1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/uio.h> 38 #include <linux/hugetlb.h> 39 #include <linux/fs_parser.h> 40 #include <linux/swapfile.h> 41 #include <linux/iversion.h> 42 #include "swap.h" 43 44 static struct vfsmount *shm_mnt; 45 46 #ifdef CONFIG_SHMEM 47 /* 48 * This virtual memory filesystem is heavily based on the ramfs. It 49 * extends ramfs by the ability to use swap and honor resource limits 50 * which makes it a completely usable filesystem. 51 */ 52 53 #include <linux/xattr.h> 54 #include <linux/exportfs.h> 55 #include <linux/posix_acl.h> 56 #include <linux/posix_acl_xattr.h> 57 #include <linux/mman.h> 58 #include <linux/string.h> 59 #include <linux/slab.h> 60 #include <linux/backing-dev.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/userfaultfd_k.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 83 #include <linux/uaccess.h> 84 85 #include "internal.h" 86 87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 89 90 /* Pretend that each entry is of this size in directory's i_size */ 91 #define BOGO_DIRENT_SIZE 20 92 93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 94 #define SHORT_SYMLINK_LEN 128 95 96 /* 97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 98 * inode->i_private (with i_rwsem making sure that it has only one user at 99 * a time): we would prefer not to enlarge the shmem inode just for that. 100 */ 101 struct shmem_falloc { 102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 103 pgoff_t start; /* start of range currently being fallocated */ 104 pgoff_t next; /* the next page offset to be fallocated */ 105 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 107 }; 108 109 struct shmem_options { 110 unsigned long long blocks; 111 unsigned long long inodes; 112 struct mempolicy *mpol; 113 kuid_t uid; 114 kgid_t gid; 115 umode_t mode; 116 bool full_inums; 117 int huge; 118 int seen; 119 #define SHMEM_SEEN_BLOCKS 1 120 #define SHMEM_SEEN_INODES 2 121 #define SHMEM_SEEN_HUGE 4 122 #define SHMEM_SEEN_INUMS 8 123 }; 124 125 #ifdef CONFIG_TMPFS 126 static unsigned long shmem_default_max_blocks(void) 127 { 128 return totalram_pages() / 2; 129 } 130 131 static unsigned long shmem_default_max_inodes(void) 132 { 133 unsigned long nr_pages = totalram_pages(); 134 135 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 136 } 137 #endif 138 139 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 140 struct folio **foliop, enum sgp_type sgp, 141 gfp_t gfp, struct vm_area_struct *vma, 142 vm_fault_t *fault_type); 143 144 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 145 { 146 return sb->s_fs_info; 147 } 148 149 /* 150 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 151 * for shared memory and for shared anonymous (/dev/zero) mappings 152 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 153 * consistent with the pre-accounting of private mappings ... 154 */ 155 static inline int shmem_acct_size(unsigned long flags, loff_t size) 156 { 157 return (flags & VM_NORESERVE) ? 158 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 159 } 160 161 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 162 { 163 if (!(flags & VM_NORESERVE)) 164 vm_unacct_memory(VM_ACCT(size)); 165 } 166 167 static inline int shmem_reacct_size(unsigned long flags, 168 loff_t oldsize, loff_t newsize) 169 { 170 if (!(flags & VM_NORESERVE)) { 171 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 172 return security_vm_enough_memory_mm(current->mm, 173 VM_ACCT(newsize) - VM_ACCT(oldsize)); 174 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 175 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 176 } 177 return 0; 178 } 179 180 /* 181 * ... whereas tmpfs objects are accounted incrementally as 182 * pages are allocated, in order to allow large sparse files. 183 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 184 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 185 */ 186 static inline int shmem_acct_block(unsigned long flags, long pages) 187 { 188 if (!(flags & VM_NORESERVE)) 189 return 0; 190 191 return security_vm_enough_memory_mm(current->mm, 192 pages * VM_ACCT(PAGE_SIZE)); 193 } 194 195 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 196 { 197 if (flags & VM_NORESERVE) 198 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 199 } 200 201 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 202 { 203 struct shmem_inode_info *info = SHMEM_I(inode); 204 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 205 206 if (shmem_acct_block(info->flags, pages)) 207 return false; 208 209 if (sbinfo->max_blocks) { 210 if (percpu_counter_compare(&sbinfo->used_blocks, 211 sbinfo->max_blocks - pages) > 0) 212 goto unacct; 213 percpu_counter_add(&sbinfo->used_blocks, pages); 214 } 215 216 return true; 217 218 unacct: 219 shmem_unacct_blocks(info->flags, pages); 220 return false; 221 } 222 223 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 224 { 225 struct shmem_inode_info *info = SHMEM_I(inode); 226 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 227 228 if (sbinfo->max_blocks) 229 percpu_counter_sub(&sbinfo->used_blocks, pages); 230 shmem_unacct_blocks(info->flags, pages); 231 } 232 233 static const struct super_operations shmem_ops; 234 const struct address_space_operations shmem_aops; 235 static const struct file_operations shmem_file_operations; 236 static const struct inode_operations shmem_inode_operations; 237 static const struct inode_operations shmem_dir_inode_operations; 238 static const struct inode_operations shmem_special_inode_operations; 239 static const struct vm_operations_struct shmem_vm_ops; 240 static const struct vm_operations_struct shmem_anon_vm_ops; 241 static struct file_system_type shmem_fs_type; 242 243 bool vma_is_anon_shmem(struct vm_area_struct *vma) 244 { 245 return vma->vm_ops == &shmem_anon_vm_ops; 246 } 247 248 bool vma_is_shmem(struct vm_area_struct *vma) 249 { 250 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 251 } 252 253 static LIST_HEAD(shmem_swaplist); 254 static DEFINE_MUTEX(shmem_swaplist_mutex); 255 256 /* 257 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 258 * produces a novel ino for the newly allocated inode. 259 * 260 * It may also be called when making a hard link to permit the space needed by 261 * each dentry. However, in that case, no new inode number is needed since that 262 * internally draws from another pool of inode numbers (currently global 263 * get_next_ino()). This case is indicated by passing NULL as inop. 264 */ 265 #define SHMEM_INO_BATCH 1024 266 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 267 { 268 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 269 ino_t ino; 270 271 if (!(sb->s_flags & SB_KERNMOUNT)) { 272 raw_spin_lock(&sbinfo->stat_lock); 273 if (sbinfo->max_inodes) { 274 if (!sbinfo->free_inodes) { 275 raw_spin_unlock(&sbinfo->stat_lock); 276 return -ENOSPC; 277 } 278 sbinfo->free_inodes--; 279 } 280 if (inop) { 281 ino = sbinfo->next_ino++; 282 if (unlikely(is_zero_ino(ino))) 283 ino = sbinfo->next_ino++; 284 if (unlikely(!sbinfo->full_inums && 285 ino > UINT_MAX)) { 286 /* 287 * Emulate get_next_ino uint wraparound for 288 * compatibility 289 */ 290 if (IS_ENABLED(CONFIG_64BIT)) 291 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 292 __func__, MINOR(sb->s_dev)); 293 sbinfo->next_ino = 1; 294 ino = sbinfo->next_ino++; 295 } 296 *inop = ino; 297 } 298 raw_spin_unlock(&sbinfo->stat_lock); 299 } else if (inop) { 300 /* 301 * __shmem_file_setup, one of our callers, is lock-free: it 302 * doesn't hold stat_lock in shmem_reserve_inode since 303 * max_inodes is always 0, and is called from potentially 304 * unknown contexts. As such, use a per-cpu batched allocator 305 * which doesn't require the per-sb stat_lock unless we are at 306 * the batch boundary. 307 * 308 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 309 * shmem mounts are not exposed to userspace, so we don't need 310 * to worry about things like glibc compatibility. 311 */ 312 ino_t *next_ino; 313 314 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 315 ino = *next_ino; 316 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 317 raw_spin_lock(&sbinfo->stat_lock); 318 ino = sbinfo->next_ino; 319 sbinfo->next_ino += SHMEM_INO_BATCH; 320 raw_spin_unlock(&sbinfo->stat_lock); 321 if (unlikely(is_zero_ino(ino))) 322 ino++; 323 } 324 *inop = ino; 325 *next_ino = ++ino; 326 put_cpu(); 327 } 328 329 return 0; 330 } 331 332 static void shmem_free_inode(struct super_block *sb) 333 { 334 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 335 if (sbinfo->max_inodes) { 336 raw_spin_lock(&sbinfo->stat_lock); 337 sbinfo->free_inodes++; 338 raw_spin_unlock(&sbinfo->stat_lock); 339 } 340 } 341 342 /** 343 * shmem_recalc_inode - recalculate the block usage of an inode 344 * @inode: inode to recalc 345 * 346 * We have to calculate the free blocks since the mm can drop 347 * undirtied hole pages behind our back. 348 * 349 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 350 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 351 * 352 * It has to be called with the spinlock held. 353 */ 354 static void shmem_recalc_inode(struct inode *inode) 355 { 356 struct shmem_inode_info *info = SHMEM_I(inode); 357 long freed; 358 359 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 360 if (freed > 0) { 361 info->alloced -= freed; 362 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 363 shmem_inode_unacct_blocks(inode, freed); 364 } 365 } 366 367 bool shmem_charge(struct inode *inode, long pages) 368 { 369 struct shmem_inode_info *info = SHMEM_I(inode); 370 unsigned long flags; 371 372 if (!shmem_inode_acct_block(inode, pages)) 373 return false; 374 375 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 376 inode->i_mapping->nrpages += pages; 377 378 spin_lock_irqsave(&info->lock, flags); 379 info->alloced += pages; 380 inode->i_blocks += pages * BLOCKS_PER_PAGE; 381 shmem_recalc_inode(inode); 382 spin_unlock_irqrestore(&info->lock, flags); 383 384 return true; 385 } 386 387 void shmem_uncharge(struct inode *inode, long pages) 388 { 389 struct shmem_inode_info *info = SHMEM_I(inode); 390 unsigned long flags; 391 392 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 393 394 spin_lock_irqsave(&info->lock, flags); 395 info->alloced -= pages; 396 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 397 shmem_recalc_inode(inode); 398 spin_unlock_irqrestore(&info->lock, flags); 399 400 shmem_inode_unacct_blocks(inode, pages); 401 } 402 403 /* 404 * Replace item expected in xarray by a new item, while holding xa_lock. 405 */ 406 static int shmem_replace_entry(struct address_space *mapping, 407 pgoff_t index, void *expected, void *replacement) 408 { 409 XA_STATE(xas, &mapping->i_pages, index); 410 void *item; 411 412 VM_BUG_ON(!expected); 413 VM_BUG_ON(!replacement); 414 item = xas_load(&xas); 415 if (item != expected) 416 return -ENOENT; 417 xas_store(&xas, replacement); 418 return 0; 419 } 420 421 /* 422 * Sometimes, before we decide whether to proceed or to fail, we must check 423 * that an entry was not already brought back from swap by a racing thread. 424 * 425 * Checking page is not enough: by the time a SwapCache page is locked, it 426 * might be reused, and again be SwapCache, using the same swap as before. 427 */ 428 static bool shmem_confirm_swap(struct address_space *mapping, 429 pgoff_t index, swp_entry_t swap) 430 { 431 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 432 } 433 434 /* 435 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 436 * 437 * SHMEM_HUGE_NEVER: 438 * disables huge pages for the mount; 439 * SHMEM_HUGE_ALWAYS: 440 * enables huge pages for the mount; 441 * SHMEM_HUGE_WITHIN_SIZE: 442 * only allocate huge pages if the page will be fully within i_size, 443 * also respect fadvise()/madvise() hints; 444 * SHMEM_HUGE_ADVISE: 445 * only allocate huge pages if requested with fadvise()/madvise(); 446 */ 447 448 #define SHMEM_HUGE_NEVER 0 449 #define SHMEM_HUGE_ALWAYS 1 450 #define SHMEM_HUGE_WITHIN_SIZE 2 451 #define SHMEM_HUGE_ADVISE 3 452 453 /* 454 * Special values. 455 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 456 * 457 * SHMEM_HUGE_DENY: 458 * disables huge on shm_mnt and all mounts, for emergency use; 459 * SHMEM_HUGE_FORCE: 460 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 461 * 462 */ 463 #define SHMEM_HUGE_DENY (-1) 464 #define SHMEM_HUGE_FORCE (-2) 465 466 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 467 /* ifdef here to avoid bloating shmem.o when not necessary */ 468 469 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 470 471 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode, 472 pgoff_t index, bool shmem_huge_force) 473 { 474 loff_t i_size; 475 476 if (!S_ISREG(inode->i_mode)) 477 return false; 478 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) || 479 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))) 480 return false; 481 if (shmem_huge == SHMEM_HUGE_DENY) 482 return false; 483 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 484 return true; 485 486 switch (SHMEM_SB(inode->i_sb)->huge) { 487 case SHMEM_HUGE_ALWAYS: 488 return true; 489 case SHMEM_HUGE_WITHIN_SIZE: 490 index = round_up(index + 1, HPAGE_PMD_NR); 491 i_size = round_up(i_size_read(inode), PAGE_SIZE); 492 if (i_size >> PAGE_SHIFT >= index) 493 return true; 494 fallthrough; 495 case SHMEM_HUGE_ADVISE: 496 if (vma && (vma->vm_flags & VM_HUGEPAGE)) 497 return true; 498 fallthrough; 499 default: 500 return false; 501 } 502 } 503 504 #if defined(CONFIG_SYSFS) 505 static int shmem_parse_huge(const char *str) 506 { 507 if (!strcmp(str, "never")) 508 return SHMEM_HUGE_NEVER; 509 if (!strcmp(str, "always")) 510 return SHMEM_HUGE_ALWAYS; 511 if (!strcmp(str, "within_size")) 512 return SHMEM_HUGE_WITHIN_SIZE; 513 if (!strcmp(str, "advise")) 514 return SHMEM_HUGE_ADVISE; 515 if (!strcmp(str, "deny")) 516 return SHMEM_HUGE_DENY; 517 if (!strcmp(str, "force")) 518 return SHMEM_HUGE_FORCE; 519 return -EINVAL; 520 } 521 #endif 522 523 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 524 static const char *shmem_format_huge(int huge) 525 { 526 switch (huge) { 527 case SHMEM_HUGE_NEVER: 528 return "never"; 529 case SHMEM_HUGE_ALWAYS: 530 return "always"; 531 case SHMEM_HUGE_WITHIN_SIZE: 532 return "within_size"; 533 case SHMEM_HUGE_ADVISE: 534 return "advise"; 535 case SHMEM_HUGE_DENY: 536 return "deny"; 537 case SHMEM_HUGE_FORCE: 538 return "force"; 539 default: 540 VM_BUG_ON(1); 541 return "bad_val"; 542 } 543 } 544 #endif 545 546 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 547 struct shrink_control *sc, unsigned long nr_to_split) 548 { 549 LIST_HEAD(list), *pos, *next; 550 LIST_HEAD(to_remove); 551 struct inode *inode; 552 struct shmem_inode_info *info; 553 struct folio *folio; 554 unsigned long batch = sc ? sc->nr_to_scan : 128; 555 int split = 0; 556 557 if (list_empty(&sbinfo->shrinklist)) 558 return SHRINK_STOP; 559 560 spin_lock(&sbinfo->shrinklist_lock); 561 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 562 info = list_entry(pos, struct shmem_inode_info, shrinklist); 563 564 /* pin the inode */ 565 inode = igrab(&info->vfs_inode); 566 567 /* inode is about to be evicted */ 568 if (!inode) { 569 list_del_init(&info->shrinklist); 570 goto next; 571 } 572 573 /* Check if there's anything to gain */ 574 if (round_up(inode->i_size, PAGE_SIZE) == 575 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 576 list_move(&info->shrinklist, &to_remove); 577 goto next; 578 } 579 580 list_move(&info->shrinklist, &list); 581 next: 582 sbinfo->shrinklist_len--; 583 if (!--batch) 584 break; 585 } 586 spin_unlock(&sbinfo->shrinklist_lock); 587 588 list_for_each_safe(pos, next, &to_remove) { 589 info = list_entry(pos, struct shmem_inode_info, shrinklist); 590 inode = &info->vfs_inode; 591 list_del_init(&info->shrinklist); 592 iput(inode); 593 } 594 595 list_for_each_safe(pos, next, &list) { 596 int ret; 597 pgoff_t index; 598 599 info = list_entry(pos, struct shmem_inode_info, shrinklist); 600 inode = &info->vfs_inode; 601 602 if (nr_to_split && split >= nr_to_split) 603 goto move_back; 604 605 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 606 folio = filemap_get_folio(inode->i_mapping, index); 607 if (!folio) 608 goto drop; 609 610 /* No huge page at the end of the file: nothing to split */ 611 if (!folio_test_large(folio)) { 612 folio_put(folio); 613 goto drop; 614 } 615 616 /* 617 * Move the inode on the list back to shrinklist if we failed 618 * to lock the page at this time. 619 * 620 * Waiting for the lock may lead to deadlock in the 621 * reclaim path. 622 */ 623 if (!folio_trylock(folio)) { 624 folio_put(folio); 625 goto move_back; 626 } 627 628 ret = split_folio(folio); 629 folio_unlock(folio); 630 folio_put(folio); 631 632 /* If split failed move the inode on the list back to shrinklist */ 633 if (ret) 634 goto move_back; 635 636 split++; 637 drop: 638 list_del_init(&info->shrinklist); 639 goto put; 640 move_back: 641 /* 642 * Make sure the inode is either on the global list or deleted 643 * from any local list before iput() since it could be deleted 644 * in another thread once we put the inode (then the local list 645 * is corrupted). 646 */ 647 spin_lock(&sbinfo->shrinklist_lock); 648 list_move(&info->shrinklist, &sbinfo->shrinklist); 649 sbinfo->shrinklist_len++; 650 spin_unlock(&sbinfo->shrinklist_lock); 651 put: 652 iput(inode); 653 } 654 655 return split; 656 } 657 658 static long shmem_unused_huge_scan(struct super_block *sb, 659 struct shrink_control *sc) 660 { 661 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 662 663 if (!READ_ONCE(sbinfo->shrinklist_len)) 664 return SHRINK_STOP; 665 666 return shmem_unused_huge_shrink(sbinfo, sc, 0); 667 } 668 669 static long shmem_unused_huge_count(struct super_block *sb, 670 struct shrink_control *sc) 671 { 672 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 673 return READ_ONCE(sbinfo->shrinklist_len); 674 } 675 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 676 677 #define shmem_huge SHMEM_HUGE_DENY 678 679 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode, 680 pgoff_t index, bool shmem_huge_force) 681 { 682 return false; 683 } 684 685 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 686 struct shrink_control *sc, unsigned long nr_to_split) 687 { 688 return 0; 689 } 690 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 691 692 /* 693 * Like filemap_add_folio, but error if expected item has gone. 694 */ 695 static int shmem_add_to_page_cache(struct folio *folio, 696 struct address_space *mapping, 697 pgoff_t index, void *expected, gfp_t gfp, 698 struct mm_struct *charge_mm) 699 { 700 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 701 long nr = folio_nr_pages(folio); 702 int error; 703 704 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 705 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 706 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 707 VM_BUG_ON(expected && folio_test_large(folio)); 708 709 folio_ref_add(folio, nr); 710 folio->mapping = mapping; 711 folio->index = index; 712 713 if (!folio_test_swapcache(folio)) { 714 error = mem_cgroup_charge(folio, charge_mm, gfp); 715 if (error) { 716 if (folio_test_pmd_mappable(folio)) { 717 count_vm_event(THP_FILE_FALLBACK); 718 count_vm_event(THP_FILE_FALLBACK_CHARGE); 719 } 720 goto error; 721 } 722 } 723 folio_throttle_swaprate(folio, gfp); 724 725 do { 726 xas_lock_irq(&xas); 727 if (expected != xas_find_conflict(&xas)) { 728 xas_set_err(&xas, -EEXIST); 729 goto unlock; 730 } 731 if (expected && xas_find_conflict(&xas)) { 732 xas_set_err(&xas, -EEXIST); 733 goto unlock; 734 } 735 xas_store(&xas, folio); 736 if (xas_error(&xas)) 737 goto unlock; 738 if (folio_test_pmd_mappable(folio)) { 739 count_vm_event(THP_FILE_ALLOC); 740 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 741 } 742 mapping->nrpages += nr; 743 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 744 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 745 unlock: 746 xas_unlock_irq(&xas); 747 } while (xas_nomem(&xas, gfp)); 748 749 if (xas_error(&xas)) { 750 error = xas_error(&xas); 751 goto error; 752 } 753 754 return 0; 755 error: 756 folio->mapping = NULL; 757 folio_ref_sub(folio, nr); 758 return error; 759 } 760 761 /* 762 * Like delete_from_page_cache, but substitutes swap for @folio. 763 */ 764 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 765 { 766 struct address_space *mapping = folio->mapping; 767 long nr = folio_nr_pages(folio); 768 int error; 769 770 xa_lock_irq(&mapping->i_pages); 771 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 772 folio->mapping = NULL; 773 mapping->nrpages -= nr; 774 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 775 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 776 xa_unlock_irq(&mapping->i_pages); 777 folio_put(folio); 778 BUG_ON(error); 779 } 780 781 /* 782 * Remove swap entry from page cache, free the swap and its page cache. 783 */ 784 static int shmem_free_swap(struct address_space *mapping, 785 pgoff_t index, void *radswap) 786 { 787 void *old; 788 789 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 790 if (old != radswap) 791 return -ENOENT; 792 free_swap_and_cache(radix_to_swp_entry(radswap)); 793 return 0; 794 } 795 796 /* 797 * Determine (in bytes) how many of the shmem object's pages mapped by the 798 * given offsets are swapped out. 799 * 800 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 801 * as long as the inode doesn't go away and racy results are not a problem. 802 */ 803 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 804 pgoff_t start, pgoff_t end) 805 { 806 XA_STATE(xas, &mapping->i_pages, start); 807 struct page *page; 808 unsigned long swapped = 0; 809 810 rcu_read_lock(); 811 xas_for_each(&xas, page, end - 1) { 812 if (xas_retry(&xas, page)) 813 continue; 814 if (xa_is_value(page)) 815 swapped++; 816 817 if (need_resched()) { 818 xas_pause(&xas); 819 cond_resched_rcu(); 820 } 821 } 822 823 rcu_read_unlock(); 824 825 return swapped << PAGE_SHIFT; 826 } 827 828 /* 829 * Determine (in bytes) how many of the shmem object's pages mapped by the 830 * given vma is swapped out. 831 * 832 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 833 * as long as the inode doesn't go away and racy results are not a problem. 834 */ 835 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 836 { 837 struct inode *inode = file_inode(vma->vm_file); 838 struct shmem_inode_info *info = SHMEM_I(inode); 839 struct address_space *mapping = inode->i_mapping; 840 unsigned long swapped; 841 842 /* Be careful as we don't hold info->lock */ 843 swapped = READ_ONCE(info->swapped); 844 845 /* 846 * The easier cases are when the shmem object has nothing in swap, or 847 * the vma maps it whole. Then we can simply use the stats that we 848 * already track. 849 */ 850 if (!swapped) 851 return 0; 852 853 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 854 return swapped << PAGE_SHIFT; 855 856 /* Here comes the more involved part */ 857 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 858 vma->vm_pgoff + vma_pages(vma)); 859 } 860 861 /* 862 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 863 */ 864 void shmem_unlock_mapping(struct address_space *mapping) 865 { 866 struct folio_batch fbatch; 867 pgoff_t index = 0; 868 869 folio_batch_init(&fbatch); 870 /* 871 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 872 */ 873 while (!mapping_unevictable(mapping) && 874 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 875 check_move_unevictable_folios(&fbatch); 876 folio_batch_release(&fbatch); 877 cond_resched(); 878 } 879 } 880 881 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 882 { 883 struct folio *folio; 884 885 /* 886 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 887 * beyond i_size, and reports fallocated pages as holes. 888 */ 889 folio = __filemap_get_folio(inode->i_mapping, index, 890 FGP_ENTRY | FGP_LOCK, 0); 891 if (!xa_is_value(folio)) 892 return folio; 893 /* 894 * But read a page back from swap if any of it is within i_size 895 * (although in some cases this is just a waste of time). 896 */ 897 folio = NULL; 898 shmem_get_folio(inode, index, &folio, SGP_READ); 899 return folio; 900 } 901 902 /* 903 * Remove range of pages and swap entries from page cache, and free them. 904 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 905 */ 906 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 907 bool unfalloc) 908 { 909 struct address_space *mapping = inode->i_mapping; 910 struct shmem_inode_info *info = SHMEM_I(inode); 911 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 912 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 913 struct folio_batch fbatch; 914 pgoff_t indices[PAGEVEC_SIZE]; 915 struct folio *folio; 916 bool same_folio; 917 long nr_swaps_freed = 0; 918 pgoff_t index; 919 int i; 920 921 if (lend == -1) 922 end = -1; /* unsigned, so actually very big */ 923 924 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 925 info->fallocend = start; 926 927 folio_batch_init(&fbatch); 928 index = start; 929 while (index < end && find_lock_entries(mapping, &index, end - 1, 930 &fbatch, indices)) { 931 for (i = 0; i < folio_batch_count(&fbatch); i++) { 932 folio = fbatch.folios[i]; 933 934 if (xa_is_value(folio)) { 935 if (unfalloc) 936 continue; 937 nr_swaps_freed += !shmem_free_swap(mapping, 938 indices[i], folio); 939 continue; 940 } 941 942 if (!unfalloc || !folio_test_uptodate(folio)) 943 truncate_inode_folio(mapping, folio); 944 folio_unlock(folio); 945 } 946 folio_batch_remove_exceptionals(&fbatch); 947 folio_batch_release(&fbatch); 948 cond_resched(); 949 } 950 951 /* 952 * When undoing a failed fallocate, we want none of the partial folio 953 * zeroing and splitting below, but shall want to truncate the whole 954 * folio when !uptodate indicates that it was added by this fallocate, 955 * even when [lstart, lend] covers only a part of the folio. 956 */ 957 if (unfalloc) 958 goto whole_folios; 959 960 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 961 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 962 if (folio) { 963 same_folio = lend < folio_pos(folio) + folio_size(folio); 964 folio_mark_dirty(folio); 965 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 966 start = folio->index + folio_nr_pages(folio); 967 if (same_folio) 968 end = folio->index; 969 } 970 folio_unlock(folio); 971 folio_put(folio); 972 folio = NULL; 973 } 974 975 if (!same_folio) 976 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 977 if (folio) { 978 folio_mark_dirty(folio); 979 if (!truncate_inode_partial_folio(folio, lstart, lend)) 980 end = folio->index; 981 folio_unlock(folio); 982 folio_put(folio); 983 } 984 985 whole_folios: 986 987 index = start; 988 while (index < end) { 989 cond_resched(); 990 991 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 992 indices)) { 993 /* If all gone or hole-punch or unfalloc, we're done */ 994 if (index == start || end != -1) 995 break; 996 /* But if truncating, restart to make sure all gone */ 997 index = start; 998 continue; 999 } 1000 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1001 folio = fbatch.folios[i]; 1002 1003 if (xa_is_value(folio)) { 1004 if (unfalloc) 1005 continue; 1006 if (shmem_free_swap(mapping, indices[i], folio)) { 1007 /* Swap was replaced by page: retry */ 1008 index = indices[i]; 1009 break; 1010 } 1011 nr_swaps_freed++; 1012 continue; 1013 } 1014 1015 folio_lock(folio); 1016 1017 if (!unfalloc || !folio_test_uptodate(folio)) { 1018 if (folio_mapping(folio) != mapping) { 1019 /* Page was replaced by swap: retry */ 1020 folio_unlock(folio); 1021 index = indices[i]; 1022 break; 1023 } 1024 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1025 folio); 1026 truncate_inode_folio(mapping, folio); 1027 } 1028 folio_unlock(folio); 1029 } 1030 folio_batch_remove_exceptionals(&fbatch); 1031 folio_batch_release(&fbatch); 1032 } 1033 1034 spin_lock_irq(&info->lock); 1035 info->swapped -= nr_swaps_freed; 1036 shmem_recalc_inode(inode); 1037 spin_unlock_irq(&info->lock); 1038 } 1039 1040 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1041 { 1042 shmem_undo_range(inode, lstart, lend, false); 1043 inode->i_ctime = inode->i_mtime = current_time(inode); 1044 inode_inc_iversion(inode); 1045 } 1046 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1047 1048 static int shmem_getattr(struct mnt_idmap *idmap, 1049 const struct path *path, struct kstat *stat, 1050 u32 request_mask, unsigned int query_flags) 1051 { 1052 struct inode *inode = path->dentry->d_inode; 1053 struct shmem_inode_info *info = SHMEM_I(inode); 1054 1055 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1056 spin_lock_irq(&info->lock); 1057 shmem_recalc_inode(inode); 1058 spin_unlock_irq(&info->lock); 1059 } 1060 if (info->fsflags & FS_APPEND_FL) 1061 stat->attributes |= STATX_ATTR_APPEND; 1062 if (info->fsflags & FS_IMMUTABLE_FL) 1063 stat->attributes |= STATX_ATTR_IMMUTABLE; 1064 if (info->fsflags & FS_NODUMP_FL) 1065 stat->attributes |= STATX_ATTR_NODUMP; 1066 stat->attributes_mask |= (STATX_ATTR_APPEND | 1067 STATX_ATTR_IMMUTABLE | 1068 STATX_ATTR_NODUMP); 1069 generic_fillattr(idmap, inode, stat); 1070 1071 if (shmem_is_huge(NULL, inode, 0, false)) 1072 stat->blksize = HPAGE_PMD_SIZE; 1073 1074 if (request_mask & STATX_BTIME) { 1075 stat->result_mask |= STATX_BTIME; 1076 stat->btime.tv_sec = info->i_crtime.tv_sec; 1077 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1078 } 1079 1080 return 0; 1081 } 1082 1083 static int shmem_setattr(struct mnt_idmap *idmap, 1084 struct dentry *dentry, struct iattr *attr) 1085 { 1086 struct inode *inode = d_inode(dentry); 1087 struct shmem_inode_info *info = SHMEM_I(inode); 1088 int error; 1089 bool update_mtime = false; 1090 bool update_ctime = true; 1091 1092 error = setattr_prepare(idmap, dentry, attr); 1093 if (error) 1094 return error; 1095 1096 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1097 loff_t oldsize = inode->i_size; 1098 loff_t newsize = attr->ia_size; 1099 1100 /* protected by i_rwsem */ 1101 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1102 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1103 return -EPERM; 1104 1105 if (newsize != oldsize) { 1106 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1107 oldsize, newsize); 1108 if (error) 1109 return error; 1110 i_size_write(inode, newsize); 1111 update_mtime = true; 1112 } else { 1113 update_ctime = false; 1114 } 1115 if (newsize <= oldsize) { 1116 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1117 if (oldsize > holebegin) 1118 unmap_mapping_range(inode->i_mapping, 1119 holebegin, 0, 1); 1120 if (info->alloced) 1121 shmem_truncate_range(inode, 1122 newsize, (loff_t)-1); 1123 /* unmap again to remove racily COWed private pages */ 1124 if (oldsize > holebegin) 1125 unmap_mapping_range(inode->i_mapping, 1126 holebegin, 0, 1); 1127 } 1128 } 1129 1130 setattr_copy(idmap, inode, attr); 1131 if (attr->ia_valid & ATTR_MODE) 1132 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1133 if (!error && update_ctime) { 1134 inode->i_ctime = current_time(inode); 1135 if (update_mtime) 1136 inode->i_mtime = inode->i_ctime; 1137 inode_inc_iversion(inode); 1138 } 1139 return error; 1140 } 1141 1142 static void shmem_evict_inode(struct inode *inode) 1143 { 1144 struct shmem_inode_info *info = SHMEM_I(inode); 1145 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1146 1147 if (shmem_mapping(inode->i_mapping)) { 1148 shmem_unacct_size(info->flags, inode->i_size); 1149 inode->i_size = 0; 1150 mapping_set_exiting(inode->i_mapping); 1151 shmem_truncate_range(inode, 0, (loff_t)-1); 1152 if (!list_empty(&info->shrinklist)) { 1153 spin_lock(&sbinfo->shrinklist_lock); 1154 if (!list_empty(&info->shrinklist)) { 1155 list_del_init(&info->shrinklist); 1156 sbinfo->shrinklist_len--; 1157 } 1158 spin_unlock(&sbinfo->shrinklist_lock); 1159 } 1160 while (!list_empty(&info->swaplist)) { 1161 /* Wait while shmem_unuse() is scanning this inode... */ 1162 wait_var_event(&info->stop_eviction, 1163 !atomic_read(&info->stop_eviction)); 1164 mutex_lock(&shmem_swaplist_mutex); 1165 /* ...but beware of the race if we peeked too early */ 1166 if (!atomic_read(&info->stop_eviction)) 1167 list_del_init(&info->swaplist); 1168 mutex_unlock(&shmem_swaplist_mutex); 1169 } 1170 } 1171 1172 simple_xattrs_free(&info->xattrs); 1173 WARN_ON(inode->i_blocks); 1174 shmem_free_inode(inode->i_sb); 1175 clear_inode(inode); 1176 } 1177 1178 static int shmem_find_swap_entries(struct address_space *mapping, 1179 pgoff_t start, struct folio_batch *fbatch, 1180 pgoff_t *indices, unsigned int type) 1181 { 1182 XA_STATE(xas, &mapping->i_pages, start); 1183 struct folio *folio; 1184 swp_entry_t entry; 1185 1186 rcu_read_lock(); 1187 xas_for_each(&xas, folio, ULONG_MAX) { 1188 if (xas_retry(&xas, folio)) 1189 continue; 1190 1191 if (!xa_is_value(folio)) 1192 continue; 1193 1194 entry = radix_to_swp_entry(folio); 1195 /* 1196 * swapin error entries can be found in the mapping. But they're 1197 * deliberately ignored here as we've done everything we can do. 1198 */ 1199 if (swp_type(entry) != type) 1200 continue; 1201 1202 indices[folio_batch_count(fbatch)] = xas.xa_index; 1203 if (!folio_batch_add(fbatch, folio)) 1204 break; 1205 1206 if (need_resched()) { 1207 xas_pause(&xas); 1208 cond_resched_rcu(); 1209 } 1210 } 1211 rcu_read_unlock(); 1212 1213 return xas.xa_index; 1214 } 1215 1216 /* 1217 * Move the swapped pages for an inode to page cache. Returns the count 1218 * of pages swapped in, or the error in case of failure. 1219 */ 1220 static int shmem_unuse_swap_entries(struct inode *inode, 1221 struct folio_batch *fbatch, pgoff_t *indices) 1222 { 1223 int i = 0; 1224 int ret = 0; 1225 int error = 0; 1226 struct address_space *mapping = inode->i_mapping; 1227 1228 for (i = 0; i < folio_batch_count(fbatch); i++) { 1229 struct folio *folio = fbatch->folios[i]; 1230 1231 if (!xa_is_value(folio)) 1232 continue; 1233 error = shmem_swapin_folio(inode, indices[i], 1234 &folio, SGP_CACHE, 1235 mapping_gfp_mask(mapping), 1236 NULL, NULL); 1237 if (error == 0) { 1238 folio_unlock(folio); 1239 folio_put(folio); 1240 ret++; 1241 } 1242 if (error == -ENOMEM) 1243 break; 1244 error = 0; 1245 } 1246 return error ? error : ret; 1247 } 1248 1249 /* 1250 * If swap found in inode, free it and move page from swapcache to filecache. 1251 */ 1252 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1253 { 1254 struct address_space *mapping = inode->i_mapping; 1255 pgoff_t start = 0; 1256 struct folio_batch fbatch; 1257 pgoff_t indices[PAGEVEC_SIZE]; 1258 int ret = 0; 1259 1260 do { 1261 folio_batch_init(&fbatch); 1262 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1263 if (folio_batch_count(&fbatch) == 0) { 1264 ret = 0; 1265 break; 1266 } 1267 1268 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1269 if (ret < 0) 1270 break; 1271 1272 start = indices[folio_batch_count(&fbatch) - 1]; 1273 } while (true); 1274 1275 return ret; 1276 } 1277 1278 /* 1279 * Read all the shared memory data that resides in the swap 1280 * device 'type' back into memory, so the swap device can be 1281 * unused. 1282 */ 1283 int shmem_unuse(unsigned int type) 1284 { 1285 struct shmem_inode_info *info, *next; 1286 int error = 0; 1287 1288 if (list_empty(&shmem_swaplist)) 1289 return 0; 1290 1291 mutex_lock(&shmem_swaplist_mutex); 1292 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1293 if (!info->swapped) { 1294 list_del_init(&info->swaplist); 1295 continue; 1296 } 1297 /* 1298 * Drop the swaplist mutex while searching the inode for swap; 1299 * but before doing so, make sure shmem_evict_inode() will not 1300 * remove placeholder inode from swaplist, nor let it be freed 1301 * (igrab() would protect from unlink, but not from unmount). 1302 */ 1303 atomic_inc(&info->stop_eviction); 1304 mutex_unlock(&shmem_swaplist_mutex); 1305 1306 error = shmem_unuse_inode(&info->vfs_inode, type); 1307 cond_resched(); 1308 1309 mutex_lock(&shmem_swaplist_mutex); 1310 next = list_next_entry(info, swaplist); 1311 if (!info->swapped) 1312 list_del_init(&info->swaplist); 1313 if (atomic_dec_and_test(&info->stop_eviction)) 1314 wake_up_var(&info->stop_eviction); 1315 if (error) 1316 break; 1317 } 1318 mutex_unlock(&shmem_swaplist_mutex); 1319 1320 return error; 1321 } 1322 1323 /* 1324 * Move the page from the page cache to the swap cache. 1325 */ 1326 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1327 { 1328 struct folio *folio = page_folio(page); 1329 struct shmem_inode_info *info; 1330 struct address_space *mapping; 1331 struct inode *inode; 1332 swp_entry_t swap; 1333 pgoff_t index; 1334 1335 /* 1336 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1337 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1338 * and its shmem_writeback() needs them to be split when swapping. 1339 */ 1340 if (folio_test_large(folio)) { 1341 /* Ensure the subpages are still dirty */ 1342 folio_test_set_dirty(folio); 1343 if (split_huge_page(page) < 0) 1344 goto redirty; 1345 folio = page_folio(page); 1346 folio_clear_dirty(folio); 1347 } 1348 1349 BUG_ON(!folio_test_locked(folio)); 1350 mapping = folio->mapping; 1351 index = folio->index; 1352 inode = mapping->host; 1353 info = SHMEM_I(inode); 1354 if (info->flags & VM_LOCKED) 1355 goto redirty; 1356 if (!total_swap_pages) 1357 goto redirty; 1358 1359 /* 1360 * Our capabilities prevent regular writeback or sync from ever calling 1361 * shmem_writepage; but a stacking filesystem might use ->writepage of 1362 * its underlying filesystem, in which case tmpfs should write out to 1363 * swap only in response to memory pressure, and not for the writeback 1364 * threads or sync. 1365 */ 1366 if (!wbc->for_reclaim) { 1367 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1368 goto redirty; 1369 } 1370 1371 /* 1372 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1373 * value into swapfile.c, the only way we can correctly account for a 1374 * fallocated folio arriving here is now to initialize it and write it. 1375 * 1376 * That's okay for a folio already fallocated earlier, but if we have 1377 * not yet completed the fallocation, then (a) we want to keep track 1378 * of this folio in case we have to undo it, and (b) it may not be a 1379 * good idea to continue anyway, once we're pushing into swap. So 1380 * reactivate the folio, and let shmem_fallocate() quit when too many. 1381 */ 1382 if (!folio_test_uptodate(folio)) { 1383 if (inode->i_private) { 1384 struct shmem_falloc *shmem_falloc; 1385 spin_lock(&inode->i_lock); 1386 shmem_falloc = inode->i_private; 1387 if (shmem_falloc && 1388 !shmem_falloc->waitq && 1389 index >= shmem_falloc->start && 1390 index < shmem_falloc->next) 1391 shmem_falloc->nr_unswapped++; 1392 else 1393 shmem_falloc = NULL; 1394 spin_unlock(&inode->i_lock); 1395 if (shmem_falloc) 1396 goto redirty; 1397 } 1398 folio_zero_range(folio, 0, folio_size(folio)); 1399 flush_dcache_folio(folio); 1400 folio_mark_uptodate(folio); 1401 } 1402 1403 swap = folio_alloc_swap(folio); 1404 if (!swap.val) 1405 goto redirty; 1406 1407 /* 1408 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1409 * if it's not already there. Do it now before the folio is 1410 * moved to swap cache, when its pagelock no longer protects 1411 * the inode from eviction. But don't unlock the mutex until 1412 * we've incremented swapped, because shmem_unuse_inode() will 1413 * prune a !swapped inode from the swaplist under this mutex. 1414 */ 1415 mutex_lock(&shmem_swaplist_mutex); 1416 if (list_empty(&info->swaplist)) 1417 list_add(&info->swaplist, &shmem_swaplist); 1418 1419 if (add_to_swap_cache(folio, swap, 1420 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1421 NULL) == 0) { 1422 spin_lock_irq(&info->lock); 1423 shmem_recalc_inode(inode); 1424 info->swapped++; 1425 spin_unlock_irq(&info->lock); 1426 1427 swap_shmem_alloc(swap); 1428 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1429 1430 mutex_unlock(&shmem_swaplist_mutex); 1431 BUG_ON(folio_mapped(folio)); 1432 swap_writepage(&folio->page, wbc); 1433 return 0; 1434 } 1435 1436 mutex_unlock(&shmem_swaplist_mutex); 1437 put_swap_folio(folio, swap); 1438 redirty: 1439 folio_mark_dirty(folio); 1440 if (wbc->for_reclaim) 1441 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1442 folio_unlock(folio); 1443 return 0; 1444 } 1445 1446 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1447 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1448 { 1449 char buffer[64]; 1450 1451 if (!mpol || mpol->mode == MPOL_DEFAULT) 1452 return; /* show nothing */ 1453 1454 mpol_to_str(buffer, sizeof(buffer), mpol); 1455 1456 seq_printf(seq, ",mpol=%s", buffer); 1457 } 1458 1459 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1460 { 1461 struct mempolicy *mpol = NULL; 1462 if (sbinfo->mpol) { 1463 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1464 mpol = sbinfo->mpol; 1465 mpol_get(mpol); 1466 raw_spin_unlock(&sbinfo->stat_lock); 1467 } 1468 return mpol; 1469 } 1470 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1471 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1472 { 1473 } 1474 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1475 { 1476 return NULL; 1477 } 1478 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1479 #ifndef CONFIG_NUMA 1480 #define vm_policy vm_private_data 1481 #endif 1482 1483 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1484 struct shmem_inode_info *info, pgoff_t index) 1485 { 1486 /* Create a pseudo vma that just contains the policy */ 1487 vma_init(vma, NULL); 1488 /* Bias interleave by inode number to distribute better across nodes */ 1489 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1490 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1491 } 1492 1493 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1494 { 1495 /* Drop reference taken by mpol_shared_policy_lookup() */ 1496 mpol_cond_put(vma->vm_policy); 1497 } 1498 1499 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1500 struct shmem_inode_info *info, pgoff_t index) 1501 { 1502 struct vm_area_struct pvma; 1503 struct page *page; 1504 struct vm_fault vmf = { 1505 .vma = &pvma, 1506 }; 1507 1508 shmem_pseudo_vma_init(&pvma, info, index); 1509 page = swap_cluster_readahead(swap, gfp, &vmf); 1510 shmem_pseudo_vma_destroy(&pvma); 1511 1512 if (!page) 1513 return NULL; 1514 return page_folio(page); 1515 } 1516 1517 /* 1518 * Make sure huge_gfp is always more limited than limit_gfp. 1519 * Some of the flags set permissions, while others set limitations. 1520 */ 1521 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1522 { 1523 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1524 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1525 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1526 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1527 1528 /* Allow allocations only from the originally specified zones. */ 1529 result |= zoneflags; 1530 1531 /* 1532 * Minimize the result gfp by taking the union with the deny flags, 1533 * and the intersection of the allow flags. 1534 */ 1535 result |= (limit_gfp & denyflags); 1536 result |= (huge_gfp & limit_gfp) & allowflags; 1537 1538 return result; 1539 } 1540 1541 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1542 struct shmem_inode_info *info, pgoff_t index) 1543 { 1544 struct vm_area_struct pvma; 1545 struct address_space *mapping = info->vfs_inode.i_mapping; 1546 pgoff_t hindex; 1547 struct folio *folio; 1548 1549 hindex = round_down(index, HPAGE_PMD_NR); 1550 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1551 XA_PRESENT)) 1552 return NULL; 1553 1554 shmem_pseudo_vma_init(&pvma, info, hindex); 1555 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1556 shmem_pseudo_vma_destroy(&pvma); 1557 if (!folio) 1558 count_vm_event(THP_FILE_FALLBACK); 1559 return folio; 1560 } 1561 1562 static struct folio *shmem_alloc_folio(gfp_t gfp, 1563 struct shmem_inode_info *info, pgoff_t index) 1564 { 1565 struct vm_area_struct pvma; 1566 struct folio *folio; 1567 1568 shmem_pseudo_vma_init(&pvma, info, index); 1569 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false); 1570 shmem_pseudo_vma_destroy(&pvma); 1571 1572 return folio; 1573 } 1574 1575 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode, 1576 pgoff_t index, bool huge) 1577 { 1578 struct shmem_inode_info *info = SHMEM_I(inode); 1579 struct folio *folio; 1580 int nr; 1581 int err = -ENOSPC; 1582 1583 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1584 huge = false; 1585 nr = huge ? HPAGE_PMD_NR : 1; 1586 1587 if (!shmem_inode_acct_block(inode, nr)) 1588 goto failed; 1589 1590 if (huge) 1591 folio = shmem_alloc_hugefolio(gfp, info, index); 1592 else 1593 folio = shmem_alloc_folio(gfp, info, index); 1594 if (folio) { 1595 __folio_set_locked(folio); 1596 __folio_set_swapbacked(folio); 1597 return folio; 1598 } 1599 1600 err = -ENOMEM; 1601 shmem_inode_unacct_blocks(inode, nr); 1602 failed: 1603 return ERR_PTR(err); 1604 } 1605 1606 /* 1607 * When a page is moved from swapcache to shmem filecache (either by the 1608 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1609 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1610 * ignorance of the mapping it belongs to. If that mapping has special 1611 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1612 * we may need to copy to a suitable page before moving to filecache. 1613 * 1614 * In a future release, this may well be extended to respect cpuset and 1615 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1616 * but for now it is a simple matter of zone. 1617 */ 1618 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1619 { 1620 return folio_zonenum(folio) > gfp_zone(gfp); 1621 } 1622 1623 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1624 struct shmem_inode_info *info, pgoff_t index) 1625 { 1626 struct folio *old, *new; 1627 struct address_space *swap_mapping; 1628 swp_entry_t entry; 1629 pgoff_t swap_index; 1630 int error; 1631 1632 old = *foliop; 1633 entry = folio_swap_entry(old); 1634 swap_index = swp_offset(entry); 1635 swap_mapping = swap_address_space(entry); 1636 1637 /* 1638 * We have arrived here because our zones are constrained, so don't 1639 * limit chance of success by further cpuset and node constraints. 1640 */ 1641 gfp &= ~GFP_CONSTRAINT_MASK; 1642 VM_BUG_ON_FOLIO(folio_test_large(old), old); 1643 new = shmem_alloc_folio(gfp, info, index); 1644 if (!new) 1645 return -ENOMEM; 1646 1647 folio_get(new); 1648 folio_copy(new, old); 1649 flush_dcache_folio(new); 1650 1651 __folio_set_locked(new); 1652 __folio_set_swapbacked(new); 1653 folio_mark_uptodate(new); 1654 folio_set_swap_entry(new, entry); 1655 folio_set_swapcache(new); 1656 1657 /* 1658 * Our caller will very soon move newpage out of swapcache, but it's 1659 * a nice clean interface for us to replace oldpage by newpage there. 1660 */ 1661 xa_lock_irq(&swap_mapping->i_pages); 1662 error = shmem_replace_entry(swap_mapping, swap_index, old, new); 1663 if (!error) { 1664 mem_cgroup_migrate(old, new); 1665 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1); 1666 __lruvec_stat_mod_folio(new, NR_SHMEM, 1); 1667 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1); 1668 __lruvec_stat_mod_folio(old, NR_SHMEM, -1); 1669 } 1670 xa_unlock_irq(&swap_mapping->i_pages); 1671 1672 if (unlikely(error)) { 1673 /* 1674 * Is this possible? I think not, now that our callers check 1675 * both PageSwapCache and page_private after getting page lock; 1676 * but be defensive. Reverse old to newpage for clear and free. 1677 */ 1678 old = new; 1679 } else { 1680 folio_add_lru(new); 1681 *foliop = new; 1682 } 1683 1684 folio_clear_swapcache(old); 1685 old->private = NULL; 1686 1687 folio_unlock(old); 1688 folio_put_refs(old, 2); 1689 return error; 1690 } 1691 1692 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1693 struct folio *folio, swp_entry_t swap) 1694 { 1695 struct address_space *mapping = inode->i_mapping; 1696 struct shmem_inode_info *info = SHMEM_I(inode); 1697 swp_entry_t swapin_error; 1698 void *old; 1699 1700 swapin_error = make_swapin_error_entry(); 1701 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1702 swp_to_radix_entry(swap), 1703 swp_to_radix_entry(swapin_error), 0); 1704 if (old != swp_to_radix_entry(swap)) 1705 return; 1706 1707 folio_wait_writeback(folio); 1708 delete_from_swap_cache(folio); 1709 spin_lock_irq(&info->lock); 1710 /* 1711 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't 1712 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in 1713 * shmem_evict_inode. 1714 */ 1715 info->alloced--; 1716 info->swapped--; 1717 shmem_recalc_inode(inode); 1718 spin_unlock_irq(&info->lock); 1719 swap_free(swap); 1720 } 1721 1722 /* 1723 * Swap in the folio pointed to by *foliop. 1724 * Caller has to make sure that *foliop contains a valid swapped folio. 1725 * Returns 0 and the folio in foliop if success. On failure, returns the 1726 * error code and NULL in *foliop. 1727 */ 1728 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1729 struct folio **foliop, enum sgp_type sgp, 1730 gfp_t gfp, struct vm_area_struct *vma, 1731 vm_fault_t *fault_type) 1732 { 1733 struct address_space *mapping = inode->i_mapping; 1734 struct shmem_inode_info *info = SHMEM_I(inode); 1735 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1736 struct folio *folio = NULL; 1737 swp_entry_t swap; 1738 int error; 1739 1740 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1741 swap = radix_to_swp_entry(*foliop); 1742 *foliop = NULL; 1743 1744 if (is_swapin_error_entry(swap)) 1745 return -EIO; 1746 1747 /* Look it up and read it in.. */ 1748 folio = swap_cache_get_folio(swap, NULL, 0); 1749 if (!folio) { 1750 /* Or update major stats only when swapin succeeds?? */ 1751 if (fault_type) { 1752 *fault_type |= VM_FAULT_MAJOR; 1753 count_vm_event(PGMAJFAULT); 1754 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1755 } 1756 /* Here we actually start the io */ 1757 folio = shmem_swapin(swap, gfp, info, index); 1758 if (!folio) { 1759 error = -ENOMEM; 1760 goto failed; 1761 } 1762 } 1763 1764 /* We have to do this with folio locked to prevent races */ 1765 folio_lock(folio); 1766 if (!folio_test_swapcache(folio) || 1767 folio_swap_entry(folio).val != swap.val || 1768 !shmem_confirm_swap(mapping, index, swap)) { 1769 error = -EEXIST; 1770 goto unlock; 1771 } 1772 if (!folio_test_uptodate(folio)) { 1773 error = -EIO; 1774 goto failed; 1775 } 1776 folio_wait_writeback(folio); 1777 1778 /* 1779 * Some architectures may have to restore extra metadata to the 1780 * folio after reading from swap. 1781 */ 1782 arch_swap_restore(swap, folio); 1783 1784 if (shmem_should_replace_folio(folio, gfp)) { 1785 error = shmem_replace_folio(&folio, gfp, info, index); 1786 if (error) 1787 goto failed; 1788 } 1789 1790 error = shmem_add_to_page_cache(folio, mapping, index, 1791 swp_to_radix_entry(swap), gfp, 1792 charge_mm); 1793 if (error) 1794 goto failed; 1795 1796 spin_lock_irq(&info->lock); 1797 info->swapped--; 1798 shmem_recalc_inode(inode); 1799 spin_unlock_irq(&info->lock); 1800 1801 if (sgp == SGP_WRITE) 1802 folio_mark_accessed(folio); 1803 1804 delete_from_swap_cache(folio); 1805 folio_mark_dirty(folio); 1806 swap_free(swap); 1807 1808 *foliop = folio; 1809 return 0; 1810 failed: 1811 if (!shmem_confirm_swap(mapping, index, swap)) 1812 error = -EEXIST; 1813 if (error == -EIO) 1814 shmem_set_folio_swapin_error(inode, index, folio, swap); 1815 unlock: 1816 if (folio) { 1817 folio_unlock(folio); 1818 folio_put(folio); 1819 } 1820 1821 return error; 1822 } 1823 1824 /* 1825 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 1826 * 1827 * If we allocate a new one we do not mark it dirty. That's up to the 1828 * vm. If we swap it in we mark it dirty since we also free the swap 1829 * entry since a page cannot live in both the swap and page cache. 1830 * 1831 * vma, vmf, and fault_type are only supplied by shmem_fault: 1832 * otherwise they are NULL. 1833 */ 1834 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 1835 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 1836 struct vm_area_struct *vma, struct vm_fault *vmf, 1837 vm_fault_t *fault_type) 1838 { 1839 struct address_space *mapping = inode->i_mapping; 1840 struct shmem_inode_info *info = SHMEM_I(inode); 1841 struct shmem_sb_info *sbinfo; 1842 struct mm_struct *charge_mm; 1843 struct folio *folio; 1844 pgoff_t hindex; 1845 gfp_t huge_gfp; 1846 int error; 1847 int once = 0; 1848 int alloced = 0; 1849 1850 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1851 return -EFBIG; 1852 repeat: 1853 if (sgp <= SGP_CACHE && 1854 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1855 return -EINVAL; 1856 } 1857 1858 sbinfo = SHMEM_SB(inode->i_sb); 1859 charge_mm = vma ? vma->vm_mm : NULL; 1860 1861 folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0); 1862 if (folio && vma && userfaultfd_minor(vma)) { 1863 if (!xa_is_value(folio)) { 1864 folio_unlock(folio); 1865 folio_put(folio); 1866 } 1867 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1868 return 0; 1869 } 1870 1871 if (xa_is_value(folio)) { 1872 error = shmem_swapin_folio(inode, index, &folio, 1873 sgp, gfp, vma, fault_type); 1874 if (error == -EEXIST) 1875 goto repeat; 1876 1877 *foliop = folio; 1878 return error; 1879 } 1880 1881 if (folio) { 1882 if (sgp == SGP_WRITE) 1883 folio_mark_accessed(folio); 1884 if (folio_test_uptodate(folio)) 1885 goto out; 1886 /* fallocated folio */ 1887 if (sgp != SGP_READ) 1888 goto clear; 1889 folio_unlock(folio); 1890 folio_put(folio); 1891 } 1892 1893 /* 1894 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 1895 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 1896 */ 1897 *foliop = NULL; 1898 if (sgp == SGP_READ) 1899 return 0; 1900 if (sgp == SGP_NOALLOC) 1901 return -ENOENT; 1902 1903 /* 1904 * Fast cache lookup and swap lookup did not find it: allocate. 1905 */ 1906 1907 if (vma && userfaultfd_missing(vma)) { 1908 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1909 return 0; 1910 } 1911 1912 if (!shmem_is_huge(vma, inode, index, false)) 1913 goto alloc_nohuge; 1914 1915 huge_gfp = vma_thp_gfp_mask(vma); 1916 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 1917 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true); 1918 if (IS_ERR(folio)) { 1919 alloc_nohuge: 1920 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false); 1921 } 1922 if (IS_ERR(folio)) { 1923 int retry = 5; 1924 1925 error = PTR_ERR(folio); 1926 folio = NULL; 1927 if (error != -ENOSPC) 1928 goto unlock; 1929 /* 1930 * Try to reclaim some space by splitting a large folio 1931 * beyond i_size on the filesystem. 1932 */ 1933 while (retry--) { 1934 int ret; 1935 1936 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1937 if (ret == SHRINK_STOP) 1938 break; 1939 if (ret) 1940 goto alloc_nohuge; 1941 } 1942 goto unlock; 1943 } 1944 1945 hindex = round_down(index, folio_nr_pages(folio)); 1946 1947 if (sgp == SGP_WRITE) 1948 __folio_set_referenced(folio); 1949 1950 error = shmem_add_to_page_cache(folio, mapping, hindex, 1951 NULL, gfp & GFP_RECLAIM_MASK, 1952 charge_mm); 1953 if (error) 1954 goto unacct; 1955 folio_add_lru(folio); 1956 1957 spin_lock_irq(&info->lock); 1958 info->alloced += folio_nr_pages(folio); 1959 inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio); 1960 shmem_recalc_inode(inode); 1961 spin_unlock_irq(&info->lock); 1962 alloced = true; 1963 1964 if (folio_test_pmd_mappable(folio) && 1965 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1966 folio_next_index(folio) - 1) { 1967 /* 1968 * Part of the large folio is beyond i_size: subject 1969 * to shrink under memory pressure. 1970 */ 1971 spin_lock(&sbinfo->shrinklist_lock); 1972 /* 1973 * _careful to defend against unlocked access to 1974 * ->shrink_list in shmem_unused_huge_shrink() 1975 */ 1976 if (list_empty_careful(&info->shrinklist)) { 1977 list_add_tail(&info->shrinklist, 1978 &sbinfo->shrinklist); 1979 sbinfo->shrinklist_len++; 1980 } 1981 spin_unlock(&sbinfo->shrinklist_lock); 1982 } 1983 1984 /* 1985 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 1986 */ 1987 if (sgp == SGP_FALLOC) 1988 sgp = SGP_WRITE; 1989 clear: 1990 /* 1991 * Let SGP_WRITE caller clear ends if write does not fill folio; 1992 * but SGP_FALLOC on a folio fallocated earlier must initialize 1993 * it now, lest undo on failure cancel our earlier guarantee. 1994 */ 1995 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 1996 long i, n = folio_nr_pages(folio); 1997 1998 for (i = 0; i < n; i++) 1999 clear_highpage(folio_page(folio, i)); 2000 flush_dcache_folio(folio); 2001 folio_mark_uptodate(folio); 2002 } 2003 2004 /* Perhaps the file has been truncated since we checked */ 2005 if (sgp <= SGP_CACHE && 2006 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2007 if (alloced) { 2008 folio_clear_dirty(folio); 2009 filemap_remove_folio(folio); 2010 spin_lock_irq(&info->lock); 2011 shmem_recalc_inode(inode); 2012 spin_unlock_irq(&info->lock); 2013 } 2014 error = -EINVAL; 2015 goto unlock; 2016 } 2017 out: 2018 *foliop = folio; 2019 return 0; 2020 2021 /* 2022 * Error recovery. 2023 */ 2024 unacct: 2025 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio)); 2026 2027 if (folio_test_large(folio)) { 2028 folio_unlock(folio); 2029 folio_put(folio); 2030 goto alloc_nohuge; 2031 } 2032 unlock: 2033 if (folio) { 2034 folio_unlock(folio); 2035 folio_put(folio); 2036 } 2037 if (error == -ENOSPC && !once++) { 2038 spin_lock_irq(&info->lock); 2039 shmem_recalc_inode(inode); 2040 spin_unlock_irq(&info->lock); 2041 goto repeat; 2042 } 2043 if (error == -EEXIST) 2044 goto repeat; 2045 return error; 2046 } 2047 2048 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop, 2049 enum sgp_type sgp) 2050 { 2051 return shmem_get_folio_gfp(inode, index, foliop, sgp, 2052 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 2053 } 2054 2055 /* 2056 * This is like autoremove_wake_function, but it removes the wait queue 2057 * entry unconditionally - even if something else had already woken the 2058 * target. 2059 */ 2060 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2061 { 2062 int ret = default_wake_function(wait, mode, sync, key); 2063 list_del_init(&wait->entry); 2064 return ret; 2065 } 2066 2067 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2068 { 2069 struct vm_area_struct *vma = vmf->vma; 2070 struct inode *inode = file_inode(vma->vm_file); 2071 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2072 struct folio *folio = NULL; 2073 int err; 2074 vm_fault_t ret = VM_FAULT_LOCKED; 2075 2076 /* 2077 * Trinity finds that probing a hole which tmpfs is punching can 2078 * prevent the hole-punch from ever completing: which in turn 2079 * locks writers out with its hold on i_rwsem. So refrain from 2080 * faulting pages into the hole while it's being punched. Although 2081 * shmem_undo_range() does remove the additions, it may be unable to 2082 * keep up, as each new page needs its own unmap_mapping_range() call, 2083 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2084 * 2085 * It does not matter if we sometimes reach this check just before the 2086 * hole-punch begins, so that one fault then races with the punch: 2087 * we just need to make racing faults a rare case. 2088 * 2089 * The implementation below would be much simpler if we just used a 2090 * standard mutex or completion: but we cannot take i_rwsem in fault, 2091 * and bloating every shmem inode for this unlikely case would be sad. 2092 */ 2093 if (unlikely(inode->i_private)) { 2094 struct shmem_falloc *shmem_falloc; 2095 2096 spin_lock(&inode->i_lock); 2097 shmem_falloc = inode->i_private; 2098 if (shmem_falloc && 2099 shmem_falloc->waitq && 2100 vmf->pgoff >= shmem_falloc->start && 2101 vmf->pgoff < shmem_falloc->next) { 2102 struct file *fpin; 2103 wait_queue_head_t *shmem_falloc_waitq; 2104 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2105 2106 ret = VM_FAULT_NOPAGE; 2107 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2108 if (fpin) 2109 ret = VM_FAULT_RETRY; 2110 2111 shmem_falloc_waitq = shmem_falloc->waitq; 2112 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2113 TASK_UNINTERRUPTIBLE); 2114 spin_unlock(&inode->i_lock); 2115 schedule(); 2116 2117 /* 2118 * shmem_falloc_waitq points into the shmem_fallocate() 2119 * stack of the hole-punching task: shmem_falloc_waitq 2120 * is usually invalid by the time we reach here, but 2121 * finish_wait() does not dereference it in that case; 2122 * though i_lock needed lest racing with wake_up_all(). 2123 */ 2124 spin_lock(&inode->i_lock); 2125 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2126 spin_unlock(&inode->i_lock); 2127 2128 if (fpin) 2129 fput(fpin); 2130 return ret; 2131 } 2132 spin_unlock(&inode->i_lock); 2133 } 2134 2135 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, 2136 gfp, vma, vmf, &ret); 2137 if (err) 2138 return vmf_error(err); 2139 if (folio) 2140 vmf->page = folio_file_page(folio, vmf->pgoff); 2141 return ret; 2142 } 2143 2144 unsigned long shmem_get_unmapped_area(struct file *file, 2145 unsigned long uaddr, unsigned long len, 2146 unsigned long pgoff, unsigned long flags) 2147 { 2148 unsigned long (*get_area)(struct file *, 2149 unsigned long, unsigned long, unsigned long, unsigned long); 2150 unsigned long addr; 2151 unsigned long offset; 2152 unsigned long inflated_len; 2153 unsigned long inflated_addr; 2154 unsigned long inflated_offset; 2155 2156 if (len > TASK_SIZE) 2157 return -ENOMEM; 2158 2159 get_area = current->mm->get_unmapped_area; 2160 addr = get_area(file, uaddr, len, pgoff, flags); 2161 2162 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2163 return addr; 2164 if (IS_ERR_VALUE(addr)) 2165 return addr; 2166 if (addr & ~PAGE_MASK) 2167 return addr; 2168 if (addr > TASK_SIZE - len) 2169 return addr; 2170 2171 if (shmem_huge == SHMEM_HUGE_DENY) 2172 return addr; 2173 if (len < HPAGE_PMD_SIZE) 2174 return addr; 2175 if (flags & MAP_FIXED) 2176 return addr; 2177 /* 2178 * Our priority is to support MAP_SHARED mapped hugely; 2179 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2180 * But if caller specified an address hint and we allocated area there 2181 * successfully, respect that as before. 2182 */ 2183 if (uaddr == addr) 2184 return addr; 2185 2186 if (shmem_huge != SHMEM_HUGE_FORCE) { 2187 struct super_block *sb; 2188 2189 if (file) { 2190 VM_BUG_ON(file->f_op != &shmem_file_operations); 2191 sb = file_inode(file)->i_sb; 2192 } else { 2193 /* 2194 * Called directly from mm/mmap.c, or drivers/char/mem.c 2195 * for "/dev/zero", to create a shared anonymous object. 2196 */ 2197 if (IS_ERR(shm_mnt)) 2198 return addr; 2199 sb = shm_mnt->mnt_sb; 2200 } 2201 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2202 return addr; 2203 } 2204 2205 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2206 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2207 return addr; 2208 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2209 return addr; 2210 2211 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2212 if (inflated_len > TASK_SIZE) 2213 return addr; 2214 if (inflated_len < len) 2215 return addr; 2216 2217 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2218 if (IS_ERR_VALUE(inflated_addr)) 2219 return addr; 2220 if (inflated_addr & ~PAGE_MASK) 2221 return addr; 2222 2223 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2224 inflated_addr += offset - inflated_offset; 2225 if (inflated_offset > offset) 2226 inflated_addr += HPAGE_PMD_SIZE; 2227 2228 if (inflated_addr > TASK_SIZE - len) 2229 return addr; 2230 return inflated_addr; 2231 } 2232 2233 #ifdef CONFIG_NUMA 2234 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2235 { 2236 struct inode *inode = file_inode(vma->vm_file); 2237 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2238 } 2239 2240 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2241 unsigned long addr) 2242 { 2243 struct inode *inode = file_inode(vma->vm_file); 2244 pgoff_t index; 2245 2246 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2247 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2248 } 2249 #endif 2250 2251 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2252 { 2253 struct inode *inode = file_inode(file); 2254 struct shmem_inode_info *info = SHMEM_I(inode); 2255 int retval = -ENOMEM; 2256 2257 /* 2258 * What serializes the accesses to info->flags? 2259 * ipc_lock_object() when called from shmctl_do_lock(), 2260 * no serialization needed when called from shm_destroy(). 2261 */ 2262 if (lock && !(info->flags & VM_LOCKED)) { 2263 if (!user_shm_lock(inode->i_size, ucounts)) 2264 goto out_nomem; 2265 info->flags |= VM_LOCKED; 2266 mapping_set_unevictable(file->f_mapping); 2267 } 2268 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2269 user_shm_unlock(inode->i_size, ucounts); 2270 info->flags &= ~VM_LOCKED; 2271 mapping_clear_unevictable(file->f_mapping); 2272 } 2273 retval = 0; 2274 2275 out_nomem: 2276 return retval; 2277 } 2278 2279 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2280 { 2281 struct inode *inode = file_inode(file); 2282 struct shmem_inode_info *info = SHMEM_I(inode); 2283 int ret; 2284 2285 ret = seal_check_future_write(info->seals, vma); 2286 if (ret) 2287 return ret; 2288 2289 /* arm64 - allow memory tagging on RAM-based files */ 2290 vma->vm_flags |= VM_MTE_ALLOWED; 2291 2292 file_accessed(file); 2293 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2294 if (inode->i_nlink) 2295 vma->vm_ops = &shmem_vm_ops; 2296 else 2297 vma->vm_ops = &shmem_anon_vm_ops; 2298 return 0; 2299 } 2300 2301 #ifdef CONFIG_TMPFS_XATTR 2302 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2303 2304 /* 2305 * chattr's fsflags are unrelated to extended attributes, 2306 * but tmpfs has chosen to enable them under the same config option. 2307 */ 2308 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2309 { 2310 unsigned int i_flags = 0; 2311 2312 if (fsflags & FS_NOATIME_FL) 2313 i_flags |= S_NOATIME; 2314 if (fsflags & FS_APPEND_FL) 2315 i_flags |= S_APPEND; 2316 if (fsflags & FS_IMMUTABLE_FL) 2317 i_flags |= S_IMMUTABLE; 2318 /* 2319 * But FS_NODUMP_FL does not require any action in i_flags. 2320 */ 2321 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2322 } 2323 #else 2324 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2325 { 2326 } 2327 #define shmem_initxattrs NULL 2328 #endif 2329 2330 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb, 2331 struct inode *dir, umode_t mode, dev_t dev, 2332 unsigned long flags) 2333 { 2334 struct inode *inode; 2335 struct shmem_inode_info *info; 2336 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2337 ino_t ino; 2338 2339 if (shmem_reserve_inode(sb, &ino)) 2340 return NULL; 2341 2342 inode = new_inode(sb); 2343 if (inode) { 2344 inode->i_ino = ino; 2345 inode_init_owner(idmap, inode, dir, mode); 2346 inode->i_blocks = 0; 2347 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2348 inode->i_generation = get_random_u32(); 2349 info = SHMEM_I(inode); 2350 memset(info, 0, (char *)inode - (char *)info); 2351 spin_lock_init(&info->lock); 2352 atomic_set(&info->stop_eviction, 0); 2353 info->seals = F_SEAL_SEAL; 2354 info->flags = flags & VM_NORESERVE; 2355 info->i_crtime = inode->i_mtime; 2356 info->fsflags = (dir == NULL) ? 0 : 2357 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2358 if (info->fsflags) 2359 shmem_set_inode_flags(inode, info->fsflags); 2360 INIT_LIST_HEAD(&info->shrinklist); 2361 INIT_LIST_HEAD(&info->swaplist); 2362 simple_xattrs_init(&info->xattrs); 2363 cache_no_acl(inode); 2364 mapping_set_large_folios(inode->i_mapping); 2365 2366 switch (mode & S_IFMT) { 2367 default: 2368 inode->i_op = &shmem_special_inode_operations; 2369 init_special_inode(inode, mode, dev); 2370 break; 2371 case S_IFREG: 2372 inode->i_mapping->a_ops = &shmem_aops; 2373 inode->i_op = &shmem_inode_operations; 2374 inode->i_fop = &shmem_file_operations; 2375 mpol_shared_policy_init(&info->policy, 2376 shmem_get_sbmpol(sbinfo)); 2377 break; 2378 case S_IFDIR: 2379 inc_nlink(inode); 2380 /* Some things misbehave if size == 0 on a directory */ 2381 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2382 inode->i_op = &shmem_dir_inode_operations; 2383 inode->i_fop = &simple_dir_operations; 2384 break; 2385 case S_IFLNK: 2386 /* 2387 * Must not load anything in the rbtree, 2388 * mpol_free_shared_policy will not be called. 2389 */ 2390 mpol_shared_policy_init(&info->policy, NULL); 2391 break; 2392 } 2393 2394 lockdep_annotate_inode_mutex_key(inode); 2395 } else 2396 shmem_free_inode(sb); 2397 return inode; 2398 } 2399 2400 #ifdef CONFIG_USERFAULTFD 2401 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2402 pmd_t *dst_pmd, 2403 struct vm_area_struct *dst_vma, 2404 unsigned long dst_addr, 2405 unsigned long src_addr, 2406 bool zeropage, bool wp_copy, 2407 struct page **pagep) 2408 { 2409 struct inode *inode = file_inode(dst_vma->vm_file); 2410 struct shmem_inode_info *info = SHMEM_I(inode); 2411 struct address_space *mapping = inode->i_mapping; 2412 gfp_t gfp = mapping_gfp_mask(mapping); 2413 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2414 void *page_kaddr; 2415 struct folio *folio; 2416 int ret; 2417 pgoff_t max_off; 2418 2419 if (!shmem_inode_acct_block(inode, 1)) { 2420 /* 2421 * We may have got a page, returned -ENOENT triggering a retry, 2422 * and now we find ourselves with -ENOMEM. Release the page, to 2423 * avoid a BUG_ON in our caller. 2424 */ 2425 if (unlikely(*pagep)) { 2426 put_page(*pagep); 2427 *pagep = NULL; 2428 } 2429 return -ENOMEM; 2430 } 2431 2432 if (!*pagep) { 2433 ret = -ENOMEM; 2434 folio = shmem_alloc_folio(gfp, info, pgoff); 2435 if (!folio) 2436 goto out_unacct_blocks; 2437 2438 if (!zeropage) { /* COPY */ 2439 page_kaddr = kmap_local_folio(folio, 0); 2440 /* 2441 * The read mmap_lock is held here. Despite the 2442 * mmap_lock being read recursive a deadlock is still 2443 * possible if a writer has taken a lock. For example: 2444 * 2445 * process A thread 1 takes read lock on own mmap_lock 2446 * process A thread 2 calls mmap, blocks taking write lock 2447 * process B thread 1 takes page fault, read lock on own mmap lock 2448 * process B thread 2 calls mmap, blocks taking write lock 2449 * process A thread 1 blocks taking read lock on process B 2450 * process B thread 1 blocks taking read lock on process A 2451 * 2452 * Disable page faults to prevent potential deadlock 2453 * and retry the copy outside the mmap_lock. 2454 */ 2455 pagefault_disable(); 2456 ret = copy_from_user(page_kaddr, 2457 (const void __user *)src_addr, 2458 PAGE_SIZE); 2459 pagefault_enable(); 2460 kunmap_local(page_kaddr); 2461 2462 /* fallback to copy_from_user outside mmap_lock */ 2463 if (unlikely(ret)) { 2464 *pagep = &folio->page; 2465 ret = -ENOENT; 2466 /* don't free the page */ 2467 goto out_unacct_blocks; 2468 } 2469 2470 flush_dcache_folio(folio); 2471 } else { /* ZEROPAGE */ 2472 clear_user_highpage(&folio->page, dst_addr); 2473 } 2474 } else { 2475 folio = page_folio(*pagep); 2476 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2477 *pagep = NULL; 2478 } 2479 2480 VM_BUG_ON(folio_test_locked(folio)); 2481 VM_BUG_ON(folio_test_swapbacked(folio)); 2482 __folio_set_locked(folio); 2483 __folio_set_swapbacked(folio); 2484 __folio_mark_uptodate(folio); 2485 2486 ret = -EFAULT; 2487 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2488 if (unlikely(pgoff >= max_off)) 2489 goto out_release; 2490 2491 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, 2492 gfp & GFP_RECLAIM_MASK, dst_mm); 2493 if (ret) 2494 goto out_release; 2495 2496 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr, 2497 &folio->page, true, wp_copy); 2498 if (ret) 2499 goto out_delete_from_cache; 2500 2501 spin_lock_irq(&info->lock); 2502 info->alloced++; 2503 inode->i_blocks += BLOCKS_PER_PAGE; 2504 shmem_recalc_inode(inode); 2505 spin_unlock_irq(&info->lock); 2506 2507 folio_unlock(folio); 2508 return 0; 2509 out_delete_from_cache: 2510 filemap_remove_folio(folio); 2511 out_release: 2512 folio_unlock(folio); 2513 folio_put(folio); 2514 out_unacct_blocks: 2515 shmem_inode_unacct_blocks(inode, 1); 2516 return ret; 2517 } 2518 #endif /* CONFIG_USERFAULTFD */ 2519 2520 #ifdef CONFIG_TMPFS 2521 static const struct inode_operations shmem_symlink_inode_operations; 2522 static const struct inode_operations shmem_short_symlink_operations; 2523 2524 static int 2525 shmem_write_begin(struct file *file, struct address_space *mapping, 2526 loff_t pos, unsigned len, 2527 struct page **pagep, void **fsdata) 2528 { 2529 struct inode *inode = mapping->host; 2530 struct shmem_inode_info *info = SHMEM_I(inode); 2531 pgoff_t index = pos >> PAGE_SHIFT; 2532 struct folio *folio; 2533 int ret = 0; 2534 2535 /* i_rwsem is held by caller */ 2536 if (unlikely(info->seals & (F_SEAL_GROW | 2537 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2538 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2539 return -EPERM; 2540 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2541 return -EPERM; 2542 } 2543 2544 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE); 2545 2546 if (ret) 2547 return ret; 2548 2549 *pagep = folio_file_page(folio, index); 2550 if (PageHWPoison(*pagep)) { 2551 folio_unlock(folio); 2552 folio_put(folio); 2553 *pagep = NULL; 2554 return -EIO; 2555 } 2556 2557 return 0; 2558 } 2559 2560 static int 2561 shmem_write_end(struct file *file, struct address_space *mapping, 2562 loff_t pos, unsigned len, unsigned copied, 2563 struct page *page, void *fsdata) 2564 { 2565 struct inode *inode = mapping->host; 2566 2567 if (pos + copied > inode->i_size) 2568 i_size_write(inode, pos + copied); 2569 2570 if (!PageUptodate(page)) { 2571 struct page *head = compound_head(page); 2572 if (PageTransCompound(page)) { 2573 int i; 2574 2575 for (i = 0; i < HPAGE_PMD_NR; i++) { 2576 if (head + i == page) 2577 continue; 2578 clear_highpage(head + i); 2579 flush_dcache_page(head + i); 2580 } 2581 } 2582 if (copied < PAGE_SIZE) { 2583 unsigned from = pos & (PAGE_SIZE - 1); 2584 zero_user_segments(page, 0, from, 2585 from + copied, PAGE_SIZE); 2586 } 2587 SetPageUptodate(head); 2588 } 2589 set_page_dirty(page); 2590 unlock_page(page); 2591 put_page(page); 2592 2593 return copied; 2594 } 2595 2596 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2597 { 2598 struct file *file = iocb->ki_filp; 2599 struct inode *inode = file_inode(file); 2600 struct address_space *mapping = inode->i_mapping; 2601 pgoff_t index; 2602 unsigned long offset; 2603 int error = 0; 2604 ssize_t retval = 0; 2605 loff_t *ppos = &iocb->ki_pos; 2606 2607 index = *ppos >> PAGE_SHIFT; 2608 offset = *ppos & ~PAGE_MASK; 2609 2610 for (;;) { 2611 struct folio *folio = NULL; 2612 struct page *page = NULL; 2613 pgoff_t end_index; 2614 unsigned long nr, ret; 2615 loff_t i_size = i_size_read(inode); 2616 2617 end_index = i_size >> PAGE_SHIFT; 2618 if (index > end_index) 2619 break; 2620 if (index == end_index) { 2621 nr = i_size & ~PAGE_MASK; 2622 if (nr <= offset) 2623 break; 2624 } 2625 2626 error = shmem_get_folio(inode, index, &folio, SGP_READ); 2627 if (error) { 2628 if (error == -EINVAL) 2629 error = 0; 2630 break; 2631 } 2632 if (folio) { 2633 folio_unlock(folio); 2634 2635 page = folio_file_page(folio, index); 2636 if (PageHWPoison(page)) { 2637 folio_put(folio); 2638 error = -EIO; 2639 break; 2640 } 2641 } 2642 2643 /* 2644 * We must evaluate after, since reads (unlike writes) 2645 * are called without i_rwsem protection against truncate 2646 */ 2647 nr = PAGE_SIZE; 2648 i_size = i_size_read(inode); 2649 end_index = i_size >> PAGE_SHIFT; 2650 if (index == end_index) { 2651 nr = i_size & ~PAGE_MASK; 2652 if (nr <= offset) { 2653 if (folio) 2654 folio_put(folio); 2655 break; 2656 } 2657 } 2658 nr -= offset; 2659 2660 if (folio) { 2661 /* 2662 * If users can be writing to this page using arbitrary 2663 * virtual addresses, take care about potential aliasing 2664 * before reading the page on the kernel side. 2665 */ 2666 if (mapping_writably_mapped(mapping)) 2667 flush_dcache_page(page); 2668 /* 2669 * Mark the page accessed if we read the beginning. 2670 */ 2671 if (!offset) 2672 folio_mark_accessed(folio); 2673 /* 2674 * Ok, we have the page, and it's up-to-date, so 2675 * now we can copy it to user space... 2676 */ 2677 ret = copy_page_to_iter(page, offset, nr, to); 2678 folio_put(folio); 2679 2680 } else if (user_backed_iter(to)) { 2681 /* 2682 * Copy to user tends to be so well optimized, but 2683 * clear_user() not so much, that it is noticeably 2684 * faster to copy the zero page instead of clearing. 2685 */ 2686 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2687 } else { 2688 /* 2689 * But submitting the same page twice in a row to 2690 * splice() - or others? - can result in confusion: 2691 * so don't attempt that optimization on pipes etc. 2692 */ 2693 ret = iov_iter_zero(nr, to); 2694 } 2695 2696 retval += ret; 2697 offset += ret; 2698 index += offset >> PAGE_SHIFT; 2699 offset &= ~PAGE_MASK; 2700 2701 if (!iov_iter_count(to)) 2702 break; 2703 if (ret < nr) { 2704 error = -EFAULT; 2705 break; 2706 } 2707 cond_resched(); 2708 } 2709 2710 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2711 file_accessed(file); 2712 return retval ? retval : error; 2713 } 2714 2715 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2716 { 2717 struct address_space *mapping = file->f_mapping; 2718 struct inode *inode = mapping->host; 2719 2720 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2721 return generic_file_llseek_size(file, offset, whence, 2722 MAX_LFS_FILESIZE, i_size_read(inode)); 2723 if (offset < 0) 2724 return -ENXIO; 2725 2726 inode_lock(inode); 2727 /* We're holding i_rwsem so we can access i_size directly */ 2728 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2729 if (offset >= 0) 2730 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2731 inode_unlock(inode); 2732 return offset; 2733 } 2734 2735 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2736 loff_t len) 2737 { 2738 struct inode *inode = file_inode(file); 2739 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2740 struct shmem_inode_info *info = SHMEM_I(inode); 2741 struct shmem_falloc shmem_falloc; 2742 pgoff_t start, index, end, undo_fallocend; 2743 int error; 2744 2745 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2746 return -EOPNOTSUPP; 2747 2748 inode_lock(inode); 2749 2750 if (mode & FALLOC_FL_PUNCH_HOLE) { 2751 struct address_space *mapping = file->f_mapping; 2752 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2753 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2754 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2755 2756 /* protected by i_rwsem */ 2757 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2758 error = -EPERM; 2759 goto out; 2760 } 2761 2762 shmem_falloc.waitq = &shmem_falloc_waitq; 2763 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2764 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2765 spin_lock(&inode->i_lock); 2766 inode->i_private = &shmem_falloc; 2767 spin_unlock(&inode->i_lock); 2768 2769 if ((u64)unmap_end > (u64)unmap_start) 2770 unmap_mapping_range(mapping, unmap_start, 2771 1 + unmap_end - unmap_start, 0); 2772 shmem_truncate_range(inode, offset, offset + len - 1); 2773 /* No need to unmap again: hole-punching leaves COWed pages */ 2774 2775 spin_lock(&inode->i_lock); 2776 inode->i_private = NULL; 2777 wake_up_all(&shmem_falloc_waitq); 2778 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2779 spin_unlock(&inode->i_lock); 2780 error = 0; 2781 goto out; 2782 } 2783 2784 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2785 error = inode_newsize_ok(inode, offset + len); 2786 if (error) 2787 goto out; 2788 2789 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2790 error = -EPERM; 2791 goto out; 2792 } 2793 2794 start = offset >> PAGE_SHIFT; 2795 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2796 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2797 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2798 error = -ENOSPC; 2799 goto out; 2800 } 2801 2802 shmem_falloc.waitq = NULL; 2803 shmem_falloc.start = start; 2804 shmem_falloc.next = start; 2805 shmem_falloc.nr_falloced = 0; 2806 shmem_falloc.nr_unswapped = 0; 2807 spin_lock(&inode->i_lock); 2808 inode->i_private = &shmem_falloc; 2809 spin_unlock(&inode->i_lock); 2810 2811 /* 2812 * info->fallocend is only relevant when huge pages might be 2813 * involved: to prevent split_huge_page() freeing fallocated 2814 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 2815 */ 2816 undo_fallocend = info->fallocend; 2817 if (info->fallocend < end) 2818 info->fallocend = end; 2819 2820 for (index = start; index < end; ) { 2821 struct folio *folio; 2822 2823 /* 2824 * Good, the fallocate(2) manpage permits EINTR: we may have 2825 * been interrupted because we are using up too much memory. 2826 */ 2827 if (signal_pending(current)) 2828 error = -EINTR; 2829 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2830 error = -ENOMEM; 2831 else 2832 error = shmem_get_folio(inode, index, &folio, 2833 SGP_FALLOC); 2834 if (error) { 2835 info->fallocend = undo_fallocend; 2836 /* Remove the !uptodate folios we added */ 2837 if (index > start) { 2838 shmem_undo_range(inode, 2839 (loff_t)start << PAGE_SHIFT, 2840 ((loff_t)index << PAGE_SHIFT) - 1, true); 2841 } 2842 goto undone; 2843 } 2844 2845 /* 2846 * Here is a more important optimization than it appears: 2847 * a second SGP_FALLOC on the same large folio will clear it, 2848 * making it uptodate and un-undoable if we fail later. 2849 */ 2850 index = folio_next_index(folio); 2851 /* Beware 32-bit wraparound */ 2852 if (!index) 2853 index--; 2854 2855 /* 2856 * Inform shmem_writepage() how far we have reached. 2857 * No need for lock or barrier: we have the page lock. 2858 */ 2859 if (!folio_test_uptodate(folio)) 2860 shmem_falloc.nr_falloced += index - shmem_falloc.next; 2861 shmem_falloc.next = index; 2862 2863 /* 2864 * If !uptodate, leave it that way so that freeable folios 2865 * can be recognized if we need to rollback on error later. 2866 * But mark it dirty so that memory pressure will swap rather 2867 * than free the folios we are allocating (and SGP_CACHE folios 2868 * might still be clean: we now need to mark those dirty too). 2869 */ 2870 folio_mark_dirty(folio); 2871 folio_unlock(folio); 2872 folio_put(folio); 2873 cond_resched(); 2874 } 2875 2876 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2877 i_size_write(inode, offset + len); 2878 undone: 2879 spin_lock(&inode->i_lock); 2880 inode->i_private = NULL; 2881 spin_unlock(&inode->i_lock); 2882 out: 2883 if (!error) 2884 file_modified(file); 2885 inode_unlock(inode); 2886 return error; 2887 } 2888 2889 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2890 { 2891 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2892 2893 buf->f_type = TMPFS_MAGIC; 2894 buf->f_bsize = PAGE_SIZE; 2895 buf->f_namelen = NAME_MAX; 2896 if (sbinfo->max_blocks) { 2897 buf->f_blocks = sbinfo->max_blocks; 2898 buf->f_bavail = 2899 buf->f_bfree = sbinfo->max_blocks - 2900 percpu_counter_sum(&sbinfo->used_blocks); 2901 } 2902 if (sbinfo->max_inodes) { 2903 buf->f_files = sbinfo->max_inodes; 2904 buf->f_ffree = sbinfo->free_inodes; 2905 } 2906 /* else leave those fields 0 like simple_statfs */ 2907 2908 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 2909 2910 return 0; 2911 } 2912 2913 /* 2914 * File creation. Allocate an inode, and we're done.. 2915 */ 2916 static int 2917 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 2918 struct dentry *dentry, umode_t mode, dev_t dev) 2919 { 2920 struct inode *inode; 2921 int error = -ENOSPC; 2922 2923 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 2924 if (inode) { 2925 error = simple_acl_create(dir, inode); 2926 if (error) 2927 goto out_iput; 2928 error = security_inode_init_security(inode, dir, 2929 &dentry->d_name, 2930 shmem_initxattrs, NULL); 2931 if (error && error != -EOPNOTSUPP) 2932 goto out_iput; 2933 2934 error = 0; 2935 dir->i_size += BOGO_DIRENT_SIZE; 2936 dir->i_ctime = dir->i_mtime = current_time(dir); 2937 inode_inc_iversion(dir); 2938 d_instantiate(dentry, inode); 2939 dget(dentry); /* Extra count - pin the dentry in core */ 2940 } 2941 return error; 2942 out_iput: 2943 iput(inode); 2944 return error; 2945 } 2946 2947 static int 2948 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 2949 struct file *file, umode_t mode) 2950 { 2951 struct inode *inode; 2952 int error = -ENOSPC; 2953 2954 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 2955 if (inode) { 2956 error = security_inode_init_security(inode, dir, 2957 NULL, 2958 shmem_initxattrs, NULL); 2959 if (error && error != -EOPNOTSUPP) 2960 goto out_iput; 2961 error = simple_acl_create(dir, inode); 2962 if (error) 2963 goto out_iput; 2964 d_tmpfile(file, inode); 2965 } 2966 return finish_open_simple(file, error); 2967 out_iput: 2968 iput(inode); 2969 return error; 2970 } 2971 2972 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 2973 struct dentry *dentry, umode_t mode) 2974 { 2975 int error; 2976 2977 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 2978 if (error) 2979 return error; 2980 inc_nlink(dir); 2981 return 0; 2982 } 2983 2984 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 2985 struct dentry *dentry, umode_t mode, bool excl) 2986 { 2987 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 2988 } 2989 2990 /* 2991 * Link a file.. 2992 */ 2993 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2994 { 2995 struct inode *inode = d_inode(old_dentry); 2996 int ret = 0; 2997 2998 /* 2999 * No ordinary (disk based) filesystem counts links as inodes; 3000 * but each new link needs a new dentry, pinning lowmem, and 3001 * tmpfs dentries cannot be pruned until they are unlinked. 3002 * But if an O_TMPFILE file is linked into the tmpfs, the 3003 * first link must skip that, to get the accounting right. 3004 */ 3005 if (inode->i_nlink) { 3006 ret = shmem_reserve_inode(inode->i_sb, NULL); 3007 if (ret) 3008 goto out; 3009 } 3010 3011 dir->i_size += BOGO_DIRENT_SIZE; 3012 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3013 inode_inc_iversion(dir); 3014 inc_nlink(inode); 3015 ihold(inode); /* New dentry reference */ 3016 dget(dentry); /* Extra pinning count for the created dentry */ 3017 d_instantiate(dentry, inode); 3018 out: 3019 return ret; 3020 } 3021 3022 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3023 { 3024 struct inode *inode = d_inode(dentry); 3025 3026 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3027 shmem_free_inode(inode->i_sb); 3028 3029 dir->i_size -= BOGO_DIRENT_SIZE; 3030 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3031 inode_inc_iversion(dir); 3032 drop_nlink(inode); 3033 dput(dentry); /* Undo the count from "create" - this does all the work */ 3034 return 0; 3035 } 3036 3037 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3038 { 3039 if (!simple_empty(dentry)) 3040 return -ENOTEMPTY; 3041 3042 drop_nlink(d_inode(dentry)); 3043 drop_nlink(dir); 3044 return shmem_unlink(dir, dentry); 3045 } 3046 3047 static int shmem_whiteout(struct mnt_idmap *idmap, 3048 struct inode *old_dir, struct dentry *old_dentry) 3049 { 3050 struct dentry *whiteout; 3051 int error; 3052 3053 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3054 if (!whiteout) 3055 return -ENOMEM; 3056 3057 error = shmem_mknod(idmap, old_dir, whiteout, 3058 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3059 dput(whiteout); 3060 if (error) 3061 return error; 3062 3063 /* 3064 * Cheat and hash the whiteout while the old dentry is still in 3065 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3066 * 3067 * d_lookup() will consistently find one of them at this point, 3068 * not sure which one, but that isn't even important. 3069 */ 3070 d_rehash(whiteout); 3071 return 0; 3072 } 3073 3074 /* 3075 * The VFS layer already does all the dentry stuff for rename, 3076 * we just have to decrement the usage count for the target if 3077 * it exists so that the VFS layer correctly free's it when it 3078 * gets overwritten. 3079 */ 3080 static int shmem_rename2(struct mnt_idmap *idmap, 3081 struct inode *old_dir, struct dentry *old_dentry, 3082 struct inode *new_dir, struct dentry *new_dentry, 3083 unsigned int flags) 3084 { 3085 struct inode *inode = d_inode(old_dentry); 3086 int they_are_dirs = S_ISDIR(inode->i_mode); 3087 3088 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3089 return -EINVAL; 3090 3091 if (flags & RENAME_EXCHANGE) 3092 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 3093 3094 if (!simple_empty(new_dentry)) 3095 return -ENOTEMPTY; 3096 3097 if (flags & RENAME_WHITEOUT) { 3098 int error; 3099 3100 error = shmem_whiteout(idmap, old_dir, old_dentry); 3101 if (error) 3102 return error; 3103 } 3104 3105 if (d_really_is_positive(new_dentry)) { 3106 (void) shmem_unlink(new_dir, new_dentry); 3107 if (they_are_dirs) { 3108 drop_nlink(d_inode(new_dentry)); 3109 drop_nlink(old_dir); 3110 } 3111 } else if (they_are_dirs) { 3112 drop_nlink(old_dir); 3113 inc_nlink(new_dir); 3114 } 3115 3116 old_dir->i_size -= BOGO_DIRENT_SIZE; 3117 new_dir->i_size += BOGO_DIRENT_SIZE; 3118 old_dir->i_ctime = old_dir->i_mtime = 3119 new_dir->i_ctime = new_dir->i_mtime = 3120 inode->i_ctime = current_time(old_dir); 3121 inode_inc_iversion(old_dir); 3122 inode_inc_iversion(new_dir); 3123 return 0; 3124 } 3125 3126 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3127 struct dentry *dentry, const char *symname) 3128 { 3129 int error; 3130 int len; 3131 struct inode *inode; 3132 struct folio *folio; 3133 3134 len = strlen(symname) + 1; 3135 if (len > PAGE_SIZE) 3136 return -ENAMETOOLONG; 3137 3138 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3139 VM_NORESERVE); 3140 if (!inode) 3141 return -ENOSPC; 3142 3143 error = security_inode_init_security(inode, dir, &dentry->d_name, 3144 shmem_initxattrs, NULL); 3145 if (error && error != -EOPNOTSUPP) { 3146 iput(inode); 3147 return error; 3148 } 3149 3150 inode->i_size = len-1; 3151 if (len <= SHORT_SYMLINK_LEN) { 3152 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3153 if (!inode->i_link) { 3154 iput(inode); 3155 return -ENOMEM; 3156 } 3157 inode->i_op = &shmem_short_symlink_operations; 3158 } else { 3159 inode_nohighmem(inode); 3160 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE); 3161 if (error) { 3162 iput(inode); 3163 return error; 3164 } 3165 inode->i_mapping->a_ops = &shmem_aops; 3166 inode->i_op = &shmem_symlink_inode_operations; 3167 memcpy(folio_address(folio), symname, len); 3168 folio_mark_uptodate(folio); 3169 folio_mark_dirty(folio); 3170 folio_unlock(folio); 3171 folio_put(folio); 3172 } 3173 dir->i_size += BOGO_DIRENT_SIZE; 3174 dir->i_ctime = dir->i_mtime = current_time(dir); 3175 inode_inc_iversion(dir); 3176 d_instantiate(dentry, inode); 3177 dget(dentry); 3178 return 0; 3179 } 3180 3181 static void shmem_put_link(void *arg) 3182 { 3183 folio_mark_accessed(arg); 3184 folio_put(arg); 3185 } 3186 3187 static const char *shmem_get_link(struct dentry *dentry, 3188 struct inode *inode, 3189 struct delayed_call *done) 3190 { 3191 struct folio *folio = NULL; 3192 int error; 3193 3194 if (!dentry) { 3195 folio = filemap_get_folio(inode->i_mapping, 0); 3196 if (!folio) 3197 return ERR_PTR(-ECHILD); 3198 if (PageHWPoison(folio_page(folio, 0)) || 3199 !folio_test_uptodate(folio)) { 3200 folio_put(folio); 3201 return ERR_PTR(-ECHILD); 3202 } 3203 } else { 3204 error = shmem_get_folio(inode, 0, &folio, SGP_READ); 3205 if (error) 3206 return ERR_PTR(error); 3207 if (!folio) 3208 return ERR_PTR(-ECHILD); 3209 if (PageHWPoison(folio_page(folio, 0))) { 3210 folio_unlock(folio); 3211 folio_put(folio); 3212 return ERR_PTR(-ECHILD); 3213 } 3214 folio_unlock(folio); 3215 } 3216 set_delayed_call(done, shmem_put_link, folio); 3217 return folio_address(folio); 3218 } 3219 3220 #ifdef CONFIG_TMPFS_XATTR 3221 3222 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3223 { 3224 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3225 3226 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3227 3228 return 0; 3229 } 3230 3231 static int shmem_fileattr_set(struct mnt_idmap *idmap, 3232 struct dentry *dentry, struct fileattr *fa) 3233 { 3234 struct inode *inode = d_inode(dentry); 3235 struct shmem_inode_info *info = SHMEM_I(inode); 3236 3237 if (fileattr_has_fsx(fa)) 3238 return -EOPNOTSUPP; 3239 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3240 return -EOPNOTSUPP; 3241 3242 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3243 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3244 3245 shmem_set_inode_flags(inode, info->fsflags); 3246 inode->i_ctime = current_time(inode); 3247 inode_inc_iversion(inode); 3248 return 0; 3249 } 3250 3251 /* 3252 * Superblocks without xattr inode operations may get some security.* xattr 3253 * support from the LSM "for free". As soon as we have any other xattrs 3254 * like ACLs, we also need to implement the security.* handlers at 3255 * filesystem level, though. 3256 */ 3257 3258 /* 3259 * Callback for security_inode_init_security() for acquiring xattrs. 3260 */ 3261 static int shmem_initxattrs(struct inode *inode, 3262 const struct xattr *xattr_array, 3263 void *fs_info) 3264 { 3265 struct shmem_inode_info *info = SHMEM_I(inode); 3266 const struct xattr *xattr; 3267 struct simple_xattr *new_xattr; 3268 size_t len; 3269 3270 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3271 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3272 if (!new_xattr) 3273 return -ENOMEM; 3274 3275 len = strlen(xattr->name) + 1; 3276 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3277 GFP_KERNEL); 3278 if (!new_xattr->name) { 3279 kvfree(new_xattr); 3280 return -ENOMEM; 3281 } 3282 3283 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3284 XATTR_SECURITY_PREFIX_LEN); 3285 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3286 xattr->name, len); 3287 3288 simple_xattr_add(&info->xattrs, new_xattr); 3289 } 3290 3291 return 0; 3292 } 3293 3294 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3295 struct dentry *unused, struct inode *inode, 3296 const char *name, void *buffer, size_t size) 3297 { 3298 struct shmem_inode_info *info = SHMEM_I(inode); 3299 3300 name = xattr_full_name(handler, name); 3301 return simple_xattr_get(&info->xattrs, name, buffer, size); 3302 } 3303 3304 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3305 struct mnt_idmap *idmap, 3306 struct dentry *unused, struct inode *inode, 3307 const char *name, const void *value, 3308 size_t size, int flags) 3309 { 3310 struct shmem_inode_info *info = SHMEM_I(inode); 3311 int err; 3312 3313 name = xattr_full_name(handler, name); 3314 err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3315 if (!err) { 3316 inode->i_ctime = current_time(inode); 3317 inode_inc_iversion(inode); 3318 } 3319 return err; 3320 } 3321 3322 static const struct xattr_handler shmem_security_xattr_handler = { 3323 .prefix = XATTR_SECURITY_PREFIX, 3324 .get = shmem_xattr_handler_get, 3325 .set = shmem_xattr_handler_set, 3326 }; 3327 3328 static const struct xattr_handler shmem_trusted_xattr_handler = { 3329 .prefix = XATTR_TRUSTED_PREFIX, 3330 .get = shmem_xattr_handler_get, 3331 .set = shmem_xattr_handler_set, 3332 }; 3333 3334 static const struct xattr_handler *shmem_xattr_handlers[] = { 3335 #ifdef CONFIG_TMPFS_POSIX_ACL 3336 &posix_acl_access_xattr_handler, 3337 &posix_acl_default_xattr_handler, 3338 #endif 3339 &shmem_security_xattr_handler, 3340 &shmem_trusted_xattr_handler, 3341 NULL 3342 }; 3343 3344 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3345 { 3346 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3347 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3348 } 3349 #endif /* CONFIG_TMPFS_XATTR */ 3350 3351 static const struct inode_operations shmem_short_symlink_operations = { 3352 .getattr = shmem_getattr, 3353 .get_link = simple_get_link, 3354 #ifdef CONFIG_TMPFS_XATTR 3355 .listxattr = shmem_listxattr, 3356 #endif 3357 }; 3358 3359 static const struct inode_operations shmem_symlink_inode_operations = { 3360 .getattr = shmem_getattr, 3361 .get_link = shmem_get_link, 3362 #ifdef CONFIG_TMPFS_XATTR 3363 .listxattr = shmem_listxattr, 3364 #endif 3365 }; 3366 3367 static struct dentry *shmem_get_parent(struct dentry *child) 3368 { 3369 return ERR_PTR(-ESTALE); 3370 } 3371 3372 static int shmem_match(struct inode *ino, void *vfh) 3373 { 3374 __u32 *fh = vfh; 3375 __u64 inum = fh[2]; 3376 inum = (inum << 32) | fh[1]; 3377 return ino->i_ino == inum && fh[0] == ino->i_generation; 3378 } 3379 3380 /* Find any alias of inode, but prefer a hashed alias */ 3381 static struct dentry *shmem_find_alias(struct inode *inode) 3382 { 3383 struct dentry *alias = d_find_alias(inode); 3384 3385 return alias ?: d_find_any_alias(inode); 3386 } 3387 3388 3389 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3390 struct fid *fid, int fh_len, int fh_type) 3391 { 3392 struct inode *inode; 3393 struct dentry *dentry = NULL; 3394 u64 inum; 3395 3396 if (fh_len < 3) 3397 return NULL; 3398 3399 inum = fid->raw[2]; 3400 inum = (inum << 32) | fid->raw[1]; 3401 3402 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3403 shmem_match, fid->raw); 3404 if (inode) { 3405 dentry = shmem_find_alias(inode); 3406 iput(inode); 3407 } 3408 3409 return dentry; 3410 } 3411 3412 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3413 struct inode *parent) 3414 { 3415 if (*len < 3) { 3416 *len = 3; 3417 return FILEID_INVALID; 3418 } 3419 3420 if (inode_unhashed(inode)) { 3421 /* Unfortunately insert_inode_hash is not idempotent, 3422 * so as we hash inodes here rather than at creation 3423 * time, we need a lock to ensure we only try 3424 * to do it once 3425 */ 3426 static DEFINE_SPINLOCK(lock); 3427 spin_lock(&lock); 3428 if (inode_unhashed(inode)) 3429 __insert_inode_hash(inode, 3430 inode->i_ino + inode->i_generation); 3431 spin_unlock(&lock); 3432 } 3433 3434 fh[0] = inode->i_generation; 3435 fh[1] = inode->i_ino; 3436 fh[2] = ((__u64)inode->i_ino) >> 32; 3437 3438 *len = 3; 3439 return 1; 3440 } 3441 3442 static const struct export_operations shmem_export_ops = { 3443 .get_parent = shmem_get_parent, 3444 .encode_fh = shmem_encode_fh, 3445 .fh_to_dentry = shmem_fh_to_dentry, 3446 }; 3447 3448 enum shmem_param { 3449 Opt_gid, 3450 Opt_huge, 3451 Opt_mode, 3452 Opt_mpol, 3453 Opt_nr_blocks, 3454 Opt_nr_inodes, 3455 Opt_size, 3456 Opt_uid, 3457 Opt_inode32, 3458 Opt_inode64, 3459 }; 3460 3461 static const struct constant_table shmem_param_enums_huge[] = { 3462 {"never", SHMEM_HUGE_NEVER }, 3463 {"always", SHMEM_HUGE_ALWAYS }, 3464 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3465 {"advise", SHMEM_HUGE_ADVISE }, 3466 {} 3467 }; 3468 3469 const struct fs_parameter_spec shmem_fs_parameters[] = { 3470 fsparam_u32 ("gid", Opt_gid), 3471 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3472 fsparam_u32oct("mode", Opt_mode), 3473 fsparam_string("mpol", Opt_mpol), 3474 fsparam_string("nr_blocks", Opt_nr_blocks), 3475 fsparam_string("nr_inodes", Opt_nr_inodes), 3476 fsparam_string("size", Opt_size), 3477 fsparam_u32 ("uid", Opt_uid), 3478 fsparam_flag ("inode32", Opt_inode32), 3479 fsparam_flag ("inode64", Opt_inode64), 3480 {} 3481 }; 3482 3483 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3484 { 3485 struct shmem_options *ctx = fc->fs_private; 3486 struct fs_parse_result result; 3487 unsigned long long size; 3488 char *rest; 3489 int opt; 3490 3491 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3492 if (opt < 0) 3493 return opt; 3494 3495 switch (opt) { 3496 case Opt_size: 3497 size = memparse(param->string, &rest); 3498 if (*rest == '%') { 3499 size <<= PAGE_SHIFT; 3500 size *= totalram_pages(); 3501 do_div(size, 100); 3502 rest++; 3503 } 3504 if (*rest) 3505 goto bad_value; 3506 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3507 ctx->seen |= SHMEM_SEEN_BLOCKS; 3508 break; 3509 case Opt_nr_blocks: 3510 ctx->blocks = memparse(param->string, &rest); 3511 if (*rest || ctx->blocks > S64_MAX) 3512 goto bad_value; 3513 ctx->seen |= SHMEM_SEEN_BLOCKS; 3514 break; 3515 case Opt_nr_inodes: 3516 ctx->inodes = memparse(param->string, &rest); 3517 if (*rest) 3518 goto bad_value; 3519 ctx->seen |= SHMEM_SEEN_INODES; 3520 break; 3521 case Opt_mode: 3522 ctx->mode = result.uint_32 & 07777; 3523 break; 3524 case Opt_uid: 3525 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3526 if (!uid_valid(ctx->uid)) 3527 goto bad_value; 3528 break; 3529 case Opt_gid: 3530 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3531 if (!gid_valid(ctx->gid)) 3532 goto bad_value; 3533 break; 3534 case Opt_huge: 3535 ctx->huge = result.uint_32; 3536 if (ctx->huge != SHMEM_HUGE_NEVER && 3537 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3538 has_transparent_hugepage())) 3539 goto unsupported_parameter; 3540 ctx->seen |= SHMEM_SEEN_HUGE; 3541 break; 3542 case Opt_mpol: 3543 if (IS_ENABLED(CONFIG_NUMA)) { 3544 mpol_put(ctx->mpol); 3545 ctx->mpol = NULL; 3546 if (mpol_parse_str(param->string, &ctx->mpol)) 3547 goto bad_value; 3548 break; 3549 } 3550 goto unsupported_parameter; 3551 case Opt_inode32: 3552 ctx->full_inums = false; 3553 ctx->seen |= SHMEM_SEEN_INUMS; 3554 break; 3555 case Opt_inode64: 3556 if (sizeof(ino_t) < 8) { 3557 return invalfc(fc, 3558 "Cannot use inode64 with <64bit inums in kernel\n"); 3559 } 3560 ctx->full_inums = true; 3561 ctx->seen |= SHMEM_SEEN_INUMS; 3562 break; 3563 } 3564 return 0; 3565 3566 unsupported_parameter: 3567 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3568 bad_value: 3569 return invalfc(fc, "Bad value for '%s'", param->key); 3570 } 3571 3572 static int shmem_parse_options(struct fs_context *fc, void *data) 3573 { 3574 char *options = data; 3575 3576 if (options) { 3577 int err = security_sb_eat_lsm_opts(options, &fc->security); 3578 if (err) 3579 return err; 3580 } 3581 3582 while (options != NULL) { 3583 char *this_char = options; 3584 for (;;) { 3585 /* 3586 * NUL-terminate this option: unfortunately, 3587 * mount options form a comma-separated list, 3588 * but mpol's nodelist may also contain commas. 3589 */ 3590 options = strchr(options, ','); 3591 if (options == NULL) 3592 break; 3593 options++; 3594 if (!isdigit(*options)) { 3595 options[-1] = '\0'; 3596 break; 3597 } 3598 } 3599 if (*this_char) { 3600 char *value = strchr(this_char, '='); 3601 size_t len = 0; 3602 int err; 3603 3604 if (value) { 3605 *value++ = '\0'; 3606 len = strlen(value); 3607 } 3608 err = vfs_parse_fs_string(fc, this_char, value, len); 3609 if (err < 0) 3610 return err; 3611 } 3612 } 3613 return 0; 3614 } 3615 3616 /* 3617 * Reconfigure a shmem filesystem. 3618 * 3619 * Note that we disallow change from limited->unlimited blocks/inodes while any 3620 * are in use; but we must separately disallow unlimited->limited, because in 3621 * that case we have no record of how much is already in use. 3622 */ 3623 static int shmem_reconfigure(struct fs_context *fc) 3624 { 3625 struct shmem_options *ctx = fc->fs_private; 3626 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3627 unsigned long inodes; 3628 struct mempolicy *mpol = NULL; 3629 const char *err; 3630 3631 raw_spin_lock(&sbinfo->stat_lock); 3632 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3633 3634 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3635 if (!sbinfo->max_blocks) { 3636 err = "Cannot retroactively limit size"; 3637 goto out; 3638 } 3639 if (percpu_counter_compare(&sbinfo->used_blocks, 3640 ctx->blocks) > 0) { 3641 err = "Too small a size for current use"; 3642 goto out; 3643 } 3644 } 3645 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3646 if (!sbinfo->max_inodes) { 3647 err = "Cannot retroactively limit inodes"; 3648 goto out; 3649 } 3650 if (ctx->inodes < inodes) { 3651 err = "Too few inodes for current use"; 3652 goto out; 3653 } 3654 } 3655 3656 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3657 sbinfo->next_ino > UINT_MAX) { 3658 err = "Current inum too high to switch to 32-bit inums"; 3659 goto out; 3660 } 3661 3662 if (ctx->seen & SHMEM_SEEN_HUGE) 3663 sbinfo->huge = ctx->huge; 3664 if (ctx->seen & SHMEM_SEEN_INUMS) 3665 sbinfo->full_inums = ctx->full_inums; 3666 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3667 sbinfo->max_blocks = ctx->blocks; 3668 if (ctx->seen & SHMEM_SEEN_INODES) { 3669 sbinfo->max_inodes = ctx->inodes; 3670 sbinfo->free_inodes = ctx->inodes - inodes; 3671 } 3672 3673 /* 3674 * Preserve previous mempolicy unless mpol remount option was specified. 3675 */ 3676 if (ctx->mpol) { 3677 mpol = sbinfo->mpol; 3678 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3679 ctx->mpol = NULL; 3680 } 3681 raw_spin_unlock(&sbinfo->stat_lock); 3682 mpol_put(mpol); 3683 return 0; 3684 out: 3685 raw_spin_unlock(&sbinfo->stat_lock); 3686 return invalfc(fc, "%s", err); 3687 } 3688 3689 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3690 { 3691 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3692 3693 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3694 seq_printf(seq, ",size=%luk", 3695 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3696 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3697 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3698 if (sbinfo->mode != (0777 | S_ISVTX)) 3699 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3700 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3701 seq_printf(seq, ",uid=%u", 3702 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3703 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3704 seq_printf(seq, ",gid=%u", 3705 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3706 3707 /* 3708 * Showing inode{64,32} might be useful even if it's the system default, 3709 * since then people don't have to resort to checking both here and 3710 * /proc/config.gz to confirm 64-bit inums were successfully applied 3711 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3712 * 3713 * We hide it when inode64 isn't the default and we are using 32-bit 3714 * inodes, since that probably just means the feature isn't even under 3715 * consideration. 3716 * 3717 * As such: 3718 * 3719 * +-----------------+-----------------+ 3720 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3721 * +------------------+-----------------+-----------------+ 3722 * | full_inums=true | show | show | 3723 * | full_inums=false | show | hide | 3724 * +------------------+-----------------+-----------------+ 3725 * 3726 */ 3727 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3728 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3729 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3730 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3731 if (sbinfo->huge) 3732 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3733 #endif 3734 shmem_show_mpol(seq, sbinfo->mpol); 3735 return 0; 3736 } 3737 3738 #endif /* CONFIG_TMPFS */ 3739 3740 static void shmem_put_super(struct super_block *sb) 3741 { 3742 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3743 3744 free_percpu(sbinfo->ino_batch); 3745 percpu_counter_destroy(&sbinfo->used_blocks); 3746 mpol_put(sbinfo->mpol); 3747 kfree(sbinfo); 3748 sb->s_fs_info = NULL; 3749 } 3750 3751 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3752 { 3753 struct shmem_options *ctx = fc->fs_private; 3754 struct inode *inode; 3755 struct shmem_sb_info *sbinfo; 3756 3757 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3758 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3759 L1_CACHE_BYTES), GFP_KERNEL); 3760 if (!sbinfo) 3761 return -ENOMEM; 3762 3763 sb->s_fs_info = sbinfo; 3764 3765 #ifdef CONFIG_TMPFS 3766 /* 3767 * Per default we only allow half of the physical ram per 3768 * tmpfs instance, limiting inodes to one per page of lowmem; 3769 * but the internal instance is left unlimited. 3770 */ 3771 if (!(sb->s_flags & SB_KERNMOUNT)) { 3772 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3773 ctx->blocks = shmem_default_max_blocks(); 3774 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3775 ctx->inodes = shmem_default_max_inodes(); 3776 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3777 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3778 } else { 3779 sb->s_flags |= SB_NOUSER; 3780 } 3781 sb->s_export_op = &shmem_export_ops; 3782 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 3783 #else 3784 sb->s_flags |= SB_NOUSER; 3785 #endif 3786 sbinfo->max_blocks = ctx->blocks; 3787 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3788 if (sb->s_flags & SB_KERNMOUNT) { 3789 sbinfo->ino_batch = alloc_percpu(ino_t); 3790 if (!sbinfo->ino_batch) 3791 goto failed; 3792 } 3793 sbinfo->uid = ctx->uid; 3794 sbinfo->gid = ctx->gid; 3795 sbinfo->full_inums = ctx->full_inums; 3796 sbinfo->mode = ctx->mode; 3797 sbinfo->huge = ctx->huge; 3798 sbinfo->mpol = ctx->mpol; 3799 ctx->mpol = NULL; 3800 3801 raw_spin_lock_init(&sbinfo->stat_lock); 3802 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3803 goto failed; 3804 spin_lock_init(&sbinfo->shrinklist_lock); 3805 INIT_LIST_HEAD(&sbinfo->shrinklist); 3806 3807 sb->s_maxbytes = MAX_LFS_FILESIZE; 3808 sb->s_blocksize = PAGE_SIZE; 3809 sb->s_blocksize_bits = PAGE_SHIFT; 3810 sb->s_magic = TMPFS_MAGIC; 3811 sb->s_op = &shmem_ops; 3812 sb->s_time_gran = 1; 3813 #ifdef CONFIG_TMPFS_XATTR 3814 sb->s_xattr = shmem_xattr_handlers; 3815 #endif 3816 #ifdef CONFIG_TMPFS_POSIX_ACL 3817 sb->s_flags |= SB_POSIXACL; 3818 #endif 3819 uuid_gen(&sb->s_uuid); 3820 3821 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0, 3822 VM_NORESERVE); 3823 if (!inode) 3824 goto failed; 3825 inode->i_uid = sbinfo->uid; 3826 inode->i_gid = sbinfo->gid; 3827 sb->s_root = d_make_root(inode); 3828 if (!sb->s_root) 3829 goto failed; 3830 return 0; 3831 3832 failed: 3833 shmem_put_super(sb); 3834 return -ENOMEM; 3835 } 3836 3837 static int shmem_get_tree(struct fs_context *fc) 3838 { 3839 return get_tree_nodev(fc, shmem_fill_super); 3840 } 3841 3842 static void shmem_free_fc(struct fs_context *fc) 3843 { 3844 struct shmem_options *ctx = fc->fs_private; 3845 3846 if (ctx) { 3847 mpol_put(ctx->mpol); 3848 kfree(ctx); 3849 } 3850 } 3851 3852 static const struct fs_context_operations shmem_fs_context_ops = { 3853 .free = shmem_free_fc, 3854 .get_tree = shmem_get_tree, 3855 #ifdef CONFIG_TMPFS 3856 .parse_monolithic = shmem_parse_options, 3857 .parse_param = shmem_parse_one, 3858 .reconfigure = shmem_reconfigure, 3859 #endif 3860 }; 3861 3862 static struct kmem_cache *shmem_inode_cachep; 3863 3864 static struct inode *shmem_alloc_inode(struct super_block *sb) 3865 { 3866 struct shmem_inode_info *info; 3867 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 3868 if (!info) 3869 return NULL; 3870 return &info->vfs_inode; 3871 } 3872 3873 static void shmem_free_in_core_inode(struct inode *inode) 3874 { 3875 if (S_ISLNK(inode->i_mode)) 3876 kfree(inode->i_link); 3877 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3878 } 3879 3880 static void shmem_destroy_inode(struct inode *inode) 3881 { 3882 if (S_ISREG(inode->i_mode)) 3883 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3884 } 3885 3886 static void shmem_init_inode(void *foo) 3887 { 3888 struct shmem_inode_info *info = foo; 3889 inode_init_once(&info->vfs_inode); 3890 } 3891 3892 static void shmem_init_inodecache(void) 3893 { 3894 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3895 sizeof(struct shmem_inode_info), 3896 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3897 } 3898 3899 static void shmem_destroy_inodecache(void) 3900 { 3901 kmem_cache_destroy(shmem_inode_cachep); 3902 } 3903 3904 /* Keep the page in page cache instead of truncating it */ 3905 static int shmem_error_remove_page(struct address_space *mapping, 3906 struct page *page) 3907 { 3908 return 0; 3909 } 3910 3911 const struct address_space_operations shmem_aops = { 3912 .writepage = shmem_writepage, 3913 .dirty_folio = noop_dirty_folio, 3914 #ifdef CONFIG_TMPFS 3915 .write_begin = shmem_write_begin, 3916 .write_end = shmem_write_end, 3917 #endif 3918 #ifdef CONFIG_MIGRATION 3919 .migrate_folio = migrate_folio, 3920 #endif 3921 .error_remove_page = shmem_error_remove_page, 3922 }; 3923 EXPORT_SYMBOL(shmem_aops); 3924 3925 static const struct file_operations shmem_file_operations = { 3926 .mmap = shmem_mmap, 3927 .open = generic_file_open, 3928 .get_unmapped_area = shmem_get_unmapped_area, 3929 #ifdef CONFIG_TMPFS 3930 .llseek = shmem_file_llseek, 3931 .read_iter = shmem_file_read_iter, 3932 .write_iter = generic_file_write_iter, 3933 .fsync = noop_fsync, 3934 .splice_read = generic_file_splice_read, 3935 .splice_write = iter_file_splice_write, 3936 .fallocate = shmem_fallocate, 3937 #endif 3938 }; 3939 3940 static const struct inode_operations shmem_inode_operations = { 3941 .getattr = shmem_getattr, 3942 .setattr = shmem_setattr, 3943 #ifdef CONFIG_TMPFS_XATTR 3944 .listxattr = shmem_listxattr, 3945 .set_acl = simple_set_acl, 3946 .fileattr_get = shmem_fileattr_get, 3947 .fileattr_set = shmem_fileattr_set, 3948 #endif 3949 }; 3950 3951 static const struct inode_operations shmem_dir_inode_operations = { 3952 #ifdef CONFIG_TMPFS 3953 .getattr = shmem_getattr, 3954 .create = shmem_create, 3955 .lookup = simple_lookup, 3956 .link = shmem_link, 3957 .unlink = shmem_unlink, 3958 .symlink = shmem_symlink, 3959 .mkdir = shmem_mkdir, 3960 .rmdir = shmem_rmdir, 3961 .mknod = shmem_mknod, 3962 .rename = shmem_rename2, 3963 .tmpfile = shmem_tmpfile, 3964 #endif 3965 #ifdef CONFIG_TMPFS_XATTR 3966 .listxattr = shmem_listxattr, 3967 .fileattr_get = shmem_fileattr_get, 3968 .fileattr_set = shmem_fileattr_set, 3969 #endif 3970 #ifdef CONFIG_TMPFS_POSIX_ACL 3971 .setattr = shmem_setattr, 3972 .set_acl = simple_set_acl, 3973 #endif 3974 }; 3975 3976 static const struct inode_operations shmem_special_inode_operations = { 3977 .getattr = shmem_getattr, 3978 #ifdef CONFIG_TMPFS_XATTR 3979 .listxattr = shmem_listxattr, 3980 #endif 3981 #ifdef CONFIG_TMPFS_POSIX_ACL 3982 .setattr = shmem_setattr, 3983 .set_acl = simple_set_acl, 3984 #endif 3985 }; 3986 3987 static const struct super_operations shmem_ops = { 3988 .alloc_inode = shmem_alloc_inode, 3989 .free_inode = shmem_free_in_core_inode, 3990 .destroy_inode = shmem_destroy_inode, 3991 #ifdef CONFIG_TMPFS 3992 .statfs = shmem_statfs, 3993 .show_options = shmem_show_options, 3994 #endif 3995 .evict_inode = shmem_evict_inode, 3996 .drop_inode = generic_delete_inode, 3997 .put_super = shmem_put_super, 3998 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3999 .nr_cached_objects = shmem_unused_huge_count, 4000 .free_cached_objects = shmem_unused_huge_scan, 4001 #endif 4002 }; 4003 4004 static const struct vm_operations_struct shmem_vm_ops = { 4005 .fault = shmem_fault, 4006 .map_pages = filemap_map_pages, 4007 #ifdef CONFIG_NUMA 4008 .set_policy = shmem_set_policy, 4009 .get_policy = shmem_get_policy, 4010 #endif 4011 }; 4012 4013 static const struct vm_operations_struct shmem_anon_vm_ops = { 4014 .fault = shmem_fault, 4015 .map_pages = filemap_map_pages, 4016 #ifdef CONFIG_NUMA 4017 .set_policy = shmem_set_policy, 4018 .get_policy = shmem_get_policy, 4019 #endif 4020 }; 4021 4022 int shmem_init_fs_context(struct fs_context *fc) 4023 { 4024 struct shmem_options *ctx; 4025 4026 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4027 if (!ctx) 4028 return -ENOMEM; 4029 4030 ctx->mode = 0777 | S_ISVTX; 4031 ctx->uid = current_fsuid(); 4032 ctx->gid = current_fsgid(); 4033 4034 fc->fs_private = ctx; 4035 fc->ops = &shmem_fs_context_ops; 4036 return 0; 4037 } 4038 4039 static struct file_system_type shmem_fs_type = { 4040 .owner = THIS_MODULE, 4041 .name = "tmpfs", 4042 .init_fs_context = shmem_init_fs_context, 4043 #ifdef CONFIG_TMPFS 4044 .parameters = shmem_fs_parameters, 4045 #endif 4046 .kill_sb = kill_litter_super, 4047 #ifdef CONFIG_SHMEM 4048 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP, 4049 #else 4050 .fs_flags = FS_USERNS_MOUNT, 4051 #endif 4052 }; 4053 4054 void __init shmem_init(void) 4055 { 4056 int error; 4057 4058 shmem_init_inodecache(); 4059 4060 error = register_filesystem(&shmem_fs_type); 4061 if (error) { 4062 pr_err("Could not register tmpfs\n"); 4063 goto out2; 4064 } 4065 4066 shm_mnt = kern_mount(&shmem_fs_type); 4067 if (IS_ERR(shm_mnt)) { 4068 error = PTR_ERR(shm_mnt); 4069 pr_err("Could not kern_mount tmpfs\n"); 4070 goto out1; 4071 } 4072 4073 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4074 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4075 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4076 else 4077 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4078 #endif 4079 return; 4080 4081 out1: 4082 unregister_filesystem(&shmem_fs_type); 4083 out2: 4084 shmem_destroy_inodecache(); 4085 shm_mnt = ERR_PTR(error); 4086 } 4087 4088 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4089 static ssize_t shmem_enabled_show(struct kobject *kobj, 4090 struct kobj_attribute *attr, char *buf) 4091 { 4092 static const int values[] = { 4093 SHMEM_HUGE_ALWAYS, 4094 SHMEM_HUGE_WITHIN_SIZE, 4095 SHMEM_HUGE_ADVISE, 4096 SHMEM_HUGE_NEVER, 4097 SHMEM_HUGE_DENY, 4098 SHMEM_HUGE_FORCE, 4099 }; 4100 int len = 0; 4101 int i; 4102 4103 for (i = 0; i < ARRAY_SIZE(values); i++) { 4104 len += sysfs_emit_at(buf, len, 4105 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4106 i ? " " : "", 4107 shmem_format_huge(values[i])); 4108 } 4109 4110 len += sysfs_emit_at(buf, len, "\n"); 4111 4112 return len; 4113 } 4114 4115 static ssize_t shmem_enabled_store(struct kobject *kobj, 4116 struct kobj_attribute *attr, const char *buf, size_t count) 4117 { 4118 char tmp[16]; 4119 int huge; 4120 4121 if (count + 1 > sizeof(tmp)) 4122 return -EINVAL; 4123 memcpy(tmp, buf, count); 4124 tmp[count] = '\0'; 4125 if (count && tmp[count - 1] == '\n') 4126 tmp[count - 1] = '\0'; 4127 4128 huge = shmem_parse_huge(tmp); 4129 if (huge == -EINVAL) 4130 return -EINVAL; 4131 if (!has_transparent_hugepage() && 4132 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4133 return -EINVAL; 4134 4135 shmem_huge = huge; 4136 if (shmem_huge > SHMEM_HUGE_DENY) 4137 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4138 return count; 4139 } 4140 4141 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4142 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4143 4144 #else /* !CONFIG_SHMEM */ 4145 4146 /* 4147 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4148 * 4149 * This is intended for small system where the benefits of the full 4150 * shmem code (swap-backed and resource-limited) are outweighed by 4151 * their complexity. On systems without swap this code should be 4152 * effectively equivalent, but much lighter weight. 4153 */ 4154 4155 static struct file_system_type shmem_fs_type = { 4156 .name = "tmpfs", 4157 .init_fs_context = ramfs_init_fs_context, 4158 .parameters = ramfs_fs_parameters, 4159 .kill_sb = kill_litter_super, 4160 .fs_flags = FS_USERNS_MOUNT, 4161 }; 4162 4163 void __init shmem_init(void) 4164 { 4165 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4166 4167 shm_mnt = kern_mount(&shmem_fs_type); 4168 BUG_ON(IS_ERR(shm_mnt)); 4169 } 4170 4171 int shmem_unuse(unsigned int type) 4172 { 4173 return 0; 4174 } 4175 4176 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4177 { 4178 return 0; 4179 } 4180 4181 void shmem_unlock_mapping(struct address_space *mapping) 4182 { 4183 } 4184 4185 #ifdef CONFIG_MMU 4186 unsigned long shmem_get_unmapped_area(struct file *file, 4187 unsigned long addr, unsigned long len, 4188 unsigned long pgoff, unsigned long flags) 4189 { 4190 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4191 } 4192 #endif 4193 4194 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4195 { 4196 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4197 } 4198 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4199 4200 #define shmem_vm_ops generic_file_vm_ops 4201 #define shmem_anon_vm_ops generic_file_vm_ops 4202 #define shmem_file_operations ramfs_file_operations 4203 #define shmem_get_inode(idmap, sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4204 #define shmem_acct_size(flags, size) 0 4205 #define shmem_unacct_size(flags, size) do {} while (0) 4206 4207 #endif /* CONFIG_SHMEM */ 4208 4209 /* common code */ 4210 4211 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4212 unsigned long flags, unsigned int i_flags) 4213 { 4214 struct inode *inode; 4215 struct file *res; 4216 4217 if (IS_ERR(mnt)) 4218 return ERR_CAST(mnt); 4219 4220 if (size < 0 || size > MAX_LFS_FILESIZE) 4221 return ERR_PTR(-EINVAL); 4222 4223 if (shmem_acct_size(flags, size)) 4224 return ERR_PTR(-ENOMEM); 4225 4226 if (is_idmapped_mnt(mnt)) 4227 return ERR_PTR(-EINVAL); 4228 4229 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 4230 S_IFREG | S_IRWXUGO, 0, flags); 4231 if (unlikely(!inode)) { 4232 shmem_unacct_size(flags, size); 4233 return ERR_PTR(-ENOSPC); 4234 } 4235 inode->i_flags |= i_flags; 4236 inode->i_size = size; 4237 clear_nlink(inode); /* It is unlinked */ 4238 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4239 if (!IS_ERR(res)) 4240 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4241 &shmem_file_operations); 4242 if (IS_ERR(res)) 4243 iput(inode); 4244 return res; 4245 } 4246 4247 /** 4248 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4249 * kernel internal. There will be NO LSM permission checks against the 4250 * underlying inode. So users of this interface must do LSM checks at a 4251 * higher layer. The users are the big_key and shm implementations. LSM 4252 * checks are provided at the key or shm level rather than the inode. 4253 * @name: name for dentry (to be seen in /proc/<pid>/maps 4254 * @size: size to be set for the file 4255 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4256 */ 4257 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4258 { 4259 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4260 } 4261 4262 /** 4263 * shmem_file_setup - get an unlinked file living in tmpfs 4264 * @name: name for dentry (to be seen in /proc/<pid>/maps 4265 * @size: size to be set for the file 4266 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4267 */ 4268 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4269 { 4270 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4271 } 4272 EXPORT_SYMBOL_GPL(shmem_file_setup); 4273 4274 /** 4275 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4276 * @mnt: the tmpfs mount where the file will be created 4277 * @name: name for dentry (to be seen in /proc/<pid>/maps 4278 * @size: size to be set for the file 4279 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4280 */ 4281 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4282 loff_t size, unsigned long flags) 4283 { 4284 return __shmem_file_setup(mnt, name, size, flags, 0); 4285 } 4286 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4287 4288 /** 4289 * shmem_zero_setup - setup a shared anonymous mapping 4290 * @vma: the vma to be mmapped is prepared by do_mmap 4291 */ 4292 int shmem_zero_setup(struct vm_area_struct *vma) 4293 { 4294 struct file *file; 4295 loff_t size = vma->vm_end - vma->vm_start; 4296 4297 /* 4298 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4299 * between XFS directory reading and selinux: since this file is only 4300 * accessible to the user through its mapping, use S_PRIVATE flag to 4301 * bypass file security, in the same way as shmem_kernel_file_setup(). 4302 */ 4303 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4304 if (IS_ERR(file)) 4305 return PTR_ERR(file); 4306 4307 if (vma->vm_file) 4308 fput(vma->vm_file); 4309 vma->vm_file = file; 4310 vma->vm_ops = &shmem_anon_vm_ops; 4311 4312 return 0; 4313 } 4314 4315 /** 4316 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4317 * @mapping: the page's address_space 4318 * @index: the page index 4319 * @gfp: the page allocator flags to use if allocating 4320 * 4321 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4322 * with any new page allocations done using the specified allocation flags. 4323 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4324 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4325 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4326 * 4327 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4328 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4329 */ 4330 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4331 pgoff_t index, gfp_t gfp) 4332 { 4333 #ifdef CONFIG_SHMEM 4334 struct inode *inode = mapping->host; 4335 struct folio *folio; 4336 struct page *page; 4337 int error; 4338 4339 BUG_ON(!shmem_mapping(mapping)); 4340 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE, 4341 gfp, NULL, NULL, NULL); 4342 if (error) 4343 return ERR_PTR(error); 4344 4345 folio_unlock(folio); 4346 page = folio_file_page(folio, index); 4347 if (PageHWPoison(page)) { 4348 folio_put(folio); 4349 return ERR_PTR(-EIO); 4350 } 4351 4352 return page; 4353 #else 4354 /* 4355 * The tiny !SHMEM case uses ramfs without swap 4356 */ 4357 return read_cache_page_gfp(mapping, index, gfp); 4358 #endif 4359 } 4360 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4361