xref: /linux/mm/shmem.c (revision cff9c565e65f3622e8dc1dcc21c1520a083dff35)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44 
45 static struct vfsmount *shm_mnt __ro_after_init;
46 
47 #ifdef CONFIG_SHMEM
48 /*
49  * This virtual memory filesystem is heavily based on the ramfs. It
50  * extends ramfs by the ability to use swap and honor resource limits
51  * which makes it a completely usable filesystem.
52  */
53 
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 #include <linux/quotaops.h>
82 
83 #include <linux/uaccess.h>
84 
85 #include "internal.h"
86 
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92 
93 /* Pretend that one inode + its dentry occupy this much memory */
94 #define BOGO_INODE_SIZE 1024
95 
96 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
97 #define SHORT_SYMLINK_LEN 128
98 
99 /*
100  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
101  * inode->i_private (with i_rwsem making sure that it has only one user at
102  * a time): we would prefer not to enlarge the shmem inode just for that.
103  */
104 struct shmem_falloc {
105 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
106 	pgoff_t start;		/* start of range currently being fallocated */
107 	pgoff_t next;		/* the next page offset to be fallocated */
108 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
109 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
110 };
111 
112 struct shmem_options {
113 	unsigned long long blocks;
114 	unsigned long long inodes;
115 	struct mempolicy *mpol;
116 	kuid_t uid;
117 	kgid_t gid;
118 	umode_t mode;
119 	bool full_inums;
120 	int huge;
121 	int seen;
122 	bool noswap;
123 	unsigned short quota_types;
124 	struct shmem_quota_limits qlimits;
125 #define SHMEM_SEEN_BLOCKS 1
126 #define SHMEM_SEEN_INODES 2
127 #define SHMEM_SEEN_HUGE 4
128 #define SHMEM_SEEN_INUMS 8
129 #define SHMEM_SEEN_NOSWAP 16
130 #define SHMEM_SEEN_QUOTA 32
131 };
132 
133 #ifdef CONFIG_TMPFS
134 static unsigned long shmem_default_max_blocks(void)
135 {
136 	return totalram_pages() / 2;
137 }
138 
139 static unsigned long shmem_default_max_inodes(void)
140 {
141 	unsigned long nr_pages = totalram_pages();
142 
143 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
144 			ULONG_MAX / BOGO_INODE_SIZE);
145 }
146 #endif
147 
148 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
149 			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
150 			struct mm_struct *fault_mm, vm_fault_t *fault_type);
151 
152 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
153 {
154 	return sb->s_fs_info;
155 }
156 
157 /*
158  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
159  * for shared memory and for shared anonymous (/dev/zero) mappings
160  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
161  * consistent with the pre-accounting of private mappings ...
162  */
163 static inline int shmem_acct_size(unsigned long flags, loff_t size)
164 {
165 	return (flags & VM_NORESERVE) ?
166 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
167 }
168 
169 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
170 {
171 	if (!(flags & VM_NORESERVE))
172 		vm_unacct_memory(VM_ACCT(size));
173 }
174 
175 static inline int shmem_reacct_size(unsigned long flags,
176 		loff_t oldsize, loff_t newsize)
177 {
178 	if (!(flags & VM_NORESERVE)) {
179 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
180 			return security_vm_enough_memory_mm(current->mm,
181 					VM_ACCT(newsize) - VM_ACCT(oldsize));
182 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
183 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
184 	}
185 	return 0;
186 }
187 
188 /*
189  * ... whereas tmpfs objects are accounted incrementally as
190  * pages are allocated, in order to allow large sparse files.
191  * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
192  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
193  */
194 static inline int shmem_acct_blocks(unsigned long flags, long pages)
195 {
196 	if (!(flags & VM_NORESERVE))
197 		return 0;
198 
199 	return security_vm_enough_memory_mm(current->mm,
200 			pages * VM_ACCT(PAGE_SIZE));
201 }
202 
203 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
204 {
205 	if (flags & VM_NORESERVE)
206 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
207 }
208 
209 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
210 {
211 	struct shmem_inode_info *info = SHMEM_I(inode);
212 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
213 	int err = -ENOSPC;
214 
215 	if (shmem_acct_blocks(info->flags, pages))
216 		return err;
217 
218 	might_sleep();	/* when quotas */
219 	if (sbinfo->max_blocks) {
220 		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
221 						sbinfo->max_blocks, pages))
222 			goto unacct;
223 
224 		err = dquot_alloc_block_nodirty(inode, pages);
225 		if (err) {
226 			percpu_counter_sub(&sbinfo->used_blocks, pages);
227 			goto unacct;
228 		}
229 	} else {
230 		err = dquot_alloc_block_nodirty(inode, pages);
231 		if (err)
232 			goto unacct;
233 	}
234 
235 	return 0;
236 
237 unacct:
238 	shmem_unacct_blocks(info->flags, pages);
239 	return err;
240 }
241 
242 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
243 {
244 	struct shmem_inode_info *info = SHMEM_I(inode);
245 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
246 
247 	might_sleep();	/* when quotas */
248 	dquot_free_block_nodirty(inode, pages);
249 
250 	if (sbinfo->max_blocks)
251 		percpu_counter_sub(&sbinfo->used_blocks, pages);
252 	shmem_unacct_blocks(info->flags, pages);
253 }
254 
255 static const struct super_operations shmem_ops;
256 const struct address_space_operations shmem_aops;
257 static const struct file_operations shmem_file_operations;
258 static const struct inode_operations shmem_inode_operations;
259 static const struct inode_operations shmem_dir_inode_operations;
260 static const struct inode_operations shmem_special_inode_operations;
261 static const struct vm_operations_struct shmem_vm_ops;
262 static const struct vm_operations_struct shmem_anon_vm_ops;
263 static struct file_system_type shmem_fs_type;
264 
265 bool vma_is_anon_shmem(struct vm_area_struct *vma)
266 {
267 	return vma->vm_ops == &shmem_anon_vm_ops;
268 }
269 
270 bool vma_is_shmem(struct vm_area_struct *vma)
271 {
272 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
273 }
274 
275 static LIST_HEAD(shmem_swaplist);
276 static DEFINE_MUTEX(shmem_swaplist_mutex);
277 
278 #ifdef CONFIG_TMPFS_QUOTA
279 
280 static int shmem_enable_quotas(struct super_block *sb,
281 			       unsigned short quota_types)
282 {
283 	int type, err = 0;
284 
285 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
286 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
287 		if (!(quota_types & (1 << type)))
288 			continue;
289 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
290 					  DQUOT_USAGE_ENABLED |
291 					  DQUOT_LIMITS_ENABLED);
292 		if (err)
293 			goto out_err;
294 	}
295 	return 0;
296 
297 out_err:
298 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
299 		type, err);
300 	for (type--; type >= 0; type--)
301 		dquot_quota_off(sb, type);
302 	return err;
303 }
304 
305 static void shmem_disable_quotas(struct super_block *sb)
306 {
307 	int type;
308 
309 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
310 		dquot_quota_off(sb, type);
311 }
312 
313 static struct dquot **shmem_get_dquots(struct inode *inode)
314 {
315 	return SHMEM_I(inode)->i_dquot;
316 }
317 #endif /* CONFIG_TMPFS_QUOTA */
318 
319 /*
320  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
321  * produces a novel ino for the newly allocated inode.
322  *
323  * It may also be called when making a hard link to permit the space needed by
324  * each dentry. However, in that case, no new inode number is needed since that
325  * internally draws from another pool of inode numbers (currently global
326  * get_next_ino()). This case is indicated by passing NULL as inop.
327  */
328 #define SHMEM_INO_BATCH 1024
329 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
330 {
331 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
332 	ino_t ino;
333 
334 	if (!(sb->s_flags & SB_KERNMOUNT)) {
335 		raw_spin_lock(&sbinfo->stat_lock);
336 		if (sbinfo->max_inodes) {
337 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
338 				raw_spin_unlock(&sbinfo->stat_lock);
339 				return -ENOSPC;
340 			}
341 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
342 		}
343 		if (inop) {
344 			ino = sbinfo->next_ino++;
345 			if (unlikely(is_zero_ino(ino)))
346 				ino = sbinfo->next_ino++;
347 			if (unlikely(!sbinfo->full_inums &&
348 				     ino > UINT_MAX)) {
349 				/*
350 				 * Emulate get_next_ino uint wraparound for
351 				 * compatibility
352 				 */
353 				if (IS_ENABLED(CONFIG_64BIT))
354 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
355 						__func__, MINOR(sb->s_dev));
356 				sbinfo->next_ino = 1;
357 				ino = sbinfo->next_ino++;
358 			}
359 			*inop = ino;
360 		}
361 		raw_spin_unlock(&sbinfo->stat_lock);
362 	} else if (inop) {
363 		/*
364 		 * __shmem_file_setup, one of our callers, is lock-free: it
365 		 * doesn't hold stat_lock in shmem_reserve_inode since
366 		 * max_inodes is always 0, and is called from potentially
367 		 * unknown contexts. As such, use a per-cpu batched allocator
368 		 * which doesn't require the per-sb stat_lock unless we are at
369 		 * the batch boundary.
370 		 *
371 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
372 		 * shmem mounts are not exposed to userspace, so we don't need
373 		 * to worry about things like glibc compatibility.
374 		 */
375 		ino_t *next_ino;
376 
377 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
378 		ino = *next_ino;
379 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
380 			raw_spin_lock(&sbinfo->stat_lock);
381 			ino = sbinfo->next_ino;
382 			sbinfo->next_ino += SHMEM_INO_BATCH;
383 			raw_spin_unlock(&sbinfo->stat_lock);
384 			if (unlikely(is_zero_ino(ino)))
385 				ino++;
386 		}
387 		*inop = ino;
388 		*next_ino = ++ino;
389 		put_cpu();
390 	}
391 
392 	return 0;
393 }
394 
395 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
396 {
397 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
398 	if (sbinfo->max_inodes) {
399 		raw_spin_lock(&sbinfo->stat_lock);
400 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
401 		raw_spin_unlock(&sbinfo->stat_lock);
402 	}
403 }
404 
405 /**
406  * shmem_recalc_inode - recalculate the block usage of an inode
407  * @inode: inode to recalc
408  * @alloced: the change in number of pages allocated to inode
409  * @swapped: the change in number of pages swapped from inode
410  *
411  * We have to calculate the free blocks since the mm can drop
412  * undirtied hole pages behind our back.
413  *
414  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
415  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
416  */
417 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
418 {
419 	struct shmem_inode_info *info = SHMEM_I(inode);
420 	long freed;
421 
422 	spin_lock(&info->lock);
423 	info->alloced += alloced;
424 	info->swapped += swapped;
425 	freed = info->alloced - info->swapped -
426 		READ_ONCE(inode->i_mapping->nrpages);
427 	/*
428 	 * Special case: whereas normally shmem_recalc_inode() is called
429 	 * after i_mapping->nrpages has already been adjusted (up or down),
430 	 * shmem_writepage() has to raise swapped before nrpages is lowered -
431 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
432 	 * been freed.  Compensate here, to avoid the need for a followup call.
433 	 */
434 	if (swapped > 0)
435 		freed += swapped;
436 	if (freed > 0)
437 		info->alloced -= freed;
438 	spin_unlock(&info->lock);
439 
440 	/* The quota case may block */
441 	if (freed > 0)
442 		shmem_inode_unacct_blocks(inode, freed);
443 }
444 
445 bool shmem_charge(struct inode *inode, long pages)
446 {
447 	struct address_space *mapping = inode->i_mapping;
448 
449 	if (shmem_inode_acct_blocks(inode, pages))
450 		return false;
451 
452 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
453 	xa_lock_irq(&mapping->i_pages);
454 	mapping->nrpages += pages;
455 	xa_unlock_irq(&mapping->i_pages);
456 
457 	shmem_recalc_inode(inode, pages, 0);
458 	return true;
459 }
460 
461 void shmem_uncharge(struct inode *inode, long pages)
462 {
463 	/* pages argument is currently unused: keep it to help debugging */
464 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
465 
466 	shmem_recalc_inode(inode, 0, 0);
467 }
468 
469 /*
470  * Replace item expected in xarray by a new item, while holding xa_lock.
471  */
472 static int shmem_replace_entry(struct address_space *mapping,
473 			pgoff_t index, void *expected, void *replacement)
474 {
475 	XA_STATE(xas, &mapping->i_pages, index);
476 	void *item;
477 
478 	VM_BUG_ON(!expected);
479 	VM_BUG_ON(!replacement);
480 	item = xas_load(&xas);
481 	if (item != expected)
482 		return -ENOENT;
483 	xas_store(&xas, replacement);
484 	return 0;
485 }
486 
487 /*
488  * Sometimes, before we decide whether to proceed or to fail, we must check
489  * that an entry was not already brought back from swap by a racing thread.
490  *
491  * Checking page is not enough: by the time a SwapCache page is locked, it
492  * might be reused, and again be SwapCache, using the same swap as before.
493  */
494 static bool shmem_confirm_swap(struct address_space *mapping,
495 			       pgoff_t index, swp_entry_t swap)
496 {
497 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
498 }
499 
500 /*
501  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
502  *
503  * SHMEM_HUGE_NEVER:
504  *	disables huge pages for the mount;
505  * SHMEM_HUGE_ALWAYS:
506  *	enables huge pages for the mount;
507  * SHMEM_HUGE_WITHIN_SIZE:
508  *	only allocate huge pages if the page will be fully within i_size,
509  *	also respect fadvise()/madvise() hints;
510  * SHMEM_HUGE_ADVISE:
511  *	only allocate huge pages if requested with fadvise()/madvise();
512  */
513 
514 #define SHMEM_HUGE_NEVER	0
515 #define SHMEM_HUGE_ALWAYS	1
516 #define SHMEM_HUGE_WITHIN_SIZE	2
517 #define SHMEM_HUGE_ADVISE	3
518 
519 /*
520  * Special values.
521  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
522  *
523  * SHMEM_HUGE_DENY:
524  *	disables huge on shm_mnt and all mounts, for emergency use;
525  * SHMEM_HUGE_FORCE:
526  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
527  *
528  */
529 #define SHMEM_HUGE_DENY		(-1)
530 #define SHMEM_HUGE_FORCE	(-2)
531 
532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
533 /* ifdef here to avoid bloating shmem.o when not necessary */
534 
535 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
536 
537 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
538 		   struct mm_struct *mm, unsigned long vm_flags)
539 {
540 	loff_t i_size;
541 
542 	if (!S_ISREG(inode->i_mode))
543 		return false;
544 	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
545 		return false;
546 	if (shmem_huge == SHMEM_HUGE_DENY)
547 		return false;
548 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
549 		return true;
550 
551 	switch (SHMEM_SB(inode->i_sb)->huge) {
552 	case SHMEM_HUGE_ALWAYS:
553 		return true;
554 	case SHMEM_HUGE_WITHIN_SIZE:
555 		index = round_up(index + 1, HPAGE_PMD_NR);
556 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
557 		if (i_size >> PAGE_SHIFT >= index)
558 			return true;
559 		fallthrough;
560 	case SHMEM_HUGE_ADVISE:
561 		if (mm && (vm_flags & VM_HUGEPAGE))
562 			return true;
563 		fallthrough;
564 	default:
565 		return false;
566 	}
567 }
568 
569 #if defined(CONFIG_SYSFS)
570 static int shmem_parse_huge(const char *str)
571 {
572 	if (!strcmp(str, "never"))
573 		return SHMEM_HUGE_NEVER;
574 	if (!strcmp(str, "always"))
575 		return SHMEM_HUGE_ALWAYS;
576 	if (!strcmp(str, "within_size"))
577 		return SHMEM_HUGE_WITHIN_SIZE;
578 	if (!strcmp(str, "advise"))
579 		return SHMEM_HUGE_ADVISE;
580 	if (!strcmp(str, "deny"))
581 		return SHMEM_HUGE_DENY;
582 	if (!strcmp(str, "force"))
583 		return SHMEM_HUGE_FORCE;
584 	return -EINVAL;
585 }
586 #endif
587 
588 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
589 static const char *shmem_format_huge(int huge)
590 {
591 	switch (huge) {
592 	case SHMEM_HUGE_NEVER:
593 		return "never";
594 	case SHMEM_HUGE_ALWAYS:
595 		return "always";
596 	case SHMEM_HUGE_WITHIN_SIZE:
597 		return "within_size";
598 	case SHMEM_HUGE_ADVISE:
599 		return "advise";
600 	case SHMEM_HUGE_DENY:
601 		return "deny";
602 	case SHMEM_HUGE_FORCE:
603 		return "force";
604 	default:
605 		VM_BUG_ON(1);
606 		return "bad_val";
607 	}
608 }
609 #endif
610 
611 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
612 		struct shrink_control *sc, unsigned long nr_to_split)
613 {
614 	LIST_HEAD(list), *pos, *next;
615 	LIST_HEAD(to_remove);
616 	struct inode *inode;
617 	struct shmem_inode_info *info;
618 	struct folio *folio;
619 	unsigned long batch = sc ? sc->nr_to_scan : 128;
620 	int split = 0;
621 
622 	if (list_empty(&sbinfo->shrinklist))
623 		return SHRINK_STOP;
624 
625 	spin_lock(&sbinfo->shrinklist_lock);
626 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
627 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
628 
629 		/* pin the inode */
630 		inode = igrab(&info->vfs_inode);
631 
632 		/* inode is about to be evicted */
633 		if (!inode) {
634 			list_del_init(&info->shrinklist);
635 			goto next;
636 		}
637 
638 		/* Check if there's anything to gain */
639 		if (round_up(inode->i_size, PAGE_SIZE) ==
640 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
641 			list_move(&info->shrinklist, &to_remove);
642 			goto next;
643 		}
644 
645 		list_move(&info->shrinklist, &list);
646 next:
647 		sbinfo->shrinklist_len--;
648 		if (!--batch)
649 			break;
650 	}
651 	spin_unlock(&sbinfo->shrinklist_lock);
652 
653 	list_for_each_safe(pos, next, &to_remove) {
654 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
655 		inode = &info->vfs_inode;
656 		list_del_init(&info->shrinklist);
657 		iput(inode);
658 	}
659 
660 	list_for_each_safe(pos, next, &list) {
661 		int ret;
662 		pgoff_t index;
663 
664 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
665 		inode = &info->vfs_inode;
666 
667 		if (nr_to_split && split >= nr_to_split)
668 			goto move_back;
669 
670 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
671 		folio = filemap_get_folio(inode->i_mapping, index);
672 		if (IS_ERR(folio))
673 			goto drop;
674 
675 		/* No huge page at the end of the file: nothing to split */
676 		if (!folio_test_large(folio)) {
677 			folio_put(folio);
678 			goto drop;
679 		}
680 
681 		/*
682 		 * Move the inode on the list back to shrinklist if we failed
683 		 * to lock the page at this time.
684 		 *
685 		 * Waiting for the lock may lead to deadlock in the
686 		 * reclaim path.
687 		 */
688 		if (!folio_trylock(folio)) {
689 			folio_put(folio);
690 			goto move_back;
691 		}
692 
693 		ret = split_folio(folio);
694 		folio_unlock(folio);
695 		folio_put(folio);
696 
697 		/* If split failed move the inode on the list back to shrinklist */
698 		if (ret)
699 			goto move_back;
700 
701 		split++;
702 drop:
703 		list_del_init(&info->shrinklist);
704 		goto put;
705 move_back:
706 		/*
707 		 * Make sure the inode is either on the global list or deleted
708 		 * from any local list before iput() since it could be deleted
709 		 * in another thread once we put the inode (then the local list
710 		 * is corrupted).
711 		 */
712 		spin_lock(&sbinfo->shrinklist_lock);
713 		list_move(&info->shrinklist, &sbinfo->shrinklist);
714 		sbinfo->shrinklist_len++;
715 		spin_unlock(&sbinfo->shrinklist_lock);
716 put:
717 		iput(inode);
718 	}
719 
720 	return split;
721 }
722 
723 static long shmem_unused_huge_scan(struct super_block *sb,
724 		struct shrink_control *sc)
725 {
726 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
727 
728 	if (!READ_ONCE(sbinfo->shrinklist_len))
729 		return SHRINK_STOP;
730 
731 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
732 }
733 
734 static long shmem_unused_huge_count(struct super_block *sb,
735 		struct shrink_control *sc)
736 {
737 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
738 	return READ_ONCE(sbinfo->shrinklist_len);
739 }
740 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
741 
742 #define shmem_huge SHMEM_HUGE_DENY
743 
744 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
745 		   struct mm_struct *mm, unsigned long vm_flags)
746 {
747 	return false;
748 }
749 
750 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
751 		struct shrink_control *sc, unsigned long nr_to_split)
752 {
753 	return 0;
754 }
755 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
756 
757 /*
758  * Somewhat like filemap_add_folio, but error if expected item has gone.
759  */
760 static int shmem_add_to_page_cache(struct folio *folio,
761 				   struct address_space *mapping,
762 				   pgoff_t index, void *expected, gfp_t gfp)
763 {
764 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
765 	long nr = folio_nr_pages(folio);
766 
767 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
768 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
769 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
770 	VM_BUG_ON(expected && folio_test_large(folio));
771 
772 	folio_ref_add(folio, nr);
773 	folio->mapping = mapping;
774 	folio->index = index;
775 
776 	gfp &= GFP_RECLAIM_MASK;
777 	folio_throttle_swaprate(folio, gfp);
778 
779 	do {
780 		xas_lock_irq(&xas);
781 		if (expected != xas_find_conflict(&xas)) {
782 			xas_set_err(&xas, -EEXIST);
783 			goto unlock;
784 		}
785 		if (expected && xas_find_conflict(&xas)) {
786 			xas_set_err(&xas, -EEXIST);
787 			goto unlock;
788 		}
789 		xas_store(&xas, folio);
790 		if (xas_error(&xas))
791 			goto unlock;
792 		if (folio_test_pmd_mappable(folio))
793 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
794 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
795 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
796 		mapping->nrpages += nr;
797 unlock:
798 		xas_unlock_irq(&xas);
799 	} while (xas_nomem(&xas, gfp));
800 
801 	if (xas_error(&xas)) {
802 		folio->mapping = NULL;
803 		folio_ref_sub(folio, nr);
804 		return xas_error(&xas);
805 	}
806 
807 	return 0;
808 }
809 
810 /*
811  * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
812  */
813 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
814 {
815 	struct address_space *mapping = folio->mapping;
816 	long nr = folio_nr_pages(folio);
817 	int error;
818 
819 	xa_lock_irq(&mapping->i_pages);
820 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
821 	folio->mapping = NULL;
822 	mapping->nrpages -= nr;
823 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
824 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
825 	xa_unlock_irq(&mapping->i_pages);
826 	folio_put(folio);
827 	BUG_ON(error);
828 }
829 
830 /*
831  * Remove swap entry from page cache, free the swap and its page cache.
832  */
833 static int shmem_free_swap(struct address_space *mapping,
834 			   pgoff_t index, void *radswap)
835 {
836 	void *old;
837 
838 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
839 	if (old != radswap)
840 		return -ENOENT;
841 	free_swap_and_cache(radix_to_swp_entry(radswap));
842 	return 0;
843 }
844 
845 /*
846  * Determine (in bytes) how many of the shmem object's pages mapped by the
847  * given offsets are swapped out.
848  *
849  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
850  * as long as the inode doesn't go away and racy results are not a problem.
851  */
852 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
853 						pgoff_t start, pgoff_t end)
854 {
855 	XA_STATE(xas, &mapping->i_pages, start);
856 	struct page *page;
857 	unsigned long swapped = 0;
858 	unsigned long max = end - 1;
859 
860 	rcu_read_lock();
861 	xas_for_each(&xas, page, max) {
862 		if (xas_retry(&xas, page))
863 			continue;
864 		if (xa_is_value(page))
865 			swapped++;
866 		if (xas.xa_index == max)
867 			break;
868 		if (need_resched()) {
869 			xas_pause(&xas);
870 			cond_resched_rcu();
871 		}
872 	}
873 	rcu_read_unlock();
874 
875 	return swapped << PAGE_SHIFT;
876 }
877 
878 /*
879  * Determine (in bytes) how many of the shmem object's pages mapped by the
880  * given vma is swapped out.
881  *
882  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
883  * as long as the inode doesn't go away and racy results are not a problem.
884  */
885 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
886 {
887 	struct inode *inode = file_inode(vma->vm_file);
888 	struct shmem_inode_info *info = SHMEM_I(inode);
889 	struct address_space *mapping = inode->i_mapping;
890 	unsigned long swapped;
891 
892 	/* Be careful as we don't hold info->lock */
893 	swapped = READ_ONCE(info->swapped);
894 
895 	/*
896 	 * The easier cases are when the shmem object has nothing in swap, or
897 	 * the vma maps it whole. Then we can simply use the stats that we
898 	 * already track.
899 	 */
900 	if (!swapped)
901 		return 0;
902 
903 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
904 		return swapped << PAGE_SHIFT;
905 
906 	/* Here comes the more involved part */
907 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
908 					vma->vm_pgoff + vma_pages(vma));
909 }
910 
911 /*
912  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
913  */
914 void shmem_unlock_mapping(struct address_space *mapping)
915 {
916 	struct folio_batch fbatch;
917 	pgoff_t index = 0;
918 
919 	folio_batch_init(&fbatch);
920 	/*
921 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
922 	 */
923 	while (!mapping_unevictable(mapping) &&
924 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
925 		check_move_unevictable_folios(&fbatch);
926 		folio_batch_release(&fbatch);
927 		cond_resched();
928 	}
929 }
930 
931 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
932 {
933 	struct folio *folio;
934 
935 	/*
936 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
937 	 * beyond i_size, and reports fallocated folios as holes.
938 	 */
939 	folio = filemap_get_entry(inode->i_mapping, index);
940 	if (!folio)
941 		return folio;
942 	if (!xa_is_value(folio)) {
943 		folio_lock(folio);
944 		if (folio->mapping == inode->i_mapping)
945 			return folio;
946 		/* The folio has been swapped out */
947 		folio_unlock(folio);
948 		folio_put(folio);
949 	}
950 	/*
951 	 * But read a folio back from swap if any of it is within i_size
952 	 * (although in some cases this is just a waste of time).
953 	 */
954 	folio = NULL;
955 	shmem_get_folio(inode, index, &folio, SGP_READ);
956 	return folio;
957 }
958 
959 /*
960  * Remove range of pages and swap entries from page cache, and free them.
961  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
962  */
963 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
964 								 bool unfalloc)
965 {
966 	struct address_space *mapping = inode->i_mapping;
967 	struct shmem_inode_info *info = SHMEM_I(inode);
968 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
969 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
970 	struct folio_batch fbatch;
971 	pgoff_t indices[PAGEVEC_SIZE];
972 	struct folio *folio;
973 	bool same_folio;
974 	long nr_swaps_freed = 0;
975 	pgoff_t index;
976 	int i;
977 
978 	if (lend == -1)
979 		end = -1;	/* unsigned, so actually very big */
980 
981 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
982 		info->fallocend = start;
983 
984 	folio_batch_init(&fbatch);
985 	index = start;
986 	while (index < end && find_lock_entries(mapping, &index, end - 1,
987 			&fbatch, indices)) {
988 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
989 			folio = fbatch.folios[i];
990 
991 			if (xa_is_value(folio)) {
992 				if (unfalloc)
993 					continue;
994 				nr_swaps_freed += !shmem_free_swap(mapping,
995 							indices[i], folio);
996 				continue;
997 			}
998 
999 			if (!unfalloc || !folio_test_uptodate(folio))
1000 				truncate_inode_folio(mapping, folio);
1001 			folio_unlock(folio);
1002 		}
1003 		folio_batch_remove_exceptionals(&fbatch);
1004 		folio_batch_release(&fbatch);
1005 		cond_resched();
1006 	}
1007 
1008 	/*
1009 	 * When undoing a failed fallocate, we want none of the partial folio
1010 	 * zeroing and splitting below, but shall want to truncate the whole
1011 	 * folio when !uptodate indicates that it was added by this fallocate,
1012 	 * even when [lstart, lend] covers only a part of the folio.
1013 	 */
1014 	if (unfalloc)
1015 		goto whole_folios;
1016 
1017 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1018 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1019 	if (folio) {
1020 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1021 		folio_mark_dirty(folio);
1022 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1023 			start = folio_next_index(folio);
1024 			if (same_folio)
1025 				end = folio->index;
1026 		}
1027 		folio_unlock(folio);
1028 		folio_put(folio);
1029 		folio = NULL;
1030 	}
1031 
1032 	if (!same_folio)
1033 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1034 	if (folio) {
1035 		folio_mark_dirty(folio);
1036 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1037 			end = folio->index;
1038 		folio_unlock(folio);
1039 		folio_put(folio);
1040 	}
1041 
1042 whole_folios:
1043 
1044 	index = start;
1045 	while (index < end) {
1046 		cond_resched();
1047 
1048 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1049 				indices)) {
1050 			/* If all gone or hole-punch or unfalloc, we're done */
1051 			if (index == start || end != -1)
1052 				break;
1053 			/* But if truncating, restart to make sure all gone */
1054 			index = start;
1055 			continue;
1056 		}
1057 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1058 			folio = fbatch.folios[i];
1059 
1060 			if (xa_is_value(folio)) {
1061 				if (unfalloc)
1062 					continue;
1063 				if (shmem_free_swap(mapping, indices[i], folio)) {
1064 					/* Swap was replaced by page: retry */
1065 					index = indices[i];
1066 					break;
1067 				}
1068 				nr_swaps_freed++;
1069 				continue;
1070 			}
1071 
1072 			folio_lock(folio);
1073 
1074 			if (!unfalloc || !folio_test_uptodate(folio)) {
1075 				if (folio_mapping(folio) != mapping) {
1076 					/* Page was replaced by swap: retry */
1077 					folio_unlock(folio);
1078 					index = indices[i];
1079 					break;
1080 				}
1081 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1082 						folio);
1083 
1084 				if (!folio_test_large(folio)) {
1085 					truncate_inode_folio(mapping, folio);
1086 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1087 					/*
1088 					 * If we split a page, reset the loop so
1089 					 * that we pick up the new sub pages.
1090 					 * Otherwise the THP was entirely
1091 					 * dropped or the target range was
1092 					 * zeroed, so just continue the loop as
1093 					 * is.
1094 					 */
1095 					if (!folio_test_large(folio)) {
1096 						folio_unlock(folio);
1097 						index = start;
1098 						break;
1099 					}
1100 				}
1101 			}
1102 			folio_unlock(folio);
1103 		}
1104 		folio_batch_remove_exceptionals(&fbatch);
1105 		folio_batch_release(&fbatch);
1106 	}
1107 
1108 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1109 }
1110 
1111 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1112 {
1113 	shmem_undo_range(inode, lstart, lend, false);
1114 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1115 	inode_inc_iversion(inode);
1116 }
1117 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1118 
1119 static int shmem_getattr(struct mnt_idmap *idmap,
1120 			 const struct path *path, struct kstat *stat,
1121 			 u32 request_mask, unsigned int query_flags)
1122 {
1123 	struct inode *inode = path->dentry->d_inode;
1124 	struct shmem_inode_info *info = SHMEM_I(inode);
1125 
1126 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1127 		shmem_recalc_inode(inode, 0, 0);
1128 
1129 	if (info->fsflags & FS_APPEND_FL)
1130 		stat->attributes |= STATX_ATTR_APPEND;
1131 	if (info->fsflags & FS_IMMUTABLE_FL)
1132 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1133 	if (info->fsflags & FS_NODUMP_FL)
1134 		stat->attributes |= STATX_ATTR_NODUMP;
1135 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1136 			STATX_ATTR_IMMUTABLE |
1137 			STATX_ATTR_NODUMP);
1138 	generic_fillattr(idmap, request_mask, inode, stat);
1139 
1140 	if (shmem_is_huge(inode, 0, false, NULL, 0))
1141 		stat->blksize = HPAGE_PMD_SIZE;
1142 
1143 	if (request_mask & STATX_BTIME) {
1144 		stat->result_mask |= STATX_BTIME;
1145 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1146 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 static int shmem_setattr(struct mnt_idmap *idmap,
1153 			 struct dentry *dentry, struct iattr *attr)
1154 {
1155 	struct inode *inode = d_inode(dentry);
1156 	struct shmem_inode_info *info = SHMEM_I(inode);
1157 	int error;
1158 	bool update_mtime = false;
1159 	bool update_ctime = true;
1160 
1161 	error = setattr_prepare(idmap, dentry, attr);
1162 	if (error)
1163 		return error;
1164 
1165 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1166 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1167 			return -EPERM;
1168 		}
1169 	}
1170 
1171 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1172 		loff_t oldsize = inode->i_size;
1173 		loff_t newsize = attr->ia_size;
1174 
1175 		/* protected by i_rwsem */
1176 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1177 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1178 			return -EPERM;
1179 
1180 		if (newsize != oldsize) {
1181 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1182 					oldsize, newsize);
1183 			if (error)
1184 				return error;
1185 			i_size_write(inode, newsize);
1186 			update_mtime = true;
1187 		} else {
1188 			update_ctime = false;
1189 		}
1190 		if (newsize <= oldsize) {
1191 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1192 			if (oldsize > holebegin)
1193 				unmap_mapping_range(inode->i_mapping,
1194 							holebegin, 0, 1);
1195 			if (info->alloced)
1196 				shmem_truncate_range(inode,
1197 							newsize, (loff_t)-1);
1198 			/* unmap again to remove racily COWed private pages */
1199 			if (oldsize > holebegin)
1200 				unmap_mapping_range(inode->i_mapping,
1201 							holebegin, 0, 1);
1202 		}
1203 	}
1204 
1205 	if (is_quota_modification(idmap, inode, attr)) {
1206 		error = dquot_initialize(inode);
1207 		if (error)
1208 			return error;
1209 	}
1210 
1211 	/* Transfer quota accounting */
1212 	if (i_uid_needs_update(idmap, attr, inode) ||
1213 	    i_gid_needs_update(idmap, attr, inode)) {
1214 		error = dquot_transfer(idmap, inode, attr);
1215 		if (error)
1216 			return error;
1217 	}
1218 
1219 	setattr_copy(idmap, inode, attr);
1220 	if (attr->ia_valid & ATTR_MODE)
1221 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1222 	if (!error && update_ctime) {
1223 		inode_set_ctime_current(inode);
1224 		if (update_mtime)
1225 			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1226 		inode_inc_iversion(inode);
1227 	}
1228 	return error;
1229 }
1230 
1231 static void shmem_evict_inode(struct inode *inode)
1232 {
1233 	struct shmem_inode_info *info = SHMEM_I(inode);
1234 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1235 	size_t freed = 0;
1236 
1237 	if (shmem_mapping(inode->i_mapping)) {
1238 		shmem_unacct_size(info->flags, inode->i_size);
1239 		inode->i_size = 0;
1240 		mapping_set_exiting(inode->i_mapping);
1241 		shmem_truncate_range(inode, 0, (loff_t)-1);
1242 		if (!list_empty(&info->shrinklist)) {
1243 			spin_lock(&sbinfo->shrinklist_lock);
1244 			if (!list_empty(&info->shrinklist)) {
1245 				list_del_init(&info->shrinklist);
1246 				sbinfo->shrinklist_len--;
1247 			}
1248 			spin_unlock(&sbinfo->shrinklist_lock);
1249 		}
1250 		while (!list_empty(&info->swaplist)) {
1251 			/* Wait while shmem_unuse() is scanning this inode... */
1252 			wait_var_event(&info->stop_eviction,
1253 				       !atomic_read(&info->stop_eviction));
1254 			mutex_lock(&shmem_swaplist_mutex);
1255 			/* ...but beware of the race if we peeked too early */
1256 			if (!atomic_read(&info->stop_eviction))
1257 				list_del_init(&info->swaplist);
1258 			mutex_unlock(&shmem_swaplist_mutex);
1259 		}
1260 	}
1261 
1262 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1263 	shmem_free_inode(inode->i_sb, freed);
1264 	WARN_ON(inode->i_blocks);
1265 	clear_inode(inode);
1266 #ifdef CONFIG_TMPFS_QUOTA
1267 	dquot_free_inode(inode);
1268 	dquot_drop(inode);
1269 #endif
1270 }
1271 
1272 static int shmem_find_swap_entries(struct address_space *mapping,
1273 				   pgoff_t start, struct folio_batch *fbatch,
1274 				   pgoff_t *indices, unsigned int type)
1275 {
1276 	XA_STATE(xas, &mapping->i_pages, start);
1277 	struct folio *folio;
1278 	swp_entry_t entry;
1279 
1280 	rcu_read_lock();
1281 	xas_for_each(&xas, folio, ULONG_MAX) {
1282 		if (xas_retry(&xas, folio))
1283 			continue;
1284 
1285 		if (!xa_is_value(folio))
1286 			continue;
1287 
1288 		entry = radix_to_swp_entry(folio);
1289 		/*
1290 		 * swapin error entries can be found in the mapping. But they're
1291 		 * deliberately ignored here as we've done everything we can do.
1292 		 */
1293 		if (swp_type(entry) != type)
1294 			continue;
1295 
1296 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1297 		if (!folio_batch_add(fbatch, folio))
1298 			break;
1299 
1300 		if (need_resched()) {
1301 			xas_pause(&xas);
1302 			cond_resched_rcu();
1303 		}
1304 	}
1305 	rcu_read_unlock();
1306 
1307 	return xas.xa_index;
1308 }
1309 
1310 /*
1311  * Move the swapped pages for an inode to page cache. Returns the count
1312  * of pages swapped in, or the error in case of failure.
1313  */
1314 static int shmem_unuse_swap_entries(struct inode *inode,
1315 		struct folio_batch *fbatch, pgoff_t *indices)
1316 {
1317 	int i = 0;
1318 	int ret = 0;
1319 	int error = 0;
1320 	struct address_space *mapping = inode->i_mapping;
1321 
1322 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1323 		struct folio *folio = fbatch->folios[i];
1324 
1325 		if (!xa_is_value(folio))
1326 			continue;
1327 		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1328 					mapping_gfp_mask(mapping), NULL, NULL);
1329 		if (error == 0) {
1330 			folio_unlock(folio);
1331 			folio_put(folio);
1332 			ret++;
1333 		}
1334 		if (error == -ENOMEM)
1335 			break;
1336 		error = 0;
1337 	}
1338 	return error ? error : ret;
1339 }
1340 
1341 /*
1342  * If swap found in inode, free it and move page from swapcache to filecache.
1343  */
1344 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1345 {
1346 	struct address_space *mapping = inode->i_mapping;
1347 	pgoff_t start = 0;
1348 	struct folio_batch fbatch;
1349 	pgoff_t indices[PAGEVEC_SIZE];
1350 	int ret = 0;
1351 
1352 	do {
1353 		folio_batch_init(&fbatch);
1354 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1355 		if (folio_batch_count(&fbatch) == 0) {
1356 			ret = 0;
1357 			break;
1358 		}
1359 
1360 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1361 		if (ret < 0)
1362 			break;
1363 
1364 		start = indices[folio_batch_count(&fbatch) - 1];
1365 	} while (true);
1366 
1367 	return ret;
1368 }
1369 
1370 /*
1371  * Read all the shared memory data that resides in the swap
1372  * device 'type' back into memory, so the swap device can be
1373  * unused.
1374  */
1375 int shmem_unuse(unsigned int type)
1376 {
1377 	struct shmem_inode_info *info, *next;
1378 	int error = 0;
1379 
1380 	if (list_empty(&shmem_swaplist))
1381 		return 0;
1382 
1383 	mutex_lock(&shmem_swaplist_mutex);
1384 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1385 		if (!info->swapped) {
1386 			list_del_init(&info->swaplist);
1387 			continue;
1388 		}
1389 		/*
1390 		 * Drop the swaplist mutex while searching the inode for swap;
1391 		 * but before doing so, make sure shmem_evict_inode() will not
1392 		 * remove placeholder inode from swaplist, nor let it be freed
1393 		 * (igrab() would protect from unlink, but not from unmount).
1394 		 */
1395 		atomic_inc(&info->stop_eviction);
1396 		mutex_unlock(&shmem_swaplist_mutex);
1397 
1398 		error = shmem_unuse_inode(&info->vfs_inode, type);
1399 		cond_resched();
1400 
1401 		mutex_lock(&shmem_swaplist_mutex);
1402 		next = list_next_entry(info, swaplist);
1403 		if (!info->swapped)
1404 			list_del_init(&info->swaplist);
1405 		if (atomic_dec_and_test(&info->stop_eviction))
1406 			wake_up_var(&info->stop_eviction);
1407 		if (error)
1408 			break;
1409 	}
1410 	mutex_unlock(&shmem_swaplist_mutex);
1411 
1412 	return error;
1413 }
1414 
1415 /*
1416  * Move the page from the page cache to the swap cache.
1417  */
1418 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1419 {
1420 	struct folio *folio = page_folio(page);
1421 	struct address_space *mapping = folio->mapping;
1422 	struct inode *inode = mapping->host;
1423 	struct shmem_inode_info *info = SHMEM_I(inode);
1424 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1425 	swp_entry_t swap;
1426 	pgoff_t index;
1427 
1428 	/*
1429 	 * Our capabilities prevent regular writeback or sync from ever calling
1430 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1431 	 * its underlying filesystem, in which case tmpfs should write out to
1432 	 * swap only in response to memory pressure, and not for the writeback
1433 	 * threads or sync.
1434 	 */
1435 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1436 		goto redirty;
1437 
1438 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1439 		goto redirty;
1440 
1441 	if (!total_swap_pages)
1442 		goto redirty;
1443 
1444 	/*
1445 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1446 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1447 	 * and its shmem_writeback() needs them to be split when swapping.
1448 	 */
1449 	if (folio_test_large(folio)) {
1450 		/* Ensure the subpages are still dirty */
1451 		folio_test_set_dirty(folio);
1452 		if (split_huge_page(page) < 0)
1453 			goto redirty;
1454 		folio = page_folio(page);
1455 		folio_clear_dirty(folio);
1456 	}
1457 
1458 	index = folio->index;
1459 
1460 	/*
1461 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1462 	 * value into swapfile.c, the only way we can correctly account for a
1463 	 * fallocated folio arriving here is now to initialize it and write it.
1464 	 *
1465 	 * That's okay for a folio already fallocated earlier, but if we have
1466 	 * not yet completed the fallocation, then (a) we want to keep track
1467 	 * of this folio in case we have to undo it, and (b) it may not be a
1468 	 * good idea to continue anyway, once we're pushing into swap.  So
1469 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1470 	 */
1471 	if (!folio_test_uptodate(folio)) {
1472 		if (inode->i_private) {
1473 			struct shmem_falloc *shmem_falloc;
1474 			spin_lock(&inode->i_lock);
1475 			shmem_falloc = inode->i_private;
1476 			if (shmem_falloc &&
1477 			    !shmem_falloc->waitq &&
1478 			    index >= shmem_falloc->start &&
1479 			    index < shmem_falloc->next)
1480 				shmem_falloc->nr_unswapped++;
1481 			else
1482 				shmem_falloc = NULL;
1483 			spin_unlock(&inode->i_lock);
1484 			if (shmem_falloc)
1485 				goto redirty;
1486 		}
1487 		folio_zero_range(folio, 0, folio_size(folio));
1488 		flush_dcache_folio(folio);
1489 		folio_mark_uptodate(folio);
1490 	}
1491 
1492 	swap = folio_alloc_swap(folio);
1493 	if (!swap.val)
1494 		goto redirty;
1495 
1496 	/*
1497 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1498 	 * if it's not already there.  Do it now before the folio is
1499 	 * moved to swap cache, when its pagelock no longer protects
1500 	 * the inode from eviction.  But don't unlock the mutex until
1501 	 * we've incremented swapped, because shmem_unuse_inode() will
1502 	 * prune a !swapped inode from the swaplist under this mutex.
1503 	 */
1504 	mutex_lock(&shmem_swaplist_mutex);
1505 	if (list_empty(&info->swaplist))
1506 		list_add(&info->swaplist, &shmem_swaplist);
1507 
1508 	if (add_to_swap_cache(folio, swap,
1509 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1510 			NULL) == 0) {
1511 		shmem_recalc_inode(inode, 0, 1);
1512 		swap_shmem_alloc(swap);
1513 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1514 
1515 		mutex_unlock(&shmem_swaplist_mutex);
1516 		BUG_ON(folio_mapped(folio));
1517 		swap_writepage(&folio->page, wbc);
1518 		return 0;
1519 	}
1520 
1521 	mutex_unlock(&shmem_swaplist_mutex);
1522 	put_swap_folio(folio, swap);
1523 redirty:
1524 	folio_mark_dirty(folio);
1525 	if (wbc->for_reclaim)
1526 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1527 	folio_unlock(folio);
1528 	return 0;
1529 }
1530 
1531 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1532 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1533 {
1534 	char buffer[64];
1535 
1536 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1537 		return;		/* show nothing */
1538 
1539 	mpol_to_str(buffer, sizeof(buffer), mpol);
1540 
1541 	seq_printf(seq, ",mpol=%s", buffer);
1542 }
1543 
1544 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1545 {
1546 	struct mempolicy *mpol = NULL;
1547 	if (sbinfo->mpol) {
1548 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1549 		mpol = sbinfo->mpol;
1550 		mpol_get(mpol);
1551 		raw_spin_unlock(&sbinfo->stat_lock);
1552 	}
1553 	return mpol;
1554 }
1555 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1556 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1557 {
1558 }
1559 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1560 {
1561 	return NULL;
1562 }
1563 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1564 
1565 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1566 			pgoff_t index, unsigned int order, pgoff_t *ilx);
1567 
1568 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1569 			struct shmem_inode_info *info, pgoff_t index)
1570 {
1571 	struct mempolicy *mpol;
1572 	pgoff_t ilx;
1573 	struct page *page;
1574 
1575 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1576 	page = swap_cluster_readahead(swap, gfp, mpol, ilx);
1577 	mpol_cond_put(mpol);
1578 
1579 	if (!page)
1580 		return NULL;
1581 	return page_folio(page);
1582 }
1583 
1584 /*
1585  * Make sure huge_gfp is always more limited than limit_gfp.
1586  * Some of the flags set permissions, while others set limitations.
1587  */
1588 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1589 {
1590 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1591 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1592 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1593 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1594 
1595 	/* Allow allocations only from the originally specified zones. */
1596 	result |= zoneflags;
1597 
1598 	/*
1599 	 * Minimize the result gfp by taking the union with the deny flags,
1600 	 * and the intersection of the allow flags.
1601 	 */
1602 	result |= (limit_gfp & denyflags);
1603 	result |= (huge_gfp & limit_gfp) & allowflags;
1604 
1605 	return result;
1606 }
1607 
1608 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1609 		struct shmem_inode_info *info, pgoff_t index)
1610 {
1611 	struct mempolicy *mpol;
1612 	pgoff_t ilx;
1613 	struct page *page;
1614 
1615 	mpol = shmem_get_pgoff_policy(info, index, HPAGE_PMD_ORDER, &ilx);
1616 	page = alloc_pages_mpol(gfp, HPAGE_PMD_ORDER, mpol, ilx, numa_node_id());
1617 	mpol_cond_put(mpol);
1618 
1619 	return page_rmappable_folio(page);
1620 }
1621 
1622 static struct folio *shmem_alloc_folio(gfp_t gfp,
1623 		struct shmem_inode_info *info, pgoff_t index)
1624 {
1625 	struct mempolicy *mpol;
1626 	pgoff_t ilx;
1627 	struct page *page;
1628 
1629 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1630 	page = alloc_pages_mpol(gfp, 0, mpol, ilx, numa_node_id());
1631 	mpol_cond_put(mpol);
1632 
1633 	return (struct folio *)page;
1634 }
1635 
1636 static struct folio *shmem_alloc_and_add_folio(gfp_t gfp,
1637 		struct inode *inode, pgoff_t index,
1638 		struct mm_struct *fault_mm, bool huge)
1639 {
1640 	struct address_space *mapping = inode->i_mapping;
1641 	struct shmem_inode_info *info = SHMEM_I(inode);
1642 	struct folio *folio;
1643 	long pages;
1644 	int error;
1645 
1646 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1647 		huge = false;
1648 
1649 	if (huge) {
1650 		pages = HPAGE_PMD_NR;
1651 		index = round_down(index, HPAGE_PMD_NR);
1652 
1653 		/*
1654 		 * Check for conflict before waiting on a huge allocation.
1655 		 * Conflict might be that a huge page has just been allocated
1656 		 * and added to page cache by a racing thread, or that there
1657 		 * is already at least one small page in the huge extent.
1658 		 * Be careful to retry when appropriate, but not forever!
1659 		 * Elsewhere -EEXIST would be the right code, but not here.
1660 		 */
1661 		if (xa_find(&mapping->i_pages, &index,
1662 				index + HPAGE_PMD_NR - 1, XA_PRESENT))
1663 			return ERR_PTR(-E2BIG);
1664 
1665 		folio = shmem_alloc_hugefolio(gfp, info, index);
1666 		if (!folio)
1667 			count_vm_event(THP_FILE_FALLBACK);
1668 	} else {
1669 		pages = 1;
1670 		folio = shmem_alloc_folio(gfp, info, index);
1671 	}
1672 	if (!folio)
1673 		return ERR_PTR(-ENOMEM);
1674 
1675 	__folio_set_locked(folio);
1676 	__folio_set_swapbacked(folio);
1677 
1678 	gfp &= GFP_RECLAIM_MASK;
1679 	error = mem_cgroup_charge(folio, fault_mm, gfp);
1680 	if (error) {
1681 		if (xa_find(&mapping->i_pages, &index,
1682 				index + pages - 1, XA_PRESENT)) {
1683 			error = -EEXIST;
1684 		} else if (huge) {
1685 			count_vm_event(THP_FILE_FALLBACK);
1686 			count_vm_event(THP_FILE_FALLBACK_CHARGE);
1687 		}
1688 		goto unlock;
1689 	}
1690 
1691 	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1692 	if (error)
1693 		goto unlock;
1694 
1695 	error = shmem_inode_acct_blocks(inode, pages);
1696 	if (error) {
1697 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1698 		long freed;
1699 		/*
1700 		 * Try to reclaim some space by splitting a few
1701 		 * large folios beyond i_size on the filesystem.
1702 		 */
1703 		shmem_unused_huge_shrink(sbinfo, NULL, 2);
1704 		/*
1705 		 * And do a shmem_recalc_inode() to account for freed pages:
1706 		 * except our folio is there in cache, so not quite balanced.
1707 		 */
1708 		spin_lock(&info->lock);
1709 		freed = pages + info->alloced - info->swapped -
1710 			READ_ONCE(mapping->nrpages);
1711 		if (freed > 0)
1712 			info->alloced -= freed;
1713 		spin_unlock(&info->lock);
1714 		if (freed > 0)
1715 			shmem_inode_unacct_blocks(inode, freed);
1716 		error = shmem_inode_acct_blocks(inode, pages);
1717 		if (error) {
1718 			filemap_remove_folio(folio);
1719 			goto unlock;
1720 		}
1721 	}
1722 
1723 	shmem_recalc_inode(inode, pages, 0);
1724 	folio_add_lru(folio);
1725 	return folio;
1726 
1727 unlock:
1728 	folio_unlock(folio);
1729 	folio_put(folio);
1730 	return ERR_PTR(error);
1731 }
1732 
1733 /*
1734  * When a page is moved from swapcache to shmem filecache (either by the
1735  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1736  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1737  * ignorance of the mapping it belongs to.  If that mapping has special
1738  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1739  * we may need to copy to a suitable page before moving to filecache.
1740  *
1741  * In a future release, this may well be extended to respect cpuset and
1742  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1743  * but for now it is a simple matter of zone.
1744  */
1745 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1746 {
1747 	return folio_zonenum(folio) > gfp_zone(gfp);
1748 }
1749 
1750 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1751 				struct shmem_inode_info *info, pgoff_t index)
1752 {
1753 	struct folio *old, *new;
1754 	struct address_space *swap_mapping;
1755 	swp_entry_t entry;
1756 	pgoff_t swap_index;
1757 	int error;
1758 
1759 	old = *foliop;
1760 	entry = old->swap;
1761 	swap_index = swp_offset(entry);
1762 	swap_mapping = swap_address_space(entry);
1763 
1764 	/*
1765 	 * We have arrived here because our zones are constrained, so don't
1766 	 * limit chance of success by further cpuset and node constraints.
1767 	 */
1768 	gfp &= ~GFP_CONSTRAINT_MASK;
1769 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1770 	new = shmem_alloc_folio(gfp, info, index);
1771 	if (!new)
1772 		return -ENOMEM;
1773 
1774 	folio_get(new);
1775 	folio_copy(new, old);
1776 	flush_dcache_folio(new);
1777 
1778 	__folio_set_locked(new);
1779 	__folio_set_swapbacked(new);
1780 	folio_mark_uptodate(new);
1781 	new->swap = entry;
1782 	folio_set_swapcache(new);
1783 
1784 	/*
1785 	 * Our caller will very soon move newpage out of swapcache, but it's
1786 	 * a nice clean interface for us to replace oldpage by newpage there.
1787 	 */
1788 	xa_lock_irq(&swap_mapping->i_pages);
1789 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1790 	if (!error) {
1791 		mem_cgroup_migrate(old, new);
1792 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1793 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1794 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1795 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1796 	}
1797 	xa_unlock_irq(&swap_mapping->i_pages);
1798 
1799 	if (unlikely(error)) {
1800 		/*
1801 		 * Is this possible?  I think not, now that our callers check
1802 		 * both PageSwapCache and page_private after getting page lock;
1803 		 * but be defensive.  Reverse old to newpage for clear and free.
1804 		 */
1805 		old = new;
1806 	} else {
1807 		folio_add_lru(new);
1808 		*foliop = new;
1809 	}
1810 
1811 	folio_clear_swapcache(old);
1812 	old->private = NULL;
1813 
1814 	folio_unlock(old);
1815 	folio_put_refs(old, 2);
1816 	return error;
1817 }
1818 
1819 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1820 					 struct folio *folio, swp_entry_t swap)
1821 {
1822 	struct address_space *mapping = inode->i_mapping;
1823 	swp_entry_t swapin_error;
1824 	void *old;
1825 
1826 	swapin_error = make_poisoned_swp_entry();
1827 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1828 			     swp_to_radix_entry(swap),
1829 			     swp_to_radix_entry(swapin_error), 0);
1830 	if (old != swp_to_radix_entry(swap))
1831 		return;
1832 
1833 	folio_wait_writeback(folio);
1834 	delete_from_swap_cache(folio);
1835 	/*
1836 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
1837 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
1838 	 * in shmem_evict_inode().
1839 	 */
1840 	shmem_recalc_inode(inode, -1, -1);
1841 	swap_free(swap);
1842 }
1843 
1844 /*
1845  * Swap in the folio pointed to by *foliop.
1846  * Caller has to make sure that *foliop contains a valid swapped folio.
1847  * Returns 0 and the folio in foliop if success. On failure, returns the
1848  * error code and NULL in *foliop.
1849  */
1850 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1851 			     struct folio **foliop, enum sgp_type sgp,
1852 			     gfp_t gfp, struct mm_struct *fault_mm,
1853 			     vm_fault_t *fault_type)
1854 {
1855 	struct address_space *mapping = inode->i_mapping;
1856 	struct shmem_inode_info *info = SHMEM_I(inode);
1857 	struct swap_info_struct *si;
1858 	struct folio *folio = NULL;
1859 	swp_entry_t swap;
1860 	int error;
1861 
1862 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1863 	swap = radix_to_swp_entry(*foliop);
1864 	*foliop = NULL;
1865 
1866 	if (is_poisoned_swp_entry(swap))
1867 		return -EIO;
1868 
1869 	si = get_swap_device(swap);
1870 	if (!si) {
1871 		if (!shmem_confirm_swap(mapping, index, swap))
1872 			return -EEXIST;
1873 		else
1874 			return -EINVAL;
1875 	}
1876 
1877 	/* Look it up and read it in.. */
1878 	folio = swap_cache_get_folio(swap, NULL, 0);
1879 	if (!folio) {
1880 		/* Or update major stats only when swapin succeeds?? */
1881 		if (fault_type) {
1882 			*fault_type |= VM_FAULT_MAJOR;
1883 			count_vm_event(PGMAJFAULT);
1884 			count_memcg_event_mm(fault_mm, PGMAJFAULT);
1885 		}
1886 		/* Here we actually start the io */
1887 		folio = shmem_swapin_cluster(swap, gfp, info, index);
1888 		if (!folio) {
1889 			error = -ENOMEM;
1890 			goto failed;
1891 		}
1892 	}
1893 
1894 	/* We have to do this with folio locked to prevent races */
1895 	folio_lock(folio);
1896 	if (!folio_test_swapcache(folio) ||
1897 	    folio->swap.val != swap.val ||
1898 	    !shmem_confirm_swap(mapping, index, swap)) {
1899 		error = -EEXIST;
1900 		goto unlock;
1901 	}
1902 	if (!folio_test_uptodate(folio)) {
1903 		error = -EIO;
1904 		goto failed;
1905 	}
1906 	folio_wait_writeback(folio);
1907 
1908 	/*
1909 	 * Some architectures may have to restore extra metadata to the
1910 	 * folio after reading from swap.
1911 	 */
1912 	arch_swap_restore(swap, folio);
1913 
1914 	if (shmem_should_replace_folio(folio, gfp)) {
1915 		error = shmem_replace_folio(&folio, gfp, info, index);
1916 		if (error)
1917 			goto failed;
1918 	}
1919 
1920 	error = shmem_add_to_page_cache(folio, mapping, index,
1921 					swp_to_radix_entry(swap), gfp);
1922 	if (error)
1923 		goto failed;
1924 
1925 	shmem_recalc_inode(inode, 0, -1);
1926 
1927 	if (sgp == SGP_WRITE)
1928 		folio_mark_accessed(folio);
1929 
1930 	delete_from_swap_cache(folio);
1931 	folio_mark_dirty(folio);
1932 	swap_free(swap);
1933 	put_swap_device(si);
1934 
1935 	*foliop = folio;
1936 	return 0;
1937 failed:
1938 	if (!shmem_confirm_swap(mapping, index, swap))
1939 		error = -EEXIST;
1940 	if (error == -EIO)
1941 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1942 unlock:
1943 	if (folio) {
1944 		folio_unlock(folio);
1945 		folio_put(folio);
1946 	}
1947 	put_swap_device(si);
1948 
1949 	return error;
1950 }
1951 
1952 /*
1953  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1954  *
1955  * If we allocate a new one we do not mark it dirty. That's up to the
1956  * vm. If we swap it in we mark it dirty since we also free the swap
1957  * entry since a page cannot live in both the swap and page cache.
1958  *
1959  * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
1960  */
1961 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1962 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1963 		struct vm_fault *vmf, vm_fault_t *fault_type)
1964 {
1965 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1966 	struct mm_struct *fault_mm;
1967 	struct folio *folio;
1968 	int error;
1969 	bool alloced;
1970 
1971 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1972 		return -EFBIG;
1973 repeat:
1974 	if (sgp <= SGP_CACHE &&
1975 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
1976 		return -EINVAL;
1977 
1978 	alloced = false;
1979 	fault_mm = vma ? vma->vm_mm : NULL;
1980 
1981 	folio = filemap_get_entry(inode->i_mapping, index);
1982 	if (folio && vma && userfaultfd_minor(vma)) {
1983 		if (!xa_is_value(folio))
1984 			folio_put(folio);
1985 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1986 		return 0;
1987 	}
1988 
1989 	if (xa_is_value(folio)) {
1990 		error = shmem_swapin_folio(inode, index, &folio,
1991 					   sgp, gfp, fault_mm, fault_type);
1992 		if (error == -EEXIST)
1993 			goto repeat;
1994 
1995 		*foliop = folio;
1996 		return error;
1997 	}
1998 
1999 	if (folio) {
2000 		folio_lock(folio);
2001 
2002 		/* Has the folio been truncated or swapped out? */
2003 		if (unlikely(folio->mapping != inode->i_mapping)) {
2004 			folio_unlock(folio);
2005 			folio_put(folio);
2006 			goto repeat;
2007 		}
2008 		if (sgp == SGP_WRITE)
2009 			folio_mark_accessed(folio);
2010 		if (folio_test_uptodate(folio))
2011 			goto out;
2012 		/* fallocated folio */
2013 		if (sgp != SGP_READ)
2014 			goto clear;
2015 		folio_unlock(folio);
2016 		folio_put(folio);
2017 	}
2018 
2019 	/*
2020 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2021 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2022 	 */
2023 	*foliop = NULL;
2024 	if (sgp == SGP_READ)
2025 		return 0;
2026 	if (sgp == SGP_NOALLOC)
2027 		return -ENOENT;
2028 
2029 	/*
2030 	 * Fast cache lookup and swap lookup did not find it: allocate.
2031 	 */
2032 
2033 	if (vma && userfaultfd_missing(vma)) {
2034 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2035 		return 0;
2036 	}
2037 
2038 	if (shmem_is_huge(inode, index, false, fault_mm,
2039 			  vma ? vma->vm_flags : 0)) {
2040 		gfp_t huge_gfp;
2041 
2042 		huge_gfp = vma_thp_gfp_mask(vma);
2043 		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2044 		folio = shmem_alloc_and_add_folio(huge_gfp,
2045 				inode, index, fault_mm, true);
2046 		if (!IS_ERR(folio)) {
2047 			count_vm_event(THP_FILE_ALLOC);
2048 			goto alloced;
2049 		}
2050 		if (PTR_ERR(folio) == -EEXIST)
2051 			goto repeat;
2052 	}
2053 
2054 	folio = shmem_alloc_and_add_folio(gfp, inode, index, fault_mm, false);
2055 	if (IS_ERR(folio)) {
2056 		error = PTR_ERR(folio);
2057 		if (error == -EEXIST)
2058 			goto repeat;
2059 		folio = NULL;
2060 		goto unlock;
2061 	}
2062 
2063 alloced:
2064 	alloced = true;
2065 	if (folio_test_pmd_mappable(folio) &&
2066 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2067 					folio_next_index(folio) - 1) {
2068 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2069 		struct shmem_inode_info *info = SHMEM_I(inode);
2070 		/*
2071 		 * Part of the large folio is beyond i_size: subject
2072 		 * to shrink under memory pressure.
2073 		 */
2074 		spin_lock(&sbinfo->shrinklist_lock);
2075 		/*
2076 		 * _careful to defend against unlocked access to
2077 		 * ->shrink_list in shmem_unused_huge_shrink()
2078 		 */
2079 		if (list_empty_careful(&info->shrinklist)) {
2080 			list_add_tail(&info->shrinklist,
2081 				      &sbinfo->shrinklist);
2082 			sbinfo->shrinklist_len++;
2083 		}
2084 		spin_unlock(&sbinfo->shrinklist_lock);
2085 	}
2086 
2087 	if (sgp == SGP_WRITE)
2088 		folio_set_referenced(folio);
2089 	/*
2090 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2091 	 */
2092 	if (sgp == SGP_FALLOC)
2093 		sgp = SGP_WRITE;
2094 clear:
2095 	/*
2096 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2097 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2098 	 * it now, lest undo on failure cancel our earlier guarantee.
2099 	 */
2100 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2101 		long i, n = folio_nr_pages(folio);
2102 
2103 		for (i = 0; i < n; i++)
2104 			clear_highpage(folio_page(folio, i));
2105 		flush_dcache_folio(folio);
2106 		folio_mark_uptodate(folio);
2107 	}
2108 
2109 	/* Perhaps the file has been truncated since we checked */
2110 	if (sgp <= SGP_CACHE &&
2111 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2112 		error = -EINVAL;
2113 		goto unlock;
2114 	}
2115 out:
2116 	*foliop = folio;
2117 	return 0;
2118 
2119 	/*
2120 	 * Error recovery.
2121 	 */
2122 unlock:
2123 	if (alloced)
2124 		filemap_remove_folio(folio);
2125 	shmem_recalc_inode(inode, 0, 0);
2126 	if (folio) {
2127 		folio_unlock(folio);
2128 		folio_put(folio);
2129 	}
2130 	return error;
2131 }
2132 
2133 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2134 		enum sgp_type sgp)
2135 {
2136 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2137 			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2138 }
2139 
2140 /*
2141  * This is like autoremove_wake_function, but it removes the wait queue
2142  * entry unconditionally - even if something else had already woken the
2143  * target.
2144  */
2145 static int synchronous_wake_function(wait_queue_entry_t *wait,
2146 			unsigned int mode, int sync, void *key)
2147 {
2148 	int ret = default_wake_function(wait, mode, sync, key);
2149 	list_del_init(&wait->entry);
2150 	return ret;
2151 }
2152 
2153 /*
2154  * Trinity finds that probing a hole which tmpfs is punching can
2155  * prevent the hole-punch from ever completing: which in turn
2156  * locks writers out with its hold on i_rwsem.  So refrain from
2157  * faulting pages into the hole while it's being punched.  Although
2158  * shmem_undo_range() does remove the additions, it may be unable to
2159  * keep up, as each new page needs its own unmap_mapping_range() call,
2160  * and the i_mmap tree grows ever slower to scan if new vmas are added.
2161  *
2162  * It does not matter if we sometimes reach this check just before the
2163  * hole-punch begins, so that one fault then races with the punch:
2164  * we just need to make racing faults a rare case.
2165  *
2166  * The implementation below would be much simpler if we just used a
2167  * standard mutex or completion: but we cannot take i_rwsem in fault,
2168  * and bloating every shmem inode for this unlikely case would be sad.
2169  */
2170 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2171 {
2172 	struct shmem_falloc *shmem_falloc;
2173 	struct file *fpin = NULL;
2174 	vm_fault_t ret = 0;
2175 
2176 	spin_lock(&inode->i_lock);
2177 	shmem_falloc = inode->i_private;
2178 	if (shmem_falloc &&
2179 	    shmem_falloc->waitq &&
2180 	    vmf->pgoff >= shmem_falloc->start &&
2181 	    vmf->pgoff < shmem_falloc->next) {
2182 		wait_queue_head_t *shmem_falloc_waitq;
2183 		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2184 
2185 		ret = VM_FAULT_NOPAGE;
2186 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2187 		shmem_falloc_waitq = shmem_falloc->waitq;
2188 		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2189 				TASK_UNINTERRUPTIBLE);
2190 		spin_unlock(&inode->i_lock);
2191 		schedule();
2192 
2193 		/*
2194 		 * shmem_falloc_waitq points into the shmem_fallocate()
2195 		 * stack of the hole-punching task: shmem_falloc_waitq
2196 		 * is usually invalid by the time we reach here, but
2197 		 * finish_wait() does not dereference it in that case;
2198 		 * though i_lock needed lest racing with wake_up_all().
2199 		 */
2200 		spin_lock(&inode->i_lock);
2201 		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2202 	}
2203 	spin_unlock(&inode->i_lock);
2204 	if (fpin) {
2205 		fput(fpin);
2206 		ret = VM_FAULT_RETRY;
2207 	}
2208 	return ret;
2209 }
2210 
2211 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2212 {
2213 	struct inode *inode = file_inode(vmf->vma->vm_file);
2214 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2215 	struct folio *folio = NULL;
2216 	vm_fault_t ret = 0;
2217 	int err;
2218 
2219 	/*
2220 	 * Trinity finds that probing a hole which tmpfs is punching can
2221 	 * prevent the hole-punch from ever completing: noted in i_private.
2222 	 */
2223 	if (unlikely(inode->i_private)) {
2224 		ret = shmem_falloc_wait(vmf, inode);
2225 		if (ret)
2226 			return ret;
2227 	}
2228 
2229 	WARN_ON_ONCE(vmf->page != NULL);
2230 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2231 				  gfp, vmf, &ret);
2232 	if (err)
2233 		return vmf_error(err);
2234 	if (folio) {
2235 		vmf->page = folio_file_page(folio, vmf->pgoff);
2236 		ret |= VM_FAULT_LOCKED;
2237 	}
2238 	return ret;
2239 }
2240 
2241 unsigned long shmem_get_unmapped_area(struct file *file,
2242 				      unsigned long uaddr, unsigned long len,
2243 				      unsigned long pgoff, unsigned long flags)
2244 {
2245 	unsigned long (*get_area)(struct file *,
2246 		unsigned long, unsigned long, unsigned long, unsigned long);
2247 	unsigned long addr;
2248 	unsigned long offset;
2249 	unsigned long inflated_len;
2250 	unsigned long inflated_addr;
2251 	unsigned long inflated_offset;
2252 
2253 	if (len > TASK_SIZE)
2254 		return -ENOMEM;
2255 
2256 	get_area = current->mm->get_unmapped_area;
2257 	addr = get_area(file, uaddr, len, pgoff, flags);
2258 
2259 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2260 		return addr;
2261 	if (IS_ERR_VALUE(addr))
2262 		return addr;
2263 	if (addr & ~PAGE_MASK)
2264 		return addr;
2265 	if (addr > TASK_SIZE - len)
2266 		return addr;
2267 
2268 	if (shmem_huge == SHMEM_HUGE_DENY)
2269 		return addr;
2270 	if (len < HPAGE_PMD_SIZE)
2271 		return addr;
2272 	if (flags & MAP_FIXED)
2273 		return addr;
2274 	/*
2275 	 * Our priority is to support MAP_SHARED mapped hugely;
2276 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2277 	 * But if caller specified an address hint and we allocated area there
2278 	 * successfully, respect that as before.
2279 	 */
2280 	if (uaddr == addr)
2281 		return addr;
2282 
2283 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2284 		struct super_block *sb;
2285 
2286 		if (file) {
2287 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2288 			sb = file_inode(file)->i_sb;
2289 		} else {
2290 			/*
2291 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2292 			 * for "/dev/zero", to create a shared anonymous object.
2293 			 */
2294 			if (IS_ERR(shm_mnt))
2295 				return addr;
2296 			sb = shm_mnt->mnt_sb;
2297 		}
2298 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2299 			return addr;
2300 	}
2301 
2302 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2303 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2304 		return addr;
2305 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2306 		return addr;
2307 
2308 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2309 	if (inflated_len > TASK_SIZE)
2310 		return addr;
2311 	if (inflated_len < len)
2312 		return addr;
2313 
2314 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2315 	if (IS_ERR_VALUE(inflated_addr))
2316 		return addr;
2317 	if (inflated_addr & ~PAGE_MASK)
2318 		return addr;
2319 
2320 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2321 	inflated_addr += offset - inflated_offset;
2322 	if (inflated_offset > offset)
2323 		inflated_addr += HPAGE_PMD_SIZE;
2324 
2325 	if (inflated_addr > TASK_SIZE - len)
2326 		return addr;
2327 	return inflated_addr;
2328 }
2329 
2330 #ifdef CONFIG_NUMA
2331 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2332 {
2333 	struct inode *inode = file_inode(vma->vm_file);
2334 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2335 }
2336 
2337 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2338 					  unsigned long addr, pgoff_t *ilx)
2339 {
2340 	struct inode *inode = file_inode(vma->vm_file);
2341 	pgoff_t index;
2342 
2343 	/*
2344 	 * Bias interleave by inode number to distribute better across nodes;
2345 	 * but this interface is independent of which page order is used, so
2346 	 * supplies only that bias, letting caller apply the offset (adjusted
2347 	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2348 	 */
2349 	*ilx = inode->i_ino;
2350 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2351 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2352 }
2353 
2354 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2355 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2356 {
2357 	struct mempolicy *mpol;
2358 
2359 	/* Bias interleave by inode number to distribute better across nodes */
2360 	*ilx = info->vfs_inode.i_ino + (index >> order);
2361 
2362 	mpol = mpol_shared_policy_lookup(&info->policy, index);
2363 	return mpol ? mpol : get_task_policy(current);
2364 }
2365 #else
2366 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2367 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2368 {
2369 	*ilx = 0;
2370 	return NULL;
2371 }
2372 #endif /* CONFIG_NUMA */
2373 
2374 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2375 {
2376 	struct inode *inode = file_inode(file);
2377 	struct shmem_inode_info *info = SHMEM_I(inode);
2378 	int retval = -ENOMEM;
2379 
2380 	/*
2381 	 * What serializes the accesses to info->flags?
2382 	 * ipc_lock_object() when called from shmctl_do_lock(),
2383 	 * no serialization needed when called from shm_destroy().
2384 	 */
2385 	if (lock && !(info->flags & VM_LOCKED)) {
2386 		if (!user_shm_lock(inode->i_size, ucounts))
2387 			goto out_nomem;
2388 		info->flags |= VM_LOCKED;
2389 		mapping_set_unevictable(file->f_mapping);
2390 	}
2391 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2392 		user_shm_unlock(inode->i_size, ucounts);
2393 		info->flags &= ~VM_LOCKED;
2394 		mapping_clear_unevictable(file->f_mapping);
2395 	}
2396 	retval = 0;
2397 
2398 out_nomem:
2399 	return retval;
2400 }
2401 
2402 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2403 {
2404 	struct inode *inode = file_inode(file);
2405 	struct shmem_inode_info *info = SHMEM_I(inode);
2406 	int ret;
2407 
2408 	ret = seal_check_write(info->seals, vma);
2409 	if (ret)
2410 		return ret;
2411 
2412 	/* arm64 - allow memory tagging on RAM-based files */
2413 	vm_flags_set(vma, VM_MTE_ALLOWED);
2414 
2415 	file_accessed(file);
2416 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2417 	if (inode->i_nlink)
2418 		vma->vm_ops = &shmem_vm_ops;
2419 	else
2420 		vma->vm_ops = &shmem_anon_vm_ops;
2421 	return 0;
2422 }
2423 
2424 static int shmem_file_open(struct inode *inode, struct file *file)
2425 {
2426 	file->f_mode |= FMODE_CAN_ODIRECT;
2427 	return generic_file_open(inode, file);
2428 }
2429 
2430 #ifdef CONFIG_TMPFS_XATTR
2431 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2432 
2433 /*
2434  * chattr's fsflags are unrelated to extended attributes,
2435  * but tmpfs has chosen to enable them under the same config option.
2436  */
2437 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2438 {
2439 	unsigned int i_flags = 0;
2440 
2441 	if (fsflags & FS_NOATIME_FL)
2442 		i_flags |= S_NOATIME;
2443 	if (fsflags & FS_APPEND_FL)
2444 		i_flags |= S_APPEND;
2445 	if (fsflags & FS_IMMUTABLE_FL)
2446 		i_flags |= S_IMMUTABLE;
2447 	/*
2448 	 * But FS_NODUMP_FL does not require any action in i_flags.
2449 	 */
2450 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2451 }
2452 #else
2453 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2454 {
2455 }
2456 #define shmem_initxattrs NULL
2457 #endif
2458 
2459 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2460 {
2461 	return &SHMEM_I(inode)->dir_offsets;
2462 }
2463 
2464 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2465 					     struct super_block *sb,
2466 					     struct inode *dir, umode_t mode,
2467 					     dev_t dev, unsigned long flags)
2468 {
2469 	struct inode *inode;
2470 	struct shmem_inode_info *info;
2471 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2472 	ino_t ino;
2473 	int err;
2474 
2475 	err = shmem_reserve_inode(sb, &ino);
2476 	if (err)
2477 		return ERR_PTR(err);
2478 
2479 	inode = new_inode(sb);
2480 	if (!inode) {
2481 		shmem_free_inode(sb, 0);
2482 		return ERR_PTR(-ENOSPC);
2483 	}
2484 
2485 	inode->i_ino = ino;
2486 	inode_init_owner(idmap, inode, dir, mode);
2487 	inode->i_blocks = 0;
2488 	simple_inode_init_ts(inode);
2489 	inode->i_generation = get_random_u32();
2490 	info = SHMEM_I(inode);
2491 	memset(info, 0, (char *)inode - (char *)info);
2492 	spin_lock_init(&info->lock);
2493 	atomic_set(&info->stop_eviction, 0);
2494 	info->seals = F_SEAL_SEAL;
2495 	info->flags = flags & VM_NORESERVE;
2496 	info->i_crtime = inode_get_mtime(inode);
2497 	info->fsflags = (dir == NULL) ? 0 :
2498 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2499 	if (info->fsflags)
2500 		shmem_set_inode_flags(inode, info->fsflags);
2501 	INIT_LIST_HEAD(&info->shrinklist);
2502 	INIT_LIST_HEAD(&info->swaplist);
2503 	simple_xattrs_init(&info->xattrs);
2504 	cache_no_acl(inode);
2505 	if (sbinfo->noswap)
2506 		mapping_set_unevictable(inode->i_mapping);
2507 	mapping_set_large_folios(inode->i_mapping);
2508 
2509 	switch (mode & S_IFMT) {
2510 	default:
2511 		inode->i_op = &shmem_special_inode_operations;
2512 		init_special_inode(inode, mode, dev);
2513 		break;
2514 	case S_IFREG:
2515 		inode->i_mapping->a_ops = &shmem_aops;
2516 		inode->i_op = &shmem_inode_operations;
2517 		inode->i_fop = &shmem_file_operations;
2518 		mpol_shared_policy_init(&info->policy,
2519 					 shmem_get_sbmpol(sbinfo));
2520 		break;
2521 	case S_IFDIR:
2522 		inc_nlink(inode);
2523 		/* Some things misbehave if size == 0 on a directory */
2524 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2525 		inode->i_op = &shmem_dir_inode_operations;
2526 		inode->i_fop = &simple_offset_dir_operations;
2527 		simple_offset_init(shmem_get_offset_ctx(inode));
2528 		break;
2529 	case S_IFLNK:
2530 		/*
2531 		 * Must not load anything in the rbtree,
2532 		 * mpol_free_shared_policy will not be called.
2533 		 */
2534 		mpol_shared_policy_init(&info->policy, NULL);
2535 		break;
2536 	}
2537 
2538 	lockdep_annotate_inode_mutex_key(inode);
2539 	return inode;
2540 }
2541 
2542 #ifdef CONFIG_TMPFS_QUOTA
2543 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2544 				     struct super_block *sb, struct inode *dir,
2545 				     umode_t mode, dev_t dev, unsigned long flags)
2546 {
2547 	int err;
2548 	struct inode *inode;
2549 
2550 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2551 	if (IS_ERR(inode))
2552 		return inode;
2553 
2554 	err = dquot_initialize(inode);
2555 	if (err)
2556 		goto errout;
2557 
2558 	err = dquot_alloc_inode(inode);
2559 	if (err) {
2560 		dquot_drop(inode);
2561 		goto errout;
2562 	}
2563 	return inode;
2564 
2565 errout:
2566 	inode->i_flags |= S_NOQUOTA;
2567 	iput(inode);
2568 	return ERR_PTR(err);
2569 }
2570 #else
2571 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2572 				     struct super_block *sb, struct inode *dir,
2573 				     umode_t mode, dev_t dev, unsigned long flags)
2574 {
2575 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2576 }
2577 #endif /* CONFIG_TMPFS_QUOTA */
2578 
2579 #ifdef CONFIG_USERFAULTFD
2580 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2581 			   struct vm_area_struct *dst_vma,
2582 			   unsigned long dst_addr,
2583 			   unsigned long src_addr,
2584 			   uffd_flags_t flags,
2585 			   struct folio **foliop)
2586 {
2587 	struct inode *inode = file_inode(dst_vma->vm_file);
2588 	struct shmem_inode_info *info = SHMEM_I(inode);
2589 	struct address_space *mapping = inode->i_mapping;
2590 	gfp_t gfp = mapping_gfp_mask(mapping);
2591 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2592 	void *page_kaddr;
2593 	struct folio *folio;
2594 	int ret;
2595 	pgoff_t max_off;
2596 
2597 	if (shmem_inode_acct_blocks(inode, 1)) {
2598 		/*
2599 		 * We may have got a page, returned -ENOENT triggering a retry,
2600 		 * and now we find ourselves with -ENOMEM. Release the page, to
2601 		 * avoid a BUG_ON in our caller.
2602 		 */
2603 		if (unlikely(*foliop)) {
2604 			folio_put(*foliop);
2605 			*foliop = NULL;
2606 		}
2607 		return -ENOMEM;
2608 	}
2609 
2610 	if (!*foliop) {
2611 		ret = -ENOMEM;
2612 		folio = shmem_alloc_folio(gfp, info, pgoff);
2613 		if (!folio)
2614 			goto out_unacct_blocks;
2615 
2616 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2617 			page_kaddr = kmap_local_folio(folio, 0);
2618 			/*
2619 			 * The read mmap_lock is held here.  Despite the
2620 			 * mmap_lock being read recursive a deadlock is still
2621 			 * possible if a writer has taken a lock.  For example:
2622 			 *
2623 			 * process A thread 1 takes read lock on own mmap_lock
2624 			 * process A thread 2 calls mmap, blocks taking write lock
2625 			 * process B thread 1 takes page fault, read lock on own mmap lock
2626 			 * process B thread 2 calls mmap, blocks taking write lock
2627 			 * process A thread 1 blocks taking read lock on process B
2628 			 * process B thread 1 blocks taking read lock on process A
2629 			 *
2630 			 * Disable page faults to prevent potential deadlock
2631 			 * and retry the copy outside the mmap_lock.
2632 			 */
2633 			pagefault_disable();
2634 			ret = copy_from_user(page_kaddr,
2635 					     (const void __user *)src_addr,
2636 					     PAGE_SIZE);
2637 			pagefault_enable();
2638 			kunmap_local(page_kaddr);
2639 
2640 			/* fallback to copy_from_user outside mmap_lock */
2641 			if (unlikely(ret)) {
2642 				*foliop = folio;
2643 				ret = -ENOENT;
2644 				/* don't free the page */
2645 				goto out_unacct_blocks;
2646 			}
2647 
2648 			flush_dcache_folio(folio);
2649 		} else {		/* ZEROPAGE */
2650 			clear_user_highpage(&folio->page, dst_addr);
2651 		}
2652 	} else {
2653 		folio = *foliop;
2654 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2655 		*foliop = NULL;
2656 	}
2657 
2658 	VM_BUG_ON(folio_test_locked(folio));
2659 	VM_BUG_ON(folio_test_swapbacked(folio));
2660 	__folio_set_locked(folio);
2661 	__folio_set_swapbacked(folio);
2662 	__folio_mark_uptodate(folio);
2663 
2664 	ret = -EFAULT;
2665 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2666 	if (unlikely(pgoff >= max_off))
2667 		goto out_release;
2668 
2669 	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
2670 	if (ret)
2671 		goto out_release;
2672 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
2673 	if (ret)
2674 		goto out_release;
2675 
2676 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2677 				       &folio->page, true, flags);
2678 	if (ret)
2679 		goto out_delete_from_cache;
2680 
2681 	shmem_recalc_inode(inode, 1, 0);
2682 	folio_unlock(folio);
2683 	return 0;
2684 out_delete_from_cache:
2685 	filemap_remove_folio(folio);
2686 out_release:
2687 	folio_unlock(folio);
2688 	folio_put(folio);
2689 out_unacct_blocks:
2690 	shmem_inode_unacct_blocks(inode, 1);
2691 	return ret;
2692 }
2693 #endif /* CONFIG_USERFAULTFD */
2694 
2695 #ifdef CONFIG_TMPFS
2696 static const struct inode_operations shmem_symlink_inode_operations;
2697 static const struct inode_operations shmem_short_symlink_operations;
2698 
2699 static int
2700 shmem_write_begin(struct file *file, struct address_space *mapping,
2701 			loff_t pos, unsigned len,
2702 			struct page **pagep, void **fsdata)
2703 {
2704 	struct inode *inode = mapping->host;
2705 	struct shmem_inode_info *info = SHMEM_I(inode);
2706 	pgoff_t index = pos >> PAGE_SHIFT;
2707 	struct folio *folio;
2708 	int ret = 0;
2709 
2710 	/* i_rwsem is held by caller */
2711 	if (unlikely(info->seals & (F_SEAL_GROW |
2712 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2713 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2714 			return -EPERM;
2715 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2716 			return -EPERM;
2717 	}
2718 
2719 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2720 	if (ret)
2721 		return ret;
2722 
2723 	*pagep = folio_file_page(folio, index);
2724 	if (PageHWPoison(*pagep)) {
2725 		folio_unlock(folio);
2726 		folio_put(folio);
2727 		*pagep = NULL;
2728 		return -EIO;
2729 	}
2730 
2731 	return 0;
2732 }
2733 
2734 static int
2735 shmem_write_end(struct file *file, struct address_space *mapping,
2736 			loff_t pos, unsigned len, unsigned copied,
2737 			struct page *page, void *fsdata)
2738 {
2739 	struct folio *folio = page_folio(page);
2740 	struct inode *inode = mapping->host;
2741 
2742 	if (pos + copied > inode->i_size)
2743 		i_size_write(inode, pos + copied);
2744 
2745 	if (!folio_test_uptodate(folio)) {
2746 		if (copied < folio_size(folio)) {
2747 			size_t from = offset_in_folio(folio, pos);
2748 			folio_zero_segments(folio, 0, from,
2749 					from + copied, folio_size(folio));
2750 		}
2751 		folio_mark_uptodate(folio);
2752 	}
2753 	folio_mark_dirty(folio);
2754 	folio_unlock(folio);
2755 	folio_put(folio);
2756 
2757 	return copied;
2758 }
2759 
2760 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2761 {
2762 	struct file *file = iocb->ki_filp;
2763 	struct inode *inode = file_inode(file);
2764 	struct address_space *mapping = inode->i_mapping;
2765 	pgoff_t index;
2766 	unsigned long offset;
2767 	int error = 0;
2768 	ssize_t retval = 0;
2769 	loff_t *ppos = &iocb->ki_pos;
2770 
2771 	index = *ppos >> PAGE_SHIFT;
2772 	offset = *ppos & ~PAGE_MASK;
2773 
2774 	for (;;) {
2775 		struct folio *folio = NULL;
2776 		struct page *page = NULL;
2777 		pgoff_t end_index;
2778 		unsigned long nr, ret;
2779 		loff_t i_size = i_size_read(inode);
2780 
2781 		end_index = i_size >> PAGE_SHIFT;
2782 		if (index > end_index)
2783 			break;
2784 		if (index == end_index) {
2785 			nr = i_size & ~PAGE_MASK;
2786 			if (nr <= offset)
2787 				break;
2788 		}
2789 
2790 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2791 		if (error) {
2792 			if (error == -EINVAL)
2793 				error = 0;
2794 			break;
2795 		}
2796 		if (folio) {
2797 			folio_unlock(folio);
2798 
2799 			page = folio_file_page(folio, index);
2800 			if (PageHWPoison(page)) {
2801 				folio_put(folio);
2802 				error = -EIO;
2803 				break;
2804 			}
2805 		}
2806 
2807 		/*
2808 		 * We must evaluate after, since reads (unlike writes)
2809 		 * are called without i_rwsem protection against truncate
2810 		 */
2811 		nr = PAGE_SIZE;
2812 		i_size = i_size_read(inode);
2813 		end_index = i_size >> PAGE_SHIFT;
2814 		if (index == end_index) {
2815 			nr = i_size & ~PAGE_MASK;
2816 			if (nr <= offset) {
2817 				if (folio)
2818 					folio_put(folio);
2819 				break;
2820 			}
2821 		}
2822 		nr -= offset;
2823 
2824 		if (folio) {
2825 			/*
2826 			 * If users can be writing to this page using arbitrary
2827 			 * virtual addresses, take care about potential aliasing
2828 			 * before reading the page on the kernel side.
2829 			 */
2830 			if (mapping_writably_mapped(mapping))
2831 				flush_dcache_page(page);
2832 			/*
2833 			 * Mark the page accessed if we read the beginning.
2834 			 */
2835 			if (!offset)
2836 				folio_mark_accessed(folio);
2837 			/*
2838 			 * Ok, we have the page, and it's up-to-date, so
2839 			 * now we can copy it to user space...
2840 			 */
2841 			ret = copy_page_to_iter(page, offset, nr, to);
2842 			folio_put(folio);
2843 
2844 		} else if (user_backed_iter(to)) {
2845 			/*
2846 			 * Copy to user tends to be so well optimized, but
2847 			 * clear_user() not so much, that it is noticeably
2848 			 * faster to copy the zero page instead of clearing.
2849 			 */
2850 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2851 		} else {
2852 			/*
2853 			 * But submitting the same page twice in a row to
2854 			 * splice() - or others? - can result in confusion:
2855 			 * so don't attempt that optimization on pipes etc.
2856 			 */
2857 			ret = iov_iter_zero(nr, to);
2858 		}
2859 
2860 		retval += ret;
2861 		offset += ret;
2862 		index += offset >> PAGE_SHIFT;
2863 		offset &= ~PAGE_MASK;
2864 
2865 		if (!iov_iter_count(to))
2866 			break;
2867 		if (ret < nr) {
2868 			error = -EFAULT;
2869 			break;
2870 		}
2871 		cond_resched();
2872 	}
2873 
2874 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2875 	file_accessed(file);
2876 	return retval ? retval : error;
2877 }
2878 
2879 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2880 {
2881 	struct file *file = iocb->ki_filp;
2882 	struct inode *inode = file->f_mapping->host;
2883 	ssize_t ret;
2884 
2885 	inode_lock(inode);
2886 	ret = generic_write_checks(iocb, from);
2887 	if (ret <= 0)
2888 		goto unlock;
2889 	ret = file_remove_privs(file);
2890 	if (ret)
2891 		goto unlock;
2892 	ret = file_update_time(file);
2893 	if (ret)
2894 		goto unlock;
2895 	ret = generic_perform_write(iocb, from);
2896 unlock:
2897 	inode_unlock(inode);
2898 	return ret;
2899 }
2900 
2901 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
2902 			      struct pipe_buffer *buf)
2903 {
2904 	return true;
2905 }
2906 
2907 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
2908 				  struct pipe_buffer *buf)
2909 {
2910 }
2911 
2912 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
2913 				    struct pipe_buffer *buf)
2914 {
2915 	return false;
2916 }
2917 
2918 static const struct pipe_buf_operations zero_pipe_buf_ops = {
2919 	.release	= zero_pipe_buf_release,
2920 	.try_steal	= zero_pipe_buf_try_steal,
2921 	.get		= zero_pipe_buf_get,
2922 };
2923 
2924 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
2925 					loff_t fpos, size_t size)
2926 {
2927 	size_t offset = fpos & ~PAGE_MASK;
2928 
2929 	size = min_t(size_t, size, PAGE_SIZE - offset);
2930 
2931 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2932 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2933 
2934 		*buf = (struct pipe_buffer) {
2935 			.ops	= &zero_pipe_buf_ops,
2936 			.page	= ZERO_PAGE(0),
2937 			.offset	= offset,
2938 			.len	= size,
2939 		};
2940 		pipe->head++;
2941 	}
2942 
2943 	return size;
2944 }
2945 
2946 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2947 				      struct pipe_inode_info *pipe,
2948 				      size_t len, unsigned int flags)
2949 {
2950 	struct inode *inode = file_inode(in);
2951 	struct address_space *mapping = inode->i_mapping;
2952 	struct folio *folio = NULL;
2953 	size_t total_spliced = 0, used, npages, n, part;
2954 	loff_t isize;
2955 	int error = 0;
2956 
2957 	/* Work out how much data we can actually add into the pipe */
2958 	used = pipe_occupancy(pipe->head, pipe->tail);
2959 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2960 	len = min_t(size_t, len, npages * PAGE_SIZE);
2961 
2962 	do {
2963 		if (*ppos >= i_size_read(inode))
2964 			break;
2965 
2966 		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
2967 					SGP_READ);
2968 		if (error) {
2969 			if (error == -EINVAL)
2970 				error = 0;
2971 			break;
2972 		}
2973 		if (folio) {
2974 			folio_unlock(folio);
2975 
2976 			if (folio_test_hwpoison(folio) ||
2977 			    (folio_test_large(folio) &&
2978 			     folio_test_has_hwpoisoned(folio))) {
2979 				error = -EIO;
2980 				break;
2981 			}
2982 		}
2983 
2984 		/*
2985 		 * i_size must be checked after we know the pages are Uptodate.
2986 		 *
2987 		 * Checking i_size after the check allows us to calculate
2988 		 * the correct value for "nr", which means the zero-filled
2989 		 * part of the page is not copied back to userspace (unless
2990 		 * another truncate extends the file - this is desired though).
2991 		 */
2992 		isize = i_size_read(inode);
2993 		if (unlikely(*ppos >= isize))
2994 			break;
2995 		part = min_t(loff_t, isize - *ppos, len);
2996 
2997 		if (folio) {
2998 			/*
2999 			 * If users can be writing to this page using arbitrary
3000 			 * virtual addresses, take care about potential aliasing
3001 			 * before reading the page on the kernel side.
3002 			 */
3003 			if (mapping_writably_mapped(mapping))
3004 				flush_dcache_folio(folio);
3005 			folio_mark_accessed(folio);
3006 			/*
3007 			 * Ok, we have the page, and it's up-to-date, so we can
3008 			 * now splice it into the pipe.
3009 			 */
3010 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3011 			folio_put(folio);
3012 			folio = NULL;
3013 		} else {
3014 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3015 		}
3016 
3017 		if (!n)
3018 			break;
3019 		len -= n;
3020 		total_spliced += n;
3021 		*ppos += n;
3022 		in->f_ra.prev_pos = *ppos;
3023 		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3024 			break;
3025 
3026 		cond_resched();
3027 	} while (len);
3028 
3029 	if (folio)
3030 		folio_put(folio);
3031 
3032 	file_accessed(in);
3033 	return total_spliced ? total_spliced : error;
3034 }
3035 
3036 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3037 {
3038 	struct address_space *mapping = file->f_mapping;
3039 	struct inode *inode = mapping->host;
3040 
3041 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3042 		return generic_file_llseek_size(file, offset, whence,
3043 					MAX_LFS_FILESIZE, i_size_read(inode));
3044 	if (offset < 0)
3045 		return -ENXIO;
3046 
3047 	inode_lock(inode);
3048 	/* We're holding i_rwsem so we can access i_size directly */
3049 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3050 	if (offset >= 0)
3051 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3052 	inode_unlock(inode);
3053 	return offset;
3054 }
3055 
3056 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3057 							 loff_t len)
3058 {
3059 	struct inode *inode = file_inode(file);
3060 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3061 	struct shmem_inode_info *info = SHMEM_I(inode);
3062 	struct shmem_falloc shmem_falloc;
3063 	pgoff_t start, index, end, undo_fallocend;
3064 	int error;
3065 
3066 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3067 		return -EOPNOTSUPP;
3068 
3069 	inode_lock(inode);
3070 
3071 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3072 		struct address_space *mapping = file->f_mapping;
3073 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3074 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3075 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3076 
3077 		/* protected by i_rwsem */
3078 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3079 			error = -EPERM;
3080 			goto out;
3081 		}
3082 
3083 		shmem_falloc.waitq = &shmem_falloc_waitq;
3084 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3085 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3086 		spin_lock(&inode->i_lock);
3087 		inode->i_private = &shmem_falloc;
3088 		spin_unlock(&inode->i_lock);
3089 
3090 		if ((u64)unmap_end > (u64)unmap_start)
3091 			unmap_mapping_range(mapping, unmap_start,
3092 					    1 + unmap_end - unmap_start, 0);
3093 		shmem_truncate_range(inode, offset, offset + len - 1);
3094 		/* No need to unmap again: hole-punching leaves COWed pages */
3095 
3096 		spin_lock(&inode->i_lock);
3097 		inode->i_private = NULL;
3098 		wake_up_all(&shmem_falloc_waitq);
3099 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3100 		spin_unlock(&inode->i_lock);
3101 		error = 0;
3102 		goto out;
3103 	}
3104 
3105 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3106 	error = inode_newsize_ok(inode, offset + len);
3107 	if (error)
3108 		goto out;
3109 
3110 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3111 		error = -EPERM;
3112 		goto out;
3113 	}
3114 
3115 	start = offset >> PAGE_SHIFT;
3116 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3117 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3118 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3119 		error = -ENOSPC;
3120 		goto out;
3121 	}
3122 
3123 	shmem_falloc.waitq = NULL;
3124 	shmem_falloc.start = start;
3125 	shmem_falloc.next  = start;
3126 	shmem_falloc.nr_falloced = 0;
3127 	shmem_falloc.nr_unswapped = 0;
3128 	spin_lock(&inode->i_lock);
3129 	inode->i_private = &shmem_falloc;
3130 	spin_unlock(&inode->i_lock);
3131 
3132 	/*
3133 	 * info->fallocend is only relevant when huge pages might be
3134 	 * involved: to prevent split_huge_page() freeing fallocated
3135 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3136 	 */
3137 	undo_fallocend = info->fallocend;
3138 	if (info->fallocend < end)
3139 		info->fallocend = end;
3140 
3141 	for (index = start; index < end; ) {
3142 		struct folio *folio;
3143 
3144 		/*
3145 		 * Good, the fallocate(2) manpage permits EINTR: we may have
3146 		 * been interrupted because we are using up too much memory.
3147 		 */
3148 		if (signal_pending(current))
3149 			error = -EINTR;
3150 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3151 			error = -ENOMEM;
3152 		else
3153 			error = shmem_get_folio(inode, index, &folio,
3154 						SGP_FALLOC);
3155 		if (error) {
3156 			info->fallocend = undo_fallocend;
3157 			/* Remove the !uptodate folios we added */
3158 			if (index > start) {
3159 				shmem_undo_range(inode,
3160 				    (loff_t)start << PAGE_SHIFT,
3161 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3162 			}
3163 			goto undone;
3164 		}
3165 
3166 		/*
3167 		 * Here is a more important optimization than it appears:
3168 		 * a second SGP_FALLOC on the same large folio will clear it,
3169 		 * making it uptodate and un-undoable if we fail later.
3170 		 */
3171 		index = folio_next_index(folio);
3172 		/* Beware 32-bit wraparound */
3173 		if (!index)
3174 			index--;
3175 
3176 		/*
3177 		 * Inform shmem_writepage() how far we have reached.
3178 		 * No need for lock or barrier: we have the page lock.
3179 		 */
3180 		if (!folio_test_uptodate(folio))
3181 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3182 		shmem_falloc.next = index;
3183 
3184 		/*
3185 		 * If !uptodate, leave it that way so that freeable folios
3186 		 * can be recognized if we need to rollback on error later.
3187 		 * But mark it dirty so that memory pressure will swap rather
3188 		 * than free the folios we are allocating (and SGP_CACHE folios
3189 		 * might still be clean: we now need to mark those dirty too).
3190 		 */
3191 		folio_mark_dirty(folio);
3192 		folio_unlock(folio);
3193 		folio_put(folio);
3194 		cond_resched();
3195 	}
3196 
3197 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3198 		i_size_write(inode, offset + len);
3199 undone:
3200 	spin_lock(&inode->i_lock);
3201 	inode->i_private = NULL;
3202 	spin_unlock(&inode->i_lock);
3203 out:
3204 	if (!error)
3205 		file_modified(file);
3206 	inode_unlock(inode);
3207 	return error;
3208 }
3209 
3210 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3211 {
3212 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3213 
3214 	buf->f_type = TMPFS_MAGIC;
3215 	buf->f_bsize = PAGE_SIZE;
3216 	buf->f_namelen = NAME_MAX;
3217 	if (sbinfo->max_blocks) {
3218 		buf->f_blocks = sbinfo->max_blocks;
3219 		buf->f_bavail =
3220 		buf->f_bfree  = sbinfo->max_blocks -
3221 				percpu_counter_sum(&sbinfo->used_blocks);
3222 	}
3223 	if (sbinfo->max_inodes) {
3224 		buf->f_files = sbinfo->max_inodes;
3225 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3226 	}
3227 	/* else leave those fields 0 like simple_statfs */
3228 
3229 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3230 
3231 	return 0;
3232 }
3233 
3234 /*
3235  * File creation. Allocate an inode, and we're done..
3236  */
3237 static int
3238 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3239 	    struct dentry *dentry, umode_t mode, dev_t dev)
3240 {
3241 	struct inode *inode;
3242 	int error;
3243 
3244 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3245 	if (IS_ERR(inode))
3246 		return PTR_ERR(inode);
3247 
3248 	error = simple_acl_create(dir, inode);
3249 	if (error)
3250 		goto out_iput;
3251 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3252 					     shmem_initxattrs, NULL);
3253 	if (error && error != -EOPNOTSUPP)
3254 		goto out_iput;
3255 
3256 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3257 	if (error)
3258 		goto out_iput;
3259 
3260 	dir->i_size += BOGO_DIRENT_SIZE;
3261 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3262 	inode_inc_iversion(dir);
3263 	d_instantiate(dentry, inode);
3264 	dget(dentry); /* Extra count - pin the dentry in core */
3265 	return error;
3266 
3267 out_iput:
3268 	iput(inode);
3269 	return error;
3270 }
3271 
3272 static int
3273 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3274 	      struct file *file, umode_t mode)
3275 {
3276 	struct inode *inode;
3277 	int error;
3278 
3279 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3280 	if (IS_ERR(inode)) {
3281 		error = PTR_ERR(inode);
3282 		goto err_out;
3283 	}
3284 	error = security_inode_init_security(inode, dir, NULL,
3285 					     shmem_initxattrs, NULL);
3286 	if (error && error != -EOPNOTSUPP)
3287 		goto out_iput;
3288 	error = simple_acl_create(dir, inode);
3289 	if (error)
3290 		goto out_iput;
3291 	d_tmpfile(file, inode);
3292 
3293 err_out:
3294 	return finish_open_simple(file, error);
3295 out_iput:
3296 	iput(inode);
3297 	return error;
3298 }
3299 
3300 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3301 		       struct dentry *dentry, umode_t mode)
3302 {
3303 	int error;
3304 
3305 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3306 	if (error)
3307 		return error;
3308 	inc_nlink(dir);
3309 	return 0;
3310 }
3311 
3312 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3313 			struct dentry *dentry, umode_t mode, bool excl)
3314 {
3315 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3316 }
3317 
3318 /*
3319  * Link a file..
3320  */
3321 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3322 		      struct dentry *dentry)
3323 {
3324 	struct inode *inode = d_inode(old_dentry);
3325 	int ret = 0;
3326 
3327 	/*
3328 	 * No ordinary (disk based) filesystem counts links as inodes;
3329 	 * but each new link needs a new dentry, pinning lowmem, and
3330 	 * tmpfs dentries cannot be pruned until they are unlinked.
3331 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3332 	 * first link must skip that, to get the accounting right.
3333 	 */
3334 	if (inode->i_nlink) {
3335 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3336 		if (ret)
3337 			goto out;
3338 	}
3339 
3340 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3341 	if (ret) {
3342 		if (inode->i_nlink)
3343 			shmem_free_inode(inode->i_sb, 0);
3344 		goto out;
3345 	}
3346 
3347 	dir->i_size += BOGO_DIRENT_SIZE;
3348 	inode_set_mtime_to_ts(dir,
3349 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3350 	inode_inc_iversion(dir);
3351 	inc_nlink(inode);
3352 	ihold(inode);	/* New dentry reference */
3353 	dget(dentry);	/* Extra pinning count for the created dentry */
3354 	d_instantiate(dentry, inode);
3355 out:
3356 	return ret;
3357 }
3358 
3359 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3360 {
3361 	struct inode *inode = d_inode(dentry);
3362 
3363 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3364 		shmem_free_inode(inode->i_sb, 0);
3365 
3366 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3367 
3368 	dir->i_size -= BOGO_DIRENT_SIZE;
3369 	inode_set_mtime_to_ts(dir,
3370 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3371 	inode_inc_iversion(dir);
3372 	drop_nlink(inode);
3373 	dput(dentry);	/* Undo the count from "create" - does all the work */
3374 	return 0;
3375 }
3376 
3377 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3378 {
3379 	if (!simple_empty(dentry))
3380 		return -ENOTEMPTY;
3381 
3382 	drop_nlink(d_inode(dentry));
3383 	drop_nlink(dir);
3384 	return shmem_unlink(dir, dentry);
3385 }
3386 
3387 static int shmem_whiteout(struct mnt_idmap *idmap,
3388 			  struct inode *old_dir, struct dentry *old_dentry)
3389 {
3390 	struct dentry *whiteout;
3391 	int error;
3392 
3393 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3394 	if (!whiteout)
3395 		return -ENOMEM;
3396 
3397 	error = shmem_mknod(idmap, old_dir, whiteout,
3398 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3399 	dput(whiteout);
3400 	if (error)
3401 		return error;
3402 
3403 	/*
3404 	 * Cheat and hash the whiteout while the old dentry is still in
3405 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3406 	 *
3407 	 * d_lookup() will consistently find one of them at this point,
3408 	 * not sure which one, but that isn't even important.
3409 	 */
3410 	d_rehash(whiteout);
3411 	return 0;
3412 }
3413 
3414 /*
3415  * The VFS layer already does all the dentry stuff for rename,
3416  * we just have to decrement the usage count for the target if
3417  * it exists so that the VFS layer correctly free's it when it
3418  * gets overwritten.
3419  */
3420 static int shmem_rename2(struct mnt_idmap *idmap,
3421 			 struct inode *old_dir, struct dentry *old_dentry,
3422 			 struct inode *new_dir, struct dentry *new_dentry,
3423 			 unsigned int flags)
3424 {
3425 	struct inode *inode = d_inode(old_dentry);
3426 	int they_are_dirs = S_ISDIR(inode->i_mode);
3427 	int error;
3428 
3429 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3430 		return -EINVAL;
3431 
3432 	if (flags & RENAME_EXCHANGE)
3433 		return simple_offset_rename_exchange(old_dir, old_dentry,
3434 						     new_dir, new_dentry);
3435 
3436 	if (!simple_empty(new_dentry))
3437 		return -ENOTEMPTY;
3438 
3439 	if (flags & RENAME_WHITEOUT) {
3440 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3441 		if (error)
3442 			return error;
3443 	}
3444 
3445 	simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry);
3446 	error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry);
3447 	if (error)
3448 		return error;
3449 
3450 	if (d_really_is_positive(new_dentry)) {
3451 		(void) shmem_unlink(new_dir, new_dentry);
3452 		if (they_are_dirs) {
3453 			drop_nlink(d_inode(new_dentry));
3454 			drop_nlink(old_dir);
3455 		}
3456 	} else if (they_are_dirs) {
3457 		drop_nlink(old_dir);
3458 		inc_nlink(new_dir);
3459 	}
3460 
3461 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3462 	new_dir->i_size += BOGO_DIRENT_SIZE;
3463 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3464 	inode_inc_iversion(old_dir);
3465 	inode_inc_iversion(new_dir);
3466 	return 0;
3467 }
3468 
3469 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3470 			 struct dentry *dentry, const char *symname)
3471 {
3472 	int error;
3473 	int len;
3474 	struct inode *inode;
3475 	struct folio *folio;
3476 
3477 	len = strlen(symname) + 1;
3478 	if (len > PAGE_SIZE)
3479 		return -ENAMETOOLONG;
3480 
3481 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3482 				VM_NORESERVE);
3483 	if (IS_ERR(inode))
3484 		return PTR_ERR(inode);
3485 
3486 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3487 					     shmem_initxattrs, NULL);
3488 	if (error && error != -EOPNOTSUPP)
3489 		goto out_iput;
3490 
3491 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3492 	if (error)
3493 		goto out_iput;
3494 
3495 	inode->i_size = len-1;
3496 	if (len <= SHORT_SYMLINK_LEN) {
3497 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3498 		if (!inode->i_link) {
3499 			error = -ENOMEM;
3500 			goto out_remove_offset;
3501 		}
3502 		inode->i_op = &shmem_short_symlink_operations;
3503 	} else {
3504 		inode_nohighmem(inode);
3505 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3506 		if (error)
3507 			goto out_remove_offset;
3508 		inode->i_mapping->a_ops = &shmem_aops;
3509 		inode->i_op = &shmem_symlink_inode_operations;
3510 		memcpy(folio_address(folio), symname, len);
3511 		folio_mark_uptodate(folio);
3512 		folio_mark_dirty(folio);
3513 		folio_unlock(folio);
3514 		folio_put(folio);
3515 	}
3516 	dir->i_size += BOGO_DIRENT_SIZE;
3517 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3518 	inode_inc_iversion(dir);
3519 	d_instantiate(dentry, inode);
3520 	dget(dentry);
3521 	return 0;
3522 
3523 out_remove_offset:
3524 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3525 out_iput:
3526 	iput(inode);
3527 	return error;
3528 }
3529 
3530 static void shmem_put_link(void *arg)
3531 {
3532 	folio_mark_accessed(arg);
3533 	folio_put(arg);
3534 }
3535 
3536 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3537 				  struct delayed_call *done)
3538 {
3539 	struct folio *folio = NULL;
3540 	int error;
3541 
3542 	if (!dentry) {
3543 		folio = filemap_get_folio(inode->i_mapping, 0);
3544 		if (IS_ERR(folio))
3545 			return ERR_PTR(-ECHILD);
3546 		if (PageHWPoison(folio_page(folio, 0)) ||
3547 		    !folio_test_uptodate(folio)) {
3548 			folio_put(folio);
3549 			return ERR_PTR(-ECHILD);
3550 		}
3551 	} else {
3552 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3553 		if (error)
3554 			return ERR_PTR(error);
3555 		if (!folio)
3556 			return ERR_PTR(-ECHILD);
3557 		if (PageHWPoison(folio_page(folio, 0))) {
3558 			folio_unlock(folio);
3559 			folio_put(folio);
3560 			return ERR_PTR(-ECHILD);
3561 		}
3562 		folio_unlock(folio);
3563 	}
3564 	set_delayed_call(done, shmem_put_link, folio);
3565 	return folio_address(folio);
3566 }
3567 
3568 #ifdef CONFIG_TMPFS_XATTR
3569 
3570 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3571 {
3572 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3573 
3574 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3575 
3576 	return 0;
3577 }
3578 
3579 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3580 			      struct dentry *dentry, struct fileattr *fa)
3581 {
3582 	struct inode *inode = d_inode(dentry);
3583 	struct shmem_inode_info *info = SHMEM_I(inode);
3584 
3585 	if (fileattr_has_fsx(fa))
3586 		return -EOPNOTSUPP;
3587 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3588 		return -EOPNOTSUPP;
3589 
3590 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3591 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3592 
3593 	shmem_set_inode_flags(inode, info->fsflags);
3594 	inode_set_ctime_current(inode);
3595 	inode_inc_iversion(inode);
3596 	return 0;
3597 }
3598 
3599 /*
3600  * Superblocks without xattr inode operations may get some security.* xattr
3601  * support from the LSM "for free". As soon as we have any other xattrs
3602  * like ACLs, we also need to implement the security.* handlers at
3603  * filesystem level, though.
3604  */
3605 
3606 /*
3607  * Callback for security_inode_init_security() for acquiring xattrs.
3608  */
3609 static int shmem_initxattrs(struct inode *inode,
3610 			    const struct xattr *xattr_array, void *fs_info)
3611 {
3612 	struct shmem_inode_info *info = SHMEM_I(inode);
3613 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3614 	const struct xattr *xattr;
3615 	struct simple_xattr *new_xattr;
3616 	size_t ispace = 0;
3617 	size_t len;
3618 
3619 	if (sbinfo->max_inodes) {
3620 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3621 			ispace += simple_xattr_space(xattr->name,
3622 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3623 		}
3624 		if (ispace) {
3625 			raw_spin_lock(&sbinfo->stat_lock);
3626 			if (sbinfo->free_ispace < ispace)
3627 				ispace = 0;
3628 			else
3629 				sbinfo->free_ispace -= ispace;
3630 			raw_spin_unlock(&sbinfo->stat_lock);
3631 			if (!ispace)
3632 				return -ENOSPC;
3633 		}
3634 	}
3635 
3636 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3637 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3638 		if (!new_xattr)
3639 			break;
3640 
3641 		len = strlen(xattr->name) + 1;
3642 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3643 					  GFP_KERNEL_ACCOUNT);
3644 		if (!new_xattr->name) {
3645 			kvfree(new_xattr);
3646 			break;
3647 		}
3648 
3649 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3650 		       XATTR_SECURITY_PREFIX_LEN);
3651 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3652 		       xattr->name, len);
3653 
3654 		simple_xattr_add(&info->xattrs, new_xattr);
3655 	}
3656 
3657 	if (xattr->name != NULL) {
3658 		if (ispace) {
3659 			raw_spin_lock(&sbinfo->stat_lock);
3660 			sbinfo->free_ispace += ispace;
3661 			raw_spin_unlock(&sbinfo->stat_lock);
3662 		}
3663 		simple_xattrs_free(&info->xattrs, NULL);
3664 		return -ENOMEM;
3665 	}
3666 
3667 	return 0;
3668 }
3669 
3670 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3671 				   struct dentry *unused, struct inode *inode,
3672 				   const char *name, void *buffer, size_t size)
3673 {
3674 	struct shmem_inode_info *info = SHMEM_I(inode);
3675 
3676 	name = xattr_full_name(handler, name);
3677 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3678 }
3679 
3680 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3681 				   struct mnt_idmap *idmap,
3682 				   struct dentry *unused, struct inode *inode,
3683 				   const char *name, const void *value,
3684 				   size_t size, int flags)
3685 {
3686 	struct shmem_inode_info *info = SHMEM_I(inode);
3687 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3688 	struct simple_xattr *old_xattr;
3689 	size_t ispace = 0;
3690 
3691 	name = xattr_full_name(handler, name);
3692 	if (value && sbinfo->max_inodes) {
3693 		ispace = simple_xattr_space(name, size);
3694 		raw_spin_lock(&sbinfo->stat_lock);
3695 		if (sbinfo->free_ispace < ispace)
3696 			ispace = 0;
3697 		else
3698 			sbinfo->free_ispace -= ispace;
3699 		raw_spin_unlock(&sbinfo->stat_lock);
3700 		if (!ispace)
3701 			return -ENOSPC;
3702 	}
3703 
3704 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
3705 	if (!IS_ERR(old_xattr)) {
3706 		ispace = 0;
3707 		if (old_xattr && sbinfo->max_inodes)
3708 			ispace = simple_xattr_space(old_xattr->name,
3709 						    old_xattr->size);
3710 		simple_xattr_free(old_xattr);
3711 		old_xattr = NULL;
3712 		inode_set_ctime_current(inode);
3713 		inode_inc_iversion(inode);
3714 	}
3715 	if (ispace) {
3716 		raw_spin_lock(&sbinfo->stat_lock);
3717 		sbinfo->free_ispace += ispace;
3718 		raw_spin_unlock(&sbinfo->stat_lock);
3719 	}
3720 	return PTR_ERR(old_xattr);
3721 }
3722 
3723 static const struct xattr_handler shmem_security_xattr_handler = {
3724 	.prefix = XATTR_SECURITY_PREFIX,
3725 	.get = shmem_xattr_handler_get,
3726 	.set = shmem_xattr_handler_set,
3727 };
3728 
3729 static const struct xattr_handler shmem_trusted_xattr_handler = {
3730 	.prefix = XATTR_TRUSTED_PREFIX,
3731 	.get = shmem_xattr_handler_get,
3732 	.set = shmem_xattr_handler_set,
3733 };
3734 
3735 static const struct xattr_handler shmem_user_xattr_handler = {
3736 	.prefix = XATTR_USER_PREFIX,
3737 	.get = shmem_xattr_handler_get,
3738 	.set = shmem_xattr_handler_set,
3739 };
3740 
3741 static const struct xattr_handler * const shmem_xattr_handlers[] = {
3742 	&shmem_security_xattr_handler,
3743 	&shmem_trusted_xattr_handler,
3744 	&shmem_user_xattr_handler,
3745 	NULL
3746 };
3747 
3748 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3749 {
3750 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3751 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3752 }
3753 #endif /* CONFIG_TMPFS_XATTR */
3754 
3755 static const struct inode_operations shmem_short_symlink_operations = {
3756 	.getattr	= shmem_getattr,
3757 	.setattr	= shmem_setattr,
3758 	.get_link	= simple_get_link,
3759 #ifdef CONFIG_TMPFS_XATTR
3760 	.listxattr	= shmem_listxattr,
3761 #endif
3762 };
3763 
3764 static const struct inode_operations shmem_symlink_inode_operations = {
3765 	.getattr	= shmem_getattr,
3766 	.setattr	= shmem_setattr,
3767 	.get_link	= shmem_get_link,
3768 #ifdef CONFIG_TMPFS_XATTR
3769 	.listxattr	= shmem_listxattr,
3770 #endif
3771 };
3772 
3773 static struct dentry *shmem_get_parent(struct dentry *child)
3774 {
3775 	return ERR_PTR(-ESTALE);
3776 }
3777 
3778 static int shmem_match(struct inode *ino, void *vfh)
3779 {
3780 	__u32 *fh = vfh;
3781 	__u64 inum = fh[2];
3782 	inum = (inum << 32) | fh[1];
3783 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3784 }
3785 
3786 /* Find any alias of inode, but prefer a hashed alias */
3787 static struct dentry *shmem_find_alias(struct inode *inode)
3788 {
3789 	struct dentry *alias = d_find_alias(inode);
3790 
3791 	return alias ?: d_find_any_alias(inode);
3792 }
3793 
3794 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3795 		struct fid *fid, int fh_len, int fh_type)
3796 {
3797 	struct inode *inode;
3798 	struct dentry *dentry = NULL;
3799 	u64 inum;
3800 
3801 	if (fh_len < 3)
3802 		return NULL;
3803 
3804 	inum = fid->raw[2];
3805 	inum = (inum << 32) | fid->raw[1];
3806 
3807 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3808 			shmem_match, fid->raw);
3809 	if (inode) {
3810 		dentry = shmem_find_alias(inode);
3811 		iput(inode);
3812 	}
3813 
3814 	return dentry;
3815 }
3816 
3817 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3818 				struct inode *parent)
3819 {
3820 	if (*len < 3) {
3821 		*len = 3;
3822 		return FILEID_INVALID;
3823 	}
3824 
3825 	if (inode_unhashed(inode)) {
3826 		/* Unfortunately insert_inode_hash is not idempotent,
3827 		 * so as we hash inodes here rather than at creation
3828 		 * time, we need a lock to ensure we only try
3829 		 * to do it once
3830 		 */
3831 		static DEFINE_SPINLOCK(lock);
3832 		spin_lock(&lock);
3833 		if (inode_unhashed(inode))
3834 			__insert_inode_hash(inode,
3835 					    inode->i_ino + inode->i_generation);
3836 		spin_unlock(&lock);
3837 	}
3838 
3839 	fh[0] = inode->i_generation;
3840 	fh[1] = inode->i_ino;
3841 	fh[2] = ((__u64)inode->i_ino) >> 32;
3842 
3843 	*len = 3;
3844 	return 1;
3845 }
3846 
3847 static const struct export_operations shmem_export_ops = {
3848 	.get_parent     = shmem_get_parent,
3849 	.encode_fh      = shmem_encode_fh,
3850 	.fh_to_dentry	= shmem_fh_to_dentry,
3851 };
3852 
3853 enum shmem_param {
3854 	Opt_gid,
3855 	Opt_huge,
3856 	Opt_mode,
3857 	Opt_mpol,
3858 	Opt_nr_blocks,
3859 	Opt_nr_inodes,
3860 	Opt_size,
3861 	Opt_uid,
3862 	Opt_inode32,
3863 	Opt_inode64,
3864 	Opt_noswap,
3865 	Opt_quota,
3866 	Opt_usrquota,
3867 	Opt_grpquota,
3868 	Opt_usrquota_block_hardlimit,
3869 	Opt_usrquota_inode_hardlimit,
3870 	Opt_grpquota_block_hardlimit,
3871 	Opt_grpquota_inode_hardlimit,
3872 };
3873 
3874 static const struct constant_table shmem_param_enums_huge[] = {
3875 	{"never",	SHMEM_HUGE_NEVER },
3876 	{"always",	SHMEM_HUGE_ALWAYS },
3877 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3878 	{"advise",	SHMEM_HUGE_ADVISE },
3879 	{}
3880 };
3881 
3882 const struct fs_parameter_spec shmem_fs_parameters[] = {
3883 	fsparam_u32   ("gid",		Opt_gid),
3884 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3885 	fsparam_u32oct("mode",		Opt_mode),
3886 	fsparam_string("mpol",		Opt_mpol),
3887 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3888 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3889 	fsparam_string("size",		Opt_size),
3890 	fsparam_u32   ("uid",		Opt_uid),
3891 	fsparam_flag  ("inode32",	Opt_inode32),
3892 	fsparam_flag  ("inode64",	Opt_inode64),
3893 	fsparam_flag  ("noswap",	Opt_noswap),
3894 #ifdef CONFIG_TMPFS_QUOTA
3895 	fsparam_flag  ("quota",		Opt_quota),
3896 	fsparam_flag  ("usrquota",	Opt_usrquota),
3897 	fsparam_flag  ("grpquota",	Opt_grpquota),
3898 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
3899 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
3900 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
3901 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
3902 #endif
3903 	{}
3904 };
3905 
3906 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3907 {
3908 	struct shmem_options *ctx = fc->fs_private;
3909 	struct fs_parse_result result;
3910 	unsigned long long size;
3911 	char *rest;
3912 	int opt;
3913 	kuid_t kuid;
3914 	kgid_t kgid;
3915 
3916 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3917 	if (opt < 0)
3918 		return opt;
3919 
3920 	switch (opt) {
3921 	case Opt_size:
3922 		size = memparse(param->string, &rest);
3923 		if (*rest == '%') {
3924 			size <<= PAGE_SHIFT;
3925 			size *= totalram_pages();
3926 			do_div(size, 100);
3927 			rest++;
3928 		}
3929 		if (*rest)
3930 			goto bad_value;
3931 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3932 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3933 		break;
3934 	case Opt_nr_blocks:
3935 		ctx->blocks = memparse(param->string, &rest);
3936 		if (*rest || ctx->blocks > LONG_MAX)
3937 			goto bad_value;
3938 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3939 		break;
3940 	case Opt_nr_inodes:
3941 		ctx->inodes = memparse(param->string, &rest);
3942 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
3943 			goto bad_value;
3944 		ctx->seen |= SHMEM_SEEN_INODES;
3945 		break;
3946 	case Opt_mode:
3947 		ctx->mode = result.uint_32 & 07777;
3948 		break;
3949 	case Opt_uid:
3950 		kuid = make_kuid(current_user_ns(), result.uint_32);
3951 		if (!uid_valid(kuid))
3952 			goto bad_value;
3953 
3954 		/*
3955 		 * The requested uid must be representable in the
3956 		 * filesystem's idmapping.
3957 		 */
3958 		if (!kuid_has_mapping(fc->user_ns, kuid))
3959 			goto bad_value;
3960 
3961 		ctx->uid = kuid;
3962 		break;
3963 	case Opt_gid:
3964 		kgid = make_kgid(current_user_ns(), result.uint_32);
3965 		if (!gid_valid(kgid))
3966 			goto bad_value;
3967 
3968 		/*
3969 		 * The requested gid must be representable in the
3970 		 * filesystem's idmapping.
3971 		 */
3972 		if (!kgid_has_mapping(fc->user_ns, kgid))
3973 			goto bad_value;
3974 
3975 		ctx->gid = kgid;
3976 		break;
3977 	case Opt_huge:
3978 		ctx->huge = result.uint_32;
3979 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3980 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3981 		      has_transparent_hugepage()))
3982 			goto unsupported_parameter;
3983 		ctx->seen |= SHMEM_SEEN_HUGE;
3984 		break;
3985 	case Opt_mpol:
3986 		if (IS_ENABLED(CONFIG_NUMA)) {
3987 			mpol_put(ctx->mpol);
3988 			ctx->mpol = NULL;
3989 			if (mpol_parse_str(param->string, &ctx->mpol))
3990 				goto bad_value;
3991 			break;
3992 		}
3993 		goto unsupported_parameter;
3994 	case Opt_inode32:
3995 		ctx->full_inums = false;
3996 		ctx->seen |= SHMEM_SEEN_INUMS;
3997 		break;
3998 	case Opt_inode64:
3999 		if (sizeof(ino_t) < 8) {
4000 			return invalfc(fc,
4001 				       "Cannot use inode64 with <64bit inums in kernel\n");
4002 		}
4003 		ctx->full_inums = true;
4004 		ctx->seen |= SHMEM_SEEN_INUMS;
4005 		break;
4006 	case Opt_noswap:
4007 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4008 			return invalfc(fc,
4009 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4010 		}
4011 		ctx->noswap = true;
4012 		ctx->seen |= SHMEM_SEEN_NOSWAP;
4013 		break;
4014 	case Opt_quota:
4015 		if (fc->user_ns != &init_user_ns)
4016 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4017 		ctx->seen |= SHMEM_SEEN_QUOTA;
4018 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4019 		break;
4020 	case Opt_usrquota:
4021 		if (fc->user_ns != &init_user_ns)
4022 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4023 		ctx->seen |= SHMEM_SEEN_QUOTA;
4024 		ctx->quota_types |= QTYPE_MASK_USR;
4025 		break;
4026 	case Opt_grpquota:
4027 		if (fc->user_ns != &init_user_ns)
4028 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4029 		ctx->seen |= SHMEM_SEEN_QUOTA;
4030 		ctx->quota_types |= QTYPE_MASK_GRP;
4031 		break;
4032 	case Opt_usrquota_block_hardlimit:
4033 		size = memparse(param->string, &rest);
4034 		if (*rest || !size)
4035 			goto bad_value;
4036 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4037 			return invalfc(fc,
4038 				       "User quota block hardlimit too large.");
4039 		ctx->qlimits.usrquota_bhardlimit = size;
4040 		break;
4041 	case Opt_grpquota_block_hardlimit:
4042 		size = memparse(param->string, &rest);
4043 		if (*rest || !size)
4044 			goto bad_value;
4045 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4046 			return invalfc(fc,
4047 				       "Group quota block hardlimit too large.");
4048 		ctx->qlimits.grpquota_bhardlimit = size;
4049 		break;
4050 	case Opt_usrquota_inode_hardlimit:
4051 		size = memparse(param->string, &rest);
4052 		if (*rest || !size)
4053 			goto bad_value;
4054 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4055 			return invalfc(fc,
4056 				       "User quota inode hardlimit too large.");
4057 		ctx->qlimits.usrquota_ihardlimit = size;
4058 		break;
4059 	case Opt_grpquota_inode_hardlimit:
4060 		size = memparse(param->string, &rest);
4061 		if (*rest || !size)
4062 			goto bad_value;
4063 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4064 			return invalfc(fc,
4065 				       "Group quota inode hardlimit too large.");
4066 		ctx->qlimits.grpquota_ihardlimit = size;
4067 		break;
4068 	}
4069 	return 0;
4070 
4071 unsupported_parameter:
4072 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4073 bad_value:
4074 	return invalfc(fc, "Bad value for '%s'", param->key);
4075 }
4076 
4077 static int shmem_parse_options(struct fs_context *fc, void *data)
4078 {
4079 	char *options = data;
4080 
4081 	if (options) {
4082 		int err = security_sb_eat_lsm_opts(options, &fc->security);
4083 		if (err)
4084 			return err;
4085 	}
4086 
4087 	while (options != NULL) {
4088 		char *this_char = options;
4089 		for (;;) {
4090 			/*
4091 			 * NUL-terminate this option: unfortunately,
4092 			 * mount options form a comma-separated list,
4093 			 * but mpol's nodelist may also contain commas.
4094 			 */
4095 			options = strchr(options, ',');
4096 			if (options == NULL)
4097 				break;
4098 			options++;
4099 			if (!isdigit(*options)) {
4100 				options[-1] = '\0';
4101 				break;
4102 			}
4103 		}
4104 		if (*this_char) {
4105 			char *value = strchr(this_char, '=');
4106 			size_t len = 0;
4107 			int err;
4108 
4109 			if (value) {
4110 				*value++ = '\0';
4111 				len = strlen(value);
4112 			}
4113 			err = vfs_parse_fs_string(fc, this_char, value, len);
4114 			if (err < 0)
4115 				return err;
4116 		}
4117 	}
4118 	return 0;
4119 }
4120 
4121 /*
4122  * Reconfigure a shmem filesystem.
4123  */
4124 static int shmem_reconfigure(struct fs_context *fc)
4125 {
4126 	struct shmem_options *ctx = fc->fs_private;
4127 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4128 	unsigned long used_isp;
4129 	struct mempolicy *mpol = NULL;
4130 	const char *err;
4131 
4132 	raw_spin_lock(&sbinfo->stat_lock);
4133 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4134 
4135 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4136 		if (!sbinfo->max_blocks) {
4137 			err = "Cannot retroactively limit size";
4138 			goto out;
4139 		}
4140 		if (percpu_counter_compare(&sbinfo->used_blocks,
4141 					   ctx->blocks) > 0) {
4142 			err = "Too small a size for current use";
4143 			goto out;
4144 		}
4145 	}
4146 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4147 		if (!sbinfo->max_inodes) {
4148 			err = "Cannot retroactively limit inodes";
4149 			goto out;
4150 		}
4151 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4152 			err = "Too few inodes for current use";
4153 			goto out;
4154 		}
4155 	}
4156 
4157 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4158 	    sbinfo->next_ino > UINT_MAX) {
4159 		err = "Current inum too high to switch to 32-bit inums";
4160 		goto out;
4161 	}
4162 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4163 		err = "Cannot disable swap on remount";
4164 		goto out;
4165 	}
4166 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4167 		err = "Cannot enable swap on remount if it was disabled on first mount";
4168 		goto out;
4169 	}
4170 
4171 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4172 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4173 		err = "Cannot enable quota on remount";
4174 		goto out;
4175 	}
4176 
4177 #ifdef CONFIG_TMPFS_QUOTA
4178 #define CHANGED_LIMIT(name)						\
4179 	(ctx->qlimits.name## hardlimit &&				\
4180 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4181 
4182 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4183 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4184 		err = "Cannot change global quota limit on remount";
4185 		goto out;
4186 	}
4187 #endif /* CONFIG_TMPFS_QUOTA */
4188 
4189 	if (ctx->seen & SHMEM_SEEN_HUGE)
4190 		sbinfo->huge = ctx->huge;
4191 	if (ctx->seen & SHMEM_SEEN_INUMS)
4192 		sbinfo->full_inums = ctx->full_inums;
4193 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4194 		sbinfo->max_blocks  = ctx->blocks;
4195 	if (ctx->seen & SHMEM_SEEN_INODES) {
4196 		sbinfo->max_inodes  = ctx->inodes;
4197 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4198 	}
4199 
4200 	/*
4201 	 * Preserve previous mempolicy unless mpol remount option was specified.
4202 	 */
4203 	if (ctx->mpol) {
4204 		mpol = sbinfo->mpol;
4205 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4206 		ctx->mpol = NULL;
4207 	}
4208 
4209 	if (ctx->noswap)
4210 		sbinfo->noswap = true;
4211 
4212 	raw_spin_unlock(&sbinfo->stat_lock);
4213 	mpol_put(mpol);
4214 	return 0;
4215 out:
4216 	raw_spin_unlock(&sbinfo->stat_lock);
4217 	return invalfc(fc, "%s", err);
4218 }
4219 
4220 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4221 {
4222 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4223 	struct mempolicy *mpol;
4224 
4225 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4226 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4227 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4228 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4229 	if (sbinfo->mode != (0777 | S_ISVTX))
4230 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4231 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4232 		seq_printf(seq, ",uid=%u",
4233 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4234 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4235 		seq_printf(seq, ",gid=%u",
4236 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4237 
4238 	/*
4239 	 * Showing inode{64,32} might be useful even if it's the system default,
4240 	 * since then people don't have to resort to checking both here and
4241 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4242 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4243 	 *
4244 	 * We hide it when inode64 isn't the default and we are using 32-bit
4245 	 * inodes, since that probably just means the feature isn't even under
4246 	 * consideration.
4247 	 *
4248 	 * As such:
4249 	 *
4250 	 *                     +-----------------+-----------------+
4251 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4252 	 *  +------------------+-----------------+-----------------+
4253 	 *  | full_inums=true  | show            | show            |
4254 	 *  | full_inums=false | show            | hide            |
4255 	 *  +------------------+-----------------+-----------------+
4256 	 *
4257 	 */
4258 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4259 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4260 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4261 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4262 	if (sbinfo->huge)
4263 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4264 #endif
4265 	mpol = shmem_get_sbmpol(sbinfo);
4266 	shmem_show_mpol(seq, mpol);
4267 	mpol_put(mpol);
4268 	if (sbinfo->noswap)
4269 		seq_printf(seq, ",noswap");
4270 	return 0;
4271 }
4272 
4273 #endif /* CONFIG_TMPFS */
4274 
4275 static void shmem_put_super(struct super_block *sb)
4276 {
4277 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4278 
4279 #ifdef CONFIG_TMPFS_QUOTA
4280 	shmem_disable_quotas(sb);
4281 #endif
4282 	free_percpu(sbinfo->ino_batch);
4283 	percpu_counter_destroy(&sbinfo->used_blocks);
4284 	mpol_put(sbinfo->mpol);
4285 	kfree(sbinfo);
4286 	sb->s_fs_info = NULL;
4287 }
4288 
4289 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4290 {
4291 	struct shmem_options *ctx = fc->fs_private;
4292 	struct inode *inode;
4293 	struct shmem_sb_info *sbinfo;
4294 	int error = -ENOMEM;
4295 
4296 	/* Round up to L1_CACHE_BYTES to resist false sharing */
4297 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4298 				L1_CACHE_BYTES), GFP_KERNEL);
4299 	if (!sbinfo)
4300 		return error;
4301 
4302 	sb->s_fs_info = sbinfo;
4303 
4304 #ifdef CONFIG_TMPFS
4305 	/*
4306 	 * Per default we only allow half of the physical ram per
4307 	 * tmpfs instance, limiting inodes to one per page of lowmem;
4308 	 * but the internal instance is left unlimited.
4309 	 */
4310 	if (!(sb->s_flags & SB_KERNMOUNT)) {
4311 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4312 			ctx->blocks = shmem_default_max_blocks();
4313 		if (!(ctx->seen & SHMEM_SEEN_INODES))
4314 			ctx->inodes = shmem_default_max_inodes();
4315 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4316 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4317 		sbinfo->noswap = ctx->noswap;
4318 	} else {
4319 		sb->s_flags |= SB_NOUSER;
4320 	}
4321 	sb->s_export_op = &shmem_export_ops;
4322 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4323 #else
4324 	sb->s_flags |= SB_NOUSER;
4325 #endif
4326 	sbinfo->max_blocks = ctx->blocks;
4327 	sbinfo->max_inodes = ctx->inodes;
4328 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4329 	if (sb->s_flags & SB_KERNMOUNT) {
4330 		sbinfo->ino_batch = alloc_percpu(ino_t);
4331 		if (!sbinfo->ino_batch)
4332 			goto failed;
4333 	}
4334 	sbinfo->uid = ctx->uid;
4335 	sbinfo->gid = ctx->gid;
4336 	sbinfo->full_inums = ctx->full_inums;
4337 	sbinfo->mode = ctx->mode;
4338 	sbinfo->huge = ctx->huge;
4339 	sbinfo->mpol = ctx->mpol;
4340 	ctx->mpol = NULL;
4341 
4342 	raw_spin_lock_init(&sbinfo->stat_lock);
4343 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4344 		goto failed;
4345 	spin_lock_init(&sbinfo->shrinklist_lock);
4346 	INIT_LIST_HEAD(&sbinfo->shrinklist);
4347 
4348 	sb->s_maxbytes = MAX_LFS_FILESIZE;
4349 	sb->s_blocksize = PAGE_SIZE;
4350 	sb->s_blocksize_bits = PAGE_SHIFT;
4351 	sb->s_magic = TMPFS_MAGIC;
4352 	sb->s_op = &shmem_ops;
4353 	sb->s_time_gran = 1;
4354 #ifdef CONFIG_TMPFS_XATTR
4355 	sb->s_xattr = shmem_xattr_handlers;
4356 #endif
4357 #ifdef CONFIG_TMPFS_POSIX_ACL
4358 	sb->s_flags |= SB_POSIXACL;
4359 #endif
4360 	uuid_gen(&sb->s_uuid);
4361 
4362 #ifdef CONFIG_TMPFS_QUOTA
4363 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4364 		sb->dq_op = &shmem_quota_operations;
4365 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4366 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4367 
4368 		/* Copy the default limits from ctx into sbinfo */
4369 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4370 		       sizeof(struct shmem_quota_limits));
4371 
4372 		if (shmem_enable_quotas(sb, ctx->quota_types))
4373 			goto failed;
4374 	}
4375 #endif /* CONFIG_TMPFS_QUOTA */
4376 
4377 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
4378 				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
4379 	if (IS_ERR(inode)) {
4380 		error = PTR_ERR(inode);
4381 		goto failed;
4382 	}
4383 	inode->i_uid = sbinfo->uid;
4384 	inode->i_gid = sbinfo->gid;
4385 	sb->s_root = d_make_root(inode);
4386 	if (!sb->s_root)
4387 		goto failed;
4388 	return 0;
4389 
4390 failed:
4391 	shmem_put_super(sb);
4392 	return error;
4393 }
4394 
4395 static int shmem_get_tree(struct fs_context *fc)
4396 {
4397 	return get_tree_nodev(fc, shmem_fill_super);
4398 }
4399 
4400 static void shmem_free_fc(struct fs_context *fc)
4401 {
4402 	struct shmem_options *ctx = fc->fs_private;
4403 
4404 	if (ctx) {
4405 		mpol_put(ctx->mpol);
4406 		kfree(ctx);
4407 	}
4408 }
4409 
4410 static const struct fs_context_operations shmem_fs_context_ops = {
4411 	.free			= shmem_free_fc,
4412 	.get_tree		= shmem_get_tree,
4413 #ifdef CONFIG_TMPFS
4414 	.parse_monolithic	= shmem_parse_options,
4415 	.parse_param		= shmem_parse_one,
4416 	.reconfigure		= shmem_reconfigure,
4417 #endif
4418 };
4419 
4420 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4421 
4422 static struct inode *shmem_alloc_inode(struct super_block *sb)
4423 {
4424 	struct shmem_inode_info *info;
4425 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4426 	if (!info)
4427 		return NULL;
4428 	return &info->vfs_inode;
4429 }
4430 
4431 static void shmem_free_in_core_inode(struct inode *inode)
4432 {
4433 	if (S_ISLNK(inode->i_mode))
4434 		kfree(inode->i_link);
4435 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4436 }
4437 
4438 static void shmem_destroy_inode(struct inode *inode)
4439 {
4440 	if (S_ISREG(inode->i_mode))
4441 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4442 	if (S_ISDIR(inode->i_mode))
4443 		simple_offset_destroy(shmem_get_offset_ctx(inode));
4444 }
4445 
4446 static void shmem_init_inode(void *foo)
4447 {
4448 	struct shmem_inode_info *info = foo;
4449 	inode_init_once(&info->vfs_inode);
4450 }
4451 
4452 static void __init shmem_init_inodecache(void)
4453 {
4454 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4455 				sizeof(struct shmem_inode_info),
4456 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4457 }
4458 
4459 static void __init shmem_destroy_inodecache(void)
4460 {
4461 	kmem_cache_destroy(shmem_inode_cachep);
4462 }
4463 
4464 /* Keep the page in page cache instead of truncating it */
4465 static int shmem_error_remove_page(struct address_space *mapping,
4466 				   struct page *page)
4467 {
4468 	return 0;
4469 }
4470 
4471 const struct address_space_operations shmem_aops = {
4472 	.writepage	= shmem_writepage,
4473 	.dirty_folio	= noop_dirty_folio,
4474 #ifdef CONFIG_TMPFS
4475 	.write_begin	= shmem_write_begin,
4476 	.write_end	= shmem_write_end,
4477 #endif
4478 #ifdef CONFIG_MIGRATION
4479 	.migrate_folio	= migrate_folio,
4480 #endif
4481 	.error_remove_page = shmem_error_remove_page,
4482 };
4483 EXPORT_SYMBOL(shmem_aops);
4484 
4485 static const struct file_operations shmem_file_operations = {
4486 	.mmap		= shmem_mmap,
4487 	.open		= shmem_file_open,
4488 	.get_unmapped_area = shmem_get_unmapped_area,
4489 #ifdef CONFIG_TMPFS
4490 	.llseek		= shmem_file_llseek,
4491 	.read_iter	= shmem_file_read_iter,
4492 	.write_iter	= shmem_file_write_iter,
4493 	.fsync		= noop_fsync,
4494 	.splice_read	= shmem_file_splice_read,
4495 	.splice_write	= iter_file_splice_write,
4496 	.fallocate	= shmem_fallocate,
4497 #endif
4498 };
4499 
4500 static const struct inode_operations shmem_inode_operations = {
4501 	.getattr	= shmem_getattr,
4502 	.setattr	= shmem_setattr,
4503 #ifdef CONFIG_TMPFS_XATTR
4504 	.listxattr	= shmem_listxattr,
4505 	.set_acl	= simple_set_acl,
4506 	.fileattr_get	= shmem_fileattr_get,
4507 	.fileattr_set	= shmem_fileattr_set,
4508 #endif
4509 };
4510 
4511 static const struct inode_operations shmem_dir_inode_operations = {
4512 #ifdef CONFIG_TMPFS
4513 	.getattr	= shmem_getattr,
4514 	.create		= shmem_create,
4515 	.lookup		= simple_lookup,
4516 	.link		= shmem_link,
4517 	.unlink		= shmem_unlink,
4518 	.symlink	= shmem_symlink,
4519 	.mkdir		= shmem_mkdir,
4520 	.rmdir		= shmem_rmdir,
4521 	.mknod		= shmem_mknod,
4522 	.rename		= shmem_rename2,
4523 	.tmpfile	= shmem_tmpfile,
4524 	.get_offset_ctx	= shmem_get_offset_ctx,
4525 #endif
4526 #ifdef CONFIG_TMPFS_XATTR
4527 	.listxattr	= shmem_listxattr,
4528 	.fileattr_get	= shmem_fileattr_get,
4529 	.fileattr_set	= shmem_fileattr_set,
4530 #endif
4531 #ifdef CONFIG_TMPFS_POSIX_ACL
4532 	.setattr	= shmem_setattr,
4533 	.set_acl	= simple_set_acl,
4534 #endif
4535 };
4536 
4537 static const struct inode_operations shmem_special_inode_operations = {
4538 	.getattr	= shmem_getattr,
4539 #ifdef CONFIG_TMPFS_XATTR
4540 	.listxattr	= shmem_listxattr,
4541 #endif
4542 #ifdef CONFIG_TMPFS_POSIX_ACL
4543 	.setattr	= shmem_setattr,
4544 	.set_acl	= simple_set_acl,
4545 #endif
4546 };
4547 
4548 static const struct super_operations shmem_ops = {
4549 	.alloc_inode	= shmem_alloc_inode,
4550 	.free_inode	= shmem_free_in_core_inode,
4551 	.destroy_inode	= shmem_destroy_inode,
4552 #ifdef CONFIG_TMPFS
4553 	.statfs		= shmem_statfs,
4554 	.show_options	= shmem_show_options,
4555 #endif
4556 #ifdef CONFIG_TMPFS_QUOTA
4557 	.get_dquots	= shmem_get_dquots,
4558 #endif
4559 	.evict_inode	= shmem_evict_inode,
4560 	.drop_inode	= generic_delete_inode,
4561 	.put_super	= shmem_put_super,
4562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4563 	.nr_cached_objects	= shmem_unused_huge_count,
4564 	.free_cached_objects	= shmem_unused_huge_scan,
4565 #endif
4566 };
4567 
4568 static const struct vm_operations_struct shmem_vm_ops = {
4569 	.fault		= shmem_fault,
4570 	.map_pages	= filemap_map_pages,
4571 #ifdef CONFIG_NUMA
4572 	.set_policy     = shmem_set_policy,
4573 	.get_policy     = shmem_get_policy,
4574 #endif
4575 };
4576 
4577 static const struct vm_operations_struct shmem_anon_vm_ops = {
4578 	.fault		= shmem_fault,
4579 	.map_pages	= filemap_map_pages,
4580 #ifdef CONFIG_NUMA
4581 	.set_policy     = shmem_set_policy,
4582 	.get_policy     = shmem_get_policy,
4583 #endif
4584 };
4585 
4586 int shmem_init_fs_context(struct fs_context *fc)
4587 {
4588 	struct shmem_options *ctx;
4589 
4590 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4591 	if (!ctx)
4592 		return -ENOMEM;
4593 
4594 	ctx->mode = 0777 | S_ISVTX;
4595 	ctx->uid = current_fsuid();
4596 	ctx->gid = current_fsgid();
4597 
4598 	fc->fs_private = ctx;
4599 	fc->ops = &shmem_fs_context_ops;
4600 	return 0;
4601 }
4602 
4603 static struct file_system_type shmem_fs_type = {
4604 	.owner		= THIS_MODULE,
4605 	.name		= "tmpfs",
4606 	.init_fs_context = shmem_init_fs_context,
4607 #ifdef CONFIG_TMPFS
4608 	.parameters	= shmem_fs_parameters,
4609 #endif
4610 	.kill_sb	= kill_litter_super,
4611 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4612 };
4613 
4614 void __init shmem_init(void)
4615 {
4616 	int error;
4617 
4618 	shmem_init_inodecache();
4619 
4620 #ifdef CONFIG_TMPFS_QUOTA
4621 	error = register_quota_format(&shmem_quota_format);
4622 	if (error < 0) {
4623 		pr_err("Could not register quota format\n");
4624 		goto out3;
4625 	}
4626 #endif
4627 
4628 	error = register_filesystem(&shmem_fs_type);
4629 	if (error) {
4630 		pr_err("Could not register tmpfs\n");
4631 		goto out2;
4632 	}
4633 
4634 	shm_mnt = kern_mount(&shmem_fs_type);
4635 	if (IS_ERR(shm_mnt)) {
4636 		error = PTR_ERR(shm_mnt);
4637 		pr_err("Could not kern_mount tmpfs\n");
4638 		goto out1;
4639 	}
4640 
4641 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4642 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4643 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4644 	else
4645 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4646 #endif
4647 	return;
4648 
4649 out1:
4650 	unregister_filesystem(&shmem_fs_type);
4651 out2:
4652 #ifdef CONFIG_TMPFS_QUOTA
4653 	unregister_quota_format(&shmem_quota_format);
4654 out3:
4655 #endif
4656 	shmem_destroy_inodecache();
4657 	shm_mnt = ERR_PTR(error);
4658 }
4659 
4660 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4661 static ssize_t shmem_enabled_show(struct kobject *kobj,
4662 				  struct kobj_attribute *attr, char *buf)
4663 {
4664 	static const int values[] = {
4665 		SHMEM_HUGE_ALWAYS,
4666 		SHMEM_HUGE_WITHIN_SIZE,
4667 		SHMEM_HUGE_ADVISE,
4668 		SHMEM_HUGE_NEVER,
4669 		SHMEM_HUGE_DENY,
4670 		SHMEM_HUGE_FORCE,
4671 	};
4672 	int len = 0;
4673 	int i;
4674 
4675 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4676 		len += sysfs_emit_at(buf, len,
4677 				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4678 				i ? " " : "", shmem_format_huge(values[i]));
4679 	}
4680 	len += sysfs_emit_at(buf, len, "\n");
4681 
4682 	return len;
4683 }
4684 
4685 static ssize_t shmem_enabled_store(struct kobject *kobj,
4686 		struct kobj_attribute *attr, const char *buf, size_t count)
4687 {
4688 	char tmp[16];
4689 	int huge;
4690 
4691 	if (count + 1 > sizeof(tmp))
4692 		return -EINVAL;
4693 	memcpy(tmp, buf, count);
4694 	tmp[count] = '\0';
4695 	if (count && tmp[count - 1] == '\n')
4696 		tmp[count - 1] = '\0';
4697 
4698 	huge = shmem_parse_huge(tmp);
4699 	if (huge == -EINVAL)
4700 		return -EINVAL;
4701 	if (!has_transparent_hugepage() &&
4702 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4703 		return -EINVAL;
4704 
4705 	shmem_huge = huge;
4706 	if (shmem_huge > SHMEM_HUGE_DENY)
4707 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4708 	return count;
4709 }
4710 
4711 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4712 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4713 
4714 #else /* !CONFIG_SHMEM */
4715 
4716 /*
4717  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4718  *
4719  * This is intended for small system where the benefits of the full
4720  * shmem code (swap-backed and resource-limited) are outweighed by
4721  * their complexity. On systems without swap this code should be
4722  * effectively equivalent, but much lighter weight.
4723  */
4724 
4725 static struct file_system_type shmem_fs_type = {
4726 	.name		= "tmpfs",
4727 	.init_fs_context = ramfs_init_fs_context,
4728 	.parameters	= ramfs_fs_parameters,
4729 	.kill_sb	= ramfs_kill_sb,
4730 	.fs_flags	= FS_USERNS_MOUNT,
4731 };
4732 
4733 void __init shmem_init(void)
4734 {
4735 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4736 
4737 	shm_mnt = kern_mount(&shmem_fs_type);
4738 	BUG_ON(IS_ERR(shm_mnt));
4739 }
4740 
4741 int shmem_unuse(unsigned int type)
4742 {
4743 	return 0;
4744 }
4745 
4746 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4747 {
4748 	return 0;
4749 }
4750 
4751 void shmem_unlock_mapping(struct address_space *mapping)
4752 {
4753 }
4754 
4755 #ifdef CONFIG_MMU
4756 unsigned long shmem_get_unmapped_area(struct file *file,
4757 				      unsigned long addr, unsigned long len,
4758 				      unsigned long pgoff, unsigned long flags)
4759 {
4760 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4761 }
4762 #endif
4763 
4764 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4765 {
4766 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4767 }
4768 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4769 
4770 #define shmem_vm_ops				generic_file_vm_ops
4771 #define shmem_anon_vm_ops			generic_file_vm_ops
4772 #define shmem_file_operations			ramfs_file_operations
4773 #define shmem_acct_size(flags, size)		0
4774 #define shmem_unacct_size(flags, size)		do {} while (0)
4775 
4776 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
4777 				struct super_block *sb, struct inode *dir,
4778 				umode_t mode, dev_t dev, unsigned long flags)
4779 {
4780 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
4781 	return inode ? inode : ERR_PTR(-ENOSPC);
4782 }
4783 
4784 #endif /* CONFIG_SHMEM */
4785 
4786 /* common code */
4787 
4788 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
4789 			loff_t size, unsigned long flags, unsigned int i_flags)
4790 {
4791 	struct inode *inode;
4792 	struct file *res;
4793 
4794 	if (IS_ERR(mnt))
4795 		return ERR_CAST(mnt);
4796 
4797 	if (size < 0 || size > MAX_LFS_FILESIZE)
4798 		return ERR_PTR(-EINVAL);
4799 
4800 	if (shmem_acct_size(flags, size))
4801 		return ERR_PTR(-ENOMEM);
4802 
4803 	if (is_idmapped_mnt(mnt))
4804 		return ERR_PTR(-EINVAL);
4805 
4806 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4807 				S_IFREG | S_IRWXUGO, 0, flags);
4808 	if (IS_ERR(inode)) {
4809 		shmem_unacct_size(flags, size);
4810 		return ERR_CAST(inode);
4811 	}
4812 	inode->i_flags |= i_flags;
4813 	inode->i_size = size;
4814 	clear_nlink(inode);	/* It is unlinked */
4815 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4816 	if (!IS_ERR(res))
4817 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4818 				&shmem_file_operations);
4819 	if (IS_ERR(res))
4820 		iput(inode);
4821 	return res;
4822 }
4823 
4824 /**
4825  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4826  * 	kernel internal.  There will be NO LSM permission checks against the
4827  * 	underlying inode.  So users of this interface must do LSM checks at a
4828  *	higher layer.  The users are the big_key and shm implementations.  LSM
4829  *	checks are provided at the key or shm level rather than the inode.
4830  * @name: name for dentry (to be seen in /proc/<pid>/maps
4831  * @size: size to be set for the file
4832  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4833  */
4834 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4835 {
4836 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4837 }
4838 
4839 /**
4840  * shmem_file_setup - get an unlinked file living in tmpfs
4841  * @name: name for dentry (to be seen in /proc/<pid>/maps
4842  * @size: size to be set for the file
4843  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4844  */
4845 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4846 {
4847 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4848 }
4849 EXPORT_SYMBOL_GPL(shmem_file_setup);
4850 
4851 /**
4852  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4853  * @mnt: the tmpfs mount where the file will be created
4854  * @name: name for dentry (to be seen in /proc/<pid>/maps
4855  * @size: size to be set for the file
4856  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4857  */
4858 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4859 				       loff_t size, unsigned long flags)
4860 {
4861 	return __shmem_file_setup(mnt, name, size, flags, 0);
4862 }
4863 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4864 
4865 /**
4866  * shmem_zero_setup - setup a shared anonymous mapping
4867  * @vma: the vma to be mmapped is prepared by do_mmap
4868  */
4869 int shmem_zero_setup(struct vm_area_struct *vma)
4870 {
4871 	struct file *file;
4872 	loff_t size = vma->vm_end - vma->vm_start;
4873 
4874 	/*
4875 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4876 	 * between XFS directory reading and selinux: since this file is only
4877 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4878 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4879 	 */
4880 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4881 	if (IS_ERR(file))
4882 		return PTR_ERR(file);
4883 
4884 	if (vma->vm_file)
4885 		fput(vma->vm_file);
4886 	vma->vm_file = file;
4887 	vma->vm_ops = &shmem_anon_vm_ops;
4888 
4889 	return 0;
4890 }
4891 
4892 /**
4893  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4894  * @mapping:	the folio's address_space
4895  * @index:	the folio index
4896  * @gfp:	the page allocator flags to use if allocating
4897  *
4898  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4899  * with any new page allocations done using the specified allocation flags.
4900  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4901  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4902  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4903  *
4904  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4905  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4906  */
4907 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4908 		pgoff_t index, gfp_t gfp)
4909 {
4910 #ifdef CONFIG_SHMEM
4911 	struct inode *inode = mapping->host;
4912 	struct folio *folio;
4913 	int error;
4914 
4915 	BUG_ON(!shmem_mapping(mapping));
4916 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4917 				    gfp, NULL, NULL);
4918 	if (error)
4919 		return ERR_PTR(error);
4920 
4921 	folio_unlock(folio);
4922 	return folio;
4923 #else
4924 	/*
4925 	 * The tiny !SHMEM case uses ramfs without swap
4926 	 */
4927 	return mapping_read_folio_gfp(mapping, index, gfp);
4928 #endif
4929 }
4930 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4931 
4932 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4933 					 pgoff_t index, gfp_t gfp)
4934 {
4935 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4936 	struct page *page;
4937 
4938 	if (IS_ERR(folio))
4939 		return &folio->page;
4940 
4941 	page = folio_file_page(folio, index);
4942 	if (PageHWPoison(page)) {
4943 		folio_put(folio);
4944 		return ERR_PTR(-EIO);
4945 	}
4946 
4947 	return page;
4948 }
4949 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4950