1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include "swap.h" 44 45 static struct vfsmount *shm_mnt __ro_after_init; 46 47 #ifdef CONFIG_SHMEM 48 /* 49 * This virtual memory filesystem is heavily based on the ramfs. It 50 * extends ramfs by the ability to use swap and honor resource limits 51 * which makes it a completely usable filesystem. 52 */ 53 54 #include <linux/xattr.h> 55 #include <linux/exportfs.h> 56 #include <linux/posix_acl.h> 57 #include <linux/posix_acl_xattr.h> 58 #include <linux/mman.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/backing-dev.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 #include <linux/quotaops.h> 82 83 #include <linux/uaccess.h> 84 85 #include "internal.h" 86 87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 89 90 /* Pretend that each entry is of this size in directory's i_size */ 91 #define BOGO_DIRENT_SIZE 20 92 93 /* Pretend that one inode + its dentry occupy this much memory */ 94 #define BOGO_INODE_SIZE 1024 95 96 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 97 #define SHORT_SYMLINK_LEN 128 98 99 /* 100 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 101 * inode->i_private (with i_rwsem making sure that it has only one user at 102 * a time): we would prefer not to enlarge the shmem inode just for that. 103 */ 104 struct shmem_falloc { 105 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 106 pgoff_t start; /* start of range currently being fallocated */ 107 pgoff_t next; /* the next page offset to be fallocated */ 108 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 109 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 110 }; 111 112 struct shmem_options { 113 unsigned long long blocks; 114 unsigned long long inodes; 115 struct mempolicy *mpol; 116 kuid_t uid; 117 kgid_t gid; 118 umode_t mode; 119 bool full_inums; 120 int huge; 121 int seen; 122 bool noswap; 123 unsigned short quota_types; 124 struct shmem_quota_limits qlimits; 125 #define SHMEM_SEEN_BLOCKS 1 126 #define SHMEM_SEEN_INODES 2 127 #define SHMEM_SEEN_HUGE 4 128 #define SHMEM_SEEN_INUMS 8 129 #define SHMEM_SEEN_NOSWAP 16 130 #define SHMEM_SEEN_QUOTA 32 131 }; 132 133 #ifdef CONFIG_TMPFS 134 static unsigned long shmem_default_max_blocks(void) 135 { 136 return totalram_pages() / 2; 137 } 138 139 static unsigned long shmem_default_max_inodes(void) 140 { 141 unsigned long nr_pages = totalram_pages(); 142 143 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 144 ULONG_MAX / BOGO_INODE_SIZE); 145 } 146 #endif 147 148 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 149 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 150 struct mm_struct *fault_mm, vm_fault_t *fault_type); 151 152 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 153 { 154 return sb->s_fs_info; 155 } 156 157 /* 158 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 159 * for shared memory and for shared anonymous (/dev/zero) mappings 160 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 161 * consistent with the pre-accounting of private mappings ... 162 */ 163 static inline int shmem_acct_size(unsigned long flags, loff_t size) 164 { 165 return (flags & VM_NORESERVE) ? 166 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 167 } 168 169 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 170 { 171 if (!(flags & VM_NORESERVE)) 172 vm_unacct_memory(VM_ACCT(size)); 173 } 174 175 static inline int shmem_reacct_size(unsigned long flags, 176 loff_t oldsize, loff_t newsize) 177 { 178 if (!(flags & VM_NORESERVE)) { 179 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 180 return security_vm_enough_memory_mm(current->mm, 181 VM_ACCT(newsize) - VM_ACCT(oldsize)); 182 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 183 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 184 } 185 return 0; 186 } 187 188 /* 189 * ... whereas tmpfs objects are accounted incrementally as 190 * pages are allocated, in order to allow large sparse files. 191 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 192 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 193 */ 194 static inline int shmem_acct_blocks(unsigned long flags, long pages) 195 { 196 if (!(flags & VM_NORESERVE)) 197 return 0; 198 199 return security_vm_enough_memory_mm(current->mm, 200 pages * VM_ACCT(PAGE_SIZE)); 201 } 202 203 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 204 { 205 if (flags & VM_NORESERVE) 206 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 207 } 208 209 static int shmem_inode_acct_blocks(struct inode *inode, long pages) 210 { 211 struct shmem_inode_info *info = SHMEM_I(inode); 212 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 213 int err = -ENOSPC; 214 215 if (shmem_acct_blocks(info->flags, pages)) 216 return err; 217 218 might_sleep(); /* when quotas */ 219 if (sbinfo->max_blocks) { 220 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 221 sbinfo->max_blocks, pages)) 222 goto unacct; 223 224 err = dquot_alloc_block_nodirty(inode, pages); 225 if (err) { 226 percpu_counter_sub(&sbinfo->used_blocks, pages); 227 goto unacct; 228 } 229 } else { 230 err = dquot_alloc_block_nodirty(inode, pages); 231 if (err) 232 goto unacct; 233 } 234 235 return 0; 236 237 unacct: 238 shmem_unacct_blocks(info->flags, pages); 239 return err; 240 } 241 242 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 243 { 244 struct shmem_inode_info *info = SHMEM_I(inode); 245 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 246 247 might_sleep(); /* when quotas */ 248 dquot_free_block_nodirty(inode, pages); 249 250 if (sbinfo->max_blocks) 251 percpu_counter_sub(&sbinfo->used_blocks, pages); 252 shmem_unacct_blocks(info->flags, pages); 253 } 254 255 static const struct super_operations shmem_ops; 256 const struct address_space_operations shmem_aops; 257 static const struct file_operations shmem_file_operations; 258 static const struct inode_operations shmem_inode_operations; 259 static const struct inode_operations shmem_dir_inode_operations; 260 static const struct inode_operations shmem_special_inode_operations; 261 static const struct vm_operations_struct shmem_vm_ops; 262 static const struct vm_operations_struct shmem_anon_vm_ops; 263 static struct file_system_type shmem_fs_type; 264 265 bool vma_is_anon_shmem(struct vm_area_struct *vma) 266 { 267 return vma->vm_ops == &shmem_anon_vm_ops; 268 } 269 270 bool vma_is_shmem(struct vm_area_struct *vma) 271 { 272 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 273 } 274 275 static LIST_HEAD(shmem_swaplist); 276 static DEFINE_MUTEX(shmem_swaplist_mutex); 277 278 #ifdef CONFIG_TMPFS_QUOTA 279 280 static int shmem_enable_quotas(struct super_block *sb, 281 unsigned short quota_types) 282 { 283 int type, err = 0; 284 285 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 286 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 287 if (!(quota_types & (1 << type))) 288 continue; 289 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 290 DQUOT_USAGE_ENABLED | 291 DQUOT_LIMITS_ENABLED); 292 if (err) 293 goto out_err; 294 } 295 return 0; 296 297 out_err: 298 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 299 type, err); 300 for (type--; type >= 0; type--) 301 dquot_quota_off(sb, type); 302 return err; 303 } 304 305 static void shmem_disable_quotas(struct super_block *sb) 306 { 307 int type; 308 309 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 310 dquot_quota_off(sb, type); 311 } 312 313 static struct dquot **shmem_get_dquots(struct inode *inode) 314 { 315 return SHMEM_I(inode)->i_dquot; 316 } 317 #endif /* CONFIG_TMPFS_QUOTA */ 318 319 /* 320 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 321 * produces a novel ino for the newly allocated inode. 322 * 323 * It may also be called when making a hard link to permit the space needed by 324 * each dentry. However, in that case, no new inode number is needed since that 325 * internally draws from another pool of inode numbers (currently global 326 * get_next_ino()). This case is indicated by passing NULL as inop. 327 */ 328 #define SHMEM_INO_BATCH 1024 329 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 330 { 331 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 332 ino_t ino; 333 334 if (!(sb->s_flags & SB_KERNMOUNT)) { 335 raw_spin_lock(&sbinfo->stat_lock); 336 if (sbinfo->max_inodes) { 337 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 338 raw_spin_unlock(&sbinfo->stat_lock); 339 return -ENOSPC; 340 } 341 sbinfo->free_ispace -= BOGO_INODE_SIZE; 342 } 343 if (inop) { 344 ino = sbinfo->next_ino++; 345 if (unlikely(is_zero_ino(ino))) 346 ino = sbinfo->next_ino++; 347 if (unlikely(!sbinfo->full_inums && 348 ino > UINT_MAX)) { 349 /* 350 * Emulate get_next_ino uint wraparound for 351 * compatibility 352 */ 353 if (IS_ENABLED(CONFIG_64BIT)) 354 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 355 __func__, MINOR(sb->s_dev)); 356 sbinfo->next_ino = 1; 357 ino = sbinfo->next_ino++; 358 } 359 *inop = ino; 360 } 361 raw_spin_unlock(&sbinfo->stat_lock); 362 } else if (inop) { 363 /* 364 * __shmem_file_setup, one of our callers, is lock-free: it 365 * doesn't hold stat_lock in shmem_reserve_inode since 366 * max_inodes is always 0, and is called from potentially 367 * unknown contexts. As such, use a per-cpu batched allocator 368 * which doesn't require the per-sb stat_lock unless we are at 369 * the batch boundary. 370 * 371 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 372 * shmem mounts are not exposed to userspace, so we don't need 373 * to worry about things like glibc compatibility. 374 */ 375 ino_t *next_ino; 376 377 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 378 ino = *next_ino; 379 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 380 raw_spin_lock(&sbinfo->stat_lock); 381 ino = sbinfo->next_ino; 382 sbinfo->next_ino += SHMEM_INO_BATCH; 383 raw_spin_unlock(&sbinfo->stat_lock); 384 if (unlikely(is_zero_ino(ino))) 385 ino++; 386 } 387 *inop = ino; 388 *next_ino = ++ino; 389 put_cpu(); 390 } 391 392 return 0; 393 } 394 395 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 396 { 397 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 398 if (sbinfo->max_inodes) { 399 raw_spin_lock(&sbinfo->stat_lock); 400 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 401 raw_spin_unlock(&sbinfo->stat_lock); 402 } 403 } 404 405 /** 406 * shmem_recalc_inode - recalculate the block usage of an inode 407 * @inode: inode to recalc 408 * @alloced: the change in number of pages allocated to inode 409 * @swapped: the change in number of pages swapped from inode 410 * 411 * We have to calculate the free blocks since the mm can drop 412 * undirtied hole pages behind our back. 413 * 414 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 415 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 416 */ 417 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 418 { 419 struct shmem_inode_info *info = SHMEM_I(inode); 420 long freed; 421 422 spin_lock(&info->lock); 423 info->alloced += alloced; 424 info->swapped += swapped; 425 freed = info->alloced - info->swapped - 426 READ_ONCE(inode->i_mapping->nrpages); 427 /* 428 * Special case: whereas normally shmem_recalc_inode() is called 429 * after i_mapping->nrpages has already been adjusted (up or down), 430 * shmem_writepage() has to raise swapped before nrpages is lowered - 431 * to stop a racing shmem_recalc_inode() from thinking that a page has 432 * been freed. Compensate here, to avoid the need for a followup call. 433 */ 434 if (swapped > 0) 435 freed += swapped; 436 if (freed > 0) 437 info->alloced -= freed; 438 spin_unlock(&info->lock); 439 440 /* The quota case may block */ 441 if (freed > 0) 442 shmem_inode_unacct_blocks(inode, freed); 443 } 444 445 bool shmem_charge(struct inode *inode, long pages) 446 { 447 struct address_space *mapping = inode->i_mapping; 448 449 if (shmem_inode_acct_blocks(inode, pages)) 450 return false; 451 452 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 453 xa_lock_irq(&mapping->i_pages); 454 mapping->nrpages += pages; 455 xa_unlock_irq(&mapping->i_pages); 456 457 shmem_recalc_inode(inode, pages, 0); 458 return true; 459 } 460 461 void shmem_uncharge(struct inode *inode, long pages) 462 { 463 /* pages argument is currently unused: keep it to help debugging */ 464 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 465 466 shmem_recalc_inode(inode, 0, 0); 467 } 468 469 /* 470 * Replace item expected in xarray by a new item, while holding xa_lock. 471 */ 472 static int shmem_replace_entry(struct address_space *mapping, 473 pgoff_t index, void *expected, void *replacement) 474 { 475 XA_STATE(xas, &mapping->i_pages, index); 476 void *item; 477 478 VM_BUG_ON(!expected); 479 VM_BUG_ON(!replacement); 480 item = xas_load(&xas); 481 if (item != expected) 482 return -ENOENT; 483 xas_store(&xas, replacement); 484 return 0; 485 } 486 487 /* 488 * Sometimes, before we decide whether to proceed or to fail, we must check 489 * that an entry was not already brought back from swap by a racing thread. 490 * 491 * Checking page is not enough: by the time a SwapCache page is locked, it 492 * might be reused, and again be SwapCache, using the same swap as before. 493 */ 494 static bool shmem_confirm_swap(struct address_space *mapping, 495 pgoff_t index, swp_entry_t swap) 496 { 497 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 498 } 499 500 /* 501 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 502 * 503 * SHMEM_HUGE_NEVER: 504 * disables huge pages for the mount; 505 * SHMEM_HUGE_ALWAYS: 506 * enables huge pages for the mount; 507 * SHMEM_HUGE_WITHIN_SIZE: 508 * only allocate huge pages if the page will be fully within i_size, 509 * also respect fadvise()/madvise() hints; 510 * SHMEM_HUGE_ADVISE: 511 * only allocate huge pages if requested with fadvise()/madvise(); 512 */ 513 514 #define SHMEM_HUGE_NEVER 0 515 #define SHMEM_HUGE_ALWAYS 1 516 #define SHMEM_HUGE_WITHIN_SIZE 2 517 #define SHMEM_HUGE_ADVISE 3 518 519 /* 520 * Special values. 521 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 522 * 523 * SHMEM_HUGE_DENY: 524 * disables huge on shm_mnt and all mounts, for emergency use; 525 * SHMEM_HUGE_FORCE: 526 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 527 * 528 */ 529 #define SHMEM_HUGE_DENY (-1) 530 #define SHMEM_HUGE_FORCE (-2) 531 532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 533 /* ifdef here to avoid bloating shmem.o when not necessary */ 534 535 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 536 537 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force, 538 struct mm_struct *mm, unsigned long vm_flags) 539 { 540 loff_t i_size; 541 542 if (!S_ISREG(inode->i_mode)) 543 return false; 544 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags))) 545 return false; 546 if (shmem_huge == SHMEM_HUGE_DENY) 547 return false; 548 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 549 return true; 550 551 switch (SHMEM_SB(inode->i_sb)->huge) { 552 case SHMEM_HUGE_ALWAYS: 553 return true; 554 case SHMEM_HUGE_WITHIN_SIZE: 555 index = round_up(index + 1, HPAGE_PMD_NR); 556 i_size = round_up(i_size_read(inode), PAGE_SIZE); 557 if (i_size >> PAGE_SHIFT >= index) 558 return true; 559 fallthrough; 560 case SHMEM_HUGE_ADVISE: 561 if (mm && (vm_flags & VM_HUGEPAGE)) 562 return true; 563 fallthrough; 564 default: 565 return false; 566 } 567 } 568 569 #if defined(CONFIG_SYSFS) 570 static int shmem_parse_huge(const char *str) 571 { 572 if (!strcmp(str, "never")) 573 return SHMEM_HUGE_NEVER; 574 if (!strcmp(str, "always")) 575 return SHMEM_HUGE_ALWAYS; 576 if (!strcmp(str, "within_size")) 577 return SHMEM_HUGE_WITHIN_SIZE; 578 if (!strcmp(str, "advise")) 579 return SHMEM_HUGE_ADVISE; 580 if (!strcmp(str, "deny")) 581 return SHMEM_HUGE_DENY; 582 if (!strcmp(str, "force")) 583 return SHMEM_HUGE_FORCE; 584 return -EINVAL; 585 } 586 #endif 587 588 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 589 static const char *shmem_format_huge(int huge) 590 { 591 switch (huge) { 592 case SHMEM_HUGE_NEVER: 593 return "never"; 594 case SHMEM_HUGE_ALWAYS: 595 return "always"; 596 case SHMEM_HUGE_WITHIN_SIZE: 597 return "within_size"; 598 case SHMEM_HUGE_ADVISE: 599 return "advise"; 600 case SHMEM_HUGE_DENY: 601 return "deny"; 602 case SHMEM_HUGE_FORCE: 603 return "force"; 604 default: 605 VM_BUG_ON(1); 606 return "bad_val"; 607 } 608 } 609 #endif 610 611 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 612 struct shrink_control *sc, unsigned long nr_to_split) 613 { 614 LIST_HEAD(list), *pos, *next; 615 LIST_HEAD(to_remove); 616 struct inode *inode; 617 struct shmem_inode_info *info; 618 struct folio *folio; 619 unsigned long batch = sc ? sc->nr_to_scan : 128; 620 int split = 0; 621 622 if (list_empty(&sbinfo->shrinklist)) 623 return SHRINK_STOP; 624 625 spin_lock(&sbinfo->shrinklist_lock); 626 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 627 info = list_entry(pos, struct shmem_inode_info, shrinklist); 628 629 /* pin the inode */ 630 inode = igrab(&info->vfs_inode); 631 632 /* inode is about to be evicted */ 633 if (!inode) { 634 list_del_init(&info->shrinklist); 635 goto next; 636 } 637 638 /* Check if there's anything to gain */ 639 if (round_up(inode->i_size, PAGE_SIZE) == 640 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 641 list_move(&info->shrinklist, &to_remove); 642 goto next; 643 } 644 645 list_move(&info->shrinklist, &list); 646 next: 647 sbinfo->shrinklist_len--; 648 if (!--batch) 649 break; 650 } 651 spin_unlock(&sbinfo->shrinklist_lock); 652 653 list_for_each_safe(pos, next, &to_remove) { 654 info = list_entry(pos, struct shmem_inode_info, shrinklist); 655 inode = &info->vfs_inode; 656 list_del_init(&info->shrinklist); 657 iput(inode); 658 } 659 660 list_for_each_safe(pos, next, &list) { 661 int ret; 662 pgoff_t index; 663 664 info = list_entry(pos, struct shmem_inode_info, shrinklist); 665 inode = &info->vfs_inode; 666 667 if (nr_to_split && split >= nr_to_split) 668 goto move_back; 669 670 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 671 folio = filemap_get_folio(inode->i_mapping, index); 672 if (IS_ERR(folio)) 673 goto drop; 674 675 /* No huge page at the end of the file: nothing to split */ 676 if (!folio_test_large(folio)) { 677 folio_put(folio); 678 goto drop; 679 } 680 681 /* 682 * Move the inode on the list back to shrinklist if we failed 683 * to lock the page at this time. 684 * 685 * Waiting for the lock may lead to deadlock in the 686 * reclaim path. 687 */ 688 if (!folio_trylock(folio)) { 689 folio_put(folio); 690 goto move_back; 691 } 692 693 ret = split_folio(folio); 694 folio_unlock(folio); 695 folio_put(folio); 696 697 /* If split failed move the inode on the list back to shrinklist */ 698 if (ret) 699 goto move_back; 700 701 split++; 702 drop: 703 list_del_init(&info->shrinklist); 704 goto put; 705 move_back: 706 /* 707 * Make sure the inode is either on the global list or deleted 708 * from any local list before iput() since it could be deleted 709 * in another thread once we put the inode (then the local list 710 * is corrupted). 711 */ 712 spin_lock(&sbinfo->shrinklist_lock); 713 list_move(&info->shrinklist, &sbinfo->shrinklist); 714 sbinfo->shrinklist_len++; 715 spin_unlock(&sbinfo->shrinklist_lock); 716 put: 717 iput(inode); 718 } 719 720 return split; 721 } 722 723 static long shmem_unused_huge_scan(struct super_block *sb, 724 struct shrink_control *sc) 725 { 726 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 727 728 if (!READ_ONCE(sbinfo->shrinklist_len)) 729 return SHRINK_STOP; 730 731 return shmem_unused_huge_shrink(sbinfo, sc, 0); 732 } 733 734 static long shmem_unused_huge_count(struct super_block *sb, 735 struct shrink_control *sc) 736 { 737 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 738 return READ_ONCE(sbinfo->shrinklist_len); 739 } 740 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 741 742 #define shmem_huge SHMEM_HUGE_DENY 743 744 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force, 745 struct mm_struct *mm, unsigned long vm_flags) 746 { 747 return false; 748 } 749 750 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 751 struct shrink_control *sc, unsigned long nr_to_split) 752 { 753 return 0; 754 } 755 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 756 757 /* 758 * Somewhat like filemap_add_folio, but error if expected item has gone. 759 */ 760 static int shmem_add_to_page_cache(struct folio *folio, 761 struct address_space *mapping, 762 pgoff_t index, void *expected, gfp_t gfp) 763 { 764 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 765 long nr = folio_nr_pages(folio); 766 767 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 768 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 769 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 770 VM_BUG_ON(expected && folio_test_large(folio)); 771 772 folio_ref_add(folio, nr); 773 folio->mapping = mapping; 774 folio->index = index; 775 776 gfp &= GFP_RECLAIM_MASK; 777 folio_throttle_swaprate(folio, gfp); 778 779 do { 780 xas_lock_irq(&xas); 781 if (expected != xas_find_conflict(&xas)) { 782 xas_set_err(&xas, -EEXIST); 783 goto unlock; 784 } 785 if (expected && xas_find_conflict(&xas)) { 786 xas_set_err(&xas, -EEXIST); 787 goto unlock; 788 } 789 xas_store(&xas, folio); 790 if (xas_error(&xas)) 791 goto unlock; 792 if (folio_test_pmd_mappable(folio)) 793 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 794 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 795 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 796 mapping->nrpages += nr; 797 unlock: 798 xas_unlock_irq(&xas); 799 } while (xas_nomem(&xas, gfp)); 800 801 if (xas_error(&xas)) { 802 folio->mapping = NULL; 803 folio_ref_sub(folio, nr); 804 return xas_error(&xas); 805 } 806 807 return 0; 808 } 809 810 /* 811 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 812 */ 813 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 814 { 815 struct address_space *mapping = folio->mapping; 816 long nr = folio_nr_pages(folio); 817 int error; 818 819 xa_lock_irq(&mapping->i_pages); 820 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 821 folio->mapping = NULL; 822 mapping->nrpages -= nr; 823 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 824 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 825 xa_unlock_irq(&mapping->i_pages); 826 folio_put(folio); 827 BUG_ON(error); 828 } 829 830 /* 831 * Remove swap entry from page cache, free the swap and its page cache. 832 */ 833 static int shmem_free_swap(struct address_space *mapping, 834 pgoff_t index, void *radswap) 835 { 836 void *old; 837 838 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 839 if (old != radswap) 840 return -ENOENT; 841 free_swap_and_cache(radix_to_swp_entry(radswap)); 842 return 0; 843 } 844 845 /* 846 * Determine (in bytes) how many of the shmem object's pages mapped by the 847 * given offsets are swapped out. 848 * 849 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 850 * as long as the inode doesn't go away and racy results are not a problem. 851 */ 852 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 853 pgoff_t start, pgoff_t end) 854 { 855 XA_STATE(xas, &mapping->i_pages, start); 856 struct page *page; 857 unsigned long swapped = 0; 858 unsigned long max = end - 1; 859 860 rcu_read_lock(); 861 xas_for_each(&xas, page, max) { 862 if (xas_retry(&xas, page)) 863 continue; 864 if (xa_is_value(page)) 865 swapped++; 866 if (xas.xa_index == max) 867 break; 868 if (need_resched()) { 869 xas_pause(&xas); 870 cond_resched_rcu(); 871 } 872 } 873 rcu_read_unlock(); 874 875 return swapped << PAGE_SHIFT; 876 } 877 878 /* 879 * Determine (in bytes) how many of the shmem object's pages mapped by the 880 * given vma is swapped out. 881 * 882 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 883 * as long as the inode doesn't go away and racy results are not a problem. 884 */ 885 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 886 { 887 struct inode *inode = file_inode(vma->vm_file); 888 struct shmem_inode_info *info = SHMEM_I(inode); 889 struct address_space *mapping = inode->i_mapping; 890 unsigned long swapped; 891 892 /* Be careful as we don't hold info->lock */ 893 swapped = READ_ONCE(info->swapped); 894 895 /* 896 * The easier cases are when the shmem object has nothing in swap, or 897 * the vma maps it whole. Then we can simply use the stats that we 898 * already track. 899 */ 900 if (!swapped) 901 return 0; 902 903 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 904 return swapped << PAGE_SHIFT; 905 906 /* Here comes the more involved part */ 907 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 908 vma->vm_pgoff + vma_pages(vma)); 909 } 910 911 /* 912 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 913 */ 914 void shmem_unlock_mapping(struct address_space *mapping) 915 { 916 struct folio_batch fbatch; 917 pgoff_t index = 0; 918 919 folio_batch_init(&fbatch); 920 /* 921 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 922 */ 923 while (!mapping_unevictable(mapping) && 924 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 925 check_move_unevictable_folios(&fbatch); 926 folio_batch_release(&fbatch); 927 cond_resched(); 928 } 929 } 930 931 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 932 { 933 struct folio *folio; 934 935 /* 936 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 937 * beyond i_size, and reports fallocated folios as holes. 938 */ 939 folio = filemap_get_entry(inode->i_mapping, index); 940 if (!folio) 941 return folio; 942 if (!xa_is_value(folio)) { 943 folio_lock(folio); 944 if (folio->mapping == inode->i_mapping) 945 return folio; 946 /* The folio has been swapped out */ 947 folio_unlock(folio); 948 folio_put(folio); 949 } 950 /* 951 * But read a folio back from swap if any of it is within i_size 952 * (although in some cases this is just a waste of time). 953 */ 954 folio = NULL; 955 shmem_get_folio(inode, index, &folio, SGP_READ); 956 return folio; 957 } 958 959 /* 960 * Remove range of pages and swap entries from page cache, and free them. 961 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 962 */ 963 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 964 bool unfalloc) 965 { 966 struct address_space *mapping = inode->i_mapping; 967 struct shmem_inode_info *info = SHMEM_I(inode); 968 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 969 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 970 struct folio_batch fbatch; 971 pgoff_t indices[PAGEVEC_SIZE]; 972 struct folio *folio; 973 bool same_folio; 974 long nr_swaps_freed = 0; 975 pgoff_t index; 976 int i; 977 978 if (lend == -1) 979 end = -1; /* unsigned, so actually very big */ 980 981 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 982 info->fallocend = start; 983 984 folio_batch_init(&fbatch); 985 index = start; 986 while (index < end && find_lock_entries(mapping, &index, end - 1, 987 &fbatch, indices)) { 988 for (i = 0; i < folio_batch_count(&fbatch); i++) { 989 folio = fbatch.folios[i]; 990 991 if (xa_is_value(folio)) { 992 if (unfalloc) 993 continue; 994 nr_swaps_freed += !shmem_free_swap(mapping, 995 indices[i], folio); 996 continue; 997 } 998 999 if (!unfalloc || !folio_test_uptodate(folio)) 1000 truncate_inode_folio(mapping, folio); 1001 folio_unlock(folio); 1002 } 1003 folio_batch_remove_exceptionals(&fbatch); 1004 folio_batch_release(&fbatch); 1005 cond_resched(); 1006 } 1007 1008 /* 1009 * When undoing a failed fallocate, we want none of the partial folio 1010 * zeroing and splitting below, but shall want to truncate the whole 1011 * folio when !uptodate indicates that it was added by this fallocate, 1012 * even when [lstart, lend] covers only a part of the folio. 1013 */ 1014 if (unfalloc) 1015 goto whole_folios; 1016 1017 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1018 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1019 if (folio) { 1020 same_folio = lend < folio_pos(folio) + folio_size(folio); 1021 folio_mark_dirty(folio); 1022 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1023 start = folio_next_index(folio); 1024 if (same_folio) 1025 end = folio->index; 1026 } 1027 folio_unlock(folio); 1028 folio_put(folio); 1029 folio = NULL; 1030 } 1031 1032 if (!same_folio) 1033 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1034 if (folio) { 1035 folio_mark_dirty(folio); 1036 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1037 end = folio->index; 1038 folio_unlock(folio); 1039 folio_put(folio); 1040 } 1041 1042 whole_folios: 1043 1044 index = start; 1045 while (index < end) { 1046 cond_resched(); 1047 1048 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1049 indices)) { 1050 /* If all gone or hole-punch or unfalloc, we're done */ 1051 if (index == start || end != -1) 1052 break; 1053 /* But if truncating, restart to make sure all gone */ 1054 index = start; 1055 continue; 1056 } 1057 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1058 folio = fbatch.folios[i]; 1059 1060 if (xa_is_value(folio)) { 1061 if (unfalloc) 1062 continue; 1063 if (shmem_free_swap(mapping, indices[i], folio)) { 1064 /* Swap was replaced by page: retry */ 1065 index = indices[i]; 1066 break; 1067 } 1068 nr_swaps_freed++; 1069 continue; 1070 } 1071 1072 folio_lock(folio); 1073 1074 if (!unfalloc || !folio_test_uptodate(folio)) { 1075 if (folio_mapping(folio) != mapping) { 1076 /* Page was replaced by swap: retry */ 1077 folio_unlock(folio); 1078 index = indices[i]; 1079 break; 1080 } 1081 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1082 folio); 1083 1084 if (!folio_test_large(folio)) { 1085 truncate_inode_folio(mapping, folio); 1086 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1087 /* 1088 * If we split a page, reset the loop so 1089 * that we pick up the new sub pages. 1090 * Otherwise the THP was entirely 1091 * dropped or the target range was 1092 * zeroed, so just continue the loop as 1093 * is. 1094 */ 1095 if (!folio_test_large(folio)) { 1096 folio_unlock(folio); 1097 index = start; 1098 break; 1099 } 1100 } 1101 } 1102 folio_unlock(folio); 1103 } 1104 folio_batch_remove_exceptionals(&fbatch); 1105 folio_batch_release(&fbatch); 1106 } 1107 1108 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1109 } 1110 1111 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1112 { 1113 shmem_undo_range(inode, lstart, lend, false); 1114 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1115 inode_inc_iversion(inode); 1116 } 1117 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1118 1119 static int shmem_getattr(struct mnt_idmap *idmap, 1120 const struct path *path, struct kstat *stat, 1121 u32 request_mask, unsigned int query_flags) 1122 { 1123 struct inode *inode = path->dentry->d_inode; 1124 struct shmem_inode_info *info = SHMEM_I(inode); 1125 1126 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1127 shmem_recalc_inode(inode, 0, 0); 1128 1129 if (info->fsflags & FS_APPEND_FL) 1130 stat->attributes |= STATX_ATTR_APPEND; 1131 if (info->fsflags & FS_IMMUTABLE_FL) 1132 stat->attributes |= STATX_ATTR_IMMUTABLE; 1133 if (info->fsflags & FS_NODUMP_FL) 1134 stat->attributes |= STATX_ATTR_NODUMP; 1135 stat->attributes_mask |= (STATX_ATTR_APPEND | 1136 STATX_ATTR_IMMUTABLE | 1137 STATX_ATTR_NODUMP); 1138 generic_fillattr(idmap, request_mask, inode, stat); 1139 1140 if (shmem_is_huge(inode, 0, false, NULL, 0)) 1141 stat->blksize = HPAGE_PMD_SIZE; 1142 1143 if (request_mask & STATX_BTIME) { 1144 stat->result_mask |= STATX_BTIME; 1145 stat->btime.tv_sec = info->i_crtime.tv_sec; 1146 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1147 } 1148 1149 return 0; 1150 } 1151 1152 static int shmem_setattr(struct mnt_idmap *idmap, 1153 struct dentry *dentry, struct iattr *attr) 1154 { 1155 struct inode *inode = d_inode(dentry); 1156 struct shmem_inode_info *info = SHMEM_I(inode); 1157 int error; 1158 bool update_mtime = false; 1159 bool update_ctime = true; 1160 1161 error = setattr_prepare(idmap, dentry, attr); 1162 if (error) 1163 return error; 1164 1165 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1166 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1167 return -EPERM; 1168 } 1169 } 1170 1171 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1172 loff_t oldsize = inode->i_size; 1173 loff_t newsize = attr->ia_size; 1174 1175 /* protected by i_rwsem */ 1176 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1177 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1178 return -EPERM; 1179 1180 if (newsize != oldsize) { 1181 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1182 oldsize, newsize); 1183 if (error) 1184 return error; 1185 i_size_write(inode, newsize); 1186 update_mtime = true; 1187 } else { 1188 update_ctime = false; 1189 } 1190 if (newsize <= oldsize) { 1191 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1192 if (oldsize > holebegin) 1193 unmap_mapping_range(inode->i_mapping, 1194 holebegin, 0, 1); 1195 if (info->alloced) 1196 shmem_truncate_range(inode, 1197 newsize, (loff_t)-1); 1198 /* unmap again to remove racily COWed private pages */ 1199 if (oldsize > holebegin) 1200 unmap_mapping_range(inode->i_mapping, 1201 holebegin, 0, 1); 1202 } 1203 } 1204 1205 if (is_quota_modification(idmap, inode, attr)) { 1206 error = dquot_initialize(inode); 1207 if (error) 1208 return error; 1209 } 1210 1211 /* Transfer quota accounting */ 1212 if (i_uid_needs_update(idmap, attr, inode) || 1213 i_gid_needs_update(idmap, attr, inode)) { 1214 error = dquot_transfer(idmap, inode, attr); 1215 if (error) 1216 return error; 1217 } 1218 1219 setattr_copy(idmap, inode, attr); 1220 if (attr->ia_valid & ATTR_MODE) 1221 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1222 if (!error && update_ctime) { 1223 inode_set_ctime_current(inode); 1224 if (update_mtime) 1225 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1226 inode_inc_iversion(inode); 1227 } 1228 return error; 1229 } 1230 1231 static void shmem_evict_inode(struct inode *inode) 1232 { 1233 struct shmem_inode_info *info = SHMEM_I(inode); 1234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1235 size_t freed = 0; 1236 1237 if (shmem_mapping(inode->i_mapping)) { 1238 shmem_unacct_size(info->flags, inode->i_size); 1239 inode->i_size = 0; 1240 mapping_set_exiting(inode->i_mapping); 1241 shmem_truncate_range(inode, 0, (loff_t)-1); 1242 if (!list_empty(&info->shrinklist)) { 1243 spin_lock(&sbinfo->shrinklist_lock); 1244 if (!list_empty(&info->shrinklist)) { 1245 list_del_init(&info->shrinklist); 1246 sbinfo->shrinklist_len--; 1247 } 1248 spin_unlock(&sbinfo->shrinklist_lock); 1249 } 1250 while (!list_empty(&info->swaplist)) { 1251 /* Wait while shmem_unuse() is scanning this inode... */ 1252 wait_var_event(&info->stop_eviction, 1253 !atomic_read(&info->stop_eviction)); 1254 mutex_lock(&shmem_swaplist_mutex); 1255 /* ...but beware of the race if we peeked too early */ 1256 if (!atomic_read(&info->stop_eviction)) 1257 list_del_init(&info->swaplist); 1258 mutex_unlock(&shmem_swaplist_mutex); 1259 } 1260 } 1261 1262 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1263 shmem_free_inode(inode->i_sb, freed); 1264 WARN_ON(inode->i_blocks); 1265 clear_inode(inode); 1266 #ifdef CONFIG_TMPFS_QUOTA 1267 dquot_free_inode(inode); 1268 dquot_drop(inode); 1269 #endif 1270 } 1271 1272 static int shmem_find_swap_entries(struct address_space *mapping, 1273 pgoff_t start, struct folio_batch *fbatch, 1274 pgoff_t *indices, unsigned int type) 1275 { 1276 XA_STATE(xas, &mapping->i_pages, start); 1277 struct folio *folio; 1278 swp_entry_t entry; 1279 1280 rcu_read_lock(); 1281 xas_for_each(&xas, folio, ULONG_MAX) { 1282 if (xas_retry(&xas, folio)) 1283 continue; 1284 1285 if (!xa_is_value(folio)) 1286 continue; 1287 1288 entry = radix_to_swp_entry(folio); 1289 /* 1290 * swapin error entries can be found in the mapping. But they're 1291 * deliberately ignored here as we've done everything we can do. 1292 */ 1293 if (swp_type(entry) != type) 1294 continue; 1295 1296 indices[folio_batch_count(fbatch)] = xas.xa_index; 1297 if (!folio_batch_add(fbatch, folio)) 1298 break; 1299 1300 if (need_resched()) { 1301 xas_pause(&xas); 1302 cond_resched_rcu(); 1303 } 1304 } 1305 rcu_read_unlock(); 1306 1307 return xas.xa_index; 1308 } 1309 1310 /* 1311 * Move the swapped pages for an inode to page cache. Returns the count 1312 * of pages swapped in, or the error in case of failure. 1313 */ 1314 static int shmem_unuse_swap_entries(struct inode *inode, 1315 struct folio_batch *fbatch, pgoff_t *indices) 1316 { 1317 int i = 0; 1318 int ret = 0; 1319 int error = 0; 1320 struct address_space *mapping = inode->i_mapping; 1321 1322 for (i = 0; i < folio_batch_count(fbatch); i++) { 1323 struct folio *folio = fbatch->folios[i]; 1324 1325 if (!xa_is_value(folio)) 1326 continue; 1327 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1328 mapping_gfp_mask(mapping), NULL, NULL); 1329 if (error == 0) { 1330 folio_unlock(folio); 1331 folio_put(folio); 1332 ret++; 1333 } 1334 if (error == -ENOMEM) 1335 break; 1336 error = 0; 1337 } 1338 return error ? error : ret; 1339 } 1340 1341 /* 1342 * If swap found in inode, free it and move page from swapcache to filecache. 1343 */ 1344 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1345 { 1346 struct address_space *mapping = inode->i_mapping; 1347 pgoff_t start = 0; 1348 struct folio_batch fbatch; 1349 pgoff_t indices[PAGEVEC_SIZE]; 1350 int ret = 0; 1351 1352 do { 1353 folio_batch_init(&fbatch); 1354 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1355 if (folio_batch_count(&fbatch) == 0) { 1356 ret = 0; 1357 break; 1358 } 1359 1360 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1361 if (ret < 0) 1362 break; 1363 1364 start = indices[folio_batch_count(&fbatch) - 1]; 1365 } while (true); 1366 1367 return ret; 1368 } 1369 1370 /* 1371 * Read all the shared memory data that resides in the swap 1372 * device 'type' back into memory, so the swap device can be 1373 * unused. 1374 */ 1375 int shmem_unuse(unsigned int type) 1376 { 1377 struct shmem_inode_info *info, *next; 1378 int error = 0; 1379 1380 if (list_empty(&shmem_swaplist)) 1381 return 0; 1382 1383 mutex_lock(&shmem_swaplist_mutex); 1384 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1385 if (!info->swapped) { 1386 list_del_init(&info->swaplist); 1387 continue; 1388 } 1389 /* 1390 * Drop the swaplist mutex while searching the inode for swap; 1391 * but before doing so, make sure shmem_evict_inode() will not 1392 * remove placeholder inode from swaplist, nor let it be freed 1393 * (igrab() would protect from unlink, but not from unmount). 1394 */ 1395 atomic_inc(&info->stop_eviction); 1396 mutex_unlock(&shmem_swaplist_mutex); 1397 1398 error = shmem_unuse_inode(&info->vfs_inode, type); 1399 cond_resched(); 1400 1401 mutex_lock(&shmem_swaplist_mutex); 1402 next = list_next_entry(info, swaplist); 1403 if (!info->swapped) 1404 list_del_init(&info->swaplist); 1405 if (atomic_dec_and_test(&info->stop_eviction)) 1406 wake_up_var(&info->stop_eviction); 1407 if (error) 1408 break; 1409 } 1410 mutex_unlock(&shmem_swaplist_mutex); 1411 1412 return error; 1413 } 1414 1415 /* 1416 * Move the page from the page cache to the swap cache. 1417 */ 1418 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1419 { 1420 struct folio *folio = page_folio(page); 1421 struct address_space *mapping = folio->mapping; 1422 struct inode *inode = mapping->host; 1423 struct shmem_inode_info *info = SHMEM_I(inode); 1424 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1425 swp_entry_t swap; 1426 pgoff_t index; 1427 1428 /* 1429 * Our capabilities prevent regular writeback or sync from ever calling 1430 * shmem_writepage; but a stacking filesystem might use ->writepage of 1431 * its underlying filesystem, in which case tmpfs should write out to 1432 * swap only in response to memory pressure, and not for the writeback 1433 * threads or sync. 1434 */ 1435 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1436 goto redirty; 1437 1438 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap)) 1439 goto redirty; 1440 1441 if (!total_swap_pages) 1442 goto redirty; 1443 1444 /* 1445 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1446 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1447 * and its shmem_writeback() needs them to be split when swapping. 1448 */ 1449 if (folio_test_large(folio)) { 1450 /* Ensure the subpages are still dirty */ 1451 folio_test_set_dirty(folio); 1452 if (split_huge_page(page) < 0) 1453 goto redirty; 1454 folio = page_folio(page); 1455 folio_clear_dirty(folio); 1456 } 1457 1458 index = folio->index; 1459 1460 /* 1461 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1462 * value into swapfile.c, the only way we can correctly account for a 1463 * fallocated folio arriving here is now to initialize it and write it. 1464 * 1465 * That's okay for a folio already fallocated earlier, but if we have 1466 * not yet completed the fallocation, then (a) we want to keep track 1467 * of this folio in case we have to undo it, and (b) it may not be a 1468 * good idea to continue anyway, once we're pushing into swap. So 1469 * reactivate the folio, and let shmem_fallocate() quit when too many. 1470 */ 1471 if (!folio_test_uptodate(folio)) { 1472 if (inode->i_private) { 1473 struct shmem_falloc *shmem_falloc; 1474 spin_lock(&inode->i_lock); 1475 shmem_falloc = inode->i_private; 1476 if (shmem_falloc && 1477 !shmem_falloc->waitq && 1478 index >= shmem_falloc->start && 1479 index < shmem_falloc->next) 1480 shmem_falloc->nr_unswapped++; 1481 else 1482 shmem_falloc = NULL; 1483 spin_unlock(&inode->i_lock); 1484 if (shmem_falloc) 1485 goto redirty; 1486 } 1487 folio_zero_range(folio, 0, folio_size(folio)); 1488 flush_dcache_folio(folio); 1489 folio_mark_uptodate(folio); 1490 } 1491 1492 swap = folio_alloc_swap(folio); 1493 if (!swap.val) 1494 goto redirty; 1495 1496 /* 1497 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1498 * if it's not already there. Do it now before the folio is 1499 * moved to swap cache, when its pagelock no longer protects 1500 * the inode from eviction. But don't unlock the mutex until 1501 * we've incremented swapped, because shmem_unuse_inode() will 1502 * prune a !swapped inode from the swaplist under this mutex. 1503 */ 1504 mutex_lock(&shmem_swaplist_mutex); 1505 if (list_empty(&info->swaplist)) 1506 list_add(&info->swaplist, &shmem_swaplist); 1507 1508 if (add_to_swap_cache(folio, swap, 1509 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1510 NULL) == 0) { 1511 shmem_recalc_inode(inode, 0, 1); 1512 swap_shmem_alloc(swap); 1513 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1514 1515 mutex_unlock(&shmem_swaplist_mutex); 1516 BUG_ON(folio_mapped(folio)); 1517 swap_writepage(&folio->page, wbc); 1518 return 0; 1519 } 1520 1521 mutex_unlock(&shmem_swaplist_mutex); 1522 put_swap_folio(folio, swap); 1523 redirty: 1524 folio_mark_dirty(folio); 1525 if (wbc->for_reclaim) 1526 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1527 folio_unlock(folio); 1528 return 0; 1529 } 1530 1531 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1532 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1533 { 1534 char buffer[64]; 1535 1536 if (!mpol || mpol->mode == MPOL_DEFAULT) 1537 return; /* show nothing */ 1538 1539 mpol_to_str(buffer, sizeof(buffer), mpol); 1540 1541 seq_printf(seq, ",mpol=%s", buffer); 1542 } 1543 1544 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1545 { 1546 struct mempolicy *mpol = NULL; 1547 if (sbinfo->mpol) { 1548 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1549 mpol = sbinfo->mpol; 1550 mpol_get(mpol); 1551 raw_spin_unlock(&sbinfo->stat_lock); 1552 } 1553 return mpol; 1554 } 1555 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1556 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1557 { 1558 } 1559 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1560 { 1561 return NULL; 1562 } 1563 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1564 1565 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1566 pgoff_t index, unsigned int order, pgoff_t *ilx); 1567 1568 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1569 struct shmem_inode_info *info, pgoff_t index) 1570 { 1571 struct mempolicy *mpol; 1572 pgoff_t ilx; 1573 struct page *page; 1574 1575 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1576 page = swap_cluster_readahead(swap, gfp, mpol, ilx); 1577 mpol_cond_put(mpol); 1578 1579 if (!page) 1580 return NULL; 1581 return page_folio(page); 1582 } 1583 1584 /* 1585 * Make sure huge_gfp is always more limited than limit_gfp. 1586 * Some of the flags set permissions, while others set limitations. 1587 */ 1588 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1589 { 1590 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1591 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1592 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1593 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1594 1595 /* Allow allocations only from the originally specified zones. */ 1596 result |= zoneflags; 1597 1598 /* 1599 * Minimize the result gfp by taking the union with the deny flags, 1600 * and the intersection of the allow flags. 1601 */ 1602 result |= (limit_gfp & denyflags); 1603 result |= (huge_gfp & limit_gfp) & allowflags; 1604 1605 return result; 1606 } 1607 1608 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1609 struct shmem_inode_info *info, pgoff_t index) 1610 { 1611 struct mempolicy *mpol; 1612 pgoff_t ilx; 1613 struct page *page; 1614 1615 mpol = shmem_get_pgoff_policy(info, index, HPAGE_PMD_ORDER, &ilx); 1616 page = alloc_pages_mpol(gfp, HPAGE_PMD_ORDER, mpol, ilx, numa_node_id()); 1617 mpol_cond_put(mpol); 1618 1619 return page_rmappable_folio(page); 1620 } 1621 1622 static struct folio *shmem_alloc_folio(gfp_t gfp, 1623 struct shmem_inode_info *info, pgoff_t index) 1624 { 1625 struct mempolicy *mpol; 1626 pgoff_t ilx; 1627 struct page *page; 1628 1629 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1630 page = alloc_pages_mpol(gfp, 0, mpol, ilx, numa_node_id()); 1631 mpol_cond_put(mpol); 1632 1633 return (struct folio *)page; 1634 } 1635 1636 static struct folio *shmem_alloc_and_add_folio(gfp_t gfp, 1637 struct inode *inode, pgoff_t index, 1638 struct mm_struct *fault_mm, bool huge) 1639 { 1640 struct address_space *mapping = inode->i_mapping; 1641 struct shmem_inode_info *info = SHMEM_I(inode); 1642 struct folio *folio; 1643 long pages; 1644 int error; 1645 1646 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1647 huge = false; 1648 1649 if (huge) { 1650 pages = HPAGE_PMD_NR; 1651 index = round_down(index, HPAGE_PMD_NR); 1652 1653 /* 1654 * Check for conflict before waiting on a huge allocation. 1655 * Conflict might be that a huge page has just been allocated 1656 * and added to page cache by a racing thread, or that there 1657 * is already at least one small page in the huge extent. 1658 * Be careful to retry when appropriate, but not forever! 1659 * Elsewhere -EEXIST would be the right code, but not here. 1660 */ 1661 if (xa_find(&mapping->i_pages, &index, 1662 index + HPAGE_PMD_NR - 1, XA_PRESENT)) 1663 return ERR_PTR(-E2BIG); 1664 1665 folio = shmem_alloc_hugefolio(gfp, info, index); 1666 if (!folio) 1667 count_vm_event(THP_FILE_FALLBACK); 1668 } else { 1669 pages = 1; 1670 folio = shmem_alloc_folio(gfp, info, index); 1671 } 1672 if (!folio) 1673 return ERR_PTR(-ENOMEM); 1674 1675 __folio_set_locked(folio); 1676 __folio_set_swapbacked(folio); 1677 1678 gfp &= GFP_RECLAIM_MASK; 1679 error = mem_cgroup_charge(folio, fault_mm, gfp); 1680 if (error) { 1681 if (xa_find(&mapping->i_pages, &index, 1682 index + pages - 1, XA_PRESENT)) { 1683 error = -EEXIST; 1684 } else if (huge) { 1685 count_vm_event(THP_FILE_FALLBACK); 1686 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1687 } 1688 goto unlock; 1689 } 1690 1691 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1692 if (error) 1693 goto unlock; 1694 1695 error = shmem_inode_acct_blocks(inode, pages); 1696 if (error) { 1697 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1698 long freed; 1699 /* 1700 * Try to reclaim some space by splitting a few 1701 * large folios beyond i_size on the filesystem. 1702 */ 1703 shmem_unused_huge_shrink(sbinfo, NULL, 2); 1704 /* 1705 * And do a shmem_recalc_inode() to account for freed pages: 1706 * except our folio is there in cache, so not quite balanced. 1707 */ 1708 spin_lock(&info->lock); 1709 freed = pages + info->alloced - info->swapped - 1710 READ_ONCE(mapping->nrpages); 1711 if (freed > 0) 1712 info->alloced -= freed; 1713 spin_unlock(&info->lock); 1714 if (freed > 0) 1715 shmem_inode_unacct_blocks(inode, freed); 1716 error = shmem_inode_acct_blocks(inode, pages); 1717 if (error) { 1718 filemap_remove_folio(folio); 1719 goto unlock; 1720 } 1721 } 1722 1723 shmem_recalc_inode(inode, pages, 0); 1724 folio_add_lru(folio); 1725 return folio; 1726 1727 unlock: 1728 folio_unlock(folio); 1729 folio_put(folio); 1730 return ERR_PTR(error); 1731 } 1732 1733 /* 1734 * When a page is moved from swapcache to shmem filecache (either by the 1735 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1736 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1737 * ignorance of the mapping it belongs to. If that mapping has special 1738 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1739 * we may need to copy to a suitable page before moving to filecache. 1740 * 1741 * In a future release, this may well be extended to respect cpuset and 1742 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1743 * but for now it is a simple matter of zone. 1744 */ 1745 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1746 { 1747 return folio_zonenum(folio) > gfp_zone(gfp); 1748 } 1749 1750 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1751 struct shmem_inode_info *info, pgoff_t index) 1752 { 1753 struct folio *old, *new; 1754 struct address_space *swap_mapping; 1755 swp_entry_t entry; 1756 pgoff_t swap_index; 1757 int error; 1758 1759 old = *foliop; 1760 entry = old->swap; 1761 swap_index = swp_offset(entry); 1762 swap_mapping = swap_address_space(entry); 1763 1764 /* 1765 * We have arrived here because our zones are constrained, so don't 1766 * limit chance of success by further cpuset and node constraints. 1767 */ 1768 gfp &= ~GFP_CONSTRAINT_MASK; 1769 VM_BUG_ON_FOLIO(folio_test_large(old), old); 1770 new = shmem_alloc_folio(gfp, info, index); 1771 if (!new) 1772 return -ENOMEM; 1773 1774 folio_get(new); 1775 folio_copy(new, old); 1776 flush_dcache_folio(new); 1777 1778 __folio_set_locked(new); 1779 __folio_set_swapbacked(new); 1780 folio_mark_uptodate(new); 1781 new->swap = entry; 1782 folio_set_swapcache(new); 1783 1784 /* 1785 * Our caller will very soon move newpage out of swapcache, but it's 1786 * a nice clean interface for us to replace oldpage by newpage there. 1787 */ 1788 xa_lock_irq(&swap_mapping->i_pages); 1789 error = shmem_replace_entry(swap_mapping, swap_index, old, new); 1790 if (!error) { 1791 mem_cgroup_migrate(old, new); 1792 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1); 1793 __lruvec_stat_mod_folio(new, NR_SHMEM, 1); 1794 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1); 1795 __lruvec_stat_mod_folio(old, NR_SHMEM, -1); 1796 } 1797 xa_unlock_irq(&swap_mapping->i_pages); 1798 1799 if (unlikely(error)) { 1800 /* 1801 * Is this possible? I think not, now that our callers check 1802 * both PageSwapCache and page_private after getting page lock; 1803 * but be defensive. Reverse old to newpage for clear and free. 1804 */ 1805 old = new; 1806 } else { 1807 folio_add_lru(new); 1808 *foliop = new; 1809 } 1810 1811 folio_clear_swapcache(old); 1812 old->private = NULL; 1813 1814 folio_unlock(old); 1815 folio_put_refs(old, 2); 1816 return error; 1817 } 1818 1819 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1820 struct folio *folio, swp_entry_t swap) 1821 { 1822 struct address_space *mapping = inode->i_mapping; 1823 swp_entry_t swapin_error; 1824 void *old; 1825 1826 swapin_error = make_poisoned_swp_entry(); 1827 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1828 swp_to_radix_entry(swap), 1829 swp_to_radix_entry(swapin_error), 0); 1830 if (old != swp_to_radix_entry(swap)) 1831 return; 1832 1833 folio_wait_writeback(folio); 1834 delete_from_swap_cache(folio); 1835 /* 1836 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 1837 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 1838 * in shmem_evict_inode(). 1839 */ 1840 shmem_recalc_inode(inode, -1, -1); 1841 swap_free(swap); 1842 } 1843 1844 /* 1845 * Swap in the folio pointed to by *foliop. 1846 * Caller has to make sure that *foliop contains a valid swapped folio. 1847 * Returns 0 and the folio in foliop if success. On failure, returns the 1848 * error code and NULL in *foliop. 1849 */ 1850 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1851 struct folio **foliop, enum sgp_type sgp, 1852 gfp_t gfp, struct mm_struct *fault_mm, 1853 vm_fault_t *fault_type) 1854 { 1855 struct address_space *mapping = inode->i_mapping; 1856 struct shmem_inode_info *info = SHMEM_I(inode); 1857 struct swap_info_struct *si; 1858 struct folio *folio = NULL; 1859 swp_entry_t swap; 1860 int error; 1861 1862 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1863 swap = radix_to_swp_entry(*foliop); 1864 *foliop = NULL; 1865 1866 if (is_poisoned_swp_entry(swap)) 1867 return -EIO; 1868 1869 si = get_swap_device(swap); 1870 if (!si) { 1871 if (!shmem_confirm_swap(mapping, index, swap)) 1872 return -EEXIST; 1873 else 1874 return -EINVAL; 1875 } 1876 1877 /* Look it up and read it in.. */ 1878 folio = swap_cache_get_folio(swap, NULL, 0); 1879 if (!folio) { 1880 /* Or update major stats only when swapin succeeds?? */ 1881 if (fault_type) { 1882 *fault_type |= VM_FAULT_MAJOR; 1883 count_vm_event(PGMAJFAULT); 1884 count_memcg_event_mm(fault_mm, PGMAJFAULT); 1885 } 1886 /* Here we actually start the io */ 1887 folio = shmem_swapin_cluster(swap, gfp, info, index); 1888 if (!folio) { 1889 error = -ENOMEM; 1890 goto failed; 1891 } 1892 } 1893 1894 /* We have to do this with folio locked to prevent races */ 1895 folio_lock(folio); 1896 if (!folio_test_swapcache(folio) || 1897 folio->swap.val != swap.val || 1898 !shmem_confirm_swap(mapping, index, swap)) { 1899 error = -EEXIST; 1900 goto unlock; 1901 } 1902 if (!folio_test_uptodate(folio)) { 1903 error = -EIO; 1904 goto failed; 1905 } 1906 folio_wait_writeback(folio); 1907 1908 /* 1909 * Some architectures may have to restore extra metadata to the 1910 * folio after reading from swap. 1911 */ 1912 arch_swap_restore(swap, folio); 1913 1914 if (shmem_should_replace_folio(folio, gfp)) { 1915 error = shmem_replace_folio(&folio, gfp, info, index); 1916 if (error) 1917 goto failed; 1918 } 1919 1920 error = shmem_add_to_page_cache(folio, mapping, index, 1921 swp_to_radix_entry(swap), gfp); 1922 if (error) 1923 goto failed; 1924 1925 shmem_recalc_inode(inode, 0, -1); 1926 1927 if (sgp == SGP_WRITE) 1928 folio_mark_accessed(folio); 1929 1930 delete_from_swap_cache(folio); 1931 folio_mark_dirty(folio); 1932 swap_free(swap); 1933 put_swap_device(si); 1934 1935 *foliop = folio; 1936 return 0; 1937 failed: 1938 if (!shmem_confirm_swap(mapping, index, swap)) 1939 error = -EEXIST; 1940 if (error == -EIO) 1941 shmem_set_folio_swapin_error(inode, index, folio, swap); 1942 unlock: 1943 if (folio) { 1944 folio_unlock(folio); 1945 folio_put(folio); 1946 } 1947 put_swap_device(si); 1948 1949 return error; 1950 } 1951 1952 /* 1953 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 1954 * 1955 * If we allocate a new one we do not mark it dirty. That's up to the 1956 * vm. If we swap it in we mark it dirty since we also free the swap 1957 * entry since a page cannot live in both the swap and page cache. 1958 * 1959 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 1960 */ 1961 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 1962 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 1963 struct vm_fault *vmf, vm_fault_t *fault_type) 1964 { 1965 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1966 struct mm_struct *fault_mm; 1967 struct folio *folio; 1968 int error; 1969 bool alloced; 1970 1971 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1972 return -EFBIG; 1973 repeat: 1974 if (sgp <= SGP_CACHE && 1975 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 1976 return -EINVAL; 1977 1978 alloced = false; 1979 fault_mm = vma ? vma->vm_mm : NULL; 1980 1981 folio = filemap_get_entry(inode->i_mapping, index); 1982 if (folio && vma && userfaultfd_minor(vma)) { 1983 if (!xa_is_value(folio)) 1984 folio_put(folio); 1985 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1986 return 0; 1987 } 1988 1989 if (xa_is_value(folio)) { 1990 error = shmem_swapin_folio(inode, index, &folio, 1991 sgp, gfp, fault_mm, fault_type); 1992 if (error == -EEXIST) 1993 goto repeat; 1994 1995 *foliop = folio; 1996 return error; 1997 } 1998 1999 if (folio) { 2000 folio_lock(folio); 2001 2002 /* Has the folio been truncated or swapped out? */ 2003 if (unlikely(folio->mapping != inode->i_mapping)) { 2004 folio_unlock(folio); 2005 folio_put(folio); 2006 goto repeat; 2007 } 2008 if (sgp == SGP_WRITE) 2009 folio_mark_accessed(folio); 2010 if (folio_test_uptodate(folio)) 2011 goto out; 2012 /* fallocated folio */ 2013 if (sgp != SGP_READ) 2014 goto clear; 2015 folio_unlock(folio); 2016 folio_put(folio); 2017 } 2018 2019 /* 2020 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2021 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2022 */ 2023 *foliop = NULL; 2024 if (sgp == SGP_READ) 2025 return 0; 2026 if (sgp == SGP_NOALLOC) 2027 return -ENOENT; 2028 2029 /* 2030 * Fast cache lookup and swap lookup did not find it: allocate. 2031 */ 2032 2033 if (vma && userfaultfd_missing(vma)) { 2034 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2035 return 0; 2036 } 2037 2038 if (shmem_is_huge(inode, index, false, fault_mm, 2039 vma ? vma->vm_flags : 0)) { 2040 gfp_t huge_gfp; 2041 2042 huge_gfp = vma_thp_gfp_mask(vma); 2043 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2044 folio = shmem_alloc_and_add_folio(huge_gfp, 2045 inode, index, fault_mm, true); 2046 if (!IS_ERR(folio)) { 2047 count_vm_event(THP_FILE_ALLOC); 2048 goto alloced; 2049 } 2050 if (PTR_ERR(folio) == -EEXIST) 2051 goto repeat; 2052 } 2053 2054 folio = shmem_alloc_and_add_folio(gfp, inode, index, fault_mm, false); 2055 if (IS_ERR(folio)) { 2056 error = PTR_ERR(folio); 2057 if (error == -EEXIST) 2058 goto repeat; 2059 folio = NULL; 2060 goto unlock; 2061 } 2062 2063 alloced: 2064 alloced = true; 2065 if (folio_test_pmd_mappable(folio) && 2066 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2067 folio_next_index(folio) - 1) { 2068 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2069 struct shmem_inode_info *info = SHMEM_I(inode); 2070 /* 2071 * Part of the large folio is beyond i_size: subject 2072 * to shrink under memory pressure. 2073 */ 2074 spin_lock(&sbinfo->shrinklist_lock); 2075 /* 2076 * _careful to defend against unlocked access to 2077 * ->shrink_list in shmem_unused_huge_shrink() 2078 */ 2079 if (list_empty_careful(&info->shrinklist)) { 2080 list_add_tail(&info->shrinklist, 2081 &sbinfo->shrinklist); 2082 sbinfo->shrinklist_len++; 2083 } 2084 spin_unlock(&sbinfo->shrinklist_lock); 2085 } 2086 2087 if (sgp == SGP_WRITE) 2088 folio_set_referenced(folio); 2089 /* 2090 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2091 */ 2092 if (sgp == SGP_FALLOC) 2093 sgp = SGP_WRITE; 2094 clear: 2095 /* 2096 * Let SGP_WRITE caller clear ends if write does not fill folio; 2097 * but SGP_FALLOC on a folio fallocated earlier must initialize 2098 * it now, lest undo on failure cancel our earlier guarantee. 2099 */ 2100 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2101 long i, n = folio_nr_pages(folio); 2102 2103 for (i = 0; i < n; i++) 2104 clear_highpage(folio_page(folio, i)); 2105 flush_dcache_folio(folio); 2106 folio_mark_uptodate(folio); 2107 } 2108 2109 /* Perhaps the file has been truncated since we checked */ 2110 if (sgp <= SGP_CACHE && 2111 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2112 error = -EINVAL; 2113 goto unlock; 2114 } 2115 out: 2116 *foliop = folio; 2117 return 0; 2118 2119 /* 2120 * Error recovery. 2121 */ 2122 unlock: 2123 if (alloced) 2124 filemap_remove_folio(folio); 2125 shmem_recalc_inode(inode, 0, 0); 2126 if (folio) { 2127 folio_unlock(folio); 2128 folio_put(folio); 2129 } 2130 return error; 2131 } 2132 2133 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop, 2134 enum sgp_type sgp) 2135 { 2136 return shmem_get_folio_gfp(inode, index, foliop, sgp, 2137 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2138 } 2139 2140 /* 2141 * This is like autoremove_wake_function, but it removes the wait queue 2142 * entry unconditionally - even if something else had already woken the 2143 * target. 2144 */ 2145 static int synchronous_wake_function(wait_queue_entry_t *wait, 2146 unsigned int mode, int sync, void *key) 2147 { 2148 int ret = default_wake_function(wait, mode, sync, key); 2149 list_del_init(&wait->entry); 2150 return ret; 2151 } 2152 2153 /* 2154 * Trinity finds that probing a hole which tmpfs is punching can 2155 * prevent the hole-punch from ever completing: which in turn 2156 * locks writers out with its hold on i_rwsem. So refrain from 2157 * faulting pages into the hole while it's being punched. Although 2158 * shmem_undo_range() does remove the additions, it may be unable to 2159 * keep up, as each new page needs its own unmap_mapping_range() call, 2160 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2161 * 2162 * It does not matter if we sometimes reach this check just before the 2163 * hole-punch begins, so that one fault then races with the punch: 2164 * we just need to make racing faults a rare case. 2165 * 2166 * The implementation below would be much simpler if we just used a 2167 * standard mutex or completion: but we cannot take i_rwsem in fault, 2168 * and bloating every shmem inode for this unlikely case would be sad. 2169 */ 2170 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2171 { 2172 struct shmem_falloc *shmem_falloc; 2173 struct file *fpin = NULL; 2174 vm_fault_t ret = 0; 2175 2176 spin_lock(&inode->i_lock); 2177 shmem_falloc = inode->i_private; 2178 if (shmem_falloc && 2179 shmem_falloc->waitq && 2180 vmf->pgoff >= shmem_falloc->start && 2181 vmf->pgoff < shmem_falloc->next) { 2182 wait_queue_head_t *shmem_falloc_waitq; 2183 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2184 2185 ret = VM_FAULT_NOPAGE; 2186 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2187 shmem_falloc_waitq = shmem_falloc->waitq; 2188 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2189 TASK_UNINTERRUPTIBLE); 2190 spin_unlock(&inode->i_lock); 2191 schedule(); 2192 2193 /* 2194 * shmem_falloc_waitq points into the shmem_fallocate() 2195 * stack of the hole-punching task: shmem_falloc_waitq 2196 * is usually invalid by the time we reach here, but 2197 * finish_wait() does not dereference it in that case; 2198 * though i_lock needed lest racing with wake_up_all(). 2199 */ 2200 spin_lock(&inode->i_lock); 2201 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2202 } 2203 spin_unlock(&inode->i_lock); 2204 if (fpin) { 2205 fput(fpin); 2206 ret = VM_FAULT_RETRY; 2207 } 2208 return ret; 2209 } 2210 2211 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2212 { 2213 struct inode *inode = file_inode(vmf->vma->vm_file); 2214 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2215 struct folio *folio = NULL; 2216 vm_fault_t ret = 0; 2217 int err; 2218 2219 /* 2220 * Trinity finds that probing a hole which tmpfs is punching can 2221 * prevent the hole-punch from ever completing: noted in i_private. 2222 */ 2223 if (unlikely(inode->i_private)) { 2224 ret = shmem_falloc_wait(vmf, inode); 2225 if (ret) 2226 return ret; 2227 } 2228 2229 WARN_ON_ONCE(vmf->page != NULL); 2230 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, 2231 gfp, vmf, &ret); 2232 if (err) 2233 return vmf_error(err); 2234 if (folio) { 2235 vmf->page = folio_file_page(folio, vmf->pgoff); 2236 ret |= VM_FAULT_LOCKED; 2237 } 2238 return ret; 2239 } 2240 2241 unsigned long shmem_get_unmapped_area(struct file *file, 2242 unsigned long uaddr, unsigned long len, 2243 unsigned long pgoff, unsigned long flags) 2244 { 2245 unsigned long (*get_area)(struct file *, 2246 unsigned long, unsigned long, unsigned long, unsigned long); 2247 unsigned long addr; 2248 unsigned long offset; 2249 unsigned long inflated_len; 2250 unsigned long inflated_addr; 2251 unsigned long inflated_offset; 2252 2253 if (len > TASK_SIZE) 2254 return -ENOMEM; 2255 2256 get_area = current->mm->get_unmapped_area; 2257 addr = get_area(file, uaddr, len, pgoff, flags); 2258 2259 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2260 return addr; 2261 if (IS_ERR_VALUE(addr)) 2262 return addr; 2263 if (addr & ~PAGE_MASK) 2264 return addr; 2265 if (addr > TASK_SIZE - len) 2266 return addr; 2267 2268 if (shmem_huge == SHMEM_HUGE_DENY) 2269 return addr; 2270 if (len < HPAGE_PMD_SIZE) 2271 return addr; 2272 if (flags & MAP_FIXED) 2273 return addr; 2274 /* 2275 * Our priority is to support MAP_SHARED mapped hugely; 2276 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2277 * But if caller specified an address hint and we allocated area there 2278 * successfully, respect that as before. 2279 */ 2280 if (uaddr == addr) 2281 return addr; 2282 2283 if (shmem_huge != SHMEM_HUGE_FORCE) { 2284 struct super_block *sb; 2285 2286 if (file) { 2287 VM_BUG_ON(file->f_op != &shmem_file_operations); 2288 sb = file_inode(file)->i_sb; 2289 } else { 2290 /* 2291 * Called directly from mm/mmap.c, or drivers/char/mem.c 2292 * for "/dev/zero", to create a shared anonymous object. 2293 */ 2294 if (IS_ERR(shm_mnt)) 2295 return addr; 2296 sb = shm_mnt->mnt_sb; 2297 } 2298 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2299 return addr; 2300 } 2301 2302 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2303 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2304 return addr; 2305 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2306 return addr; 2307 2308 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2309 if (inflated_len > TASK_SIZE) 2310 return addr; 2311 if (inflated_len < len) 2312 return addr; 2313 2314 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2315 if (IS_ERR_VALUE(inflated_addr)) 2316 return addr; 2317 if (inflated_addr & ~PAGE_MASK) 2318 return addr; 2319 2320 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2321 inflated_addr += offset - inflated_offset; 2322 if (inflated_offset > offset) 2323 inflated_addr += HPAGE_PMD_SIZE; 2324 2325 if (inflated_addr > TASK_SIZE - len) 2326 return addr; 2327 return inflated_addr; 2328 } 2329 2330 #ifdef CONFIG_NUMA 2331 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2332 { 2333 struct inode *inode = file_inode(vma->vm_file); 2334 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2335 } 2336 2337 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2338 unsigned long addr, pgoff_t *ilx) 2339 { 2340 struct inode *inode = file_inode(vma->vm_file); 2341 pgoff_t index; 2342 2343 /* 2344 * Bias interleave by inode number to distribute better across nodes; 2345 * but this interface is independent of which page order is used, so 2346 * supplies only that bias, letting caller apply the offset (adjusted 2347 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2348 */ 2349 *ilx = inode->i_ino; 2350 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2351 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2352 } 2353 2354 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2355 pgoff_t index, unsigned int order, pgoff_t *ilx) 2356 { 2357 struct mempolicy *mpol; 2358 2359 /* Bias interleave by inode number to distribute better across nodes */ 2360 *ilx = info->vfs_inode.i_ino + (index >> order); 2361 2362 mpol = mpol_shared_policy_lookup(&info->policy, index); 2363 return mpol ? mpol : get_task_policy(current); 2364 } 2365 #else 2366 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2367 pgoff_t index, unsigned int order, pgoff_t *ilx) 2368 { 2369 *ilx = 0; 2370 return NULL; 2371 } 2372 #endif /* CONFIG_NUMA */ 2373 2374 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2375 { 2376 struct inode *inode = file_inode(file); 2377 struct shmem_inode_info *info = SHMEM_I(inode); 2378 int retval = -ENOMEM; 2379 2380 /* 2381 * What serializes the accesses to info->flags? 2382 * ipc_lock_object() when called from shmctl_do_lock(), 2383 * no serialization needed when called from shm_destroy(). 2384 */ 2385 if (lock && !(info->flags & VM_LOCKED)) { 2386 if (!user_shm_lock(inode->i_size, ucounts)) 2387 goto out_nomem; 2388 info->flags |= VM_LOCKED; 2389 mapping_set_unevictable(file->f_mapping); 2390 } 2391 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2392 user_shm_unlock(inode->i_size, ucounts); 2393 info->flags &= ~VM_LOCKED; 2394 mapping_clear_unevictable(file->f_mapping); 2395 } 2396 retval = 0; 2397 2398 out_nomem: 2399 return retval; 2400 } 2401 2402 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2403 { 2404 struct inode *inode = file_inode(file); 2405 struct shmem_inode_info *info = SHMEM_I(inode); 2406 int ret; 2407 2408 ret = seal_check_write(info->seals, vma); 2409 if (ret) 2410 return ret; 2411 2412 /* arm64 - allow memory tagging on RAM-based files */ 2413 vm_flags_set(vma, VM_MTE_ALLOWED); 2414 2415 file_accessed(file); 2416 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2417 if (inode->i_nlink) 2418 vma->vm_ops = &shmem_vm_ops; 2419 else 2420 vma->vm_ops = &shmem_anon_vm_ops; 2421 return 0; 2422 } 2423 2424 static int shmem_file_open(struct inode *inode, struct file *file) 2425 { 2426 file->f_mode |= FMODE_CAN_ODIRECT; 2427 return generic_file_open(inode, file); 2428 } 2429 2430 #ifdef CONFIG_TMPFS_XATTR 2431 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2432 2433 /* 2434 * chattr's fsflags are unrelated to extended attributes, 2435 * but tmpfs has chosen to enable them under the same config option. 2436 */ 2437 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2438 { 2439 unsigned int i_flags = 0; 2440 2441 if (fsflags & FS_NOATIME_FL) 2442 i_flags |= S_NOATIME; 2443 if (fsflags & FS_APPEND_FL) 2444 i_flags |= S_APPEND; 2445 if (fsflags & FS_IMMUTABLE_FL) 2446 i_flags |= S_IMMUTABLE; 2447 /* 2448 * But FS_NODUMP_FL does not require any action in i_flags. 2449 */ 2450 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2451 } 2452 #else 2453 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2454 { 2455 } 2456 #define shmem_initxattrs NULL 2457 #endif 2458 2459 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 2460 { 2461 return &SHMEM_I(inode)->dir_offsets; 2462 } 2463 2464 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 2465 struct super_block *sb, 2466 struct inode *dir, umode_t mode, 2467 dev_t dev, unsigned long flags) 2468 { 2469 struct inode *inode; 2470 struct shmem_inode_info *info; 2471 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2472 ino_t ino; 2473 int err; 2474 2475 err = shmem_reserve_inode(sb, &ino); 2476 if (err) 2477 return ERR_PTR(err); 2478 2479 inode = new_inode(sb); 2480 if (!inode) { 2481 shmem_free_inode(sb, 0); 2482 return ERR_PTR(-ENOSPC); 2483 } 2484 2485 inode->i_ino = ino; 2486 inode_init_owner(idmap, inode, dir, mode); 2487 inode->i_blocks = 0; 2488 simple_inode_init_ts(inode); 2489 inode->i_generation = get_random_u32(); 2490 info = SHMEM_I(inode); 2491 memset(info, 0, (char *)inode - (char *)info); 2492 spin_lock_init(&info->lock); 2493 atomic_set(&info->stop_eviction, 0); 2494 info->seals = F_SEAL_SEAL; 2495 info->flags = flags & VM_NORESERVE; 2496 info->i_crtime = inode_get_mtime(inode); 2497 info->fsflags = (dir == NULL) ? 0 : 2498 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2499 if (info->fsflags) 2500 shmem_set_inode_flags(inode, info->fsflags); 2501 INIT_LIST_HEAD(&info->shrinklist); 2502 INIT_LIST_HEAD(&info->swaplist); 2503 simple_xattrs_init(&info->xattrs); 2504 cache_no_acl(inode); 2505 if (sbinfo->noswap) 2506 mapping_set_unevictable(inode->i_mapping); 2507 mapping_set_large_folios(inode->i_mapping); 2508 2509 switch (mode & S_IFMT) { 2510 default: 2511 inode->i_op = &shmem_special_inode_operations; 2512 init_special_inode(inode, mode, dev); 2513 break; 2514 case S_IFREG: 2515 inode->i_mapping->a_ops = &shmem_aops; 2516 inode->i_op = &shmem_inode_operations; 2517 inode->i_fop = &shmem_file_operations; 2518 mpol_shared_policy_init(&info->policy, 2519 shmem_get_sbmpol(sbinfo)); 2520 break; 2521 case S_IFDIR: 2522 inc_nlink(inode); 2523 /* Some things misbehave if size == 0 on a directory */ 2524 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2525 inode->i_op = &shmem_dir_inode_operations; 2526 inode->i_fop = &simple_offset_dir_operations; 2527 simple_offset_init(shmem_get_offset_ctx(inode)); 2528 break; 2529 case S_IFLNK: 2530 /* 2531 * Must not load anything in the rbtree, 2532 * mpol_free_shared_policy will not be called. 2533 */ 2534 mpol_shared_policy_init(&info->policy, NULL); 2535 break; 2536 } 2537 2538 lockdep_annotate_inode_mutex_key(inode); 2539 return inode; 2540 } 2541 2542 #ifdef CONFIG_TMPFS_QUOTA 2543 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2544 struct super_block *sb, struct inode *dir, 2545 umode_t mode, dev_t dev, unsigned long flags) 2546 { 2547 int err; 2548 struct inode *inode; 2549 2550 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2551 if (IS_ERR(inode)) 2552 return inode; 2553 2554 err = dquot_initialize(inode); 2555 if (err) 2556 goto errout; 2557 2558 err = dquot_alloc_inode(inode); 2559 if (err) { 2560 dquot_drop(inode); 2561 goto errout; 2562 } 2563 return inode; 2564 2565 errout: 2566 inode->i_flags |= S_NOQUOTA; 2567 iput(inode); 2568 return ERR_PTR(err); 2569 } 2570 #else 2571 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2572 struct super_block *sb, struct inode *dir, 2573 umode_t mode, dev_t dev, unsigned long flags) 2574 { 2575 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2576 } 2577 #endif /* CONFIG_TMPFS_QUOTA */ 2578 2579 #ifdef CONFIG_USERFAULTFD 2580 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 2581 struct vm_area_struct *dst_vma, 2582 unsigned long dst_addr, 2583 unsigned long src_addr, 2584 uffd_flags_t flags, 2585 struct folio **foliop) 2586 { 2587 struct inode *inode = file_inode(dst_vma->vm_file); 2588 struct shmem_inode_info *info = SHMEM_I(inode); 2589 struct address_space *mapping = inode->i_mapping; 2590 gfp_t gfp = mapping_gfp_mask(mapping); 2591 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2592 void *page_kaddr; 2593 struct folio *folio; 2594 int ret; 2595 pgoff_t max_off; 2596 2597 if (shmem_inode_acct_blocks(inode, 1)) { 2598 /* 2599 * We may have got a page, returned -ENOENT triggering a retry, 2600 * and now we find ourselves with -ENOMEM. Release the page, to 2601 * avoid a BUG_ON in our caller. 2602 */ 2603 if (unlikely(*foliop)) { 2604 folio_put(*foliop); 2605 *foliop = NULL; 2606 } 2607 return -ENOMEM; 2608 } 2609 2610 if (!*foliop) { 2611 ret = -ENOMEM; 2612 folio = shmem_alloc_folio(gfp, info, pgoff); 2613 if (!folio) 2614 goto out_unacct_blocks; 2615 2616 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 2617 page_kaddr = kmap_local_folio(folio, 0); 2618 /* 2619 * The read mmap_lock is held here. Despite the 2620 * mmap_lock being read recursive a deadlock is still 2621 * possible if a writer has taken a lock. For example: 2622 * 2623 * process A thread 1 takes read lock on own mmap_lock 2624 * process A thread 2 calls mmap, blocks taking write lock 2625 * process B thread 1 takes page fault, read lock on own mmap lock 2626 * process B thread 2 calls mmap, blocks taking write lock 2627 * process A thread 1 blocks taking read lock on process B 2628 * process B thread 1 blocks taking read lock on process A 2629 * 2630 * Disable page faults to prevent potential deadlock 2631 * and retry the copy outside the mmap_lock. 2632 */ 2633 pagefault_disable(); 2634 ret = copy_from_user(page_kaddr, 2635 (const void __user *)src_addr, 2636 PAGE_SIZE); 2637 pagefault_enable(); 2638 kunmap_local(page_kaddr); 2639 2640 /* fallback to copy_from_user outside mmap_lock */ 2641 if (unlikely(ret)) { 2642 *foliop = folio; 2643 ret = -ENOENT; 2644 /* don't free the page */ 2645 goto out_unacct_blocks; 2646 } 2647 2648 flush_dcache_folio(folio); 2649 } else { /* ZEROPAGE */ 2650 clear_user_highpage(&folio->page, dst_addr); 2651 } 2652 } else { 2653 folio = *foliop; 2654 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2655 *foliop = NULL; 2656 } 2657 2658 VM_BUG_ON(folio_test_locked(folio)); 2659 VM_BUG_ON(folio_test_swapbacked(folio)); 2660 __folio_set_locked(folio); 2661 __folio_set_swapbacked(folio); 2662 __folio_mark_uptodate(folio); 2663 2664 ret = -EFAULT; 2665 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2666 if (unlikely(pgoff >= max_off)) 2667 goto out_release; 2668 2669 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 2670 if (ret) 2671 goto out_release; 2672 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 2673 if (ret) 2674 goto out_release; 2675 2676 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 2677 &folio->page, true, flags); 2678 if (ret) 2679 goto out_delete_from_cache; 2680 2681 shmem_recalc_inode(inode, 1, 0); 2682 folio_unlock(folio); 2683 return 0; 2684 out_delete_from_cache: 2685 filemap_remove_folio(folio); 2686 out_release: 2687 folio_unlock(folio); 2688 folio_put(folio); 2689 out_unacct_blocks: 2690 shmem_inode_unacct_blocks(inode, 1); 2691 return ret; 2692 } 2693 #endif /* CONFIG_USERFAULTFD */ 2694 2695 #ifdef CONFIG_TMPFS 2696 static const struct inode_operations shmem_symlink_inode_operations; 2697 static const struct inode_operations shmem_short_symlink_operations; 2698 2699 static int 2700 shmem_write_begin(struct file *file, struct address_space *mapping, 2701 loff_t pos, unsigned len, 2702 struct page **pagep, void **fsdata) 2703 { 2704 struct inode *inode = mapping->host; 2705 struct shmem_inode_info *info = SHMEM_I(inode); 2706 pgoff_t index = pos >> PAGE_SHIFT; 2707 struct folio *folio; 2708 int ret = 0; 2709 2710 /* i_rwsem is held by caller */ 2711 if (unlikely(info->seals & (F_SEAL_GROW | 2712 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2713 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2714 return -EPERM; 2715 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2716 return -EPERM; 2717 } 2718 2719 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE); 2720 if (ret) 2721 return ret; 2722 2723 *pagep = folio_file_page(folio, index); 2724 if (PageHWPoison(*pagep)) { 2725 folio_unlock(folio); 2726 folio_put(folio); 2727 *pagep = NULL; 2728 return -EIO; 2729 } 2730 2731 return 0; 2732 } 2733 2734 static int 2735 shmem_write_end(struct file *file, struct address_space *mapping, 2736 loff_t pos, unsigned len, unsigned copied, 2737 struct page *page, void *fsdata) 2738 { 2739 struct folio *folio = page_folio(page); 2740 struct inode *inode = mapping->host; 2741 2742 if (pos + copied > inode->i_size) 2743 i_size_write(inode, pos + copied); 2744 2745 if (!folio_test_uptodate(folio)) { 2746 if (copied < folio_size(folio)) { 2747 size_t from = offset_in_folio(folio, pos); 2748 folio_zero_segments(folio, 0, from, 2749 from + copied, folio_size(folio)); 2750 } 2751 folio_mark_uptodate(folio); 2752 } 2753 folio_mark_dirty(folio); 2754 folio_unlock(folio); 2755 folio_put(folio); 2756 2757 return copied; 2758 } 2759 2760 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2761 { 2762 struct file *file = iocb->ki_filp; 2763 struct inode *inode = file_inode(file); 2764 struct address_space *mapping = inode->i_mapping; 2765 pgoff_t index; 2766 unsigned long offset; 2767 int error = 0; 2768 ssize_t retval = 0; 2769 loff_t *ppos = &iocb->ki_pos; 2770 2771 index = *ppos >> PAGE_SHIFT; 2772 offset = *ppos & ~PAGE_MASK; 2773 2774 for (;;) { 2775 struct folio *folio = NULL; 2776 struct page *page = NULL; 2777 pgoff_t end_index; 2778 unsigned long nr, ret; 2779 loff_t i_size = i_size_read(inode); 2780 2781 end_index = i_size >> PAGE_SHIFT; 2782 if (index > end_index) 2783 break; 2784 if (index == end_index) { 2785 nr = i_size & ~PAGE_MASK; 2786 if (nr <= offset) 2787 break; 2788 } 2789 2790 error = shmem_get_folio(inode, index, &folio, SGP_READ); 2791 if (error) { 2792 if (error == -EINVAL) 2793 error = 0; 2794 break; 2795 } 2796 if (folio) { 2797 folio_unlock(folio); 2798 2799 page = folio_file_page(folio, index); 2800 if (PageHWPoison(page)) { 2801 folio_put(folio); 2802 error = -EIO; 2803 break; 2804 } 2805 } 2806 2807 /* 2808 * We must evaluate after, since reads (unlike writes) 2809 * are called without i_rwsem protection against truncate 2810 */ 2811 nr = PAGE_SIZE; 2812 i_size = i_size_read(inode); 2813 end_index = i_size >> PAGE_SHIFT; 2814 if (index == end_index) { 2815 nr = i_size & ~PAGE_MASK; 2816 if (nr <= offset) { 2817 if (folio) 2818 folio_put(folio); 2819 break; 2820 } 2821 } 2822 nr -= offset; 2823 2824 if (folio) { 2825 /* 2826 * If users can be writing to this page using arbitrary 2827 * virtual addresses, take care about potential aliasing 2828 * before reading the page on the kernel side. 2829 */ 2830 if (mapping_writably_mapped(mapping)) 2831 flush_dcache_page(page); 2832 /* 2833 * Mark the page accessed if we read the beginning. 2834 */ 2835 if (!offset) 2836 folio_mark_accessed(folio); 2837 /* 2838 * Ok, we have the page, and it's up-to-date, so 2839 * now we can copy it to user space... 2840 */ 2841 ret = copy_page_to_iter(page, offset, nr, to); 2842 folio_put(folio); 2843 2844 } else if (user_backed_iter(to)) { 2845 /* 2846 * Copy to user tends to be so well optimized, but 2847 * clear_user() not so much, that it is noticeably 2848 * faster to copy the zero page instead of clearing. 2849 */ 2850 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2851 } else { 2852 /* 2853 * But submitting the same page twice in a row to 2854 * splice() - or others? - can result in confusion: 2855 * so don't attempt that optimization on pipes etc. 2856 */ 2857 ret = iov_iter_zero(nr, to); 2858 } 2859 2860 retval += ret; 2861 offset += ret; 2862 index += offset >> PAGE_SHIFT; 2863 offset &= ~PAGE_MASK; 2864 2865 if (!iov_iter_count(to)) 2866 break; 2867 if (ret < nr) { 2868 error = -EFAULT; 2869 break; 2870 } 2871 cond_resched(); 2872 } 2873 2874 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2875 file_accessed(file); 2876 return retval ? retval : error; 2877 } 2878 2879 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2880 { 2881 struct file *file = iocb->ki_filp; 2882 struct inode *inode = file->f_mapping->host; 2883 ssize_t ret; 2884 2885 inode_lock(inode); 2886 ret = generic_write_checks(iocb, from); 2887 if (ret <= 0) 2888 goto unlock; 2889 ret = file_remove_privs(file); 2890 if (ret) 2891 goto unlock; 2892 ret = file_update_time(file); 2893 if (ret) 2894 goto unlock; 2895 ret = generic_perform_write(iocb, from); 2896 unlock: 2897 inode_unlock(inode); 2898 return ret; 2899 } 2900 2901 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 2902 struct pipe_buffer *buf) 2903 { 2904 return true; 2905 } 2906 2907 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 2908 struct pipe_buffer *buf) 2909 { 2910 } 2911 2912 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 2913 struct pipe_buffer *buf) 2914 { 2915 return false; 2916 } 2917 2918 static const struct pipe_buf_operations zero_pipe_buf_ops = { 2919 .release = zero_pipe_buf_release, 2920 .try_steal = zero_pipe_buf_try_steal, 2921 .get = zero_pipe_buf_get, 2922 }; 2923 2924 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 2925 loff_t fpos, size_t size) 2926 { 2927 size_t offset = fpos & ~PAGE_MASK; 2928 2929 size = min_t(size_t, size, PAGE_SIZE - offset); 2930 2931 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2932 struct pipe_buffer *buf = pipe_head_buf(pipe); 2933 2934 *buf = (struct pipe_buffer) { 2935 .ops = &zero_pipe_buf_ops, 2936 .page = ZERO_PAGE(0), 2937 .offset = offset, 2938 .len = size, 2939 }; 2940 pipe->head++; 2941 } 2942 2943 return size; 2944 } 2945 2946 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 2947 struct pipe_inode_info *pipe, 2948 size_t len, unsigned int flags) 2949 { 2950 struct inode *inode = file_inode(in); 2951 struct address_space *mapping = inode->i_mapping; 2952 struct folio *folio = NULL; 2953 size_t total_spliced = 0, used, npages, n, part; 2954 loff_t isize; 2955 int error = 0; 2956 2957 /* Work out how much data we can actually add into the pipe */ 2958 used = pipe_occupancy(pipe->head, pipe->tail); 2959 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2960 len = min_t(size_t, len, npages * PAGE_SIZE); 2961 2962 do { 2963 if (*ppos >= i_size_read(inode)) 2964 break; 2965 2966 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio, 2967 SGP_READ); 2968 if (error) { 2969 if (error == -EINVAL) 2970 error = 0; 2971 break; 2972 } 2973 if (folio) { 2974 folio_unlock(folio); 2975 2976 if (folio_test_hwpoison(folio) || 2977 (folio_test_large(folio) && 2978 folio_test_has_hwpoisoned(folio))) { 2979 error = -EIO; 2980 break; 2981 } 2982 } 2983 2984 /* 2985 * i_size must be checked after we know the pages are Uptodate. 2986 * 2987 * Checking i_size after the check allows us to calculate 2988 * the correct value for "nr", which means the zero-filled 2989 * part of the page is not copied back to userspace (unless 2990 * another truncate extends the file - this is desired though). 2991 */ 2992 isize = i_size_read(inode); 2993 if (unlikely(*ppos >= isize)) 2994 break; 2995 part = min_t(loff_t, isize - *ppos, len); 2996 2997 if (folio) { 2998 /* 2999 * If users can be writing to this page using arbitrary 3000 * virtual addresses, take care about potential aliasing 3001 * before reading the page on the kernel side. 3002 */ 3003 if (mapping_writably_mapped(mapping)) 3004 flush_dcache_folio(folio); 3005 folio_mark_accessed(folio); 3006 /* 3007 * Ok, we have the page, and it's up-to-date, so we can 3008 * now splice it into the pipe. 3009 */ 3010 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3011 folio_put(folio); 3012 folio = NULL; 3013 } else { 3014 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3015 } 3016 3017 if (!n) 3018 break; 3019 len -= n; 3020 total_spliced += n; 3021 *ppos += n; 3022 in->f_ra.prev_pos = *ppos; 3023 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 3024 break; 3025 3026 cond_resched(); 3027 } while (len); 3028 3029 if (folio) 3030 folio_put(folio); 3031 3032 file_accessed(in); 3033 return total_spliced ? total_spliced : error; 3034 } 3035 3036 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3037 { 3038 struct address_space *mapping = file->f_mapping; 3039 struct inode *inode = mapping->host; 3040 3041 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3042 return generic_file_llseek_size(file, offset, whence, 3043 MAX_LFS_FILESIZE, i_size_read(inode)); 3044 if (offset < 0) 3045 return -ENXIO; 3046 3047 inode_lock(inode); 3048 /* We're holding i_rwsem so we can access i_size directly */ 3049 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3050 if (offset >= 0) 3051 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3052 inode_unlock(inode); 3053 return offset; 3054 } 3055 3056 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3057 loff_t len) 3058 { 3059 struct inode *inode = file_inode(file); 3060 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3061 struct shmem_inode_info *info = SHMEM_I(inode); 3062 struct shmem_falloc shmem_falloc; 3063 pgoff_t start, index, end, undo_fallocend; 3064 int error; 3065 3066 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3067 return -EOPNOTSUPP; 3068 3069 inode_lock(inode); 3070 3071 if (mode & FALLOC_FL_PUNCH_HOLE) { 3072 struct address_space *mapping = file->f_mapping; 3073 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3074 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3075 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3076 3077 /* protected by i_rwsem */ 3078 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3079 error = -EPERM; 3080 goto out; 3081 } 3082 3083 shmem_falloc.waitq = &shmem_falloc_waitq; 3084 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3085 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3086 spin_lock(&inode->i_lock); 3087 inode->i_private = &shmem_falloc; 3088 spin_unlock(&inode->i_lock); 3089 3090 if ((u64)unmap_end > (u64)unmap_start) 3091 unmap_mapping_range(mapping, unmap_start, 3092 1 + unmap_end - unmap_start, 0); 3093 shmem_truncate_range(inode, offset, offset + len - 1); 3094 /* No need to unmap again: hole-punching leaves COWed pages */ 3095 3096 spin_lock(&inode->i_lock); 3097 inode->i_private = NULL; 3098 wake_up_all(&shmem_falloc_waitq); 3099 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3100 spin_unlock(&inode->i_lock); 3101 error = 0; 3102 goto out; 3103 } 3104 3105 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3106 error = inode_newsize_ok(inode, offset + len); 3107 if (error) 3108 goto out; 3109 3110 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3111 error = -EPERM; 3112 goto out; 3113 } 3114 3115 start = offset >> PAGE_SHIFT; 3116 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3117 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3118 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3119 error = -ENOSPC; 3120 goto out; 3121 } 3122 3123 shmem_falloc.waitq = NULL; 3124 shmem_falloc.start = start; 3125 shmem_falloc.next = start; 3126 shmem_falloc.nr_falloced = 0; 3127 shmem_falloc.nr_unswapped = 0; 3128 spin_lock(&inode->i_lock); 3129 inode->i_private = &shmem_falloc; 3130 spin_unlock(&inode->i_lock); 3131 3132 /* 3133 * info->fallocend is only relevant when huge pages might be 3134 * involved: to prevent split_huge_page() freeing fallocated 3135 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3136 */ 3137 undo_fallocend = info->fallocend; 3138 if (info->fallocend < end) 3139 info->fallocend = end; 3140 3141 for (index = start; index < end; ) { 3142 struct folio *folio; 3143 3144 /* 3145 * Good, the fallocate(2) manpage permits EINTR: we may have 3146 * been interrupted because we are using up too much memory. 3147 */ 3148 if (signal_pending(current)) 3149 error = -EINTR; 3150 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3151 error = -ENOMEM; 3152 else 3153 error = shmem_get_folio(inode, index, &folio, 3154 SGP_FALLOC); 3155 if (error) { 3156 info->fallocend = undo_fallocend; 3157 /* Remove the !uptodate folios we added */ 3158 if (index > start) { 3159 shmem_undo_range(inode, 3160 (loff_t)start << PAGE_SHIFT, 3161 ((loff_t)index << PAGE_SHIFT) - 1, true); 3162 } 3163 goto undone; 3164 } 3165 3166 /* 3167 * Here is a more important optimization than it appears: 3168 * a second SGP_FALLOC on the same large folio will clear it, 3169 * making it uptodate and un-undoable if we fail later. 3170 */ 3171 index = folio_next_index(folio); 3172 /* Beware 32-bit wraparound */ 3173 if (!index) 3174 index--; 3175 3176 /* 3177 * Inform shmem_writepage() how far we have reached. 3178 * No need for lock or barrier: we have the page lock. 3179 */ 3180 if (!folio_test_uptodate(folio)) 3181 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3182 shmem_falloc.next = index; 3183 3184 /* 3185 * If !uptodate, leave it that way so that freeable folios 3186 * can be recognized if we need to rollback on error later. 3187 * But mark it dirty so that memory pressure will swap rather 3188 * than free the folios we are allocating (and SGP_CACHE folios 3189 * might still be clean: we now need to mark those dirty too). 3190 */ 3191 folio_mark_dirty(folio); 3192 folio_unlock(folio); 3193 folio_put(folio); 3194 cond_resched(); 3195 } 3196 3197 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3198 i_size_write(inode, offset + len); 3199 undone: 3200 spin_lock(&inode->i_lock); 3201 inode->i_private = NULL; 3202 spin_unlock(&inode->i_lock); 3203 out: 3204 if (!error) 3205 file_modified(file); 3206 inode_unlock(inode); 3207 return error; 3208 } 3209 3210 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3211 { 3212 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3213 3214 buf->f_type = TMPFS_MAGIC; 3215 buf->f_bsize = PAGE_SIZE; 3216 buf->f_namelen = NAME_MAX; 3217 if (sbinfo->max_blocks) { 3218 buf->f_blocks = sbinfo->max_blocks; 3219 buf->f_bavail = 3220 buf->f_bfree = sbinfo->max_blocks - 3221 percpu_counter_sum(&sbinfo->used_blocks); 3222 } 3223 if (sbinfo->max_inodes) { 3224 buf->f_files = sbinfo->max_inodes; 3225 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3226 } 3227 /* else leave those fields 0 like simple_statfs */ 3228 3229 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3230 3231 return 0; 3232 } 3233 3234 /* 3235 * File creation. Allocate an inode, and we're done.. 3236 */ 3237 static int 3238 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3239 struct dentry *dentry, umode_t mode, dev_t dev) 3240 { 3241 struct inode *inode; 3242 int error; 3243 3244 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3245 if (IS_ERR(inode)) 3246 return PTR_ERR(inode); 3247 3248 error = simple_acl_create(dir, inode); 3249 if (error) 3250 goto out_iput; 3251 error = security_inode_init_security(inode, dir, &dentry->d_name, 3252 shmem_initxattrs, NULL); 3253 if (error && error != -EOPNOTSUPP) 3254 goto out_iput; 3255 3256 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3257 if (error) 3258 goto out_iput; 3259 3260 dir->i_size += BOGO_DIRENT_SIZE; 3261 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3262 inode_inc_iversion(dir); 3263 d_instantiate(dentry, inode); 3264 dget(dentry); /* Extra count - pin the dentry in core */ 3265 return error; 3266 3267 out_iput: 3268 iput(inode); 3269 return error; 3270 } 3271 3272 static int 3273 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3274 struct file *file, umode_t mode) 3275 { 3276 struct inode *inode; 3277 int error; 3278 3279 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3280 if (IS_ERR(inode)) { 3281 error = PTR_ERR(inode); 3282 goto err_out; 3283 } 3284 error = security_inode_init_security(inode, dir, NULL, 3285 shmem_initxattrs, NULL); 3286 if (error && error != -EOPNOTSUPP) 3287 goto out_iput; 3288 error = simple_acl_create(dir, inode); 3289 if (error) 3290 goto out_iput; 3291 d_tmpfile(file, inode); 3292 3293 err_out: 3294 return finish_open_simple(file, error); 3295 out_iput: 3296 iput(inode); 3297 return error; 3298 } 3299 3300 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3301 struct dentry *dentry, umode_t mode) 3302 { 3303 int error; 3304 3305 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3306 if (error) 3307 return error; 3308 inc_nlink(dir); 3309 return 0; 3310 } 3311 3312 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3313 struct dentry *dentry, umode_t mode, bool excl) 3314 { 3315 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3316 } 3317 3318 /* 3319 * Link a file.. 3320 */ 3321 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3322 struct dentry *dentry) 3323 { 3324 struct inode *inode = d_inode(old_dentry); 3325 int ret = 0; 3326 3327 /* 3328 * No ordinary (disk based) filesystem counts links as inodes; 3329 * but each new link needs a new dentry, pinning lowmem, and 3330 * tmpfs dentries cannot be pruned until they are unlinked. 3331 * But if an O_TMPFILE file is linked into the tmpfs, the 3332 * first link must skip that, to get the accounting right. 3333 */ 3334 if (inode->i_nlink) { 3335 ret = shmem_reserve_inode(inode->i_sb, NULL); 3336 if (ret) 3337 goto out; 3338 } 3339 3340 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3341 if (ret) { 3342 if (inode->i_nlink) 3343 shmem_free_inode(inode->i_sb, 0); 3344 goto out; 3345 } 3346 3347 dir->i_size += BOGO_DIRENT_SIZE; 3348 inode_set_mtime_to_ts(dir, 3349 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3350 inode_inc_iversion(dir); 3351 inc_nlink(inode); 3352 ihold(inode); /* New dentry reference */ 3353 dget(dentry); /* Extra pinning count for the created dentry */ 3354 d_instantiate(dentry, inode); 3355 out: 3356 return ret; 3357 } 3358 3359 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3360 { 3361 struct inode *inode = d_inode(dentry); 3362 3363 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3364 shmem_free_inode(inode->i_sb, 0); 3365 3366 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3367 3368 dir->i_size -= BOGO_DIRENT_SIZE; 3369 inode_set_mtime_to_ts(dir, 3370 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3371 inode_inc_iversion(dir); 3372 drop_nlink(inode); 3373 dput(dentry); /* Undo the count from "create" - does all the work */ 3374 return 0; 3375 } 3376 3377 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3378 { 3379 if (!simple_empty(dentry)) 3380 return -ENOTEMPTY; 3381 3382 drop_nlink(d_inode(dentry)); 3383 drop_nlink(dir); 3384 return shmem_unlink(dir, dentry); 3385 } 3386 3387 static int shmem_whiteout(struct mnt_idmap *idmap, 3388 struct inode *old_dir, struct dentry *old_dentry) 3389 { 3390 struct dentry *whiteout; 3391 int error; 3392 3393 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3394 if (!whiteout) 3395 return -ENOMEM; 3396 3397 error = shmem_mknod(idmap, old_dir, whiteout, 3398 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3399 dput(whiteout); 3400 if (error) 3401 return error; 3402 3403 /* 3404 * Cheat and hash the whiteout while the old dentry is still in 3405 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3406 * 3407 * d_lookup() will consistently find one of them at this point, 3408 * not sure which one, but that isn't even important. 3409 */ 3410 d_rehash(whiteout); 3411 return 0; 3412 } 3413 3414 /* 3415 * The VFS layer already does all the dentry stuff for rename, 3416 * we just have to decrement the usage count for the target if 3417 * it exists so that the VFS layer correctly free's it when it 3418 * gets overwritten. 3419 */ 3420 static int shmem_rename2(struct mnt_idmap *idmap, 3421 struct inode *old_dir, struct dentry *old_dentry, 3422 struct inode *new_dir, struct dentry *new_dentry, 3423 unsigned int flags) 3424 { 3425 struct inode *inode = d_inode(old_dentry); 3426 int they_are_dirs = S_ISDIR(inode->i_mode); 3427 int error; 3428 3429 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3430 return -EINVAL; 3431 3432 if (flags & RENAME_EXCHANGE) 3433 return simple_offset_rename_exchange(old_dir, old_dentry, 3434 new_dir, new_dentry); 3435 3436 if (!simple_empty(new_dentry)) 3437 return -ENOTEMPTY; 3438 3439 if (flags & RENAME_WHITEOUT) { 3440 error = shmem_whiteout(idmap, old_dir, old_dentry); 3441 if (error) 3442 return error; 3443 } 3444 3445 simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry); 3446 error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry); 3447 if (error) 3448 return error; 3449 3450 if (d_really_is_positive(new_dentry)) { 3451 (void) shmem_unlink(new_dir, new_dentry); 3452 if (they_are_dirs) { 3453 drop_nlink(d_inode(new_dentry)); 3454 drop_nlink(old_dir); 3455 } 3456 } else if (they_are_dirs) { 3457 drop_nlink(old_dir); 3458 inc_nlink(new_dir); 3459 } 3460 3461 old_dir->i_size -= BOGO_DIRENT_SIZE; 3462 new_dir->i_size += BOGO_DIRENT_SIZE; 3463 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 3464 inode_inc_iversion(old_dir); 3465 inode_inc_iversion(new_dir); 3466 return 0; 3467 } 3468 3469 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3470 struct dentry *dentry, const char *symname) 3471 { 3472 int error; 3473 int len; 3474 struct inode *inode; 3475 struct folio *folio; 3476 3477 len = strlen(symname) + 1; 3478 if (len > PAGE_SIZE) 3479 return -ENAMETOOLONG; 3480 3481 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3482 VM_NORESERVE); 3483 if (IS_ERR(inode)) 3484 return PTR_ERR(inode); 3485 3486 error = security_inode_init_security(inode, dir, &dentry->d_name, 3487 shmem_initxattrs, NULL); 3488 if (error && error != -EOPNOTSUPP) 3489 goto out_iput; 3490 3491 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3492 if (error) 3493 goto out_iput; 3494 3495 inode->i_size = len-1; 3496 if (len <= SHORT_SYMLINK_LEN) { 3497 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3498 if (!inode->i_link) { 3499 error = -ENOMEM; 3500 goto out_remove_offset; 3501 } 3502 inode->i_op = &shmem_short_symlink_operations; 3503 } else { 3504 inode_nohighmem(inode); 3505 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE); 3506 if (error) 3507 goto out_remove_offset; 3508 inode->i_mapping->a_ops = &shmem_aops; 3509 inode->i_op = &shmem_symlink_inode_operations; 3510 memcpy(folio_address(folio), symname, len); 3511 folio_mark_uptodate(folio); 3512 folio_mark_dirty(folio); 3513 folio_unlock(folio); 3514 folio_put(folio); 3515 } 3516 dir->i_size += BOGO_DIRENT_SIZE; 3517 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3518 inode_inc_iversion(dir); 3519 d_instantiate(dentry, inode); 3520 dget(dentry); 3521 return 0; 3522 3523 out_remove_offset: 3524 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3525 out_iput: 3526 iput(inode); 3527 return error; 3528 } 3529 3530 static void shmem_put_link(void *arg) 3531 { 3532 folio_mark_accessed(arg); 3533 folio_put(arg); 3534 } 3535 3536 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 3537 struct delayed_call *done) 3538 { 3539 struct folio *folio = NULL; 3540 int error; 3541 3542 if (!dentry) { 3543 folio = filemap_get_folio(inode->i_mapping, 0); 3544 if (IS_ERR(folio)) 3545 return ERR_PTR(-ECHILD); 3546 if (PageHWPoison(folio_page(folio, 0)) || 3547 !folio_test_uptodate(folio)) { 3548 folio_put(folio); 3549 return ERR_PTR(-ECHILD); 3550 } 3551 } else { 3552 error = shmem_get_folio(inode, 0, &folio, SGP_READ); 3553 if (error) 3554 return ERR_PTR(error); 3555 if (!folio) 3556 return ERR_PTR(-ECHILD); 3557 if (PageHWPoison(folio_page(folio, 0))) { 3558 folio_unlock(folio); 3559 folio_put(folio); 3560 return ERR_PTR(-ECHILD); 3561 } 3562 folio_unlock(folio); 3563 } 3564 set_delayed_call(done, shmem_put_link, folio); 3565 return folio_address(folio); 3566 } 3567 3568 #ifdef CONFIG_TMPFS_XATTR 3569 3570 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3571 { 3572 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3573 3574 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3575 3576 return 0; 3577 } 3578 3579 static int shmem_fileattr_set(struct mnt_idmap *idmap, 3580 struct dentry *dentry, struct fileattr *fa) 3581 { 3582 struct inode *inode = d_inode(dentry); 3583 struct shmem_inode_info *info = SHMEM_I(inode); 3584 3585 if (fileattr_has_fsx(fa)) 3586 return -EOPNOTSUPP; 3587 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3588 return -EOPNOTSUPP; 3589 3590 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3591 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3592 3593 shmem_set_inode_flags(inode, info->fsflags); 3594 inode_set_ctime_current(inode); 3595 inode_inc_iversion(inode); 3596 return 0; 3597 } 3598 3599 /* 3600 * Superblocks without xattr inode operations may get some security.* xattr 3601 * support from the LSM "for free". As soon as we have any other xattrs 3602 * like ACLs, we also need to implement the security.* handlers at 3603 * filesystem level, though. 3604 */ 3605 3606 /* 3607 * Callback for security_inode_init_security() for acquiring xattrs. 3608 */ 3609 static int shmem_initxattrs(struct inode *inode, 3610 const struct xattr *xattr_array, void *fs_info) 3611 { 3612 struct shmem_inode_info *info = SHMEM_I(inode); 3613 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3614 const struct xattr *xattr; 3615 struct simple_xattr *new_xattr; 3616 size_t ispace = 0; 3617 size_t len; 3618 3619 if (sbinfo->max_inodes) { 3620 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3621 ispace += simple_xattr_space(xattr->name, 3622 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 3623 } 3624 if (ispace) { 3625 raw_spin_lock(&sbinfo->stat_lock); 3626 if (sbinfo->free_ispace < ispace) 3627 ispace = 0; 3628 else 3629 sbinfo->free_ispace -= ispace; 3630 raw_spin_unlock(&sbinfo->stat_lock); 3631 if (!ispace) 3632 return -ENOSPC; 3633 } 3634 } 3635 3636 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3637 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3638 if (!new_xattr) 3639 break; 3640 3641 len = strlen(xattr->name) + 1; 3642 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3643 GFP_KERNEL_ACCOUNT); 3644 if (!new_xattr->name) { 3645 kvfree(new_xattr); 3646 break; 3647 } 3648 3649 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3650 XATTR_SECURITY_PREFIX_LEN); 3651 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3652 xattr->name, len); 3653 3654 simple_xattr_add(&info->xattrs, new_xattr); 3655 } 3656 3657 if (xattr->name != NULL) { 3658 if (ispace) { 3659 raw_spin_lock(&sbinfo->stat_lock); 3660 sbinfo->free_ispace += ispace; 3661 raw_spin_unlock(&sbinfo->stat_lock); 3662 } 3663 simple_xattrs_free(&info->xattrs, NULL); 3664 return -ENOMEM; 3665 } 3666 3667 return 0; 3668 } 3669 3670 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3671 struct dentry *unused, struct inode *inode, 3672 const char *name, void *buffer, size_t size) 3673 { 3674 struct shmem_inode_info *info = SHMEM_I(inode); 3675 3676 name = xattr_full_name(handler, name); 3677 return simple_xattr_get(&info->xattrs, name, buffer, size); 3678 } 3679 3680 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3681 struct mnt_idmap *idmap, 3682 struct dentry *unused, struct inode *inode, 3683 const char *name, const void *value, 3684 size_t size, int flags) 3685 { 3686 struct shmem_inode_info *info = SHMEM_I(inode); 3687 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3688 struct simple_xattr *old_xattr; 3689 size_t ispace = 0; 3690 3691 name = xattr_full_name(handler, name); 3692 if (value && sbinfo->max_inodes) { 3693 ispace = simple_xattr_space(name, size); 3694 raw_spin_lock(&sbinfo->stat_lock); 3695 if (sbinfo->free_ispace < ispace) 3696 ispace = 0; 3697 else 3698 sbinfo->free_ispace -= ispace; 3699 raw_spin_unlock(&sbinfo->stat_lock); 3700 if (!ispace) 3701 return -ENOSPC; 3702 } 3703 3704 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 3705 if (!IS_ERR(old_xattr)) { 3706 ispace = 0; 3707 if (old_xattr && sbinfo->max_inodes) 3708 ispace = simple_xattr_space(old_xattr->name, 3709 old_xattr->size); 3710 simple_xattr_free(old_xattr); 3711 old_xattr = NULL; 3712 inode_set_ctime_current(inode); 3713 inode_inc_iversion(inode); 3714 } 3715 if (ispace) { 3716 raw_spin_lock(&sbinfo->stat_lock); 3717 sbinfo->free_ispace += ispace; 3718 raw_spin_unlock(&sbinfo->stat_lock); 3719 } 3720 return PTR_ERR(old_xattr); 3721 } 3722 3723 static const struct xattr_handler shmem_security_xattr_handler = { 3724 .prefix = XATTR_SECURITY_PREFIX, 3725 .get = shmem_xattr_handler_get, 3726 .set = shmem_xattr_handler_set, 3727 }; 3728 3729 static const struct xattr_handler shmem_trusted_xattr_handler = { 3730 .prefix = XATTR_TRUSTED_PREFIX, 3731 .get = shmem_xattr_handler_get, 3732 .set = shmem_xattr_handler_set, 3733 }; 3734 3735 static const struct xattr_handler shmem_user_xattr_handler = { 3736 .prefix = XATTR_USER_PREFIX, 3737 .get = shmem_xattr_handler_get, 3738 .set = shmem_xattr_handler_set, 3739 }; 3740 3741 static const struct xattr_handler * const shmem_xattr_handlers[] = { 3742 &shmem_security_xattr_handler, 3743 &shmem_trusted_xattr_handler, 3744 &shmem_user_xattr_handler, 3745 NULL 3746 }; 3747 3748 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3749 { 3750 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3751 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3752 } 3753 #endif /* CONFIG_TMPFS_XATTR */ 3754 3755 static const struct inode_operations shmem_short_symlink_operations = { 3756 .getattr = shmem_getattr, 3757 .setattr = shmem_setattr, 3758 .get_link = simple_get_link, 3759 #ifdef CONFIG_TMPFS_XATTR 3760 .listxattr = shmem_listxattr, 3761 #endif 3762 }; 3763 3764 static const struct inode_operations shmem_symlink_inode_operations = { 3765 .getattr = shmem_getattr, 3766 .setattr = shmem_setattr, 3767 .get_link = shmem_get_link, 3768 #ifdef CONFIG_TMPFS_XATTR 3769 .listxattr = shmem_listxattr, 3770 #endif 3771 }; 3772 3773 static struct dentry *shmem_get_parent(struct dentry *child) 3774 { 3775 return ERR_PTR(-ESTALE); 3776 } 3777 3778 static int shmem_match(struct inode *ino, void *vfh) 3779 { 3780 __u32 *fh = vfh; 3781 __u64 inum = fh[2]; 3782 inum = (inum << 32) | fh[1]; 3783 return ino->i_ino == inum && fh[0] == ino->i_generation; 3784 } 3785 3786 /* Find any alias of inode, but prefer a hashed alias */ 3787 static struct dentry *shmem_find_alias(struct inode *inode) 3788 { 3789 struct dentry *alias = d_find_alias(inode); 3790 3791 return alias ?: d_find_any_alias(inode); 3792 } 3793 3794 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3795 struct fid *fid, int fh_len, int fh_type) 3796 { 3797 struct inode *inode; 3798 struct dentry *dentry = NULL; 3799 u64 inum; 3800 3801 if (fh_len < 3) 3802 return NULL; 3803 3804 inum = fid->raw[2]; 3805 inum = (inum << 32) | fid->raw[1]; 3806 3807 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3808 shmem_match, fid->raw); 3809 if (inode) { 3810 dentry = shmem_find_alias(inode); 3811 iput(inode); 3812 } 3813 3814 return dentry; 3815 } 3816 3817 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3818 struct inode *parent) 3819 { 3820 if (*len < 3) { 3821 *len = 3; 3822 return FILEID_INVALID; 3823 } 3824 3825 if (inode_unhashed(inode)) { 3826 /* Unfortunately insert_inode_hash is not idempotent, 3827 * so as we hash inodes here rather than at creation 3828 * time, we need a lock to ensure we only try 3829 * to do it once 3830 */ 3831 static DEFINE_SPINLOCK(lock); 3832 spin_lock(&lock); 3833 if (inode_unhashed(inode)) 3834 __insert_inode_hash(inode, 3835 inode->i_ino + inode->i_generation); 3836 spin_unlock(&lock); 3837 } 3838 3839 fh[0] = inode->i_generation; 3840 fh[1] = inode->i_ino; 3841 fh[2] = ((__u64)inode->i_ino) >> 32; 3842 3843 *len = 3; 3844 return 1; 3845 } 3846 3847 static const struct export_operations shmem_export_ops = { 3848 .get_parent = shmem_get_parent, 3849 .encode_fh = shmem_encode_fh, 3850 .fh_to_dentry = shmem_fh_to_dentry, 3851 }; 3852 3853 enum shmem_param { 3854 Opt_gid, 3855 Opt_huge, 3856 Opt_mode, 3857 Opt_mpol, 3858 Opt_nr_blocks, 3859 Opt_nr_inodes, 3860 Opt_size, 3861 Opt_uid, 3862 Opt_inode32, 3863 Opt_inode64, 3864 Opt_noswap, 3865 Opt_quota, 3866 Opt_usrquota, 3867 Opt_grpquota, 3868 Opt_usrquota_block_hardlimit, 3869 Opt_usrquota_inode_hardlimit, 3870 Opt_grpquota_block_hardlimit, 3871 Opt_grpquota_inode_hardlimit, 3872 }; 3873 3874 static const struct constant_table shmem_param_enums_huge[] = { 3875 {"never", SHMEM_HUGE_NEVER }, 3876 {"always", SHMEM_HUGE_ALWAYS }, 3877 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3878 {"advise", SHMEM_HUGE_ADVISE }, 3879 {} 3880 }; 3881 3882 const struct fs_parameter_spec shmem_fs_parameters[] = { 3883 fsparam_u32 ("gid", Opt_gid), 3884 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3885 fsparam_u32oct("mode", Opt_mode), 3886 fsparam_string("mpol", Opt_mpol), 3887 fsparam_string("nr_blocks", Opt_nr_blocks), 3888 fsparam_string("nr_inodes", Opt_nr_inodes), 3889 fsparam_string("size", Opt_size), 3890 fsparam_u32 ("uid", Opt_uid), 3891 fsparam_flag ("inode32", Opt_inode32), 3892 fsparam_flag ("inode64", Opt_inode64), 3893 fsparam_flag ("noswap", Opt_noswap), 3894 #ifdef CONFIG_TMPFS_QUOTA 3895 fsparam_flag ("quota", Opt_quota), 3896 fsparam_flag ("usrquota", Opt_usrquota), 3897 fsparam_flag ("grpquota", Opt_grpquota), 3898 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 3899 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 3900 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 3901 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 3902 #endif 3903 {} 3904 }; 3905 3906 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3907 { 3908 struct shmem_options *ctx = fc->fs_private; 3909 struct fs_parse_result result; 3910 unsigned long long size; 3911 char *rest; 3912 int opt; 3913 kuid_t kuid; 3914 kgid_t kgid; 3915 3916 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3917 if (opt < 0) 3918 return opt; 3919 3920 switch (opt) { 3921 case Opt_size: 3922 size = memparse(param->string, &rest); 3923 if (*rest == '%') { 3924 size <<= PAGE_SHIFT; 3925 size *= totalram_pages(); 3926 do_div(size, 100); 3927 rest++; 3928 } 3929 if (*rest) 3930 goto bad_value; 3931 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3932 ctx->seen |= SHMEM_SEEN_BLOCKS; 3933 break; 3934 case Opt_nr_blocks: 3935 ctx->blocks = memparse(param->string, &rest); 3936 if (*rest || ctx->blocks > LONG_MAX) 3937 goto bad_value; 3938 ctx->seen |= SHMEM_SEEN_BLOCKS; 3939 break; 3940 case Opt_nr_inodes: 3941 ctx->inodes = memparse(param->string, &rest); 3942 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 3943 goto bad_value; 3944 ctx->seen |= SHMEM_SEEN_INODES; 3945 break; 3946 case Opt_mode: 3947 ctx->mode = result.uint_32 & 07777; 3948 break; 3949 case Opt_uid: 3950 kuid = make_kuid(current_user_ns(), result.uint_32); 3951 if (!uid_valid(kuid)) 3952 goto bad_value; 3953 3954 /* 3955 * The requested uid must be representable in the 3956 * filesystem's idmapping. 3957 */ 3958 if (!kuid_has_mapping(fc->user_ns, kuid)) 3959 goto bad_value; 3960 3961 ctx->uid = kuid; 3962 break; 3963 case Opt_gid: 3964 kgid = make_kgid(current_user_ns(), result.uint_32); 3965 if (!gid_valid(kgid)) 3966 goto bad_value; 3967 3968 /* 3969 * The requested gid must be representable in the 3970 * filesystem's idmapping. 3971 */ 3972 if (!kgid_has_mapping(fc->user_ns, kgid)) 3973 goto bad_value; 3974 3975 ctx->gid = kgid; 3976 break; 3977 case Opt_huge: 3978 ctx->huge = result.uint_32; 3979 if (ctx->huge != SHMEM_HUGE_NEVER && 3980 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3981 has_transparent_hugepage())) 3982 goto unsupported_parameter; 3983 ctx->seen |= SHMEM_SEEN_HUGE; 3984 break; 3985 case Opt_mpol: 3986 if (IS_ENABLED(CONFIG_NUMA)) { 3987 mpol_put(ctx->mpol); 3988 ctx->mpol = NULL; 3989 if (mpol_parse_str(param->string, &ctx->mpol)) 3990 goto bad_value; 3991 break; 3992 } 3993 goto unsupported_parameter; 3994 case Opt_inode32: 3995 ctx->full_inums = false; 3996 ctx->seen |= SHMEM_SEEN_INUMS; 3997 break; 3998 case Opt_inode64: 3999 if (sizeof(ino_t) < 8) { 4000 return invalfc(fc, 4001 "Cannot use inode64 with <64bit inums in kernel\n"); 4002 } 4003 ctx->full_inums = true; 4004 ctx->seen |= SHMEM_SEEN_INUMS; 4005 break; 4006 case Opt_noswap: 4007 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4008 return invalfc(fc, 4009 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4010 } 4011 ctx->noswap = true; 4012 ctx->seen |= SHMEM_SEEN_NOSWAP; 4013 break; 4014 case Opt_quota: 4015 if (fc->user_ns != &init_user_ns) 4016 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4017 ctx->seen |= SHMEM_SEEN_QUOTA; 4018 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4019 break; 4020 case Opt_usrquota: 4021 if (fc->user_ns != &init_user_ns) 4022 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4023 ctx->seen |= SHMEM_SEEN_QUOTA; 4024 ctx->quota_types |= QTYPE_MASK_USR; 4025 break; 4026 case Opt_grpquota: 4027 if (fc->user_ns != &init_user_ns) 4028 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4029 ctx->seen |= SHMEM_SEEN_QUOTA; 4030 ctx->quota_types |= QTYPE_MASK_GRP; 4031 break; 4032 case Opt_usrquota_block_hardlimit: 4033 size = memparse(param->string, &rest); 4034 if (*rest || !size) 4035 goto bad_value; 4036 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4037 return invalfc(fc, 4038 "User quota block hardlimit too large."); 4039 ctx->qlimits.usrquota_bhardlimit = size; 4040 break; 4041 case Opt_grpquota_block_hardlimit: 4042 size = memparse(param->string, &rest); 4043 if (*rest || !size) 4044 goto bad_value; 4045 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4046 return invalfc(fc, 4047 "Group quota block hardlimit too large."); 4048 ctx->qlimits.grpquota_bhardlimit = size; 4049 break; 4050 case Opt_usrquota_inode_hardlimit: 4051 size = memparse(param->string, &rest); 4052 if (*rest || !size) 4053 goto bad_value; 4054 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4055 return invalfc(fc, 4056 "User quota inode hardlimit too large."); 4057 ctx->qlimits.usrquota_ihardlimit = size; 4058 break; 4059 case Opt_grpquota_inode_hardlimit: 4060 size = memparse(param->string, &rest); 4061 if (*rest || !size) 4062 goto bad_value; 4063 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4064 return invalfc(fc, 4065 "Group quota inode hardlimit too large."); 4066 ctx->qlimits.grpquota_ihardlimit = size; 4067 break; 4068 } 4069 return 0; 4070 4071 unsupported_parameter: 4072 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4073 bad_value: 4074 return invalfc(fc, "Bad value for '%s'", param->key); 4075 } 4076 4077 static int shmem_parse_options(struct fs_context *fc, void *data) 4078 { 4079 char *options = data; 4080 4081 if (options) { 4082 int err = security_sb_eat_lsm_opts(options, &fc->security); 4083 if (err) 4084 return err; 4085 } 4086 4087 while (options != NULL) { 4088 char *this_char = options; 4089 for (;;) { 4090 /* 4091 * NUL-terminate this option: unfortunately, 4092 * mount options form a comma-separated list, 4093 * but mpol's nodelist may also contain commas. 4094 */ 4095 options = strchr(options, ','); 4096 if (options == NULL) 4097 break; 4098 options++; 4099 if (!isdigit(*options)) { 4100 options[-1] = '\0'; 4101 break; 4102 } 4103 } 4104 if (*this_char) { 4105 char *value = strchr(this_char, '='); 4106 size_t len = 0; 4107 int err; 4108 4109 if (value) { 4110 *value++ = '\0'; 4111 len = strlen(value); 4112 } 4113 err = vfs_parse_fs_string(fc, this_char, value, len); 4114 if (err < 0) 4115 return err; 4116 } 4117 } 4118 return 0; 4119 } 4120 4121 /* 4122 * Reconfigure a shmem filesystem. 4123 */ 4124 static int shmem_reconfigure(struct fs_context *fc) 4125 { 4126 struct shmem_options *ctx = fc->fs_private; 4127 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4128 unsigned long used_isp; 4129 struct mempolicy *mpol = NULL; 4130 const char *err; 4131 4132 raw_spin_lock(&sbinfo->stat_lock); 4133 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4134 4135 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4136 if (!sbinfo->max_blocks) { 4137 err = "Cannot retroactively limit size"; 4138 goto out; 4139 } 4140 if (percpu_counter_compare(&sbinfo->used_blocks, 4141 ctx->blocks) > 0) { 4142 err = "Too small a size for current use"; 4143 goto out; 4144 } 4145 } 4146 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4147 if (!sbinfo->max_inodes) { 4148 err = "Cannot retroactively limit inodes"; 4149 goto out; 4150 } 4151 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4152 err = "Too few inodes for current use"; 4153 goto out; 4154 } 4155 } 4156 4157 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4158 sbinfo->next_ino > UINT_MAX) { 4159 err = "Current inum too high to switch to 32-bit inums"; 4160 goto out; 4161 } 4162 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4163 err = "Cannot disable swap on remount"; 4164 goto out; 4165 } 4166 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4167 err = "Cannot enable swap on remount if it was disabled on first mount"; 4168 goto out; 4169 } 4170 4171 if (ctx->seen & SHMEM_SEEN_QUOTA && 4172 !sb_any_quota_loaded(fc->root->d_sb)) { 4173 err = "Cannot enable quota on remount"; 4174 goto out; 4175 } 4176 4177 #ifdef CONFIG_TMPFS_QUOTA 4178 #define CHANGED_LIMIT(name) \ 4179 (ctx->qlimits.name## hardlimit && \ 4180 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4181 4182 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4183 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4184 err = "Cannot change global quota limit on remount"; 4185 goto out; 4186 } 4187 #endif /* CONFIG_TMPFS_QUOTA */ 4188 4189 if (ctx->seen & SHMEM_SEEN_HUGE) 4190 sbinfo->huge = ctx->huge; 4191 if (ctx->seen & SHMEM_SEEN_INUMS) 4192 sbinfo->full_inums = ctx->full_inums; 4193 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4194 sbinfo->max_blocks = ctx->blocks; 4195 if (ctx->seen & SHMEM_SEEN_INODES) { 4196 sbinfo->max_inodes = ctx->inodes; 4197 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4198 } 4199 4200 /* 4201 * Preserve previous mempolicy unless mpol remount option was specified. 4202 */ 4203 if (ctx->mpol) { 4204 mpol = sbinfo->mpol; 4205 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4206 ctx->mpol = NULL; 4207 } 4208 4209 if (ctx->noswap) 4210 sbinfo->noswap = true; 4211 4212 raw_spin_unlock(&sbinfo->stat_lock); 4213 mpol_put(mpol); 4214 return 0; 4215 out: 4216 raw_spin_unlock(&sbinfo->stat_lock); 4217 return invalfc(fc, "%s", err); 4218 } 4219 4220 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4221 { 4222 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4223 struct mempolicy *mpol; 4224 4225 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4226 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4227 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4228 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4229 if (sbinfo->mode != (0777 | S_ISVTX)) 4230 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4231 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4232 seq_printf(seq, ",uid=%u", 4233 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4234 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4235 seq_printf(seq, ",gid=%u", 4236 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4237 4238 /* 4239 * Showing inode{64,32} might be useful even if it's the system default, 4240 * since then people don't have to resort to checking both here and 4241 * /proc/config.gz to confirm 64-bit inums were successfully applied 4242 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4243 * 4244 * We hide it when inode64 isn't the default and we are using 32-bit 4245 * inodes, since that probably just means the feature isn't even under 4246 * consideration. 4247 * 4248 * As such: 4249 * 4250 * +-----------------+-----------------+ 4251 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4252 * +------------------+-----------------+-----------------+ 4253 * | full_inums=true | show | show | 4254 * | full_inums=false | show | hide | 4255 * +------------------+-----------------+-----------------+ 4256 * 4257 */ 4258 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4259 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4260 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4261 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4262 if (sbinfo->huge) 4263 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4264 #endif 4265 mpol = shmem_get_sbmpol(sbinfo); 4266 shmem_show_mpol(seq, mpol); 4267 mpol_put(mpol); 4268 if (sbinfo->noswap) 4269 seq_printf(seq, ",noswap"); 4270 return 0; 4271 } 4272 4273 #endif /* CONFIG_TMPFS */ 4274 4275 static void shmem_put_super(struct super_block *sb) 4276 { 4277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4278 4279 #ifdef CONFIG_TMPFS_QUOTA 4280 shmem_disable_quotas(sb); 4281 #endif 4282 free_percpu(sbinfo->ino_batch); 4283 percpu_counter_destroy(&sbinfo->used_blocks); 4284 mpol_put(sbinfo->mpol); 4285 kfree(sbinfo); 4286 sb->s_fs_info = NULL; 4287 } 4288 4289 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4290 { 4291 struct shmem_options *ctx = fc->fs_private; 4292 struct inode *inode; 4293 struct shmem_sb_info *sbinfo; 4294 int error = -ENOMEM; 4295 4296 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4297 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4298 L1_CACHE_BYTES), GFP_KERNEL); 4299 if (!sbinfo) 4300 return error; 4301 4302 sb->s_fs_info = sbinfo; 4303 4304 #ifdef CONFIG_TMPFS 4305 /* 4306 * Per default we only allow half of the physical ram per 4307 * tmpfs instance, limiting inodes to one per page of lowmem; 4308 * but the internal instance is left unlimited. 4309 */ 4310 if (!(sb->s_flags & SB_KERNMOUNT)) { 4311 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 4312 ctx->blocks = shmem_default_max_blocks(); 4313 if (!(ctx->seen & SHMEM_SEEN_INODES)) 4314 ctx->inodes = shmem_default_max_inodes(); 4315 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 4316 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 4317 sbinfo->noswap = ctx->noswap; 4318 } else { 4319 sb->s_flags |= SB_NOUSER; 4320 } 4321 sb->s_export_op = &shmem_export_ops; 4322 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 4323 #else 4324 sb->s_flags |= SB_NOUSER; 4325 #endif 4326 sbinfo->max_blocks = ctx->blocks; 4327 sbinfo->max_inodes = ctx->inodes; 4328 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 4329 if (sb->s_flags & SB_KERNMOUNT) { 4330 sbinfo->ino_batch = alloc_percpu(ino_t); 4331 if (!sbinfo->ino_batch) 4332 goto failed; 4333 } 4334 sbinfo->uid = ctx->uid; 4335 sbinfo->gid = ctx->gid; 4336 sbinfo->full_inums = ctx->full_inums; 4337 sbinfo->mode = ctx->mode; 4338 sbinfo->huge = ctx->huge; 4339 sbinfo->mpol = ctx->mpol; 4340 ctx->mpol = NULL; 4341 4342 raw_spin_lock_init(&sbinfo->stat_lock); 4343 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 4344 goto failed; 4345 spin_lock_init(&sbinfo->shrinklist_lock); 4346 INIT_LIST_HEAD(&sbinfo->shrinklist); 4347 4348 sb->s_maxbytes = MAX_LFS_FILESIZE; 4349 sb->s_blocksize = PAGE_SIZE; 4350 sb->s_blocksize_bits = PAGE_SHIFT; 4351 sb->s_magic = TMPFS_MAGIC; 4352 sb->s_op = &shmem_ops; 4353 sb->s_time_gran = 1; 4354 #ifdef CONFIG_TMPFS_XATTR 4355 sb->s_xattr = shmem_xattr_handlers; 4356 #endif 4357 #ifdef CONFIG_TMPFS_POSIX_ACL 4358 sb->s_flags |= SB_POSIXACL; 4359 #endif 4360 uuid_gen(&sb->s_uuid); 4361 4362 #ifdef CONFIG_TMPFS_QUOTA 4363 if (ctx->seen & SHMEM_SEEN_QUOTA) { 4364 sb->dq_op = &shmem_quota_operations; 4365 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4366 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4367 4368 /* Copy the default limits from ctx into sbinfo */ 4369 memcpy(&sbinfo->qlimits, &ctx->qlimits, 4370 sizeof(struct shmem_quota_limits)); 4371 4372 if (shmem_enable_quotas(sb, ctx->quota_types)) 4373 goto failed; 4374 } 4375 #endif /* CONFIG_TMPFS_QUOTA */ 4376 4377 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 4378 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 4379 if (IS_ERR(inode)) { 4380 error = PTR_ERR(inode); 4381 goto failed; 4382 } 4383 inode->i_uid = sbinfo->uid; 4384 inode->i_gid = sbinfo->gid; 4385 sb->s_root = d_make_root(inode); 4386 if (!sb->s_root) 4387 goto failed; 4388 return 0; 4389 4390 failed: 4391 shmem_put_super(sb); 4392 return error; 4393 } 4394 4395 static int shmem_get_tree(struct fs_context *fc) 4396 { 4397 return get_tree_nodev(fc, shmem_fill_super); 4398 } 4399 4400 static void shmem_free_fc(struct fs_context *fc) 4401 { 4402 struct shmem_options *ctx = fc->fs_private; 4403 4404 if (ctx) { 4405 mpol_put(ctx->mpol); 4406 kfree(ctx); 4407 } 4408 } 4409 4410 static const struct fs_context_operations shmem_fs_context_ops = { 4411 .free = shmem_free_fc, 4412 .get_tree = shmem_get_tree, 4413 #ifdef CONFIG_TMPFS 4414 .parse_monolithic = shmem_parse_options, 4415 .parse_param = shmem_parse_one, 4416 .reconfigure = shmem_reconfigure, 4417 #endif 4418 }; 4419 4420 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 4421 4422 static struct inode *shmem_alloc_inode(struct super_block *sb) 4423 { 4424 struct shmem_inode_info *info; 4425 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 4426 if (!info) 4427 return NULL; 4428 return &info->vfs_inode; 4429 } 4430 4431 static void shmem_free_in_core_inode(struct inode *inode) 4432 { 4433 if (S_ISLNK(inode->i_mode)) 4434 kfree(inode->i_link); 4435 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 4436 } 4437 4438 static void shmem_destroy_inode(struct inode *inode) 4439 { 4440 if (S_ISREG(inode->i_mode)) 4441 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 4442 if (S_ISDIR(inode->i_mode)) 4443 simple_offset_destroy(shmem_get_offset_ctx(inode)); 4444 } 4445 4446 static void shmem_init_inode(void *foo) 4447 { 4448 struct shmem_inode_info *info = foo; 4449 inode_init_once(&info->vfs_inode); 4450 } 4451 4452 static void __init shmem_init_inodecache(void) 4453 { 4454 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 4455 sizeof(struct shmem_inode_info), 4456 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 4457 } 4458 4459 static void __init shmem_destroy_inodecache(void) 4460 { 4461 kmem_cache_destroy(shmem_inode_cachep); 4462 } 4463 4464 /* Keep the page in page cache instead of truncating it */ 4465 static int shmem_error_remove_page(struct address_space *mapping, 4466 struct page *page) 4467 { 4468 return 0; 4469 } 4470 4471 const struct address_space_operations shmem_aops = { 4472 .writepage = shmem_writepage, 4473 .dirty_folio = noop_dirty_folio, 4474 #ifdef CONFIG_TMPFS 4475 .write_begin = shmem_write_begin, 4476 .write_end = shmem_write_end, 4477 #endif 4478 #ifdef CONFIG_MIGRATION 4479 .migrate_folio = migrate_folio, 4480 #endif 4481 .error_remove_page = shmem_error_remove_page, 4482 }; 4483 EXPORT_SYMBOL(shmem_aops); 4484 4485 static const struct file_operations shmem_file_operations = { 4486 .mmap = shmem_mmap, 4487 .open = shmem_file_open, 4488 .get_unmapped_area = shmem_get_unmapped_area, 4489 #ifdef CONFIG_TMPFS 4490 .llseek = shmem_file_llseek, 4491 .read_iter = shmem_file_read_iter, 4492 .write_iter = shmem_file_write_iter, 4493 .fsync = noop_fsync, 4494 .splice_read = shmem_file_splice_read, 4495 .splice_write = iter_file_splice_write, 4496 .fallocate = shmem_fallocate, 4497 #endif 4498 }; 4499 4500 static const struct inode_operations shmem_inode_operations = { 4501 .getattr = shmem_getattr, 4502 .setattr = shmem_setattr, 4503 #ifdef CONFIG_TMPFS_XATTR 4504 .listxattr = shmem_listxattr, 4505 .set_acl = simple_set_acl, 4506 .fileattr_get = shmem_fileattr_get, 4507 .fileattr_set = shmem_fileattr_set, 4508 #endif 4509 }; 4510 4511 static const struct inode_operations shmem_dir_inode_operations = { 4512 #ifdef CONFIG_TMPFS 4513 .getattr = shmem_getattr, 4514 .create = shmem_create, 4515 .lookup = simple_lookup, 4516 .link = shmem_link, 4517 .unlink = shmem_unlink, 4518 .symlink = shmem_symlink, 4519 .mkdir = shmem_mkdir, 4520 .rmdir = shmem_rmdir, 4521 .mknod = shmem_mknod, 4522 .rename = shmem_rename2, 4523 .tmpfile = shmem_tmpfile, 4524 .get_offset_ctx = shmem_get_offset_ctx, 4525 #endif 4526 #ifdef CONFIG_TMPFS_XATTR 4527 .listxattr = shmem_listxattr, 4528 .fileattr_get = shmem_fileattr_get, 4529 .fileattr_set = shmem_fileattr_set, 4530 #endif 4531 #ifdef CONFIG_TMPFS_POSIX_ACL 4532 .setattr = shmem_setattr, 4533 .set_acl = simple_set_acl, 4534 #endif 4535 }; 4536 4537 static const struct inode_operations shmem_special_inode_operations = { 4538 .getattr = shmem_getattr, 4539 #ifdef CONFIG_TMPFS_XATTR 4540 .listxattr = shmem_listxattr, 4541 #endif 4542 #ifdef CONFIG_TMPFS_POSIX_ACL 4543 .setattr = shmem_setattr, 4544 .set_acl = simple_set_acl, 4545 #endif 4546 }; 4547 4548 static const struct super_operations shmem_ops = { 4549 .alloc_inode = shmem_alloc_inode, 4550 .free_inode = shmem_free_in_core_inode, 4551 .destroy_inode = shmem_destroy_inode, 4552 #ifdef CONFIG_TMPFS 4553 .statfs = shmem_statfs, 4554 .show_options = shmem_show_options, 4555 #endif 4556 #ifdef CONFIG_TMPFS_QUOTA 4557 .get_dquots = shmem_get_dquots, 4558 #endif 4559 .evict_inode = shmem_evict_inode, 4560 .drop_inode = generic_delete_inode, 4561 .put_super = shmem_put_super, 4562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4563 .nr_cached_objects = shmem_unused_huge_count, 4564 .free_cached_objects = shmem_unused_huge_scan, 4565 #endif 4566 }; 4567 4568 static const struct vm_operations_struct shmem_vm_ops = { 4569 .fault = shmem_fault, 4570 .map_pages = filemap_map_pages, 4571 #ifdef CONFIG_NUMA 4572 .set_policy = shmem_set_policy, 4573 .get_policy = shmem_get_policy, 4574 #endif 4575 }; 4576 4577 static const struct vm_operations_struct shmem_anon_vm_ops = { 4578 .fault = shmem_fault, 4579 .map_pages = filemap_map_pages, 4580 #ifdef CONFIG_NUMA 4581 .set_policy = shmem_set_policy, 4582 .get_policy = shmem_get_policy, 4583 #endif 4584 }; 4585 4586 int shmem_init_fs_context(struct fs_context *fc) 4587 { 4588 struct shmem_options *ctx; 4589 4590 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4591 if (!ctx) 4592 return -ENOMEM; 4593 4594 ctx->mode = 0777 | S_ISVTX; 4595 ctx->uid = current_fsuid(); 4596 ctx->gid = current_fsgid(); 4597 4598 fc->fs_private = ctx; 4599 fc->ops = &shmem_fs_context_ops; 4600 return 0; 4601 } 4602 4603 static struct file_system_type shmem_fs_type = { 4604 .owner = THIS_MODULE, 4605 .name = "tmpfs", 4606 .init_fs_context = shmem_init_fs_context, 4607 #ifdef CONFIG_TMPFS 4608 .parameters = shmem_fs_parameters, 4609 #endif 4610 .kill_sb = kill_litter_super, 4611 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP, 4612 }; 4613 4614 void __init shmem_init(void) 4615 { 4616 int error; 4617 4618 shmem_init_inodecache(); 4619 4620 #ifdef CONFIG_TMPFS_QUOTA 4621 error = register_quota_format(&shmem_quota_format); 4622 if (error < 0) { 4623 pr_err("Could not register quota format\n"); 4624 goto out3; 4625 } 4626 #endif 4627 4628 error = register_filesystem(&shmem_fs_type); 4629 if (error) { 4630 pr_err("Could not register tmpfs\n"); 4631 goto out2; 4632 } 4633 4634 shm_mnt = kern_mount(&shmem_fs_type); 4635 if (IS_ERR(shm_mnt)) { 4636 error = PTR_ERR(shm_mnt); 4637 pr_err("Could not kern_mount tmpfs\n"); 4638 goto out1; 4639 } 4640 4641 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4642 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4643 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4644 else 4645 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4646 #endif 4647 return; 4648 4649 out1: 4650 unregister_filesystem(&shmem_fs_type); 4651 out2: 4652 #ifdef CONFIG_TMPFS_QUOTA 4653 unregister_quota_format(&shmem_quota_format); 4654 out3: 4655 #endif 4656 shmem_destroy_inodecache(); 4657 shm_mnt = ERR_PTR(error); 4658 } 4659 4660 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4661 static ssize_t shmem_enabled_show(struct kobject *kobj, 4662 struct kobj_attribute *attr, char *buf) 4663 { 4664 static const int values[] = { 4665 SHMEM_HUGE_ALWAYS, 4666 SHMEM_HUGE_WITHIN_SIZE, 4667 SHMEM_HUGE_ADVISE, 4668 SHMEM_HUGE_NEVER, 4669 SHMEM_HUGE_DENY, 4670 SHMEM_HUGE_FORCE, 4671 }; 4672 int len = 0; 4673 int i; 4674 4675 for (i = 0; i < ARRAY_SIZE(values); i++) { 4676 len += sysfs_emit_at(buf, len, 4677 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4678 i ? " " : "", shmem_format_huge(values[i])); 4679 } 4680 len += sysfs_emit_at(buf, len, "\n"); 4681 4682 return len; 4683 } 4684 4685 static ssize_t shmem_enabled_store(struct kobject *kobj, 4686 struct kobj_attribute *attr, const char *buf, size_t count) 4687 { 4688 char tmp[16]; 4689 int huge; 4690 4691 if (count + 1 > sizeof(tmp)) 4692 return -EINVAL; 4693 memcpy(tmp, buf, count); 4694 tmp[count] = '\0'; 4695 if (count && tmp[count - 1] == '\n') 4696 tmp[count - 1] = '\0'; 4697 4698 huge = shmem_parse_huge(tmp); 4699 if (huge == -EINVAL) 4700 return -EINVAL; 4701 if (!has_transparent_hugepage() && 4702 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4703 return -EINVAL; 4704 4705 shmem_huge = huge; 4706 if (shmem_huge > SHMEM_HUGE_DENY) 4707 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4708 return count; 4709 } 4710 4711 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4712 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4713 4714 #else /* !CONFIG_SHMEM */ 4715 4716 /* 4717 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4718 * 4719 * This is intended for small system where the benefits of the full 4720 * shmem code (swap-backed and resource-limited) are outweighed by 4721 * their complexity. On systems without swap this code should be 4722 * effectively equivalent, but much lighter weight. 4723 */ 4724 4725 static struct file_system_type shmem_fs_type = { 4726 .name = "tmpfs", 4727 .init_fs_context = ramfs_init_fs_context, 4728 .parameters = ramfs_fs_parameters, 4729 .kill_sb = ramfs_kill_sb, 4730 .fs_flags = FS_USERNS_MOUNT, 4731 }; 4732 4733 void __init shmem_init(void) 4734 { 4735 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4736 4737 shm_mnt = kern_mount(&shmem_fs_type); 4738 BUG_ON(IS_ERR(shm_mnt)); 4739 } 4740 4741 int shmem_unuse(unsigned int type) 4742 { 4743 return 0; 4744 } 4745 4746 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4747 { 4748 return 0; 4749 } 4750 4751 void shmem_unlock_mapping(struct address_space *mapping) 4752 { 4753 } 4754 4755 #ifdef CONFIG_MMU 4756 unsigned long shmem_get_unmapped_area(struct file *file, 4757 unsigned long addr, unsigned long len, 4758 unsigned long pgoff, unsigned long flags) 4759 { 4760 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4761 } 4762 #endif 4763 4764 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4765 { 4766 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4767 } 4768 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4769 4770 #define shmem_vm_ops generic_file_vm_ops 4771 #define shmem_anon_vm_ops generic_file_vm_ops 4772 #define shmem_file_operations ramfs_file_operations 4773 #define shmem_acct_size(flags, size) 0 4774 #define shmem_unacct_size(flags, size) do {} while (0) 4775 4776 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 4777 struct super_block *sb, struct inode *dir, 4778 umode_t mode, dev_t dev, unsigned long flags) 4779 { 4780 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 4781 return inode ? inode : ERR_PTR(-ENOSPC); 4782 } 4783 4784 #endif /* CONFIG_SHMEM */ 4785 4786 /* common code */ 4787 4788 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 4789 loff_t size, unsigned long flags, unsigned int i_flags) 4790 { 4791 struct inode *inode; 4792 struct file *res; 4793 4794 if (IS_ERR(mnt)) 4795 return ERR_CAST(mnt); 4796 4797 if (size < 0 || size > MAX_LFS_FILESIZE) 4798 return ERR_PTR(-EINVAL); 4799 4800 if (shmem_acct_size(flags, size)) 4801 return ERR_PTR(-ENOMEM); 4802 4803 if (is_idmapped_mnt(mnt)) 4804 return ERR_PTR(-EINVAL); 4805 4806 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 4807 S_IFREG | S_IRWXUGO, 0, flags); 4808 if (IS_ERR(inode)) { 4809 shmem_unacct_size(flags, size); 4810 return ERR_CAST(inode); 4811 } 4812 inode->i_flags |= i_flags; 4813 inode->i_size = size; 4814 clear_nlink(inode); /* It is unlinked */ 4815 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4816 if (!IS_ERR(res)) 4817 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4818 &shmem_file_operations); 4819 if (IS_ERR(res)) 4820 iput(inode); 4821 return res; 4822 } 4823 4824 /** 4825 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4826 * kernel internal. There will be NO LSM permission checks against the 4827 * underlying inode. So users of this interface must do LSM checks at a 4828 * higher layer. The users are the big_key and shm implementations. LSM 4829 * checks are provided at the key or shm level rather than the inode. 4830 * @name: name for dentry (to be seen in /proc/<pid>/maps 4831 * @size: size to be set for the file 4832 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4833 */ 4834 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4835 { 4836 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4837 } 4838 4839 /** 4840 * shmem_file_setup - get an unlinked file living in tmpfs 4841 * @name: name for dentry (to be seen in /proc/<pid>/maps 4842 * @size: size to be set for the file 4843 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4844 */ 4845 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4846 { 4847 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4848 } 4849 EXPORT_SYMBOL_GPL(shmem_file_setup); 4850 4851 /** 4852 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4853 * @mnt: the tmpfs mount where the file will be created 4854 * @name: name for dentry (to be seen in /proc/<pid>/maps 4855 * @size: size to be set for the file 4856 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4857 */ 4858 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4859 loff_t size, unsigned long flags) 4860 { 4861 return __shmem_file_setup(mnt, name, size, flags, 0); 4862 } 4863 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4864 4865 /** 4866 * shmem_zero_setup - setup a shared anonymous mapping 4867 * @vma: the vma to be mmapped is prepared by do_mmap 4868 */ 4869 int shmem_zero_setup(struct vm_area_struct *vma) 4870 { 4871 struct file *file; 4872 loff_t size = vma->vm_end - vma->vm_start; 4873 4874 /* 4875 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4876 * between XFS directory reading and selinux: since this file is only 4877 * accessible to the user through its mapping, use S_PRIVATE flag to 4878 * bypass file security, in the same way as shmem_kernel_file_setup(). 4879 */ 4880 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4881 if (IS_ERR(file)) 4882 return PTR_ERR(file); 4883 4884 if (vma->vm_file) 4885 fput(vma->vm_file); 4886 vma->vm_file = file; 4887 vma->vm_ops = &shmem_anon_vm_ops; 4888 4889 return 0; 4890 } 4891 4892 /** 4893 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 4894 * @mapping: the folio's address_space 4895 * @index: the folio index 4896 * @gfp: the page allocator flags to use if allocating 4897 * 4898 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4899 * with any new page allocations done using the specified allocation flags. 4900 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4901 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4902 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4903 * 4904 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4905 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4906 */ 4907 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 4908 pgoff_t index, gfp_t gfp) 4909 { 4910 #ifdef CONFIG_SHMEM 4911 struct inode *inode = mapping->host; 4912 struct folio *folio; 4913 int error; 4914 4915 BUG_ON(!shmem_mapping(mapping)); 4916 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE, 4917 gfp, NULL, NULL); 4918 if (error) 4919 return ERR_PTR(error); 4920 4921 folio_unlock(folio); 4922 return folio; 4923 #else 4924 /* 4925 * The tiny !SHMEM case uses ramfs without swap 4926 */ 4927 return mapping_read_folio_gfp(mapping, index, gfp); 4928 #endif 4929 } 4930 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 4931 4932 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4933 pgoff_t index, gfp_t gfp) 4934 { 4935 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 4936 struct page *page; 4937 4938 if (IS_ERR(folio)) 4939 return &folio->page; 4940 4941 page = folio_file_page(folio, index); 4942 if (PageHWPoison(page)) { 4943 folio_put(folio); 4944 return ERR_PTR(-EIO); 4945 } 4946 4947 return page; 4948 } 4949 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4950