ENOMEM;
3578 
3579 	error = shmem_mknod(idmap, old_dir, whiteout,
3580 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3581 	dput(whiteout);
3582 	if (error)
3583 		return error;
3584 
3585 	/*
3586 	 * Cheat and hash the whiteout while the old dentry is still in
3587 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3588 	 *
3589 	 * d_lookup() will consistently find one of them at this point,
3590 	 * not sure which one, but that isn't even important.
3591 	 */
3592 	d_rehash(whiteout);
3593 	return 0;
3594 }
3595 
3596 /*
3597  * The VFS layer already does all the dentry stuff for rename,
3598  * we just have to decrement the usage count for the target if
3599  * it exists so that the VFS layer correctly free's it when it
3600  * gets overwritten.
3601  */
3602 static int shmem_rename2(struct mnt_idmap *idmap,
3603 			 struct inode *old_dir, struct dentry *old_dentry,
3604 			 struct inode *new_dir, struct dentry *new_dentry,
3605 			 unsigned int flags)
3606 {
3607 	struct inode *inode = d_inode(old_dentry);
3608 	int they_are_dirs = S_ISDIR(inode->i_mode);
3609 	int error;
3610 
3611 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3612 		return -EINVAL;
3613 
3614 	if (flags & RENAME_EXCHANGE)
3615 		return simple_offset_rename_exchange(old_dir, old_dentry,
3616 						     new_dir, new_dentry);
3617 
3618 	if (!simple_offset_empty(new_dentry))
3619 		return -ENOTEMPTY;
3620 
3621 	if (flags & RENAME_WHITEOUT) {
3622 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3623 		if (error)
3624 			return error;
3625 	}
3626 
3627 	error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
3628 	if (error)
3629 		return error;
3630 
3631 	if (d_really_is_positive(new_dentry)) {
3632 		(void) shmem_unlink(new_dir, new_dentry);
3633 		if (they_are_dirs) {
3634 			drop_nlink(d_inode(new_dentry));
3635 			drop_nlink(old_dir);
3636 		}
3637 	} else if (they_are_dirs) {
3638 		drop_nlink(old_dir);
3639 		inc_nlink(new_dir);
3640 	}
3641 
3642 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3643 	new_dir->i_size += BOGO_DIRENT_SIZE;
3644 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3645 	inode_inc_iversion(old_dir);
3646 	inode_inc_iversion(new_dir);
3647 	return 0;
3648 }
3649 
3650 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3651 			 struct dentry *dentry, const char *symname)
3652 {
3653 	int error;
3654 	int len;
3655 	struct inode *inode;
3656 	struct folio *folio;
3657 
3658 	len = strlen(symname) + 1;
3659 	if (len > PAGE_SIZE)
3660 		return -ENAMETOOLONG;
3661 
3662 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3663 				VM_NORESERVE);
3664 	if (IS_ERR(inode))
3665 		return PTR_ERR(inode);
3666 
3667 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3668 					     shmem_initxattrs, NULL);
3669 	if (error && error != -EOPNOTSUPP)
3670 		goto out_iput;
3671 
3672 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3673 	if (error)
3674 		goto out_iput;
3675 
3676 	inode->i_size = len-1;
3677 	if (len <= SHORT_SYMLINK_LEN) {
3678 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3679 		if (!inode->i_link) {
3680 			error = -ENOMEM;
3681 			goto out_remove_offset;
3682 		}
3683 		inode->i_op = &shmem_short_symlink_operations;
3684 	} else {
3685 		inode_nohighmem(inode);
3686 		inode->i_mapping->a_ops = &shmem_aops;
3687 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3688 		if (error)
3689 			goto out_remove_offset;
3690 		inode->i_op = &shmem_symlink_inode_operations;
3691 		memcpy(folio_address(folio), symname, len);
3692 		folio_mark_uptodate(folio);
3693 		folio_mark_dirty(folio);
3694 		folio_unlock(folio);
3695 		folio_put(folio);
3696 	}
3697 	dir->i_size += BOGO_DIRENT_SIZE;
3698 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3699 	inode_inc_iversion(dir);
3700 	d_instantiate(dentry, inode);
3701 	dget(dentry);
3702 	return 0;
3703 
3704 out_remove_offset:
3705 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3706 out_iput:
3707 	iput(inode);
3708 	return error;
3709 }
3710 
3711 static void shmem_put_link(void *arg)
3712 {
3713 	folio_mark_accessed(arg);
3714 	folio_put(arg);
3715 }
3716 
3717 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3718 				  struct delayed_call *done)
3719 {
3720 	struct folio *folio = NULL;
3721 	int error;
3722 
3723 	if (!dentry) {
3724 		folio = filemap_get_folio(inode->i_mapping, 0);
3725 		if (IS_ERR(folio))
3726 			return ERR_PTR(-ECHILD);
3727 		if (PageHWPoison(folio_page(folio, 0)) ||
3728 		    !folio_test_uptodate(folio)) {
3729 			folio_put(folio);
3730 			return ERR_PTR(-ECHILD);
3731 		}
3732 	} else {
3733 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3734 		if (error)
3735 			return ERR_PTR(error);
3736 		if (!folio)
3737 			return ERR_PTR(-ECHILD);
3738 		if (PageHWPoison(folio_page(folio, 0))) {
3739 			folio_unlock(folio);
3740 			folio_put(folio);
3741 			return ERR_PTR(-ECHILD);
3742 		}
3743 		folio_unlock(folio);
3744 	}
3745 	set_delayed_call(done, shmem_put_link, folio);
3746 	return folio_address(folio);
3747 }
3748 
3749 #ifdef CONFIG_TMPFS_XATTR
3750 
3751 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3752 {
3753 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3754 
3755 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3756 
3757 	return 0;
3758 }
3759 
3760 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3761 			      struct dentry *dentry, struct fileattr *fa)
3762 {
3763 	struct inode *inode = d_inode(dentry);
3764 	struct shmem_inode_info *info = SHMEM_I(inode);
3765 
3766 	if (fileattr_has_fsx(fa))
3767 		return -EOPNOTSUPP;
3768 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3769 		return -EOPNOTSUPP;
3770 
3771 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3772 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3773 
3774 	shmem_set_inode_flags(inode, info->fsflags);
3775 	inode_set_ctime_current(inode);
3776 	inode_inc_iversion(inode);
3777 	return 0;
3778 }
3779 
3780 /*
3781  * Superblocks without xattr inode operations may get some security.* xattr
3782  * support from the LSM "for free". As soon as we have any other xattrs
3783  * like ACLs, we also need to implement the security.* handlers at
3784  * filesystem level, though.
3785  */
3786 
3787 /*
3788  * Callback for security_inode_init_security() for acquiring xattrs.
3789  */
3790 static int shmem_initxattrs(struct inode *inode,
3791 			    const struct xattr *xattr_array, void *fs_info)
3792 {
3793 	struct shmem_inode_info *info = SHMEM_I(inode);
3794 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3795 	const struct xattr *xattr;
3796 	struct simple_xattr *new_xattr;
3797 	size_t ispace = 0;
3798 	size_t len;
3799 
3800 	if (sbinfo->max_inodes) {
3801 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3802 			ispace += simple_xattr_space(xattr->name,
3803 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3804 		}
3805 		if (ispace) {
3806 			raw_spin_lock(&sbinfo->stat_lock);
3807 			if (sbinfo->free_ispace < ispace)
3808 				ispace = 0;
3809 			else
3810 				sbinfo->free_ispace -= ispace;
3811 			raw_spin_unlock(&sbinfo->stat_lock);
3812 			if (!ispace)
3813 				return -ENOSPC;
3814 		}
3815 	}
3816 
3817 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3818 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3819 		if (!new_xattr)
3820 			break;
3821 
3822 		len = strlen(xattr->name) + 1;
3823 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3824 					  GFP_KERNEL_ACCOUNT);
3825 		if (!new_xattr->name) {
3826 			kvfree(new_xattr);
3827 			break;
3828 		}
3829 
3830 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3831 		       XATTR_SECURITY_PREFIX_LEN);
3832 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3833 		       xattr->name, len);
3834 
3835 		simple_xattr_add(&info->xattrs, new_xattr);
3836 	}
3837 
3838 	if (xattr->name != NULL) {
3839 		if (ispace) {
3840 			raw_spin_lock(&sbinfo->stat_lock);
3841 			sbinfo->free_ispace += ispace;
3842 			raw_spin_unlock(&sbinfo->stat_lock);
3843 		}
3844 		simple_xattrs_free(&info->xattrs, NULL);
3845 		return -ENOMEM;
3846 	}
3847 
3848 	return 0;
3849 }
3850 
3851 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3852 				   struct dentry *unused, struct inode *inode,
3853 				   const char *name, void *buffer, size_t size)
3854 {
3855 	struct shmem_inode_info *info = SHMEM_I(inode);
3856 
3857 	name = xattr_full_name(handler, name);
3858 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3859 }
3860 
3861 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3862 				   struct mnt_idmap *idmap,
3863 				   struct dentry *unused, struct inode *inode,
3864 				   const char *name, const void *value,
3865 				   size_t size, int flags)
3866 {
3867 	struct shmem_inode_info *info = SHMEM_I(inode);
3868 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3869 	struct simple_xattr *old_xattr;
3870 	size_t ispace = 0;
3871 
3872 	name = xattr_full_name(handler, name);
3873 	if (value && sbinfo->max_inodes) {
3874 		ispace = simple_xattr_space(name, size);
3875 		raw_spin_lock(&sbinfo->stat_lock);
3876 		if (sbinfo->free_ispace < ispace)
3877 			ispace = 0;
3878 		else
3879 			sbinfo->free_ispace -= ispace;
3880 		raw_spin_unlock(&sbinfo->stat_lock);
3881 		if (!ispace)
3882 			return -ENOSPC;
3883 	}
3884 
3885 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
3886 	if (!IS_ERR(old_xattr)) {
3887 		ispace = 0;
3888 		if (old_xattr && sbinfo->max_inodes)
3889 			ispace = simple_xattr_space(old_xattr->name,
3890 						    old_xattr->size);
3891 		simple_xattr_free(old_xattr);
3892 		old_xattr = NULL;
3893 		inode_set_ctime_current(inode);
3894 		inode_inc_iversion(inode);
3895 	}
3896 	if (ispace) {
3897 		raw_spin_lock(&sbinfo->stat_lock);
3898 		sbinfo->free_ispace += ispace;
3899 		raw_spin_unlock(&sbinfo->stat_lock);
3900 	}
3901 	return PTR_ERR(old_xattr);
3902 }
3903 
3904 static const struct xattr_handler shmem_security_xattr_handler = {
3905 	.prefix = XATTR_SECURITY_PREFIX,
3906 	.get = shmem_xattr_handler_get,
3907 	.set = shmem_xattr_handler_set,
3908 };
3909 
3910 static const struct xattr_handler shmem_trusted_xattr_handler = {
3911 	.prefix = XATTR_TRUSTED_PREFIX,
3912 	.get = shmem_xattr_handler_get,
3913 	.set = shmem_xattr_handler_set,
3914 };
3915 
3916 static const struct xattr_handler shmem_user_xattr_handler = {
3917 	.prefix = XATTR_USER_PREFIX,
3918 	.get = shmem_xattr_handler_get,
3919 	.set = shmem_xattr_handler_set,
3920 };
3921 
3922 static const struct xattr_handler * const shmem_xattr_handlers[] = {
3923 	&shmem_security_xattr_handler,
3924 	&shmem_trusted_xattr_handler,
3925 	&shmem_user_xattr_handler,
3926 	NULL
3927 };
3928 
3929 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3930 {
3931 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3932 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3933 }
3934 #endif /* CONFIG_TMPFS_XATTR */
3935 
3936 static const struct inode_operations shmem_short_symlink_operations = {
3937 	.getattr	= shmem_getattr,
3938 	.setattr	= shmem_setattr,
3939 	.get_link	= simple_get_link,
3940 #ifdef CONFIG_TMPFS_XATTR
3941 	.listxattr	= shmem_listxattr,
3942 #endif
3943 };
3944 
3945 static const struct inode_operations shmem_symlink_inode_operations = {
3946 	.getattr	= shmem_getattr,
3947 	.setattr	= shmem_setattr,
3948 	.get_link	= shmem_get_link,
3949 #ifdef CONFIG_TMPFS_XATTR
3950 	.listxattr	= shmem_listxattr,
3951 #endif
3952 };
3953 
3954 static struct dentry *shmem_get_parent(struct dentry *child)
3955 {
3956 	return ERR_PTR(-ESTALE);
3957 }
3958 
3959 static int shmem_match(struct inode *ino, void *vfh)
3960 {
3961 	__u32 *fh = vfh;
3962 	__u64 inum = fh[2];
3963 	inum = (inum << 32) | fh[1];
3964 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3965 }
3966 
3967 /* Find any alias of inode, but prefer a hashed alias */
3968 static struct dentry *shmem_find_alias(struct inode *inode)
3969 {
3970 	struct dentry *alias = d_find_alias(inode);
3971 
3972 	return alias ?: d_find_any_alias(inode);
3973 }
3974 
3975 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3976 		struct fid *fid, int fh_len, int fh_type)
3977 {
3978 	struct inode *inode;
3979 	struct dentry *dentry = NULL;
3980 	u64 inum;
3981 
3982 	if (fh_len < 3)
3983 		return NULL;
3984 
3985 	inum = fid->raw[2];
3986 	inum = (inum << 32) | fid->raw[1];
3987 
3988 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3989 			shmem_match, fid->raw);
3990 	if (inode) {
3991 		dentry = shmem_find_alias(inode);
3992 		iput(inode);
3993 	}
3994 
3995 	return dentry;
3996 }
3997 
3998 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3999 				struct inode *parent)
4000 {
4001 	if (*len < 3) {
4002 		*len = 3;
4003 		return FILEID_INVALID;
4004 	}
4005 
4006 	if (inode_unhashed(inode)) {
4007 		/* Unfortunately insert_inode_hash is not idempotent,
4008 		 * so as we hash inodes here rather than at creation
4009 		 * time, we need a lock to ensure we only try
4010 		 * to do it once
4011 		 */
4012 		static DEFINE_SPINLOCK(lock);
4013 		spin_lock(&lock);
4014 		if (inode_unhashed(inode))
4015 			__insert_inode_hash(inode,
4016 					    inode->i_ino + inode->i_generation);
4017 		spin_unlock(&lock);
4018 	}
4019 
4020 	fh[0] = inode->i_generation;
4021 	fh[1] = inode->i_ino;
4022 	fh[2] = ((__u64)inode->i_ino) >> 32;
4023 
4024 	*len = 3;
4025 	return 1;
4026 }
4027 
4028 static const struct export_operations shmem_export_ops = {
4029 	.get_parent     = shmem_get_parent,
4030 	.encode_fh      = shmem_encode_fh,
4031 	.fh_to_dentry	= shmem_fh_to_dentry,
4032 };
4033 
4034 enum shmem_param {
4035 	Opt_gid,
4036 	Opt_huge,
4037 	Opt_mode,
4038 	Opt_mpol,
4039 	Opt_nr_blocks,
4040 	Opt_nr_inodes,
4041 	Opt_size,
4042 	Opt_uid,
4043 	Opt_inode32,
4044 	Opt_inode64,
4045 	Opt_noswap,
4046 	Opt_quota,
4047 	Opt_usrquota,
4048 	Opt_grpquota,
4049 	Opt_usrquota_block_hardlimit,
4050 	Opt_usrquota_inode_hardlimit,
4051 	Opt_grpquota_block_hardlimit,
4052 	Opt_grpquota_inode_hardlimit,
4053 };
4054 
4055 static const struct constant_table shmem_param_enums_huge[] = {
4056 	{"never",	SHMEM_HUGE_NEVER },
4057 	{"always",	SHMEM_HUGE_ALWAYS },
4058 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
4059 	{"advise",	SHMEM_HUGE_ADVISE },
4060 	{}
4061 };
4062 
4063 const struct fs_parameter_spec shmem_fs_parameters[] = {
4064 	fsparam_gid   ("gid",		Opt_gid),
4065 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
4066 	fsparam_u32oct("mode",		Opt_mode),
4067 	fsparam_string("mpol",		Opt_mpol),
4068 	fsparam_string("nr_blocks",	Opt_nr_blocks),
4069 	fsparam_string("nr_inodes",	Opt_nr_inodes),
4070 	fsparam_string("size",		Opt_size),
4071 	fsparam_uid   ("uid",		Opt_uid),
4072 	fsparam_flag  ("inode32",	Opt_inode32),
4073 	fsparam_flag  ("inode64",	Opt_inode64),
4074 	fsparam_flag  ("noswap",	Opt_noswap),
4075 #ifdef CONFIG_TMPFS_QUOTA
4076 	fsparam_flag  ("quota",		Opt_quota),
4077 	fsparam_flag  ("usrquota",	Opt_usrquota),
4078 	fsparam_flag  ("grpquota",	Opt_grpquota),
4079 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4080 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4081 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4082 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4083 #endif
4084 	{}
4085 };
4086 
4087 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4088 {
4089 	struct shmem_options *ctx = fc->fs_private;
4090 	struct fs_parse_result result;
4091 	unsigned long long size;
4092 	char *rest;
4093 	int opt;
4094 	kuid_t kuid;
4095 	kgid_t kgid;
4096 
4097 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4098 	if (opt < 0)
4099 		return opt;
4100 
4101 	switch (opt) {
4102 	case Opt_size:
4103 		size = memparse(param->string, &rest);
4104 		if (*rest == '%') {
4105 			size <<= PAGE_SHIFT;
4106 			size *= totalram_pages();
4107 			do_div(size, 100);
4108 			rest++;
4109 		}
4110 		if (*rest)
4111 			goto bad_value;
4112 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4113 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4114 		break;
4115 	case Opt_nr_blocks:
4116 		ctx->blocks = memparse(param->string, &rest);
4117 		if (*rest || ctx->blocks > LONG_MAX)
4118 			goto bad_value;
4119 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4120 		break;
4121 	case Opt_nr_inodes:
4122 		ctx->inodes = memparse(param->string, &rest);
4123 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4124 			goto bad_value;
4125 		ctx->seen |= SHMEM_SEEN_INODES;
4126 		break;
4127 	case Opt_mode:
4128 		ctx->mode = result.uint_32 & 07777;
4129 		break;
4130 	case Opt_uid:
4131 		kuid = result.uid;
4132 
4133 		/*
4134 		 * The requested uid must be representable in the
4135 		 * filesystem's idmapping.
4136 		 */
4137 		if (!kuid_has_mapping(fc->user_ns, kuid))
4138 			goto bad_value;
4139 
4140 		ctx->uid = kuid;
4141 		break;
4142 	case Opt_gid:
4143 		kgid = result.gid;
4144 
4145 		/*
4146 		 * The requested gid must be representable in the
4147 		 * filesystem's idmapping.
4148 		 */
4149 		if (!kgid_has_mapping(fc->user_ns, kgid))
4150 			goto bad_value;
4151 
4152 		ctx->gid = kgid;
4153 		break;
4154 	case Opt_huge:
4155 		ctx->huge = result.uint_32;
4156 		if (ctx->huge != SHMEM_HUGE_NEVER &&
4157 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4158 		      has_transparent_hugepage()))
4159 			goto unsupported_parameter;
4160 		ctx->seen |= SHMEM_SEEN_HUGE;
4161 		break;
4162 	case Opt_mpol:
4163 		if (IS_ENABLED(CONFIG_NUMA)) {
4164 			mpol_put(ctx->mpol);
4165 			ctx->mpol = NULL;
4166 			if (mpol_parse_str(param->string, &ctx->mpol))
4167 				goto bad_value;
4168 			break;
4169 		}
4170 		goto unsupported_parameter;
4171 	case Opt_inode32:
4172 		ctx->full_inums = false;
4173 		ctx->seen |= SHMEM_SEEN_INUMS;
4174 		break;
4175 	case Opt_inode64:
4176 		if (sizeof(ino_t) < 8) {
4177 			return invalfc(fc,
4178 				       "Cannot use inode64 with <64bit inums in kernel\n");
4179 		}
4180 		ctx->full_inums = true;
4181 		ctx->seen |= SHMEM_SEEN_INUMS;
4182 		break;
4183 	case Opt_noswap:
4184 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4185 			return invalfc(fc,
4186 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4187 		}
4188 		ctx->noswap = true;
4189 		ctx->seen |= SHMEM_SEEN_NOSWAP;
4190 		break;
4191 	case Opt_quota:
4192 		if (fc->user_ns != &init_user_ns)
4193 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4194 		ctx->seen |= SHMEM_SEEN_QUOTA;
4195 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4196 		break;
4197 	case Opt_usrquota:
4198 		if (fc->user_ns != &init_user_ns)
4199 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4200 		ctx->seen |= SHMEM_SEEN_QUOTA;
4201 		ctx->quota_types |= QTYPE_MASK_USR;
4202 		break;
4203 	case Opt_grpquota:
4204 		if (fc->user_ns != &init_user_ns)
4205 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4206 		ctx->seen |= SHMEM_SEEN_QUOTA;
4207 		ctx->quota_types |= QTYPE_MASK_GRP;
4208 		break;
4209 	case Opt_usrquota_block_hardlimit:
4210 		size = memparse(param->string, &rest);
4211 		if (*rest || !size)
4212 			goto bad_value;
4213 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4214 			return invalfc(fc,
4215 				       "User quota block hardlimit too large.");
4216 		ctx->qlimits.usrquota_bhardlimit = size;
4217 		break;
4218 	case Opt_grpquota_block_hardlimit:
4219 		size = memparse(param->string, &rest);
4220 		if (*rest || !size)
4221 			goto bad_value;
4222 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4223 			return invalfc(fc,
4224 				       "Group quota block hardlimit too large.");
4225 		ctx->qlimits.grpquota_bhardlimit = size;
4226 		break;
4227 	case Opt_usrquota_inode_hardlimit:
4228 		size = memparse(param->string, &rest);
4229 		if (*rest || !size)
4230 			goto bad_value;
4231 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4232 			return invalfc(fc,
4233 				       "User quota inode hardlimit too large.");
4234 		ctx->qlimits.usrquota_ihardlimit = size;
4235 		break;
4236 	case Opt_grpquota_inode_hardlimit:
4237 		size = memparse(param->string, &rest);
4238 		if (*rest || !size)
4239 			goto bad_value;
4240 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4241 			return invalfc(fc,
4242 				       "Group quota inode hardlimit too large.");
4243 		ctx->qlimits.grpquota_ihardlimit = size;
4244 		break;
4245 	}
4246 	return 0;
4247 
4248 unsupported_parameter:
4249 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4250 bad_value:
4251 	return invalfc(fc, "Bad value for '%s'", param->key);
4252 }
4253 
4254 static int shmem_parse_options(struct fs_context *fc, void *data)
4255 {
4256 	char *options = data;
4257 
4258 	if (options) {
4259 		int err = security_sb_eat_lsm_opts(options, &fc->security);
4260 		if (err)
4261 			return err;
4262 	}
4263 
4264 	while (options != NULL) {
4265 		char *this_char = options;
4266 		for (;;) {
4267 			/*
4268 			 * NUL-terminate this option: unfortunately,
4269 			 * mount options form a comma-separated list,
4270 			 * but mpol's nodelist may also contain commas.
4271 			 */
4272 			options = strchr(options, ',');
4273 			if (options == NULL)
4274 				break;
4275 			options++;
4276 			if (!isdigit(*options)) {
4277 				options[-1] = '\0';
4278 				break;
4279 			}
4280 		}
4281 		if (*this_char) {
4282 			char *value = strchr(this_char, '=');
4283 			size_t len = 0;
4284 			int err;
4285 
4286 			if (value) {
4287 				*value++ = '\0';
4288 				len = strlen(value);
4289 			}
4290 			err = vfs_parse_fs_string(fc, this_char, value, len);
4291 			if (err < 0)
4292 				return err;
4293 		}
4294 	}
4295 	return 0;
4296 }
4297 
4298 /*
4299  * Reconfigure a shmem filesystem.
4300  */
4301 static int shmem_reconfigure(struct fs_context *fc)
4302 {
4303 	struct shmem_options *ctx = fc->fs_private;
4304 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4305 	unsigned long used_isp;
4306 	struct mempolicy *mpol = NULL;
4307 	const char *err;
4308 
4309 	raw_spin_lock(&sbinfo->stat_lock);
4310 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4311 
4312 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4313 		if (!sbinfo->max_blocks) {
4314 			err = "Cannot retroactively limit size";
4315 			goto out;
4316 		}
4317 		if (percpu_counter_compare(&sbinfo->used_blocks,
4318 					   ctx->blocks) > 0) {
4319 			err = "Too small a size for current use";
4320 			goto out;
4321 		}
4322 	}
4323 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4324 		if (!sbinfo->max_inodes) {
4325 			err = "Cannot retroactively limit inodes";
4326 			goto out;
4327 		}
4328 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4329 			err = "Too few inodes for current use";
4330 			goto out;
4331 		}
4332 	}
4333 
4334 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4335 	    sbinfo->next_ino > UINT_MAX) {
4336 		err = "Current inum too high to switch to 32-bit inums";
4337 		goto out;
4338 	}
4339 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4340 		err = "Cannot disable swap on remount";
4341 		goto out;
4342 	}
4343 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4344 		err = "Cannot enable swap on remount if it was disabled on first mount";
4345 		goto out;
4346 	}
4347 
4348 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4349 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4350 		err = "Cannot enable quota on remount";
4351 		goto out;
4352 	}
4353 
4354 #ifdef CONFIG_TMPFS_QUOTA
4355 #define CHANGED_LIMIT(name)						\
4356 	(ctx->qlimits.name## hardlimit &&				\
4357 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4358 
4359 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4360 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4361 		err = "Cannot change global quota limit on remount";
4362 		goto out;
4363 	}
4364 #endif /* CONFIG_TMPFS_QUOTA */
4365 
4366 	if (ctx->seen & SHMEM_SEEN_HUGE)
4367 		sbinfo->huge = ctx->huge;
4368 	if (ctx->seen & SHMEM_SEEN_INUMS)
4369 		sbinfo->full_inums = ctx->full_inums;
4370 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4371 		sbinfo->max_blocks  = ctx->blocks;
4372 	if (ctx->seen & SHMEM_SEEN_INODES) {
4373 		sbinfo->max_inodes  = ctx->inodes;
4374 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4375 	}
4376 
4377 	/*
4378 	 * Preserve previous mempolicy unless mpol remount option was specified.
4379 	 */
4380 	if (ctx->mpol) {
4381 		mpol = sbinfo->mpol;
4382 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4383 		ctx->mpol = NULL;
4384 	}
4385 
4386 	if (ctx->noswap)
4387 		sbinfo->noswap = true;
4388 
4389 	raw_spin_unlock(&sbinfo->stat_lock);
4390 	mpol_put(mpol);
4391 	return 0;
4392 out:
4393 	raw_spin_unlock(&sbinfo->stat_lock);
4394 	return invalfc(fc, "%s", err);
4395 }
4396 
4397 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4398 {
4399 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4400 	struct mempolicy *mpol;
4401 
4402 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4403 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4404 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4405 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4406 	if (sbinfo->mode != (0777 | S_ISVTX))
4407 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4408 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4409 		seq_printf(seq, ",uid=%u",
4410 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4411 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4412 		seq_printf(seq, ",gid=%u",
4413 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4414 
4415 	/*
4416 	 * Showing inode{64,32} might be useful even if it's the system default,
4417 	 * since then people don't have to resort to checking both here and
4418 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4419 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4420 	 *
4421 	 * We hide it when inode64 isn't the default and we are using 32-bit
4422 	 * inodes, since that probably just means the feature isn't even under
4423 	 * consideration.
4424 	 *
4425 	 * As such:
4426 	 *
4427 	 *                     +-----------------+-----------------+
4428 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4429 	 *  +------------------+-----------------+-----------------+
4430 	 *  | full_inums=true  | show            | show            |
4431 	 *  | full_inums=false | show            | hide            |
4432 	 *  +------------------+-----------------+-----------------+
4433 	 *
4434 	 */
4435 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4436 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4438 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4439 	if (sbinfo->huge)
4440 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4441 #endif
4442 	mpol = shmem_get_sbmpol(sbinfo);
4443 	shmem_show_mpol(seq, mpol);
4444 	mpol_put(mpol);
4445 	if (sbinfo->noswap)
4446 		seq_printf(seq, ",noswap");
4447 #ifdef CONFIG_TMPFS_QUOTA
4448 	if (sb_has_quota_active(root->d_sb, USRQUOTA))
4449 		seq_printf(seq, ",usrquota");
4450 	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4451 		seq_printf(seq, ",grpquota");
4452 	if (sbinfo->qlimits.usrquota_bhardlimit)
4453 		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4454 			   sbinfo->qlimits.usrquota_bhardlimit);
4455 	if (sbinfo->qlimits.grpquota_bhardlimit)
4456 		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4457 			   sbinfo->qlimits.grpquota_bhardlimit);
4458 	if (sbinfo->qlimits.usrquota_ihardlimit)
4459 		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4460 			   sbinfo->qlimits.usrquota_ihardlimit);
4461 	if (sbinfo->qlimits.grpquota_ihardlimit)
4462 		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4463 			   sbinfo->qlimits.grpquota_ihardlimit);
4464 #endif
4465 	return 0;
4466 }
4467 
4468 #endif /* CONFIG_TMPFS */
4469 
4470 static void shmem_put_super(struct super_block *sb)
4471 {
4472 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4473 
4474 #ifdef CONFIG_TMPFS_QUOTA
4475 	shmem_disable_quotas(sb);
4476 #endif
4477 	free_percpu(sbinfo->ino_batch);
4478 	percpu_counter_destroy(&sbinfo->used_blocks);
4479 	mpol_put(sbinfo->mpol);
4480 	kfree(sbinfo);
4481 	sb->s_fs_info = NULL;
4482 }
4483 
4484 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4485 {
4486 	struct shmem_options *ctx = fc->fs_private;
4487 	struct inode *inode;
4488 	struct shmem_sb_info *sbinfo;
4489 	int error = -ENOMEM;
4490 
4491 	/* Round up to L1_CACHE_BYTES to resist false sharing */
4492 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4493 				L1_CACHE_BYTES), GFP_KERNEL);
4494 	if (!sbinfo)
4495 		return error;
4496 
4497 	sb->s_fs_info = sbinfo;
4498 
4499 #ifdef CONFIG_TMPFS
4500 	/*
4501 	 * Per default we only allow half of the physical ram per
4502 	 * tmpfs instance, limiting inodes to one per page of lowmem;
4503 	 * but the internal instance is left unlimited.
4504 	 */
4505 	if (!(sb->s_flags & SB_KERNMOUNT)) {
4506 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4507 			ctx->blocks = shmem_default_max_blocks();
4508 		if (!(ctx->seen & SHMEM_SEEN_INODES))
4509 			ctx->inodes = shmem_default_max_inodes();
4510 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4511 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4512 		sbinfo->noswap = ctx->noswap;
4513 	} else {
4514 		sb->s_flags |= SB_NOUSER;
4515 	}
4516 	sb->s_export_op = &shmem_export_ops;
4517 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4518 #else
4519 	sb->s_flags |= SB_NOUSER;
4520 #endif
4521 	sbinfo->max_blocks = ctx->blocks;
4522 	sbinfo->max_inodes = ctx->inodes;
4523 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4524 	if (sb->s_flags & SB_KERNMOUNT) {
4525 		sbinfo->ino_batch = alloc_percpu(ino_t);
4526 		if (!sbinfo->ino_batch)
4527 			goto failed;
4528 	}
4529 	sbinfo->uid = ctx->uid;
4530 	sbinfo->gid = ctx->gid;
4531 	sbinfo->full_inums = ctx->full_inums;
4532 	sbinfo->mode = ctx->mode;
4533 	sbinfo->huge = ctx->huge;
4534 	sbinfo->mpol = ctx->mpol;
4535 	ctx->mpol = NULL;
4536 
4537 	raw_spin_lock_init(&sbinfo->stat_lock);
4538 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4539 		goto failed;
4540 	spin_lock_init(&sbinfo->shrinklist_lock);
4541 	INIT_LIST_HEAD(&sbinfo->shrinklist);
4542 
4543 	sb->s_maxbytes = MAX_LFS_FILESIZE;
4544 	sb->s_blocksize = PAGE_SIZE;
4545 	sb->s_blocksize_bits = PAGE_SHIFT;
4546 	sb->s_magic = TMPFS_MAGIC;
4547 	sb->s_op = &shmem_ops;
4548 	sb->s_time_gran = 1;
4549 #ifdef CONFIG_TMPFS_XATTR
4550 	sb->s_xattr = shmem_xattr_handlers;
4551 #endif
4552 #ifdef CONFIG_TMPFS_POSIX_ACL
4553 	sb->s_flags |= SB_POSIXACL;
4554 #endif
4555 	uuid_t uuid;
4556 	uuid_gen(&uuid);
4557 	super_set_uuid(sb, uuid.b, sizeof(uuid));
4558 
4559 #ifdef CONFIG_TMPFS_QUOTA
4560 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4561 		sb->dq_op = &shmem_quota_operations;
4562 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4563 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4564 
4565 		/* Copy the default limits from ctx into sbinfo */
4566 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4567 		       sizeof(struct shmem_quota_limits));
4568 
4569 		if (shmem_enable_quotas(sb, ctx->quota_types))
4570 			goto failed;
4571 	}
4572 #endif /* CONFIG_TMPFS_QUOTA */
4573 
4574 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
4575 				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
4576 	if (IS_ERR(inode)) {
4577 		error = PTR_ERR(inode);
4578 		goto failed;
4579 	}
4580 	inode->i_uid = sbinfo->uid;
4581 	inode->i_gid = sbinfo->gid;
4582 	sb->s_root = d_make_root(inode);
4583 	if (!sb->s_root)
4584 		goto failed;
4585 	return 0;
4586 
4587 failed:
4588 	shmem_put_super(sb);
4589 	return error;
4590 }
4591 
4592 static int shmem_get_tree(struct fs_context *fc)
4593 {
4594 	return get_tree_nodev(fc, shmem_fill_super);
4595 }
4596 
4597 static void shmem_free_fc(struct fs_context *fc)
4598 {
4599 	struct shmem_options *ctx = fc->fs_private;
4600 
4601 	if (ctx) {
4602 		mpol_put(ctx->mpol);
4603 		kfree(ctx);
4604 	}
4605 }
4606 
4607 static const struct fs_context_operations shmem_fs_context_ops = {
4608 	.free			= shmem_free_fc,
4609 	.get_tree		= shmem_get_tree,
4610 #ifdef CONFIG_TMPFS
4611 	.parse_monolithic	= shmem_parse_options,
4612 	.parse_param		= shmem_parse_one,
4613 	.reconfigure		= shmem_reconfigure,
4614 #endif
4615 };
4616 
4617 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4618 
4619 static struct inode *shmem_alloc_inode(struct super_block *sb)
4620 {
4621 	struct shmem_inode_info *info;
4622 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4623 	if (!info)
4624 		return NULL;
4625 	return &info->vfs_inode;
4626 }
4627 
4628 static void shmem_free_in_core_inode(struct inode *inode)
4629 {
4630 	if (S_ISLNK(inode->i_mode))
4631 		kfree(inode->i_link);
4632 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4633 }
4634 
4635 static void shmem_destroy_inode(struct inode *inode)
4636 {
4637 	if (S_ISREG(inode->i_mode))
4638 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4639 	if (S_ISDIR(inode->i_mode))
4640 		simple_offset_destroy(shmem_get_offset_ctx(inode));
4641 }
4642 
4643 static void shmem_init_inode(void *foo)
4644 {
4645 	struct shmem_inode_info *info = foo;
4646 	inode_init_once(&info->vfs_inode);
4647 }
4648 
4649 static void __init shmem_init_inodecache(void)
4650 {
4651 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4652 				sizeof(struct shmem_inode_info),
4653 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4654 }
4655 
4656 static void __init shmem_destroy_inodecache(void)
4657 {
4658 	kmem_cache_destroy(shmem_inode_cachep);
4659 }
4660 
4661 /* Keep the page in page cache instead of truncating it */
4662 static int shmem_error_remove_folio(struct address_space *mapping,
4663 				   struct folio *folio)
4664 {
4665 	return 0;
4666 }
4667 
4668 static const struct address_space_operations shmem_aops = {
4669 	.writepage	= shmem_writepage,
4670 	.dirty_folio	= noop_dirty_folio,
4671 #ifdef CONFIG_TMPFS
4672 	.write_begin	= shmem_write_begin,
4673 	.write_end	= shmem_write_end,
4674 #endif
4675 #ifdef CONFIG_MIGRATION
4676 	.migrate_folio	= migrate_folio,
4677 #endif
4678 	.error_remove_folio = shmem_error_remove_folio,
4679 };
4680 
4681 static const struct file_operations shmem_file_operations = {
4682 	.mmap		= shmem_mmap,
4683 	.open		= shmem_file_open,
4684 	.get_unmapped_area = shmem_get_unmapped_area,
4685 #ifdef CONFIG_TMPFS
4686 	.llseek		= shmem_file_llseek,
4687 	.read_iter	= shmem_file_read_iter,
4688 	.write_iter	= shmem_file_write_iter,
4689 	.fsync		= noop_fsync,
4690 	.splice_read	= shmem_file_splice_read,
4691 	.splice_write	= iter_file_splice_write,
4692 	.fallocate	= shmem_fallocate,
4693 #endif
4694 };
4695 
4696 static const struct inode_operations shmem_inode_operations = {
4697 	.getattr	= shmem_getattr,
4698 	.setattr	= shmem_setattr,
4699 #ifdef CONFIG_TMPFS_XATTR
4700 	.listxattr	= shmem_listxattr,
4701 	.set_acl	= simple_set_acl,
4702 	.fileattr_get	= shmem_fileattr_get,
4703 	.fileattr_set	= shmem_fileattr_set,
4704 #endif
4705 };
4706 
4707 static const struct inode_operations shmem_dir_inode_operations = {
4708 #ifdef CONFIG_TMPFS
4709 	.getattr	= shmem_getattr,
4710 	.create		= shmem_create,
4711 	.lookup		= simple_lookup,
4712 	.link		= shmem_link,
4713 	.unlink		= shmem_unlink,
4714 	.symlink	= shmem_symlink,
4715 	.mkdir		= shmem_mkdir,
4716 	.rmdir		= shmem_rmdir,
4717 	.mknod		= shmem_mknod,
4718 	.rename		= shmem_rename2,
4719 	.tmpfile	= shmem_tmpfile,
4720 	.get_offset_ctx	= shmem_get_offset_ctx,
4721 #endif
4722 #ifdef CONFIG_TMPFS_XATTR
4723 	.listxattr	= shmem_listxattr,
4724 	.fileattr_get	= shmem_fileattr_get,
4725 	.fileattr_set	= shmem_fileattr_set,
4726 #endif
4727 #ifdef CONFIG_TMPFS_POSIX_ACL
4728 	.setattr	= shmem_setattr,
4729 	.set_acl	= simple_set_acl,
4730 #endif
4731 };
4732 
4733 static const struct inode_operations shmem_special_inode_operations = {
4734 	.getattr	= shmem_getattr,
4735 #ifdef CONFIG_TMPFS_XATTR
4736 	.listxattr	= shmem_listxattr,
4737 #endif
4738 #ifdef CONFIG_TMPFS_POSIX_ACL
4739 	.setattr	= shmem_setattr,
4740 	.set_acl	= simple_set_acl,
4741 #endif
4742 };
4743 
4744 static const struct super_operations shmem_ops = {
4745 	.alloc_inode	= shmem_alloc_inode,
4746 	.free_inode	= shmem_free_in_core_inode,
4747 	.destroy_inode	= shmem_destroy_inode,
4748 #ifdef CONFIG_TMPFS
4749 	.statfs		= shmem_statfs,
4750 	.show_options	= shmem_show_options,
4751 #endif
4752 #ifdef CONFIG_TMPFS_QUOTA
4753 	.get_dquots	= shmem_get_dquots,
4754 #endif
4755 	.evict_inode	= shmem_evict_inode,
4756 	.drop_inode	= generic_delete_inode,
4757 	.put_super	= shmem_put_super,
4758 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4759 	.nr_cached_objects	= shmem_unused_huge_count,
4760 	.free_cached_objects	= shmem_unused_huge_scan,
4761 #endif
4762 };
4763 
4764 static const struct vm_operations_struct shmem_vm_ops = {
4765 	.fault		= shmem_fault,
4766 	.map_pages	= filemap_map_pages,
4767 #ifdef CONFIG_NUMA
4768 	.set_policy     = shmem_set_policy,
4769 	.get_policy     = shmem_get_policy,
4770 #endif
4771 };
4772 
4773 static const struct vm_operations_struct shmem_anon_vm_ops = {
4774 	.fault		= shmem_fault,
4775 	.map_pages	= filemap_map_pages,
4776 #ifdef CONFIG_NUMA
4777 	.set_policy     = shmem_set_policy,
4778 	.get_policy     = shmem_get_policy,
4779 #endif
4780 };
4781 
4782 int shmem_init_fs_context(struct fs_context *fc)
4783 {
4784 	struct shmem_options *ctx;
4785 
4786 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4787 	if (!ctx)
4788 		return -ENOMEM;
4789 
4790 	ctx->mode = 0777 | S_ISVTX;
4791 	ctx->uid = current_fsuid();
4792 	ctx->gid = current_fsgid();
4793 
4794 	fc->fs_private = ctx;
4795 	fc->ops = &shmem_fs_context_ops;
4796 	return 0;
4797 }
4798 
4799 static struct file_system_type shmem_fs_type = {
4800 	.owner		= THIS_MODULE,
4801 	.name		= "tmpfs",
4802 	.init_fs_context = shmem_init_fs_context,
4803 #ifdef CONFIG_TMPFS
4804 	.parameters	= shmem_fs_parameters,
4805 #endif
4806 	.kill_sb	= kill_litter_super,
4807 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4808 };
4809 
4810 void __init shmem_init(void)
4811 {
4812 	int error;
4813 
4814 	shmem_init_inodecache();
4815 
4816 #ifdef CONFIG_TMPFS_QUOTA
4817 	error = register_quota_format(&shmem_quota_format);
4818 	if (error < 0) {
4819 		pr_err("Could not register quota format\n");
4820 		goto out3;
4821 	}
4822 #endif
4823 
4824 	error = register_filesystem(&shmem_fs_type);
4825 	if (error) {
4826 		pr_err("Could not register tmpfs\n");
4827 		goto out2;
4828 	}
4829 
4830 	shm_mnt = kern_mount(&shmem_fs_type);
4831 	if (IS_ERR(shm_mnt)) {
4832 		error = PTR_ERR(shm_mnt);
4833 		pr_err("Could not kern_mount tmpfs\n");
4834 		goto out1;
4835 	}
4836 
4837 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4838 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4839 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4840 	else
4841 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4842 
4843 	/*
4844 	 * Default to setting PMD-sized THP to inherit the global setting and
4845 	 * disable all other multi-size THPs.
4846 	 */
4847 	huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
4848 #endif
4849 	return;
4850 
4851 out1:
4852 	unregister_filesystem(&shmem_fs_type);
4853 out2:
4854 #ifdef CONFIG_TMPFS_QUOTA
4855 	unregister_quota_format(&shmem_quota_format);
4856 out3:
4857 #endif
4858 	shmem_destroy_inodecache();
4859 	shm_mnt = ERR_PTR(error);
4860 }
4861 
4862 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4863 static ssize_t shmem_enabled_show(struct kobject *kobj,
4864 				  struct kobj_attribute *attr, char *buf)
4865 {
4866 	static const int values[] = {
4867 		SHMEM_HUGE_ALWAYS,
4868 		SHMEM_HUGE_WITHIN_SIZE,
4869 		SHMEM_HUGE_ADVISE,
4870 		SHMEM_HUGE_NEVER,
4871 		SHMEM_HUGE_DENY,
4872 		SHMEM_HUGE_FORCE,
4873 	};
4874 	int len = 0;
4875 	int i;
4876 
4877 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4878 		len += sysfs_emit_at(buf, len,
4879 				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4880 				i ? " " : "", shmem_format_huge(values[i]));
4881 	}
4882 	len += sysfs_emit_at(buf, len, "\n");
4883 
4884 	return len;
4885 }
4886 
4887 static ssize_t shmem_enabled_store(struct kobject *kobj,
4888 		struct kobj_attribute *attr, const char *buf, size_t count)
4889 {
4890 	char tmp[16];
4891 	int huge;
4892 
4893 	if (count + 1 > sizeof(tmp))
4894 		return -EINVAL;
4895 	memcpy(tmp, buf, count);
4896 	tmp[count] = '\0';
4897 	if (count && tmp[count - 1] == '\n')
4898 		tmp[count - 1] = '\0';
4899 
4900 	huge = shmem_parse_huge(tmp);
4901 	if (huge == -EINVAL)
4902 		return -EINVAL;
4903 	if (!has_transparent_hugepage() &&
4904 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4905 		return -EINVAL;
4906 
4907 	/* Do not override huge allocation policy with non-PMD sized mTHP */
4908 	if (huge == SHMEM_HUGE_FORCE &&
4909 	    huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
4910 		return -EINVAL;
4911 
4912 	shmem_huge = huge;
4913 	if (shmem_huge > SHMEM_HUGE_DENY)
4914 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4915 	return count;
4916 }
4917 
4918 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4919 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
4920 
4921 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
4922 					  struct kobj_attribute *attr, char *buf)
4923 {
4924 	int order = to_thpsize(kobj)->order;
4925 	const char *output;
4926 
4927 	if (test_bit(order, &huge_shmem_orders_always))
4928 		output = "[always] inherit within_size advise never";
4929 	else if (test_bit(order, &huge_shmem_orders_inherit))
4930 		output = "always [inherit] within_size advise never";
4931 	else if (test_bit(order, &huge_shmem_orders_within_size))
4932 		output = "always inherit [within_size] advise never";
4933 	else if (test_bit(order, &huge_shmem_orders_madvise))
4934 		output = "always inherit within_size [advise] never";
4935 	else
4936 		output = "always inherit within_size advise [never]";
4937 
4938 	return sysfs_emit(buf, "%s\n", output);
4939 }
4940 
4941 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
4942 					   struct kobj_attribute *attr,
4943 					   const char *buf, size_t count)
4944 {
4945 	int order = to_thpsize(kobj)->order;
4946 	ssize_t ret = count;
4947 
4948 	if (sysfs_streq(buf, "always")) {
4949 		spin_lock(&huge_shmem_orders_lock);
4950 		clear_bit(order, &huge_shmem_orders_inherit);
4951 		clear_bit(order, &huge_shmem_orders_madvise);
4952 		clear_bit(order, &huge_shmem_orders_within_size);
4953 		set_bit(order, &huge_shmem_orders_always);
4954 		spin_unlock(&huge_shmem_orders_lock);
4955 	} else if (sysfs_streq(buf, "inherit")) {
4956 		/* Do not override huge allocation policy with non-PMD sized mTHP */
4957 		if (shmem_huge == SHMEM_HUGE_FORCE &&
4958 		    order != HPAGE_PMD_ORDER)
4959 			return -EINVAL;
4960 
4961 		spin_lock(&huge_shmem_orders_lock);
4962 		clear_bit(order, &huge_shmem_orders_always);
4963 		clear_bit(order, &huge_shmem_orders_madvise);
4964 		clear_bit(order, &huge_shmem_orders_within_size);
4965 		set_bit(order, &huge_shmem_orders_inherit);
4966 		spin_unlock(&huge_shmem_orders_lock);
4967 	} else if (sysfs_streq(buf, "within_size")) {
4968 		spin_lock(&huge_shmem_orders_lock);
4969 		clear_bit(order, &huge_shmem_orders_always);
4970 		clear_bit(order, &huge_shmem_orders_inherit);
4971 		clear_bit(order, &huge_shmem_orders_madvise);
4972 		set_bit(order, &huge_shmem_orders_within_size);
4973 		spin_unlock(&huge_shmem_orders_lock);
4974 	} else if (sysfs_streq(buf, "advise")) {
4975 		spin_lock(&huge_shmem_orders_lock);
4976 		clear_bit(order, &huge_shmem_orders_always);
4977 		clear_bit(order, &huge_shmem_orders_inherit);
4978 		clear_bit(order, &huge_shmem_orders_within_size);
4979 		set_bit(order, &huge_shmem_orders_madvise);
4980 		spin_unlock(&huge_shmem_orders_lock);
4981 	} else if (sysfs_streq(buf, "never")) {
4982 		spin_lock(&huge_shmem_orders_lock);
4983 		clear_bit(order, &huge_shmem_orders_always);
4984 		clear_bit(order, &huge_shmem_orders_inherit);
4985 		clear_bit(order, &huge_shmem_orders_within_size);
4986 		clear_bit(order, &huge_shmem_orders_madvise);
4987 		spin_unlock(&huge_shmem_orders_lock);
4988 	} else {
4989 		ret = -EINVAL;
4990 	}
4991 
4992 	return ret;
4993 }
4994 
4995 struct kobj_attribute thpsize_shmem_enabled_attr =
4996 	__ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
4997 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4998 
4999 #else /* !CONFIG_SHMEM */
5000 
5001 /*
5002  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5003  *
5004  * This is intended for small system where the benefits of the full
5005  * shmem code (swap-backed and resource-limited) are outweighed by
5006  * their complexity. On systems without swap this code should be
5007  * effectively equivalent, but much lighter weight.
5008  */
5009 
5010 static struct file_system_type shmem_fs_type = {
5011 	.name		= "tmpfs",
5012 	.init_fs_context = ramfs_init_fs_context,
5013 	.parameters	= ramfs_fs_parameters,
5014 	.kill_sb	= ramfs_kill_sb,
5015 	.fs_flags	= FS_USERNS_MOUNT,
5016 };
5017 
5018 void __init shmem_init(void)
5019 {
5020 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5021 
5022 	shm_mnt = kern_mount(&shmem_fs_type);
5023 	BUG_ON(IS_ERR(shm_mnt));
5024 }
5025 
5026 int shmem_unuse(unsigned int type)
5027 {
5028 	return 0;
5029 }
5030 
5031 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5032 {
5033 	return 0;
5034 }
5035 
5036 void shmem_unlock_mapping(struct address_space *mapping)
5037 {
5038 }
5039 
5040 #ifdef CONFIG_MMU
5041 unsigned long shmem_get_unmapped_area(struct file *file,
5042 				      unsigned long addr, unsigned long len,
5043 				      unsigned long pgoff, unsigned long flags)
5044 {
5045 	return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5046 }
5047 #endif
5048 
5049 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5050 {
5051 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5052 }
5053 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5054 
5055 #define shmem_vm_ops				generic_file_vm_ops
5056 #define shmem_anon_vm_ops			generic_file_vm_ops
5057 #define shmem_file_operations			ramfs_file_operations
5058 #define shmem_acct_size(flags, size)		0
5059 #define shmem_unacct_size(flags, size)		do {} while (0)
5060 
5061 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5062 				struct super_block *sb, struct inode *dir,
5063 				umode_t mode, dev_t dev, unsigned long flags)
5064 {
5065 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5066 	return inode ? inode : ERR_PTR(-ENOSPC);
5067 }
5068 
5069 #endif /* CONFIG_SHMEM */
5070 
5071 /* common code */
5072 
5073 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5074 			loff_t size, unsigned long flags, unsigned int i_flags)
5075 {
5076 	struct inode *inode;
5077 	struct file *res;
5078 
5079 	if (IS_ERR(mnt))
5080 		return ERR_CAST(mnt);
5081 
5082 	if (size < 0 || size > MAX_LFS_FILESIZE)
5083 		return ERR_PTR(-EINVAL);
5084 
5085 	if (shmem_acct_size(flags, size))
5086 		return ERR_PTR(-ENOMEM);
5087 
5088 	if (is_idmapped_mnt(mnt))
5089 		return ERR_PTR(-EINVAL);
5090 
5091 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5092 				S_IFREG | S_IRWXUGO, 0, flags);
5093 	if (IS_ERR(inode)) {
5094 		shmem_unacct_size(flags, size);
5095 		return ERR_CAST(inode);
5096 	}
5097 	inode->i_flags |= i_flags;
5098 	inode->i_size = size;
5099 	clear_nlink(inode);	/* It is unlinked */
5100 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5101 	if (!IS_ERR(res))
5102 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5103 				&shmem_file_operations);
5104 	if (IS_ERR(res))
5105 		iput(inode);
5106 	return res;
5107 }
5108 
5109 /**
5110  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5111  * 	kernel internal.  There will be NO LSM permission checks against the
5112  * 	underlying inode.  So users of this interface must do LSM checks at a
5113  *	higher layer.  The users are the big_key and shm implementations.  LSM
5114  *	checks are provided at the key or shm level rather than the inode.
5115  * @name: name for dentry (to be seen in /proc/<pid>/maps
5116  * @size: size to be set for the file
5117  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5118  */
5119 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5120 {
5121 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5122 }
5123 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5124 
5125 /**
5126  * shmem_file_setup - get an unlinked file living in tmpfs
5127  * @name: name for dentry (to be seen in /proc/<pid>/maps
5128  * @size: size to be set for the file
5129  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5130  */
5131 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5132 {
5133 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5134 }
5135 EXPORT_SYMBOL_GPL(shmem_file_setup);
5136 
5137 /**
5138  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5139  * @mnt: the tmpfs mount where the file will be created
5140  * @name: name for dentry (to be seen in /proc/<pid>/maps
5141  * @size: size to be set for the file
5142  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5143  */
5144 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5145 				       loff_t size, unsigned long flags)
5146 {
5147 	return __shmem_file_setup(mnt, name, size, flags, 0);
5148 }
5149 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5150 
5151 /**
5152  * shmem_zero_setup - setup a shared anonymous mapping
5153  * @vma: the vma to be mmapped is prepared by do_mmap
5154  */
5155 int shmem_zero_setup(struct vm_area_struct *vma)
5156 {
5157 	struct file *file;
5158 	loff_t size = vma->vm_end - vma->vm_start;
5159 
5160 	/*
5161 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5162 	 * between XFS directory reading and selinux: since this file is only
5163 	 * accessible to the user through its mapping, use S_PRIVATE flag to
5164 	 * bypass file security, in the same way as shmem_kernel_file_setup().
5165 	 */
5166 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5167 	if (IS_ERR(file))
5168 		return PTR_ERR(file);
5169 
5170 	if (vma->vm_file)
5171 		fput(vma->vm_file);
5172 	vma->vm_file = file;
5173 	vma->vm_ops = &shmem_anon_vm_ops;
5174 
5175 	return 0;
5176 }
5177 
5178 /**
5179  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5180  * @mapping:	the folio's address_space
5181  * @index:	the folio index
5182  * @gfp:	the page allocator flags to use if allocating
5183  *
5184  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5185  * with any new page allocations done using the specified allocation flags.
5186  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5187  * suit tmpfs, since it may have pages in swapcache, and needs to find those
5188  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5189  *
5190  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5191  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5192  */
5193 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5194 		pgoff_t index, gfp_t gfp)
5195 {
5196 #ifdef CONFIG_SHMEM
5197 	struct inode *inode = mapping->host;
5198 	struct folio *folio;
5199 	int error;
5200 
5201 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
5202 				    gfp, NULL, NULL);
5203 	if (error)
5204 		return ERR_PTR(error);
5205 
5206 	folio_unlock(folio);
5207 	return folio;
5208 #else
5209 	/*
5210 	 * The tiny !SHMEM case uses ramfs without swap
5211 	 */
5212 	return mapping_read_folio_gfp(mapping, index, gfp);
5213 #endif
5214 }
5215 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5216 
5217 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5218 					 pgoff_t index, gfp_t gfp)
5219 {
5220 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5221 	struct page *page;
5222 
5223 	if (IS_ERR(folio))
5224 		return &folio->page;
5225 
5226 	page = folio_file_page(folio, index);
5227 	if (PageHWPoison(page)) {
5228 		folio_put(folio);
5229 		return ERR_PTR(-EIO);
5230 	}
5231 
5232 	return page;
5233 }
5234 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5235