xref: /linux/mm/shmem.c (revision ce7240e445303de3ca66e6d08f17a2ec278a5bf6)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33 
34 static struct vfsmount *shm_mnt;
35 
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42 
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
67 
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
70 
71 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73 
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
76 
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
79 
80 struct shmem_xattr {
81 	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
82 	char *name;		/* xattr name */
83 	size_t size;
84 	char value[0];
85 };
86 
87 /*
88  * shmem_fallocate and shmem_writepage communicate via inode->i_private
89  * (with i_mutex making sure that it has only one user at a time):
90  * we would prefer not to enlarge the shmem inode just for that.
91  */
92 struct shmem_falloc {
93 	pgoff_t start;		/* start of range currently being fallocated */
94 	pgoff_t next;		/* the next page offset to be fallocated */
95 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
96 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
97 };
98 
99 /* Flag allocation requirements to shmem_getpage */
100 enum sgp_type {
101 	SGP_READ,	/* don't exceed i_size, don't allocate page */
102 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
103 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
104 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
105 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
106 };
107 
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 	return totalram_pages / 2;
112 }
113 
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119 
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 				struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
125 
126 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
127 	struct page **pagep, enum sgp_type sgp, int *fault_type)
128 {
129 	return shmem_getpage_gfp(inode, index, pagep, sgp,
130 			mapping_gfp_mask(inode->i_mapping), fault_type);
131 }
132 
133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
134 {
135 	return sb->s_fs_info;
136 }
137 
138 /*
139  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140  * for shared memory and for shared anonymous (/dev/zero) mappings
141  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142  * consistent with the pre-accounting of private mappings ...
143  */
144 static inline int shmem_acct_size(unsigned long flags, loff_t size)
145 {
146 	return (flags & VM_NORESERVE) ?
147 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
148 }
149 
150 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
151 {
152 	if (!(flags & VM_NORESERVE))
153 		vm_unacct_memory(VM_ACCT(size));
154 }
155 
156 /*
157  * ... whereas tmpfs objects are accounted incrementally as
158  * pages are allocated, in order to allow huge sparse files.
159  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
160  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
161  */
162 static inline int shmem_acct_block(unsigned long flags)
163 {
164 	return (flags & VM_NORESERVE) ?
165 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
166 }
167 
168 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
169 {
170 	if (flags & VM_NORESERVE)
171 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
172 }
173 
174 static const struct super_operations shmem_ops;
175 static const struct address_space_operations shmem_aops;
176 static const struct file_operations shmem_file_operations;
177 static const struct inode_operations shmem_inode_operations;
178 static const struct inode_operations shmem_dir_inode_operations;
179 static const struct inode_operations shmem_special_inode_operations;
180 static const struct vm_operations_struct shmem_vm_ops;
181 
182 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
183 	.ra_pages	= 0,	/* No readahead */
184 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
185 };
186 
187 static LIST_HEAD(shmem_swaplist);
188 static DEFINE_MUTEX(shmem_swaplist_mutex);
189 
190 static int shmem_reserve_inode(struct super_block *sb)
191 {
192 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
193 	if (sbinfo->max_inodes) {
194 		spin_lock(&sbinfo->stat_lock);
195 		if (!sbinfo->free_inodes) {
196 			spin_unlock(&sbinfo->stat_lock);
197 			return -ENOSPC;
198 		}
199 		sbinfo->free_inodes--;
200 		spin_unlock(&sbinfo->stat_lock);
201 	}
202 	return 0;
203 }
204 
205 static void shmem_free_inode(struct super_block *sb)
206 {
207 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
208 	if (sbinfo->max_inodes) {
209 		spin_lock(&sbinfo->stat_lock);
210 		sbinfo->free_inodes++;
211 		spin_unlock(&sbinfo->stat_lock);
212 	}
213 }
214 
215 /**
216  * shmem_recalc_inode - recalculate the block usage of an inode
217  * @inode: inode to recalc
218  *
219  * We have to calculate the free blocks since the mm can drop
220  * undirtied hole pages behind our back.
221  *
222  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
223  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
224  *
225  * It has to be called with the spinlock held.
226  */
227 static void shmem_recalc_inode(struct inode *inode)
228 {
229 	struct shmem_inode_info *info = SHMEM_I(inode);
230 	long freed;
231 
232 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
233 	if (freed > 0) {
234 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 		if (sbinfo->max_blocks)
236 			percpu_counter_add(&sbinfo->used_blocks, -freed);
237 		info->alloced -= freed;
238 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
239 		shmem_unacct_blocks(info->flags, freed);
240 	}
241 }
242 
243 /*
244  * Replace item expected in radix tree by a new item, while holding tree lock.
245  */
246 static int shmem_radix_tree_replace(struct address_space *mapping,
247 			pgoff_t index, void *expected, void *replacement)
248 {
249 	void **pslot;
250 	void *item = NULL;
251 
252 	VM_BUG_ON(!expected);
253 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
254 	if (pslot)
255 		item = radix_tree_deref_slot_protected(pslot,
256 							&mapping->tree_lock);
257 	if (item != expected)
258 		return -ENOENT;
259 	if (replacement)
260 		radix_tree_replace_slot(pslot, replacement);
261 	else
262 		radix_tree_delete(&mapping->page_tree, index);
263 	return 0;
264 }
265 
266 /*
267  * Sometimes, before we decide whether to proceed or to fail, we must check
268  * that an entry was not already brought back from swap by a racing thread.
269  *
270  * Checking page is not enough: by the time a SwapCache page is locked, it
271  * might be reused, and again be SwapCache, using the same swap as before.
272  */
273 static bool shmem_confirm_swap(struct address_space *mapping,
274 			       pgoff_t index, swp_entry_t swap)
275 {
276 	void *item;
277 
278 	rcu_read_lock();
279 	item = radix_tree_lookup(&mapping->page_tree, index);
280 	rcu_read_unlock();
281 	return item == swp_to_radix_entry(swap);
282 }
283 
284 /*
285  * Like add_to_page_cache_locked, but error if expected item has gone.
286  */
287 static int shmem_add_to_page_cache(struct page *page,
288 				   struct address_space *mapping,
289 				   pgoff_t index, gfp_t gfp, void *expected)
290 {
291 	int error;
292 
293 	VM_BUG_ON(!PageLocked(page));
294 	VM_BUG_ON(!PageSwapBacked(page));
295 
296 	page_cache_get(page);
297 	page->mapping = mapping;
298 	page->index = index;
299 
300 	spin_lock_irq(&mapping->tree_lock);
301 	if (!expected)
302 		error = radix_tree_insert(&mapping->page_tree, index, page);
303 	else
304 		error = shmem_radix_tree_replace(mapping, index, expected,
305 								 page);
306 	if (!error) {
307 		mapping->nrpages++;
308 		__inc_zone_page_state(page, NR_FILE_PAGES);
309 		__inc_zone_page_state(page, NR_SHMEM);
310 		spin_unlock_irq(&mapping->tree_lock);
311 	} else {
312 		page->mapping = NULL;
313 		spin_unlock_irq(&mapping->tree_lock);
314 		page_cache_release(page);
315 	}
316 	return error;
317 }
318 
319 /*
320  * Like delete_from_page_cache, but substitutes swap for page.
321  */
322 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
323 {
324 	struct address_space *mapping = page->mapping;
325 	int error;
326 
327 	spin_lock_irq(&mapping->tree_lock);
328 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
329 	page->mapping = NULL;
330 	mapping->nrpages--;
331 	__dec_zone_page_state(page, NR_FILE_PAGES);
332 	__dec_zone_page_state(page, NR_SHMEM);
333 	spin_unlock_irq(&mapping->tree_lock);
334 	page_cache_release(page);
335 	BUG_ON(error);
336 }
337 
338 /*
339  * Like find_get_pages, but collecting swap entries as well as pages.
340  */
341 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
342 					pgoff_t start, unsigned int nr_pages,
343 					struct page **pages, pgoff_t *indices)
344 {
345 	unsigned int i;
346 	unsigned int ret;
347 	unsigned int nr_found;
348 
349 	rcu_read_lock();
350 restart:
351 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
352 				(void ***)pages, indices, start, nr_pages);
353 	ret = 0;
354 	for (i = 0; i < nr_found; i++) {
355 		struct page *page;
356 repeat:
357 		page = radix_tree_deref_slot((void **)pages[i]);
358 		if (unlikely(!page))
359 			continue;
360 		if (radix_tree_exception(page)) {
361 			if (radix_tree_deref_retry(page))
362 				goto restart;
363 			/*
364 			 * Otherwise, we must be storing a swap entry
365 			 * here as an exceptional entry: so return it
366 			 * without attempting to raise page count.
367 			 */
368 			goto export;
369 		}
370 		if (!page_cache_get_speculative(page))
371 			goto repeat;
372 
373 		/* Has the page moved? */
374 		if (unlikely(page != *((void **)pages[i]))) {
375 			page_cache_release(page);
376 			goto repeat;
377 		}
378 export:
379 		indices[ret] = indices[i];
380 		pages[ret] = page;
381 		ret++;
382 	}
383 	if (unlikely(!ret && nr_found))
384 		goto restart;
385 	rcu_read_unlock();
386 	return ret;
387 }
388 
389 /*
390  * Remove swap entry from radix tree, free the swap and its page cache.
391  */
392 static int shmem_free_swap(struct address_space *mapping,
393 			   pgoff_t index, void *radswap)
394 {
395 	int error;
396 
397 	spin_lock_irq(&mapping->tree_lock);
398 	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
399 	spin_unlock_irq(&mapping->tree_lock);
400 	if (!error)
401 		free_swap_and_cache(radix_to_swp_entry(radswap));
402 	return error;
403 }
404 
405 /*
406  * Pagevec may contain swap entries, so shuffle up pages before releasing.
407  */
408 static void shmem_deswap_pagevec(struct pagevec *pvec)
409 {
410 	int i, j;
411 
412 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
413 		struct page *page = pvec->pages[i];
414 		if (!radix_tree_exceptional_entry(page))
415 			pvec->pages[j++] = page;
416 	}
417 	pvec->nr = j;
418 }
419 
420 /*
421  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
422  */
423 void shmem_unlock_mapping(struct address_space *mapping)
424 {
425 	struct pagevec pvec;
426 	pgoff_t indices[PAGEVEC_SIZE];
427 	pgoff_t index = 0;
428 
429 	pagevec_init(&pvec, 0);
430 	/*
431 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
432 	 */
433 	while (!mapping_unevictable(mapping)) {
434 		/*
435 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
436 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
437 		 */
438 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
439 					PAGEVEC_SIZE, pvec.pages, indices);
440 		if (!pvec.nr)
441 			break;
442 		index = indices[pvec.nr - 1] + 1;
443 		shmem_deswap_pagevec(&pvec);
444 		check_move_unevictable_pages(pvec.pages, pvec.nr);
445 		pagevec_release(&pvec);
446 		cond_resched();
447 	}
448 }
449 
450 /*
451  * Remove range of pages and swap entries from radix tree, and free them.
452  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
453  */
454 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
455 								 bool unfalloc)
456 {
457 	struct address_space *mapping = inode->i_mapping;
458 	struct shmem_inode_info *info = SHMEM_I(inode);
459 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
460 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
461 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
462 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
463 	struct pagevec pvec;
464 	pgoff_t indices[PAGEVEC_SIZE];
465 	long nr_swaps_freed = 0;
466 	pgoff_t index;
467 	int i;
468 
469 	if (lend == -1)
470 		end = -1;	/* unsigned, so actually very big */
471 
472 	pagevec_init(&pvec, 0);
473 	index = start;
474 	while (index < end) {
475 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
476 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
477 							pvec.pages, indices);
478 		if (!pvec.nr)
479 			break;
480 		mem_cgroup_uncharge_start();
481 		for (i = 0; i < pagevec_count(&pvec); i++) {
482 			struct page *page = pvec.pages[i];
483 
484 			index = indices[i];
485 			if (index >= end)
486 				break;
487 
488 			if (radix_tree_exceptional_entry(page)) {
489 				if (unfalloc)
490 					continue;
491 				nr_swaps_freed += !shmem_free_swap(mapping,
492 								index, page);
493 				continue;
494 			}
495 
496 			if (!trylock_page(page))
497 				continue;
498 			if (!unfalloc || !PageUptodate(page)) {
499 				if (page->mapping == mapping) {
500 					VM_BUG_ON(PageWriteback(page));
501 					truncate_inode_page(mapping, page);
502 				}
503 			}
504 			unlock_page(page);
505 		}
506 		shmem_deswap_pagevec(&pvec);
507 		pagevec_release(&pvec);
508 		mem_cgroup_uncharge_end();
509 		cond_resched();
510 		index++;
511 	}
512 
513 	if (partial_start) {
514 		struct page *page = NULL;
515 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
516 		if (page) {
517 			unsigned int top = PAGE_CACHE_SIZE;
518 			if (start > end) {
519 				top = partial_end;
520 				partial_end = 0;
521 			}
522 			zero_user_segment(page, partial_start, top);
523 			set_page_dirty(page);
524 			unlock_page(page);
525 			page_cache_release(page);
526 		}
527 	}
528 	if (partial_end) {
529 		struct page *page = NULL;
530 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
531 		if (page) {
532 			zero_user_segment(page, 0, partial_end);
533 			set_page_dirty(page);
534 			unlock_page(page);
535 			page_cache_release(page);
536 		}
537 	}
538 	if (start >= end)
539 		return;
540 
541 	index = start;
542 	for ( ; ; ) {
543 		cond_resched();
544 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
545 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
546 							pvec.pages, indices);
547 		if (!pvec.nr) {
548 			if (index == start || unfalloc)
549 				break;
550 			index = start;
551 			continue;
552 		}
553 		if ((index == start || unfalloc) && indices[0] >= end) {
554 			shmem_deswap_pagevec(&pvec);
555 			pagevec_release(&pvec);
556 			break;
557 		}
558 		mem_cgroup_uncharge_start();
559 		for (i = 0; i < pagevec_count(&pvec); i++) {
560 			struct page *page = pvec.pages[i];
561 
562 			index = indices[i];
563 			if (index >= end)
564 				break;
565 
566 			if (radix_tree_exceptional_entry(page)) {
567 				if (unfalloc)
568 					continue;
569 				nr_swaps_freed += !shmem_free_swap(mapping,
570 								index, page);
571 				continue;
572 			}
573 
574 			lock_page(page);
575 			if (!unfalloc || !PageUptodate(page)) {
576 				if (page->mapping == mapping) {
577 					VM_BUG_ON(PageWriteback(page));
578 					truncate_inode_page(mapping, page);
579 				}
580 			}
581 			unlock_page(page);
582 		}
583 		shmem_deswap_pagevec(&pvec);
584 		pagevec_release(&pvec);
585 		mem_cgroup_uncharge_end();
586 		index++;
587 	}
588 
589 	spin_lock(&info->lock);
590 	info->swapped -= nr_swaps_freed;
591 	shmem_recalc_inode(inode);
592 	spin_unlock(&info->lock);
593 }
594 
595 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
596 {
597 	shmem_undo_range(inode, lstart, lend, false);
598 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
599 }
600 EXPORT_SYMBOL_GPL(shmem_truncate_range);
601 
602 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
603 {
604 	struct inode *inode = dentry->d_inode;
605 	int error;
606 
607 	error = inode_change_ok(inode, attr);
608 	if (error)
609 		return error;
610 
611 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
612 		loff_t oldsize = inode->i_size;
613 		loff_t newsize = attr->ia_size;
614 
615 		if (newsize != oldsize) {
616 			i_size_write(inode, newsize);
617 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
618 		}
619 		if (newsize < oldsize) {
620 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
621 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
622 			shmem_truncate_range(inode, newsize, (loff_t)-1);
623 			/* unmap again to remove racily COWed private pages */
624 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
625 		}
626 	}
627 
628 	setattr_copy(inode, attr);
629 #ifdef CONFIG_TMPFS_POSIX_ACL
630 	if (attr->ia_valid & ATTR_MODE)
631 		error = generic_acl_chmod(inode);
632 #endif
633 	return error;
634 }
635 
636 static void shmem_evict_inode(struct inode *inode)
637 {
638 	struct shmem_inode_info *info = SHMEM_I(inode);
639 	struct shmem_xattr *xattr, *nxattr;
640 
641 	if (inode->i_mapping->a_ops == &shmem_aops) {
642 		shmem_unacct_size(info->flags, inode->i_size);
643 		inode->i_size = 0;
644 		shmem_truncate_range(inode, 0, (loff_t)-1);
645 		if (!list_empty(&info->swaplist)) {
646 			mutex_lock(&shmem_swaplist_mutex);
647 			list_del_init(&info->swaplist);
648 			mutex_unlock(&shmem_swaplist_mutex);
649 		}
650 	} else
651 		kfree(info->symlink);
652 
653 	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
654 		kfree(xattr->name);
655 		kfree(xattr);
656 	}
657 	BUG_ON(inode->i_blocks);
658 	shmem_free_inode(inode->i_sb);
659 	clear_inode(inode);
660 }
661 
662 /*
663  * If swap found in inode, free it and move page from swapcache to filecache.
664  */
665 static int shmem_unuse_inode(struct shmem_inode_info *info,
666 			     swp_entry_t swap, struct page **pagep)
667 {
668 	struct address_space *mapping = info->vfs_inode.i_mapping;
669 	void *radswap;
670 	pgoff_t index;
671 	gfp_t gfp;
672 	int error = 0;
673 
674 	radswap = swp_to_radix_entry(swap);
675 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
676 	if (index == -1)
677 		return 0;
678 
679 	/*
680 	 * Move _head_ to start search for next from here.
681 	 * But be careful: shmem_evict_inode checks list_empty without taking
682 	 * mutex, and there's an instant in list_move_tail when info->swaplist
683 	 * would appear empty, if it were the only one on shmem_swaplist.
684 	 */
685 	if (shmem_swaplist.next != &info->swaplist)
686 		list_move_tail(&shmem_swaplist, &info->swaplist);
687 
688 	gfp = mapping_gfp_mask(mapping);
689 	if (shmem_should_replace_page(*pagep, gfp)) {
690 		mutex_unlock(&shmem_swaplist_mutex);
691 		error = shmem_replace_page(pagep, gfp, info, index);
692 		mutex_lock(&shmem_swaplist_mutex);
693 		/*
694 		 * We needed to drop mutex to make that restrictive page
695 		 * allocation, but the inode might have been freed while we
696 		 * dropped it: although a racing shmem_evict_inode() cannot
697 		 * complete without emptying the radix_tree, our page lock
698 		 * on this swapcache page is not enough to prevent that -
699 		 * free_swap_and_cache() of our swap entry will only
700 		 * trylock_page(), removing swap from radix_tree whatever.
701 		 *
702 		 * We must not proceed to shmem_add_to_page_cache() if the
703 		 * inode has been freed, but of course we cannot rely on
704 		 * inode or mapping or info to check that.  However, we can
705 		 * safely check if our swap entry is still in use (and here
706 		 * it can't have got reused for another page): if it's still
707 		 * in use, then the inode cannot have been freed yet, and we
708 		 * can safely proceed (if it's no longer in use, that tells
709 		 * nothing about the inode, but we don't need to unuse swap).
710 		 */
711 		if (!page_swapcount(*pagep))
712 			error = -ENOENT;
713 	}
714 
715 	/*
716 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
717 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
718 	 * beneath us (pagelock doesn't help until the page is in pagecache).
719 	 */
720 	if (!error)
721 		error = shmem_add_to_page_cache(*pagep, mapping, index,
722 						GFP_NOWAIT, radswap);
723 	if (error != -ENOMEM) {
724 		/*
725 		 * Truncation and eviction use free_swap_and_cache(), which
726 		 * only does trylock page: if we raced, best clean up here.
727 		 */
728 		delete_from_swap_cache(*pagep);
729 		set_page_dirty(*pagep);
730 		if (!error) {
731 			spin_lock(&info->lock);
732 			info->swapped--;
733 			spin_unlock(&info->lock);
734 			swap_free(swap);
735 		}
736 		error = 1;	/* not an error, but entry was found */
737 	}
738 	return error;
739 }
740 
741 /*
742  * Search through swapped inodes to find and replace swap by page.
743  */
744 int shmem_unuse(swp_entry_t swap, struct page *page)
745 {
746 	struct list_head *this, *next;
747 	struct shmem_inode_info *info;
748 	int found = 0;
749 	int error = 0;
750 
751 	/*
752 	 * There's a faint possibility that swap page was replaced before
753 	 * caller locked it: caller will come back later with the right page.
754 	 */
755 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
756 		goto out;
757 
758 	/*
759 	 * Charge page using GFP_KERNEL while we can wait, before taking
760 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
761 	 * Charged back to the user (not to caller) when swap account is used.
762 	 */
763 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
764 	if (error)
765 		goto out;
766 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
767 
768 	mutex_lock(&shmem_swaplist_mutex);
769 	list_for_each_safe(this, next, &shmem_swaplist) {
770 		info = list_entry(this, struct shmem_inode_info, swaplist);
771 		if (info->swapped)
772 			found = shmem_unuse_inode(info, swap, &page);
773 		else
774 			list_del_init(&info->swaplist);
775 		cond_resched();
776 		if (found)
777 			break;
778 	}
779 	mutex_unlock(&shmem_swaplist_mutex);
780 
781 	if (found < 0)
782 		error = found;
783 out:
784 	unlock_page(page);
785 	page_cache_release(page);
786 	return error;
787 }
788 
789 /*
790  * Move the page from the page cache to the swap cache.
791  */
792 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
793 {
794 	struct shmem_inode_info *info;
795 	struct address_space *mapping;
796 	struct inode *inode;
797 	swp_entry_t swap;
798 	pgoff_t index;
799 
800 	BUG_ON(!PageLocked(page));
801 	mapping = page->mapping;
802 	index = page->index;
803 	inode = mapping->host;
804 	info = SHMEM_I(inode);
805 	if (info->flags & VM_LOCKED)
806 		goto redirty;
807 	if (!total_swap_pages)
808 		goto redirty;
809 
810 	/*
811 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
812 	 * sync from ever calling shmem_writepage; but a stacking filesystem
813 	 * might use ->writepage of its underlying filesystem, in which case
814 	 * tmpfs should write out to swap only in response to memory pressure,
815 	 * and not for the writeback threads or sync.
816 	 */
817 	if (!wbc->for_reclaim) {
818 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
819 		goto redirty;
820 	}
821 
822 	/*
823 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
824 	 * value into swapfile.c, the only way we can correctly account for a
825 	 * fallocated page arriving here is now to initialize it and write it.
826 	 *
827 	 * That's okay for a page already fallocated earlier, but if we have
828 	 * not yet completed the fallocation, then (a) we want to keep track
829 	 * of this page in case we have to undo it, and (b) it may not be a
830 	 * good idea to continue anyway, once we're pushing into swap.  So
831 	 * reactivate the page, and let shmem_fallocate() quit when too many.
832 	 */
833 	if (!PageUptodate(page)) {
834 		if (inode->i_private) {
835 			struct shmem_falloc *shmem_falloc;
836 			spin_lock(&inode->i_lock);
837 			shmem_falloc = inode->i_private;
838 			if (shmem_falloc &&
839 			    index >= shmem_falloc->start &&
840 			    index < shmem_falloc->next)
841 				shmem_falloc->nr_unswapped++;
842 			else
843 				shmem_falloc = NULL;
844 			spin_unlock(&inode->i_lock);
845 			if (shmem_falloc)
846 				goto redirty;
847 		}
848 		clear_highpage(page);
849 		flush_dcache_page(page);
850 		SetPageUptodate(page);
851 	}
852 
853 	swap = get_swap_page();
854 	if (!swap.val)
855 		goto redirty;
856 
857 	/*
858 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
859 	 * if it's not already there.  Do it now before the page is
860 	 * moved to swap cache, when its pagelock no longer protects
861 	 * the inode from eviction.  But don't unlock the mutex until
862 	 * we've incremented swapped, because shmem_unuse_inode() will
863 	 * prune a !swapped inode from the swaplist under this mutex.
864 	 */
865 	mutex_lock(&shmem_swaplist_mutex);
866 	if (list_empty(&info->swaplist))
867 		list_add_tail(&info->swaplist, &shmem_swaplist);
868 
869 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
870 		swap_shmem_alloc(swap);
871 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
872 
873 		spin_lock(&info->lock);
874 		info->swapped++;
875 		shmem_recalc_inode(inode);
876 		spin_unlock(&info->lock);
877 
878 		mutex_unlock(&shmem_swaplist_mutex);
879 		BUG_ON(page_mapped(page));
880 		swap_writepage(page, wbc);
881 		return 0;
882 	}
883 
884 	mutex_unlock(&shmem_swaplist_mutex);
885 	swapcache_free(swap, NULL);
886 redirty:
887 	set_page_dirty(page);
888 	if (wbc->for_reclaim)
889 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
890 	unlock_page(page);
891 	return 0;
892 }
893 
894 #ifdef CONFIG_NUMA
895 #ifdef CONFIG_TMPFS
896 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
897 {
898 	char buffer[64];
899 
900 	if (!mpol || mpol->mode == MPOL_DEFAULT)
901 		return;		/* show nothing */
902 
903 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
904 
905 	seq_printf(seq, ",mpol=%s", buffer);
906 }
907 
908 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
909 {
910 	struct mempolicy *mpol = NULL;
911 	if (sbinfo->mpol) {
912 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
913 		mpol = sbinfo->mpol;
914 		mpol_get(mpol);
915 		spin_unlock(&sbinfo->stat_lock);
916 	}
917 	return mpol;
918 }
919 #endif /* CONFIG_TMPFS */
920 
921 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
922 			struct shmem_inode_info *info, pgoff_t index)
923 {
924 	struct mempolicy mpol, *spol;
925 	struct vm_area_struct pvma;
926 
927 	spol = mpol_cond_copy(&mpol,
928 			mpol_shared_policy_lookup(&info->policy, index));
929 
930 	/* Create a pseudo vma that just contains the policy */
931 	pvma.vm_start = 0;
932 	pvma.vm_pgoff = index;
933 	pvma.vm_ops = NULL;
934 	pvma.vm_policy = spol;
935 	return swapin_readahead(swap, gfp, &pvma, 0);
936 }
937 
938 static struct page *shmem_alloc_page(gfp_t gfp,
939 			struct shmem_inode_info *info, pgoff_t index)
940 {
941 	struct vm_area_struct pvma;
942 
943 	/* Create a pseudo vma that just contains the policy */
944 	pvma.vm_start = 0;
945 	pvma.vm_pgoff = index;
946 	pvma.vm_ops = NULL;
947 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
948 
949 	/*
950 	 * alloc_page_vma() will drop the shared policy reference
951 	 */
952 	return alloc_page_vma(gfp, &pvma, 0);
953 }
954 #else /* !CONFIG_NUMA */
955 #ifdef CONFIG_TMPFS
956 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
957 {
958 }
959 #endif /* CONFIG_TMPFS */
960 
961 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
962 			struct shmem_inode_info *info, pgoff_t index)
963 {
964 	return swapin_readahead(swap, gfp, NULL, 0);
965 }
966 
967 static inline struct page *shmem_alloc_page(gfp_t gfp,
968 			struct shmem_inode_info *info, pgoff_t index)
969 {
970 	return alloc_page(gfp);
971 }
972 #endif /* CONFIG_NUMA */
973 
974 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
975 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
976 {
977 	return NULL;
978 }
979 #endif
980 
981 /*
982  * When a page is moved from swapcache to shmem filecache (either by the
983  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
984  * shmem_unuse_inode()), it may have been read in earlier from swap, in
985  * ignorance of the mapping it belongs to.  If that mapping has special
986  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
987  * we may need to copy to a suitable page before moving to filecache.
988  *
989  * In a future release, this may well be extended to respect cpuset and
990  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
991  * but for now it is a simple matter of zone.
992  */
993 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
994 {
995 	return page_zonenum(page) > gfp_zone(gfp);
996 }
997 
998 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
999 				struct shmem_inode_info *info, pgoff_t index)
1000 {
1001 	struct page *oldpage, *newpage;
1002 	struct address_space *swap_mapping;
1003 	pgoff_t swap_index;
1004 	int error;
1005 
1006 	oldpage = *pagep;
1007 	swap_index = page_private(oldpage);
1008 	swap_mapping = page_mapping(oldpage);
1009 
1010 	/*
1011 	 * We have arrived here because our zones are constrained, so don't
1012 	 * limit chance of success by further cpuset and node constraints.
1013 	 */
1014 	gfp &= ~GFP_CONSTRAINT_MASK;
1015 	newpage = shmem_alloc_page(gfp, info, index);
1016 	if (!newpage)
1017 		return -ENOMEM;
1018 
1019 	page_cache_get(newpage);
1020 	copy_highpage(newpage, oldpage);
1021 	flush_dcache_page(newpage);
1022 
1023 	__set_page_locked(newpage);
1024 	SetPageUptodate(newpage);
1025 	SetPageSwapBacked(newpage);
1026 	set_page_private(newpage, swap_index);
1027 	SetPageSwapCache(newpage);
1028 
1029 	/*
1030 	 * Our caller will very soon move newpage out of swapcache, but it's
1031 	 * a nice clean interface for us to replace oldpage by newpage there.
1032 	 */
1033 	spin_lock_irq(&swap_mapping->tree_lock);
1034 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1035 								   newpage);
1036 	if (!error) {
1037 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1038 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1039 	}
1040 	spin_unlock_irq(&swap_mapping->tree_lock);
1041 
1042 	if (unlikely(error)) {
1043 		/*
1044 		 * Is this possible?  I think not, now that our callers check
1045 		 * both PageSwapCache and page_private after getting page lock;
1046 		 * but be defensive.  Reverse old to newpage for clear and free.
1047 		 */
1048 		oldpage = newpage;
1049 	} else {
1050 		mem_cgroup_replace_page_cache(oldpage, newpage);
1051 		lru_cache_add_anon(newpage);
1052 		*pagep = newpage;
1053 	}
1054 
1055 	ClearPageSwapCache(oldpage);
1056 	set_page_private(oldpage, 0);
1057 
1058 	unlock_page(oldpage);
1059 	page_cache_release(oldpage);
1060 	page_cache_release(oldpage);
1061 	return error;
1062 }
1063 
1064 /*
1065  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1066  *
1067  * If we allocate a new one we do not mark it dirty. That's up to the
1068  * vm. If we swap it in we mark it dirty since we also free the swap
1069  * entry since a page cannot live in both the swap and page cache
1070  */
1071 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1072 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1073 {
1074 	struct address_space *mapping = inode->i_mapping;
1075 	struct shmem_inode_info *info;
1076 	struct shmem_sb_info *sbinfo;
1077 	struct page *page;
1078 	swp_entry_t swap;
1079 	int error;
1080 	int once = 0;
1081 	int alloced = 0;
1082 
1083 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1084 		return -EFBIG;
1085 repeat:
1086 	swap.val = 0;
1087 	page = find_lock_page(mapping, index);
1088 	if (radix_tree_exceptional_entry(page)) {
1089 		swap = radix_to_swp_entry(page);
1090 		page = NULL;
1091 	}
1092 
1093 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1094 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1095 		error = -EINVAL;
1096 		goto failed;
1097 	}
1098 
1099 	/* fallocated page? */
1100 	if (page && !PageUptodate(page)) {
1101 		if (sgp != SGP_READ)
1102 			goto clear;
1103 		unlock_page(page);
1104 		page_cache_release(page);
1105 		page = NULL;
1106 	}
1107 	if (page || (sgp == SGP_READ && !swap.val)) {
1108 		*pagep = page;
1109 		return 0;
1110 	}
1111 
1112 	/*
1113 	 * Fast cache lookup did not find it:
1114 	 * bring it back from swap or allocate.
1115 	 */
1116 	info = SHMEM_I(inode);
1117 	sbinfo = SHMEM_SB(inode->i_sb);
1118 
1119 	if (swap.val) {
1120 		/* Look it up and read it in.. */
1121 		page = lookup_swap_cache(swap);
1122 		if (!page) {
1123 			/* here we actually do the io */
1124 			if (fault_type)
1125 				*fault_type |= VM_FAULT_MAJOR;
1126 			page = shmem_swapin(swap, gfp, info, index);
1127 			if (!page) {
1128 				error = -ENOMEM;
1129 				goto failed;
1130 			}
1131 		}
1132 
1133 		/* We have to do this with page locked to prevent races */
1134 		lock_page(page);
1135 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1136 		    !shmem_confirm_swap(mapping, index, swap)) {
1137 			error = -EEXIST;	/* try again */
1138 			goto unlock;
1139 		}
1140 		if (!PageUptodate(page)) {
1141 			error = -EIO;
1142 			goto failed;
1143 		}
1144 		wait_on_page_writeback(page);
1145 
1146 		if (shmem_should_replace_page(page, gfp)) {
1147 			error = shmem_replace_page(&page, gfp, info, index);
1148 			if (error)
1149 				goto failed;
1150 		}
1151 
1152 		error = mem_cgroup_cache_charge(page, current->mm,
1153 						gfp & GFP_RECLAIM_MASK);
1154 		if (!error) {
1155 			error = shmem_add_to_page_cache(page, mapping, index,
1156 						gfp, swp_to_radix_entry(swap));
1157 			/* We already confirmed swap, and make no allocation */
1158 			VM_BUG_ON(error);
1159 		}
1160 		if (error)
1161 			goto failed;
1162 
1163 		spin_lock(&info->lock);
1164 		info->swapped--;
1165 		shmem_recalc_inode(inode);
1166 		spin_unlock(&info->lock);
1167 
1168 		delete_from_swap_cache(page);
1169 		set_page_dirty(page);
1170 		swap_free(swap);
1171 
1172 	} else {
1173 		if (shmem_acct_block(info->flags)) {
1174 			error = -ENOSPC;
1175 			goto failed;
1176 		}
1177 		if (sbinfo->max_blocks) {
1178 			if (percpu_counter_compare(&sbinfo->used_blocks,
1179 						sbinfo->max_blocks) >= 0) {
1180 				error = -ENOSPC;
1181 				goto unacct;
1182 			}
1183 			percpu_counter_inc(&sbinfo->used_blocks);
1184 		}
1185 
1186 		page = shmem_alloc_page(gfp, info, index);
1187 		if (!page) {
1188 			error = -ENOMEM;
1189 			goto decused;
1190 		}
1191 
1192 		SetPageSwapBacked(page);
1193 		__set_page_locked(page);
1194 		error = mem_cgroup_cache_charge(page, current->mm,
1195 						gfp & GFP_RECLAIM_MASK);
1196 		if (error)
1197 			goto decused;
1198 		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1199 		if (!error) {
1200 			error = shmem_add_to_page_cache(page, mapping, index,
1201 							gfp, NULL);
1202 			radix_tree_preload_end();
1203 		}
1204 		if (error) {
1205 			mem_cgroup_uncharge_cache_page(page);
1206 			goto decused;
1207 		}
1208 		lru_cache_add_anon(page);
1209 
1210 		spin_lock(&info->lock);
1211 		info->alloced++;
1212 		inode->i_blocks += BLOCKS_PER_PAGE;
1213 		shmem_recalc_inode(inode);
1214 		spin_unlock(&info->lock);
1215 		alloced = true;
1216 
1217 		/*
1218 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1219 		 */
1220 		if (sgp == SGP_FALLOC)
1221 			sgp = SGP_WRITE;
1222 clear:
1223 		/*
1224 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1225 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1226 		 * it now, lest undo on failure cancel our earlier guarantee.
1227 		 */
1228 		if (sgp != SGP_WRITE) {
1229 			clear_highpage(page);
1230 			flush_dcache_page(page);
1231 			SetPageUptodate(page);
1232 		}
1233 		if (sgp == SGP_DIRTY)
1234 			set_page_dirty(page);
1235 	}
1236 
1237 	/* Perhaps the file has been truncated since we checked */
1238 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1239 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1240 		error = -EINVAL;
1241 		if (alloced)
1242 			goto trunc;
1243 		else
1244 			goto failed;
1245 	}
1246 	*pagep = page;
1247 	return 0;
1248 
1249 	/*
1250 	 * Error recovery.
1251 	 */
1252 trunc:
1253 	info = SHMEM_I(inode);
1254 	ClearPageDirty(page);
1255 	delete_from_page_cache(page);
1256 	spin_lock(&info->lock);
1257 	info->alloced--;
1258 	inode->i_blocks -= BLOCKS_PER_PAGE;
1259 	spin_unlock(&info->lock);
1260 decused:
1261 	sbinfo = SHMEM_SB(inode->i_sb);
1262 	if (sbinfo->max_blocks)
1263 		percpu_counter_add(&sbinfo->used_blocks, -1);
1264 unacct:
1265 	shmem_unacct_blocks(info->flags, 1);
1266 failed:
1267 	if (swap.val && error != -EINVAL &&
1268 	    !shmem_confirm_swap(mapping, index, swap))
1269 		error = -EEXIST;
1270 unlock:
1271 	if (page) {
1272 		unlock_page(page);
1273 		page_cache_release(page);
1274 	}
1275 	if (error == -ENOSPC && !once++) {
1276 		info = SHMEM_I(inode);
1277 		spin_lock(&info->lock);
1278 		shmem_recalc_inode(inode);
1279 		spin_unlock(&info->lock);
1280 		goto repeat;
1281 	}
1282 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1283 		goto repeat;
1284 	return error;
1285 }
1286 
1287 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1288 {
1289 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1290 	int error;
1291 	int ret = VM_FAULT_LOCKED;
1292 
1293 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1294 	if (error)
1295 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1296 
1297 	if (ret & VM_FAULT_MAJOR) {
1298 		count_vm_event(PGMAJFAULT);
1299 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1300 	}
1301 	return ret;
1302 }
1303 
1304 #ifdef CONFIG_NUMA
1305 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1306 {
1307 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1308 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1309 }
1310 
1311 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1312 					  unsigned long addr)
1313 {
1314 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1315 	pgoff_t index;
1316 
1317 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1318 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1319 }
1320 #endif
1321 
1322 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1323 {
1324 	struct inode *inode = file->f_path.dentry->d_inode;
1325 	struct shmem_inode_info *info = SHMEM_I(inode);
1326 	int retval = -ENOMEM;
1327 
1328 	spin_lock(&info->lock);
1329 	if (lock && !(info->flags & VM_LOCKED)) {
1330 		if (!user_shm_lock(inode->i_size, user))
1331 			goto out_nomem;
1332 		info->flags |= VM_LOCKED;
1333 		mapping_set_unevictable(file->f_mapping);
1334 	}
1335 	if (!lock && (info->flags & VM_LOCKED) && user) {
1336 		user_shm_unlock(inode->i_size, user);
1337 		info->flags &= ~VM_LOCKED;
1338 		mapping_clear_unevictable(file->f_mapping);
1339 	}
1340 	retval = 0;
1341 
1342 out_nomem:
1343 	spin_unlock(&info->lock);
1344 	return retval;
1345 }
1346 
1347 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1348 {
1349 	file_accessed(file);
1350 	vma->vm_ops = &shmem_vm_ops;
1351 	vma->vm_flags |= VM_CAN_NONLINEAR;
1352 	return 0;
1353 }
1354 
1355 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1356 				     umode_t mode, dev_t dev, unsigned long flags)
1357 {
1358 	struct inode *inode;
1359 	struct shmem_inode_info *info;
1360 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1361 
1362 	if (shmem_reserve_inode(sb))
1363 		return NULL;
1364 
1365 	inode = new_inode(sb);
1366 	if (inode) {
1367 		inode->i_ino = get_next_ino();
1368 		inode_init_owner(inode, dir, mode);
1369 		inode->i_blocks = 0;
1370 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1371 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1372 		inode->i_generation = get_seconds();
1373 		info = SHMEM_I(inode);
1374 		memset(info, 0, (char *)inode - (char *)info);
1375 		spin_lock_init(&info->lock);
1376 		info->flags = flags & VM_NORESERVE;
1377 		INIT_LIST_HEAD(&info->swaplist);
1378 		INIT_LIST_HEAD(&info->xattr_list);
1379 		cache_no_acl(inode);
1380 
1381 		switch (mode & S_IFMT) {
1382 		default:
1383 			inode->i_op = &shmem_special_inode_operations;
1384 			init_special_inode(inode, mode, dev);
1385 			break;
1386 		case S_IFREG:
1387 			inode->i_mapping->a_ops = &shmem_aops;
1388 			inode->i_op = &shmem_inode_operations;
1389 			inode->i_fop = &shmem_file_operations;
1390 			mpol_shared_policy_init(&info->policy,
1391 						 shmem_get_sbmpol(sbinfo));
1392 			break;
1393 		case S_IFDIR:
1394 			inc_nlink(inode);
1395 			/* Some things misbehave if size == 0 on a directory */
1396 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1397 			inode->i_op = &shmem_dir_inode_operations;
1398 			inode->i_fop = &simple_dir_operations;
1399 			break;
1400 		case S_IFLNK:
1401 			/*
1402 			 * Must not load anything in the rbtree,
1403 			 * mpol_free_shared_policy will not be called.
1404 			 */
1405 			mpol_shared_policy_init(&info->policy, NULL);
1406 			break;
1407 		}
1408 	} else
1409 		shmem_free_inode(sb);
1410 	return inode;
1411 }
1412 
1413 #ifdef CONFIG_TMPFS
1414 static const struct inode_operations shmem_symlink_inode_operations;
1415 static const struct inode_operations shmem_short_symlink_operations;
1416 
1417 #ifdef CONFIG_TMPFS_XATTR
1418 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1419 #else
1420 #define shmem_initxattrs NULL
1421 #endif
1422 
1423 static int
1424 shmem_write_begin(struct file *file, struct address_space *mapping,
1425 			loff_t pos, unsigned len, unsigned flags,
1426 			struct page **pagep, void **fsdata)
1427 {
1428 	struct inode *inode = mapping->host;
1429 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1430 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1431 }
1432 
1433 static int
1434 shmem_write_end(struct file *file, struct address_space *mapping,
1435 			loff_t pos, unsigned len, unsigned copied,
1436 			struct page *page, void *fsdata)
1437 {
1438 	struct inode *inode = mapping->host;
1439 
1440 	if (pos + copied > inode->i_size)
1441 		i_size_write(inode, pos + copied);
1442 
1443 	if (!PageUptodate(page)) {
1444 		if (copied < PAGE_CACHE_SIZE) {
1445 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1446 			zero_user_segments(page, 0, from,
1447 					from + copied, PAGE_CACHE_SIZE);
1448 		}
1449 		SetPageUptodate(page);
1450 	}
1451 	set_page_dirty(page);
1452 	unlock_page(page);
1453 	page_cache_release(page);
1454 
1455 	return copied;
1456 }
1457 
1458 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1459 {
1460 	struct inode *inode = filp->f_path.dentry->d_inode;
1461 	struct address_space *mapping = inode->i_mapping;
1462 	pgoff_t index;
1463 	unsigned long offset;
1464 	enum sgp_type sgp = SGP_READ;
1465 
1466 	/*
1467 	 * Might this read be for a stacking filesystem?  Then when reading
1468 	 * holes of a sparse file, we actually need to allocate those pages,
1469 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1470 	 */
1471 	if (segment_eq(get_fs(), KERNEL_DS))
1472 		sgp = SGP_DIRTY;
1473 
1474 	index = *ppos >> PAGE_CACHE_SHIFT;
1475 	offset = *ppos & ~PAGE_CACHE_MASK;
1476 
1477 	for (;;) {
1478 		struct page *page = NULL;
1479 		pgoff_t end_index;
1480 		unsigned long nr, ret;
1481 		loff_t i_size = i_size_read(inode);
1482 
1483 		end_index = i_size >> PAGE_CACHE_SHIFT;
1484 		if (index > end_index)
1485 			break;
1486 		if (index == end_index) {
1487 			nr = i_size & ~PAGE_CACHE_MASK;
1488 			if (nr <= offset)
1489 				break;
1490 		}
1491 
1492 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1493 		if (desc->error) {
1494 			if (desc->error == -EINVAL)
1495 				desc->error = 0;
1496 			break;
1497 		}
1498 		if (page)
1499 			unlock_page(page);
1500 
1501 		/*
1502 		 * We must evaluate after, since reads (unlike writes)
1503 		 * are called without i_mutex protection against truncate
1504 		 */
1505 		nr = PAGE_CACHE_SIZE;
1506 		i_size = i_size_read(inode);
1507 		end_index = i_size >> PAGE_CACHE_SHIFT;
1508 		if (index == end_index) {
1509 			nr = i_size & ~PAGE_CACHE_MASK;
1510 			if (nr <= offset) {
1511 				if (page)
1512 					page_cache_release(page);
1513 				break;
1514 			}
1515 		}
1516 		nr -= offset;
1517 
1518 		if (page) {
1519 			/*
1520 			 * If users can be writing to this page using arbitrary
1521 			 * virtual addresses, take care about potential aliasing
1522 			 * before reading the page on the kernel side.
1523 			 */
1524 			if (mapping_writably_mapped(mapping))
1525 				flush_dcache_page(page);
1526 			/*
1527 			 * Mark the page accessed if we read the beginning.
1528 			 */
1529 			if (!offset)
1530 				mark_page_accessed(page);
1531 		} else {
1532 			page = ZERO_PAGE(0);
1533 			page_cache_get(page);
1534 		}
1535 
1536 		/*
1537 		 * Ok, we have the page, and it's up-to-date, so
1538 		 * now we can copy it to user space...
1539 		 *
1540 		 * The actor routine returns how many bytes were actually used..
1541 		 * NOTE! This may not be the same as how much of a user buffer
1542 		 * we filled up (we may be padding etc), so we can only update
1543 		 * "pos" here (the actor routine has to update the user buffer
1544 		 * pointers and the remaining count).
1545 		 */
1546 		ret = actor(desc, page, offset, nr);
1547 		offset += ret;
1548 		index += offset >> PAGE_CACHE_SHIFT;
1549 		offset &= ~PAGE_CACHE_MASK;
1550 
1551 		page_cache_release(page);
1552 		if (ret != nr || !desc->count)
1553 			break;
1554 
1555 		cond_resched();
1556 	}
1557 
1558 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1559 	file_accessed(filp);
1560 }
1561 
1562 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1563 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1564 {
1565 	struct file *filp = iocb->ki_filp;
1566 	ssize_t retval;
1567 	unsigned long seg;
1568 	size_t count;
1569 	loff_t *ppos = &iocb->ki_pos;
1570 
1571 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1572 	if (retval)
1573 		return retval;
1574 
1575 	for (seg = 0; seg < nr_segs; seg++) {
1576 		read_descriptor_t desc;
1577 
1578 		desc.written = 0;
1579 		desc.arg.buf = iov[seg].iov_base;
1580 		desc.count = iov[seg].iov_len;
1581 		if (desc.count == 0)
1582 			continue;
1583 		desc.error = 0;
1584 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1585 		retval += desc.written;
1586 		if (desc.error) {
1587 			retval = retval ?: desc.error;
1588 			break;
1589 		}
1590 		if (desc.count > 0)
1591 			break;
1592 	}
1593 	return retval;
1594 }
1595 
1596 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1597 				struct pipe_inode_info *pipe, size_t len,
1598 				unsigned int flags)
1599 {
1600 	struct address_space *mapping = in->f_mapping;
1601 	struct inode *inode = mapping->host;
1602 	unsigned int loff, nr_pages, req_pages;
1603 	struct page *pages[PIPE_DEF_BUFFERS];
1604 	struct partial_page partial[PIPE_DEF_BUFFERS];
1605 	struct page *page;
1606 	pgoff_t index, end_index;
1607 	loff_t isize, left;
1608 	int error, page_nr;
1609 	struct splice_pipe_desc spd = {
1610 		.pages = pages,
1611 		.partial = partial,
1612 		.nr_pages_max = PIPE_DEF_BUFFERS,
1613 		.flags = flags,
1614 		.ops = &page_cache_pipe_buf_ops,
1615 		.spd_release = spd_release_page,
1616 	};
1617 
1618 	isize = i_size_read(inode);
1619 	if (unlikely(*ppos >= isize))
1620 		return 0;
1621 
1622 	left = isize - *ppos;
1623 	if (unlikely(left < len))
1624 		len = left;
1625 
1626 	if (splice_grow_spd(pipe, &spd))
1627 		return -ENOMEM;
1628 
1629 	index = *ppos >> PAGE_CACHE_SHIFT;
1630 	loff = *ppos & ~PAGE_CACHE_MASK;
1631 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1632 	nr_pages = min(req_pages, pipe->buffers);
1633 
1634 	spd.nr_pages = find_get_pages_contig(mapping, index,
1635 						nr_pages, spd.pages);
1636 	index += spd.nr_pages;
1637 	error = 0;
1638 
1639 	while (spd.nr_pages < nr_pages) {
1640 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1641 		if (error)
1642 			break;
1643 		unlock_page(page);
1644 		spd.pages[spd.nr_pages++] = page;
1645 		index++;
1646 	}
1647 
1648 	index = *ppos >> PAGE_CACHE_SHIFT;
1649 	nr_pages = spd.nr_pages;
1650 	spd.nr_pages = 0;
1651 
1652 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1653 		unsigned int this_len;
1654 
1655 		if (!len)
1656 			break;
1657 
1658 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1659 		page = spd.pages[page_nr];
1660 
1661 		if (!PageUptodate(page) || page->mapping != mapping) {
1662 			error = shmem_getpage(inode, index, &page,
1663 							SGP_CACHE, NULL);
1664 			if (error)
1665 				break;
1666 			unlock_page(page);
1667 			page_cache_release(spd.pages[page_nr]);
1668 			spd.pages[page_nr] = page;
1669 		}
1670 
1671 		isize = i_size_read(inode);
1672 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1673 		if (unlikely(!isize || index > end_index))
1674 			break;
1675 
1676 		if (end_index == index) {
1677 			unsigned int plen;
1678 
1679 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1680 			if (plen <= loff)
1681 				break;
1682 
1683 			this_len = min(this_len, plen - loff);
1684 			len = this_len;
1685 		}
1686 
1687 		spd.partial[page_nr].offset = loff;
1688 		spd.partial[page_nr].len = this_len;
1689 		len -= this_len;
1690 		loff = 0;
1691 		spd.nr_pages++;
1692 		index++;
1693 	}
1694 
1695 	while (page_nr < nr_pages)
1696 		page_cache_release(spd.pages[page_nr++]);
1697 
1698 	if (spd.nr_pages)
1699 		error = splice_to_pipe(pipe, &spd);
1700 
1701 	splice_shrink_spd(&spd);
1702 
1703 	if (error > 0) {
1704 		*ppos += error;
1705 		file_accessed(in);
1706 	}
1707 	return error;
1708 }
1709 
1710 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1711 							 loff_t len)
1712 {
1713 	struct inode *inode = file->f_path.dentry->d_inode;
1714 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1715 	struct shmem_falloc shmem_falloc;
1716 	pgoff_t start, index, end;
1717 	int error;
1718 
1719 	mutex_lock(&inode->i_mutex);
1720 
1721 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1722 		struct address_space *mapping = file->f_mapping;
1723 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1724 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1725 
1726 		if ((u64)unmap_end > (u64)unmap_start)
1727 			unmap_mapping_range(mapping, unmap_start,
1728 					    1 + unmap_end - unmap_start, 0);
1729 		shmem_truncate_range(inode, offset, offset + len - 1);
1730 		/* No need to unmap again: hole-punching leaves COWed pages */
1731 		error = 0;
1732 		goto out;
1733 	}
1734 
1735 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1736 	error = inode_newsize_ok(inode, offset + len);
1737 	if (error)
1738 		goto out;
1739 
1740 	start = offset >> PAGE_CACHE_SHIFT;
1741 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1742 	/* Try to avoid a swapstorm if len is impossible to satisfy */
1743 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1744 		error = -ENOSPC;
1745 		goto out;
1746 	}
1747 
1748 	shmem_falloc.start = start;
1749 	shmem_falloc.next  = start;
1750 	shmem_falloc.nr_falloced = 0;
1751 	shmem_falloc.nr_unswapped = 0;
1752 	spin_lock(&inode->i_lock);
1753 	inode->i_private = &shmem_falloc;
1754 	spin_unlock(&inode->i_lock);
1755 
1756 	for (index = start; index < end; index++) {
1757 		struct page *page;
1758 
1759 		/*
1760 		 * Good, the fallocate(2) manpage permits EINTR: we may have
1761 		 * been interrupted because we are using up too much memory.
1762 		 */
1763 		if (signal_pending(current))
1764 			error = -EINTR;
1765 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1766 			error = -ENOMEM;
1767 		else
1768 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1769 									NULL);
1770 		if (error) {
1771 			/* Remove the !PageUptodate pages we added */
1772 			shmem_undo_range(inode,
1773 				(loff_t)start << PAGE_CACHE_SHIFT,
1774 				(loff_t)index << PAGE_CACHE_SHIFT, true);
1775 			goto undone;
1776 		}
1777 
1778 		/*
1779 		 * Inform shmem_writepage() how far we have reached.
1780 		 * No need for lock or barrier: we have the page lock.
1781 		 */
1782 		shmem_falloc.next++;
1783 		if (!PageUptodate(page))
1784 			shmem_falloc.nr_falloced++;
1785 
1786 		/*
1787 		 * If !PageUptodate, leave it that way so that freeable pages
1788 		 * can be recognized if we need to rollback on error later.
1789 		 * But set_page_dirty so that memory pressure will swap rather
1790 		 * than free the pages we are allocating (and SGP_CACHE pages
1791 		 * might still be clean: we now need to mark those dirty too).
1792 		 */
1793 		set_page_dirty(page);
1794 		unlock_page(page);
1795 		page_cache_release(page);
1796 		cond_resched();
1797 	}
1798 
1799 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1800 		i_size_write(inode, offset + len);
1801 	inode->i_ctime = CURRENT_TIME;
1802 undone:
1803 	spin_lock(&inode->i_lock);
1804 	inode->i_private = NULL;
1805 	spin_unlock(&inode->i_lock);
1806 out:
1807 	mutex_unlock(&inode->i_mutex);
1808 	return error;
1809 }
1810 
1811 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1812 {
1813 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1814 
1815 	buf->f_type = TMPFS_MAGIC;
1816 	buf->f_bsize = PAGE_CACHE_SIZE;
1817 	buf->f_namelen = NAME_MAX;
1818 	if (sbinfo->max_blocks) {
1819 		buf->f_blocks = sbinfo->max_blocks;
1820 		buf->f_bavail =
1821 		buf->f_bfree  = sbinfo->max_blocks -
1822 				percpu_counter_sum(&sbinfo->used_blocks);
1823 	}
1824 	if (sbinfo->max_inodes) {
1825 		buf->f_files = sbinfo->max_inodes;
1826 		buf->f_ffree = sbinfo->free_inodes;
1827 	}
1828 	/* else leave those fields 0 like simple_statfs */
1829 	return 0;
1830 }
1831 
1832 /*
1833  * File creation. Allocate an inode, and we're done..
1834  */
1835 static int
1836 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1837 {
1838 	struct inode *inode;
1839 	int error = -ENOSPC;
1840 
1841 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1842 	if (inode) {
1843 		error = security_inode_init_security(inode, dir,
1844 						     &dentry->d_name,
1845 						     shmem_initxattrs, NULL);
1846 		if (error) {
1847 			if (error != -EOPNOTSUPP) {
1848 				iput(inode);
1849 				return error;
1850 			}
1851 		}
1852 #ifdef CONFIG_TMPFS_POSIX_ACL
1853 		error = generic_acl_init(inode, dir);
1854 		if (error) {
1855 			iput(inode);
1856 			return error;
1857 		}
1858 #else
1859 		error = 0;
1860 #endif
1861 		dir->i_size += BOGO_DIRENT_SIZE;
1862 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1863 		d_instantiate(dentry, inode);
1864 		dget(dentry); /* Extra count - pin the dentry in core */
1865 	}
1866 	return error;
1867 }
1868 
1869 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1870 {
1871 	int error;
1872 
1873 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1874 		return error;
1875 	inc_nlink(dir);
1876 	return 0;
1877 }
1878 
1879 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1880 		struct nameidata *nd)
1881 {
1882 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1883 }
1884 
1885 /*
1886  * Link a file..
1887  */
1888 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1889 {
1890 	struct inode *inode = old_dentry->d_inode;
1891 	int ret;
1892 
1893 	/*
1894 	 * No ordinary (disk based) filesystem counts links as inodes;
1895 	 * but each new link needs a new dentry, pinning lowmem, and
1896 	 * tmpfs dentries cannot be pruned until they are unlinked.
1897 	 */
1898 	ret = shmem_reserve_inode(inode->i_sb);
1899 	if (ret)
1900 		goto out;
1901 
1902 	dir->i_size += BOGO_DIRENT_SIZE;
1903 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1904 	inc_nlink(inode);
1905 	ihold(inode);	/* New dentry reference */
1906 	dget(dentry);		/* Extra pinning count for the created dentry */
1907 	d_instantiate(dentry, inode);
1908 out:
1909 	return ret;
1910 }
1911 
1912 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1913 {
1914 	struct inode *inode = dentry->d_inode;
1915 
1916 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1917 		shmem_free_inode(inode->i_sb);
1918 
1919 	dir->i_size -= BOGO_DIRENT_SIZE;
1920 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1921 	drop_nlink(inode);
1922 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1923 	return 0;
1924 }
1925 
1926 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1927 {
1928 	if (!simple_empty(dentry))
1929 		return -ENOTEMPTY;
1930 
1931 	drop_nlink(dentry->d_inode);
1932 	drop_nlink(dir);
1933 	return shmem_unlink(dir, dentry);
1934 }
1935 
1936 /*
1937  * The VFS layer already does all the dentry stuff for rename,
1938  * we just have to decrement the usage count for the target if
1939  * it exists so that the VFS layer correctly free's it when it
1940  * gets overwritten.
1941  */
1942 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1943 {
1944 	struct inode *inode = old_dentry->d_inode;
1945 	int they_are_dirs = S_ISDIR(inode->i_mode);
1946 
1947 	if (!simple_empty(new_dentry))
1948 		return -ENOTEMPTY;
1949 
1950 	if (new_dentry->d_inode) {
1951 		(void) shmem_unlink(new_dir, new_dentry);
1952 		if (they_are_dirs)
1953 			drop_nlink(old_dir);
1954 	} else if (they_are_dirs) {
1955 		drop_nlink(old_dir);
1956 		inc_nlink(new_dir);
1957 	}
1958 
1959 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1960 	new_dir->i_size += BOGO_DIRENT_SIZE;
1961 	old_dir->i_ctime = old_dir->i_mtime =
1962 	new_dir->i_ctime = new_dir->i_mtime =
1963 	inode->i_ctime = CURRENT_TIME;
1964 	return 0;
1965 }
1966 
1967 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1968 {
1969 	int error;
1970 	int len;
1971 	struct inode *inode;
1972 	struct page *page;
1973 	char *kaddr;
1974 	struct shmem_inode_info *info;
1975 
1976 	len = strlen(symname) + 1;
1977 	if (len > PAGE_CACHE_SIZE)
1978 		return -ENAMETOOLONG;
1979 
1980 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1981 	if (!inode)
1982 		return -ENOSPC;
1983 
1984 	error = security_inode_init_security(inode, dir, &dentry->d_name,
1985 					     shmem_initxattrs, NULL);
1986 	if (error) {
1987 		if (error != -EOPNOTSUPP) {
1988 			iput(inode);
1989 			return error;
1990 		}
1991 		error = 0;
1992 	}
1993 
1994 	info = SHMEM_I(inode);
1995 	inode->i_size = len-1;
1996 	if (len <= SHORT_SYMLINK_LEN) {
1997 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
1998 		if (!info->symlink) {
1999 			iput(inode);
2000 			return -ENOMEM;
2001 		}
2002 		inode->i_op = &shmem_short_symlink_operations;
2003 	} else {
2004 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2005 		if (error) {
2006 			iput(inode);
2007 			return error;
2008 		}
2009 		inode->i_mapping->a_ops = &shmem_aops;
2010 		inode->i_op = &shmem_symlink_inode_operations;
2011 		kaddr = kmap_atomic(page);
2012 		memcpy(kaddr, symname, len);
2013 		kunmap_atomic(kaddr);
2014 		SetPageUptodate(page);
2015 		set_page_dirty(page);
2016 		unlock_page(page);
2017 		page_cache_release(page);
2018 	}
2019 	dir->i_size += BOGO_DIRENT_SIZE;
2020 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2021 	d_instantiate(dentry, inode);
2022 	dget(dentry);
2023 	return 0;
2024 }
2025 
2026 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2027 {
2028 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2029 	return NULL;
2030 }
2031 
2032 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2033 {
2034 	struct page *page = NULL;
2035 	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2036 	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2037 	if (page)
2038 		unlock_page(page);
2039 	return page;
2040 }
2041 
2042 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2043 {
2044 	if (!IS_ERR(nd_get_link(nd))) {
2045 		struct page *page = cookie;
2046 		kunmap(page);
2047 		mark_page_accessed(page);
2048 		page_cache_release(page);
2049 	}
2050 }
2051 
2052 #ifdef CONFIG_TMPFS_XATTR
2053 /*
2054  * Superblocks without xattr inode operations may get some security.* xattr
2055  * support from the LSM "for free". As soon as we have any other xattrs
2056  * like ACLs, we also need to implement the security.* handlers at
2057  * filesystem level, though.
2058  */
2059 
2060 /*
2061  * Allocate new xattr and copy in the value; but leave the name to callers.
2062  */
2063 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
2064 {
2065 	struct shmem_xattr *new_xattr;
2066 	size_t len;
2067 
2068 	/* wrap around? */
2069 	len = sizeof(*new_xattr) + size;
2070 	if (len <= sizeof(*new_xattr))
2071 		return NULL;
2072 
2073 	new_xattr = kmalloc(len, GFP_KERNEL);
2074 	if (!new_xattr)
2075 		return NULL;
2076 
2077 	new_xattr->size = size;
2078 	memcpy(new_xattr->value, value, size);
2079 	return new_xattr;
2080 }
2081 
2082 /*
2083  * Callback for security_inode_init_security() for acquiring xattrs.
2084  */
2085 static int shmem_initxattrs(struct inode *inode,
2086 			    const struct xattr *xattr_array,
2087 			    void *fs_info)
2088 {
2089 	struct shmem_inode_info *info = SHMEM_I(inode);
2090 	const struct xattr *xattr;
2091 	struct shmem_xattr *new_xattr;
2092 	size_t len;
2093 
2094 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2095 		new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
2096 		if (!new_xattr)
2097 			return -ENOMEM;
2098 
2099 		len = strlen(xattr->name) + 1;
2100 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2101 					  GFP_KERNEL);
2102 		if (!new_xattr->name) {
2103 			kfree(new_xattr);
2104 			return -ENOMEM;
2105 		}
2106 
2107 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2108 		       XATTR_SECURITY_PREFIX_LEN);
2109 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2110 		       xattr->name, len);
2111 
2112 		spin_lock(&info->lock);
2113 		list_add(&new_xattr->list, &info->xattr_list);
2114 		spin_unlock(&info->lock);
2115 	}
2116 
2117 	return 0;
2118 }
2119 
2120 static int shmem_xattr_get(struct dentry *dentry, const char *name,
2121 			   void *buffer, size_t size)
2122 {
2123 	struct shmem_inode_info *info;
2124 	struct shmem_xattr *xattr;
2125 	int ret = -ENODATA;
2126 
2127 	info = SHMEM_I(dentry->d_inode);
2128 
2129 	spin_lock(&info->lock);
2130 	list_for_each_entry(xattr, &info->xattr_list, list) {
2131 		if (strcmp(name, xattr->name))
2132 			continue;
2133 
2134 		ret = xattr->size;
2135 		if (buffer) {
2136 			if (size < xattr->size)
2137 				ret = -ERANGE;
2138 			else
2139 				memcpy(buffer, xattr->value, xattr->size);
2140 		}
2141 		break;
2142 	}
2143 	spin_unlock(&info->lock);
2144 	return ret;
2145 }
2146 
2147 static int shmem_xattr_set(struct inode *inode, const char *name,
2148 			   const void *value, size_t size, int flags)
2149 {
2150 	struct shmem_inode_info *info = SHMEM_I(inode);
2151 	struct shmem_xattr *xattr;
2152 	struct shmem_xattr *new_xattr = NULL;
2153 	int err = 0;
2154 
2155 	/* value == NULL means remove */
2156 	if (value) {
2157 		new_xattr = shmem_xattr_alloc(value, size);
2158 		if (!new_xattr)
2159 			return -ENOMEM;
2160 
2161 		new_xattr->name = kstrdup(name, GFP_KERNEL);
2162 		if (!new_xattr->name) {
2163 			kfree(new_xattr);
2164 			return -ENOMEM;
2165 		}
2166 	}
2167 
2168 	spin_lock(&info->lock);
2169 	list_for_each_entry(xattr, &info->xattr_list, list) {
2170 		if (!strcmp(name, xattr->name)) {
2171 			if (flags & XATTR_CREATE) {
2172 				xattr = new_xattr;
2173 				err = -EEXIST;
2174 			} else if (new_xattr) {
2175 				list_replace(&xattr->list, &new_xattr->list);
2176 			} else {
2177 				list_del(&xattr->list);
2178 			}
2179 			goto out;
2180 		}
2181 	}
2182 	if (flags & XATTR_REPLACE) {
2183 		xattr = new_xattr;
2184 		err = -ENODATA;
2185 	} else {
2186 		list_add(&new_xattr->list, &info->xattr_list);
2187 		xattr = NULL;
2188 	}
2189 out:
2190 	spin_unlock(&info->lock);
2191 	if (xattr)
2192 		kfree(xattr->name);
2193 	kfree(xattr);
2194 	return err;
2195 }
2196 
2197 static const struct xattr_handler *shmem_xattr_handlers[] = {
2198 #ifdef CONFIG_TMPFS_POSIX_ACL
2199 	&generic_acl_access_handler,
2200 	&generic_acl_default_handler,
2201 #endif
2202 	NULL
2203 };
2204 
2205 static int shmem_xattr_validate(const char *name)
2206 {
2207 	struct { const char *prefix; size_t len; } arr[] = {
2208 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2209 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2210 	};
2211 	int i;
2212 
2213 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2214 		size_t preflen = arr[i].len;
2215 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2216 			if (!name[preflen])
2217 				return -EINVAL;
2218 			return 0;
2219 		}
2220 	}
2221 	return -EOPNOTSUPP;
2222 }
2223 
2224 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2225 			      void *buffer, size_t size)
2226 {
2227 	int err;
2228 
2229 	/*
2230 	 * If this is a request for a synthetic attribute in the system.*
2231 	 * namespace use the generic infrastructure to resolve a handler
2232 	 * for it via sb->s_xattr.
2233 	 */
2234 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2235 		return generic_getxattr(dentry, name, buffer, size);
2236 
2237 	err = shmem_xattr_validate(name);
2238 	if (err)
2239 		return err;
2240 
2241 	return shmem_xattr_get(dentry, name, buffer, size);
2242 }
2243 
2244 static int shmem_setxattr(struct dentry *dentry, const char *name,
2245 			  const void *value, size_t size, int flags)
2246 {
2247 	int err;
2248 
2249 	/*
2250 	 * If this is a request for a synthetic attribute in the system.*
2251 	 * namespace use the generic infrastructure to resolve a handler
2252 	 * for it via sb->s_xattr.
2253 	 */
2254 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2255 		return generic_setxattr(dentry, name, value, size, flags);
2256 
2257 	err = shmem_xattr_validate(name);
2258 	if (err)
2259 		return err;
2260 
2261 	if (size == 0)
2262 		value = "";  /* empty EA, do not remove */
2263 
2264 	return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
2265 
2266 }
2267 
2268 static int shmem_removexattr(struct dentry *dentry, const char *name)
2269 {
2270 	int err;
2271 
2272 	/*
2273 	 * If this is a request for a synthetic attribute in the system.*
2274 	 * namespace use the generic infrastructure to resolve a handler
2275 	 * for it via sb->s_xattr.
2276 	 */
2277 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2278 		return generic_removexattr(dentry, name);
2279 
2280 	err = shmem_xattr_validate(name);
2281 	if (err)
2282 		return err;
2283 
2284 	return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
2285 }
2286 
2287 static bool xattr_is_trusted(const char *name)
2288 {
2289 	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2290 }
2291 
2292 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2293 {
2294 	bool trusted = capable(CAP_SYS_ADMIN);
2295 	struct shmem_xattr *xattr;
2296 	struct shmem_inode_info *info;
2297 	size_t used = 0;
2298 
2299 	info = SHMEM_I(dentry->d_inode);
2300 
2301 	spin_lock(&info->lock);
2302 	list_for_each_entry(xattr, &info->xattr_list, list) {
2303 		size_t len;
2304 
2305 		/* skip "trusted." attributes for unprivileged callers */
2306 		if (!trusted && xattr_is_trusted(xattr->name))
2307 			continue;
2308 
2309 		len = strlen(xattr->name) + 1;
2310 		used += len;
2311 		if (buffer) {
2312 			if (size < used) {
2313 				used = -ERANGE;
2314 				break;
2315 			}
2316 			memcpy(buffer, xattr->name, len);
2317 			buffer += len;
2318 		}
2319 	}
2320 	spin_unlock(&info->lock);
2321 
2322 	return used;
2323 }
2324 #endif /* CONFIG_TMPFS_XATTR */
2325 
2326 static const struct inode_operations shmem_short_symlink_operations = {
2327 	.readlink	= generic_readlink,
2328 	.follow_link	= shmem_follow_short_symlink,
2329 #ifdef CONFIG_TMPFS_XATTR
2330 	.setxattr	= shmem_setxattr,
2331 	.getxattr	= shmem_getxattr,
2332 	.listxattr	= shmem_listxattr,
2333 	.removexattr	= shmem_removexattr,
2334 #endif
2335 };
2336 
2337 static const struct inode_operations shmem_symlink_inode_operations = {
2338 	.readlink	= generic_readlink,
2339 	.follow_link	= shmem_follow_link,
2340 	.put_link	= shmem_put_link,
2341 #ifdef CONFIG_TMPFS_XATTR
2342 	.setxattr	= shmem_setxattr,
2343 	.getxattr	= shmem_getxattr,
2344 	.listxattr	= shmem_listxattr,
2345 	.removexattr	= shmem_removexattr,
2346 #endif
2347 };
2348 
2349 static struct dentry *shmem_get_parent(struct dentry *child)
2350 {
2351 	return ERR_PTR(-ESTALE);
2352 }
2353 
2354 static int shmem_match(struct inode *ino, void *vfh)
2355 {
2356 	__u32 *fh = vfh;
2357 	__u64 inum = fh[2];
2358 	inum = (inum << 32) | fh[1];
2359 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2360 }
2361 
2362 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2363 		struct fid *fid, int fh_len, int fh_type)
2364 {
2365 	struct inode *inode;
2366 	struct dentry *dentry = NULL;
2367 	u64 inum = fid->raw[2];
2368 	inum = (inum << 32) | fid->raw[1];
2369 
2370 	if (fh_len < 3)
2371 		return NULL;
2372 
2373 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2374 			shmem_match, fid->raw);
2375 	if (inode) {
2376 		dentry = d_find_alias(inode);
2377 		iput(inode);
2378 	}
2379 
2380 	return dentry;
2381 }
2382 
2383 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2384 				struct inode *parent)
2385 {
2386 	if (*len < 3) {
2387 		*len = 3;
2388 		return 255;
2389 	}
2390 
2391 	if (inode_unhashed(inode)) {
2392 		/* Unfortunately insert_inode_hash is not idempotent,
2393 		 * so as we hash inodes here rather than at creation
2394 		 * time, we need a lock to ensure we only try
2395 		 * to do it once
2396 		 */
2397 		static DEFINE_SPINLOCK(lock);
2398 		spin_lock(&lock);
2399 		if (inode_unhashed(inode))
2400 			__insert_inode_hash(inode,
2401 					    inode->i_ino + inode->i_generation);
2402 		spin_unlock(&lock);
2403 	}
2404 
2405 	fh[0] = inode->i_generation;
2406 	fh[1] = inode->i_ino;
2407 	fh[2] = ((__u64)inode->i_ino) >> 32;
2408 
2409 	*len = 3;
2410 	return 1;
2411 }
2412 
2413 static const struct export_operations shmem_export_ops = {
2414 	.get_parent     = shmem_get_parent,
2415 	.encode_fh      = shmem_encode_fh,
2416 	.fh_to_dentry	= shmem_fh_to_dentry,
2417 };
2418 
2419 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2420 			       bool remount)
2421 {
2422 	char *this_char, *value, *rest;
2423 	uid_t uid;
2424 	gid_t gid;
2425 
2426 	while (options != NULL) {
2427 		this_char = options;
2428 		for (;;) {
2429 			/*
2430 			 * NUL-terminate this option: unfortunately,
2431 			 * mount options form a comma-separated list,
2432 			 * but mpol's nodelist may also contain commas.
2433 			 */
2434 			options = strchr(options, ',');
2435 			if (options == NULL)
2436 				break;
2437 			options++;
2438 			if (!isdigit(*options)) {
2439 				options[-1] = '\0';
2440 				break;
2441 			}
2442 		}
2443 		if (!*this_char)
2444 			continue;
2445 		if ((value = strchr(this_char,'=')) != NULL) {
2446 			*value++ = 0;
2447 		} else {
2448 			printk(KERN_ERR
2449 			    "tmpfs: No value for mount option '%s'\n",
2450 			    this_char);
2451 			return 1;
2452 		}
2453 
2454 		if (!strcmp(this_char,"size")) {
2455 			unsigned long long size;
2456 			size = memparse(value,&rest);
2457 			if (*rest == '%') {
2458 				size <<= PAGE_SHIFT;
2459 				size *= totalram_pages;
2460 				do_div(size, 100);
2461 				rest++;
2462 			}
2463 			if (*rest)
2464 				goto bad_val;
2465 			sbinfo->max_blocks =
2466 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2467 		} else if (!strcmp(this_char,"nr_blocks")) {
2468 			sbinfo->max_blocks = memparse(value, &rest);
2469 			if (*rest)
2470 				goto bad_val;
2471 		} else if (!strcmp(this_char,"nr_inodes")) {
2472 			sbinfo->max_inodes = memparse(value, &rest);
2473 			if (*rest)
2474 				goto bad_val;
2475 		} else if (!strcmp(this_char,"mode")) {
2476 			if (remount)
2477 				continue;
2478 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2479 			if (*rest)
2480 				goto bad_val;
2481 		} else if (!strcmp(this_char,"uid")) {
2482 			if (remount)
2483 				continue;
2484 			uid = simple_strtoul(value, &rest, 0);
2485 			if (*rest)
2486 				goto bad_val;
2487 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2488 			if (!uid_valid(sbinfo->uid))
2489 				goto bad_val;
2490 		} else if (!strcmp(this_char,"gid")) {
2491 			if (remount)
2492 				continue;
2493 			gid = simple_strtoul(value, &rest, 0);
2494 			if (*rest)
2495 				goto bad_val;
2496 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2497 			if (!gid_valid(sbinfo->gid))
2498 				goto bad_val;
2499 		} else if (!strcmp(this_char,"mpol")) {
2500 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2501 				goto bad_val;
2502 		} else {
2503 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2504 			       this_char);
2505 			return 1;
2506 		}
2507 	}
2508 	return 0;
2509 
2510 bad_val:
2511 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2512 	       value, this_char);
2513 	return 1;
2514 
2515 }
2516 
2517 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2518 {
2519 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2520 	struct shmem_sb_info config = *sbinfo;
2521 	unsigned long inodes;
2522 	int error = -EINVAL;
2523 
2524 	if (shmem_parse_options(data, &config, true))
2525 		return error;
2526 
2527 	spin_lock(&sbinfo->stat_lock);
2528 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2529 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2530 		goto out;
2531 	if (config.max_inodes < inodes)
2532 		goto out;
2533 	/*
2534 	 * Those tests disallow limited->unlimited while any are in use;
2535 	 * but we must separately disallow unlimited->limited, because
2536 	 * in that case we have no record of how much is already in use.
2537 	 */
2538 	if (config.max_blocks && !sbinfo->max_blocks)
2539 		goto out;
2540 	if (config.max_inodes && !sbinfo->max_inodes)
2541 		goto out;
2542 
2543 	error = 0;
2544 	sbinfo->max_blocks  = config.max_blocks;
2545 	sbinfo->max_inodes  = config.max_inodes;
2546 	sbinfo->free_inodes = config.max_inodes - inodes;
2547 
2548 	mpol_put(sbinfo->mpol);
2549 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2550 out:
2551 	spin_unlock(&sbinfo->stat_lock);
2552 	return error;
2553 }
2554 
2555 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2556 {
2557 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2558 
2559 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2560 		seq_printf(seq, ",size=%luk",
2561 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2562 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2563 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2564 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2565 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2566 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2567 		seq_printf(seq, ",uid=%u",
2568 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2569 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2570 		seq_printf(seq, ",gid=%u",
2571 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2572 	shmem_show_mpol(seq, sbinfo->mpol);
2573 	return 0;
2574 }
2575 #endif /* CONFIG_TMPFS */
2576 
2577 static void shmem_put_super(struct super_block *sb)
2578 {
2579 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2580 
2581 	percpu_counter_destroy(&sbinfo->used_blocks);
2582 	kfree(sbinfo);
2583 	sb->s_fs_info = NULL;
2584 }
2585 
2586 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2587 {
2588 	struct inode *inode;
2589 	struct shmem_sb_info *sbinfo;
2590 	int err = -ENOMEM;
2591 
2592 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2593 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2594 				L1_CACHE_BYTES), GFP_KERNEL);
2595 	if (!sbinfo)
2596 		return -ENOMEM;
2597 
2598 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2599 	sbinfo->uid = current_fsuid();
2600 	sbinfo->gid = current_fsgid();
2601 	sb->s_fs_info = sbinfo;
2602 
2603 #ifdef CONFIG_TMPFS
2604 	/*
2605 	 * Per default we only allow half of the physical ram per
2606 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2607 	 * but the internal instance is left unlimited.
2608 	 */
2609 	if (!(sb->s_flags & MS_NOUSER)) {
2610 		sbinfo->max_blocks = shmem_default_max_blocks();
2611 		sbinfo->max_inodes = shmem_default_max_inodes();
2612 		if (shmem_parse_options(data, sbinfo, false)) {
2613 			err = -EINVAL;
2614 			goto failed;
2615 		}
2616 	}
2617 	sb->s_export_op = &shmem_export_ops;
2618 	sb->s_flags |= MS_NOSEC;
2619 #else
2620 	sb->s_flags |= MS_NOUSER;
2621 #endif
2622 
2623 	spin_lock_init(&sbinfo->stat_lock);
2624 	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2625 		goto failed;
2626 	sbinfo->free_inodes = sbinfo->max_inodes;
2627 
2628 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2629 	sb->s_blocksize = PAGE_CACHE_SIZE;
2630 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2631 	sb->s_magic = TMPFS_MAGIC;
2632 	sb->s_op = &shmem_ops;
2633 	sb->s_time_gran = 1;
2634 #ifdef CONFIG_TMPFS_XATTR
2635 	sb->s_xattr = shmem_xattr_handlers;
2636 #endif
2637 #ifdef CONFIG_TMPFS_POSIX_ACL
2638 	sb->s_flags |= MS_POSIXACL;
2639 #endif
2640 
2641 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2642 	if (!inode)
2643 		goto failed;
2644 	inode->i_uid = sbinfo->uid;
2645 	inode->i_gid = sbinfo->gid;
2646 	sb->s_root = d_make_root(inode);
2647 	if (!sb->s_root)
2648 		goto failed;
2649 	return 0;
2650 
2651 failed:
2652 	shmem_put_super(sb);
2653 	return err;
2654 }
2655 
2656 static struct kmem_cache *shmem_inode_cachep;
2657 
2658 static struct inode *shmem_alloc_inode(struct super_block *sb)
2659 {
2660 	struct shmem_inode_info *info;
2661 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2662 	if (!info)
2663 		return NULL;
2664 	return &info->vfs_inode;
2665 }
2666 
2667 static void shmem_destroy_callback(struct rcu_head *head)
2668 {
2669 	struct inode *inode = container_of(head, struct inode, i_rcu);
2670 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2671 }
2672 
2673 static void shmem_destroy_inode(struct inode *inode)
2674 {
2675 	if (S_ISREG(inode->i_mode))
2676 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2677 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2678 }
2679 
2680 static void shmem_init_inode(void *foo)
2681 {
2682 	struct shmem_inode_info *info = foo;
2683 	inode_init_once(&info->vfs_inode);
2684 }
2685 
2686 static int shmem_init_inodecache(void)
2687 {
2688 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2689 				sizeof(struct shmem_inode_info),
2690 				0, SLAB_PANIC, shmem_init_inode);
2691 	return 0;
2692 }
2693 
2694 static void shmem_destroy_inodecache(void)
2695 {
2696 	kmem_cache_destroy(shmem_inode_cachep);
2697 }
2698 
2699 static const struct address_space_operations shmem_aops = {
2700 	.writepage	= shmem_writepage,
2701 	.set_page_dirty	= __set_page_dirty_no_writeback,
2702 #ifdef CONFIG_TMPFS
2703 	.write_begin	= shmem_write_begin,
2704 	.write_end	= shmem_write_end,
2705 #endif
2706 	.migratepage	= migrate_page,
2707 	.error_remove_page = generic_error_remove_page,
2708 };
2709 
2710 static const struct file_operations shmem_file_operations = {
2711 	.mmap		= shmem_mmap,
2712 #ifdef CONFIG_TMPFS
2713 	.llseek		= generic_file_llseek,
2714 	.read		= do_sync_read,
2715 	.write		= do_sync_write,
2716 	.aio_read	= shmem_file_aio_read,
2717 	.aio_write	= generic_file_aio_write,
2718 	.fsync		= noop_fsync,
2719 	.splice_read	= shmem_file_splice_read,
2720 	.splice_write	= generic_file_splice_write,
2721 	.fallocate	= shmem_fallocate,
2722 #endif
2723 };
2724 
2725 static const struct inode_operations shmem_inode_operations = {
2726 	.setattr	= shmem_setattr,
2727 #ifdef CONFIG_TMPFS_XATTR
2728 	.setxattr	= shmem_setxattr,
2729 	.getxattr	= shmem_getxattr,
2730 	.listxattr	= shmem_listxattr,
2731 	.removexattr	= shmem_removexattr,
2732 #endif
2733 };
2734 
2735 static const struct inode_operations shmem_dir_inode_operations = {
2736 #ifdef CONFIG_TMPFS
2737 	.create		= shmem_create,
2738 	.lookup		= simple_lookup,
2739 	.link		= shmem_link,
2740 	.unlink		= shmem_unlink,
2741 	.symlink	= shmem_symlink,
2742 	.mkdir		= shmem_mkdir,
2743 	.rmdir		= shmem_rmdir,
2744 	.mknod		= shmem_mknod,
2745 	.rename		= shmem_rename,
2746 #endif
2747 #ifdef CONFIG_TMPFS_XATTR
2748 	.setxattr	= shmem_setxattr,
2749 	.getxattr	= shmem_getxattr,
2750 	.listxattr	= shmem_listxattr,
2751 	.removexattr	= shmem_removexattr,
2752 #endif
2753 #ifdef CONFIG_TMPFS_POSIX_ACL
2754 	.setattr	= shmem_setattr,
2755 #endif
2756 };
2757 
2758 static const struct inode_operations shmem_special_inode_operations = {
2759 #ifdef CONFIG_TMPFS_XATTR
2760 	.setxattr	= shmem_setxattr,
2761 	.getxattr	= shmem_getxattr,
2762 	.listxattr	= shmem_listxattr,
2763 	.removexattr	= shmem_removexattr,
2764 #endif
2765 #ifdef CONFIG_TMPFS_POSIX_ACL
2766 	.setattr	= shmem_setattr,
2767 #endif
2768 };
2769 
2770 static const struct super_operations shmem_ops = {
2771 	.alloc_inode	= shmem_alloc_inode,
2772 	.destroy_inode	= shmem_destroy_inode,
2773 #ifdef CONFIG_TMPFS
2774 	.statfs		= shmem_statfs,
2775 	.remount_fs	= shmem_remount_fs,
2776 	.show_options	= shmem_show_options,
2777 #endif
2778 	.evict_inode	= shmem_evict_inode,
2779 	.drop_inode	= generic_delete_inode,
2780 	.put_super	= shmem_put_super,
2781 };
2782 
2783 static const struct vm_operations_struct shmem_vm_ops = {
2784 	.fault		= shmem_fault,
2785 #ifdef CONFIG_NUMA
2786 	.set_policy     = shmem_set_policy,
2787 	.get_policy     = shmem_get_policy,
2788 #endif
2789 };
2790 
2791 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2792 	int flags, const char *dev_name, void *data)
2793 {
2794 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2795 }
2796 
2797 static struct file_system_type shmem_fs_type = {
2798 	.owner		= THIS_MODULE,
2799 	.name		= "tmpfs",
2800 	.mount		= shmem_mount,
2801 	.kill_sb	= kill_litter_super,
2802 };
2803 
2804 int __init shmem_init(void)
2805 {
2806 	int error;
2807 
2808 	error = bdi_init(&shmem_backing_dev_info);
2809 	if (error)
2810 		goto out4;
2811 
2812 	error = shmem_init_inodecache();
2813 	if (error)
2814 		goto out3;
2815 
2816 	error = register_filesystem(&shmem_fs_type);
2817 	if (error) {
2818 		printk(KERN_ERR "Could not register tmpfs\n");
2819 		goto out2;
2820 	}
2821 
2822 	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2823 				 shmem_fs_type.name, NULL);
2824 	if (IS_ERR(shm_mnt)) {
2825 		error = PTR_ERR(shm_mnt);
2826 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2827 		goto out1;
2828 	}
2829 	return 0;
2830 
2831 out1:
2832 	unregister_filesystem(&shmem_fs_type);
2833 out2:
2834 	shmem_destroy_inodecache();
2835 out3:
2836 	bdi_destroy(&shmem_backing_dev_info);
2837 out4:
2838 	shm_mnt = ERR_PTR(error);
2839 	return error;
2840 }
2841 
2842 #else /* !CONFIG_SHMEM */
2843 
2844 /*
2845  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2846  *
2847  * This is intended for small system where the benefits of the full
2848  * shmem code (swap-backed and resource-limited) are outweighed by
2849  * their complexity. On systems without swap this code should be
2850  * effectively equivalent, but much lighter weight.
2851  */
2852 
2853 #include <linux/ramfs.h>
2854 
2855 static struct file_system_type shmem_fs_type = {
2856 	.name		= "tmpfs",
2857 	.mount		= ramfs_mount,
2858 	.kill_sb	= kill_litter_super,
2859 };
2860 
2861 int __init shmem_init(void)
2862 {
2863 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2864 
2865 	shm_mnt = kern_mount(&shmem_fs_type);
2866 	BUG_ON(IS_ERR(shm_mnt));
2867 
2868 	return 0;
2869 }
2870 
2871 int shmem_unuse(swp_entry_t swap, struct page *page)
2872 {
2873 	return 0;
2874 }
2875 
2876 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2877 {
2878 	return 0;
2879 }
2880 
2881 void shmem_unlock_mapping(struct address_space *mapping)
2882 {
2883 }
2884 
2885 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2886 {
2887 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2888 }
2889 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2890 
2891 #define shmem_vm_ops				generic_file_vm_ops
2892 #define shmem_file_operations			ramfs_file_operations
2893 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2894 #define shmem_acct_size(flags, size)		0
2895 #define shmem_unacct_size(flags, size)		do {} while (0)
2896 
2897 #endif /* CONFIG_SHMEM */
2898 
2899 /* common code */
2900 
2901 /**
2902  * shmem_file_setup - get an unlinked file living in tmpfs
2903  * @name: name for dentry (to be seen in /proc/<pid>/maps
2904  * @size: size to be set for the file
2905  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2906  */
2907 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2908 {
2909 	int error;
2910 	struct file *file;
2911 	struct inode *inode;
2912 	struct path path;
2913 	struct dentry *root;
2914 	struct qstr this;
2915 
2916 	if (IS_ERR(shm_mnt))
2917 		return (void *)shm_mnt;
2918 
2919 	if (size < 0 || size > MAX_LFS_FILESIZE)
2920 		return ERR_PTR(-EINVAL);
2921 
2922 	if (shmem_acct_size(flags, size))
2923 		return ERR_PTR(-ENOMEM);
2924 
2925 	error = -ENOMEM;
2926 	this.name = name;
2927 	this.len = strlen(name);
2928 	this.hash = 0; /* will go */
2929 	root = shm_mnt->mnt_root;
2930 	path.dentry = d_alloc(root, &this);
2931 	if (!path.dentry)
2932 		goto put_memory;
2933 	path.mnt = mntget(shm_mnt);
2934 
2935 	error = -ENOSPC;
2936 	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2937 	if (!inode)
2938 		goto put_dentry;
2939 
2940 	d_instantiate(path.dentry, inode);
2941 	inode->i_size = size;
2942 	clear_nlink(inode);	/* It is unlinked */
2943 #ifndef CONFIG_MMU
2944 	error = ramfs_nommu_expand_for_mapping(inode, size);
2945 	if (error)
2946 		goto put_dentry;
2947 #endif
2948 
2949 	error = -ENFILE;
2950 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2951 		  &shmem_file_operations);
2952 	if (!file)
2953 		goto put_dentry;
2954 
2955 	return file;
2956 
2957 put_dentry:
2958 	path_put(&path);
2959 put_memory:
2960 	shmem_unacct_size(flags, size);
2961 	return ERR_PTR(error);
2962 }
2963 EXPORT_SYMBOL_GPL(shmem_file_setup);
2964 
2965 /**
2966  * shmem_zero_setup - setup a shared anonymous mapping
2967  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2968  */
2969 int shmem_zero_setup(struct vm_area_struct *vma)
2970 {
2971 	struct file *file;
2972 	loff_t size = vma->vm_end - vma->vm_start;
2973 
2974 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2975 	if (IS_ERR(file))
2976 		return PTR_ERR(file);
2977 
2978 	if (vma->vm_file)
2979 		fput(vma->vm_file);
2980 	vma->vm_file = file;
2981 	vma->vm_ops = &shmem_vm_ops;
2982 	vma->vm_flags |= VM_CAN_NONLINEAR;
2983 	return 0;
2984 }
2985 
2986 /**
2987  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2988  * @mapping:	the page's address_space
2989  * @index:	the page index
2990  * @gfp:	the page allocator flags to use if allocating
2991  *
2992  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2993  * with any new page allocations done using the specified allocation flags.
2994  * But read_cache_page_gfp() uses the ->readpage() method: which does not
2995  * suit tmpfs, since it may have pages in swapcache, and needs to find those
2996  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2997  *
2998  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2999  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3000  */
3001 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3002 					 pgoff_t index, gfp_t gfp)
3003 {
3004 #ifdef CONFIG_SHMEM
3005 	struct inode *inode = mapping->host;
3006 	struct page *page;
3007 	int error;
3008 
3009 	BUG_ON(mapping->a_ops != &shmem_aops);
3010 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3011 	if (error)
3012 		page = ERR_PTR(error);
3013 	else
3014 		unlock_page(page);
3015 	return page;
3016 #else
3017 	/*
3018 	 * The tiny !SHMEM case uses ramfs without swap
3019 	 */
3020 	return read_cache_page_gfp(mapping, index, gfp);
3021 #endif
3022 }
3023 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3024