1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2005 Hugh Dickins. 10 * Copyright (C) 2002-2005 VERITAS Software Corporation. 11 * Copyright (C) 2004 Andi Kleen, SuSE Labs 12 * 13 * Extended attribute support for tmpfs: 14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 16 * 17 * tiny-shmem: 18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 19 * 20 * This file is released under the GPL. 21 */ 22 23 #include <linux/fs.h> 24 #include <linux/init.h> 25 #include <linux/vfs.h> 26 #include <linux/mount.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/percpu_counter.h> 32 #include <linux/swap.h> 33 34 static struct vfsmount *shm_mnt; 35 36 #ifdef CONFIG_SHMEM 37 /* 38 * This virtual memory filesystem is heavily based on the ramfs. It 39 * extends ramfs by the ability to use swap and honor resource limits 40 * which makes it a completely usable filesystem. 41 */ 42 43 #include <linux/xattr.h> 44 #include <linux/exportfs.h> 45 #include <linux/posix_acl.h> 46 #include <linux/generic_acl.h> 47 #include <linux/mman.h> 48 #include <linux/string.h> 49 #include <linux/slab.h> 50 #include <linux/backing-dev.h> 51 #include <linux/shmem_fs.h> 52 #include <linux/writeback.h> 53 #include <linux/blkdev.h> 54 #include <linux/security.h> 55 #include <linux/swapops.h> 56 #include <linux/mempolicy.h> 57 #include <linux/namei.h> 58 #include <linux/ctype.h> 59 #include <linux/migrate.h> 60 #include <linux/highmem.h> 61 #include <linux/seq_file.h> 62 #include <linux/magic.h> 63 64 #include <asm/uaccess.h> 65 #include <asm/div64.h> 66 #include <asm/pgtable.h> 67 68 /* 69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of 70 * its triple-indirect swap vector - see illustration at shmem_swp_entry(). 71 * 72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel, 73 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum 74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel, 75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout. 76 * 77 * We use / and * instead of shifts in the definitions below, so that the swap 78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE. 79 */ 80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long)) 81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE) 82 83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1)) 84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT) 85 86 #define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE) 87 #define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT)) 88 89 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 90 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 91 92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */ 93 #define SHMEM_PAGEIN VM_READ 94 #define SHMEM_TRUNCATE VM_WRITE 95 96 /* Definition to limit shmem_truncate's steps between cond_rescheds */ 97 #define LATENCY_LIMIT 64 98 99 /* Pretend that each entry is of this size in directory's i_size */ 100 #define BOGO_DIRENT_SIZE 20 101 102 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */ 103 enum sgp_type { 104 SGP_READ, /* don't exceed i_size, don't allocate page */ 105 SGP_CACHE, /* don't exceed i_size, may allocate page */ 106 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 107 SGP_WRITE, /* may exceed i_size, may allocate page */ 108 }; 109 110 #ifdef CONFIG_TMPFS 111 static unsigned long shmem_default_max_blocks(void) 112 { 113 return totalram_pages / 2; 114 } 115 116 static unsigned long shmem_default_max_inodes(void) 117 { 118 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 119 } 120 #endif 121 122 static int shmem_getpage(struct inode *inode, unsigned long idx, 123 struct page **pagep, enum sgp_type sgp, int *type); 124 125 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask) 126 { 127 /* 128 * The above definition of ENTRIES_PER_PAGE, and the use of 129 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE: 130 * might be reconsidered if it ever diverges from PAGE_SIZE. 131 * 132 * Mobility flags are masked out as swap vectors cannot move 133 */ 134 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO, 135 PAGE_CACHE_SHIFT-PAGE_SHIFT); 136 } 137 138 static inline void shmem_dir_free(struct page *page) 139 { 140 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT); 141 } 142 143 static struct page **shmem_dir_map(struct page *page) 144 { 145 return (struct page **)kmap_atomic(page, KM_USER0); 146 } 147 148 static inline void shmem_dir_unmap(struct page **dir) 149 { 150 kunmap_atomic(dir, KM_USER0); 151 } 152 153 static swp_entry_t *shmem_swp_map(struct page *page) 154 { 155 return (swp_entry_t *)kmap_atomic(page, KM_USER1); 156 } 157 158 static inline void shmem_swp_balance_unmap(void) 159 { 160 /* 161 * When passing a pointer to an i_direct entry, to code which 162 * also handles indirect entries and so will shmem_swp_unmap, 163 * we must arrange for the preempt count to remain in balance. 164 * What kmap_atomic of a lowmem page does depends on config 165 * and architecture, so pretend to kmap_atomic some lowmem page. 166 */ 167 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1); 168 } 169 170 static inline void shmem_swp_unmap(swp_entry_t *entry) 171 { 172 kunmap_atomic(entry, KM_USER1); 173 } 174 175 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 176 { 177 return sb->s_fs_info; 178 } 179 180 /* 181 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 182 * for shared memory and for shared anonymous (/dev/zero) mappings 183 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 184 * consistent with the pre-accounting of private mappings ... 185 */ 186 static inline int shmem_acct_size(unsigned long flags, loff_t size) 187 { 188 return (flags & VM_NORESERVE) ? 189 0 : security_vm_enough_memory_kern(VM_ACCT(size)); 190 } 191 192 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 193 { 194 if (!(flags & VM_NORESERVE)) 195 vm_unacct_memory(VM_ACCT(size)); 196 } 197 198 /* 199 * ... whereas tmpfs objects are accounted incrementally as 200 * pages are allocated, in order to allow huge sparse files. 201 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 202 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 203 */ 204 static inline int shmem_acct_block(unsigned long flags) 205 { 206 return (flags & VM_NORESERVE) ? 207 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0; 208 } 209 210 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 211 { 212 if (flags & VM_NORESERVE) 213 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 214 } 215 216 static const struct super_operations shmem_ops; 217 static const struct address_space_operations shmem_aops; 218 static const struct file_operations shmem_file_operations; 219 static const struct inode_operations shmem_inode_operations; 220 static const struct inode_operations shmem_dir_inode_operations; 221 static const struct inode_operations shmem_special_inode_operations; 222 static const struct vm_operations_struct shmem_vm_ops; 223 224 static struct backing_dev_info shmem_backing_dev_info __read_mostly = { 225 .ra_pages = 0, /* No readahead */ 226 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 227 .unplug_io_fn = default_unplug_io_fn, 228 }; 229 230 static LIST_HEAD(shmem_swaplist); 231 static DEFINE_MUTEX(shmem_swaplist_mutex); 232 233 static void shmem_free_blocks(struct inode *inode, long pages) 234 { 235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 236 if (sbinfo->max_blocks) { 237 percpu_counter_add(&sbinfo->used_blocks, -pages); 238 spin_lock(&inode->i_lock); 239 inode->i_blocks -= pages*BLOCKS_PER_PAGE; 240 spin_unlock(&inode->i_lock); 241 } 242 } 243 244 static int shmem_reserve_inode(struct super_block *sb) 245 { 246 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 247 if (sbinfo->max_inodes) { 248 spin_lock(&sbinfo->stat_lock); 249 if (!sbinfo->free_inodes) { 250 spin_unlock(&sbinfo->stat_lock); 251 return -ENOSPC; 252 } 253 sbinfo->free_inodes--; 254 spin_unlock(&sbinfo->stat_lock); 255 } 256 return 0; 257 } 258 259 static void shmem_free_inode(struct super_block *sb) 260 { 261 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 262 if (sbinfo->max_inodes) { 263 spin_lock(&sbinfo->stat_lock); 264 sbinfo->free_inodes++; 265 spin_unlock(&sbinfo->stat_lock); 266 } 267 } 268 269 /** 270 * shmem_recalc_inode - recalculate the size of an inode 271 * @inode: inode to recalc 272 * 273 * We have to calculate the free blocks since the mm can drop 274 * undirtied hole pages behind our back. 275 * 276 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 277 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 278 * 279 * It has to be called with the spinlock held. 280 */ 281 static void shmem_recalc_inode(struct inode *inode) 282 { 283 struct shmem_inode_info *info = SHMEM_I(inode); 284 long freed; 285 286 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 287 if (freed > 0) { 288 info->alloced -= freed; 289 shmem_unacct_blocks(info->flags, freed); 290 shmem_free_blocks(inode, freed); 291 } 292 } 293 294 /** 295 * shmem_swp_entry - find the swap vector position in the info structure 296 * @info: info structure for the inode 297 * @index: index of the page to find 298 * @page: optional page to add to the structure. Has to be preset to 299 * all zeros 300 * 301 * If there is no space allocated yet it will return NULL when 302 * page is NULL, else it will use the page for the needed block, 303 * setting it to NULL on return to indicate that it has been used. 304 * 305 * The swap vector is organized the following way: 306 * 307 * There are SHMEM_NR_DIRECT entries directly stored in the 308 * shmem_inode_info structure. So small files do not need an addional 309 * allocation. 310 * 311 * For pages with index > SHMEM_NR_DIRECT there is the pointer 312 * i_indirect which points to a page which holds in the first half 313 * doubly indirect blocks, in the second half triple indirect blocks: 314 * 315 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the 316 * following layout (for SHMEM_NR_DIRECT == 16): 317 * 318 * i_indirect -> dir --> 16-19 319 * | +-> 20-23 320 * | 321 * +-->dir2 --> 24-27 322 * | +-> 28-31 323 * | +-> 32-35 324 * | +-> 36-39 325 * | 326 * +-->dir3 --> 40-43 327 * +-> 44-47 328 * +-> 48-51 329 * +-> 52-55 330 */ 331 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page) 332 { 333 unsigned long offset; 334 struct page **dir; 335 struct page *subdir; 336 337 if (index < SHMEM_NR_DIRECT) { 338 shmem_swp_balance_unmap(); 339 return info->i_direct+index; 340 } 341 if (!info->i_indirect) { 342 if (page) { 343 info->i_indirect = *page; 344 *page = NULL; 345 } 346 return NULL; /* need another page */ 347 } 348 349 index -= SHMEM_NR_DIRECT; 350 offset = index % ENTRIES_PER_PAGE; 351 index /= ENTRIES_PER_PAGE; 352 dir = shmem_dir_map(info->i_indirect); 353 354 if (index >= ENTRIES_PER_PAGE/2) { 355 index -= ENTRIES_PER_PAGE/2; 356 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE; 357 index %= ENTRIES_PER_PAGE; 358 subdir = *dir; 359 if (!subdir) { 360 if (page) { 361 *dir = *page; 362 *page = NULL; 363 } 364 shmem_dir_unmap(dir); 365 return NULL; /* need another page */ 366 } 367 shmem_dir_unmap(dir); 368 dir = shmem_dir_map(subdir); 369 } 370 371 dir += index; 372 subdir = *dir; 373 if (!subdir) { 374 if (!page || !(subdir = *page)) { 375 shmem_dir_unmap(dir); 376 return NULL; /* need a page */ 377 } 378 *dir = subdir; 379 *page = NULL; 380 } 381 shmem_dir_unmap(dir); 382 return shmem_swp_map(subdir) + offset; 383 } 384 385 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value) 386 { 387 long incdec = value? 1: -1; 388 389 entry->val = value; 390 info->swapped += incdec; 391 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) { 392 struct page *page = kmap_atomic_to_page(entry); 393 set_page_private(page, page_private(page) + incdec); 394 } 395 } 396 397 /** 398 * shmem_swp_alloc - get the position of the swap entry for the page. 399 * @info: info structure for the inode 400 * @index: index of the page to find 401 * @sgp: check and recheck i_size? skip allocation? 402 * 403 * If the entry does not exist, allocate it. 404 */ 405 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp) 406 { 407 struct inode *inode = &info->vfs_inode; 408 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 409 struct page *page = NULL; 410 swp_entry_t *entry; 411 412 if (sgp != SGP_WRITE && 413 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 414 return ERR_PTR(-EINVAL); 415 416 while (!(entry = shmem_swp_entry(info, index, &page))) { 417 if (sgp == SGP_READ) 418 return shmem_swp_map(ZERO_PAGE(0)); 419 /* 420 * Test used_blocks against 1 less max_blocks, since we have 1 data 421 * page (and perhaps indirect index pages) yet to allocate: 422 * a waste to allocate index if we cannot allocate data. 423 */ 424 if (sbinfo->max_blocks) { 425 if (percpu_counter_compare(&sbinfo->used_blocks, (sbinfo->max_blocks - 1)) > 0) 426 return ERR_PTR(-ENOSPC); 427 percpu_counter_inc(&sbinfo->used_blocks); 428 spin_lock(&inode->i_lock); 429 inode->i_blocks += BLOCKS_PER_PAGE; 430 spin_unlock(&inode->i_lock); 431 } 432 433 spin_unlock(&info->lock); 434 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping)); 435 spin_lock(&info->lock); 436 437 if (!page) { 438 shmem_free_blocks(inode, 1); 439 return ERR_PTR(-ENOMEM); 440 } 441 if (sgp != SGP_WRITE && 442 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 443 entry = ERR_PTR(-EINVAL); 444 break; 445 } 446 if (info->next_index <= index) 447 info->next_index = index + 1; 448 } 449 if (page) { 450 /* another task gave its page, or truncated the file */ 451 shmem_free_blocks(inode, 1); 452 shmem_dir_free(page); 453 } 454 if (info->next_index <= index && !IS_ERR(entry)) 455 info->next_index = index + 1; 456 return entry; 457 } 458 459 /** 460 * shmem_free_swp - free some swap entries in a directory 461 * @dir: pointer to the directory 462 * @edir: pointer after last entry of the directory 463 * @punch_lock: pointer to spinlock when needed for the holepunch case 464 */ 465 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir, 466 spinlock_t *punch_lock) 467 { 468 spinlock_t *punch_unlock = NULL; 469 swp_entry_t *ptr; 470 int freed = 0; 471 472 for (ptr = dir; ptr < edir; ptr++) { 473 if (ptr->val) { 474 if (unlikely(punch_lock)) { 475 punch_unlock = punch_lock; 476 punch_lock = NULL; 477 spin_lock(punch_unlock); 478 if (!ptr->val) 479 continue; 480 } 481 free_swap_and_cache(*ptr); 482 *ptr = (swp_entry_t){0}; 483 freed++; 484 } 485 } 486 if (punch_unlock) 487 spin_unlock(punch_unlock); 488 return freed; 489 } 490 491 static int shmem_map_and_free_swp(struct page *subdir, int offset, 492 int limit, struct page ***dir, spinlock_t *punch_lock) 493 { 494 swp_entry_t *ptr; 495 int freed = 0; 496 497 ptr = shmem_swp_map(subdir); 498 for (; offset < limit; offset += LATENCY_LIMIT) { 499 int size = limit - offset; 500 if (size > LATENCY_LIMIT) 501 size = LATENCY_LIMIT; 502 freed += shmem_free_swp(ptr+offset, ptr+offset+size, 503 punch_lock); 504 if (need_resched()) { 505 shmem_swp_unmap(ptr); 506 if (*dir) { 507 shmem_dir_unmap(*dir); 508 *dir = NULL; 509 } 510 cond_resched(); 511 ptr = shmem_swp_map(subdir); 512 } 513 } 514 shmem_swp_unmap(ptr); 515 return freed; 516 } 517 518 static void shmem_free_pages(struct list_head *next) 519 { 520 struct page *page; 521 int freed = 0; 522 523 do { 524 page = container_of(next, struct page, lru); 525 next = next->next; 526 shmem_dir_free(page); 527 freed++; 528 if (freed >= LATENCY_LIMIT) { 529 cond_resched(); 530 freed = 0; 531 } 532 } while (next); 533 } 534 535 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end) 536 { 537 struct shmem_inode_info *info = SHMEM_I(inode); 538 unsigned long idx; 539 unsigned long size; 540 unsigned long limit; 541 unsigned long stage; 542 unsigned long diroff; 543 struct page **dir; 544 struct page *topdir; 545 struct page *middir; 546 struct page *subdir; 547 swp_entry_t *ptr; 548 LIST_HEAD(pages_to_free); 549 long nr_pages_to_free = 0; 550 long nr_swaps_freed = 0; 551 int offset; 552 int freed; 553 int punch_hole; 554 spinlock_t *needs_lock; 555 spinlock_t *punch_lock; 556 unsigned long upper_limit; 557 558 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 559 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 560 if (idx >= info->next_index) 561 return; 562 563 spin_lock(&info->lock); 564 info->flags |= SHMEM_TRUNCATE; 565 if (likely(end == (loff_t) -1)) { 566 limit = info->next_index; 567 upper_limit = SHMEM_MAX_INDEX; 568 info->next_index = idx; 569 needs_lock = NULL; 570 punch_hole = 0; 571 } else { 572 if (end + 1 >= inode->i_size) { /* we may free a little more */ 573 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >> 574 PAGE_CACHE_SHIFT; 575 upper_limit = SHMEM_MAX_INDEX; 576 } else { 577 limit = (end + 1) >> PAGE_CACHE_SHIFT; 578 upper_limit = limit; 579 } 580 needs_lock = &info->lock; 581 punch_hole = 1; 582 } 583 584 topdir = info->i_indirect; 585 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) { 586 info->i_indirect = NULL; 587 nr_pages_to_free++; 588 list_add(&topdir->lru, &pages_to_free); 589 } 590 spin_unlock(&info->lock); 591 592 if (info->swapped && idx < SHMEM_NR_DIRECT) { 593 ptr = info->i_direct; 594 size = limit; 595 if (size > SHMEM_NR_DIRECT) 596 size = SHMEM_NR_DIRECT; 597 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock); 598 } 599 600 /* 601 * If there are no indirect blocks or we are punching a hole 602 * below indirect blocks, nothing to be done. 603 */ 604 if (!topdir || limit <= SHMEM_NR_DIRECT) 605 goto done2; 606 607 /* 608 * The truncation case has already dropped info->lock, and we're safe 609 * because i_size and next_index have already been lowered, preventing 610 * access beyond. But in the punch_hole case, we still need to take 611 * the lock when updating the swap directory, because there might be 612 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or 613 * shmem_writepage. However, whenever we find we can remove a whole 614 * directory page (not at the misaligned start or end of the range), 615 * we first NULLify its pointer in the level above, and then have no 616 * need to take the lock when updating its contents: needs_lock and 617 * punch_lock (either pointing to info->lock or NULL) manage this. 618 */ 619 620 upper_limit -= SHMEM_NR_DIRECT; 621 limit -= SHMEM_NR_DIRECT; 622 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0; 623 offset = idx % ENTRIES_PER_PAGE; 624 idx -= offset; 625 626 dir = shmem_dir_map(topdir); 627 stage = ENTRIES_PER_PAGEPAGE/2; 628 if (idx < ENTRIES_PER_PAGEPAGE/2) { 629 middir = topdir; 630 diroff = idx/ENTRIES_PER_PAGE; 631 } else { 632 dir += ENTRIES_PER_PAGE/2; 633 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE; 634 while (stage <= idx) 635 stage += ENTRIES_PER_PAGEPAGE; 636 middir = *dir; 637 if (*dir) { 638 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) % 639 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE; 640 if (!diroff && !offset && upper_limit >= stage) { 641 if (needs_lock) { 642 spin_lock(needs_lock); 643 *dir = NULL; 644 spin_unlock(needs_lock); 645 needs_lock = NULL; 646 } else 647 *dir = NULL; 648 nr_pages_to_free++; 649 list_add(&middir->lru, &pages_to_free); 650 } 651 shmem_dir_unmap(dir); 652 dir = shmem_dir_map(middir); 653 } else { 654 diroff = 0; 655 offset = 0; 656 idx = stage; 657 } 658 } 659 660 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) { 661 if (unlikely(idx == stage)) { 662 shmem_dir_unmap(dir); 663 dir = shmem_dir_map(topdir) + 664 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE; 665 while (!*dir) { 666 dir++; 667 idx += ENTRIES_PER_PAGEPAGE; 668 if (idx >= limit) 669 goto done1; 670 } 671 stage = idx + ENTRIES_PER_PAGEPAGE; 672 middir = *dir; 673 if (punch_hole) 674 needs_lock = &info->lock; 675 if (upper_limit >= stage) { 676 if (needs_lock) { 677 spin_lock(needs_lock); 678 *dir = NULL; 679 spin_unlock(needs_lock); 680 needs_lock = NULL; 681 } else 682 *dir = NULL; 683 nr_pages_to_free++; 684 list_add(&middir->lru, &pages_to_free); 685 } 686 shmem_dir_unmap(dir); 687 cond_resched(); 688 dir = shmem_dir_map(middir); 689 diroff = 0; 690 } 691 punch_lock = needs_lock; 692 subdir = dir[diroff]; 693 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) { 694 if (needs_lock) { 695 spin_lock(needs_lock); 696 dir[diroff] = NULL; 697 spin_unlock(needs_lock); 698 punch_lock = NULL; 699 } else 700 dir[diroff] = NULL; 701 nr_pages_to_free++; 702 list_add(&subdir->lru, &pages_to_free); 703 } 704 if (subdir && page_private(subdir) /* has swap entries */) { 705 size = limit - idx; 706 if (size > ENTRIES_PER_PAGE) 707 size = ENTRIES_PER_PAGE; 708 freed = shmem_map_and_free_swp(subdir, 709 offset, size, &dir, punch_lock); 710 if (!dir) 711 dir = shmem_dir_map(middir); 712 nr_swaps_freed += freed; 713 if (offset || punch_lock) { 714 spin_lock(&info->lock); 715 set_page_private(subdir, 716 page_private(subdir) - freed); 717 spin_unlock(&info->lock); 718 } else 719 BUG_ON(page_private(subdir) != freed); 720 } 721 offset = 0; 722 } 723 done1: 724 shmem_dir_unmap(dir); 725 done2: 726 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) { 727 /* 728 * Call truncate_inode_pages again: racing shmem_unuse_inode 729 * may have swizzled a page in from swap since 730 * truncate_pagecache or generic_delete_inode did it, before we 731 * lowered next_index. Also, though shmem_getpage checks 732 * i_size before adding to cache, no recheck after: so fix the 733 * narrow window there too. 734 * 735 * Recalling truncate_inode_pages_range and unmap_mapping_range 736 * every time for punch_hole (which never got a chance to clear 737 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive, 738 * yet hardly ever necessary: try to optimize them out later. 739 */ 740 truncate_inode_pages_range(inode->i_mapping, start, end); 741 if (punch_hole) 742 unmap_mapping_range(inode->i_mapping, start, 743 end - start, 1); 744 } 745 746 spin_lock(&info->lock); 747 info->flags &= ~SHMEM_TRUNCATE; 748 info->swapped -= nr_swaps_freed; 749 if (nr_pages_to_free) 750 shmem_free_blocks(inode, nr_pages_to_free); 751 shmem_recalc_inode(inode); 752 spin_unlock(&info->lock); 753 754 /* 755 * Empty swap vector directory pages to be freed? 756 */ 757 if (!list_empty(&pages_to_free)) { 758 pages_to_free.prev->next = NULL; 759 shmem_free_pages(pages_to_free.next); 760 } 761 } 762 763 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr) 764 { 765 struct inode *inode = dentry->d_inode; 766 loff_t newsize = attr->ia_size; 767 int error; 768 769 error = inode_change_ok(inode, attr); 770 if (error) 771 return error; 772 773 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE) 774 && newsize != inode->i_size) { 775 struct page *page = NULL; 776 777 if (newsize < inode->i_size) { 778 /* 779 * If truncating down to a partial page, then 780 * if that page is already allocated, hold it 781 * in memory until the truncation is over, so 782 * truncate_partial_page cannnot miss it were 783 * it assigned to swap. 784 */ 785 if (newsize & (PAGE_CACHE_SIZE-1)) { 786 (void) shmem_getpage(inode, 787 newsize >> PAGE_CACHE_SHIFT, 788 &page, SGP_READ, NULL); 789 if (page) 790 unlock_page(page); 791 } 792 /* 793 * Reset SHMEM_PAGEIN flag so that shmem_truncate can 794 * detect if any pages might have been added to cache 795 * after truncate_inode_pages. But we needn't bother 796 * if it's being fully truncated to zero-length: the 797 * nrpages check is efficient enough in that case. 798 */ 799 if (newsize) { 800 struct shmem_inode_info *info = SHMEM_I(inode); 801 spin_lock(&info->lock); 802 info->flags &= ~SHMEM_PAGEIN; 803 spin_unlock(&info->lock); 804 } 805 } 806 807 /* XXX(truncate): truncate_setsize should be called last */ 808 truncate_setsize(inode, newsize); 809 if (page) 810 page_cache_release(page); 811 shmem_truncate_range(inode, newsize, (loff_t)-1); 812 } 813 814 setattr_copy(inode, attr); 815 #ifdef CONFIG_TMPFS_POSIX_ACL 816 if (attr->ia_valid & ATTR_MODE) 817 error = generic_acl_chmod(inode); 818 #endif 819 return error; 820 } 821 822 static void shmem_evict_inode(struct inode *inode) 823 { 824 struct shmem_inode_info *info = SHMEM_I(inode); 825 826 if (inode->i_mapping->a_ops == &shmem_aops) { 827 truncate_inode_pages(inode->i_mapping, 0); 828 shmem_unacct_size(info->flags, inode->i_size); 829 inode->i_size = 0; 830 shmem_truncate_range(inode, 0, (loff_t)-1); 831 if (!list_empty(&info->swaplist)) { 832 mutex_lock(&shmem_swaplist_mutex); 833 list_del_init(&info->swaplist); 834 mutex_unlock(&shmem_swaplist_mutex); 835 } 836 } 837 BUG_ON(inode->i_blocks); 838 shmem_free_inode(inode->i_sb); 839 end_writeback(inode); 840 } 841 842 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir) 843 { 844 swp_entry_t *ptr; 845 846 for (ptr = dir; ptr < edir; ptr++) { 847 if (ptr->val == entry.val) 848 return ptr - dir; 849 } 850 return -1; 851 } 852 853 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page) 854 { 855 struct inode *inode; 856 unsigned long idx; 857 unsigned long size; 858 unsigned long limit; 859 unsigned long stage; 860 struct page **dir; 861 struct page *subdir; 862 swp_entry_t *ptr; 863 int offset; 864 int error; 865 866 idx = 0; 867 ptr = info->i_direct; 868 spin_lock(&info->lock); 869 if (!info->swapped) { 870 list_del_init(&info->swaplist); 871 goto lost2; 872 } 873 limit = info->next_index; 874 size = limit; 875 if (size > SHMEM_NR_DIRECT) 876 size = SHMEM_NR_DIRECT; 877 offset = shmem_find_swp(entry, ptr, ptr+size); 878 if (offset >= 0) 879 goto found; 880 if (!info->i_indirect) 881 goto lost2; 882 883 dir = shmem_dir_map(info->i_indirect); 884 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2; 885 886 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) { 887 if (unlikely(idx == stage)) { 888 shmem_dir_unmap(dir-1); 889 if (cond_resched_lock(&info->lock)) { 890 /* check it has not been truncated */ 891 if (limit > info->next_index) { 892 limit = info->next_index; 893 if (idx >= limit) 894 goto lost2; 895 } 896 } 897 dir = shmem_dir_map(info->i_indirect) + 898 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE; 899 while (!*dir) { 900 dir++; 901 idx += ENTRIES_PER_PAGEPAGE; 902 if (idx >= limit) 903 goto lost1; 904 } 905 stage = idx + ENTRIES_PER_PAGEPAGE; 906 subdir = *dir; 907 shmem_dir_unmap(dir); 908 dir = shmem_dir_map(subdir); 909 } 910 subdir = *dir; 911 if (subdir && page_private(subdir)) { 912 ptr = shmem_swp_map(subdir); 913 size = limit - idx; 914 if (size > ENTRIES_PER_PAGE) 915 size = ENTRIES_PER_PAGE; 916 offset = shmem_find_swp(entry, ptr, ptr+size); 917 shmem_swp_unmap(ptr); 918 if (offset >= 0) { 919 shmem_dir_unmap(dir); 920 goto found; 921 } 922 } 923 } 924 lost1: 925 shmem_dir_unmap(dir-1); 926 lost2: 927 spin_unlock(&info->lock); 928 return 0; 929 found: 930 idx += offset; 931 inode = igrab(&info->vfs_inode); 932 spin_unlock(&info->lock); 933 934 /* 935 * Move _head_ to start search for next from here. 936 * But be careful: shmem_evict_inode checks list_empty without taking 937 * mutex, and there's an instant in list_move_tail when info->swaplist 938 * would appear empty, if it were the only one on shmem_swaplist. We 939 * could avoid doing it if inode NULL; or use this minor optimization. 940 */ 941 if (shmem_swaplist.next != &info->swaplist) 942 list_move_tail(&shmem_swaplist, &info->swaplist); 943 mutex_unlock(&shmem_swaplist_mutex); 944 945 error = 1; 946 if (!inode) 947 goto out; 948 /* 949 * Charge page using GFP_KERNEL while we can wait. 950 * Charged back to the user(not to caller) when swap account is used. 951 * add_to_page_cache() will be called with GFP_NOWAIT. 952 */ 953 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL); 954 if (error) 955 goto out; 956 error = radix_tree_preload(GFP_KERNEL); 957 if (error) { 958 mem_cgroup_uncharge_cache_page(page); 959 goto out; 960 } 961 error = 1; 962 963 spin_lock(&info->lock); 964 ptr = shmem_swp_entry(info, idx, NULL); 965 if (ptr && ptr->val == entry.val) { 966 error = add_to_page_cache_locked(page, inode->i_mapping, 967 idx, GFP_NOWAIT); 968 /* does mem_cgroup_uncharge_cache_page on error */ 969 } else /* we must compensate for our precharge above */ 970 mem_cgroup_uncharge_cache_page(page); 971 972 if (error == -EEXIST) { 973 struct page *filepage = find_get_page(inode->i_mapping, idx); 974 error = 1; 975 if (filepage) { 976 /* 977 * There might be a more uptodate page coming down 978 * from a stacked writepage: forget our swappage if so. 979 */ 980 if (PageUptodate(filepage)) 981 error = 0; 982 page_cache_release(filepage); 983 } 984 } 985 if (!error) { 986 delete_from_swap_cache(page); 987 set_page_dirty(page); 988 info->flags |= SHMEM_PAGEIN; 989 shmem_swp_set(info, ptr, 0); 990 swap_free(entry); 991 error = 1; /* not an error, but entry was found */ 992 } 993 if (ptr) 994 shmem_swp_unmap(ptr); 995 spin_unlock(&info->lock); 996 radix_tree_preload_end(); 997 out: 998 unlock_page(page); 999 page_cache_release(page); 1000 iput(inode); /* allows for NULL */ 1001 return error; 1002 } 1003 1004 /* 1005 * shmem_unuse() search for an eventually swapped out shmem page. 1006 */ 1007 int shmem_unuse(swp_entry_t entry, struct page *page) 1008 { 1009 struct list_head *p, *next; 1010 struct shmem_inode_info *info; 1011 int found = 0; 1012 1013 mutex_lock(&shmem_swaplist_mutex); 1014 list_for_each_safe(p, next, &shmem_swaplist) { 1015 info = list_entry(p, struct shmem_inode_info, swaplist); 1016 found = shmem_unuse_inode(info, entry, page); 1017 cond_resched(); 1018 if (found) 1019 goto out; 1020 } 1021 mutex_unlock(&shmem_swaplist_mutex); 1022 /* 1023 * Can some race bring us here? We've been holding page lock, 1024 * so I think not; but would rather try again later than BUG() 1025 */ 1026 unlock_page(page); 1027 page_cache_release(page); 1028 out: 1029 return (found < 0) ? found : 0; 1030 } 1031 1032 /* 1033 * Move the page from the page cache to the swap cache. 1034 */ 1035 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1036 { 1037 struct shmem_inode_info *info; 1038 swp_entry_t *entry, swap; 1039 struct address_space *mapping; 1040 unsigned long index; 1041 struct inode *inode; 1042 1043 BUG_ON(!PageLocked(page)); 1044 mapping = page->mapping; 1045 index = page->index; 1046 inode = mapping->host; 1047 info = SHMEM_I(inode); 1048 if (info->flags & VM_LOCKED) 1049 goto redirty; 1050 if (!total_swap_pages) 1051 goto redirty; 1052 1053 /* 1054 * shmem_backing_dev_info's capabilities prevent regular writeback or 1055 * sync from ever calling shmem_writepage; but a stacking filesystem 1056 * may use the ->writepage of its underlying filesystem, in which case 1057 * tmpfs should write out to swap only in response to memory pressure, 1058 * and not for the writeback threads or sync. However, in those cases, 1059 * we do still want to check if there's a redundant swappage to be 1060 * discarded. 1061 */ 1062 if (wbc->for_reclaim) 1063 swap = get_swap_page(); 1064 else 1065 swap.val = 0; 1066 1067 spin_lock(&info->lock); 1068 if (index >= info->next_index) { 1069 BUG_ON(!(info->flags & SHMEM_TRUNCATE)); 1070 goto unlock; 1071 } 1072 entry = shmem_swp_entry(info, index, NULL); 1073 if (entry->val) { 1074 /* 1075 * The more uptodate page coming down from a stacked 1076 * writepage should replace our old swappage. 1077 */ 1078 free_swap_and_cache(*entry); 1079 shmem_swp_set(info, entry, 0); 1080 } 1081 shmem_recalc_inode(inode); 1082 1083 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1084 remove_from_page_cache(page); 1085 shmem_swp_set(info, entry, swap.val); 1086 shmem_swp_unmap(entry); 1087 if (list_empty(&info->swaplist)) 1088 inode = igrab(inode); 1089 else 1090 inode = NULL; 1091 spin_unlock(&info->lock); 1092 swap_shmem_alloc(swap); 1093 BUG_ON(page_mapped(page)); 1094 page_cache_release(page); /* pagecache ref */ 1095 swap_writepage(page, wbc); 1096 if (inode) { 1097 mutex_lock(&shmem_swaplist_mutex); 1098 /* move instead of add in case we're racing */ 1099 list_move_tail(&info->swaplist, &shmem_swaplist); 1100 mutex_unlock(&shmem_swaplist_mutex); 1101 iput(inode); 1102 } 1103 return 0; 1104 } 1105 1106 shmem_swp_unmap(entry); 1107 unlock: 1108 spin_unlock(&info->lock); 1109 /* 1110 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 1111 * clear SWAP_HAS_CACHE flag. 1112 */ 1113 swapcache_free(swap, NULL); 1114 redirty: 1115 set_page_dirty(page); 1116 if (wbc->for_reclaim) 1117 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1118 unlock_page(page); 1119 return 0; 1120 } 1121 1122 #ifdef CONFIG_NUMA 1123 #ifdef CONFIG_TMPFS 1124 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1125 { 1126 char buffer[64]; 1127 1128 if (!mpol || mpol->mode == MPOL_DEFAULT) 1129 return; /* show nothing */ 1130 1131 mpol_to_str(buffer, sizeof(buffer), mpol, 1); 1132 1133 seq_printf(seq, ",mpol=%s", buffer); 1134 } 1135 1136 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1137 { 1138 struct mempolicy *mpol = NULL; 1139 if (sbinfo->mpol) { 1140 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1141 mpol = sbinfo->mpol; 1142 mpol_get(mpol); 1143 spin_unlock(&sbinfo->stat_lock); 1144 } 1145 return mpol; 1146 } 1147 #endif /* CONFIG_TMPFS */ 1148 1149 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp, 1150 struct shmem_inode_info *info, unsigned long idx) 1151 { 1152 struct mempolicy mpol, *spol; 1153 struct vm_area_struct pvma; 1154 struct page *page; 1155 1156 spol = mpol_cond_copy(&mpol, 1157 mpol_shared_policy_lookup(&info->policy, idx)); 1158 1159 /* Create a pseudo vma that just contains the policy */ 1160 pvma.vm_start = 0; 1161 pvma.vm_pgoff = idx; 1162 pvma.vm_ops = NULL; 1163 pvma.vm_policy = spol; 1164 page = swapin_readahead(entry, gfp, &pvma, 0); 1165 return page; 1166 } 1167 1168 static struct page *shmem_alloc_page(gfp_t gfp, 1169 struct shmem_inode_info *info, unsigned long idx) 1170 { 1171 struct vm_area_struct pvma; 1172 1173 /* Create a pseudo vma that just contains the policy */ 1174 pvma.vm_start = 0; 1175 pvma.vm_pgoff = idx; 1176 pvma.vm_ops = NULL; 1177 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx); 1178 1179 /* 1180 * alloc_page_vma() will drop the shared policy reference 1181 */ 1182 return alloc_page_vma(gfp, &pvma, 0); 1183 } 1184 #else /* !CONFIG_NUMA */ 1185 #ifdef CONFIG_TMPFS 1186 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p) 1187 { 1188 } 1189 #endif /* CONFIG_TMPFS */ 1190 1191 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp, 1192 struct shmem_inode_info *info, unsigned long idx) 1193 { 1194 return swapin_readahead(entry, gfp, NULL, 0); 1195 } 1196 1197 static inline struct page *shmem_alloc_page(gfp_t gfp, 1198 struct shmem_inode_info *info, unsigned long idx) 1199 { 1200 return alloc_page(gfp); 1201 } 1202 #endif /* CONFIG_NUMA */ 1203 1204 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 1205 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1206 { 1207 return NULL; 1208 } 1209 #endif 1210 1211 /* 1212 * shmem_getpage - either get the page from swap or allocate a new one 1213 * 1214 * If we allocate a new one we do not mark it dirty. That's up to the 1215 * vm. If we swap it in we mark it dirty since we also free the swap 1216 * entry since a page cannot live in both the swap and page cache 1217 */ 1218 static int shmem_getpage(struct inode *inode, unsigned long idx, 1219 struct page **pagep, enum sgp_type sgp, int *type) 1220 { 1221 struct address_space *mapping = inode->i_mapping; 1222 struct shmem_inode_info *info = SHMEM_I(inode); 1223 struct shmem_sb_info *sbinfo; 1224 struct page *filepage = *pagep; 1225 struct page *swappage; 1226 struct page *prealloc_page = NULL; 1227 swp_entry_t *entry; 1228 swp_entry_t swap; 1229 gfp_t gfp; 1230 int error; 1231 1232 if (idx >= SHMEM_MAX_INDEX) 1233 return -EFBIG; 1234 1235 if (type) 1236 *type = 0; 1237 1238 /* 1239 * Normally, filepage is NULL on entry, and either found 1240 * uptodate immediately, or allocated and zeroed, or read 1241 * in under swappage, which is then assigned to filepage. 1242 * But shmem_readpage (required for splice) passes in a locked 1243 * filepage, which may be found not uptodate by other callers 1244 * too, and may need to be copied from the swappage read in. 1245 */ 1246 repeat: 1247 if (!filepage) 1248 filepage = find_lock_page(mapping, idx); 1249 if (filepage && PageUptodate(filepage)) 1250 goto done; 1251 gfp = mapping_gfp_mask(mapping); 1252 if (!filepage) { 1253 /* 1254 * Try to preload while we can wait, to not make a habit of 1255 * draining atomic reserves; but don't latch on to this cpu. 1256 */ 1257 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM); 1258 if (error) 1259 goto failed; 1260 radix_tree_preload_end(); 1261 if (sgp != SGP_READ && !prealloc_page) { 1262 /* We don't care if this fails */ 1263 prealloc_page = shmem_alloc_page(gfp, info, idx); 1264 if (prealloc_page) { 1265 if (mem_cgroup_cache_charge(prealloc_page, 1266 current->mm, GFP_KERNEL)) { 1267 page_cache_release(prealloc_page); 1268 prealloc_page = NULL; 1269 } 1270 } 1271 } 1272 } 1273 error = 0; 1274 1275 spin_lock(&info->lock); 1276 shmem_recalc_inode(inode); 1277 entry = shmem_swp_alloc(info, idx, sgp); 1278 if (IS_ERR(entry)) { 1279 spin_unlock(&info->lock); 1280 error = PTR_ERR(entry); 1281 goto failed; 1282 } 1283 swap = *entry; 1284 1285 if (swap.val) { 1286 /* Look it up and read it in.. */ 1287 swappage = lookup_swap_cache(swap); 1288 if (!swappage) { 1289 shmem_swp_unmap(entry); 1290 /* here we actually do the io */ 1291 if (type && !(*type & VM_FAULT_MAJOR)) { 1292 __count_vm_event(PGMAJFAULT); 1293 *type |= VM_FAULT_MAJOR; 1294 } 1295 spin_unlock(&info->lock); 1296 swappage = shmem_swapin(swap, gfp, info, idx); 1297 if (!swappage) { 1298 spin_lock(&info->lock); 1299 entry = shmem_swp_alloc(info, idx, sgp); 1300 if (IS_ERR(entry)) 1301 error = PTR_ERR(entry); 1302 else { 1303 if (entry->val == swap.val) 1304 error = -ENOMEM; 1305 shmem_swp_unmap(entry); 1306 } 1307 spin_unlock(&info->lock); 1308 if (error) 1309 goto failed; 1310 goto repeat; 1311 } 1312 wait_on_page_locked(swappage); 1313 page_cache_release(swappage); 1314 goto repeat; 1315 } 1316 1317 /* We have to do this with page locked to prevent races */ 1318 if (!trylock_page(swappage)) { 1319 shmem_swp_unmap(entry); 1320 spin_unlock(&info->lock); 1321 wait_on_page_locked(swappage); 1322 page_cache_release(swappage); 1323 goto repeat; 1324 } 1325 if (PageWriteback(swappage)) { 1326 shmem_swp_unmap(entry); 1327 spin_unlock(&info->lock); 1328 wait_on_page_writeback(swappage); 1329 unlock_page(swappage); 1330 page_cache_release(swappage); 1331 goto repeat; 1332 } 1333 if (!PageUptodate(swappage)) { 1334 shmem_swp_unmap(entry); 1335 spin_unlock(&info->lock); 1336 unlock_page(swappage); 1337 page_cache_release(swappage); 1338 error = -EIO; 1339 goto failed; 1340 } 1341 1342 if (filepage) { 1343 shmem_swp_set(info, entry, 0); 1344 shmem_swp_unmap(entry); 1345 delete_from_swap_cache(swappage); 1346 spin_unlock(&info->lock); 1347 copy_highpage(filepage, swappage); 1348 unlock_page(swappage); 1349 page_cache_release(swappage); 1350 flush_dcache_page(filepage); 1351 SetPageUptodate(filepage); 1352 set_page_dirty(filepage); 1353 swap_free(swap); 1354 } else if (!(error = add_to_page_cache_locked(swappage, mapping, 1355 idx, GFP_NOWAIT))) { 1356 info->flags |= SHMEM_PAGEIN; 1357 shmem_swp_set(info, entry, 0); 1358 shmem_swp_unmap(entry); 1359 delete_from_swap_cache(swappage); 1360 spin_unlock(&info->lock); 1361 filepage = swappage; 1362 set_page_dirty(filepage); 1363 swap_free(swap); 1364 } else { 1365 shmem_swp_unmap(entry); 1366 spin_unlock(&info->lock); 1367 if (error == -ENOMEM) { 1368 /* 1369 * reclaim from proper memory cgroup and 1370 * call memcg's OOM if needed. 1371 */ 1372 error = mem_cgroup_shmem_charge_fallback( 1373 swappage, 1374 current->mm, 1375 gfp); 1376 if (error) { 1377 unlock_page(swappage); 1378 page_cache_release(swappage); 1379 goto failed; 1380 } 1381 } 1382 unlock_page(swappage); 1383 page_cache_release(swappage); 1384 goto repeat; 1385 } 1386 } else if (sgp == SGP_READ && !filepage) { 1387 shmem_swp_unmap(entry); 1388 filepage = find_get_page(mapping, idx); 1389 if (filepage && 1390 (!PageUptodate(filepage) || !trylock_page(filepage))) { 1391 spin_unlock(&info->lock); 1392 wait_on_page_locked(filepage); 1393 page_cache_release(filepage); 1394 filepage = NULL; 1395 goto repeat; 1396 } 1397 spin_unlock(&info->lock); 1398 } else { 1399 shmem_swp_unmap(entry); 1400 sbinfo = SHMEM_SB(inode->i_sb); 1401 if (sbinfo->max_blocks) { 1402 if ((percpu_counter_compare(&sbinfo->used_blocks, sbinfo->max_blocks) > 0) || 1403 shmem_acct_block(info->flags)) { 1404 spin_unlock(&info->lock); 1405 error = -ENOSPC; 1406 goto failed; 1407 } 1408 percpu_counter_inc(&sbinfo->used_blocks); 1409 spin_lock(&inode->i_lock); 1410 inode->i_blocks += BLOCKS_PER_PAGE; 1411 spin_unlock(&inode->i_lock); 1412 } else if (shmem_acct_block(info->flags)) { 1413 spin_unlock(&info->lock); 1414 error = -ENOSPC; 1415 goto failed; 1416 } 1417 1418 if (!filepage) { 1419 int ret; 1420 1421 if (!prealloc_page) { 1422 spin_unlock(&info->lock); 1423 filepage = shmem_alloc_page(gfp, info, idx); 1424 if (!filepage) { 1425 shmem_unacct_blocks(info->flags, 1); 1426 shmem_free_blocks(inode, 1); 1427 error = -ENOMEM; 1428 goto failed; 1429 } 1430 SetPageSwapBacked(filepage); 1431 1432 /* 1433 * Precharge page while we can wait, compensate 1434 * after 1435 */ 1436 error = mem_cgroup_cache_charge(filepage, 1437 current->mm, GFP_KERNEL); 1438 if (error) { 1439 page_cache_release(filepage); 1440 shmem_unacct_blocks(info->flags, 1); 1441 shmem_free_blocks(inode, 1); 1442 filepage = NULL; 1443 goto failed; 1444 } 1445 1446 spin_lock(&info->lock); 1447 } else { 1448 filepage = prealloc_page; 1449 prealloc_page = NULL; 1450 SetPageSwapBacked(filepage); 1451 } 1452 1453 entry = shmem_swp_alloc(info, idx, sgp); 1454 if (IS_ERR(entry)) 1455 error = PTR_ERR(entry); 1456 else { 1457 swap = *entry; 1458 shmem_swp_unmap(entry); 1459 } 1460 ret = error || swap.val; 1461 if (ret) 1462 mem_cgroup_uncharge_cache_page(filepage); 1463 else 1464 ret = add_to_page_cache_lru(filepage, mapping, 1465 idx, GFP_NOWAIT); 1466 /* 1467 * At add_to_page_cache_lru() failure, uncharge will 1468 * be done automatically. 1469 */ 1470 if (ret) { 1471 spin_unlock(&info->lock); 1472 page_cache_release(filepage); 1473 shmem_unacct_blocks(info->flags, 1); 1474 shmem_free_blocks(inode, 1); 1475 filepage = NULL; 1476 if (error) 1477 goto failed; 1478 goto repeat; 1479 } 1480 info->flags |= SHMEM_PAGEIN; 1481 } 1482 1483 info->alloced++; 1484 spin_unlock(&info->lock); 1485 clear_highpage(filepage); 1486 flush_dcache_page(filepage); 1487 SetPageUptodate(filepage); 1488 if (sgp == SGP_DIRTY) 1489 set_page_dirty(filepage); 1490 } 1491 done: 1492 *pagep = filepage; 1493 error = 0; 1494 goto out; 1495 1496 failed: 1497 if (*pagep != filepage) { 1498 unlock_page(filepage); 1499 page_cache_release(filepage); 1500 } 1501 out: 1502 if (prealloc_page) { 1503 mem_cgroup_uncharge_cache_page(prealloc_page); 1504 page_cache_release(prealloc_page); 1505 } 1506 return error; 1507 } 1508 1509 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1510 { 1511 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1512 int error; 1513 int ret; 1514 1515 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 1516 return VM_FAULT_SIGBUS; 1517 1518 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1519 if (error) 1520 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1521 1522 return ret | VM_FAULT_LOCKED; 1523 } 1524 1525 #ifdef CONFIG_NUMA 1526 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new) 1527 { 1528 struct inode *i = vma->vm_file->f_path.dentry->d_inode; 1529 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new); 1530 } 1531 1532 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1533 unsigned long addr) 1534 { 1535 struct inode *i = vma->vm_file->f_path.dentry->d_inode; 1536 unsigned long idx; 1537 1538 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1539 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx); 1540 } 1541 #endif 1542 1543 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1544 { 1545 struct inode *inode = file->f_path.dentry->d_inode; 1546 struct shmem_inode_info *info = SHMEM_I(inode); 1547 int retval = -ENOMEM; 1548 1549 spin_lock(&info->lock); 1550 if (lock && !(info->flags & VM_LOCKED)) { 1551 if (!user_shm_lock(inode->i_size, user)) 1552 goto out_nomem; 1553 info->flags |= VM_LOCKED; 1554 mapping_set_unevictable(file->f_mapping); 1555 } 1556 if (!lock && (info->flags & VM_LOCKED) && user) { 1557 user_shm_unlock(inode->i_size, user); 1558 info->flags &= ~VM_LOCKED; 1559 mapping_clear_unevictable(file->f_mapping); 1560 scan_mapping_unevictable_pages(file->f_mapping); 1561 } 1562 retval = 0; 1563 1564 out_nomem: 1565 spin_unlock(&info->lock); 1566 return retval; 1567 } 1568 1569 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1570 { 1571 file_accessed(file); 1572 vma->vm_ops = &shmem_vm_ops; 1573 vma->vm_flags |= VM_CAN_NONLINEAR; 1574 return 0; 1575 } 1576 1577 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 1578 int mode, dev_t dev, unsigned long flags) 1579 { 1580 struct inode *inode; 1581 struct shmem_inode_info *info; 1582 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1583 1584 if (shmem_reserve_inode(sb)) 1585 return NULL; 1586 1587 inode = new_inode(sb); 1588 if (inode) { 1589 inode_init_owner(inode, dir, mode); 1590 inode->i_blocks = 0; 1591 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; 1592 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1593 inode->i_generation = get_seconds(); 1594 info = SHMEM_I(inode); 1595 memset(info, 0, (char *)inode - (char *)info); 1596 spin_lock_init(&info->lock); 1597 info->flags = flags & VM_NORESERVE; 1598 INIT_LIST_HEAD(&info->swaplist); 1599 cache_no_acl(inode); 1600 1601 switch (mode & S_IFMT) { 1602 default: 1603 inode->i_op = &shmem_special_inode_operations; 1604 init_special_inode(inode, mode, dev); 1605 break; 1606 case S_IFREG: 1607 inode->i_mapping->a_ops = &shmem_aops; 1608 inode->i_op = &shmem_inode_operations; 1609 inode->i_fop = &shmem_file_operations; 1610 mpol_shared_policy_init(&info->policy, 1611 shmem_get_sbmpol(sbinfo)); 1612 break; 1613 case S_IFDIR: 1614 inc_nlink(inode); 1615 /* Some things misbehave if size == 0 on a directory */ 1616 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1617 inode->i_op = &shmem_dir_inode_operations; 1618 inode->i_fop = &simple_dir_operations; 1619 break; 1620 case S_IFLNK: 1621 /* 1622 * Must not load anything in the rbtree, 1623 * mpol_free_shared_policy will not be called. 1624 */ 1625 mpol_shared_policy_init(&info->policy, NULL); 1626 break; 1627 } 1628 } else 1629 shmem_free_inode(sb); 1630 return inode; 1631 } 1632 1633 #ifdef CONFIG_TMPFS 1634 static const struct inode_operations shmem_symlink_inode_operations; 1635 static const struct inode_operations shmem_symlink_inline_operations; 1636 1637 /* 1638 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin; 1639 * but providing them allows a tmpfs file to be used for splice, sendfile, and 1640 * below the loop driver, in the generic fashion that many filesystems support. 1641 */ 1642 static int shmem_readpage(struct file *file, struct page *page) 1643 { 1644 struct inode *inode = page->mapping->host; 1645 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL); 1646 unlock_page(page); 1647 return error; 1648 } 1649 1650 static int 1651 shmem_write_begin(struct file *file, struct address_space *mapping, 1652 loff_t pos, unsigned len, unsigned flags, 1653 struct page **pagep, void **fsdata) 1654 { 1655 struct inode *inode = mapping->host; 1656 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1657 *pagep = NULL; 1658 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1659 } 1660 1661 static int 1662 shmem_write_end(struct file *file, struct address_space *mapping, 1663 loff_t pos, unsigned len, unsigned copied, 1664 struct page *page, void *fsdata) 1665 { 1666 struct inode *inode = mapping->host; 1667 1668 if (pos + copied > inode->i_size) 1669 i_size_write(inode, pos + copied); 1670 1671 set_page_dirty(page); 1672 unlock_page(page); 1673 page_cache_release(page); 1674 1675 return copied; 1676 } 1677 1678 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor) 1679 { 1680 struct inode *inode = filp->f_path.dentry->d_inode; 1681 struct address_space *mapping = inode->i_mapping; 1682 unsigned long index, offset; 1683 enum sgp_type sgp = SGP_READ; 1684 1685 /* 1686 * Might this read be for a stacking filesystem? Then when reading 1687 * holes of a sparse file, we actually need to allocate those pages, 1688 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1689 */ 1690 if (segment_eq(get_fs(), KERNEL_DS)) 1691 sgp = SGP_DIRTY; 1692 1693 index = *ppos >> PAGE_CACHE_SHIFT; 1694 offset = *ppos & ~PAGE_CACHE_MASK; 1695 1696 for (;;) { 1697 struct page *page = NULL; 1698 unsigned long end_index, nr, ret; 1699 loff_t i_size = i_size_read(inode); 1700 1701 end_index = i_size >> PAGE_CACHE_SHIFT; 1702 if (index > end_index) 1703 break; 1704 if (index == end_index) { 1705 nr = i_size & ~PAGE_CACHE_MASK; 1706 if (nr <= offset) 1707 break; 1708 } 1709 1710 desc->error = shmem_getpage(inode, index, &page, sgp, NULL); 1711 if (desc->error) { 1712 if (desc->error == -EINVAL) 1713 desc->error = 0; 1714 break; 1715 } 1716 if (page) 1717 unlock_page(page); 1718 1719 /* 1720 * We must evaluate after, since reads (unlike writes) 1721 * are called without i_mutex protection against truncate 1722 */ 1723 nr = PAGE_CACHE_SIZE; 1724 i_size = i_size_read(inode); 1725 end_index = i_size >> PAGE_CACHE_SHIFT; 1726 if (index == end_index) { 1727 nr = i_size & ~PAGE_CACHE_MASK; 1728 if (nr <= offset) { 1729 if (page) 1730 page_cache_release(page); 1731 break; 1732 } 1733 } 1734 nr -= offset; 1735 1736 if (page) { 1737 /* 1738 * If users can be writing to this page using arbitrary 1739 * virtual addresses, take care about potential aliasing 1740 * before reading the page on the kernel side. 1741 */ 1742 if (mapping_writably_mapped(mapping)) 1743 flush_dcache_page(page); 1744 /* 1745 * Mark the page accessed if we read the beginning. 1746 */ 1747 if (!offset) 1748 mark_page_accessed(page); 1749 } else { 1750 page = ZERO_PAGE(0); 1751 page_cache_get(page); 1752 } 1753 1754 /* 1755 * Ok, we have the page, and it's up-to-date, so 1756 * now we can copy it to user space... 1757 * 1758 * The actor routine returns how many bytes were actually used.. 1759 * NOTE! This may not be the same as how much of a user buffer 1760 * we filled up (we may be padding etc), so we can only update 1761 * "pos" here (the actor routine has to update the user buffer 1762 * pointers and the remaining count). 1763 */ 1764 ret = actor(desc, page, offset, nr); 1765 offset += ret; 1766 index += offset >> PAGE_CACHE_SHIFT; 1767 offset &= ~PAGE_CACHE_MASK; 1768 1769 page_cache_release(page); 1770 if (ret != nr || !desc->count) 1771 break; 1772 1773 cond_resched(); 1774 } 1775 1776 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1777 file_accessed(filp); 1778 } 1779 1780 static ssize_t shmem_file_aio_read(struct kiocb *iocb, 1781 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 1782 { 1783 struct file *filp = iocb->ki_filp; 1784 ssize_t retval; 1785 unsigned long seg; 1786 size_t count; 1787 loff_t *ppos = &iocb->ki_pos; 1788 1789 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1790 if (retval) 1791 return retval; 1792 1793 for (seg = 0; seg < nr_segs; seg++) { 1794 read_descriptor_t desc; 1795 1796 desc.written = 0; 1797 desc.arg.buf = iov[seg].iov_base; 1798 desc.count = iov[seg].iov_len; 1799 if (desc.count == 0) 1800 continue; 1801 desc.error = 0; 1802 do_shmem_file_read(filp, ppos, &desc, file_read_actor); 1803 retval += desc.written; 1804 if (desc.error) { 1805 retval = retval ?: desc.error; 1806 break; 1807 } 1808 if (desc.count > 0) 1809 break; 1810 } 1811 return retval; 1812 } 1813 1814 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 1815 { 1816 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 1817 1818 buf->f_type = TMPFS_MAGIC; 1819 buf->f_bsize = PAGE_CACHE_SIZE; 1820 buf->f_namelen = NAME_MAX; 1821 if (sbinfo->max_blocks) { 1822 buf->f_blocks = sbinfo->max_blocks; 1823 buf->f_bavail = buf->f_bfree = 1824 sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks); 1825 } 1826 if (sbinfo->max_inodes) { 1827 buf->f_files = sbinfo->max_inodes; 1828 buf->f_ffree = sbinfo->free_inodes; 1829 } 1830 /* else leave those fields 0 like simple_statfs */ 1831 return 0; 1832 } 1833 1834 /* 1835 * File creation. Allocate an inode, and we're done.. 1836 */ 1837 static int 1838 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1839 { 1840 struct inode *inode; 1841 int error = -ENOSPC; 1842 1843 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 1844 if (inode) { 1845 error = security_inode_init_security(inode, dir, NULL, NULL, 1846 NULL); 1847 if (error) { 1848 if (error != -EOPNOTSUPP) { 1849 iput(inode); 1850 return error; 1851 } 1852 } 1853 #ifdef CONFIG_TMPFS_POSIX_ACL 1854 error = generic_acl_init(inode, dir); 1855 if (error) { 1856 iput(inode); 1857 return error; 1858 } 1859 #else 1860 error = 0; 1861 #endif 1862 dir->i_size += BOGO_DIRENT_SIZE; 1863 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1864 d_instantiate(dentry, inode); 1865 dget(dentry); /* Extra count - pin the dentry in core */ 1866 } 1867 return error; 1868 } 1869 1870 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1871 { 1872 int error; 1873 1874 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 1875 return error; 1876 inc_nlink(dir); 1877 return 0; 1878 } 1879 1880 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode, 1881 struct nameidata *nd) 1882 { 1883 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 1884 } 1885 1886 /* 1887 * Link a file.. 1888 */ 1889 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1890 { 1891 struct inode *inode = old_dentry->d_inode; 1892 int ret; 1893 1894 /* 1895 * No ordinary (disk based) filesystem counts links as inodes; 1896 * but each new link needs a new dentry, pinning lowmem, and 1897 * tmpfs dentries cannot be pruned until they are unlinked. 1898 */ 1899 ret = shmem_reserve_inode(inode->i_sb); 1900 if (ret) 1901 goto out; 1902 1903 dir->i_size += BOGO_DIRENT_SIZE; 1904 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1905 inc_nlink(inode); 1906 atomic_inc(&inode->i_count); /* New dentry reference */ 1907 dget(dentry); /* Extra pinning count for the created dentry */ 1908 d_instantiate(dentry, inode); 1909 out: 1910 return ret; 1911 } 1912 1913 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 1914 { 1915 struct inode *inode = dentry->d_inode; 1916 1917 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 1918 shmem_free_inode(inode->i_sb); 1919 1920 dir->i_size -= BOGO_DIRENT_SIZE; 1921 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1922 drop_nlink(inode); 1923 dput(dentry); /* Undo the count from "create" - this does all the work */ 1924 return 0; 1925 } 1926 1927 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 1928 { 1929 if (!simple_empty(dentry)) 1930 return -ENOTEMPTY; 1931 1932 drop_nlink(dentry->d_inode); 1933 drop_nlink(dir); 1934 return shmem_unlink(dir, dentry); 1935 } 1936 1937 /* 1938 * The VFS layer already does all the dentry stuff for rename, 1939 * we just have to decrement the usage count for the target if 1940 * it exists so that the VFS layer correctly free's it when it 1941 * gets overwritten. 1942 */ 1943 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 1944 { 1945 struct inode *inode = old_dentry->d_inode; 1946 int they_are_dirs = S_ISDIR(inode->i_mode); 1947 1948 if (!simple_empty(new_dentry)) 1949 return -ENOTEMPTY; 1950 1951 if (new_dentry->d_inode) { 1952 (void) shmem_unlink(new_dir, new_dentry); 1953 if (they_are_dirs) 1954 drop_nlink(old_dir); 1955 } else if (they_are_dirs) { 1956 drop_nlink(old_dir); 1957 inc_nlink(new_dir); 1958 } 1959 1960 old_dir->i_size -= BOGO_DIRENT_SIZE; 1961 new_dir->i_size += BOGO_DIRENT_SIZE; 1962 old_dir->i_ctime = old_dir->i_mtime = 1963 new_dir->i_ctime = new_dir->i_mtime = 1964 inode->i_ctime = CURRENT_TIME; 1965 return 0; 1966 } 1967 1968 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1969 { 1970 int error; 1971 int len; 1972 struct inode *inode; 1973 struct page *page = NULL; 1974 char *kaddr; 1975 struct shmem_inode_info *info; 1976 1977 len = strlen(symname) + 1; 1978 if (len > PAGE_CACHE_SIZE) 1979 return -ENAMETOOLONG; 1980 1981 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 1982 if (!inode) 1983 return -ENOSPC; 1984 1985 error = security_inode_init_security(inode, dir, NULL, NULL, 1986 NULL); 1987 if (error) { 1988 if (error != -EOPNOTSUPP) { 1989 iput(inode); 1990 return error; 1991 } 1992 error = 0; 1993 } 1994 1995 info = SHMEM_I(inode); 1996 inode->i_size = len-1; 1997 if (len <= (char *)inode - (char *)info) { 1998 /* do it inline */ 1999 memcpy(info, symname, len); 2000 inode->i_op = &shmem_symlink_inline_operations; 2001 } else { 2002 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 2003 if (error) { 2004 iput(inode); 2005 return error; 2006 } 2007 inode->i_mapping->a_ops = &shmem_aops; 2008 inode->i_op = &shmem_symlink_inode_operations; 2009 kaddr = kmap_atomic(page, KM_USER0); 2010 memcpy(kaddr, symname, len); 2011 kunmap_atomic(kaddr, KM_USER0); 2012 set_page_dirty(page); 2013 unlock_page(page); 2014 page_cache_release(page); 2015 } 2016 dir->i_size += BOGO_DIRENT_SIZE; 2017 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2018 d_instantiate(dentry, inode); 2019 dget(dentry); 2020 return 0; 2021 } 2022 2023 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd) 2024 { 2025 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode)); 2026 return NULL; 2027 } 2028 2029 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) 2030 { 2031 struct page *page = NULL; 2032 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); 2033 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page)); 2034 if (page) 2035 unlock_page(page); 2036 return page; 2037 } 2038 2039 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2040 { 2041 if (!IS_ERR(nd_get_link(nd))) { 2042 struct page *page = cookie; 2043 kunmap(page); 2044 mark_page_accessed(page); 2045 page_cache_release(page); 2046 } 2047 } 2048 2049 static const struct inode_operations shmem_symlink_inline_operations = { 2050 .readlink = generic_readlink, 2051 .follow_link = shmem_follow_link_inline, 2052 }; 2053 2054 static const struct inode_operations shmem_symlink_inode_operations = { 2055 .readlink = generic_readlink, 2056 .follow_link = shmem_follow_link, 2057 .put_link = shmem_put_link, 2058 }; 2059 2060 #ifdef CONFIG_TMPFS_POSIX_ACL 2061 /* 2062 * Superblocks without xattr inode operations will get security.* xattr 2063 * support from the VFS "for free". As soon as we have any other xattrs 2064 * like ACLs, we also need to implement the security.* handlers at 2065 * filesystem level, though. 2066 */ 2067 2068 static size_t shmem_xattr_security_list(struct dentry *dentry, char *list, 2069 size_t list_len, const char *name, 2070 size_t name_len, int handler_flags) 2071 { 2072 return security_inode_listsecurity(dentry->d_inode, list, list_len); 2073 } 2074 2075 static int shmem_xattr_security_get(struct dentry *dentry, const char *name, 2076 void *buffer, size_t size, int handler_flags) 2077 { 2078 if (strcmp(name, "") == 0) 2079 return -EINVAL; 2080 return xattr_getsecurity(dentry->d_inode, name, buffer, size); 2081 } 2082 2083 static int shmem_xattr_security_set(struct dentry *dentry, const char *name, 2084 const void *value, size_t size, int flags, int handler_flags) 2085 { 2086 if (strcmp(name, "") == 0) 2087 return -EINVAL; 2088 return security_inode_setsecurity(dentry->d_inode, name, value, 2089 size, flags); 2090 } 2091 2092 static const struct xattr_handler shmem_xattr_security_handler = { 2093 .prefix = XATTR_SECURITY_PREFIX, 2094 .list = shmem_xattr_security_list, 2095 .get = shmem_xattr_security_get, 2096 .set = shmem_xattr_security_set, 2097 }; 2098 2099 static const struct xattr_handler *shmem_xattr_handlers[] = { 2100 &generic_acl_access_handler, 2101 &generic_acl_default_handler, 2102 &shmem_xattr_security_handler, 2103 NULL 2104 }; 2105 #endif 2106 2107 static struct dentry *shmem_get_parent(struct dentry *child) 2108 { 2109 return ERR_PTR(-ESTALE); 2110 } 2111 2112 static int shmem_match(struct inode *ino, void *vfh) 2113 { 2114 __u32 *fh = vfh; 2115 __u64 inum = fh[2]; 2116 inum = (inum << 32) | fh[1]; 2117 return ino->i_ino == inum && fh[0] == ino->i_generation; 2118 } 2119 2120 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2121 struct fid *fid, int fh_len, int fh_type) 2122 { 2123 struct inode *inode; 2124 struct dentry *dentry = NULL; 2125 u64 inum = fid->raw[2]; 2126 inum = (inum << 32) | fid->raw[1]; 2127 2128 if (fh_len < 3) 2129 return NULL; 2130 2131 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2132 shmem_match, fid->raw); 2133 if (inode) { 2134 dentry = d_find_alias(inode); 2135 iput(inode); 2136 } 2137 2138 return dentry; 2139 } 2140 2141 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len, 2142 int connectable) 2143 { 2144 struct inode *inode = dentry->d_inode; 2145 2146 if (*len < 3) 2147 return 255; 2148 2149 if (hlist_unhashed(&inode->i_hash)) { 2150 /* Unfortunately insert_inode_hash is not idempotent, 2151 * so as we hash inodes here rather than at creation 2152 * time, we need a lock to ensure we only try 2153 * to do it once 2154 */ 2155 static DEFINE_SPINLOCK(lock); 2156 spin_lock(&lock); 2157 if (hlist_unhashed(&inode->i_hash)) 2158 __insert_inode_hash(inode, 2159 inode->i_ino + inode->i_generation); 2160 spin_unlock(&lock); 2161 } 2162 2163 fh[0] = inode->i_generation; 2164 fh[1] = inode->i_ino; 2165 fh[2] = ((__u64)inode->i_ino) >> 32; 2166 2167 *len = 3; 2168 return 1; 2169 } 2170 2171 static const struct export_operations shmem_export_ops = { 2172 .get_parent = shmem_get_parent, 2173 .encode_fh = shmem_encode_fh, 2174 .fh_to_dentry = shmem_fh_to_dentry, 2175 }; 2176 2177 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2178 bool remount) 2179 { 2180 char *this_char, *value, *rest; 2181 2182 while (options != NULL) { 2183 this_char = options; 2184 for (;;) { 2185 /* 2186 * NUL-terminate this option: unfortunately, 2187 * mount options form a comma-separated list, 2188 * but mpol's nodelist may also contain commas. 2189 */ 2190 options = strchr(options, ','); 2191 if (options == NULL) 2192 break; 2193 options++; 2194 if (!isdigit(*options)) { 2195 options[-1] = '\0'; 2196 break; 2197 } 2198 } 2199 if (!*this_char) 2200 continue; 2201 if ((value = strchr(this_char,'=')) != NULL) { 2202 *value++ = 0; 2203 } else { 2204 printk(KERN_ERR 2205 "tmpfs: No value for mount option '%s'\n", 2206 this_char); 2207 return 1; 2208 } 2209 2210 if (!strcmp(this_char,"size")) { 2211 unsigned long long size; 2212 size = memparse(value,&rest); 2213 if (*rest == '%') { 2214 size <<= PAGE_SHIFT; 2215 size *= totalram_pages; 2216 do_div(size, 100); 2217 rest++; 2218 } 2219 if (*rest) 2220 goto bad_val; 2221 sbinfo->max_blocks = 2222 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2223 } else if (!strcmp(this_char,"nr_blocks")) { 2224 sbinfo->max_blocks = memparse(value, &rest); 2225 if (*rest) 2226 goto bad_val; 2227 } else if (!strcmp(this_char,"nr_inodes")) { 2228 sbinfo->max_inodes = memparse(value, &rest); 2229 if (*rest) 2230 goto bad_val; 2231 } else if (!strcmp(this_char,"mode")) { 2232 if (remount) 2233 continue; 2234 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2235 if (*rest) 2236 goto bad_val; 2237 } else if (!strcmp(this_char,"uid")) { 2238 if (remount) 2239 continue; 2240 sbinfo->uid = simple_strtoul(value, &rest, 0); 2241 if (*rest) 2242 goto bad_val; 2243 } else if (!strcmp(this_char,"gid")) { 2244 if (remount) 2245 continue; 2246 sbinfo->gid = simple_strtoul(value, &rest, 0); 2247 if (*rest) 2248 goto bad_val; 2249 } else if (!strcmp(this_char,"mpol")) { 2250 if (mpol_parse_str(value, &sbinfo->mpol, 1)) 2251 goto bad_val; 2252 } else { 2253 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2254 this_char); 2255 return 1; 2256 } 2257 } 2258 return 0; 2259 2260 bad_val: 2261 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2262 value, this_char); 2263 return 1; 2264 2265 } 2266 2267 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2268 { 2269 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2270 struct shmem_sb_info config = *sbinfo; 2271 unsigned long inodes; 2272 int error = -EINVAL; 2273 2274 if (shmem_parse_options(data, &config, true)) 2275 return error; 2276 2277 spin_lock(&sbinfo->stat_lock); 2278 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2279 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 2280 goto out; 2281 if (config.max_inodes < inodes) 2282 goto out; 2283 /* 2284 * Those tests also disallow limited->unlimited while any are in 2285 * use, so i_blocks will always be zero when max_blocks is zero; 2286 * but we must separately disallow unlimited->limited, because 2287 * in that case we have no record of how much is already in use. 2288 */ 2289 if (config.max_blocks && !sbinfo->max_blocks) 2290 goto out; 2291 if (config.max_inodes && !sbinfo->max_inodes) 2292 goto out; 2293 2294 error = 0; 2295 sbinfo->max_blocks = config.max_blocks; 2296 sbinfo->max_inodes = config.max_inodes; 2297 sbinfo->free_inodes = config.max_inodes - inodes; 2298 2299 mpol_put(sbinfo->mpol); 2300 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2301 out: 2302 spin_unlock(&sbinfo->stat_lock); 2303 return error; 2304 } 2305 2306 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs) 2307 { 2308 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb); 2309 2310 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2311 seq_printf(seq, ",size=%luk", 2312 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2313 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2314 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2315 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2316 seq_printf(seq, ",mode=%03o", sbinfo->mode); 2317 if (sbinfo->uid != 0) 2318 seq_printf(seq, ",uid=%u", sbinfo->uid); 2319 if (sbinfo->gid != 0) 2320 seq_printf(seq, ",gid=%u", sbinfo->gid); 2321 shmem_show_mpol(seq, sbinfo->mpol); 2322 return 0; 2323 } 2324 #endif /* CONFIG_TMPFS */ 2325 2326 static void shmem_put_super(struct super_block *sb) 2327 { 2328 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2329 2330 percpu_counter_destroy(&sbinfo->used_blocks); 2331 kfree(sbinfo); 2332 sb->s_fs_info = NULL; 2333 } 2334 2335 int shmem_fill_super(struct super_block *sb, void *data, int silent) 2336 { 2337 struct inode *inode; 2338 struct dentry *root; 2339 struct shmem_sb_info *sbinfo; 2340 int err = -ENOMEM; 2341 2342 /* Round up to L1_CACHE_BYTES to resist false sharing */ 2343 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 2344 L1_CACHE_BYTES), GFP_KERNEL); 2345 if (!sbinfo) 2346 return -ENOMEM; 2347 2348 sbinfo->mode = S_IRWXUGO | S_ISVTX; 2349 sbinfo->uid = current_fsuid(); 2350 sbinfo->gid = current_fsgid(); 2351 sb->s_fs_info = sbinfo; 2352 2353 #ifdef CONFIG_TMPFS 2354 /* 2355 * Per default we only allow half of the physical ram per 2356 * tmpfs instance, limiting inodes to one per page of lowmem; 2357 * but the internal instance is left unlimited. 2358 */ 2359 if (!(sb->s_flags & MS_NOUSER)) { 2360 sbinfo->max_blocks = shmem_default_max_blocks(); 2361 sbinfo->max_inodes = shmem_default_max_inodes(); 2362 if (shmem_parse_options(data, sbinfo, false)) { 2363 err = -EINVAL; 2364 goto failed; 2365 } 2366 } 2367 sb->s_export_op = &shmem_export_ops; 2368 #else 2369 sb->s_flags |= MS_NOUSER; 2370 #endif 2371 2372 spin_lock_init(&sbinfo->stat_lock); 2373 if (percpu_counter_init(&sbinfo->used_blocks, 0)) 2374 goto failed; 2375 sbinfo->free_inodes = sbinfo->max_inodes; 2376 2377 sb->s_maxbytes = SHMEM_MAX_BYTES; 2378 sb->s_blocksize = PAGE_CACHE_SIZE; 2379 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 2380 sb->s_magic = TMPFS_MAGIC; 2381 sb->s_op = &shmem_ops; 2382 sb->s_time_gran = 1; 2383 #ifdef CONFIG_TMPFS_POSIX_ACL 2384 sb->s_xattr = shmem_xattr_handlers; 2385 sb->s_flags |= MS_POSIXACL; 2386 #endif 2387 2388 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 2389 if (!inode) 2390 goto failed; 2391 inode->i_uid = sbinfo->uid; 2392 inode->i_gid = sbinfo->gid; 2393 root = d_alloc_root(inode); 2394 if (!root) 2395 goto failed_iput; 2396 sb->s_root = root; 2397 return 0; 2398 2399 failed_iput: 2400 iput(inode); 2401 failed: 2402 shmem_put_super(sb); 2403 return err; 2404 } 2405 2406 static struct kmem_cache *shmem_inode_cachep; 2407 2408 static struct inode *shmem_alloc_inode(struct super_block *sb) 2409 { 2410 struct shmem_inode_info *p; 2411 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 2412 if (!p) 2413 return NULL; 2414 return &p->vfs_inode; 2415 } 2416 2417 static void shmem_destroy_inode(struct inode *inode) 2418 { 2419 if ((inode->i_mode & S_IFMT) == S_IFREG) { 2420 /* only struct inode is valid if it's an inline symlink */ 2421 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 2422 } 2423 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 2424 } 2425 2426 static void init_once(void *foo) 2427 { 2428 struct shmem_inode_info *p = (struct shmem_inode_info *) foo; 2429 2430 inode_init_once(&p->vfs_inode); 2431 } 2432 2433 static int init_inodecache(void) 2434 { 2435 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 2436 sizeof(struct shmem_inode_info), 2437 0, SLAB_PANIC, init_once); 2438 return 0; 2439 } 2440 2441 static void destroy_inodecache(void) 2442 { 2443 kmem_cache_destroy(shmem_inode_cachep); 2444 } 2445 2446 static const struct address_space_operations shmem_aops = { 2447 .writepage = shmem_writepage, 2448 .set_page_dirty = __set_page_dirty_no_writeback, 2449 #ifdef CONFIG_TMPFS 2450 .readpage = shmem_readpage, 2451 .write_begin = shmem_write_begin, 2452 .write_end = shmem_write_end, 2453 #endif 2454 .migratepage = migrate_page, 2455 .error_remove_page = generic_error_remove_page, 2456 }; 2457 2458 static const struct file_operations shmem_file_operations = { 2459 .mmap = shmem_mmap, 2460 #ifdef CONFIG_TMPFS 2461 .llseek = generic_file_llseek, 2462 .read = do_sync_read, 2463 .write = do_sync_write, 2464 .aio_read = shmem_file_aio_read, 2465 .aio_write = generic_file_aio_write, 2466 .fsync = noop_fsync, 2467 .splice_read = generic_file_splice_read, 2468 .splice_write = generic_file_splice_write, 2469 #endif 2470 }; 2471 2472 static const struct inode_operations shmem_inode_operations = { 2473 .setattr = shmem_notify_change, 2474 .truncate_range = shmem_truncate_range, 2475 #ifdef CONFIG_TMPFS_POSIX_ACL 2476 .setxattr = generic_setxattr, 2477 .getxattr = generic_getxattr, 2478 .listxattr = generic_listxattr, 2479 .removexattr = generic_removexattr, 2480 .check_acl = generic_check_acl, 2481 #endif 2482 2483 }; 2484 2485 static const struct inode_operations shmem_dir_inode_operations = { 2486 #ifdef CONFIG_TMPFS 2487 .create = shmem_create, 2488 .lookup = simple_lookup, 2489 .link = shmem_link, 2490 .unlink = shmem_unlink, 2491 .symlink = shmem_symlink, 2492 .mkdir = shmem_mkdir, 2493 .rmdir = shmem_rmdir, 2494 .mknod = shmem_mknod, 2495 .rename = shmem_rename, 2496 #endif 2497 #ifdef CONFIG_TMPFS_POSIX_ACL 2498 .setattr = shmem_notify_change, 2499 .setxattr = generic_setxattr, 2500 .getxattr = generic_getxattr, 2501 .listxattr = generic_listxattr, 2502 .removexattr = generic_removexattr, 2503 .check_acl = generic_check_acl, 2504 #endif 2505 }; 2506 2507 static const struct inode_operations shmem_special_inode_operations = { 2508 #ifdef CONFIG_TMPFS_POSIX_ACL 2509 .setattr = shmem_notify_change, 2510 .setxattr = generic_setxattr, 2511 .getxattr = generic_getxattr, 2512 .listxattr = generic_listxattr, 2513 .removexattr = generic_removexattr, 2514 .check_acl = generic_check_acl, 2515 #endif 2516 }; 2517 2518 static const struct super_operations shmem_ops = { 2519 .alloc_inode = shmem_alloc_inode, 2520 .destroy_inode = shmem_destroy_inode, 2521 #ifdef CONFIG_TMPFS 2522 .statfs = shmem_statfs, 2523 .remount_fs = shmem_remount_fs, 2524 .show_options = shmem_show_options, 2525 #endif 2526 .evict_inode = shmem_evict_inode, 2527 .drop_inode = generic_delete_inode, 2528 .put_super = shmem_put_super, 2529 }; 2530 2531 static const struct vm_operations_struct shmem_vm_ops = { 2532 .fault = shmem_fault, 2533 #ifdef CONFIG_NUMA 2534 .set_policy = shmem_set_policy, 2535 .get_policy = shmem_get_policy, 2536 #endif 2537 }; 2538 2539 2540 static int shmem_get_sb(struct file_system_type *fs_type, 2541 int flags, const char *dev_name, void *data, struct vfsmount *mnt) 2542 { 2543 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt); 2544 } 2545 2546 static struct file_system_type tmpfs_fs_type = { 2547 .owner = THIS_MODULE, 2548 .name = "tmpfs", 2549 .get_sb = shmem_get_sb, 2550 .kill_sb = kill_litter_super, 2551 }; 2552 2553 int __init init_tmpfs(void) 2554 { 2555 int error; 2556 2557 error = bdi_init(&shmem_backing_dev_info); 2558 if (error) 2559 goto out4; 2560 2561 error = init_inodecache(); 2562 if (error) 2563 goto out3; 2564 2565 error = register_filesystem(&tmpfs_fs_type); 2566 if (error) { 2567 printk(KERN_ERR "Could not register tmpfs\n"); 2568 goto out2; 2569 } 2570 2571 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER, 2572 tmpfs_fs_type.name, NULL); 2573 if (IS_ERR(shm_mnt)) { 2574 error = PTR_ERR(shm_mnt); 2575 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 2576 goto out1; 2577 } 2578 return 0; 2579 2580 out1: 2581 unregister_filesystem(&tmpfs_fs_type); 2582 out2: 2583 destroy_inodecache(); 2584 out3: 2585 bdi_destroy(&shmem_backing_dev_info); 2586 out4: 2587 shm_mnt = ERR_PTR(error); 2588 return error; 2589 } 2590 2591 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 2592 /** 2593 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file 2594 * @inode: the inode to be searched 2595 * @pgoff: the offset to be searched 2596 * @pagep: the pointer for the found page to be stored 2597 * @ent: the pointer for the found swap entry to be stored 2598 * 2599 * If a page is found, refcount of it is incremented. Callers should handle 2600 * these refcount. 2601 */ 2602 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff, 2603 struct page **pagep, swp_entry_t *ent) 2604 { 2605 swp_entry_t entry = { .val = 0 }, *ptr; 2606 struct page *page = NULL; 2607 struct shmem_inode_info *info = SHMEM_I(inode); 2608 2609 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 2610 goto out; 2611 2612 spin_lock(&info->lock); 2613 ptr = shmem_swp_entry(info, pgoff, NULL); 2614 #ifdef CONFIG_SWAP 2615 if (ptr && ptr->val) { 2616 entry.val = ptr->val; 2617 page = find_get_page(&swapper_space, entry.val); 2618 } else 2619 #endif 2620 page = find_get_page(inode->i_mapping, pgoff); 2621 if (ptr) 2622 shmem_swp_unmap(ptr); 2623 spin_unlock(&info->lock); 2624 out: 2625 *pagep = page; 2626 *ent = entry; 2627 } 2628 #endif 2629 2630 #else /* !CONFIG_SHMEM */ 2631 2632 /* 2633 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 2634 * 2635 * This is intended for small system where the benefits of the full 2636 * shmem code (swap-backed and resource-limited) are outweighed by 2637 * their complexity. On systems without swap this code should be 2638 * effectively equivalent, but much lighter weight. 2639 */ 2640 2641 #include <linux/ramfs.h> 2642 2643 static struct file_system_type tmpfs_fs_type = { 2644 .name = "tmpfs", 2645 .get_sb = ramfs_get_sb, 2646 .kill_sb = kill_litter_super, 2647 }; 2648 2649 int __init init_tmpfs(void) 2650 { 2651 BUG_ON(register_filesystem(&tmpfs_fs_type) != 0); 2652 2653 shm_mnt = kern_mount(&tmpfs_fs_type); 2654 BUG_ON(IS_ERR(shm_mnt)); 2655 2656 return 0; 2657 } 2658 2659 int shmem_unuse(swp_entry_t entry, struct page *page) 2660 { 2661 return 0; 2662 } 2663 2664 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2665 { 2666 return 0; 2667 } 2668 2669 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 2670 /** 2671 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file 2672 * @inode: the inode to be searched 2673 * @pgoff: the offset to be searched 2674 * @pagep: the pointer for the found page to be stored 2675 * @ent: the pointer for the found swap entry to be stored 2676 * 2677 * If a page is found, refcount of it is incremented. Callers should handle 2678 * these refcount. 2679 */ 2680 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff, 2681 struct page **pagep, swp_entry_t *ent) 2682 { 2683 struct page *page = NULL; 2684 2685 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 2686 goto out; 2687 page = find_get_page(inode->i_mapping, pgoff); 2688 out: 2689 *pagep = page; 2690 *ent = (swp_entry_t){ .val = 0 }; 2691 } 2692 #endif 2693 2694 #define shmem_vm_ops generic_file_vm_ops 2695 #define shmem_file_operations ramfs_file_operations 2696 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 2697 #define shmem_acct_size(flags, size) 0 2698 #define shmem_unacct_size(flags, size) do {} while (0) 2699 #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE 2700 2701 #endif /* CONFIG_SHMEM */ 2702 2703 /* common code */ 2704 2705 /** 2706 * shmem_file_setup - get an unlinked file living in tmpfs 2707 * @name: name for dentry (to be seen in /proc/<pid>/maps 2708 * @size: size to be set for the file 2709 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 2710 */ 2711 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 2712 { 2713 int error; 2714 struct file *file; 2715 struct inode *inode; 2716 struct path path; 2717 struct dentry *root; 2718 struct qstr this; 2719 2720 if (IS_ERR(shm_mnt)) 2721 return (void *)shm_mnt; 2722 2723 if (size < 0 || size > SHMEM_MAX_BYTES) 2724 return ERR_PTR(-EINVAL); 2725 2726 if (shmem_acct_size(flags, size)) 2727 return ERR_PTR(-ENOMEM); 2728 2729 error = -ENOMEM; 2730 this.name = name; 2731 this.len = strlen(name); 2732 this.hash = 0; /* will go */ 2733 root = shm_mnt->mnt_root; 2734 path.dentry = d_alloc(root, &this); 2735 if (!path.dentry) 2736 goto put_memory; 2737 path.mnt = mntget(shm_mnt); 2738 2739 error = -ENOSPC; 2740 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 2741 if (!inode) 2742 goto put_dentry; 2743 2744 d_instantiate(path.dentry, inode); 2745 inode->i_size = size; 2746 inode->i_nlink = 0; /* It is unlinked */ 2747 #ifndef CONFIG_MMU 2748 error = ramfs_nommu_expand_for_mapping(inode, size); 2749 if (error) 2750 goto put_dentry; 2751 #endif 2752 2753 error = -ENFILE; 2754 file = alloc_file(&path, FMODE_WRITE | FMODE_READ, 2755 &shmem_file_operations); 2756 if (!file) 2757 goto put_dentry; 2758 2759 return file; 2760 2761 put_dentry: 2762 path_put(&path); 2763 put_memory: 2764 shmem_unacct_size(flags, size); 2765 return ERR_PTR(error); 2766 } 2767 EXPORT_SYMBOL_GPL(shmem_file_setup); 2768 2769 /** 2770 * shmem_zero_setup - setup a shared anonymous mapping 2771 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 2772 */ 2773 int shmem_zero_setup(struct vm_area_struct *vma) 2774 { 2775 struct file *file; 2776 loff_t size = vma->vm_end - vma->vm_start; 2777 2778 file = shmem_file_setup("dev/zero", size, vma->vm_flags); 2779 if (IS_ERR(file)) 2780 return PTR_ERR(file); 2781 2782 if (vma->vm_file) 2783 fput(vma->vm_file); 2784 vma->vm_file = file; 2785 vma->vm_ops = &shmem_vm_ops; 2786 return 0; 2787 } 2788