1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/frontswap.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 43 static struct vfsmount *shm_mnt; 44 45 #ifdef CONFIG_SHMEM 46 /* 47 * This virtual memory filesystem is heavily based on the ramfs. It 48 * extends ramfs by the ability to use swap and honor resource limits 49 * which makes it a completely usable filesystem. 50 */ 51 52 #include <linux/xattr.h> 53 #include <linux/exportfs.h> 54 #include <linux/posix_acl.h> 55 #include <linux/posix_acl_xattr.h> 56 #include <linux/mman.h> 57 #include <linux/string.h> 58 #include <linux/slab.h> 59 #include <linux/backing-dev.h> 60 #include <linux/shmem_fs.h> 61 #include <linux/writeback.h> 62 #include <linux/pagevec.h> 63 #include <linux/percpu_counter.h> 64 #include <linux/falloc.h> 65 #include <linux/splice.h> 66 #include <linux/security.h> 67 #include <linux/swapops.h> 68 #include <linux/mempolicy.h> 69 #include <linux/namei.h> 70 #include <linux/ctype.h> 71 #include <linux/migrate.h> 72 #include <linux/highmem.h> 73 #include <linux/seq_file.h> 74 #include <linux/magic.h> 75 #include <linux/syscalls.h> 76 #include <linux/fcntl.h> 77 #include <uapi/linux/memfd.h> 78 #include <linux/userfaultfd_k.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 82 #include <linux/uaccess.h> 83 84 #include "internal.h" 85 86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 88 89 /* Pretend that each entry is of this size in directory's i_size */ 90 #define BOGO_DIRENT_SIZE 20 91 92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 93 #define SHORT_SYMLINK_LEN 128 94 95 /* 96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 97 * inode->i_private (with i_rwsem making sure that it has only one user at 98 * a time): we would prefer not to enlarge the shmem inode just for that. 99 */ 100 struct shmem_falloc { 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 102 pgoff_t start; /* start of range currently being fallocated */ 103 pgoff_t next; /* the next page offset to be fallocated */ 104 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 106 }; 107 108 struct shmem_options { 109 unsigned long long blocks; 110 unsigned long long inodes; 111 struct mempolicy *mpol; 112 kuid_t uid; 113 kgid_t gid; 114 umode_t mode; 115 bool full_inums; 116 int huge; 117 int seen; 118 #define SHMEM_SEEN_BLOCKS 1 119 #define SHMEM_SEEN_INODES 2 120 #define SHMEM_SEEN_HUGE 4 121 #define SHMEM_SEEN_INUMS 8 122 }; 123 124 #ifdef CONFIG_TMPFS 125 static unsigned long shmem_default_max_blocks(void) 126 { 127 return totalram_pages() / 2; 128 } 129 130 static unsigned long shmem_default_max_inodes(void) 131 { 132 unsigned long nr_pages = totalram_pages(); 133 134 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 135 } 136 #endif 137 138 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 139 struct page **pagep, enum sgp_type sgp, 140 gfp_t gfp, struct vm_area_struct *vma, 141 vm_fault_t *fault_type); 142 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 143 struct page **pagep, enum sgp_type sgp, 144 gfp_t gfp, struct vm_area_struct *vma, 145 struct vm_fault *vmf, vm_fault_t *fault_type); 146 147 int shmem_getpage(struct inode *inode, pgoff_t index, 148 struct page **pagep, enum sgp_type sgp) 149 { 150 return shmem_getpage_gfp(inode, index, pagep, sgp, 151 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 152 } 153 154 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 155 { 156 return sb->s_fs_info; 157 } 158 159 /* 160 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 161 * for shared memory and for shared anonymous (/dev/zero) mappings 162 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 163 * consistent with the pre-accounting of private mappings ... 164 */ 165 static inline int shmem_acct_size(unsigned long flags, loff_t size) 166 { 167 return (flags & VM_NORESERVE) ? 168 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 169 } 170 171 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 172 { 173 if (!(flags & VM_NORESERVE)) 174 vm_unacct_memory(VM_ACCT(size)); 175 } 176 177 static inline int shmem_reacct_size(unsigned long flags, 178 loff_t oldsize, loff_t newsize) 179 { 180 if (!(flags & VM_NORESERVE)) { 181 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 182 return security_vm_enough_memory_mm(current->mm, 183 VM_ACCT(newsize) - VM_ACCT(oldsize)); 184 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 185 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 186 } 187 return 0; 188 } 189 190 /* 191 * ... whereas tmpfs objects are accounted incrementally as 192 * pages are allocated, in order to allow large sparse files. 193 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 194 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 195 */ 196 static inline int shmem_acct_block(unsigned long flags, long pages) 197 { 198 if (!(flags & VM_NORESERVE)) 199 return 0; 200 201 return security_vm_enough_memory_mm(current->mm, 202 pages * VM_ACCT(PAGE_SIZE)); 203 } 204 205 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 206 { 207 if (flags & VM_NORESERVE) 208 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 209 } 210 211 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 212 { 213 struct shmem_inode_info *info = SHMEM_I(inode); 214 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 215 216 if (shmem_acct_block(info->flags, pages)) 217 return false; 218 219 if (sbinfo->max_blocks) { 220 if (percpu_counter_compare(&sbinfo->used_blocks, 221 sbinfo->max_blocks - pages) > 0) 222 goto unacct; 223 percpu_counter_add(&sbinfo->used_blocks, pages); 224 } 225 226 return true; 227 228 unacct: 229 shmem_unacct_blocks(info->flags, pages); 230 return false; 231 } 232 233 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 234 { 235 struct shmem_inode_info *info = SHMEM_I(inode); 236 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 237 238 if (sbinfo->max_blocks) 239 percpu_counter_sub(&sbinfo->used_blocks, pages); 240 shmem_unacct_blocks(info->flags, pages); 241 } 242 243 static const struct super_operations shmem_ops; 244 const struct address_space_operations shmem_aops; 245 static const struct file_operations shmem_file_operations; 246 static const struct inode_operations shmem_inode_operations; 247 static const struct inode_operations shmem_dir_inode_operations; 248 static const struct inode_operations shmem_special_inode_operations; 249 static const struct vm_operations_struct shmem_vm_ops; 250 static struct file_system_type shmem_fs_type; 251 252 bool vma_is_shmem(struct vm_area_struct *vma) 253 { 254 return vma->vm_ops == &shmem_vm_ops; 255 } 256 257 static LIST_HEAD(shmem_swaplist); 258 static DEFINE_MUTEX(shmem_swaplist_mutex); 259 260 /* 261 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 262 * produces a novel ino for the newly allocated inode. 263 * 264 * It may also be called when making a hard link to permit the space needed by 265 * each dentry. However, in that case, no new inode number is needed since that 266 * internally draws from another pool of inode numbers (currently global 267 * get_next_ino()). This case is indicated by passing NULL as inop. 268 */ 269 #define SHMEM_INO_BATCH 1024 270 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 271 { 272 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 273 ino_t ino; 274 275 if (!(sb->s_flags & SB_KERNMOUNT)) { 276 raw_spin_lock(&sbinfo->stat_lock); 277 if (sbinfo->max_inodes) { 278 if (!sbinfo->free_inodes) { 279 raw_spin_unlock(&sbinfo->stat_lock); 280 return -ENOSPC; 281 } 282 sbinfo->free_inodes--; 283 } 284 if (inop) { 285 ino = sbinfo->next_ino++; 286 if (unlikely(is_zero_ino(ino))) 287 ino = sbinfo->next_ino++; 288 if (unlikely(!sbinfo->full_inums && 289 ino > UINT_MAX)) { 290 /* 291 * Emulate get_next_ino uint wraparound for 292 * compatibility 293 */ 294 if (IS_ENABLED(CONFIG_64BIT)) 295 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 296 __func__, MINOR(sb->s_dev)); 297 sbinfo->next_ino = 1; 298 ino = sbinfo->next_ino++; 299 } 300 *inop = ino; 301 } 302 raw_spin_unlock(&sbinfo->stat_lock); 303 } else if (inop) { 304 /* 305 * __shmem_file_setup, one of our callers, is lock-free: it 306 * doesn't hold stat_lock in shmem_reserve_inode since 307 * max_inodes is always 0, and is called from potentially 308 * unknown contexts. As such, use a per-cpu batched allocator 309 * which doesn't require the per-sb stat_lock unless we are at 310 * the batch boundary. 311 * 312 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 313 * shmem mounts are not exposed to userspace, so we don't need 314 * to worry about things like glibc compatibility. 315 */ 316 ino_t *next_ino; 317 318 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 319 ino = *next_ino; 320 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 321 raw_spin_lock(&sbinfo->stat_lock); 322 ino = sbinfo->next_ino; 323 sbinfo->next_ino += SHMEM_INO_BATCH; 324 raw_spin_unlock(&sbinfo->stat_lock); 325 if (unlikely(is_zero_ino(ino))) 326 ino++; 327 } 328 *inop = ino; 329 *next_ino = ++ino; 330 put_cpu(); 331 } 332 333 return 0; 334 } 335 336 static void shmem_free_inode(struct super_block *sb) 337 { 338 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 339 if (sbinfo->max_inodes) { 340 raw_spin_lock(&sbinfo->stat_lock); 341 sbinfo->free_inodes++; 342 raw_spin_unlock(&sbinfo->stat_lock); 343 } 344 } 345 346 /** 347 * shmem_recalc_inode - recalculate the block usage of an inode 348 * @inode: inode to recalc 349 * 350 * We have to calculate the free blocks since the mm can drop 351 * undirtied hole pages behind our back. 352 * 353 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 354 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 355 * 356 * It has to be called with the spinlock held. 357 */ 358 static void shmem_recalc_inode(struct inode *inode) 359 { 360 struct shmem_inode_info *info = SHMEM_I(inode); 361 long freed; 362 363 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 364 if (freed > 0) { 365 info->alloced -= freed; 366 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 367 shmem_inode_unacct_blocks(inode, freed); 368 } 369 } 370 371 bool shmem_charge(struct inode *inode, long pages) 372 { 373 struct shmem_inode_info *info = SHMEM_I(inode); 374 unsigned long flags; 375 376 if (!shmem_inode_acct_block(inode, pages)) 377 return false; 378 379 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 380 inode->i_mapping->nrpages += pages; 381 382 spin_lock_irqsave(&info->lock, flags); 383 info->alloced += pages; 384 inode->i_blocks += pages * BLOCKS_PER_PAGE; 385 shmem_recalc_inode(inode); 386 spin_unlock_irqrestore(&info->lock, flags); 387 388 return true; 389 } 390 391 void shmem_uncharge(struct inode *inode, long pages) 392 { 393 struct shmem_inode_info *info = SHMEM_I(inode); 394 unsigned long flags; 395 396 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 397 398 spin_lock_irqsave(&info->lock, flags); 399 info->alloced -= pages; 400 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 401 shmem_recalc_inode(inode); 402 spin_unlock_irqrestore(&info->lock, flags); 403 404 shmem_inode_unacct_blocks(inode, pages); 405 } 406 407 /* 408 * Replace item expected in xarray by a new item, while holding xa_lock. 409 */ 410 static int shmem_replace_entry(struct address_space *mapping, 411 pgoff_t index, void *expected, void *replacement) 412 { 413 XA_STATE(xas, &mapping->i_pages, index); 414 void *item; 415 416 VM_BUG_ON(!expected); 417 VM_BUG_ON(!replacement); 418 item = xas_load(&xas); 419 if (item != expected) 420 return -ENOENT; 421 xas_store(&xas, replacement); 422 return 0; 423 } 424 425 /* 426 * Sometimes, before we decide whether to proceed or to fail, we must check 427 * that an entry was not already brought back from swap by a racing thread. 428 * 429 * Checking page is not enough: by the time a SwapCache page is locked, it 430 * might be reused, and again be SwapCache, using the same swap as before. 431 */ 432 static bool shmem_confirm_swap(struct address_space *mapping, 433 pgoff_t index, swp_entry_t swap) 434 { 435 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 436 } 437 438 /* 439 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 440 * 441 * SHMEM_HUGE_NEVER: 442 * disables huge pages for the mount; 443 * SHMEM_HUGE_ALWAYS: 444 * enables huge pages for the mount; 445 * SHMEM_HUGE_WITHIN_SIZE: 446 * only allocate huge pages if the page will be fully within i_size, 447 * also respect fadvise()/madvise() hints; 448 * SHMEM_HUGE_ADVISE: 449 * only allocate huge pages if requested with fadvise()/madvise(); 450 */ 451 452 #define SHMEM_HUGE_NEVER 0 453 #define SHMEM_HUGE_ALWAYS 1 454 #define SHMEM_HUGE_WITHIN_SIZE 2 455 #define SHMEM_HUGE_ADVISE 3 456 457 /* 458 * Special values. 459 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 460 * 461 * SHMEM_HUGE_DENY: 462 * disables huge on shm_mnt and all mounts, for emergency use; 463 * SHMEM_HUGE_FORCE: 464 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 465 * 466 */ 467 #define SHMEM_HUGE_DENY (-1) 468 #define SHMEM_HUGE_FORCE (-2) 469 470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 471 /* ifdef here to avoid bloating shmem.o when not necessary */ 472 473 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 474 475 bool shmem_is_huge(struct vm_area_struct *vma, 476 struct inode *inode, pgoff_t index) 477 { 478 loff_t i_size; 479 480 if (shmem_huge == SHMEM_HUGE_DENY) 481 return false; 482 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) || 483 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))) 484 return false; 485 if (shmem_huge == SHMEM_HUGE_FORCE) 486 return true; 487 488 switch (SHMEM_SB(inode->i_sb)->huge) { 489 case SHMEM_HUGE_ALWAYS: 490 return true; 491 case SHMEM_HUGE_WITHIN_SIZE: 492 index = round_up(index + 1, HPAGE_PMD_NR); 493 i_size = round_up(i_size_read(inode), PAGE_SIZE); 494 if (i_size >> PAGE_SHIFT >= index) 495 return true; 496 fallthrough; 497 case SHMEM_HUGE_ADVISE: 498 if (vma && (vma->vm_flags & VM_HUGEPAGE)) 499 return true; 500 fallthrough; 501 default: 502 return false; 503 } 504 } 505 506 #if defined(CONFIG_SYSFS) 507 static int shmem_parse_huge(const char *str) 508 { 509 if (!strcmp(str, "never")) 510 return SHMEM_HUGE_NEVER; 511 if (!strcmp(str, "always")) 512 return SHMEM_HUGE_ALWAYS; 513 if (!strcmp(str, "within_size")) 514 return SHMEM_HUGE_WITHIN_SIZE; 515 if (!strcmp(str, "advise")) 516 return SHMEM_HUGE_ADVISE; 517 if (!strcmp(str, "deny")) 518 return SHMEM_HUGE_DENY; 519 if (!strcmp(str, "force")) 520 return SHMEM_HUGE_FORCE; 521 return -EINVAL; 522 } 523 #endif 524 525 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 526 static const char *shmem_format_huge(int huge) 527 { 528 switch (huge) { 529 case SHMEM_HUGE_NEVER: 530 return "never"; 531 case SHMEM_HUGE_ALWAYS: 532 return "always"; 533 case SHMEM_HUGE_WITHIN_SIZE: 534 return "within_size"; 535 case SHMEM_HUGE_ADVISE: 536 return "advise"; 537 case SHMEM_HUGE_DENY: 538 return "deny"; 539 case SHMEM_HUGE_FORCE: 540 return "force"; 541 default: 542 VM_BUG_ON(1); 543 return "bad_val"; 544 } 545 } 546 #endif 547 548 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 549 struct shrink_control *sc, unsigned long nr_to_split) 550 { 551 LIST_HEAD(list), *pos, *next; 552 LIST_HEAD(to_remove); 553 struct inode *inode; 554 struct shmem_inode_info *info; 555 struct page *page; 556 unsigned long batch = sc ? sc->nr_to_scan : 128; 557 int removed = 0, split = 0; 558 559 if (list_empty(&sbinfo->shrinklist)) 560 return SHRINK_STOP; 561 562 spin_lock(&sbinfo->shrinklist_lock); 563 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 564 info = list_entry(pos, struct shmem_inode_info, shrinklist); 565 566 /* pin the inode */ 567 inode = igrab(&info->vfs_inode); 568 569 /* inode is about to be evicted */ 570 if (!inode) { 571 list_del_init(&info->shrinklist); 572 removed++; 573 goto next; 574 } 575 576 /* Check if there's anything to gain */ 577 if (round_up(inode->i_size, PAGE_SIZE) == 578 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 579 list_move(&info->shrinklist, &to_remove); 580 removed++; 581 goto next; 582 } 583 584 list_move(&info->shrinklist, &list); 585 next: 586 if (!--batch) 587 break; 588 } 589 spin_unlock(&sbinfo->shrinklist_lock); 590 591 list_for_each_safe(pos, next, &to_remove) { 592 info = list_entry(pos, struct shmem_inode_info, shrinklist); 593 inode = &info->vfs_inode; 594 list_del_init(&info->shrinklist); 595 iput(inode); 596 } 597 598 list_for_each_safe(pos, next, &list) { 599 int ret; 600 601 info = list_entry(pos, struct shmem_inode_info, shrinklist); 602 inode = &info->vfs_inode; 603 604 if (nr_to_split && split >= nr_to_split) 605 goto leave; 606 607 page = find_get_page(inode->i_mapping, 608 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 609 if (!page) 610 goto drop; 611 612 /* No huge page at the end of the file: nothing to split */ 613 if (!PageTransHuge(page)) { 614 put_page(page); 615 goto drop; 616 } 617 618 /* 619 * Leave the inode on the list if we failed to lock 620 * the page at this time. 621 * 622 * Waiting for the lock may lead to deadlock in the 623 * reclaim path. 624 */ 625 if (!trylock_page(page)) { 626 put_page(page); 627 goto leave; 628 } 629 630 ret = split_huge_page(page); 631 unlock_page(page); 632 put_page(page); 633 634 /* If split failed leave the inode on the list */ 635 if (ret) 636 goto leave; 637 638 split++; 639 drop: 640 list_del_init(&info->shrinklist); 641 removed++; 642 leave: 643 iput(inode); 644 } 645 646 spin_lock(&sbinfo->shrinklist_lock); 647 list_splice_tail(&list, &sbinfo->shrinklist); 648 sbinfo->shrinklist_len -= removed; 649 spin_unlock(&sbinfo->shrinklist_lock); 650 651 return split; 652 } 653 654 static long shmem_unused_huge_scan(struct super_block *sb, 655 struct shrink_control *sc) 656 { 657 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 658 659 if (!READ_ONCE(sbinfo->shrinklist_len)) 660 return SHRINK_STOP; 661 662 return shmem_unused_huge_shrink(sbinfo, sc, 0); 663 } 664 665 static long shmem_unused_huge_count(struct super_block *sb, 666 struct shrink_control *sc) 667 { 668 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 669 return READ_ONCE(sbinfo->shrinklist_len); 670 } 671 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 672 673 #define shmem_huge SHMEM_HUGE_DENY 674 675 bool shmem_is_huge(struct vm_area_struct *vma, 676 struct inode *inode, pgoff_t index) 677 { 678 return false; 679 } 680 681 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 682 struct shrink_control *sc, unsigned long nr_to_split) 683 { 684 return 0; 685 } 686 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 687 688 /* 689 * Like add_to_page_cache_locked, but error if expected item has gone. 690 */ 691 static int shmem_add_to_page_cache(struct page *page, 692 struct address_space *mapping, 693 pgoff_t index, void *expected, gfp_t gfp, 694 struct mm_struct *charge_mm) 695 { 696 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 697 unsigned long i = 0; 698 unsigned long nr = compound_nr(page); 699 int error; 700 701 VM_BUG_ON_PAGE(PageTail(page), page); 702 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 703 VM_BUG_ON_PAGE(!PageLocked(page), page); 704 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 705 VM_BUG_ON(expected && PageTransHuge(page)); 706 707 page_ref_add(page, nr); 708 page->mapping = mapping; 709 page->index = index; 710 711 if (!PageSwapCache(page)) { 712 error = mem_cgroup_charge(page_folio(page), charge_mm, gfp); 713 if (error) { 714 if (PageTransHuge(page)) { 715 count_vm_event(THP_FILE_FALLBACK); 716 count_vm_event(THP_FILE_FALLBACK_CHARGE); 717 } 718 goto error; 719 } 720 } 721 cgroup_throttle_swaprate(page, gfp); 722 723 do { 724 void *entry; 725 xas_lock_irq(&xas); 726 entry = xas_find_conflict(&xas); 727 if (entry != expected) 728 xas_set_err(&xas, -EEXIST); 729 xas_create_range(&xas); 730 if (xas_error(&xas)) 731 goto unlock; 732 next: 733 xas_store(&xas, page); 734 if (++i < nr) { 735 xas_next(&xas); 736 goto next; 737 } 738 if (PageTransHuge(page)) { 739 count_vm_event(THP_FILE_ALLOC); 740 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr); 741 } 742 mapping->nrpages += nr; 743 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr); 744 __mod_lruvec_page_state(page, NR_SHMEM, nr); 745 unlock: 746 xas_unlock_irq(&xas); 747 } while (xas_nomem(&xas, gfp)); 748 749 if (xas_error(&xas)) { 750 error = xas_error(&xas); 751 goto error; 752 } 753 754 return 0; 755 error: 756 page->mapping = NULL; 757 page_ref_sub(page, nr); 758 return error; 759 } 760 761 /* 762 * Like delete_from_page_cache, but substitutes swap for page. 763 */ 764 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 765 { 766 struct address_space *mapping = page->mapping; 767 int error; 768 769 VM_BUG_ON_PAGE(PageCompound(page), page); 770 771 xa_lock_irq(&mapping->i_pages); 772 error = shmem_replace_entry(mapping, page->index, page, radswap); 773 page->mapping = NULL; 774 mapping->nrpages--; 775 __dec_lruvec_page_state(page, NR_FILE_PAGES); 776 __dec_lruvec_page_state(page, NR_SHMEM); 777 xa_unlock_irq(&mapping->i_pages); 778 put_page(page); 779 BUG_ON(error); 780 } 781 782 /* 783 * Remove swap entry from page cache, free the swap and its page cache. 784 */ 785 static int shmem_free_swap(struct address_space *mapping, 786 pgoff_t index, void *radswap) 787 { 788 void *old; 789 790 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 791 if (old != radswap) 792 return -ENOENT; 793 free_swap_and_cache(radix_to_swp_entry(radswap)); 794 return 0; 795 } 796 797 /* 798 * Determine (in bytes) how many of the shmem object's pages mapped by the 799 * given offsets are swapped out. 800 * 801 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 802 * as long as the inode doesn't go away and racy results are not a problem. 803 */ 804 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 805 pgoff_t start, pgoff_t end) 806 { 807 XA_STATE(xas, &mapping->i_pages, start); 808 struct page *page; 809 unsigned long swapped = 0; 810 811 rcu_read_lock(); 812 xas_for_each(&xas, page, end - 1) { 813 if (xas_retry(&xas, page)) 814 continue; 815 if (xa_is_value(page)) 816 swapped++; 817 818 if (need_resched()) { 819 xas_pause(&xas); 820 cond_resched_rcu(); 821 } 822 } 823 824 rcu_read_unlock(); 825 826 return swapped << PAGE_SHIFT; 827 } 828 829 /* 830 * Determine (in bytes) how many of the shmem object's pages mapped by the 831 * given vma is swapped out. 832 * 833 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 834 * as long as the inode doesn't go away and racy results are not a problem. 835 */ 836 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 837 { 838 struct inode *inode = file_inode(vma->vm_file); 839 struct shmem_inode_info *info = SHMEM_I(inode); 840 struct address_space *mapping = inode->i_mapping; 841 unsigned long swapped; 842 843 /* Be careful as we don't hold info->lock */ 844 swapped = READ_ONCE(info->swapped); 845 846 /* 847 * The easier cases are when the shmem object has nothing in swap, or 848 * the vma maps it whole. Then we can simply use the stats that we 849 * already track. 850 */ 851 if (!swapped) 852 return 0; 853 854 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 855 return swapped << PAGE_SHIFT; 856 857 /* Here comes the more involved part */ 858 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 859 vma->vm_pgoff + vma_pages(vma)); 860 } 861 862 /* 863 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 864 */ 865 void shmem_unlock_mapping(struct address_space *mapping) 866 { 867 struct pagevec pvec; 868 pgoff_t index = 0; 869 870 pagevec_init(&pvec); 871 /* 872 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 873 */ 874 while (!mapping_unevictable(mapping)) { 875 if (!pagevec_lookup(&pvec, mapping, &index)) 876 break; 877 check_move_unevictable_pages(&pvec); 878 pagevec_release(&pvec); 879 cond_resched(); 880 } 881 } 882 883 /* 884 * Check whether a hole-punch or truncation needs to split a huge page, 885 * returning true if no split was required, or the split has been successful. 886 * 887 * Eviction (or truncation to 0 size) should never need to split a huge page; 888 * but in rare cases might do so, if shmem_undo_range() failed to trylock on 889 * head, and then succeeded to trylock on tail. 890 * 891 * A split can only succeed when there are no additional references on the 892 * huge page: so the split below relies upon find_get_entries() having stopped 893 * when it found a subpage of the huge page, without getting further references. 894 */ 895 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end) 896 { 897 if (!PageTransCompound(page)) 898 return true; 899 900 /* Just proceed to delete a huge page wholly within the range punched */ 901 if (PageHead(page) && 902 page->index >= start && page->index + HPAGE_PMD_NR <= end) 903 return true; 904 905 /* Try to split huge page, so we can truly punch the hole or truncate */ 906 return split_huge_page(page) >= 0; 907 } 908 909 /* 910 * Remove range of pages and swap entries from page cache, and free them. 911 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 912 */ 913 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 914 bool unfalloc) 915 { 916 struct address_space *mapping = inode->i_mapping; 917 struct shmem_inode_info *info = SHMEM_I(inode); 918 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 919 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 920 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 921 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 922 struct pagevec pvec; 923 pgoff_t indices[PAGEVEC_SIZE]; 924 long nr_swaps_freed = 0; 925 pgoff_t index; 926 int i; 927 928 if (lend == -1) 929 end = -1; /* unsigned, so actually very big */ 930 931 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 932 info->fallocend = start; 933 934 pagevec_init(&pvec); 935 index = start; 936 while (index < end && find_lock_entries(mapping, index, end - 1, 937 &pvec, indices)) { 938 for (i = 0; i < pagevec_count(&pvec); i++) { 939 struct page *page = pvec.pages[i]; 940 941 index = indices[i]; 942 943 if (xa_is_value(page)) { 944 if (unfalloc) 945 continue; 946 nr_swaps_freed += !shmem_free_swap(mapping, 947 index, page); 948 continue; 949 } 950 index += thp_nr_pages(page) - 1; 951 952 if (!unfalloc || !PageUptodate(page)) 953 truncate_inode_page(mapping, page); 954 unlock_page(page); 955 } 956 pagevec_remove_exceptionals(&pvec); 957 pagevec_release(&pvec); 958 cond_resched(); 959 index++; 960 } 961 962 if (partial_start) { 963 struct page *page = NULL; 964 shmem_getpage(inode, start - 1, &page, SGP_READ); 965 if (page) { 966 unsigned int top = PAGE_SIZE; 967 if (start > end) { 968 top = partial_end; 969 partial_end = 0; 970 } 971 zero_user_segment(page, partial_start, top); 972 set_page_dirty(page); 973 unlock_page(page); 974 put_page(page); 975 } 976 } 977 if (partial_end) { 978 struct page *page = NULL; 979 shmem_getpage(inode, end, &page, SGP_READ); 980 if (page) { 981 zero_user_segment(page, 0, partial_end); 982 set_page_dirty(page); 983 unlock_page(page); 984 put_page(page); 985 } 986 } 987 if (start >= end) 988 return; 989 990 index = start; 991 while (index < end) { 992 cond_resched(); 993 994 if (!find_get_entries(mapping, index, end - 1, &pvec, 995 indices)) { 996 /* If all gone or hole-punch or unfalloc, we're done */ 997 if (index == start || end != -1) 998 break; 999 /* But if truncating, restart to make sure all gone */ 1000 index = start; 1001 continue; 1002 } 1003 for (i = 0; i < pagevec_count(&pvec); i++) { 1004 struct page *page = pvec.pages[i]; 1005 1006 index = indices[i]; 1007 if (xa_is_value(page)) { 1008 if (unfalloc) 1009 continue; 1010 if (shmem_free_swap(mapping, index, page)) { 1011 /* Swap was replaced by page: retry */ 1012 index--; 1013 break; 1014 } 1015 nr_swaps_freed++; 1016 continue; 1017 } 1018 1019 lock_page(page); 1020 1021 if (!unfalloc || !PageUptodate(page)) { 1022 if (page_mapping(page) != mapping) { 1023 /* Page was replaced by swap: retry */ 1024 unlock_page(page); 1025 index--; 1026 break; 1027 } 1028 VM_BUG_ON_PAGE(PageWriteback(page), page); 1029 if (shmem_punch_compound(page, start, end)) 1030 truncate_inode_page(mapping, page); 1031 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1032 /* Wipe the page and don't get stuck */ 1033 clear_highpage(page); 1034 flush_dcache_page(page); 1035 set_page_dirty(page); 1036 if (index < 1037 round_up(start, HPAGE_PMD_NR)) 1038 start = index + 1; 1039 } 1040 } 1041 unlock_page(page); 1042 } 1043 pagevec_remove_exceptionals(&pvec); 1044 pagevec_release(&pvec); 1045 index++; 1046 } 1047 1048 spin_lock_irq(&info->lock); 1049 info->swapped -= nr_swaps_freed; 1050 shmem_recalc_inode(inode); 1051 spin_unlock_irq(&info->lock); 1052 } 1053 1054 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1055 { 1056 shmem_undo_range(inode, lstart, lend, false); 1057 inode->i_ctime = inode->i_mtime = current_time(inode); 1058 } 1059 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1060 1061 static int shmem_getattr(struct user_namespace *mnt_userns, 1062 const struct path *path, struct kstat *stat, 1063 u32 request_mask, unsigned int query_flags) 1064 { 1065 struct inode *inode = path->dentry->d_inode; 1066 struct shmem_inode_info *info = SHMEM_I(inode); 1067 1068 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1069 spin_lock_irq(&info->lock); 1070 shmem_recalc_inode(inode); 1071 spin_unlock_irq(&info->lock); 1072 } 1073 generic_fillattr(&init_user_ns, inode, stat); 1074 1075 if (shmem_is_huge(NULL, inode, 0)) 1076 stat->blksize = HPAGE_PMD_SIZE; 1077 1078 return 0; 1079 } 1080 1081 static int shmem_setattr(struct user_namespace *mnt_userns, 1082 struct dentry *dentry, struct iattr *attr) 1083 { 1084 struct inode *inode = d_inode(dentry); 1085 struct shmem_inode_info *info = SHMEM_I(inode); 1086 int error; 1087 1088 error = setattr_prepare(&init_user_ns, dentry, attr); 1089 if (error) 1090 return error; 1091 1092 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1093 loff_t oldsize = inode->i_size; 1094 loff_t newsize = attr->ia_size; 1095 1096 /* protected by i_rwsem */ 1097 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1098 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1099 return -EPERM; 1100 1101 if (newsize != oldsize) { 1102 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1103 oldsize, newsize); 1104 if (error) 1105 return error; 1106 i_size_write(inode, newsize); 1107 inode->i_ctime = inode->i_mtime = current_time(inode); 1108 } 1109 if (newsize <= oldsize) { 1110 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1111 if (oldsize > holebegin) 1112 unmap_mapping_range(inode->i_mapping, 1113 holebegin, 0, 1); 1114 if (info->alloced) 1115 shmem_truncate_range(inode, 1116 newsize, (loff_t)-1); 1117 /* unmap again to remove racily COWed private pages */ 1118 if (oldsize > holebegin) 1119 unmap_mapping_range(inode->i_mapping, 1120 holebegin, 0, 1); 1121 } 1122 } 1123 1124 setattr_copy(&init_user_ns, inode, attr); 1125 if (attr->ia_valid & ATTR_MODE) 1126 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode); 1127 return error; 1128 } 1129 1130 static void shmem_evict_inode(struct inode *inode) 1131 { 1132 struct shmem_inode_info *info = SHMEM_I(inode); 1133 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1134 1135 if (shmem_mapping(inode->i_mapping)) { 1136 shmem_unacct_size(info->flags, inode->i_size); 1137 inode->i_size = 0; 1138 shmem_truncate_range(inode, 0, (loff_t)-1); 1139 if (!list_empty(&info->shrinklist)) { 1140 spin_lock(&sbinfo->shrinklist_lock); 1141 if (!list_empty(&info->shrinklist)) { 1142 list_del_init(&info->shrinklist); 1143 sbinfo->shrinklist_len--; 1144 } 1145 spin_unlock(&sbinfo->shrinklist_lock); 1146 } 1147 while (!list_empty(&info->swaplist)) { 1148 /* Wait while shmem_unuse() is scanning this inode... */ 1149 wait_var_event(&info->stop_eviction, 1150 !atomic_read(&info->stop_eviction)); 1151 mutex_lock(&shmem_swaplist_mutex); 1152 /* ...but beware of the race if we peeked too early */ 1153 if (!atomic_read(&info->stop_eviction)) 1154 list_del_init(&info->swaplist); 1155 mutex_unlock(&shmem_swaplist_mutex); 1156 } 1157 } 1158 1159 simple_xattrs_free(&info->xattrs); 1160 WARN_ON(inode->i_blocks); 1161 shmem_free_inode(inode->i_sb); 1162 clear_inode(inode); 1163 } 1164 1165 static int shmem_find_swap_entries(struct address_space *mapping, 1166 pgoff_t start, unsigned int nr_entries, 1167 struct page **entries, pgoff_t *indices, 1168 unsigned int type, bool frontswap) 1169 { 1170 XA_STATE(xas, &mapping->i_pages, start); 1171 struct page *page; 1172 swp_entry_t entry; 1173 unsigned int ret = 0; 1174 1175 if (!nr_entries) 1176 return 0; 1177 1178 rcu_read_lock(); 1179 xas_for_each(&xas, page, ULONG_MAX) { 1180 if (xas_retry(&xas, page)) 1181 continue; 1182 1183 if (!xa_is_value(page)) 1184 continue; 1185 1186 entry = radix_to_swp_entry(page); 1187 if (swp_type(entry) != type) 1188 continue; 1189 if (frontswap && 1190 !frontswap_test(swap_info[type], swp_offset(entry))) 1191 continue; 1192 1193 indices[ret] = xas.xa_index; 1194 entries[ret] = page; 1195 1196 if (need_resched()) { 1197 xas_pause(&xas); 1198 cond_resched_rcu(); 1199 } 1200 if (++ret == nr_entries) 1201 break; 1202 } 1203 rcu_read_unlock(); 1204 1205 return ret; 1206 } 1207 1208 /* 1209 * Move the swapped pages for an inode to page cache. Returns the count 1210 * of pages swapped in, or the error in case of failure. 1211 */ 1212 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1213 pgoff_t *indices) 1214 { 1215 int i = 0; 1216 int ret = 0; 1217 int error = 0; 1218 struct address_space *mapping = inode->i_mapping; 1219 1220 for (i = 0; i < pvec.nr; i++) { 1221 struct page *page = pvec.pages[i]; 1222 1223 if (!xa_is_value(page)) 1224 continue; 1225 error = shmem_swapin_page(inode, indices[i], 1226 &page, SGP_CACHE, 1227 mapping_gfp_mask(mapping), 1228 NULL, NULL); 1229 if (error == 0) { 1230 unlock_page(page); 1231 put_page(page); 1232 ret++; 1233 } 1234 if (error == -ENOMEM) 1235 break; 1236 error = 0; 1237 } 1238 return error ? error : ret; 1239 } 1240 1241 /* 1242 * If swap found in inode, free it and move page from swapcache to filecache. 1243 */ 1244 static int shmem_unuse_inode(struct inode *inode, unsigned int type, 1245 bool frontswap, unsigned long *fs_pages_to_unuse) 1246 { 1247 struct address_space *mapping = inode->i_mapping; 1248 pgoff_t start = 0; 1249 struct pagevec pvec; 1250 pgoff_t indices[PAGEVEC_SIZE]; 1251 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); 1252 int ret = 0; 1253 1254 pagevec_init(&pvec); 1255 do { 1256 unsigned int nr_entries = PAGEVEC_SIZE; 1257 1258 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) 1259 nr_entries = *fs_pages_to_unuse; 1260 1261 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1262 pvec.pages, indices, 1263 type, frontswap); 1264 if (pvec.nr == 0) { 1265 ret = 0; 1266 break; 1267 } 1268 1269 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1270 if (ret < 0) 1271 break; 1272 1273 if (frontswap_partial) { 1274 *fs_pages_to_unuse -= ret; 1275 if (*fs_pages_to_unuse == 0) { 1276 ret = FRONTSWAP_PAGES_UNUSED; 1277 break; 1278 } 1279 } 1280 1281 start = indices[pvec.nr - 1]; 1282 } while (true); 1283 1284 return ret; 1285 } 1286 1287 /* 1288 * Read all the shared memory data that resides in the swap 1289 * device 'type' back into memory, so the swap device can be 1290 * unused. 1291 */ 1292 int shmem_unuse(unsigned int type, bool frontswap, 1293 unsigned long *fs_pages_to_unuse) 1294 { 1295 struct shmem_inode_info *info, *next; 1296 int error = 0; 1297 1298 if (list_empty(&shmem_swaplist)) 1299 return 0; 1300 1301 mutex_lock(&shmem_swaplist_mutex); 1302 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1303 if (!info->swapped) { 1304 list_del_init(&info->swaplist); 1305 continue; 1306 } 1307 /* 1308 * Drop the swaplist mutex while searching the inode for swap; 1309 * but before doing so, make sure shmem_evict_inode() will not 1310 * remove placeholder inode from swaplist, nor let it be freed 1311 * (igrab() would protect from unlink, but not from unmount). 1312 */ 1313 atomic_inc(&info->stop_eviction); 1314 mutex_unlock(&shmem_swaplist_mutex); 1315 1316 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap, 1317 fs_pages_to_unuse); 1318 cond_resched(); 1319 1320 mutex_lock(&shmem_swaplist_mutex); 1321 next = list_next_entry(info, swaplist); 1322 if (!info->swapped) 1323 list_del_init(&info->swaplist); 1324 if (atomic_dec_and_test(&info->stop_eviction)) 1325 wake_up_var(&info->stop_eviction); 1326 if (error) 1327 break; 1328 } 1329 mutex_unlock(&shmem_swaplist_mutex); 1330 1331 return error; 1332 } 1333 1334 /* 1335 * Move the page from the page cache to the swap cache. 1336 */ 1337 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1338 { 1339 struct shmem_inode_info *info; 1340 struct address_space *mapping; 1341 struct inode *inode; 1342 swp_entry_t swap; 1343 pgoff_t index; 1344 1345 /* 1346 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1347 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1348 * and its shmem_writeback() needs them to be split when swapping. 1349 */ 1350 if (PageTransCompound(page)) { 1351 /* Ensure the subpages are still dirty */ 1352 SetPageDirty(page); 1353 if (split_huge_page(page) < 0) 1354 goto redirty; 1355 ClearPageDirty(page); 1356 } 1357 1358 BUG_ON(!PageLocked(page)); 1359 mapping = page->mapping; 1360 index = page->index; 1361 inode = mapping->host; 1362 info = SHMEM_I(inode); 1363 if (info->flags & VM_LOCKED) 1364 goto redirty; 1365 if (!total_swap_pages) 1366 goto redirty; 1367 1368 /* 1369 * Our capabilities prevent regular writeback or sync from ever calling 1370 * shmem_writepage; but a stacking filesystem might use ->writepage of 1371 * its underlying filesystem, in which case tmpfs should write out to 1372 * swap only in response to memory pressure, and not for the writeback 1373 * threads or sync. 1374 */ 1375 if (!wbc->for_reclaim) { 1376 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1377 goto redirty; 1378 } 1379 1380 /* 1381 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1382 * value into swapfile.c, the only way we can correctly account for a 1383 * fallocated page arriving here is now to initialize it and write it. 1384 * 1385 * That's okay for a page already fallocated earlier, but if we have 1386 * not yet completed the fallocation, then (a) we want to keep track 1387 * of this page in case we have to undo it, and (b) it may not be a 1388 * good idea to continue anyway, once we're pushing into swap. So 1389 * reactivate the page, and let shmem_fallocate() quit when too many. 1390 */ 1391 if (!PageUptodate(page)) { 1392 if (inode->i_private) { 1393 struct shmem_falloc *shmem_falloc; 1394 spin_lock(&inode->i_lock); 1395 shmem_falloc = inode->i_private; 1396 if (shmem_falloc && 1397 !shmem_falloc->waitq && 1398 index >= shmem_falloc->start && 1399 index < shmem_falloc->next) 1400 shmem_falloc->nr_unswapped++; 1401 else 1402 shmem_falloc = NULL; 1403 spin_unlock(&inode->i_lock); 1404 if (shmem_falloc) 1405 goto redirty; 1406 } 1407 clear_highpage(page); 1408 flush_dcache_page(page); 1409 SetPageUptodate(page); 1410 } 1411 1412 swap = get_swap_page(page); 1413 if (!swap.val) 1414 goto redirty; 1415 1416 /* 1417 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1418 * if it's not already there. Do it now before the page is 1419 * moved to swap cache, when its pagelock no longer protects 1420 * the inode from eviction. But don't unlock the mutex until 1421 * we've incremented swapped, because shmem_unuse_inode() will 1422 * prune a !swapped inode from the swaplist under this mutex. 1423 */ 1424 mutex_lock(&shmem_swaplist_mutex); 1425 if (list_empty(&info->swaplist)) 1426 list_add(&info->swaplist, &shmem_swaplist); 1427 1428 if (add_to_swap_cache(page, swap, 1429 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1430 NULL) == 0) { 1431 spin_lock_irq(&info->lock); 1432 shmem_recalc_inode(inode); 1433 info->swapped++; 1434 spin_unlock_irq(&info->lock); 1435 1436 swap_shmem_alloc(swap); 1437 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1438 1439 mutex_unlock(&shmem_swaplist_mutex); 1440 BUG_ON(page_mapped(page)); 1441 swap_writepage(page, wbc); 1442 return 0; 1443 } 1444 1445 mutex_unlock(&shmem_swaplist_mutex); 1446 put_swap_page(page, swap); 1447 redirty: 1448 set_page_dirty(page); 1449 if (wbc->for_reclaim) 1450 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1451 unlock_page(page); 1452 return 0; 1453 } 1454 1455 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1456 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1457 { 1458 char buffer[64]; 1459 1460 if (!mpol || mpol->mode == MPOL_DEFAULT) 1461 return; /* show nothing */ 1462 1463 mpol_to_str(buffer, sizeof(buffer), mpol); 1464 1465 seq_printf(seq, ",mpol=%s", buffer); 1466 } 1467 1468 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1469 { 1470 struct mempolicy *mpol = NULL; 1471 if (sbinfo->mpol) { 1472 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1473 mpol = sbinfo->mpol; 1474 mpol_get(mpol); 1475 raw_spin_unlock(&sbinfo->stat_lock); 1476 } 1477 return mpol; 1478 } 1479 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1480 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1481 { 1482 } 1483 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1484 { 1485 return NULL; 1486 } 1487 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1488 #ifndef CONFIG_NUMA 1489 #define vm_policy vm_private_data 1490 #endif 1491 1492 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1493 struct shmem_inode_info *info, pgoff_t index) 1494 { 1495 /* Create a pseudo vma that just contains the policy */ 1496 vma_init(vma, NULL); 1497 /* Bias interleave by inode number to distribute better across nodes */ 1498 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1499 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1500 } 1501 1502 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1503 { 1504 /* Drop reference taken by mpol_shared_policy_lookup() */ 1505 mpol_cond_put(vma->vm_policy); 1506 } 1507 1508 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1509 struct shmem_inode_info *info, pgoff_t index) 1510 { 1511 struct vm_area_struct pvma; 1512 struct page *page; 1513 struct vm_fault vmf = { 1514 .vma = &pvma, 1515 }; 1516 1517 shmem_pseudo_vma_init(&pvma, info, index); 1518 page = swap_cluster_readahead(swap, gfp, &vmf); 1519 shmem_pseudo_vma_destroy(&pvma); 1520 1521 return page; 1522 } 1523 1524 /* 1525 * Make sure huge_gfp is always more limited than limit_gfp. 1526 * Some of the flags set permissions, while others set limitations. 1527 */ 1528 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1529 { 1530 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1531 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1532 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1533 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1534 1535 /* Allow allocations only from the originally specified zones. */ 1536 result |= zoneflags; 1537 1538 /* 1539 * Minimize the result gfp by taking the union with the deny flags, 1540 * and the intersection of the allow flags. 1541 */ 1542 result |= (limit_gfp & denyflags); 1543 result |= (huge_gfp & limit_gfp) & allowflags; 1544 1545 return result; 1546 } 1547 1548 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1549 struct shmem_inode_info *info, pgoff_t index) 1550 { 1551 struct vm_area_struct pvma; 1552 struct address_space *mapping = info->vfs_inode.i_mapping; 1553 pgoff_t hindex; 1554 struct page *page; 1555 1556 hindex = round_down(index, HPAGE_PMD_NR); 1557 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1558 XA_PRESENT)) 1559 return NULL; 1560 1561 shmem_pseudo_vma_init(&pvma, info, hindex); 1562 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), 1563 true); 1564 shmem_pseudo_vma_destroy(&pvma); 1565 if (page) 1566 prep_transhuge_page(page); 1567 else 1568 count_vm_event(THP_FILE_FALLBACK); 1569 return page; 1570 } 1571 1572 static struct page *shmem_alloc_page(gfp_t gfp, 1573 struct shmem_inode_info *info, pgoff_t index) 1574 { 1575 struct vm_area_struct pvma; 1576 struct page *page; 1577 1578 shmem_pseudo_vma_init(&pvma, info, index); 1579 page = alloc_page_vma(gfp, &pvma, 0); 1580 shmem_pseudo_vma_destroy(&pvma); 1581 1582 return page; 1583 } 1584 1585 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1586 struct inode *inode, 1587 pgoff_t index, bool huge) 1588 { 1589 struct shmem_inode_info *info = SHMEM_I(inode); 1590 struct page *page; 1591 int nr; 1592 int err = -ENOSPC; 1593 1594 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1595 huge = false; 1596 nr = huge ? HPAGE_PMD_NR : 1; 1597 1598 if (!shmem_inode_acct_block(inode, nr)) 1599 goto failed; 1600 1601 if (huge) 1602 page = shmem_alloc_hugepage(gfp, info, index); 1603 else 1604 page = shmem_alloc_page(gfp, info, index); 1605 if (page) { 1606 __SetPageLocked(page); 1607 __SetPageSwapBacked(page); 1608 return page; 1609 } 1610 1611 err = -ENOMEM; 1612 shmem_inode_unacct_blocks(inode, nr); 1613 failed: 1614 return ERR_PTR(err); 1615 } 1616 1617 /* 1618 * When a page is moved from swapcache to shmem filecache (either by the 1619 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1620 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1621 * ignorance of the mapping it belongs to. If that mapping has special 1622 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1623 * we may need to copy to a suitable page before moving to filecache. 1624 * 1625 * In a future release, this may well be extended to respect cpuset and 1626 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1627 * but for now it is a simple matter of zone. 1628 */ 1629 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1630 { 1631 return page_zonenum(page) > gfp_zone(gfp); 1632 } 1633 1634 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1635 struct shmem_inode_info *info, pgoff_t index) 1636 { 1637 struct page *oldpage, *newpage; 1638 struct folio *old, *new; 1639 struct address_space *swap_mapping; 1640 swp_entry_t entry; 1641 pgoff_t swap_index; 1642 int error; 1643 1644 oldpage = *pagep; 1645 entry.val = page_private(oldpage); 1646 swap_index = swp_offset(entry); 1647 swap_mapping = page_mapping(oldpage); 1648 1649 /* 1650 * We have arrived here because our zones are constrained, so don't 1651 * limit chance of success by further cpuset and node constraints. 1652 */ 1653 gfp &= ~GFP_CONSTRAINT_MASK; 1654 newpage = shmem_alloc_page(gfp, info, index); 1655 if (!newpage) 1656 return -ENOMEM; 1657 1658 get_page(newpage); 1659 copy_highpage(newpage, oldpage); 1660 flush_dcache_page(newpage); 1661 1662 __SetPageLocked(newpage); 1663 __SetPageSwapBacked(newpage); 1664 SetPageUptodate(newpage); 1665 set_page_private(newpage, entry.val); 1666 SetPageSwapCache(newpage); 1667 1668 /* 1669 * Our caller will very soon move newpage out of swapcache, but it's 1670 * a nice clean interface for us to replace oldpage by newpage there. 1671 */ 1672 xa_lock_irq(&swap_mapping->i_pages); 1673 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1674 if (!error) { 1675 old = page_folio(oldpage); 1676 new = page_folio(newpage); 1677 mem_cgroup_migrate(old, new); 1678 __inc_lruvec_page_state(newpage, NR_FILE_PAGES); 1679 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); 1680 } 1681 xa_unlock_irq(&swap_mapping->i_pages); 1682 1683 if (unlikely(error)) { 1684 /* 1685 * Is this possible? I think not, now that our callers check 1686 * both PageSwapCache and page_private after getting page lock; 1687 * but be defensive. Reverse old to newpage for clear and free. 1688 */ 1689 oldpage = newpage; 1690 } else { 1691 lru_cache_add(newpage); 1692 *pagep = newpage; 1693 } 1694 1695 ClearPageSwapCache(oldpage); 1696 set_page_private(oldpage, 0); 1697 1698 unlock_page(oldpage); 1699 put_page(oldpage); 1700 put_page(oldpage); 1701 return error; 1702 } 1703 1704 /* 1705 * Swap in the page pointed to by *pagep. 1706 * Caller has to make sure that *pagep contains a valid swapped page. 1707 * Returns 0 and the page in pagep if success. On failure, returns the 1708 * error code and NULL in *pagep. 1709 */ 1710 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1711 struct page **pagep, enum sgp_type sgp, 1712 gfp_t gfp, struct vm_area_struct *vma, 1713 vm_fault_t *fault_type) 1714 { 1715 struct address_space *mapping = inode->i_mapping; 1716 struct shmem_inode_info *info = SHMEM_I(inode); 1717 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1718 struct page *page; 1719 swp_entry_t swap; 1720 int error; 1721 1722 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1723 swap = radix_to_swp_entry(*pagep); 1724 *pagep = NULL; 1725 1726 /* Look it up and read it in.. */ 1727 page = lookup_swap_cache(swap, NULL, 0); 1728 if (!page) { 1729 /* Or update major stats only when swapin succeeds?? */ 1730 if (fault_type) { 1731 *fault_type |= VM_FAULT_MAJOR; 1732 count_vm_event(PGMAJFAULT); 1733 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1734 } 1735 /* Here we actually start the io */ 1736 page = shmem_swapin(swap, gfp, info, index); 1737 if (!page) { 1738 error = -ENOMEM; 1739 goto failed; 1740 } 1741 } 1742 1743 /* We have to do this with page locked to prevent races */ 1744 lock_page(page); 1745 if (!PageSwapCache(page) || page_private(page) != swap.val || 1746 !shmem_confirm_swap(mapping, index, swap)) { 1747 error = -EEXIST; 1748 goto unlock; 1749 } 1750 if (!PageUptodate(page)) { 1751 error = -EIO; 1752 goto failed; 1753 } 1754 wait_on_page_writeback(page); 1755 1756 /* 1757 * Some architectures may have to restore extra metadata to the 1758 * physical page after reading from swap. 1759 */ 1760 arch_swap_restore(swap, page); 1761 1762 if (shmem_should_replace_page(page, gfp)) { 1763 error = shmem_replace_page(&page, gfp, info, index); 1764 if (error) 1765 goto failed; 1766 } 1767 1768 error = shmem_add_to_page_cache(page, mapping, index, 1769 swp_to_radix_entry(swap), gfp, 1770 charge_mm); 1771 if (error) 1772 goto failed; 1773 1774 spin_lock_irq(&info->lock); 1775 info->swapped--; 1776 shmem_recalc_inode(inode); 1777 spin_unlock_irq(&info->lock); 1778 1779 if (sgp == SGP_WRITE) 1780 mark_page_accessed(page); 1781 1782 delete_from_swap_cache(page); 1783 set_page_dirty(page); 1784 swap_free(swap); 1785 1786 *pagep = page; 1787 return 0; 1788 failed: 1789 if (!shmem_confirm_swap(mapping, index, swap)) 1790 error = -EEXIST; 1791 unlock: 1792 if (page) { 1793 unlock_page(page); 1794 put_page(page); 1795 } 1796 1797 return error; 1798 } 1799 1800 /* 1801 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1802 * 1803 * If we allocate a new one we do not mark it dirty. That's up to the 1804 * vm. If we swap it in we mark it dirty since we also free the swap 1805 * entry since a page cannot live in both the swap and page cache. 1806 * 1807 * vma, vmf, and fault_type are only supplied by shmem_fault: 1808 * otherwise they are NULL. 1809 */ 1810 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1811 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1812 struct vm_area_struct *vma, struct vm_fault *vmf, 1813 vm_fault_t *fault_type) 1814 { 1815 struct address_space *mapping = inode->i_mapping; 1816 struct shmem_inode_info *info = SHMEM_I(inode); 1817 struct shmem_sb_info *sbinfo; 1818 struct mm_struct *charge_mm; 1819 struct page *page; 1820 pgoff_t hindex = index; 1821 gfp_t huge_gfp; 1822 int error; 1823 int once = 0; 1824 int alloced = 0; 1825 1826 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1827 return -EFBIG; 1828 repeat: 1829 if (sgp <= SGP_CACHE && 1830 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1831 return -EINVAL; 1832 } 1833 1834 sbinfo = SHMEM_SB(inode->i_sb); 1835 charge_mm = vma ? vma->vm_mm : NULL; 1836 1837 page = pagecache_get_page(mapping, index, 1838 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0); 1839 1840 if (page && vma && userfaultfd_minor(vma)) { 1841 if (!xa_is_value(page)) { 1842 unlock_page(page); 1843 put_page(page); 1844 } 1845 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1846 return 0; 1847 } 1848 1849 if (xa_is_value(page)) { 1850 error = shmem_swapin_page(inode, index, &page, 1851 sgp, gfp, vma, fault_type); 1852 if (error == -EEXIST) 1853 goto repeat; 1854 1855 *pagep = page; 1856 return error; 1857 } 1858 1859 if (page) { 1860 hindex = page->index; 1861 if (sgp == SGP_WRITE) 1862 mark_page_accessed(page); 1863 if (PageUptodate(page)) 1864 goto out; 1865 /* fallocated page */ 1866 if (sgp != SGP_READ) 1867 goto clear; 1868 unlock_page(page); 1869 put_page(page); 1870 } 1871 1872 /* 1873 * SGP_READ: succeed on hole, with NULL page, letting caller zero. 1874 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail. 1875 */ 1876 *pagep = NULL; 1877 if (sgp == SGP_READ) 1878 return 0; 1879 if (sgp == SGP_NOALLOC) 1880 return -ENOENT; 1881 1882 /* 1883 * Fast cache lookup and swap lookup did not find it: allocate. 1884 */ 1885 1886 if (vma && userfaultfd_missing(vma)) { 1887 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1888 return 0; 1889 } 1890 1891 /* Never use a huge page for shmem_symlink() */ 1892 if (S_ISLNK(inode->i_mode)) 1893 goto alloc_nohuge; 1894 if (!shmem_is_huge(vma, inode, index)) 1895 goto alloc_nohuge; 1896 1897 huge_gfp = vma_thp_gfp_mask(vma); 1898 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 1899 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true); 1900 if (IS_ERR(page)) { 1901 alloc_nohuge: 1902 page = shmem_alloc_and_acct_page(gfp, inode, 1903 index, false); 1904 } 1905 if (IS_ERR(page)) { 1906 int retry = 5; 1907 1908 error = PTR_ERR(page); 1909 page = NULL; 1910 if (error != -ENOSPC) 1911 goto unlock; 1912 /* 1913 * Try to reclaim some space by splitting a huge page 1914 * beyond i_size on the filesystem. 1915 */ 1916 while (retry--) { 1917 int ret; 1918 1919 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1920 if (ret == SHRINK_STOP) 1921 break; 1922 if (ret) 1923 goto alloc_nohuge; 1924 } 1925 goto unlock; 1926 } 1927 1928 if (PageTransHuge(page)) 1929 hindex = round_down(index, HPAGE_PMD_NR); 1930 else 1931 hindex = index; 1932 1933 if (sgp == SGP_WRITE) 1934 __SetPageReferenced(page); 1935 1936 error = shmem_add_to_page_cache(page, mapping, hindex, 1937 NULL, gfp & GFP_RECLAIM_MASK, 1938 charge_mm); 1939 if (error) 1940 goto unacct; 1941 lru_cache_add(page); 1942 1943 spin_lock_irq(&info->lock); 1944 info->alloced += compound_nr(page); 1945 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1946 shmem_recalc_inode(inode); 1947 spin_unlock_irq(&info->lock); 1948 alloced = true; 1949 1950 if (PageTransHuge(page) && 1951 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1952 hindex + HPAGE_PMD_NR - 1) { 1953 /* 1954 * Part of the huge page is beyond i_size: subject 1955 * to shrink under memory pressure. 1956 */ 1957 spin_lock(&sbinfo->shrinklist_lock); 1958 /* 1959 * _careful to defend against unlocked access to 1960 * ->shrink_list in shmem_unused_huge_shrink() 1961 */ 1962 if (list_empty_careful(&info->shrinklist)) { 1963 list_add_tail(&info->shrinklist, 1964 &sbinfo->shrinklist); 1965 sbinfo->shrinklist_len++; 1966 } 1967 spin_unlock(&sbinfo->shrinklist_lock); 1968 } 1969 1970 /* 1971 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1972 */ 1973 if (sgp == SGP_FALLOC) 1974 sgp = SGP_WRITE; 1975 clear: 1976 /* 1977 * Let SGP_WRITE caller clear ends if write does not fill page; 1978 * but SGP_FALLOC on a page fallocated earlier must initialize 1979 * it now, lest undo on failure cancel our earlier guarantee. 1980 */ 1981 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1982 int i; 1983 1984 for (i = 0; i < compound_nr(page); i++) { 1985 clear_highpage(page + i); 1986 flush_dcache_page(page + i); 1987 } 1988 SetPageUptodate(page); 1989 } 1990 1991 /* Perhaps the file has been truncated since we checked */ 1992 if (sgp <= SGP_CACHE && 1993 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1994 if (alloced) { 1995 ClearPageDirty(page); 1996 delete_from_page_cache(page); 1997 spin_lock_irq(&info->lock); 1998 shmem_recalc_inode(inode); 1999 spin_unlock_irq(&info->lock); 2000 } 2001 error = -EINVAL; 2002 goto unlock; 2003 } 2004 out: 2005 *pagep = page + index - hindex; 2006 return 0; 2007 2008 /* 2009 * Error recovery. 2010 */ 2011 unacct: 2012 shmem_inode_unacct_blocks(inode, compound_nr(page)); 2013 2014 if (PageTransHuge(page)) { 2015 unlock_page(page); 2016 put_page(page); 2017 goto alloc_nohuge; 2018 } 2019 unlock: 2020 if (page) { 2021 unlock_page(page); 2022 put_page(page); 2023 } 2024 if (error == -ENOSPC && !once++) { 2025 spin_lock_irq(&info->lock); 2026 shmem_recalc_inode(inode); 2027 spin_unlock_irq(&info->lock); 2028 goto repeat; 2029 } 2030 if (error == -EEXIST) 2031 goto repeat; 2032 return error; 2033 } 2034 2035 /* 2036 * This is like autoremove_wake_function, but it removes the wait queue 2037 * entry unconditionally - even if something else had already woken the 2038 * target. 2039 */ 2040 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2041 { 2042 int ret = default_wake_function(wait, mode, sync, key); 2043 list_del_init(&wait->entry); 2044 return ret; 2045 } 2046 2047 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2048 { 2049 struct vm_area_struct *vma = vmf->vma; 2050 struct inode *inode = file_inode(vma->vm_file); 2051 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2052 int err; 2053 vm_fault_t ret = VM_FAULT_LOCKED; 2054 2055 /* 2056 * Trinity finds that probing a hole which tmpfs is punching can 2057 * prevent the hole-punch from ever completing: which in turn 2058 * locks writers out with its hold on i_rwsem. So refrain from 2059 * faulting pages into the hole while it's being punched. Although 2060 * shmem_undo_range() does remove the additions, it may be unable to 2061 * keep up, as each new page needs its own unmap_mapping_range() call, 2062 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2063 * 2064 * It does not matter if we sometimes reach this check just before the 2065 * hole-punch begins, so that one fault then races with the punch: 2066 * we just need to make racing faults a rare case. 2067 * 2068 * The implementation below would be much simpler if we just used a 2069 * standard mutex or completion: but we cannot take i_rwsem in fault, 2070 * and bloating every shmem inode for this unlikely case would be sad. 2071 */ 2072 if (unlikely(inode->i_private)) { 2073 struct shmem_falloc *shmem_falloc; 2074 2075 spin_lock(&inode->i_lock); 2076 shmem_falloc = inode->i_private; 2077 if (shmem_falloc && 2078 shmem_falloc->waitq && 2079 vmf->pgoff >= shmem_falloc->start && 2080 vmf->pgoff < shmem_falloc->next) { 2081 struct file *fpin; 2082 wait_queue_head_t *shmem_falloc_waitq; 2083 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2084 2085 ret = VM_FAULT_NOPAGE; 2086 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2087 if (fpin) 2088 ret = VM_FAULT_RETRY; 2089 2090 shmem_falloc_waitq = shmem_falloc->waitq; 2091 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2092 TASK_UNINTERRUPTIBLE); 2093 spin_unlock(&inode->i_lock); 2094 schedule(); 2095 2096 /* 2097 * shmem_falloc_waitq points into the shmem_fallocate() 2098 * stack of the hole-punching task: shmem_falloc_waitq 2099 * is usually invalid by the time we reach here, but 2100 * finish_wait() does not dereference it in that case; 2101 * though i_lock needed lest racing with wake_up_all(). 2102 */ 2103 spin_lock(&inode->i_lock); 2104 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2105 spin_unlock(&inode->i_lock); 2106 2107 if (fpin) 2108 fput(fpin); 2109 return ret; 2110 } 2111 spin_unlock(&inode->i_lock); 2112 } 2113 2114 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE, 2115 gfp, vma, vmf, &ret); 2116 if (err) 2117 return vmf_error(err); 2118 return ret; 2119 } 2120 2121 unsigned long shmem_get_unmapped_area(struct file *file, 2122 unsigned long uaddr, unsigned long len, 2123 unsigned long pgoff, unsigned long flags) 2124 { 2125 unsigned long (*get_area)(struct file *, 2126 unsigned long, unsigned long, unsigned long, unsigned long); 2127 unsigned long addr; 2128 unsigned long offset; 2129 unsigned long inflated_len; 2130 unsigned long inflated_addr; 2131 unsigned long inflated_offset; 2132 2133 if (len > TASK_SIZE) 2134 return -ENOMEM; 2135 2136 get_area = current->mm->get_unmapped_area; 2137 addr = get_area(file, uaddr, len, pgoff, flags); 2138 2139 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2140 return addr; 2141 if (IS_ERR_VALUE(addr)) 2142 return addr; 2143 if (addr & ~PAGE_MASK) 2144 return addr; 2145 if (addr > TASK_SIZE - len) 2146 return addr; 2147 2148 if (shmem_huge == SHMEM_HUGE_DENY) 2149 return addr; 2150 if (len < HPAGE_PMD_SIZE) 2151 return addr; 2152 if (flags & MAP_FIXED) 2153 return addr; 2154 /* 2155 * Our priority is to support MAP_SHARED mapped hugely; 2156 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2157 * But if caller specified an address hint and we allocated area there 2158 * successfully, respect that as before. 2159 */ 2160 if (uaddr == addr) 2161 return addr; 2162 2163 if (shmem_huge != SHMEM_HUGE_FORCE) { 2164 struct super_block *sb; 2165 2166 if (file) { 2167 VM_BUG_ON(file->f_op != &shmem_file_operations); 2168 sb = file_inode(file)->i_sb; 2169 } else { 2170 /* 2171 * Called directly from mm/mmap.c, or drivers/char/mem.c 2172 * for "/dev/zero", to create a shared anonymous object. 2173 */ 2174 if (IS_ERR(shm_mnt)) 2175 return addr; 2176 sb = shm_mnt->mnt_sb; 2177 } 2178 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2179 return addr; 2180 } 2181 2182 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2183 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2184 return addr; 2185 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2186 return addr; 2187 2188 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2189 if (inflated_len > TASK_SIZE) 2190 return addr; 2191 if (inflated_len < len) 2192 return addr; 2193 2194 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2195 if (IS_ERR_VALUE(inflated_addr)) 2196 return addr; 2197 if (inflated_addr & ~PAGE_MASK) 2198 return addr; 2199 2200 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2201 inflated_addr += offset - inflated_offset; 2202 if (inflated_offset > offset) 2203 inflated_addr += HPAGE_PMD_SIZE; 2204 2205 if (inflated_addr > TASK_SIZE - len) 2206 return addr; 2207 return inflated_addr; 2208 } 2209 2210 #ifdef CONFIG_NUMA 2211 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2212 { 2213 struct inode *inode = file_inode(vma->vm_file); 2214 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2215 } 2216 2217 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2218 unsigned long addr) 2219 { 2220 struct inode *inode = file_inode(vma->vm_file); 2221 pgoff_t index; 2222 2223 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2224 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2225 } 2226 #endif 2227 2228 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2229 { 2230 struct inode *inode = file_inode(file); 2231 struct shmem_inode_info *info = SHMEM_I(inode); 2232 int retval = -ENOMEM; 2233 2234 /* 2235 * What serializes the accesses to info->flags? 2236 * ipc_lock_object() when called from shmctl_do_lock(), 2237 * no serialization needed when called from shm_destroy(). 2238 */ 2239 if (lock && !(info->flags & VM_LOCKED)) { 2240 if (!user_shm_lock(inode->i_size, ucounts)) 2241 goto out_nomem; 2242 info->flags |= VM_LOCKED; 2243 mapping_set_unevictable(file->f_mapping); 2244 } 2245 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2246 user_shm_unlock(inode->i_size, ucounts); 2247 info->flags &= ~VM_LOCKED; 2248 mapping_clear_unevictable(file->f_mapping); 2249 } 2250 retval = 0; 2251 2252 out_nomem: 2253 return retval; 2254 } 2255 2256 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2257 { 2258 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2259 int ret; 2260 2261 ret = seal_check_future_write(info->seals, vma); 2262 if (ret) 2263 return ret; 2264 2265 /* arm64 - allow memory tagging on RAM-based files */ 2266 vma->vm_flags |= VM_MTE_ALLOWED; 2267 2268 file_accessed(file); 2269 vma->vm_ops = &shmem_vm_ops; 2270 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 2271 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2272 (vma->vm_end & HPAGE_PMD_MASK)) { 2273 khugepaged_enter(vma, vma->vm_flags); 2274 } 2275 return 0; 2276 } 2277 2278 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2279 umode_t mode, dev_t dev, unsigned long flags) 2280 { 2281 struct inode *inode; 2282 struct shmem_inode_info *info; 2283 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2284 ino_t ino; 2285 2286 if (shmem_reserve_inode(sb, &ino)) 2287 return NULL; 2288 2289 inode = new_inode(sb); 2290 if (inode) { 2291 inode->i_ino = ino; 2292 inode_init_owner(&init_user_ns, inode, dir, mode); 2293 inode->i_blocks = 0; 2294 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2295 inode->i_generation = prandom_u32(); 2296 info = SHMEM_I(inode); 2297 memset(info, 0, (char *)inode - (char *)info); 2298 spin_lock_init(&info->lock); 2299 atomic_set(&info->stop_eviction, 0); 2300 info->seals = F_SEAL_SEAL; 2301 info->flags = flags & VM_NORESERVE; 2302 INIT_LIST_HEAD(&info->shrinklist); 2303 INIT_LIST_HEAD(&info->swaplist); 2304 simple_xattrs_init(&info->xattrs); 2305 cache_no_acl(inode); 2306 2307 switch (mode & S_IFMT) { 2308 default: 2309 inode->i_op = &shmem_special_inode_operations; 2310 init_special_inode(inode, mode, dev); 2311 break; 2312 case S_IFREG: 2313 inode->i_mapping->a_ops = &shmem_aops; 2314 inode->i_op = &shmem_inode_operations; 2315 inode->i_fop = &shmem_file_operations; 2316 mpol_shared_policy_init(&info->policy, 2317 shmem_get_sbmpol(sbinfo)); 2318 break; 2319 case S_IFDIR: 2320 inc_nlink(inode); 2321 /* Some things misbehave if size == 0 on a directory */ 2322 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2323 inode->i_op = &shmem_dir_inode_operations; 2324 inode->i_fop = &simple_dir_operations; 2325 break; 2326 case S_IFLNK: 2327 /* 2328 * Must not load anything in the rbtree, 2329 * mpol_free_shared_policy will not be called. 2330 */ 2331 mpol_shared_policy_init(&info->policy, NULL); 2332 break; 2333 } 2334 2335 lockdep_annotate_inode_mutex_key(inode); 2336 } else 2337 shmem_free_inode(sb); 2338 return inode; 2339 } 2340 2341 #ifdef CONFIG_USERFAULTFD 2342 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2343 pmd_t *dst_pmd, 2344 struct vm_area_struct *dst_vma, 2345 unsigned long dst_addr, 2346 unsigned long src_addr, 2347 bool zeropage, 2348 struct page **pagep) 2349 { 2350 struct inode *inode = file_inode(dst_vma->vm_file); 2351 struct shmem_inode_info *info = SHMEM_I(inode); 2352 struct address_space *mapping = inode->i_mapping; 2353 gfp_t gfp = mapping_gfp_mask(mapping); 2354 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2355 void *page_kaddr; 2356 struct page *page; 2357 int ret; 2358 pgoff_t max_off; 2359 2360 if (!shmem_inode_acct_block(inode, 1)) { 2361 /* 2362 * We may have got a page, returned -ENOENT triggering a retry, 2363 * and now we find ourselves with -ENOMEM. Release the page, to 2364 * avoid a BUG_ON in our caller. 2365 */ 2366 if (unlikely(*pagep)) { 2367 put_page(*pagep); 2368 *pagep = NULL; 2369 } 2370 return -ENOMEM; 2371 } 2372 2373 if (!*pagep) { 2374 ret = -ENOMEM; 2375 page = shmem_alloc_page(gfp, info, pgoff); 2376 if (!page) 2377 goto out_unacct_blocks; 2378 2379 if (!zeropage) { /* COPY */ 2380 page_kaddr = kmap_atomic(page); 2381 ret = copy_from_user(page_kaddr, 2382 (const void __user *)src_addr, 2383 PAGE_SIZE); 2384 kunmap_atomic(page_kaddr); 2385 2386 /* fallback to copy_from_user outside mmap_lock */ 2387 if (unlikely(ret)) { 2388 *pagep = page; 2389 ret = -ENOENT; 2390 /* don't free the page */ 2391 goto out_unacct_blocks; 2392 } 2393 } else { /* ZEROPAGE */ 2394 clear_highpage(page); 2395 } 2396 } else { 2397 page = *pagep; 2398 *pagep = NULL; 2399 } 2400 2401 VM_BUG_ON(PageLocked(page)); 2402 VM_BUG_ON(PageSwapBacked(page)); 2403 __SetPageLocked(page); 2404 __SetPageSwapBacked(page); 2405 __SetPageUptodate(page); 2406 2407 ret = -EFAULT; 2408 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2409 if (unlikely(pgoff >= max_off)) 2410 goto out_release; 2411 2412 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2413 gfp & GFP_RECLAIM_MASK, dst_mm); 2414 if (ret) 2415 goto out_release; 2416 2417 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr, 2418 page, true, false); 2419 if (ret) 2420 goto out_delete_from_cache; 2421 2422 spin_lock_irq(&info->lock); 2423 info->alloced++; 2424 inode->i_blocks += BLOCKS_PER_PAGE; 2425 shmem_recalc_inode(inode); 2426 spin_unlock_irq(&info->lock); 2427 2428 unlock_page(page); 2429 return 0; 2430 out_delete_from_cache: 2431 delete_from_page_cache(page); 2432 out_release: 2433 unlock_page(page); 2434 put_page(page); 2435 out_unacct_blocks: 2436 shmem_inode_unacct_blocks(inode, 1); 2437 return ret; 2438 } 2439 #endif /* CONFIG_USERFAULTFD */ 2440 2441 #ifdef CONFIG_TMPFS 2442 static const struct inode_operations shmem_symlink_inode_operations; 2443 static const struct inode_operations shmem_short_symlink_operations; 2444 2445 #ifdef CONFIG_TMPFS_XATTR 2446 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2447 #else 2448 #define shmem_initxattrs NULL 2449 #endif 2450 2451 static int 2452 shmem_write_begin(struct file *file, struct address_space *mapping, 2453 loff_t pos, unsigned len, unsigned flags, 2454 struct page **pagep, void **fsdata) 2455 { 2456 struct inode *inode = mapping->host; 2457 struct shmem_inode_info *info = SHMEM_I(inode); 2458 pgoff_t index = pos >> PAGE_SHIFT; 2459 int ret = 0; 2460 2461 /* i_rwsem is held by caller */ 2462 if (unlikely(info->seals & (F_SEAL_GROW | 2463 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2464 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2465 return -EPERM; 2466 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2467 return -EPERM; 2468 } 2469 2470 ret = shmem_getpage(inode, index, pagep, SGP_WRITE); 2471 2472 if (*pagep && PageHWPoison(*pagep)) { 2473 unlock_page(*pagep); 2474 put_page(*pagep); 2475 ret = -EIO; 2476 } 2477 2478 return ret; 2479 } 2480 2481 static int 2482 shmem_write_end(struct file *file, struct address_space *mapping, 2483 loff_t pos, unsigned len, unsigned copied, 2484 struct page *page, void *fsdata) 2485 { 2486 struct inode *inode = mapping->host; 2487 2488 if (pos + copied > inode->i_size) 2489 i_size_write(inode, pos + copied); 2490 2491 if (!PageUptodate(page)) { 2492 struct page *head = compound_head(page); 2493 if (PageTransCompound(page)) { 2494 int i; 2495 2496 for (i = 0; i < HPAGE_PMD_NR; i++) { 2497 if (head + i == page) 2498 continue; 2499 clear_highpage(head + i); 2500 flush_dcache_page(head + i); 2501 } 2502 } 2503 if (copied < PAGE_SIZE) { 2504 unsigned from = pos & (PAGE_SIZE - 1); 2505 zero_user_segments(page, 0, from, 2506 from + copied, PAGE_SIZE); 2507 } 2508 SetPageUptodate(head); 2509 } 2510 set_page_dirty(page); 2511 unlock_page(page); 2512 put_page(page); 2513 2514 return copied; 2515 } 2516 2517 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2518 { 2519 struct file *file = iocb->ki_filp; 2520 struct inode *inode = file_inode(file); 2521 struct address_space *mapping = inode->i_mapping; 2522 pgoff_t index; 2523 unsigned long offset; 2524 enum sgp_type sgp = SGP_READ; 2525 int error = 0; 2526 ssize_t retval = 0; 2527 loff_t *ppos = &iocb->ki_pos; 2528 2529 /* 2530 * Might this read be for a stacking filesystem? Then when reading 2531 * holes of a sparse file, we actually need to allocate those pages, 2532 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2533 */ 2534 if (!iter_is_iovec(to)) 2535 sgp = SGP_CACHE; 2536 2537 index = *ppos >> PAGE_SHIFT; 2538 offset = *ppos & ~PAGE_MASK; 2539 2540 for (;;) { 2541 struct page *page = NULL; 2542 pgoff_t end_index; 2543 unsigned long nr, ret; 2544 loff_t i_size = i_size_read(inode); 2545 2546 end_index = i_size >> PAGE_SHIFT; 2547 if (index > end_index) 2548 break; 2549 if (index == end_index) { 2550 nr = i_size & ~PAGE_MASK; 2551 if (nr <= offset) 2552 break; 2553 } 2554 2555 error = shmem_getpage(inode, index, &page, sgp); 2556 if (error) { 2557 if (error == -EINVAL) 2558 error = 0; 2559 break; 2560 } 2561 if (page) { 2562 if (sgp == SGP_CACHE) 2563 set_page_dirty(page); 2564 unlock_page(page); 2565 2566 if (PageHWPoison(page)) { 2567 put_page(page); 2568 error = -EIO; 2569 break; 2570 } 2571 } 2572 2573 /* 2574 * We must evaluate after, since reads (unlike writes) 2575 * are called without i_rwsem protection against truncate 2576 */ 2577 nr = PAGE_SIZE; 2578 i_size = i_size_read(inode); 2579 end_index = i_size >> PAGE_SHIFT; 2580 if (index == end_index) { 2581 nr = i_size & ~PAGE_MASK; 2582 if (nr <= offset) { 2583 if (page) 2584 put_page(page); 2585 break; 2586 } 2587 } 2588 nr -= offset; 2589 2590 if (page) { 2591 /* 2592 * If users can be writing to this page using arbitrary 2593 * virtual addresses, take care about potential aliasing 2594 * before reading the page on the kernel side. 2595 */ 2596 if (mapping_writably_mapped(mapping)) 2597 flush_dcache_page(page); 2598 /* 2599 * Mark the page accessed if we read the beginning. 2600 */ 2601 if (!offset) 2602 mark_page_accessed(page); 2603 } else { 2604 page = ZERO_PAGE(0); 2605 get_page(page); 2606 } 2607 2608 /* 2609 * Ok, we have the page, and it's up-to-date, so 2610 * now we can copy it to user space... 2611 */ 2612 ret = copy_page_to_iter(page, offset, nr, to); 2613 retval += ret; 2614 offset += ret; 2615 index += offset >> PAGE_SHIFT; 2616 offset &= ~PAGE_MASK; 2617 2618 put_page(page); 2619 if (!iov_iter_count(to)) 2620 break; 2621 if (ret < nr) { 2622 error = -EFAULT; 2623 break; 2624 } 2625 cond_resched(); 2626 } 2627 2628 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2629 file_accessed(file); 2630 return retval ? retval : error; 2631 } 2632 2633 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2634 { 2635 struct address_space *mapping = file->f_mapping; 2636 struct inode *inode = mapping->host; 2637 2638 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2639 return generic_file_llseek_size(file, offset, whence, 2640 MAX_LFS_FILESIZE, i_size_read(inode)); 2641 if (offset < 0) 2642 return -ENXIO; 2643 2644 inode_lock(inode); 2645 /* We're holding i_rwsem so we can access i_size directly */ 2646 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2647 if (offset >= 0) 2648 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2649 inode_unlock(inode); 2650 return offset; 2651 } 2652 2653 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2654 loff_t len) 2655 { 2656 struct inode *inode = file_inode(file); 2657 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2658 struct shmem_inode_info *info = SHMEM_I(inode); 2659 struct shmem_falloc shmem_falloc; 2660 pgoff_t start, index, end, undo_fallocend; 2661 int error; 2662 2663 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2664 return -EOPNOTSUPP; 2665 2666 inode_lock(inode); 2667 2668 if (mode & FALLOC_FL_PUNCH_HOLE) { 2669 struct address_space *mapping = file->f_mapping; 2670 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2671 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2672 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2673 2674 /* protected by i_rwsem */ 2675 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2676 error = -EPERM; 2677 goto out; 2678 } 2679 2680 shmem_falloc.waitq = &shmem_falloc_waitq; 2681 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2682 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2683 spin_lock(&inode->i_lock); 2684 inode->i_private = &shmem_falloc; 2685 spin_unlock(&inode->i_lock); 2686 2687 if ((u64)unmap_end > (u64)unmap_start) 2688 unmap_mapping_range(mapping, unmap_start, 2689 1 + unmap_end - unmap_start, 0); 2690 shmem_truncate_range(inode, offset, offset + len - 1); 2691 /* No need to unmap again: hole-punching leaves COWed pages */ 2692 2693 spin_lock(&inode->i_lock); 2694 inode->i_private = NULL; 2695 wake_up_all(&shmem_falloc_waitq); 2696 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2697 spin_unlock(&inode->i_lock); 2698 error = 0; 2699 goto out; 2700 } 2701 2702 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2703 error = inode_newsize_ok(inode, offset + len); 2704 if (error) 2705 goto out; 2706 2707 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2708 error = -EPERM; 2709 goto out; 2710 } 2711 2712 start = offset >> PAGE_SHIFT; 2713 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2714 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2715 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2716 error = -ENOSPC; 2717 goto out; 2718 } 2719 2720 shmem_falloc.waitq = NULL; 2721 shmem_falloc.start = start; 2722 shmem_falloc.next = start; 2723 shmem_falloc.nr_falloced = 0; 2724 shmem_falloc.nr_unswapped = 0; 2725 spin_lock(&inode->i_lock); 2726 inode->i_private = &shmem_falloc; 2727 spin_unlock(&inode->i_lock); 2728 2729 /* 2730 * info->fallocend is only relevant when huge pages might be 2731 * involved: to prevent split_huge_page() freeing fallocated 2732 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 2733 */ 2734 undo_fallocend = info->fallocend; 2735 if (info->fallocend < end) 2736 info->fallocend = end; 2737 2738 for (index = start; index < end; ) { 2739 struct page *page; 2740 2741 /* 2742 * Good, the fallocate(2) manpage permits EINTR: we may have 2743 * been interrupted because we are using up too much memory. 2744 */ 2745 if (signal_pending(current)) 2746 error = -EINTR; 2747 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2748 error = -ENOMEM; 2749 else 2750 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2751 if (error) { 2752 info->fallocend = undo_fallocend; 2753 /* Remove the !PageUptodate pages we added */ 2754 if (index > start) { 2755 shmem_undo_range(inode, 2756 (loff_t)start << PAGE_SHIFT, 2757 ((loff_t)index << PAGE_SHIFT) - 1, true); 2758 } 2759 goto undone; 2760 } 2761 2762 index++; 2763 /* 2764 * Here is a more important optimization than it appears: 2765 * a second SGP_FALLOC on the same huge page will clear it, 2766 * making it PageUptodate and un-undoable if we fail later. 2767 */ 2768 if (PageTransCompound(page)) { 2769 index = round_up(index, HPAGE_PMD_NR); 2770 /* Beware 32-bit wraparound */ 2771 if (!index) 2772 index--; 2773 } 2774 2775 /* 2776 * Inform shmem_writepage() how far we have reached. 2777 * No need for lock or barrier: we have the page lock. 2778 */ 2779 if (!PageUptodate(page)) 2780 shmem_falloc.nr_falloced += index - shmem_falloc.next; 2781 shmem_falloc.next = index; 2782 2783 /* 2784 * If !PageUptodate, leave it that way so that freeable pages 2785 * can be recognized if we need to rollback on error later. 2786 * But set_page_dirty so that memory pressure will swap rather 2787 * than free the pages we are allocating (and SGP_CACHE pages 2788 * might still be clean: we now need to mark those dirty too). 2789 */ 2790 set_page_dirty(page); 2791 unlock_page(page); 2792 put_page(page); 2793 cond_resched(); 2794 } 2795 2796 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2797 i_size_write(inode, offset + len); 2798 inode->i_ctime = current_time(inode); 2799 undone: 2800 spin_lock(&inode->i_lock); 2801 inode->i_private = NULL; 2802 spin_unlock(&inode->i_lock); 2803 out: 2804 inode_unlock(inode); 2805 return error; 2806 } 2807 2808 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2809 { 2810 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2811 2812 buf->f_type = TMPFS_MAGIC; 2813 buf->f_bsize = PAGE_SIZE; 2814 buf->f_namelen = NAME_MAX; 2815 if (sbinfo->max_blocks) { 2816 buf->f_blocks = sbinfo->max_blocks; 2817 buf->f_bavail = 2818 buf->f_bfree = sbinfo->max_blocks - 2819 percpu_counter_sum(&sbinfo->used_blocks); 2820 } 2821 if (sbinfo->max_inodes) { 2822 buf->f_files = sbinfo->max_inodes; 2823 buf->f_ffree = sbinfo->free_inodes; 2824 } 2825 /* else leave those fields 0 like simple_statfs */ 2826 2827 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 2828 2829 return 0; 2830 } 2831 2832 /* 2833 * File creation. Allocate an inode, and we're done.. 2834 */ 2835 static int 2836 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2837 struct dentry *dentry, umode_t mode, dev_t dev) 2838 { 2839 struct inode *inode; 2840 int error = -ENOSPC; 2841 2842 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2843 if (inode) { 2844 error = simple_acl_create(dir, inode); 2845 if (error) 2846 goto out_iput; 2847 error = security_inode_init_security(inode, dir, 2848 &dentry->d_name, 2849 shmem_initxattrs, NULL); 2850 if (error && error != -EOPNOTSUPP) 2851 goto out_iput; 2852 2853 error = 0; 2854 dir->i_size += BOGO_DIRENT_SIZE; 2855 dir->i_ctime = dir->i_mtime = current_time(dir); 2856 d_instantiate(dentry, inode); 2857 dget(dentry); /* Extra count - pin the dentry in core */ 2858 } 2859 return error; 2860 out_iput: 2861 iput(inode); 2862 return error; 2863 } 2864 2865 static int 2866 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 2867 struct dentry *dentry, umode_t mode) 2868 { 2869 struct inode *inode; 2870 int error = -ENOSPC; 2871 2872 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2873 if (inode) { 2874 error = security_inode_init_security(inode, dir, 2875 NULL, 2876 shmem_initxattrs, NULL); 2877 if (error && error != -EOPNOTSUPP) 2878 goto out_iput; 2879 error = simple_acl_create(dir, inode); 2880 if (error) 2881 goto out_iput; 2882 d_tmpfile(dentry, inode); 2883 } 2884 return error; 2885 out_iput: 2886 iput(inode); 2887 return error; 2888 } 2889 2890 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2891 struct dentry *dentry, umode_t mode) 2892 { 2893 int error; 2894 2895 if ((error = shmem_mknod(&init_user_ns, dir, dentry, 2896 mode | S_IFDIR, 0))) 2897 return error; 2898 inc_nlink(dir); 2899 return 0; 2900 } 2901 2902 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir, 2903 struct dentry *dentry, umode_t mode, bool excl) 2904 { 2905 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 2906 } 2907 2908 /* 2909 * Link a file.. 2910 */ 2911 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2912 { 2913 struct inode *inode = d_inode(old_dentry); 2914 int ret = 0; 2915 2916 /* 2917 * No ordinary (disk based) filesystem counts links as inodes; 2918 * but each new link needs a new dentry, pinning lowmem, and 2919 * tmpfs dentries cannot be pruned until they are unlinked. 2920 * But if an O_TMPFILE file is linked into the tmpfs, the 2921 * first link must skip that, to get the accounting right. 2922 */ 2923 if (inode->i_nlink) { 2924 ret = shmem_reserve_inode(inode->i_sb, NULL); 2925 if (ret) 2926 goto out; 2927 } 2928 2929 dir->i_size += BOGO_DIRENT_SIZE; 2930 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2931 inc_nlink(inode); 2932 ihold(inode); /* New dentry reference */ 2933 dget(dentry); /* Extra pinning count for the created dentry */ 2934 d_instantiate(dentry, inode); 2935 out: 2936 return ret; 2937 } 2938 2939 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2940 { 2941 struct inode *inode = d_inode(dentry); 2942 2943 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2944 shmem_free_inode(inode->i_sb); 2945 2946 dir->i_size -= BOGO_DIRENT_SIZE; 2947 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2948 drop_nlink(inode); 2949 dput(dentry); /* Undo the count from "create" - this does all the work */ 2950 return 0; 2951 } 2952 2953 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2954 { 2955 if (!simple_empty(dentry)) 2956 return -ENOTEMPTY; 2957 2958 drop_nlink(d_inode(dentry)); 2959 drop_nlink(dir); 2960 return shmem_unlink(dir, dentry); 2961 } 2962 2963 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2964 { 2965 bool old_is_dir = d_is_dir(old_dentry); 2966 bool new_is_dir = d_is_dir(new_dentry); 2967 2968 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2969 if (old_is_dir) { 2970 drop_nlink(old_dir); 2971 inc_nlink(new_dir); 2972 } else { 2973 drop_nlink(new_dir); 2974 inc_nlink(old_dir); 2975 } 2976 } 2977 old_dir->i_ctime = old_dir->i_mtime = 2978 new_dir->i_ctime = new_dir->i_mtime = 2979 d_inode(old_dentry)->i_ctime = 2980 d_inode(new_dentry)->i_ctime = current_time(old_dir); 2981 2982 return 0; 2983 } 2984 2985 static int shmem_whiteout(struct user_namespace *mnt_userns, 2986 struct inode *old_dir, struct dentry *old_dentry) 2987 { 2988 struct dentry *whiteout; 2989 int error; 2990 2991 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2992 if (!whiteout) 2993 return -ENOMEM; 2994 2995 error = shmem_mknod(&init_user_ns, old_dir, whiteout, 2996 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2997 dput(whiteout); 2998 if (error) 2999 return error; 3000 3001 /* 3002 * Cheat and hash the whiteout while the old dentry is still in 3003 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3004 * 3005 * d_lookup() will consistently find one of them at this point, 3006 * not sure which one, but that isn't even important. 3007 */ 3008 d_rehash(whiteout); 3009 return 0; 3010 } 3011 3012 /* 3013 * The VFS layer already does all the dentry stuff for rename, 3014 * we just have to decrement the usage count for the target if 3015 * it exists so that the VFS layer correctly free's it when it 3016 * gets overwritten. 3017 */ 3018 static int shmem_rename2(struct user_namespace *mnt_userns, 3019 struct inode *old_dir, struct dentry *old_dentry, 3020 struct inode *new_dir, struct dentry *new_dentry, 3021 unsigned int flags) 3022 { 3023 struct inode *inode = d_inode(old_dentry); 3024 int they_are_dirs = S_ISDIR(inode->i_mode); 3025 3026 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3027 return -EINVAL; 3028 3029 if (flags & RENAME_EXCHANGE) 3030 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3031 3032 if (!simple_empty(new_dentry)) 3033 return -ENOTEMPTY; 3034 3035 if (flags & RENAME_WHITEOUT) { 3036 int error; 3037 3038 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry); 3039 if (error) 3040 return error; 3041 } 3042 3043 if (d_really_is_positive(new_dentry)) { 3044 (void) shmem_unlink(new_dir, new_dentry); 3045 if (they_are_dirs) { 3046 drop_nlink(d_inode(new_dentry)); 3047 drop_nlink(old_dir); 3048 } 3049 } else if (they_are_dirs) { 3050 drop_nlink(old_dir); 3051 inc_nlink(new_dir); 3052 } 3053 3054 old_dir->i_size -= BOGO_DIRENT_SIZE; 3055 new_dir->i_size += BOGO_DIRENT_SIZE; 3056 old_dir->i_ctime = old_dir->i_mtime = 3057 new_dir->i_ctime = new_dir->i_mtime = 3058 inode->i_ctime = current_time(old_dir); 3059 return 0; 3060 } 3061 3062 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir, 3063 struct dentry *dentry, const char *symname) 3064 { 3065 int error; 3066 int len; 3067 struct inode *inode; 3068 struct page *page; 3069 3070 len = strlen(symname) + 1; 3071 if (len > PAGE_SIZE) 3072 return -ENAMETOOLONG; 3073 3074 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3075 VM_NORESERVE); 3076 if (!inode) 3077 return -ENOSPC; 3078 3079 error = security_inode_init_security(inode, dir, &dentry->d_name, 3080 shmem_initxattrs, NULL); 3081 if (error && error != -EOPNOTSUPP) { 3082 iput(inode); 3083 return error; 3084 } 3085 3086 inode->i_size = len-1; 3087 if (len <= SHORT_SYMLINK_LEN) { 3088 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3089 if (!inode->i_link) { 3090 iput(inode); 3091 return -ENOMEM; 3092 } 3093 inode->i_op = &shmem_short_symlink_operations; 3094 } else { 3095 inode_nohighmem(inode); 3096 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3097 if (error) { 3098 iput(inode); 3099 return error; 3100 } 3101 inode->i_mapping->a_ops = &shmem_aops; 3102 inode->i_op = &shmem_symlink_inode_operations; 3103 memcpy(page_address(page), symname, len); 3104 SetPageUptodate(page); 3105 set_page_dirty(page); 3106 unlock_page(page); 3107 put_page(page); 3108 } 3109 dir->i_size += BOGO_DIRENT_SIZE; 3110 dir->i_ctime = dir->i_mtime = current_time(dir); 3111 d_instantiate(dentry, inode); 3112 dget(dentry); 3113 return 0; 3114 } 3115 3116 static void shmem_put_link(void *arg) 3117 { 3118 mark_page_accessed(arg); 3119 put_page(arg); 3120 } 3121 3122 static const char *shmem_get_link(struct dentry *dentry, 3123 struct inode *inode, 3124 struct delayed_call *done) 3125 { 3126 struct page *page = NULL; 3127 int error; 3128 if (!dentry) { 3129 page = find_get_page(inode->i_mapping, 0); 3130 if (!page) 3131 return ERR_PTR(-ECHILD); 3132 if (PageHWPoison(page) || 3133 !PageUptodate(page)) { 3134 put_page(page); 3135 return ERR_PTR(-ECHILD); 3136 } 3137 } else { 3138 error = shmem_getpage(inode, 0, &page, SGP_READ); 3139 if (error) 3140 return ERR_PTR(error); 3141 if (page && PageHWPoison(page)) { 3142 unlock_page(page); 3143 put_page(page); 3144 return ERR_PTR(-ECHILD); 3145 } 3146 unlock_page(page); 3147 } 3148 set_delayed_call(done, shmem_put_link, page); 3149 return page_address(page); 3150 } 3151 3152 #ifdef CONFIG_TMPFS_XATTR 3153 /* 3154 * Superblocks without xattr inode operations may get some security.* xattr 3155 * support from the LSM "for free". As soon as we have any other xattrs 3156 * like ACLs, we also need to implement the security.* handlers at 3157 * filesystem level, though. 3158 */ 3159 3160 /* 3161 * Callback for security_inode_init_security() for acquiring xattrs. 3162 */ 3163 static int shmem_initxattrs(struct inode *inode, 3164 const struct xattr *xattr_array, 3165 void *fs_info) 3166 { 3167 struct shmem_inode_info *info = SHMEM_I(inode); 3168 const struct xattr *xattr; 3169 struct simple_xattr *new_xattr; 3170 size_t len; 3171 3172 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3173 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3174 if (!new_xattr) 3175 return -ENOMEM; 3176 3177 len = strlen(xattr->name) + 1; 3178 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3179 GFP_KERNEL); 3180 if (!new_xattr->name) { 3181 kvfree(new_xattr); 3182 return -ENOMEM; 3183 } 3184 3185 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3186 XATTR_SECURITY_PREFIX_LEN); 3187 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3188 xattr->name, len); 3189 3190 simple_xattr_list_add(&info->xattrs, new_xattr); 3191 } 3192 3193 return 0; 3194 } 3195 3196 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3197 struct dentry *unused, struct inode *inode, 3198 const char *name, void *buffer, size_t size) 3199 { 3200 struct shmem_inode_info *info = SHMEM_I(inode); 3201 3202 name = xattr_full_name(handler, name); 3203 return simple_xattr_get(&info->xattrs, name, buffer, size); 3204 } 3205 3206 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3207 struct user_namespace *mnt_userns, 3208 struct dentry *unused, struct inode *inode, 3209 const char *name, const void *value, 3210 size_t size, int flags) 3211 { 3212 struct shmem_inode_info *info = SHMEM_I(inode); 3213 3214 name = xattr_full_name(handler, name); 3215 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3216 } 3217 3218 static const struct xattr_handler shmem_security_xattr_handler = { 3219 .prefix = XATTR_SECURITY_PREFIX, 3220 .get = shmem_xattr_handler_get, 3221 .set = shmem_xattr_handler_set, 3222 }; 3223 3224 static const struct xattr_handler shmem_trusted_xattr_handler = { 3225 .prefix = XATTR_TRUSTED_PREFIX, 3226 .get = shmem_xattr_handler_get, 3227 .set = shmem_xattr_handler_set, 3228 }; 3229 3230 static const struct xattr_handler *shmem_xattr_handlers[] = { 3231 #ifdef CONFIG_TMPFS_POSIX_ACL 3232 &posix_acl_access_xattr_handler, 3233 &posix_acl_default_xattr_handler, 3234 #endif 3235 &shmem_security_xattr_handler, 3236 &shmem_trusted_xattr_handler, 3237 NULL 3238 }; 3239 3240 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3241 { 3242 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3243 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3244 } 3245 #endif /* CONFIG_TMPFS_XATTR */ 3246 3247 static const struct inode_operations shmem_short_symlink_operations = { 3248 .get_link = simple_get_link, 3249 #ifdef CONFIG_TMPFS_XATTR 3250 .listxattr = shmem_listxattr, 3251 #endif 3252 }; 3253 3254 static const struct inode_operations shmem_symlink_inode_operations = { 3255 .get_link = shmem_get_link, 3256 #ifdef CONFIG_TMPFS_XATTR 3257 .listxattr = shmem_listxattr, 3258 #endif 3259 }; 3260 3261 static struct dentry *shmem_get_parent(struct dentry *child) 3262 { 3263 return ERR_PTR(-ESTALE); 3264 } 3265 3266 static int shmem_match(struct inode *ino, void *vfh) 3267 { 3268 __u32 *fh = vfh; 3269 __u64 inum = fh[2]; 3270 inum = (inum << 32) | fh[1]; 3271 return ino->i_ino == inum && fh[0] == ino->i_generation; 3272 } 3273 3274 /* Find any alias of inode, but prefer a hashed alias */ 3275 static struct dentry *shmem_find_alias(struct inode *inode) 3276 { 3277 struct dentry *alias = d_find_alias(inode); 3278 3279 return alias ?: d_find_any_alias(inode); 3280 } 3281 3282 3283 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3284 struct fid *fid, int fh_len, int fh_type) 3285 { 3286 struct inode *inode; 3287 struct dentry *dentry = NULL; 3288 u64 inum; 3289 3290 if (fh_len < 3) 3291 return NULL; 3292 3293 inum = fid->raw[2]; 3294 inum = (inum << 32) | fid->raw[1]; 3295 3296 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3297 shmem_match, fid->raw); 3298 if (inode) { 3299 dentry = shmem_find_alias(inode); 3300 iput(inode); 3301 } 3302 3303 return dentry; 3304 } 3305 3306 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3307 struct inode *parent) 3308 { 3309 if (*len < 3) { 3310 *len = 3; 3311 return FILEID_INVALID; 3312 } 3313 3314 if (inode_unhashed(inode)) { 3315 /* Unfortunately insert_inode_hash is not idempotent, 3316 * so as we hash inodes here rather than at creation 3317 * time, we need a lock to ensure we only try 3318 * to do it once 3319 */ 3320 static DEFINE_SPINLOCK(lock); 3321 spin_lock(&lock); 3322 if (inode_unhashed(inode)) 3323 __insert_inode_hash(inode, 3324 inode->i_ino + inode->i_generation); 3325 spin_unlock(&lock); 3326 } 3327 3328 fh[0] = inode->i_generation; 3329 fh[1] = inode->i_ino; 3330 fh[2] = ((__u64)inode->i_ino) >> 32; 3331 3332 *len = 3; 3333 return 1; 3334 } 3335 3336 static const struct export_operations shmem_export_ops = { 3337 .get_parent = shmem_get_parent, 3338 .encode_fh = shmem_encode_fh, 3339 .fh_to_dentry = shmem_fh_to_dentry, 3340 }; 3341 3342 enum shmem_param { 3343 Opt_gid, 3344 Opt_huge, 3345 Opt_mode, 3346 Opt_mpol, 3347 Opt_nr_blocks, 3348 Opt_nr_inodes, 3349 Opt_size, 3350 Opt_uid, 3351 Opt_inode32, 3352 Opt_inode64, 3353 }; 3354 3355 static const struct constant_table shmem_param_enums_huge[] = { 3356 {"never", SHMEM_HUGE_NEVER }, 3357 {"always", SHMEM_HUGE_ALWAYS }, 3358 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3359 {"advise", SHMEM_HUGE_ADVISE }, 3360 {} 3361 }; 3362 3363 const struct fs_parameter_spec shmem_fs_parameters[] = { 3364 fsparam_u32 ("gid", Opt_gid), 3365 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3366 fsparam_u32oct("mode", Opt_mode), 3367 fsparam_string("mpol", Opt_mpol), 3368 fsparam_string("nr_blocks", Opt_nr_blocks), 3369 fsparam_string("nr_inodes", Opt_nr_inodes), 3370 fsparam_string("size", Opt_size), 3371 fsparam_u32 ("uid", Opt_uid), 3372 fsparam_flag ("inode32", Opt_inode32), 3373 fsparam_flag ("inode64", Opt_inode64), 3374 {} 3375 }; 3376 3377 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3378 { 3379 struct shmem_options *ctx = fc->fs_private; 3380 struct fs_parse_result result; 3381 unsigned long long size; 3382 char *rest; 3383 int opt; 3384 3385 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3386 if (opt < 0) 3387 return opt; 3388 3389 switch (opt) { 3390 case Opt_size: 3391 size = memparse(param->string, &rest); 3392 if (*rest == '%') { 3393 size <<= PAGE_SHIFT; 3394 size *= totalram_pages(); 3395 do_div(size, 100); 3396 rest++; 3397 } 3398 if (*rest) 3399 goto bad_value; 3400 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3401 ctx->seen |= SHMEM_SEEN_BLOCKS; 3402 break; 3403 case Opt_nr_blocks: 3404 ctx->blocks = memparse(param->string, &rest); 3405 if (*rest) 3406 goto bad_value; 3407 ctx->seen |= SHMEM_SEEN_BLOCKS; 3408 break; 3409 case Opt_nr_inodes: 3410 ctx->inodes = memparse(param->string, &rest); 3411 if (*rest) 3412 goto bad_value; 3413 ctx->seen |= SHMEM_SEEN_INODES; 3414 break; 3415 case Opt_mode: 3416 ctx->mode = result.uint_32 & 07777; 3417 break; 3418 case Opt_uid: 3419 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3420 if (!uid_valid(ctx->uid)) 3421 goto bad_value; 3422 break; 3423 case Opt_gid: 3424 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3425 if (!gid_valid(ctx->gid)) 3426 goto bad_value; 3427 break; 3428 case Opt_huge: 3429 ctx->huge = result.uint_32; 3430 if (ctx->huge != SHMEM_HUGE_NEVER && 3431 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3432 has_transparent_hugepage())) 3433 goto unsupported_parameter; 3434 ctx->seen |= SHMEM_SEEN_HUGE; 3435 break; 3436 case Opt_mpol: 3437 if (IS_ENABLED(CONFIG_NUMA)) { 3438 mpol_put(ctx->mpol); 3439 ctx->mpol = NULL; 3440 if (mpol_parse_str(param->string, &ctx->mpol)) 3441 goto bad_value; 3442 break; 3443 } 3444 goto unsupported_parameter; 3445 case Opt_inode32: 3446 ctx->full_inums = false; 3447 ctx->seen |= SHMEM_SEEN_INUMS; 3448 break; 3449 case Opt_inode64: 3450 if (sizeof(ino_t) < 8) { 3451 return invalfc(fc, 3452 "Cannot use inode64 with <64bit inums in kernel\n"); 3453 } 3454 ctx->full_inums = true; 3455 ctx->seen |= SHMEM_SEEN_INUMS; 3456 break; 3457 } 3458 return 0; 3459 3460 unsupported_parameter: 3461 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3462 bad_value: 3463 return invalfc(fc, "Bad value for '%s'", param->key); 3464 } 3465 3466 static int shmem_parse_options(struct fs_context *fc, void *data) 3467 { 3468 char *options = data; 3469 3470 if (options) { 3471 int err = security_sb_eat_lsm_opts(options, &fc->security); 3472 if (err) 3473 return err; 3474 } 3475 3476 while (options != NULL) { 3477 char *this_char = options; 3478 for (;;) { 3479 /* 3480 * NUL-terminate this option: unfortunately, 3481 * mount options form a comma-separated list, 3482 * but mpol's nodelist may also contain commas. 3483 */ 3484 options = strchr(options, ','); 3485 if (options == NULL) 3486 break; 3487 options++; 3488 if (!isdigit(*options)) { 3489 options[-1] = '\0'; 3490 break; 3491 } 3492 } 3493 if (*this_char) { 3494 char *value = strchr(this_char, '='); 3495 size_t len = 0; 3496 int err; 3497 3498 if (value) { 3499 *value++ = '\0'; 3500 len = strlen(value); 3501 } 3502 err = vfs_parse_fs_string(fc, this_char, value, len); 3503 if (err < 0) 3504 return err; 3505 } 3506 } 3507 return 0; 3508 } 3509 3510 /* 3511 * Reconfigure a shmem filesystem. 3512 * 3513 * Note that we disallow change from limited->unlimited blocks/inodes while any 3514 * are in use; but we must separately disallow unlimited->limited, because in 3515 * that case we have no record of how much is already in use. 3516 */ 3517 static int shmem_reconfigure(struct fs_context *fc) 3518 { 3519 struct shmem_options *ctx = fc->fs_private; 3520 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3521 unsigned long inodes; 3522 struct mempolicy *mpol = NULL; 3523 const char *err; 3524 3525 raw_spin_lock(&sbinfo->stat_lock); 3526 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3527 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3528 if (!sbinfo->max_blocks) { 3529 err = "Cannot retroactively limit size"; 3530 goto out; 3531 } 3532 if (percpu_counter_compare(&sbinfo->used_blocks, 3533 ctx->blocks) > 0) { 3534 err = "Too small a size for current use"; 3535 goto out; 3536 } 3537 } 3538 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3539 if (!sbinfo->max_inodes) { 3540 err = "Cannot retroactively limit inodes"; 3541 goto out; 3542 } 3543 if (ctx->inodes < inodes) { 3544 err = "Too few inodes for current use"; 3545 goto out; 3546 } 3547 } 3548 3549 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3550 sbinfo->next_ino > UINT_MAX) { 3551 err = "Current inum too high to switch to 32-bit inums"; 3552 goto out; 3553 } 3554 3555 if (ctx->seen & SHMEM_SEEN_HUGE) 3556 sbinfo->huge = ctx->huge; 3557 if (ctx->seen & SHMEM_SEEN_INUMS) 3558 sbinfo->full_inums = ctx->full_inums; 3559 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3560 sbinfo->max_blocks = ctx->blocks; 3561 if (ctx->seen & SHMEM_SEEN_INODES) { 3562 sbinfo->max_inodes = ctx->inodes; 3563 sbinfo->free_inodes = ctx->inodes - inodes; 3564 } 3565 3566 /* 3567 * Preserve previous mempolicy unless mpol remount option was specified. 3568 */ 3569 if (ctx->mpol) { 3570 mpol = sbinfo->mpol; 3571 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3572 ctx->mpol = NULL; 3573 } 3574 raw_spin_unlock(&sbinfo->stat_lock); 3575 mpol_put(mpol); 3576 return 0; 3577 out: 3578 raw_spin_unlock(&sbinfo->stat_lock); 3579 return invalfc(fc, "%s", err); 3580 } 3581 3582 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3583 { 3584 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3585 3586 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3587 seq_printf(seq, ",size=%luk", 3588 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3589 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3590 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3591 if (sbinfo->mode != (0777 | S_ISVTX)) 3592 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3593 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3594 seq_printf(seq, ",uid=%u", 3595 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3596 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3597 seq_printf(seq, ",gid=%u", 3598 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3599 3600 /* 3601 * Showing inode{64,32} might be useful even if it's the system default, 3602 * since then people don't have to resort to checking both here and 3603 * /proc/config.gz to confirm 64-bit inums were successfully applied 3604 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3605 * 3606 * We hide it when inode64 isn't the default and we are using 32-bit 3607 * inodes, since that probably just means the feature isn't even under 3608 * consideration. 3609 * 3610 * As such: 3611 * 3612 * +-----------------+-----------------+ 3613 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3614 * +------------------+-----------------+-----------------+ 3615 * | full_inums=true | show | show | 3616 * | full_inums=false | show | hide | 3617 * +------------------+-----------------+-----------------+ 3618 * 3619 */ 3620 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3621 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3622 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3623 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3624 if (sbinfo->huge) 3625 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3626 #endif 3627 shmem_show_mpol(seq, sbinfo->mpol); 3628 return 0; 3629 } 3630 3631 #endif /* CONFIG_TMPFS */ 3632 3633 static void shmem_put_super(struct super_block *sb) 3634 { 3635 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3636 3637 free_percpu(sbinfo->ino_batch); 3638 percpu_counter_destroy(&sbinfo->used_blocks); 3639 mpol_put(sbinfo->mpol); 3640 kfree(sbinfo); 3641 sb->s_fs_info = NULL; 3642 } 3643 3644 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3645 { 3646 struct shmem_options *ctx = fc->fs_private; 3647 struct inode *inode; 3648 struct shmem_sb_info *sbinfo; 3649 3650 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3651 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3652 L1_CACHE_BYTES), GFP_KERNEL); 3653 if (!sbinfo) 3654 return -ENOMEM; 3655 3656 sb->s_fs_info = sbinfo; 3657 3658 #ifdef CONFIG_TMPFS 3659 /* 3660 * Per default we only allow half of the physical ram per 3661 * tmpfs instance, limiting inodes to one per page of lowmem; 3662 * but the internal instance is left unlimited. 3663 */ 3664 if (!(sb->s_flags & SB_KERNMOUNT)) { 3665 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3666 ctx->blocks = shmem_default_max_blocks(); 3667 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3668 ctx->inodes = shmem_default_max_inodes(); 3669 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3670 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3671 } else { 3672 sb->s_flags |= SB_NOUSER; 3673 } 3674 sb->s_export_op = &shmem_export_ops; 3675 sb->s_flags |= SB_NOSEC; 3676 #else 3677 sb->s_flags |= SB_NOUSER; 3678 #endif 3679 sbinfo->max_blocks = ctx->blocks; 3680 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3681 if (sb->s_flags & SB_KERNMOUNT) { 3682 sbinfo->ino_batch = alloc_percpu(ino_t); 3683 if (!sbinfo->ino_batch) 3684 goto failed; 3685 } 3686 sbinfo->uid = ctx->uid; 3687 sbinfo->gid = ctx->gid; 3688 sbinfo->full_inums = ctx->full_inums; 3689 sbinfo->mode = ctx->mode; 3690 sbinfo->huge = ctx->huge; 3691 sbinfo->mpol = ctx->mpol; 3692 ctx->mpol = NULL; 3693 3694 raw_spin_lock_init(&sbinfo->stat_lock); 3695 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3696 goto failed; 3697 spin_lock_init(&sbinfo->shrinklist_lock); 3698 INIT_LIST_HEAD(&sbinfo->shrinklist); 3699 3700 sb->s_maxbytes = MAX_LFS_FILESIZE; 3701 sb->s_blocksize = PAGE_SIZE; 3702 sb->s_blocksize_bits = PAGE_SHIFT; 3703 sb->s_magic = TMPFS_MAGIC; 3704 sb->s_op = &shmem_ops; 3705 sb->s_time_gran = 1; 3706 #ifdef CONFIG_TMPFS_XATTR 3707 sb->s_xattr = shmem_xattr_handlers; 3708 #endif 3709 #ifdef CONFIG_TMPFS_POSIX_ACL 3710 sb->s_flags |= SB_POSIXACL; 3711 #endif 3712 uuid_gen(&sb->s_uuid); 3713 3714 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3715 if (!inode) 3716 goto failed; 3717 inode->i_uid = sbinfo->uid; 3718 inode->i_gid = sbinfo->gid; 3719 sb->s_root = d_make_root(inode); 3720 if (!sb->s_root) 3721 goto failed; 3722 return 0; 3723 3724 failed: 3725 shmem_put_super(sb); 3726 return -ENOMEM; 3727 } 3728 3729 static int shmem_get_tree(struct fs_context *fc) 3730 { 3731 return get_tree_nodev(fc, shmem_fill_super); 3732 } 3733 3734 static void shmem_free_fc(struct fs_context *fc) 3735 { 3736 struct shmem_options *ctx = fc->fs_private; 3737 3738 if (ctx) { 3739 mpol_put(ctx->mpol); 3740 kfree(ctx); 3741 } 3742 } 3743 3744 static const struct fs_context_operations shmem_fs_context_ops = { 3745 .free = shmem_free_fc, 3746 .get_tree = shmem_get_tree, 3747 #ifdef CONFIG_TMPFS 3748 .parse_monolithic = shmem_parse_options, 3749 .parse_param = shmem_parse_one, 3750 .reconfigure = shmem_reconfigure, 3751 #endif 3752 }; 3753 3754 static struct kmem_cache *shmem_inode_cachep; 3755 3756 static struct inode *shmem_alloc_inode(struct super_block *sb) 3757 { 3758 struct shmem_inode_info *info; 3759 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3760 if (!info) 3761 return NULL; 3762 return &info->vfs_inode; 3763 } 3764 3765 static void shmem_free_in_core_inode(struct inode *inode) 3766 { 3767 if (S_ISLNK(inode->i_mode)) 3768 kfree(inode->i_link); 3769 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3770 } 3771 3772 static void shmem_destroy_inode(struct inode *inode) 3773 { 3774 if (S_ISREG(inode->i_mode)) 3775 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3776 } 3777 3778 static void shmem_init_inode(void *foo) 3779 { 3780 struct shmem_inode_info *info = foo; 3781 inode_init_once(&info->vfs_inode); 3782 } 3783 3784 static void shmem_init_inodecache(void) 3785 { 3786 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3787 sizeof(struct shmem_inode_info), 3788 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3789 } 3790 3791 static void shmem_destroy_inodecache(void) 3792 { 3793 kmem_cache_destroy(shmem_inode_cachep); 3794 } 3795 3796 /* Keep the page in page cache instead of truncating it */ 3797 static int shmem_error_remove_page(struct address_space *mapping, 3798 struct page *page) 3799 { 3800 return 0; 3801 } 3802 3803 const struct address_space_operations shmem_aops = { 3804 .writepage = shmem_writepage, 3805 .set_page_dirty = __set_page_dirty_no_writeback, 3806 #ifdef CONFIG_TMPFS 3807 .write_begin = shmem_write_begin, 3808 .write_end = shmem_write_end, 3809 #endif 3810 #ifdef CONFIG_MIGRATION 3811 .migratepage = migrate_page, 3812 #endif 3813 .error_remove_page = shmem_error_remove_page, 3814 }; 3815 EXPORT_SYMBOL(shmem_aops); 3816 3817 static const struct file_operations shmem_file_operations = { 3818 .mmap = shmem_mmap, 3819 .get_unmapped_area = shmem_get_unmapped_area, 3820 #ifdef CONFIG_TMPFS 3821 .llseek = shmem_file_llseek, 3822 .read_iter = shmem_file_read_iter, 3823 .write_iter = generic_file_write_iter, 3824 .fsync = noop_fsync, 3825 .splice_read = generic_file_splice_read, 3826 .splice_write = iter_file_splice_write, 3827 .fallocate = shmem_fallocate, 3828 #endif 3829 }; 3830 3831 static const struct inode_operations shmem_inode_operations = { 3832 .getattr = shmem_getattr, 3833 .setattr = shmem_setattr, 3834 #ifdef CONFIG_TMPFS_XATTR 3835 .listxattr = shmem_listxattr, 3836 .set_acl = simple_set_acl, 3837 #endif 3838 }; 3839 3840 static const struct inode_operations shmem_dir_inode_operations = { 3841 #ifdef CONFIG_TMPFS 3842 .create = shmem_create, 3843 .lookup = simple_lookup, 3844 .link = shmem_link, 3845 .unlink = shmem_unlink, 3846 .symlink = shmem_symlink, 3847 .mkdir = shmem_mkdir, 3848 .rmdir = shmem_rmdir, 3849 .mknod = shmem_mknod, 3850 .rename = shmem_rename2, 3851 .tmpfile = shmem_tmpfile, 3852 #endif 3853 #ifdef CONFIG_TMPFS_XATTR 3854 .listxattr = shmem_listxattr, 3855 #endif 3856 #ifdef CONFIG_TMPFS_POSIX_ACL 3857 .setattr = shmem_setattr, 3858 .set_acl = simple_set_acl, 3859 #endif 3860 }; 3861 3862 static const struct inode_operations shmem_special_inode_operations = { 3863 #ifdef CONFIG_TMPFS_XATTR 3864 .listxattr = shmem_listxattr, 3865 #endif 3866 #ifdef CONFIG_TMPFS_POSIX_ACL 3867 .setattr = shmem_setattr, 3868 .set_acl = simple_set_acl, 3869 #endif 3870 }; 3871 3872 static const struct super_operations shmem_ops = { 3873 .alloc_inode = shmem_alloc_inode, 3874 .free_inode = shmem_free_in_core_inode, 3875 .destroy_inode = shmem_destroy_inode, 3876 #ifdef CONFIG_TMPFS 3877 .statfs = shmem_statfs, 3878 .show_options = shmem_show_options, 3879 #endif 3880 .evict_inode = shmem_evict_inode, 3881 .drop_inode = generic_delete_inode, 3882 .put_super = shmem_put_super, 3883 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3884 .nr_cached_objects = shmem_unused_huge_count, 3885 .free_cached_objects = shmem_unused_huge_scan, 3886 #endif 3887 }; 3888 3889 static const struct vm_operations_struct shmem_vm_ops = { 3890 .fault = shmem_fault, 3891 .map_pages = filemap_map_pages, 3892 #ifdef CONFIG_NUMA 3893 .set_policy = shmem_set_policy, 3894 .get_policy = shmem_get_policy, 3895 #endif 3896 }; 3897 3898 int shmem_init_fs_context(struct fs_context *fc) 3899 { 3900 struct shmem_options *ctx; 3901 3902 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3903 if (!ctx) 3904 return -ENOMEM; 3905 3906 ctx->mode = 0777 | S_ISVTX; 3907 ctx->uid = current_fsuid(); 3908 ctx->gid = current_fsgid(); 3909 3910 fc->fs_private = ctx; 3911 fc->ops = &shmem_fs_context_ops; 3912 return 0; 3913 } 3914 3915 static struct file_system_type shmem_fs_type = { 3916 .owner = THIS_MODULE, 3917 .name = "tmpfs", 3918 .init_fs_context = shmem_init_fs_context, 3919 #ifdef CONFIG_TMPFS 3920 .parameters = shmem_fs_parameters, 3921 #endif 3922 .kill_sb = kill_litter_super, 3923 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT, 3924 }; 3925 3926 int __init shmem_init(void) 3927 { 3928 int error; 3929 3930 shmem_init_inodecache(); 3931 3932 error = register_filesystem(&shmem_fs_type); 3933 if (error) { 3934 pr_err("Could not register tmpfs\n"); 3935 goto out2; 3936 } 3937 3938 shm_mnt = kern_mount(&shmem_fs_type); 3939 if (IS_ERR(shm_mnt)) { 3940 error = PTR_ERR(shm_mnt); 3941 pr_err("Could not kern_mount tmpfs\n"); 3942 goto out1; 3943 } 3944 3945 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3946 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3947 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3948 else 3949 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 3950 #endif 3951 return 0; 3952 3953 out1: 3954 unregister_filesystem(&shmem_fs_type); 3955 out2: 3956 shmem_destroy_inodecache(); 3957 shm_mnt = ERR_PTR(error); 3958 return error; 3959 } 3960 3961 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 3962 static ssize_t shmem_enabled_show(struct kobject *kobj, 3963 struct kobj_attribute *attr, char *buf) 3964 { 3965 static const int values[] = { 3966 SHMEM_HUGE_ALWAYS, 3967 SHMEM_HUGE_WITHIN_SIZE, 3968 SHMEM_HUGE_ADVISE, 3969 SHMEM_HUGE_NEVER, 3970 SHMEM_HUGE_DENY, 3971 SHMEM_HUGE_FORCE, 3972 }; 3973 int len = 0; 3974 int i; 3975 3976 for (i = 0; i < ARRAY_SIZE(values); i++) { 3977 len += sysfs_emit_at(buf, len, 3978 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 3979 i ? " " : "", 3980 shmem_format_huge(values[i])); 3981 } 3982 3983 len += sysfs_emit_at(buf, len, "\n"); 3984 3985 return len; 3986 } 3987 3988 static ssize_t shmem_enabled_store(struct kobject *kobj, 3989 struct kobj_attribute *attr, const char *buf, size_t count) 3990 { 3991 char tmp[16]; 3992 int huge; 3993 3994 if (count + 1 > sizeof(tmp)) 3995 return -EINVAL; 3996 memcpy(tmp, buf, count); 3997 tmp[count] = '\0'; 3998 if (count && tmp[count - 1] == '\n') 3999 tmp[count - 1] = '\0'; 4000 4001 huge = shmem_parse_huge(tmp); 4002 if (huge == -EINVAL) 4003 return -EINVAL; 4004 if (!has_transparent_hugepage() && 4005 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4006 return -EINVAL; 4007 4008 shmem_huge = huge; 4009 if (shmem_huge > SHMEM_HUGE_DENY) 4010 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4011 return count; 4012 } 4013 4014 struct kobj_attribute shmem_enabled_attr = 4015 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 4016 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4017 4018 #else /* !CONFIG_SHMEM */ 4019 4020 /* 4021 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4022 * 4023 * This is intended for small system where the benefits of the full 4024 * shmem code (swap-backed and resource-limited) are outweighed by 4025 * their complexity. On systems without swap this code should be 4026 * effectively equivalent, but much lighter weight. 4027 */ 4028 4029 static struct file_system_type shmem_fs_type = { 4030 .name = "tmpfs", 4031 .init_fs_context = ramfs_init_fs_context, 4032 .parameters = ramfs_fs_parameters, 4033 .kill_sb = kill_litter_super, 4034 .fs_flags = FS_USERNS_MOUNT, 4035 }; 4036 4037 int __init shmem_init(void) 4038 { 4039 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4040 4041 shm_mnt = kern_mount(&shmem_fs_type); 4042 BUG_ON(IS_ERR(shm_mnt)); 4043 4044 return 0; 4045 } 4046 4047 int shmem_unuse(unsigned int type, bool frontswap, 4048 unsigned long *fs_pages_to_unuse) 4049 { 4050 return 0; 4051 } 4052 4053 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4054 { 4055 return 0; 4056 } 4057 4058 void shmem_unlock_mapping(struct address_space *mapping) 4059 { 4060 } 4061 4062 #ifdef CONFIG_MMU 4063 unsigned long shmem_get_unmapped_area(struct file *file, 4064 unsigned long addr, unsigned long len, 4065 unsigned long pgoff, unsigned long flags) 4066 { 4067 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4068 } 4069 #endif 4070 4071 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4072 { 4073 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4074 } 4075 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4076 4077 #define shmem_vm_ops generic_file_vm_ops 4078 #define shmem_file_operations ramfs_file_operations 4079 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4080 #define shmem_acct_size(flags, size) 0 4081 #define shmem_unacct_size(flags, size) do {} while (0) 4082 4083 #endif /* CONFIG_SHMEM */ 4084 4085 /* common code */ 4086 4087 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4088 unsigned long flags, unsigned int i_flags) 4089 { 4090 struct inode *inode; 4091 struct file *res; 4092 4093 if (IS_ERR(mnt)) 4094 return ERR_CAST(mnt); 4095 4096 if (size < 0 || size > MAX_LFS_FILESIZE) 4097 return ERR_PTR(-EINVAL); 4098 4099 if (shmem_acct_size(flags, size)) 4100 return ERR_PTR(-ENOMEM); 4101 4102 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4103 flags); 4104 if (unlikely(!inode)) { 4105 shmem_unacct_size(flags, size); 4106 return ERR_PTR(-ENOSPC); 4107 } 4108 inode->i_flags |= i_flags; 4109 inode->i_size = size; 4110 clear_nlink(inode); /* It is unlinked */ 4111 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4112 if (!IS_ERR(res)) 4113 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4114 &shmem_file_operations); 4115 if (IS_ERR(res)) 4116 iput(inode); 4117 return res; 4118 } 4119 4120 /** 4121 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4122 * kernel internal. There will be NO LSM permission checks against the 4123 * underlying inode. So users of this interface must do LSM checks at a 4124 * higher layer. The users are the big_key and shm implementations. LSM 4125 * checks are provided at the key or shm level rather than the inode. 4126 * @name: name for dentry (to be seen in /proc/<pid>/maps 4127 * @size: size to be set for the file 4128 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4129 */ 4130 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4131 { 4132 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4133 } 4134 4135 /** 4136 * shmem_file_setup - get an unlinked file living in tmpfs 4137 * @name: name for dentry (to be seen in /proc/<pid>/maps 4138 * @size: size to be set for the file 4139 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4140 */ 4141 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4142 { 4143 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4144 } 4145 EXPORT_SYMBOL_GPL(shmem_file_setup); 4146 4147 /** 4148 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4149 * @mnt: the tmpfs mount where the file will be created 4150 * @name: name for dentry (to be seen in /proc/<pid>/maps 4151 * @size: size to be set for the file 4152 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4153 */ 4154 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4155 loff_t size, unsigned long flags) 4156 { 4157 return __shmem_file_setup(mnt, name, size, flags, 0); 4158 } 4159 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4160 4161 /** 4162 * shmem_zero_setup - setup a shared anonymous mapping 4163 * @vma: the vma to be mmapped is prepared by do_mmap 4164 */ 4165 int shmem_zero_setup(struct vm_area_struct *vma) 4166 { 4167 struct file *file; 4168 loff_t size = vma->vm_end - vma->vm_start; 4169 4170 /* 4171 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4172 * between XFS directory reading and selinux: since this file is only 4173 * accessible to the user through its mapping, use S_PRIVATE flag to 4174 * bypass file security, in the same way as shmem_kernel_file_setup(). 4175 */ 4176 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4177 if (IS_ERR(file)) 4178 return PTR_ERR(file); 4179 4180 if (vma->vm_file) 4181 fput(vma->vm_file); 4182 vma->vm_file = file; 4183 vma->vm_ops = &shmem_vm_ops; 4184 4185 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4186 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4187 (vma->vm_end & HPAGE_PMD_MASK)) { 4188 khugepaged_enter(vma, vma->vm_flags); 4189 } 4190 4191 return 0; 4192 } 4193 4194 /** 4195 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4196 * @mapping: the page's address_space 4197 * @index: the page index 4198 * @gfp: the page allocator flags to use if allocating 4199 * 4200 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4201 * with any new page allocations done using the specified allocation flags. 4202 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4203 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4204 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4205 * 4206 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4207 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4208 */ 4209 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4210 pgoff_t index, gfp_t gfp) 4211 { 4212 #ifdef CONFIG_SHMEM 4213 struct inode *inode = mapping->host; 4214 struct page *page; 4215 int error; 4216 4217 BUG_ON(!shmem_mapping(mapping)); 4218 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4219 gfp, NULL, NULL, NULL); 4220 if (error) 4221 page = ERR_PTR(error); 4222 else 4223 unlock_page(page); 4224 4225 if (PageHWPoison(page)) 4226 page = ERR_PTR(-EIO); 4227 4228 return page; 4229 #else 4230 /* 4231 * The tiny !SHMEM case uses ramfs without swap 4232 */ 4233 return read_cache_page_gfp(mapping, index, gfp); 4234 #endif 4235 } 4236 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4237