1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include "swap.h" 44 45 static struct vfsmount *shm_mnt __ro_after_init; 46 47 #ifdef CONFIG_SHMEM 48 /* 49 * This virtual memory filesystem is heavily based on the ramfs. It 50 * extends ramfs by the ability to use swap and honor resource limits 51 * which makes it a completely usable filesystem. 52 */ 53 54 #include <linux/xattr.h> 55 #include <linux/exportfs.h> 56 #include <linux/posix_acl.h> 57 #include <linux/posix_acl_xattr.h> 58 #include <linux/mman.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/backing-dev.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 #include <linux/quotaops.h> 82 #include <linux/rcupdate_wait.h> 83 84 #include <linux/uaccess.h> 85 86 #include "internal.h" 87 88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Pretend that one inode + its dentry occupy this much memory */ 95 #define BOGO_INODE_SIZE 1024 96 97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 98 #define SHORT_SYMLINK_LEN 128 99 100 /* 101 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 102 * inode->i_private (with i_rwsem making sure that it has only one user at 103 * a time): we would prefer not to enlarge the shmem inode just for that. 104 */ 105 struct shmem_falloc { 106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 107 pgoff_t start; /* start of range currently being fallocated */ 108 pgoff_t next; /* the next page offset to be fallocated */ 109 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 110 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 111 }; 112 113 struct shmem_options { 114 unsigned long long blocks; 115 unsigned long long inodes; 116 struct mempolicy *mpol; 117 kuid_t uid; 118 kgid_t gid; 119 umode_t mode; 120 bool full_inums; 121 int huge; 122 int seen; 123 bool noswap; 124 unsigned short quota_types; 125 struct shmem_quota_limits qlimits; 126 #define SHMEM_SEEN_BLOCKS 1 127 #define SHMEM_SEEN_INODES 2 128 #define SHMEM_SEEN_HUGE 4 129 #define SHMEM_SEEN_INUMS 8 130 #define SHMEM_SEEN_NOSWAP 16 131 #define SHMEM_SEEN_QUOTA 32 132 }; 133 134 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 135 static unsigned long huge_shmem_orders_always __read_mostly; 136 static unsigned long huge_shmem_orders_madvise __read_mostly; 137 static unsigned long huge_shmem_orders_inherit __read_mostly; 138 static unsigned long huge_shmem_orders_within_size __read_mostly; 139 #endif 140 141 #ifdef CONFIG_TMPFS 142 static unsigned long shmem_default_max_blocks(void) 143 { 144 return totalram_pages() / 2; 145 } 146 147 static unsigned long shmem_default_max_inodes(void) 148 { 149 unsigned long nr_pages = totalram_pages(); 150 151 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 152 ULONG_MAX / BOGO_INODE_SIZE); 153 } 154 #endif 155 156 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 157 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 158 struct vm_area_struct *vma, vm_fault_t *fault_type); 159 160 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 161 { 162 return sb->s_fs_info; 163 } 164 165 /* 166 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 167 * for shared memory and for shared anonymous (/dev/zero) mappings 168 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 169 * consistent with the pre-accounting of private mappings ... 170 */ 171 static inline int shmem_acct_size(unsigned long flags, loff_t size) 172 { 173 return (flags & VM_NORESERVE) ? 174 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 175 } 176 177 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 178 { 179 if (!(flags & VM_NORESERVE)) 180 vm_unacct_memory(VM_ACCT(size)); 181 } 182 183 static inline int shmem_reacct_size(unsigned long flags, 184 loff_t oldsize, loff_t newsize) 185 { 186 if (!(flags & VM_NORESERVE)) { 187 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 188 return security_vm_enough_memory_mm(current->mm, 189 VM_ACCT(newsize) - VM_ACCT(oldsize)); 190 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 191 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 192 } 193 return 0; 194 } 195 196 /* 197 * ... whereas tmpfs objects are accounted incrementally as 198 * pages are allocated, in order to allow large sparse files. 199 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 200 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 201 */ 202 static inline int shmem_acct_blocks(unsigned long flags, long pages) 203 { 204 if (!(flags & VM_NORESERVE)) 205 return 0; 206 207 return security_vm_enough_memory_mm(current->mm, 208 pages * VM_ACCT(PAGE_SIZE)); 209 } 210 211 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 212 { 213 if (flags & VM_NORESERVE) 214 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 215 } 216 217 static int shmem_inode_acct_blocks(struct inode *inode, long pages) 218 { 219 struct shmem_inode_info *info = SHMEM_I(inode); 220 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 221 int err = -ENOSPC; 222 223 if (shmem_acct_blocks(info->flags, pages)) 224 return err; 225 226 might_sleep(); /* when quotas */ 227 if (sbinfo->max_blocks) { 228 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 229 sbinfo->max_blocks, pages)) 230 goto unacct; 231 232 err = dquot_alloc_block_nodirty(inode, pages); 233 if (err) { 234 percpu_counter_sub(&sbinfo->used_blocks, pages); 235 goto unacct; 236 } 237 } else { 238 err = dquot_alloc_block_nodirty(inode, pages); 239 if (err) 240 goto unacct; 241 } 242 243 return 0; 244 245 unacct: 246 shmem_unacct_blocks(info->flags, pages); 247 return err; 248 } 249 250 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 251 { 252 struct shmem_inode_info *info = SHMEM_I(inode); 253 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 254 255 might_sleep(); /* when quotas */ 256 dquot_free_block_nodirty(inode, pages); 257 258 if (sbinfo->max_blocks) 259 percpu_counter_sub(&sbinfo->used_blocks, pages); 260 shmem_unacct_blocks(info->flags, pages); 261 } 262 263 static const struct super_operations shmem_ops; 264 static const struct address_space_operations shmem_aops; 265 static const struct file_operations shmem_file_operations; 266 static const struct inode_operations shmem_inode_operations; 267 static const struct inode_operations shmem_dir_inode_operations; 268 static const struct inode_operations shmem_special_inode_operations; 269 static const struct vm_operations_struct shmem_vm_ops; 270 static const struct vm_operations_struct shmem_anon_vm_ops; 271 static struct file_system_type shmem_fs_type; 272 273 bool shmem_mapping(struct address_space *mapping) 274 { 275 return mapping->a_ops == &shmem_aops; 276 } 277 EXPORT_SYMBOL_GPL(shmem_mapping); 278 279 bool vma_is_anon_shmem(struct vm_area_struct *vma) 280 { 281 return vma->vm_ops == &shmem_anon_vm_ops; 282 } 283 284 bool vma_is_shmem(struct vm_area_struct *vma) 285 { 286 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 287 } 288 289 static LIST_HEAD(shmem_swaplist); 290 static DEFINE_MUTEX(shmem_swaplist_mutex); 291 292 #ifdef CONFIG_TMPFS_QUOTA 293 294 static int shmem_enable_quotas(struct super_block *sb, 295 unsigned short quota_types) 296 { 297 int type, err = 0; 298 299 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 300 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 301 if (!(quota_types & (1 << type))) 302 continue; 303 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 304 DQUOT_USAGE_ENABLED | 305 DQUOT_LIMITS_ENABLED); 306 if (err) 307 goto out_err; 308 } 309 return 0; 310 311 out_err: 312 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 313 type, err); 314 for (type--; type >= 0; type--) 315 dquot_quota_off(sb, type); 316 return err; 317 } 318 319 static void shmem_disable_quotas(struct super_block *sb) 320 { 321 int type; 322 323 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 324 dquot_quota_off(sb, type); 325 } 326 327 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 328 { 329 return SHMEM_I(inode)->i_dquot; 330 } 331 #endif /* CONFIG_TMPFS_QUOTA */ 332 333 /* 334 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 335 * produces a novel ino for the newly allocated inode. 336 * 337 * It may also be called when making a hard link to permit the space needed by 338 * each dentry. However, in that case, no new inode number is needed since that 339 * internally draws from another pool of inode numbers (currently global 340 * get_next_ino()). This case is indicated by passing NULL as inop. 341 */ 342 #define SHMEM_INO_BATCH 1024 343 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 344 { 345 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 346 ino_t ino; 347 348 if (!(sb->s_flags & SB_KERNMOUNT)) { 349 raw_spin_lock(&sbinfo->stat_lock); 350 if (sbinfo->max_inodes) { 351 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 352 raw_spin_unlock(&sbinfo->stat_lock); 353 return -ENOSPC; 354 } 355 sbinfo->free_ispace -= BOGO_INODE_SIZE; 356 } 357 if (inop) { 358 ino = sbinfo->next_ino++; 359 if (unlikely(is_zero_ino(ino))) 360 ino = sbinfo->next_ino++; 361 if (unlikely(!sbinfo->full_inums && 362 ino > UINT_MAX)) { 363 /* 364 * Emulate get_next_ino uint wraparound for 365 * compatibility 366 */ 367 if (IS_ENABLED(CONFIG_64BIT)) 368 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 369 __func__, MINOR(sb->s_dev)); 370 sbinfo->next_ino = 1; 371 ino = sbinfo->next_ino++; 372 } 373 *inop = ino; 374 } 375 raw_spin_unlock(&sbinfo->stat_lock); 376 } else if (inop) { 377 /* 378 * __shmem_file_setup, one of our callers, is lock-free: it 379 * doesn't hold stat_lock in shmem_reserve_inode since 380 * max_inodes is always 0, and is called from potentially 381 * unknown contexts. As such, use a per-cpu batched allocator 382 * which doesn't require the per-sb stat_lock unless we are at 383 * the batch boundary. 384 * 385 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 386 * shmem mounts are not exposed to userspace, so we don't need 387 * to worry about things like glibc compatibility. 388 */ 389 ino_t *next_ino; 390 391 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 392 ino = *next_ino; 393 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 394 raw_spin_lock(&sbinfo->stat_lock); 395 ino = sbinfo->next_ino; 396 sbinfo->next_ino += SHMEM_INO_BATCH; 397 raw_spin_unlock(&sbinfo->stat_lock); 398 if (unlikely(is_zero_ino(ino))) 399 ino++; 400 } 401 *inop = ino; 402 *next_ino = ++ino; 403 put_cpu(); 404 } 405 406 return 0; 407 } 408 409 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 410 { 411 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 412 if (sbinfo->max_inodes) { 413 raw_spin_lock(&sbinfo->stat_lock); 414 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 415 raw_spin_unlock(&sbinfo->stat_lock); 416 } 417 } 418 419 /** 420 * shmem_recalc_inode - recalculate the block usage of an inode 421 * @inode: inode to recalc 422 * @alloced: the change in number of pages allocated to inode 423 * @swapped: the change in number of pages swapped from inode 424 * 425 * We have to calculate the free blocks since the mm can drop 426 * undirtied hole pages behind our back. 427 * 428 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 429 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 430 */ 431 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 432 { 433 struct shmem_inode_info *info = SHMEM_I(inode); 434 long freed; 435 436 spin_lock(&info->lock); 437 info->alloced += alloced; 438 info->swapped += swapped; 439 freed = info->alloced - info->swapped - 440 READ_ONCE(inode->i_mapping->nrpages); 441 /* 442 * Special case: whereas normally shmem_recalc_inode() is called 443 * after i_mapping->nrpages has already been adjusted (up or down), 444 * shmem_writepage() has to raise swapped before nrpages is lowered - 445 * to stop a racing shmem_recalc_inode() from thinking that a page has 446 * been freed. Compensate here, to avoid the need for a followup call. 447 */ 448 if (swapped > 0) 449 freed += swapped; 450 if (freed > 0) 451 info->alloced -= freed; 452 spin_unlock(&info->lock); 453 454 /* The quota case may block */ 455 if (freed > 0) 456 shmem_inode_unacct_blocks(inode, freed); 457 } 458 459 bool shmem_charge(struct inode *inode, long pages) 460 { 461 struct address_space *mapping = inode->i_mapping; 462 463 if (shmem_inode_acct_blocks(inode, pages)) 464 return false; 465 466 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 467 xa_lock_irq(&mapping->i_pages); 468 mapping->nrpages += pages; 469 xa_unlock_irq(&mapping->i_pages); 470 471 shmem_recalc_inode(inode, pages, 0); 472 return true; 473 } 474 475 void shmem_uncharge(struct inode *inode, long pages) 476 { 477 /* pages argument is currently unused: keep it to help debugging */ 478 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 479 480 shmem_recalc_inode(inode, 0, 0); 481 } 482 483 /* 484 * Replace item expected in xarray by a new item, while holding xa_lock. 485 */ 486 static int shmem_replace_entry(struct address_space *mapping, 487 pgoff_t index, void *expected, void *replacement) 488 { 489 XA_STATE(xas, &mapping->i_pages, index); 490 void *item; 491 492 VM_BUG_ON(!expected); 493 VM_BUG_ON(!replacement); 494 item = xas_load(&xas); 495 if (item != expected) 496 return -ENOENT; 497 xas_store(&xas, replacement); 498 return 0; 499 } 500 501 /* 502 * Sometimes, before we decide whether to proceed or to fail, we must check 503 * that an entry was not already brought back from swap by a racing thread. 504 * 505 * Checking folio is not enough: by the time a swapcache folio is locked, it 506 * might be reused, and again be swapcache, using the same swap as before. 507 */ 508 static bool shmem_confirm_swap(struct address_space *mapping, 509 pgoff_t index, swp_entry_t swap) 510 { 511 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 512 } 513 514 /* 515 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 516 * 517 * SHMEM_HUGE_NEVER: 518 * disables huge pages for the mount; 519 * SHMEM_HUGE_ALWAYS: 520 * enables huge pages for the mount; 521 * SHMEM_HUGE_WITHIN_SIZE: 522 * only allocate huge pages if the page will be fully within i_size, 523 * also respect fadvise()/madvise() hints; 524 * SHMEM_HUGE_ADVISE: 525 * only allocate huge pages if requested with fadvise()/madvise(); 526 */ 527 528 #define SHMEM_HUGE_NEVER 0 529 #define SHMEM_HUGE_ALWAYS 1 530 #define SHMEM_HUGE_WITHIN_SIZE 2 531 #define SHMEM_HUGE_ADVISE 3 532 533 /* 534 * Special values. 535 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 536 * 537 * SHMEM_HUGE_DENY: 538 * disables huge on shm_mnt and all mounts, for emergency use; 539 * SHMEM_HUGE_FORCE: 540 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 541 * 542 */ 543 #define SHMEM_HUGE_DENY (-1) 544 #define SHMEM_HUGE_FORCE (-2) 545 546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 547 /* ifdef here to avoid bloating shmem.o when not necessary */ 548 549 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 550 551 static bool __shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 552 loff_t write_end, bool shmem_huge_force, 553 struct vm_area_struct *vma, 554 unsigned long vm_flags) 555 { 556 struct mm_struct *mm = vma ? vma->vm_mm : NULL; 557 loff_t i_size; 558 559 if (!S_ISREG(inode->i_mode)) 560 return false; 561 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags))) 562 return false; 563 if (shmem_huge == SHMEM_HUGE_DENY) 564 return false; 565 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 566 return true; 567 568 switch (SHMEM_SB(inode->i_sb)->huge) { 569 case SHMEM_HUGE_ALWAYS: 570 return true; 571 case SHMEM_HUGE_WITHIN_SIZE: 572 index = round_up(index + 1, HPAGE_PMD_NR); 573 i_size = max(write_end, i_size_read(inode)); 574 i_size = round_up(i_size, PAGE_SIZE); 575 if (i_size >> PAGE_SHIFT >= index) 576 return true; 577 fallthrough; 578 case SHMEM_HUGE_ADVISE: 579 if (mm && (vm_flags & VM_HUGEPAGE)) 580 return true; 581 fallthrough; 582 default: 583 return false; 584 } 585 } 586 587 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 588 loff_t write_end, bool shmem_huge_force, 589 struct vm_area_struct *vma, unsigned long vm_flags) 590 { 591 if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER) 592 return false; 593 594 return __shmem_huge_global_enabled(inode, index, write_end, 595 shmem_huge_force, vma, vm_flags); 596 } 597 598 #if defined(CONFIG_SYSFS) 599 static int shmem_parse_huge(const char *str) 600 { 601 if (!strcmp(str, "never")) 602 return SHMEM_HUGE_NEVER; 603 if (!strcmp(str, "always")) 604 return SHMEM_HUGE_ALWAYS; 605 if (!strcmp(str, "within_size")) 606 return SHMEM_HUGE_WITHIN_SIZE; 607 if (!strcmp(str, "advise")) 608 return SHMEM_HUGE_ADVISE; 609 if (!strcmp(str, "deny")) 610 return SHMEM_HUGE_DENY; 611 if (!strcmp(str, "force")) 612 return SHMEM_HUGE_FORCE; 613 return -EINVAL; 614 } 615 #endif 616 617 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 618 static const char *shmem_format_huge(int huge) 619 { 620 switch (huge) { 621 case SHMEM_HUGE_NEVER: 622 return "never"; 623 case SHMEM_HUGE_ALWAYS: 624 return "always"; 625 case SHMEM_HUGE_WITHIN_SIZE: 626 return "within_size"; 627 case SHMEM_HUGE_ADVISE: 628 return "advise"; 629 case SHMEM_HUGE_DENY: 630 return "deny"; 631 case SHMEM_HUGE_FORCE: 632 return "force"; 633 default: 634 VM_BUG_ON(1); 635 return "bad_val"; 636 } 637 } 638 #endif 639 640 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 641 struct shrink_control *sc, unsigned long nr_to_free) 642 { 643 LIST_HEAD(list), *pos, *next; 644 struct inode *inode; 645 struct shmem_inode_info *info; 646 struct folio *folio; 647 unsigned long batch = sc ? sc->nr_to_scan : 128; 648 unsigned long split = 0, freed = 0; 649 650 if (list_empty(&sbinfo->shrinklist)) 651 return SHRINK_STOP; 652 653 spin_lock(&sbinfo->shrinklist_lock); 654 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 655 info = list_entry(pos, struct shmem_inode_info, shrinklist); 656 657 /* pin the inode */ 658 inode = igrab(&info->vfs_inode); 659 660 /* inode is about to be evicted */ 661 if (!inode) { 662 list_del_init(&info->shrinklist); 663 goto next; 664 } 665 666 list_move(&info->shrinklist, &list); 667 next: 668 sbinfo->shrinklist_len--; 669 if (!--batch) 670 break; 671 } 672 spin_unlock(&sbinfo->shrinklist_lock); 673 674 list_for_each_safe(pos, next, &list) { 675 pgoff_t next, end; 676 loff_t i_size; 677 int ret; 678 679 info = list_entry(pos, struct shmem_inode_info, shrinklist); 680 inode = &info->vfs_inode; 681 682 if (nr_to_free && freed >= nr_to_free) 683 goto move_back; 684 685 i_size = i_size_read(inode); 686 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE); 687 if (!folio || xa_is_value(folio)) 688 goto drop; 689 690 /* No large folio at the end of the file: nothing to split */ 691 if (!folio_test_large(folio)) { 692 folio_put(folio); 693 goto drop; 694 } 695 696 /* Check if there is anything to gain from splitting */ 697 next = folio_next_index(folio); 698 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE)); 699 if (end <= folio->index || end >= next) { 700 folio_put(folio); 701 goto drop; 702 } 703 704 /* 705 * Move the inode on the list back to shrinklist if we failed 706 * to lock the page at this time. 707 * 708 * Waiting for the lock may lead to deadlock in the 709 * reclaim path. 710 */ 711 if (!folio_trylock(folio)) { 712 folio_put(folio); 713 goto move_back; 714 } 715 716 ret = split_folio(folio); 717 folio_unlock(folio); 718 folio_put(folio); 719 720 /* If split failed move the inode on the list back to shrinklist */ 721 if (ret) 722 goto move_back; 723 724 freed += next - end; 725 split++; 726 drop: 727 list_del_init(&info->shrinklist); 728 goto put; 729 move_back: 730 /* 731 * Make sure the inode is either on the global list or deleted 732 * from any local list before iput() since it could be deleted 733 * in another thread once we put the inode (then the local list 734 * is corrupted). 735 */ 736 spin_lock(&sbinfo->shrinklist_lock); 737 list_move(&info->shrinklist, &sbinfo->shrinklist); 738 sbinfo->shrinklist_len++; 739 spin_unlock(&sbinfo->shrinklist_lock); 740 put: 741 iput(inode); 742 } 743 744 return split; 745 } 746 747 static long shmem_unused_huge_scan(struct super_block *sb, 748 struct shrink_control *sc) 749 { 750 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 751 752 if (!READ_ONCE(sbinfo->shrinklist_len)) 753 return SHRINK_STOP; 754 755 return shmem_unused_huge_shrink(sbinfo, sc, 0); 756 } 757 758 static long shmem_unused_huge_count(struct super_block *sb, 759 struct shrink_control *sc) 760 { 761 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 762 return READ_ONCE(sbinfo->shrinklist_len); 763 } 764 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 765 766 #define shmem_huge SHMEM_HUGE_DENY 767 768 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 769 struct shrink_control *sc, unsigned long nr_to_free) 770 { 771 return 0; 772 } 773 774 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 775 loff_t write_end, bool shmem_huge_force, 776 struct vm_area_struct *vma, unsigned long vm_flags) 777 { 778 return false; 779 } 780 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 781 782 /* 783 * Somewhat like filemap_add_folio, but error if expected item has gone. 784 */ 785 static int shmem_add_to_page_cache(struct folio *folio, 786 struct address_space *mapping, 787 pgoff_t index, void *expected, gfp_t gfp) 788 { 789 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 790 long nr = folio_nr_pages(folio); 791 792 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 793 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 794 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 795 796 folio_ref_add(folio, nr); 797 folio->mapping = mapping; 798 folio->index = index; 799 800 gfp &= GFP_RECLAIM_MASK; 801 folio_throttle_swaprate(folio, gfp); 802 803 do { 804 xas_lock_irq(&xas); 805 if (expected != xas_find_conflict(&xas)) { 806 xas_set_err(&xas, -EEXIST); 807 goto unlock; 808 } 809 if (expected && xas_find_conflict(&xas)) { 810 xas_set_err(&xas, -EEXIST); 811 goto unlock; 812 } 813 xas_store(&xas, folio); 814 if (xas_error(&xas)) 815 goto unlock; 816 if (folio_test_pmd_mappable(folio)) 817 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 818 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 819 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 820 mapping->nrpages += nr; 821 unlock: 822 xas_unlock_irq(&xas); 823 } while (xas_nomem(&xas, gfp)); 824 825 if (xas_error(&xas)) { 826 folio->mapping = NULL; 827 folio_ref_sub(folio, nr); 828 return xas_error(&xas); 829 } 830 831 return 0; 832 } 833 834 /* 835 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 836 */ 837 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 838 { 839 struct address_space *mapping = folio->mapping; 840 long nr = folio_nr_pages(folio); 841 int error; 842 843 xa_lock_irq(&mapping->i_pages); 844 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 845 folio->mapping = NULL; 846 mapping->nrpages -= nr; 847 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 848 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 849 xa_unlock_irq(&mapping->i_pages); 850 folio_put_refs(folio, nr); 851 BUG_ON(error); 852 } 853 854 /* 855 * Remove swap entry from page cache, free the swap and its page cache. Returns 856 * the number of pages being freed. 0 means entry not found in XArray (0 pages 857 * being freed). 858 */ 859 static long shmem_free_swap(struct address_space *mapping, 860 pgoff_t index, void *radswap) 861 { 862 int order = xa_get_order(&mapping->i_pages, index); 863 void *old; 864 865 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 866 if (old != radswap) 867 return 0; 868 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order); 869 870 return 1 << order; 871 } 872 873 /* 874 * Determine (in bytes) how many of the shmem object's pages mapped by the 875 * given offsets are swapped out. 876 * 877 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 878 * as long as the inode doesn't go away and racy results are not a problem. 879 */ 880 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 881 pgoff_t start, pgoff_t end) 882 { 883 XA_STATE(xas, &mapping->i_pages, start); 884 struct page *page; 885 unsigned long swapped = 0; 886 unsigned long max = end - 1; 887 888 rcu_read_lock(); 889 xas_for_each(&xas, page, max) { 890 if (xas_retry(&xas, page)) 891 continue; 892 if (xa_is_value(page)) 893 swapped += 1 << xas_get_order(&xas); 894 if (xas.xa_index == max) 895 break; 896 if (need_resched()) { 897 xas_pause(&xas); 898 cond_resched_rcu(); 899 } 900 } 901 rcu_read_unlock(); 902 903 return swapped << PAGE_SHIFT; 904 } 905 906 /* 907 * Determine (in bytes) how many of the shmem object's pages mapped by the 908 * given vma is swapped out. 909 * 910 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 911 * as long as the inode doesn't go away and racy results are not a problem. 912 */ 913 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 914 { 915 struct inode *inode = file_inode(vma->vm_file); 916 struct shmem_inode_info *info = SHMEM_I(inode); 917 struct address_space *mapping = inode->i_mapping; 918 unsigned long swapped; 919 920 /* Be careful as we don't hold info->lock */ 921 swapped = READ_ONCE(info->swapped); 922 923 /* 924 * The easier cases are when the shmem object has nothing in swap, or 925 * the vma maps it whole. Then we can simply use the stats that we 926 * already track. 927 */ 928 if (!swapped) 929 return 0; 930 931 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 932 return swapped << PAGE_SHIFT; 933 934 /* Here comes the more involved part */ 935 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 936 vma->vm_pgoff + vma_pages(vma)); 937 } 938 939 /* 940 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 941 */ 942 void shmem_unlock_mapping(struct address_space *mapping) 943 { 944 struct folio_batch fbatch; 945 pgoff_t index = 0; 946 947 folio_batch_init(&fbatch); 948 /* 949 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 950 */ 951 while (!mapping_unevictable(mapping) && 952 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 953 check_move_unevictable_folios(&fbatch); 954 folio_batch_release(&fbatch); 955 cond_resched(); 956 } 957 } 958 959 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 960 { 961 struct folio *folio; 962 963 /* 964 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 965 * beyond i_size, and reports fallocated folios as holes. 966 */ 967 folio = filemap_get_entry(inode->i_mapping, index); 968 if (!folio) 969 return folio; 970 if (!xa_is_value(folio)) { 971 folio_lock(folio); 972 if (folio->mapping == inode->i_mapping) 973 return folio; 974 /* The folio has been swapped out */ 975 folio_unlock(folio); 976 folio_put(folio); 977 } 978 /* 979 * But read a folio back from swap if any of it is within i_size 980 * (although in some cases this is just a waste of time). 981 */ 982 folio = NULL; 983 shmem_get_folio(inode, index, 0, &folio, SGP_READ); 984 return folio; 985 } 986 987 /* 988 * Remove range of pages and swap entries from page cache, and free them. 989 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 990 */ 991 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 992 bool unfalloc) 993 { 994 struct address_space *mapping = inode->i_mapping; 995 struct shmem_inode_info *info = SHMEM_I(inode); 996 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 997 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 998 struct folio_batch fbatch; 999 pgoff_t indices[PAGEVEC_SIZE]; 1000 struct folio *folio; 1001 bool same_folio; 1002 long nr_swaps_freed = 0; 1003 pgoff_t index; 1004 int i; 1005 1006 if (lend == -1) 1007 end = -1; /* unsigned, so actually very big */ 1008 1009 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1010 info->fallocend = start; 1011 1012 folio_batch_init(&fbatch); 1013 index = start; 1014 while (index < end && find_lock_entries(mapping, &index, end - 1, 1015 &fbatch, indices)) { 1016 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1017 folio = fbatch.folios[i]; 1018 1019 if (xa_is_value(folio)) { 1020 if (unfalloc) 1021 continue; 1022 nr_swaps_freed += shmem_free_swap(mapping, 1023 indices[i], folio); 1024 continue; 1025 } 1026 1027 if (!unfalloc || !folio_test_uptodate(folio)) 1028 truncate_inode_folio(mapping, folio); 1029 folio_unlock(folio); 1030 } 1031 folio_batch_remove_exceptionals(&fbatch); 1032 folio_batch_release(&fbatch); 1033 cond_resched(); 1034 } 1035 1036 /* 1037 * When undoing a failed fallocate, we want none of the partial folio 1038 * zeroing and splitting below, but shall want to truncate the whole 1039 * folio when !uptodate indicates that it was added by this fallocate, 1040 * even when [lstart, lend] covers only a part of the folio. 1041 */ 1042 if (unfalloc) 1043 goto whole_folios; 1044 1045 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1046 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1047 if (folio) { 1048 same_folio = lend < folio_pos(folio) + folio_size(folio); 1049 folio_mark_dirty(folio); 1050 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1051 start = folio_next_index(folio); 1052 if (same_folio) 1053 end = folio->index; 1054 } 1055 folio_unlock(folio); 1056 folio_put(folio); 1057 folio = NULL; 1058 } 1059 1060 if (!same_folio) 1061 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1062 if (folio) { 1063 folio_mark_dirty(folio); 1064 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1065 end = folio->index; 1066 folio_unlock(folio); 1067 folio_put(folio); 1068 } 1069 1070 whole_folios: 1071 1072 index = start; 1073 while (index < end) { 1074 cond_resched(); 1075 1076 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1077 indices)) { 1078 /* If all gone or hole-punch or unfalloc, we're done */ 1079 if (index == start || end != -1) 1080 break; 1081 /* But if truncating, restart to make sure all gone */ 1082 index = start; 1083 continue; 1084 } 1085 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1086 folio = fbatch.folios[i]; 1087 1088 if (xa_is_value(folio)) { 1089 long swaps_freed; 1090 1091 if (unfalloc) 1092 continue; 1093 swaps_freed = shmem_free_swap(mapping, indices[i], folio); 1094 if (!swaps_freed) { 1095 /* Swap was replaced by page: retry */ 1096 index = indices[i]; 1097 break; 1098 } 1099 nr_swaps_freed += swaps_freed; 1100 continue; 1101 } 1102 1103 folio_lock(folio); 1104 1105 if (!unfalloc || !folio_test_uptodate(folio)) { 1106 if (folio_mapping(folio) != mapping) { 1107 /* Page was replaced by swap: retry */ 1108 folio_unlock(folio); 1109 index = indices[i]; 1110 break; 1111 } 1112 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1113 folio); 1114 1115 if (!folio_test_large(folio)) { 1116 truncate_inode_folio(mapping, folio); 1117 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1118 /* 1119 * If we split a page, reset the loop so 1120 * that we pick up the new sub pages. 1121 * Otherwise the THP was entirely 1122 * dropped or the target range was 1123 * zeroed, so just continue the loop as 1124 * is. 1125 */ 1126 if (!folio_test_large(folio)) { 1127 folio_unlock(folio); 1128 index = start; 1129 break; 1130 } 1131 } 1132 } 1133 folio_unlock(folio); 1134 } 1135 folio_batch_remove_exceptionals(&fbatch); 1136 folio_batch_release(&fbatch); 1137 } 1138 1139 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1140 } 1141 1142 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1143 { 1144 shmem_undo_range(inode, lstart, lend, false); 1145 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1146 inode_inc_iversion(inode); 1147 } 1148 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1149 1150 static int shmem_getattr(struct mnt_idmap *idmap, 1151 const struct path *path, struct kstat *stat, 1152 u32 request_mask, unsigned int query_flags) 1153 { 1154 struct inode *inode = path->dentry->d_inode; 1155 struct shmem_inode_info *info = SHMEM_I(inode); 1156 1157 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1158 shmem_recalc_inode(inode, 0, 0); 1159 1160 if (info->fsflags & FS_APPEND_FL) 1161 stat->attributes |= STATX_ATTR_APPEND; 1162 if (info->fsflags & FS_IMMUTABLE_FL) 1163 stat->attributes |= STATX_ATTR_IMMUTABLE; 1164 if (info->fsflags & FS_NODUMP_FL) 1165 stat->attributes |= STATX_ATTR_NODUMP; 1166 stat->attributes_mask |= (STATX_ATTR_APPEND | 1167 STATX_ATTR_IMMUTABLE | 1168 STATX_ATTR_NODUMP); 1169 inode_lock_shared(inode); 1170 generic_fillattr(idmap, request_mask, inode, stat); 1171 inode_unlock_shared(inode); 1172 1173 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0)) 1174 stat->blksize = HPAGE_PMD_SIZE; 1175 1176 if (request_mask & STATX_BTIME) { 1177 stat->result_mask |= STATX_BTIME; 1178 stat->btime.tv_sec = info->i_crtime.tv_sec; 1179 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1180 } 1181 1182 return 0; 1183 } 1184 1185 static int shmem_setattr(struct mnt_idmap *idmap, 1186 struct dentry *dentry, struct iattr *attr) 1187 { 1188 struct inode *inode = d_inode(dentry); 1189 struct shmem_inode_info *info = SHMEM_I(inode); 1190 int error; 1191 bool update_mtime = false; 1192 bool update_ctime = true; 1193 1194 error = setattr_prepare(idmap, dentry, attr); 1195 if (error) 1196 return error; 1197 1198 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1199 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1200 return -EPERM; 1201 } 1202 } 1203 1204 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1205 loff_t oldsize = inode->i_size; 1206 loff_t newsize = attr->ia_size; 1207 1208 /* protected by i_rwsem */ 1209 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1210 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1211 return -EPERM; 1212 1213 if (newsize != oldsize) { 1214 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1215 oldsize, newsize); 1216 if (error) 1217 return error; 1218 i_size_write(inode, newsize); 1219 update_mtime = true; 1220 } else { 1221 update_ctime = false; 1222 } 1223 if (newsize <= oldsize) { 1224 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1225 if (oldsize > holebegin) 1226 unmap_mapping_range(inode->i_mapping, 1227 holebegin, 0, 1); 1228 if (info->alloced) 1229 shmem_truncate_range(inode, 1230 newsize, (loff_t)-1); 1231 /* unmap again to remove racily COWed private pages */ 1232 if (oldsize > holebegin) 1233 unmap_mapping_range(inode->i_mapping, 1234 holebegin, 0, 1); 1235 } 1236 } 1237 1238 if (is_quota_modification(idmap, inode, attr)) { 1239 error = dquot_initialize(inode); 1240 if (error) 1241 return error; 1242 } 1243 1244 /* Transfer quota accounting */ 1245 if (i_uid_needs_update(idmap, attr, inode) || 1246 i_gid_needs_update(idmap, attr, inode)) { 1247 error = dquot_transfer(idmap, inode, attr); 1248 if (error) 1249 return error; 1250 } 1251 1252 setattr_copy(idmap, inode, attr); 1253 if (attr->ia_valid & ATTR_MODE) 1254 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1255 if (!error && update_ctime) { 1256 inode_set_ctime_current(inode); 1257 if (update_mtime) 1258 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1259 inode_inc_iversion(inode); 1260 } 1261 return error; 1262 } 1263 1264 static void shmem_evict_inode(struct inode *inode) 1265 { 1266 struct shmem_inode_info *info = SHMEM_I(inode); 1267 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1268 size_t freed = 0; 1269 1270 if (shmem_mapping(inode->i_mapping)) { 1271 shmem_unacct_size(info->flags, inode->i_size); 1272 inode->i_size = 0; 1273 mapping_set_exiting(inode->i_mapping); 1274 shmem_truncate_range(inode, 0, (loff_t)-1); 1275 if (!list_empty(&info->shrinklist)) { 1276 spin_lock(&sbinfo->shrinklist_lock); 1277 if (!list_empty(&info->shrinklist)) { 1278 list_del_init(&info->shrinklist); 1279 sbinfo->shrinklist_len--; 1280 } 1281 spin_unlock(&sbinfo->shrinklist_lock); 1282 } 1283 while (!list_empty(&info->swaplist)) { 1284 /* Wait while shmem_unuse() is scanning this inode... */ 1285 wait_var_event(&info->stop_eviction, 1286 !atomic_read(&info->stop_eviction)); 1287 mutex_lock(&shmem_swaplist_mutex); 1288 /* ...but beware of the race if we peeked too early */ 1289 if (!atomic_read(&info->stop_eviction)) 1290 list_del_init(&info->swaplist); 1291 mutex_unlock(&shmem_swaplist_mutex); 1292 } 1293 } 1294 1295 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1296 shmem_free_inode(inode->i_sb, freed); 1297 WARN_ON(inode->i_blocks); 1298 clear_inode(inode); 1299 #ifdef CONFIG_TMPFS_QUOTA 1300 dquot_free_inode(inode); 1301 dquot_drop(inode); 1302 #endif 1303 } 1304 1305 static int shmem_find_swap_entries(struct address_space *mapping, 1306 pgoff_t start, struct folio_batch *fbatch, 1307 pgoff_t *indices, unsigned int type) 1308 { 1309 XA_STATE(xas, &mapping->i_pages, start); 1310 struct folio *folio; 1311 swp_entry_t entry; 1312 1313 rcu_read_lock(); 1314 xas_for_each(&xas, folio, ULONG_MAX) { 1315 if (xas_retry(&xas, folio)) 1316 continue; 1317 1318 if (!xa_is_value(folio)) 1319 continue; 1320 1321 entry = radix_to_swp_entry(folio); 1322 /* 1323 * swapin error entries can be found in the mapping. But they're 1324 * deliberately ignored here as we've done everything we can do. 1325 */ 1326 if (swp_type(entry) != type) 1327 continue; 1328 1329 indices[folio_batch_count(fbatch)] = xas.xa_index; 1330 if (!folio_batch_add(fbatch, folio)) 1331 break; 1332 1333 if (need_resched()) { 1334 xas_pause(&xas); 1335 cond_resched_rcu(); 1336 } 1337 } 1338 rcu_read_unlock(); 1339 1340 return xas.xa_index; 1341 } 1342 1343 /* 1344 * Move the swapped pages for an inode to page cache. Returns the count 1345 * of pages swapped in, or the error in case of failure. 1346 */ 1347 static int shmem_unuse_swap_entries(struct inode *inode, 1348 struct folio_batch *fbatch, pgoff_t *indices) 1349 { 1350 int i = 0; 1351 int ret = 0; 1352 int error = 0; 1353 struct address_space *mapping = inode->i_mapping; 1354 1355 for (i = 0; i < folio_batch_count(fbatch); i++) { 1356 struct folio *folio = fbatch->folios[i]; 1357 1358 if (!xa_is_value(folio)) 1359 continue; 1360 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1361 mapping_gfp_mask(mapping), NULL, NULL); 1362 if (error == 0) { 1363 folio_unlock(folio); 1364 folio_put(folio); 1365 ret++; 1366 } 1367 if (error == -ENOMEM) 1368 break; 1369 error = 0; 1370 } 1371 return error ? error : ret; 1372 } 1373 1374 /* 1375 * If swap found in inode, free it and move page from swapcache to filecache. 1376 */ 1377 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1378 { 1379 struct address_space *mapping = inode->i_mapping; 1380 pgoff_t start = 0; 1381 struct folio_batch fbatch; 1382 pgoff_t indices[PAGEVEC_SIZE]; 1383 int ret = 0; 1384 1385 do { 1386 folio_batch_init(&fbatch); 1387 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1388 if (folio_batch_count(&fbatch) == 0) { 1389 ret = 0; 1390 break; 1391 } 1392 1393 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1394 if (ret < 0) 1395 break; 1396 1397 start = indices[folio_batch_count(&fbatch) - 1]; 1398 } while (true); 1399 1400 return ret; 1401 } 1402 1403 /* 1404 * Read all the shared memory data that resides in the swap 1405 * device 'type' back into memory, so the swap device can be 1406 * unused. 1407 */ 1408 int shmem_unuse(unsigned int type) 1409 { 1410 struct shmem_inode_info *info, *next; 1411 int error = 0; 1412 1413 if (list_empty(&shmem_swaplist)) 1414 return 0; 1415 1416 mutex_lock(&shmem_swaplist_mutex); 1417 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1418 if (!info->swapped) { 1419 list_del_init(&info->swaplist); 1420 continue; 1421 } 1422 /* 1423 * Drop the swaplist mutex while searching the inode for swap; 1424 * but before doing so, make sure shmem_evict_inode() will not 1425 * remove placeholder inode from swaplist, nor let it be freed 1426 * (igrab() would protect from unlink, but not from unmount). 1427 */ 1428 atomic_inc(&info->stop_eviction); 1429 mutex_unlock(&shmem_swaplist_mutex); 1430 1431 error = shmem_unuse_inode(&info->vfs_inode, type); 1432 cond_resched(); 1433 1434 mutex_lock(&shmem_swaplist_mutex); 1435 next = list_next_entry(info, swaplist); 1436 if (!info->swapped) 1437 list_del_init(&info->swaplist); 1438 if (atomic_dec_and_test(&info->stop_eviction)) 1439 wake_up_var(&info->stop_eviction); 1440 if (error) 1441 break; 1442 } 1443 mutex_unlock(&shmem_swaplist_mutex); 1444 1445 return error; 1446 } 1447 1448 /* 1449 * Move the page from the page cache to the swap cache. 1450 */ 1451 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1452 { 1453 struct folio *folio = page_folio(page); 1454 struct address_space *mapping = folio->mapping; 1455 struct inode *inode = mapping->host; 1456 struct shmem_inode_info *info = SHMEM_I(inode); 1457 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1458 swp_entry_t swap; 1459 pgoff_t index; 1460 int nr_pages; 1461 bool split = false; 1462 1463 /* 1464 * Our capabilities prevent regular writeback or sync from ever calling 1465 * shmem_writepage; but a stacking filesystem might use ->writepage of 1466 * its underlying filesystem, in which case tmpfs should write out to 1467 * swap only in response to memory pressure, and not for the writeback 1468 * threads or sync. 1469 */ 1470 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1471 goto redirty; 1472 1473 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap)) 1474 goto redirty; 1475 1476 if (!total_swap_pages) 1477 goto redirty; 1478 1479 /* 1480 * If CONFIG_THP_SWAP is not enabled, the large folio should be 1481 * split when swapping. 1482 * 1483 * And shrinkage of pages beyond i_size does not split swap, so 1484 * swapout of a large folio crossing i_size needs to split too 1485 * (unless fallocate has been used to preallocate beyond EOF). 1486 */ 1487 if (folio_test_large(folio)) { 1488 index = shmem_fallocend(inode, 1489 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 1490 if ((index > folio->index && index < folio_next_index(folio)) || 1491 !IS_ENABLED(CONFIG_THP_SWAP)) 1492 split = true; 1493 } 1494 1495 if (split) { 1496 try_split: 1497 /* Ensure the subpages are still dirty */ 1498 folio_test_set_dirty(folio); 1499 if (split_huge_page_to_list_to_order(page, wbc->list, 0)) 1500 goto redirty; 1501 folio = page_folio(page); 1502 folio_clear_dirty(folio); 1503 } 1504 1505 index = folio->index; 1506 nr_pages = folio_nr_pages(folio); 1507 1508 /* 1509 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1510 * value into swapfile.c, the only way we can correctly account for a 1511 * fallocated folio arriving here is now to initialize it and write it. 1512 * 1513 * That's okay for a folio already fallocated earlier, but if we have 1514 * not yet completed the fallocation, then (a) we want to keep track 1515 * of this folio in case we have to undo it, and (b) it may not be a 1516 * good idea to continue anyway, once we're pushing into swap. So 1517 * reactivate the folio, and let shmem_fallocate() quit when too many. 1518 */ 1519 if (!folio_test_uptodate(folio)) { 1520 if (inode->i_private) { 1521 struct shmem_falloc *shmem_falloc; 1522 spin_lock(&inode->i_lock); 1523 shmem_falloc = inode->i_private; 1524 if (shmem_falloc && 1525 !shmem_falloc->waitq && 1526 index >= shmem_falloc->start && 1527 index < shmem_falloc->next) 1528 shmem_falloc->nr_unswapped++; 1529 else 1530 shmem_falloc = NULL; 1531 spin_unlock(&inode->i_lock); 1532 if (shmem_falloc) 1533 goto redirty; 1534 } 1535 folio_zero_range(folio, 0, folio_size(folio)); 1536 flush_dcache_folio(folio); 1537 folio_mark_uptodate(folio); 1538 } 1539 1540 swap = folio_alloc_swap(folio); 1541 if (!swap.val) { 1542 if (nr_pages > 1) 1543 goto try_split; 1544 1545 goto redirty; 1546 } 1547 1548 /* 1549 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1550 * if it's not already there. Do it now before the folio is 1551 * moved to swap cache, when its pagelock no longer protects 1552 * the inode from eviction. But don't unlock the mutex until 1553 * we've incremented swapped, because shmem_unuse_inode() will 1554 * prune a !swapped inode from the swaplist under this mutex. 1555 */ 1556 mutex_lock(&shmem_swaplist_mutex); 1557 if (list_empty(&info->swaplist)) 1558 list_add(&info->swaplist, &shmem_swaplist); 1559 1560 if (add_to_swap_cache(folio, swap, 1561 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1562 NULL) == 0) { 1563 shmem_recalc_inode(inode, 0, nr_pages); 1564 swap_shmem_alloc(swap, nr_pages); 1565 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1566 1567 mutex_unlock(&shmem_swaplist_mutex); 1568 BUG_ON(folio_mapped(folio)); 1569 return swap_writepage(&folio->page, wbc); 1570 } 1571 1572 mutex_unlock(&shmem_swaplist_mutex); 1573 put_swap_folio(folio, swap); 1574 redirty: 1575 folio_mark_dirty(folio); 1576 if (wbc->for_reclaim) 1577 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1578 folio_unlock(folio); 1579 return 0; 1580 } 1581 1582 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1583 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1584 { 1585 char buffer[64]; 1586 1587 if (!mpol || mpol->mode == MPOL_DEFAULT) 1588 return; /* show nothing */ 1589 1590 mpol_to_str(buffer, sizeof(buffer), mpol); 1591 1592 seq_printf(seq, ",mpol=%s", buffer); 1593 } 1594 1595 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1596 { 1597 struct mempolicy *mpol = NULL; 1598 if (sbinfo->mpol) { 1599 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1600 mpol = sbinfo->mpol; 1601 mpol_get(mpol); 1602 raw_spin_unlock(&sbinfo->stat_lock); 1603 } 1604 return mpol; 1605 } 1606 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1607 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1608 { 1609 } 1610 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1611 { 1612 return NULL; 1613 } 1614 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1615 1616 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1617 pgoff_t index, unsigned int order, pgoff_t *ilx); 1618 1619 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1620 struct shmem_inode_info *info, pgoff_t index) 1621 { 1622 struct mempolicy *mpol; 1623 pgoff_t ilx; 1624 struct folio *folio; 1625 1626 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1627 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1628 mpol_cond_put(mpol); 1629 1630 return folio; 1631 } 1632 1633 /* 1634 * Make sure huge_gfp is always more limited than limit_gfp. 1635 * Some of the flags set permissions, while others set limitations. 1636 */ 1637 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1638 { 1639 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1640 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1641 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1642 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1643 1644 /* Allow allocations only from the originally specified zones. */ 1645 result |= zoneflags; 1646 1647 /* 1648 * Minimize the result gfp by taking the union with the deny flags, 1649 * and the intersection of the allow flags. 1650 */ 1651 result |= (limit_gfp & denyflags); 1652 result |= (huge_gfp & limit_gfp) & allowflags; 1653 1654 return result; 1655 } 1656 1657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1658 unsigned long shmem_allowable_huge_orders(struct inode *inode, 1659 struct vm_area_struct *vma, pgoff_t index, 1660 loff_t write_end, bool shmem_huge_force) 1661 { 1662 unsigned long mask = READ_ONCE(huge_shmem_orders_always); 1663 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size); 1664 unsigned long vm_flags = vma ? vma->vm_flags : 0; 1665 bool global_huge; 1666 loff_t i_size; 1667 int order; 1668 1669 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags))) 1670 return 0; 1671 1672 global_huge = shmem_huge_global_enabled(inode, index, write_end, 1673 shmem_huge_force, vma, vm_flags); 1674 if (!vma || !vma_is_anon_shmem(vma)) { 1675 /* 1676 * For tmpfs, we now only support PMD sized THP if huge page 1677 * is enabled, otherwise fallback to order 0. 1678 */ 1679 return global_huge ? BIT(HPAGE_PMD_ORDER) : 0; 1680 } 1681 1682 /* 1683 * Following the 'deny' semantics of the top level, force the huge 1684 * option off from all mounts. 1685 */ 1686 if (shmem_huge == SHMEM_HUGE_DENY) 1687 return 0; 1688 1689 /* 1690 * Only allow inherit orders if the top-level value is 'force', which 1691 * means non-PMD sized THP can not override 'huge' mount option now. 1692 */ 1693 if (shmem_huge == SHMEM_HUGE_FORCE) 1694 return READ_ONCE(huge_shmem_orders_inherit); 1695 1696 /* Allow mTHP that will be fully within i_size. */ 1697 order = highest_order(within_size_orders); 1698 while (within_size_orders) { 1699 index = round_up(index + 1, order); 1700 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1701 if (i_size >> PAGE_SHIFT >= index) { 1702 mask |= within_size_orders; 1703 break; 1704 } 1705 1706 order = next_order(&within_size_orders, order); 1707 } 1708 1709 if (vm_flags & VM_HUGEPAGE) 1710 mask |= READ_ONCE(huge_shmem_orders_madvise); 1711 1712 if (global_huge) 1713 mask |= READ_ONCE(huge_shmem_orders_inherit); 1714 1715 return THP_ORDERS_ALL_FILE_DEFAULT & mask; 1716 } 1717 1718 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1719 struct address_space *mapping, pgoff_t index, 1720 unsigned long orders) 1721 { 1722 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1723 pgoff_t aligned_index; 1724 unsigned long pages; 1725 int order; 1726 1727 if (vma) { 1728 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 1729 if (!orders) 1730 return 0; 1731 } 1732 1733 /* Find the highest order that can add into the page cache */ 1734 order = highest_order(orders); 1735 while (orders) { 1736 pages = 1UL << order; 1737 aligned_index = round_down(index, pages); 1738 /* 1739 * Check for conflict before waiting on a huge allocation. 1740 * Conflict might be that a huge page has just been allocated 1741 * and added to page cache by a racing thread, or that there 1742 * is already at least one small page in the huge extent. 1743 * Be careful to retry when appropriate, but not forever! 1744 * Elsewhere -EEXIST would be the right code, but not here. 1745 */ 1746 if (!xa_find(&mapping->i_pages, &aligned_index, 1747 aligned_index + pages - 1, XA_PRESENT)) 1748 break; 1749 order = next_order(&orders, order); 1750 } 1751 1752 return orders; 1753 } 1754 #else 1755 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1756 struct address_space *mapping, pgoff_t index, 1757 unsigned long orders) 1758 { 1759 return 0; 1760 } 1761 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1762 1763 static struct folio *shmem_alloc_folio(gfp_t gfp, int order, 1764 struct shmem_inode_info *info, pgoff_t index) 1765 { 1766 struct mempolicy *mpol; 1767 pgoff_t ilx; 1768 struct folio *folio; 1769 1770 mpol = shmem_get_pgoff_policy(info, index, order, &ilx); 1771 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id()); 1772 mpol_cond_put(mpol); 1773 1774 return folio; 1775 } 1776 1777 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf, 1778 gfp_t gfp, struct inode *inode, pgoff_t index, 1779 struct mm_struct *fault_mm, unsigned long orders) 1780 { 1781 struct address_space *mapping = inode->i_mapping; 1782 struct shmem_inode_info *info = SHMEM_I(inode); 1783 unsigned long suitable_orders = 0; 1784 struct folio *folio = NULL; 1785 long pages; 1786 int error, order; 1787 1788 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1789 orders = 0; 1790 1791 if (orders > 0) { 1792 suitable_orders = shmem_suitable_orders(inode, vmf, 1793 mapping, index, orders); 1794 1795 order = highest_order(suitable_orders); 1796 while (suitable_orders) { 1797 pages = 1UL << order; 1798 index = round_down(index, pages); 1799 folio = shmem_alloc_folio(gfp, order, info, index); 1800 if (folio) 1801 goto allocated; 1802 1803 if (pages == HPAGE_PMD_NR) 1804 count_vm_event(THP_FILE_FALLBACK); 1805 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK); 1806 order = next_order(&suitable_orders, order); 1807 } 1808 } else { 1809 pages = 1; 1810 folio = shmem_alloc_folio(gfp, 0, info, index); 1811 } 1812 if (!folio) 1813 return ERR_PTR(-ENOMEM); 1814 1815 allocated: 1816 __folio_set_locked(folio); 1817 __folio_set_swapbacked(folio); 1818 1819 gfp &= GFP_RECLAIM_MASK; 1820 error = mem_cgroup_charge(folio, fault_mm, gfp); 1821 if (error) { 1822 if (xa_find(&mapping->i_pages, &index, 1823 index + pages - 1, XA_PRESENT)) { 1824 error = -EEXIST; 1825 } else if (pages > 1) { 1826 if (pages == HPAGE_PMD_NR) { 1827 count_vm_event(THP_FILE_FALLBACK); 1828 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1829 } 1830 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK); 1831 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE); 1832 } 1833 goto unlock; 1834 } 1835 1836 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1837 if (error) 1838 goto unlock; 1839 1840 error = shmem_inode_acct_blocks(inode, pages); 1841 if (error) { 1842 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1843 long freed; 1844 /* 1845 * Try to reclaim some space by splitting a few 1846 * large folios beyond i_size on the filesystem. 1847 */ 1848 shmem_unused_huge_shrink(sbinfo, NULL, pages); 1849 /* 1850 * And do a shmem_recalc_inode() to account for freed pages: 1851 * except our folio is there in cache, so not quite balanced. 1852 */ 1853 spin_lock(&info->lock); 1854 freed = pages + info->alloced - info->swapped - 1855 READ_ONCE(mapping->nrpages); 1856 if (freed > 0) 1857 info->alloced -= freed; 1858 spin_unlock(&info->lock); 1859 if (freed > 0) 1860 shmem_inode_unacct_blocks(inode, freed); 1861 error = shmem_inode_acct_blocks(inode, pages); 1862 if (error) { 1863 filemap_remove_folio(folio); 1864 goto unlock; 1865 } 1866 } 1867 1868 shmem_recalc_inode(inode, pages, 0); 1869 folio_add_lru(folio); 1870 return folio; 1871 1872 unlock: 1873 folio_unlock(folio); 1874 folio_put(folio); 1875 return ERR_PTR(error); 1876 } 1877 1878 /* 1879 * When a page is moved from swapcache to shmem filecache (either by the 1880 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1881 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1882 * ignorance of the mapping it belongs to. If that mapping has special 1883 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1884 * we may need to copy to a suitable page before moving to filecache. 1885 * 1886 * In a future release, this may well be extended to respect cpuset and 1887 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1888 * but for now it is a simple matter of zone. 1889 */ 1890 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1891 { 1892 return folio_zonenum(folio) > gfp_zone(gfp); 1893 } 1894 1895 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1896 struct shmem_inode_info *info, pgoff_t index, 1897 struct vm_area_struct *vma) 1898 { 1899 struct folio *new, *old = *foliop; 1900 swp_entry_t entry = old->swap; 1901 struct address_space *swap_mapping = swap_address_space(entry); 1902 pgoff_t swap_index = swap_cache_index(entry); 1903 XA_STATE(xas, &swap_mapping->i_pages, swap_index); 1904 int nr_pages = folio_nr_pages(old); 1905 int error = 0, i; 1906 1907 /* 1908 * We have arrived here because our zones are constrained, so don't 1909 * limit chance of success by further cpuset and node constraints. 1910 */ 1911 gfp &= ~GFP_CONSTRAINT_MASK; 1912 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1913 if (nr_pages > 1) { 1914 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 1915 1916 gfp = limit_gfp_mask(huge_gfp, gfp); 1917 } 1918 #endif 1919 1920 new = shmem_alloc_folio(gfp, folio_order(old), info, index); 1921 if (!new) 1922 return -ENOMEM; 1923 1924 folio_ref_add(new, nr_pages); 1925 folio_copy(new, old); 1926 flush_dcache_folio(new); 1927 1928 __folio_set_locked(new); 1929 __folio_set_swapbacked(new); 1930 folio_mark_uptodate(new); 1931 new->swap = entry; 1932 folio_set_swapcache(new); 1933 1934 /* Swap cache still stores N entries instead of a high-order entry */ 1935 xa_lock_irq(&swap_mapping->i_pages); 1936 for (i = 0; i < nr_pages; i++) { 1937 void *item = xas_load(&xas); 1938 1939 if (item != old) { 1940 error = -ENOENT; 1941 break; 1942 } 1943 1944 xas_store(&xas, new); 1945 xas_next(&xas); 1946 } 1947 if (!error) { 1948 mem_cgroup_replace_folio(old, new); 1949 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, nr_pages); 1950 __lruvec_stat_mod_folio(new, NR_SHMEM, nr_pages); 1951 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -nr_pages); 1952 __lruvec_stat_mod_folio(old, NR_SHMEM, -nr_pages); 1953 } 1954 xa_unlock_irq(&swap_mapping->i_pages); 1955 1956 if (unlikely(error)) { 1957 /* 1958 * Is this possible? I think not, now that our callers 1959 * check both the swapcache flag and folio->private 1960 * after getting the folio lock; but be defensive. 1961 * Reverse old to newpage for clear and free. 1962 */ 1963 old = new; 1964 } else { 1965 folio_add_lru(new); 1966 *foliop = new; 1967 } 1968 1969 folio_clear_swapcache(old); 1970 old->private = NULL; 1971 1972 folio_unlock(old); 1973 /* 1974 * The old folio are removed from swap cache, drop the 'nr_pages' 1975 * reference, as well as one temporary reference getting from swap 1976 * cache. 1977 */ 1978 folio_put_refs(old, nr_pages + 1); 1979 return error; 1980 } 1981 1982 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1983 struct folio *folio, swp_entry_t swap) 1984 { 1985 struct address_space *mapping = inode->i_mapping; 1986 swp_entry_t swapin_error; 1987 void *old; 1988 int nr_pages; 1989 1990 swapin_error = make_poisoned_swp_entry(); 1991 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1992 swp_to_radix_entry(swap), 1993 swp_to_radix_entry(swapin_error), 0); 1994 if (old != swp_to_radix_entry(swap)) 1995 return; 1996 1997 nr_pages = folio_nr_pages(folio); 1998 folio_wait_writeback(folio); 1999 delete_from_swap_cache(folio); 2000 /* 2001 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 2002 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 2003 * in shmem_evict_inode(). 2004 */ 2005 shmem_recalc_inode(inode, -nr_pages, -nr_pages); 2006 swap_free_nr(swap, nr_pages); 2007 } 2008 2009 static int shmem_split_large_entry(struct inode *inode, pgoff_t index, 2010 swp_entry_t swap, gfp_t gfp) 2011 { 2012 struct address_space *mapping = inode->i_mapping; 2013 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0); 2014 void *alloced_shadow = NULL; 2015 int alloced_order = 0, i; 2016 2017 /* Convert user data gfp flags to xarray node gfp flags */ 2018 gfp &= GFP_RECLAIM_MASK; 2019 2020 for (;;) { 2021 int order = -1, split_order = 0; 2022 void *old = NULL; 2023 2024 xas_lock_irq(&xas); 2025 old = xas_load(&xas); 2026 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) { 2027 xas_set_err(&xas, -EEXIST); 2028 goto unlock; 2029 } 2030 2031 order = xas_get_order(&xas); 2032 2033 /* Swap entry may have changed before we re-acquire the lock */ 2034 if (alloced_order && 2035 (old != alloced_shadow || order != alloced_order)) { 2036 xas_destroy(&xas); 2037 alloced_order = 0; 2038 } 2039 2040 /* Try to split large swap entry in pagecache */ 2041 if (order > 0) { 2042 if (!alloced_order) { 2043 split_order = order; 2044 goto unlock; 2045 } 2046 xas_split(&xas, old, order); 2047 2048 /* 2049 * Re-set the swap entry after splitting, and the swap 2050 * offset of the original large entry must be continuous. 2051 */ 2052 for (i = 0; i < 1 << order; i++) { 2053 pgoff_t aligned_index = round_down(index, 1 << order); 2054 swp_entry_t tmp; 2055 2056 tmp = swp_entry(swp_type(swap), swp_offset(swap) + i); 2057 __xa_store(&mapping->i_pages, aligned_index + i, 2058 swp_to_radix_entry(tmp), 0); 2059 } 2060 } 2061 2062 unlock: 2063 xas_unlock_irq(&xas); 2064 2065 /* split needed, alloc here and retry. */ 2066 if (split_order) { 2067 xas_split_alloc(&xas, old, split_order, gfp); 2068 if (xas_error(&xas)) 2069 goto error; 2070 alloced_shadow = old; 2071 alloced_order = split_order; 2072 xas_reset(&xas); 2073 continue; 2074 } 2075 2076 if (!xas_nomem(&xas, gfp)) 2077 break; 2078 } 2079 2080 error: 2081 if (xas_error(&xas)) 2082 return xas_error(&xas); 2083 2084 return alloced_order; 2085 } 2086 2087 /* 2088 * Swap in the folio pointed to by *foliop. 2089 * Caller has to make sure that *foliop contains a valid swapped folio. 2090 * Returns 0 and the folio in foliop if success. On failure, returns the 2091 * error code and NULL in *foliop. 2092 */ 2093 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 2094 struct folio **foliop, enum sgp_type sgp, 2095 gfp_t gfp, struct vm_area_struct *vma, 2096 vm_fault_t *fault_type) 2097 { 2098 struct address_space *mapping = inode->i_mapping; 2099 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL; 2100 struct shmem_inode_info *info = SHMEM_I(inode); 2101 struct swap_info_struct *si; 2102 struct folio *folio = NULL; 2103 swp_entry_t swap; 2104 int error, nr_pages; 2105 2106 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 2107 swap = radix_to_swp_entry(*foliop); 2108 *foliop = NULL; 2109 2110 if (is_poisoned_swp_entry(swap)) 2111 return -EIO; 2112 2113 si = get_swap_device(swap); 2114 if (!si) { 2115 if (!shmem_confirm_swap(mapping, index, swap)) 2116 return -EEXIST; 2117 else 2118 return -EINVAL; 2119 } 2120 2121 /* Look it up and read it in.. */ 2122 folio = swap_cache_get_folio(swap, NULL, 0); 2123 if (!folio) { 2124 int split_order; 2125 2126 /* Or update major stats only when swapin succeeds?? */ 2127 if (fault_type) { 2128 *fault_type |= VM_FAULT_MAJOR; 2129 count_vm_event(PGMAJFAULT); 2130 count_memcg_event_mm(fault_mm, PGMAJFAULT); 2131 } 2132 2133 /* 2134 * Now swap device can only swap in order 0 folio, then we 2135 * should split the large swap entry stored in the pagecache 2136 * if necessary. 2137 */ 2138 split_order = shmem_split_large_entry(inode, index, swap, gfp); 2139 if (split_order < 0) { 2140 error = split_order; 2141 goto failed; 2142 } 2143 2144 /* 2145 * If the large swap entry has already been split, it is 2146 * necessary to recalculate the new swap entry based on 2147 * the old order alignment. 2148 */ 2149 if (split_order > 0) { 2150 pgoff_t offset = index - round_down(index, 1 << split_order); 2151 2152 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2153 } 2154 2155 /* Here we actually start the io */ 2156 folio = shmem_swapin_cluster(swap, gfp, info, index); 2157 if (!folio) { 2158 error = -ENOMEM; 2159 goto failed; 2160 } 2161 } 2162 2163 /* We have to do this with folio locked to prevent races */ 2164 folio_lock(folio); 2165 if (!folio_test_swapcache(folio) || 2166 folio->swap.val != swap.val || 2167 !shmem_confirm_swap(mapping, index, swap)) { 2168 error = -EEXIST; 2169 goto unlock; 2170 } 2171 if (!folio_test_uptodate(folio)) { 2172 error = -EIO; 2173 goto failed; 2174 } 2175 folio_wait_writeback(folio); 2176 nr_pages = folio_nr_pages(folio); 2177 2178 /* 2179 * Some architectures may have to restore extra metadata to the 2180 * folio after reading from swap. 2181 */ 2182 arch_swap_restore(folio_swap(swap, folio), folio); 2183 2184 if (shmem_should_replace_folio(folio, gfp)) { 2185 error = shmem_replace_folio(&folio, gfp, info, index, vma); 2186 if (error) 2187 goto failed; 2188 } 2189 2190 error = shmem_add_to_page_cache(folio, mapping, 2191 round_down(index, nr_pages), 2192 swp_to_radix_entry(swap), gfp); 2193 if (error) 2194 goto failed; 2195 2196 shmem_recalc_inode(inode, 0, -nr_pages); 2197 2198 if (sgp == SGP_WRITE) 2199 folio_mark_accessed(folio); 2200 2201 delete_from_swap_cache(folio); 2202 folio_mark_dirty(folio); 2203 swap_free_nr(swap, nr_pages); 2204 put_swap_device(si); 2205 2206 *foliop = folio; 2207 return 0; 2208 failed: 2209 if (!shmem_confirm_swap(mapping, index, swap)) 2210 error = -EEXIST; 2211 if (error == -EIO) 2212 shmem_set_folio_swapin_error(inode, index, folio, swap); 2213 unlock: 2214 if (folio) { 2215 folio_unlock(folio); 2216 folio_put(folio); 2217 } 2218 put_swap_device(si); 2219 2220 return error; 2221 } 2222 2223 /* 2224 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 2225 * 2226 * If we allocate a new one we do not mark it dirty. That's up to the 2227 * vm. If we swap it in we mark it dirty since we also free the swap 2228 * entry since a page cannot live in both the swap and page cache. 2229 * 2230 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 2231 */ 2232 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 2233 loff_t write_end, struct folio **foliop, enum sgp_type sgp, 2234 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type) 2235 { 2236 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 2237 struct mm_struct *fault_mm; 2238 struct folio *folio; 2239 int error; 2240 bool alloced; 2241 unsigned long orders = 0; 2242 2243 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 2244 return -EINVAL; 2245 2246 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 2247 return -EFBIG; 2248 repeat: 2249 if (sgp <= SGP_CACHE && 2250 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 2251 return -EINVAL; 2252 2253 alloced = false; 2254 fault_mm = vma ? vma->vm_mm : NULL; 2255 2256 folio = filemap_get_entry(inode->i_mapping, index); 2257 if (folio && vma && userfaultfd_minor(vma)) { 2258 if (!xa_is_value(folio)) 2259 folio_put(folio); 2260 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 2261 return 0; 2262 } 2263 2264 if (xa_is_value(folio)) { 2265 error = shmem_swapin_folio(inode, index, &folio, 2266 sgp, gfp, vma, fault_type); 2267 if (error == -EEXIST) 2268 goto repeat; 2269 2270 *foliop = folio; 2271 return error; 2272 } 2273 2274 if (folio) { 2275 folio_lock(folio); 2276 2277 /* Has the folio been truncated or swapped out? */ 2278 if (unlikely(folio->mapping != inode->i_mapping)) { 2279 folio_unlock(folio); 2280 folio_put(folio); 2281 goto repeat; 2282 } 2283 if (sgp == SGP_WRITE) 2284 folio_mark_accessed(folio); 2285 if (folio_test_uptodate(folio)) 2286 goto out; 2287 /* fallocated folio */ 2288 if (sgp != SGP_READ) 2289 goto clear; 2290 folio_unlock(folio); 2291 folio_put(folio); 2292 } 2293 2294 /* 2295 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2296 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2297 */ 2298 *foliop = NULL; 2299 if (sgp == SGP_READ) 2300 return 0; 2301 if (sgp == SGP_NOALLOC) 2302 return -ENOENT; 2303 2304 /* 2305 * Fast cache lookup and swap lookup did not find it: allocate. 2306 */ 2307 2308 if (vma && userfaultfd_missing(vma)) { 2309 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2310 return 0; 2311 } 2312 2313 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */ 2314 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false); 2315 if (orders > 0) { 2316 gfp_t huge_gfp; 2317 2318 huge_gfp = vma_thp_gfp_mask(vma); 2319 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2320 folio = shmem_alloc_and_add_folio(vmf, huge_gfp, 2321 inode, index, fault_mm, orders); 2322 if (!IS_ERR(folio)) { 2323 if (folio_test_pmd_mappable(folio)) 2324 count_vm_event(THP_FILE_ALLOC); 2325 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC); 2326 goto alloced; 2327 } 2328 if (PTR_ERR(folio) == -EEXIST) 2329 goto repeat; 2330 } 2331 2332 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0); 2333 if (IS_ERR(folio)) { 2334 error = PTR_ERR(folio); 2335 if (error == -EEXIST) 2336 goto repeat; 2337 folio = NULL; 2338 goto unlock; 2339 } 2340 2341 alloced: 2342 alloced = true; 2343 if (folio_test_large(folio) && 2344 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2345 folio_next_index(folio)) { 2346 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2347 struct shmem_inode_info *info = SHMEM_I(inode); 2348 /* 2349 * Part of the large folio is beyond i_size: subject 2350 * to shrink under memory pressure. 2351 */ 2352 spin_lock(&sbinfo->shrinklist_lock); 2353 /* 2354 * _careful to defend against unlocked access to 2355 * ->shrink_list in shmem_unused_huge_shrink() 2356 */ 2357 if (list_empty_careful(&info->shrinklist)) { 2358 list_add_tail(&info->shrinklist, 2359 &sbinfo->shrinklist); 2360 sbinfo->shrinklist_len++; 2361 } 2362 spin_unlock(&sbinfo->shrinklist_lock); 2363 } 2364 2365 if (sgp == SGP_WRITE) 2366 folio_set_referenced(folio); 2367 /* 2368 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2369 */ 2370 if (sgp == SGP_FALLOC) 2371 sgp = SGP_WRITE; 2372 clear: 2373 /* 2374 * Let SGP_WRITE caller clear ends if write does not fill folio; 2375 * but SGP_FALLOC on a folio fallocated earlier must initialize 2376 * it now, lest undo on failure cancel our earlier guarantee. 2377 */ 2378 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2379 long i, n = folio_nr_pages(folio); 2380 2381 for (i = 0; i < n; i++) 2382 clear_highpage(folio_page(folio, i)); 2383 flush_dcache_folio(folio); 2384 folio_mark_uptodate(folio); 2385 } 2386 2387 /* Perhaps the file has been truncated since we checked */ 2388 if (sgp <= SGP_CACHE && 2389 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2390 error = -EINVAL; 2391 goto unlock; 2392 } 2393 out: 2394 *foliop = folio; 2395 return 0; 2396 2397 /* 2398 * Error recovery. 2399 */ 2400 unlock: 2401 if (alloced) 2402 filemap_remove_folio(folio); 2403 shmem_recalc_inode(inode, 0, 0); 2404 if (folio) { 2405 folio_unlock(folio); 2406 folio_put(folio); 2407 } 2408 return error; 2409 } 2410 2411 /** 2412 * shmem_get_folio - find, and lock a shmem folio. 2413 * @inode: inode to search 2414 * @index: the page index. 2415 * @write_end: end of a write, could extend inode size 2416 * @foliop: pointer to the folio if found 2417 * @sgp: SGP_* flags to control behavior 2418 * 2419 * Looks up the page cache entry at @inode & @index. If a folio is 2420 * present, it is returned locked with an increased refcount. 2421 * 2422 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2423 * before unlocking the folio to ensure that the folio is not reclaimed. 2424 * There is no need to reserve space before calling folio_mark_dirty(). 2425 * 2426 * When no folio is found, the behavior depends on @sgp: 2427 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2428 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2429 * - for all other flags a new folio is allocated, inserted into the 2430 * page cache and returned locked in @foliop. 2431 * 2432 * Context: May sleep. 2433 * Return: 0 if successful, else a negative error code. 2434 */ 2435 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end, 2436 struct folio **foliop, enum sgp_type sgp) 2437 { 2438 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp, 2439 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2440 } 2441 EXPORT_SYMBOL_GPL(shmem_get_folio); 2442 2443 /* 2444 * This is like autoremove_wake_function, but it removes the wait queue 2445 * entry unconditionally - even if something else had already woken the 2446 * target. 2447 */ 2448 static int synchronous_wake_function(wait_queue_entry_t *wait, 2449 unsigned int mode, int sync, void *key) 2450 { 2451 int ret = default_wake_function(wait, mode, sync, key); 2452 list_del_init(&wait->entry); 2453 return ret; 2454 } 2455 2456 /* 2457 * Trinity finds that probing a hole which tmpfs is punching can 2458 * prevent the hole-punch from ever completing: which in turn 2459 * locks writers out with its hold on i_rwsem. So refrain from 2460 * faulting pages into the hole while it's being punched. Although 2461 * shmem_undo_range() does remove the additions, it may be unable to 2462 * keep up, as each new page needs its own unmap_mapping_range() call, 2463 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2464 * 2465 * It does not matter if we sometimes reach this check just before the 2466 * hole-punch begins, so that one fault then races with the punch: 2467 * we just need to make racing faults a rare case. 2468 * 2469 * The implementation below would be much simpler if we just used a 2470 * standard mutex or completion: but we cannot take i_rwsem in fault, 2471 * and bloating every shmem inode for this unlikely case would be sad. 2472 */ 2473 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2474 { 2475 struct shmem_falloc *shmem_falloc; 2476 struct file *fpin = NULL; 2477 vm_fault_t ret = 0; 2478 2479 spin_lock(&inode->i_lock); 2480 shmem_falloc = inode->i_private; 2481 if (shmem_falloc && 2482 shmem_falloc->waitq && 2483 vmf->pgoff >= shmem_falloc->start && 2484 vmf->pgoff < shmem_falloc->next) { 2485 wait_queue_head_t *shmem_falloc_waitq; 2486 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2487 2488 ret = VM_FAULT_NOPAGE; 2489 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2490 shmem_falloc_waitq = shmem_falloc->waitq; 2491 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2492 TASK_UNINTERRUPTIBLE); 2493 spin_unlock(&inode->i_lock); 2494 schedule(); 2495 2496 /* 2497 * shmem_falloc_waitq points into the shmem_fallocate() 2498 * stack of the hole-punching task: shmem_falloc_waitq 2499 * is usually invalid by the time we reach here, but 2500 * finish_wait() does not dereference it in that case; 2501 * though i_lock needed lest racing with wake_up_all(). 2502 */ 2503 spin_lock(&inode->i_lock); 2504 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2505 } 2506 spin_unlock(&inode->i_lock); 2507 if (fpin) { 2508 fput(fpin); 2509 ret = VM_FAULT_RETRY; 2510 } 2511 return ret; 2512 } 2513 2514 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2515 { 2516 struct inode *inode = file_inode(vmf->vma->vm_file); 2517 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2518 struct folio *folio = NULL; 2519 vm_fault_t ret = 0; 2520 int err; 2521 2522 /* 2523 * Trinity finds that probing a hole which tmpfs is punching can 2524 * prevent the hole-punch from ever completing: noted in i_private. 2525 */ 2526 if (unlikely(inode->i_private)) { 2527 ret = shmem_falloc_wait(vmf, inode); 2528 if (ret) 2529 return ret; 2530 } 2531 2532 WARN_ON_ONCE(vmf->page != NULL); 2533 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE, 2534 gfp, vmf, &ret); 2535 if (err) 2536 return vmf_error(err); 2537 if (folio) { 2538 vmf->page = folio_file_page(folio, vmf->pgoff); 2539 ret |= VM_FAULT_LOCKED; 2540 } 2541 return ret; 2542 } 2543 2544 unsigned long shmem_get_unmapped_area(struct file *file, 2545 unsigned long uaddr, unsigned long len, 2546 unsigned long pgoff, unsigned long flags) 2547 { 2548 unsigned long addr; 2549 unsigned long offset; 2550 unsigned long inflated_len; 2551 unsigned long inflated_addr; 2552 unsigned long inflated_offset; 2553 unsigned long hpage_size; 2554 2555 if (len > TASK_SIZE) 2556 return -ENOMEM; 2557 2558 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff, 2559 flags); 2560 2561 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2562 return addr; 2563 if (IS_ERR_VALUE(addr)) 2564 return addr; 2565 if (addr & ~PAGE_MASK) 2566 return addr; 2567 if (addr > TASK_SIZE - len) 2568 return addr; 2569 2570 if (shmem_huge == SHMEM_HUGE_DENY) 2571 return addr; 2572 if (flags & MAP_FIXED) 2573 return addr; 2574 /* 2575 * Our priority is to support MAP_SHARED mapped hugely; 2576 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2577 * But if caller specified an address hint and we allocated area there 2578 * successfully, respect that as before. 2579 */ 2580 if (uaddr == addr) 2581 return addr; 2582 2583 hpage_size = HPAGE_PMD_SIZE; 2584 if (shmem_huge != SHMEM_HUGE_FORCE) { 2585 struct super_block *sb; 2586 unsigned long __maybe_unused hpage_orders; 2587 int order = 0; 2588 2589 if (file) { 2590 VM_BUG_ON(file->f_op != &shmem_file_operations); 2591 sb = file_inode(file)->i_sb; 2592 } else { 2593 /* 2594 * Called directly from mm/mmap.c, or drivers/char/mem.c 2595 * for "/dev/zero", to create a shared anonymous object. 2596 */ 2597 if (IS_ERR(shm_mnt)) 2598 return addr; 2599 sb = shm_mnt->mnt_sb; 2600 2601 /* 2602 * Find the highest mTHP order used for anonymous shmem to 2603 * provide a suitable alignment address. 2604 */ 2605 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2606 hpage_orders = READ_ONCE(huge_shmem_orders_always); 2607 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size); 2608 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise); 2609 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 2610 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit); 2611 2612 if (hpage_orders > 0) { 2613 order = highest_order(hpage_orders); 2614 hpage_size = PAGE_SIZE << order; 2615 } 2616 #endif 2617 } 2618 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order) 2619 return addr; 2620 } 2621 2622 if (len < hpage_size) 2623 return addr; 2624 2625 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1); 2626 if (offset && offset + len < 2 * hpage_size) 2627 return addr; 2628 if ((addr & (hpage_size - 1)) == offset) 2629 return addr; 2630 2631 inflated_len = len + hpage_size - PAGE_SIZE; 2632 if (inflated_len > TASK_SIZE) 2633 return addr; 2634 if (inflated_len < len) 2635 return addr; 2636 2637 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr, 2638 inflated_len, 0, flags); 2639 if (IS_ERR_VALUE(inflated_addr)) 2640 return addr; 2641 if (inflated_addr & ~PAGE_MASK) 2642 return addr; 2643 2644 inflated_offset = inflated_addr & (hpage_size - 1); 2645 inflated_addr += offset - inflated_offset; 2646 if (inflated_offset > offset) 2647 inflated_addr += hpage_size; 2648 2649 if (inflated_addr > TASK_SIZE - len) 2650 return addr; 2651 return inflated_addr; 2652 } 2653 2654 #ifdef CONFIG_NUMA 2655 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2656 { 2657 struct inode *inode = file_inode(vma->vm_file); 2658 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2659 } 2660 2661 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2662 unsigned long addr, pgoff_t *ilx) 2663 { 2664 struct inode *inode = file_inode(vma->vm_file); 2665 pgoff_t index; 2666 2667 /* 2668 * Bias interleave by inode number to distribute better across nodes; 2669 * but this interface is independent of which page order is used, so 2670 * supplies only that bias, letting caller apply the offset (adjusted 2671 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2672 */ 2673 *ilx = inode->i_ino; 2674 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2675 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2676 } 2677 2678 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2679 pgoff_t index, unsigned int order, pgoff_t *ilx) 2680 { 2681 struct mempolicy *mpol; 2682 2683 /* Bias interleave by inode number to distribute better across nodes */ 2684 *ilx = info->vfs_inode.i_ino + (index >> order); 2685 2686 mpol = mpol_shared_policy_lookup(&info->policy, index); 2687 return mpol ? mpol : get_task_policy(current); 2688 } 2689 #else 2690 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2691 pgoff_t index, unsigned int order, pgoff_t *ilx) 2692 { 2693 *ilx = 0; 2694 return NULL; 2695 } 2696 #endif /* CONFIG_NUMA */ 2697 2698 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2699 { 2700 struct inode *inode = file_inode(file); 2701 struct shmem_inode_info *info = SHMEM_I(inode); 2702 int retval = -ENOMEM; 2703 2704 /* 2705 * What serializes the accesses to info->flags? 2706 * ipc_lock_object() when called from shmctl_do_lock(), 2707 * no serialization needed when called from shm_destroy(). 2708 */ 2709 if (lock && !(info->flags & VM_LOCKED)) { 2710 if (!user_shm_lock(inode->i_size, ucounts)) 2711 goto out_nomem; 2712 info->flags |= VM_LOCKED; 2713 mapping_set_unevictable(file->f_mapping); 2714 } 2715 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2716 user_shm_unlock(inode->i_size, ucounts); 2717 info->flags &= ~VM_LOCKED; 2718 mapping_clear_unevictable(file->f_mapping); 2719 } 2720 retval = 0; 2721 2722 out_nomem: 2723 return retval; 2724 } 2725 2726 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2727 { 2728 struct inode *inode = file_inode(file); 2729 struct shmem_inode_info *info = SHMEM_I(inode); 2730 int ret; 2731 2732 ret = seal_check_write(info->seals, vma); 2733 if (ret) 2734 return ret; 2735 2736 file_accessed(file); 2737 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2738 if (inode->i_nlink) 2739 vma->vm_ops = &shmem_vm_ops; 2740 else 2741 vma->vm_ops = &shmem_anon_vm_ops; 2742 return 0; 2743 } 2744 2745 static int shmem_file_open(struct inode *inode, struct file *file) 2746 { 2747 file->f_mode |= FMODE_CAN_ODIRECT; 2748 return generic_file_open(inode, file); 2749 } 2750 2751 #ifdef CONFIG_TMPFS_XATTR 2752 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2753 2754 /* 2755 * chattr's fsflags are unrelated to extended attributes, 2756 * but tmpfs has chosen to enable them under the same config option. 2757 */ 2758 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2759 { 2760 unsigned int i_flags = 0; 2761 2762 if (fsflags & FS_NOATIME_FL) 2763 i_flags |= S_NOATIME; 2764 if (fsflags & FS_APPEND_FL) 2765 i_flags |= S_APPEND; 2766 if (fsflags & FS_IMMUTABLE_FL) 2767 i_flags |= S_IMMUTABLE; 2768 /* 2769 * But FS_NODUMP_FL does not require any action in i_flags. 2770 */ 2771 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2772 } 2773 #else 2774 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2775 { 2776 } 2777 #define shmem_initxattrs NULL 2778 #endif 2779 2780 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 2781 { 2782 return &SHMEM_I(inode)->dir_offsets; 2783 } 2784 2785 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 2786 struct super_block *sb, 2787 struct inode *dir, umode_t mode, 2788 dev_t dev, unsigned long flags) 2789 { 2790 struct inode *inode; 2791 struct shmem_inode_info *info; 2792 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2793 ino_t ino; 2794 int err; 2795 2796 err = shmem_reserve_inode(sb, &ino); 2797 if (err) 2798 return ERR_PTR(err); 2799 2800 inode = new_inode(sb); 2801 if (!inode) { 2802 shmem_free_inode(sb, 0); 2803 return ERR_PTR(-ENOSPC); 2804 } 2805 2806 inode->i_ino = ino; 2807 inode_init_owner(idmap, inode, dir, mode); 2808 inode->i_blocks = 0; 2809 simple_inode_init_ts(inode); 2810 inode->i_generation = get_random_u32(); 2811 info = SHMEM_I(inode); 2812 memset(info, 0, (char *)inode - (char *)info); 2813 spin_lock_init(&info->lock); 2814 atomic_set(&info->stop_eviction, 0); 2815 info->seals = F_SEAL_SEAL; 2816 info->flags = flags & VM_NORESERVE; 2817 info->i_crtime = inode_get_mtime(inode); 2818 info->fsflags = (dir == NULL) ? 0 : 2819 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2820 if (info->fsflags) 2821 shmem_set_inode_flags(inode, info->fsflags); 2822 INIT_LIST_HEAD(&info->shrinklist); 2823 INIT_LIST_HEAD(&info->swaplist); 2824 simple_xattrs_init(&info->xattrs); 2825 cache_no_acl(inode); 2826 if (sbinfo->noswap) 2827 mapping_set_unevictable(inode->i_mapping); 2828 mapping_set_large_folios(inode->i_mapping); 2829 2830 switch (mode & S_IFMT) { 2831 default: 2832 inode->i_op = &shmem_special_inode_operations; 2833 init_special_inode(inode, mode, dev); 2834 break; 2835 case S_IFREG: 2836 inode->i_mapping->a_ops = &shmem_aops; 2837 inode->i_op = &shmem_inode_operations; 2838 inode->i_fop = &shmem_file_operations; 2839 mpol_shared_policy_init(&info->policy, 2840 shmem_get_sbmpol(sbinfo)); 2841 break; 2842 case S_IFDIR: 2843 inc_nlink(inode); 2844 /* Some things misbehave if size == 0 on a directory */ 2845 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2846 inode->i_op = &shmem_dir_inode_operations; 2847 inode->i_fop = &simple_offset_dir_operations; 2848 simple_offset_init(shmem_get_offset_ctx(inode)); 2849 break; 2850 case S_IFLNK: 2851 /* 2852 * Must not load anything in the rbtree, 2853 * mpol_free_shared_policy will not be called. 2854 */ 2855 mpol_shared_policy_init(&info->policy, NULL); 2856 break; 2857 } 2858 2859 lockdep_annotate_inode_mutex_key(inode); 2860 return inode; 2861 } 2862 2863 #ifdef CONFIG_TMPFS_QUOTA 2864 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2865 struct super_block *sb, struct inode *dir, 2866 umode_t mode, dev_t dev, unsigned long flags) 2867 { 2868 int err; 2869 struct inode *inode; 2870 2871 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2872 if (IS_ERR(inode)) 2873 return inode; 2874 2875 err = dquot_initialize(inode); 2876 if (err) 2877 goto errout; 2878 2879 err = dquot_alloc_inode(inode); 2880 if (err) { 2881 dquot_drop(inode); 2882 goto errout; 2883 } 2884 return inode; 2885 2886 errout: 2887 inode->i_flags |= S_NOQUOTA; 2888 iput(inode); 2889 return ERR_PTR(err); 2890 } 2891 #else 2892 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2893 struct super_block *sb, struct inode *dir, 2894 umode_t mode, dev_t dev, unsigned long flags) 2895 { 2896 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2897 } 2898 #endif /* CONFIG_TMPFS_QUOTA */ 2899 2900 #ifdef CONFIG_USERFAULTFD 2901 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 2902 struct vm_area_struct *dst_vma, 2903 unsigned long dst_addr, 2904 unsigned long src_addr, 2905 uffd_flags_t flags, 2906 struct folio **foliop) 2907 { 2908 struct inode *inode = file_inode(dst_vma->vm_file); 2909 struct shmem_inode_info *info = SHMEM_I(inode); 2910 struct address_space *mapping = inode->i_mapping; 2911 gfp_t gfp = mapping_gfp_mask(mapping); 2912 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2913 void *page_kaddr; 2914 struct folio *folio; 2915 int ret; 2916 pgoff_t max_off; 2917 2918 if (shmem_inode_acct_blocks(inode, 1)) { 2919 /* 2920 * We may have got a page, returned -ENOENT triggering a retry, 2921 * and now we find ourselves with -ENOMEM. Release the page, to 2922 * avoid a BUG_ON in our caller. 2923 */ 2924 if (unlikely(*foliop)) { 2925 folio_put(*foliop); 2926 *foliop = NULL; 2927 } 2928 return -ENOMEM; 2929 } 2930 2931 if (!*foliop) { 2932 ret = -ENOMEM; 2933 folio = shmem_alloc_folio(gfp, 0, info, pgoff); 2934 if (!folio) 2935 goto out_unacct_blocks; 2936 2937 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 2938 page_kaddr = kmap_local_folio(folio, 0); 2939 /* 2940 * The read mmap_lock is held here. Despite the 2941 * mmap_lock being read recursive a deadlock is still 2942 * possible if a writer has taken a lock. For example: 2943 * 2944 * process A thread 1 takes read lock on own mmap_lock 2945 * process A thread 2 calls mmap, blocks taking write lock 2946 * process B thread 1 takes page fault, read lock on own mmap lock 2947 * process B thread 2 calls mmap, blocks taking write lock 2948 * process A thread 1 blocks taking read lock on process B 2949 * process B thread 1 blocks taking read lock on process A 2950 * 2951 * Disable page faults to prevent potential deadlock 2952 * and retry the copy outside the mmap_lock. 2953 */ 2954 pagefault_disable(); 2955 ret = copy_from_user(page_kaddr, 2956 (const void __user *)src_addr, 2957 PAGE_SIZE); 2958 pagefault_enable(); 2959 kunmap_local(page_kaddr); 2960 2961 /* fallback to copy_from_user outside mmap_lock */ 2962 if (unlikely(ret)) { 2963 *foliop = folio; 2964 ret = -ENOENT; 2965 /* don't free the page */ 2966 goto out_unacct_blocks; 2967 } 2968 2969 flush_dcache_folio(folio); 2970 } else { /* ZEROPAGE */ 2971 clear_user_highpage(&folio->page, dst_addr); 2972 } 2973 } else { 2974 folio = *foliop; 2975 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2976 *foliop = NULL; 2977 } 2978 2979 VM_BUG_ON(folio_test_locked(folio)); 2980 VM_BUG_ON(folio_test_swapbacked(folio)); 2981 __folio_set_locked(folio); 2982 __folio_set_swapbacked(folio); 2983 __folio_mark_uptodate(folio); 2984 2985 ret = -EFAULT; 2986 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2987 if (unlikely(pgoff >= max_off)) 2988 goto out_release; 2989 2990 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 2991 if (ret) 2992 goto out_release; 2993 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 2994 if (ret) 2995 goto out_release; 2996 2997 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 2998 &folio->page, true, flags); 2999 if (ret) 3000 goto out_delete_from_cache; 3001 3002 shmem_recalc_inode(inode, 1, 0); 3003 folio_unlock(folio); 3004 return 0; 3005 out_delete_from_cache: 3006 filemap_remove_folio(folio); 3007 out_release: 3008 folio_unlock(folio); 3009 folio_put(folio); 3010 out_unacct_blocks: 3011 shmem_inode_unacct_blocks(inode, 1); 3012 return ret; 3013 } 3014 #endif /* CONFIG_USERFAULTFD */ 3015 3016 #ifdef CONFIG_TMPFS 3017 static const struct inode_operations shmem_symlink_inode_operations; 3018 static const struct inode_operations shmem_short_symlink_operations; 3019 3020 static int 3021 shmem_write_begin(struct file *file, struct address_space *mapping, 3022 loff_t pos, unsigned len, 3023 struct folio **foliop, void **fsdata) 3024 { 3025 struct inode *inode = mapping->host; 3026 struct shmem_inode_info *info = SHMEM_I(inode); 3027 pgoff_t index = pos >> PAGE_SHIFT; 3028 struct folio *folio; 3029 int ret = 0; 3030 3031 /* i_rwsem is held by caller */ 3032 if (unlikely(info->seals & (F_SEAL_GROW | 3033 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 3034 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 3035 return -EPERM; 3036 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 3037 return -EPERM; 3038 } 3039 3040 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE); 3041 if (ret) 3042 return ret; 3043 3044 if (folio_test_hwpoison(folio) || 3045 (folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) { 3046 folio_unlock(folio); 3047 folio_put(folio); 3048 return -EIO; 3049 } 3050 3051 *foliop = folio; 3052 return 0; 3053 } 3054 3055 static int 3056 shmem_write_end(struct file *file, struct address_space *mapping, 3057 loff_t pos, unsigned len, unsigned copied, 3058 struct folio *folio, void *fsdata) 3059 { 3060 struct inode *inode = mapping->host; 3061 3062 if (pos + copied > inode->i_size) 3063 i_size_write(inode, pos + copied); 3064 3065 if (!folio_test_uptodate(folio)) { 3066 if (copied < folio_size(folio)) { 3067 size_t from = offset_in_folio(folio, pos); 3068 folio_zero_segments(folio, 0, from, 3069 from + copied, folio_size(folio)); 3070 } 3071 folio_mark_uptodate(folio); 3072 } 3073 folio_mark_dirty(folio); 3074 folio_unlock(folio); 3075 folio_put(folio); 3076 3077 return copied; 3078 } 3079 3080 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3081 { 3082 struct file *file = iocb->ki_filp; 3083 struct inode *inode = file_inode(file); 3084 struct address_space *mapping = inode->i_mapping; 3085 pgoff_t index; 3086 unsigned long offset; 3087 int error = 0; 3088 ssize_t retval = 0; 3089 loff_t *ppos = &iocb->ki_pos; 3090 3091 index = *ppos >> PAGE_SHIFT; 3092 offset = *ppos & ~PAGE_MASK; 3093 3094 for (;;) { 3095 struct folio *folio = NULL; 3096 struct page *page = NULL; 3097 pgoff_t end_index; 3098 unsigned long nr, ret; 3099 loff_t i_size = i_size_read(inode); 3100 3101 end_index = i_size >> PAGE_SHIFT; 3102 if (index > end_index) 3103 break; 3104 if (index == end_index) { 3105 nr = i_size & ~PAGE_MASK; 3106 if (nr <= offset) 3107 break; 3108 } 3109 3110 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3111 if (error) { 3112 if (error == -EINVAL) 3113 error = 0; 3114 break; 3115 } 3116 if (folio) { 3117 folio_unlock(folio); 3118 3119 page = folio_file_page(folio, index); 3120 if (PageHWPoison(page)) { 3121 folio_put(folio); 3122 error = -EIO; 3123 break; 3124 } 3125 } 3126 3127 /* 3128 * We must evaluate after, since reads (unlike writes) 3129 * are called without i_rwsem protection against truncate 3130 */ 3131 nr = PAGE_SIZE; 3132 i_size = i_size_read(inode); 3133 end_index = i_size >> PAGE_SHIFT; 3134 if (index == end_index) { 3135 nr = i_size & ~PAGE_MASK; 3136 if (nr <= offset) { 3137 if (folio) 3138 folio_put(folio); 3139 break; 3140 } 3141 } 3142 nr -= offset; 3143 3144 if (folio) { 3145 /* 3146 * If users can be writing to this page using arbitrary 3147 * virtual addresses, take care about potential aliasing 3148 * before reading the page on the kernel side. 3149 */ 3150 if (mapping_writably_mapped(mapping)) 3151 flush_dcache_page(page); 3152 /* 3153 * Mark the page accessed if we read the beginning. 3154 */ 3155 if (!offset) 3156 folio_mark_accessed(folio); 3157 /* 3158 * Ok, we have the page, and it's up-to-date, so 3159 * now we can copy it to user space... 3160 */ 3161 ret = copy_page_to_iter(page, offset, nr, to); 3162 folio_put(folio); 3163 3164 } else if (user_backed_iter(to)) { 3165 /* 3166 * Copy to user tends to be so well optimized, but 3167 * clear_user() not so much, that it is noticeably 3168 * faster to copy the zero page instead of clearing. 3169 */ 3170 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 3171 } else { 3172 /* 3173 * But submitting the same page twice in a row to 3174 * splice() - or others? - can result in confusion: 3175 * so don't attempt that optimization on pipes etc. 3176 */ 3177 ret = iov_iter_zero(nr, to); 3178 } 3179 3180 retval += ret; 3181 offset += ret; 3182 index += offset >> PAGE_SHIFT; 3183 offset &= ~PAGE_MASK; 3184 3185 if (!iov_iter_count(to)) 3186 break; 3187 if (ret < nr) { 3188 error = -EFAULT; 3189 break; 3190 } 3191 cond_resched(); 3192 } 3193 3194 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 3195 file_accessed(file); 3196 return retval ? retval : error; 3197 } 3198 3199 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3200 { 3201 struct file *file = iocb->ki_filp; 3202 struct inode *inode = file->f_mapping->host; 3203 ssize_t ret; 3204 3205 inode_lock(inode); 3206 ret = generic_write_checks(iocb, from); 3207 if (ret <= 0) 3208 goto unlock; 3209 ret = file_remove_privs(file); 3210 if (ret) 3211 goto unlock; 3212 ret = file_update_time(file); 3213 if (ret) 3214 goto unlock; 3215 ret = generic_perform_write(iocb, from); 3216 unlock: 3217 inode_unlock(inode); 3218 return ret; 3219 } 3220 3221 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 3222 struct pipe_buffer *buf) 3223 { 3224 return true; 3225 } 3226 3227 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 3228 struct pipe_buffer *buf) 3229 { 3230 } 3231 3232 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 3233 struct pipe_buffer *buf) 3234 { 3235 return false; 3236 } 3237 3238 static const struct pipe_buf_operations zero_pipe_buf_ops = { 3239 .release = zero_pipe_buf_release, 3240 .try_steal = zero_pipe_buf_try_steal, 3241 .get = zero_pipe_buf_get, 3242 }; 3243 3244 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 3245 loff_t fpos, size_t size) 3246 { 3247 size_t offset = fpos & ~PAGE_MASK; 3248 3249 size = min_t(size_t, size, PAGE_SIZE - offset); 3250 3251 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 3252 struct pipe_buffer *buf = pipe_head_buf(pipe); 3253 3254 *buf = (struct pipe_buffer) { 3255 .ops = &zero_pipe_buf_ops, 3256 .page = ZERO_PAGE(0), 3257 .offset = offset, 3258 .len = size, 3259 }; 3260 pipe->head++; 3261 } 3262 3263 return size; 3264 } 3265 3266 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 3267 struct pipe_inode_info *pipe, 3268 size_t len, unsigned int flags) 3269 { 3270 struct inode *inode = file_inode(in); 3271 struct address_space *mapping = inode->i_mapping; 3272 struct folio *folio = NULL; 3273 size_t total_spliced = 0, used, npages, n, part; 3274 loff_t isize; 3275 int error = 0; 3276 3277 /* Work out how much data we can actually add into the pipe */ 3278 used = pipe_occupancy(pipe->head, pipe->tail); 3279 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3280 len = min_t(size_t, len, npages * PAGE_SIZE); 3281 3282 do { 3283 if (*ppos >= i_size_read(inode)) 3284 break; 3285 3286 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, 0, &folio, 3287 SGP_READ); 3288 if (error) { 3289 if (error == -EINVAL) 3290 error = 0; 3291 break; 3292 } 3293 if (folio) { 3294 folio_unlock(folio); 3295 3296 if (folio_test_hwpoison(folio) || 3297 (folio_test_large(folio) && 3298 folio_test_has_hwpoisoned(folio))) { 3299 error = -EIO; 3300 break; 3301 } 3302 } 3303 3304 /* 3305 * i_size must be checked after we know the pages are Uptodate. 3306 * 3307 * Checking i_size after the check allows us to calculate 3308 * the correct value for "nr", which means the zero-filled 3309 * part of the page is not copied back to userspace (unless 3310 * another truncate extends the file - this is desired though). 3311 */ 3312 isize = i_size_read(inode); 3313 if (unlikely(*ppos >= isize)) 3314 break; 3315 part = min_t(loff_t, isize - *ppos, len); 3316 3317 if (folio) { 3318 /* 3319 * If users can be writing to this page using arbitrary 3320 * virtual addresses, take care about potential aliasing 3321 * before reading the page on the kernel side. 3322 */ 3323 if (mapping_writably_mapped(mapping)) 3324 flush_dcache_folio(folio); 3325 folio_mark_accessed(folio); 3326 /* 3327 * Ok, we have the page, and it's up-to-date, so we can 3328 * now splice it into the pipe. 3329 */ 3330 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3331 folio_put(folio); 3332 folio = NULL; 3333 } else { 3334 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3335 } 3336 3337 if (!n) 3338 break; 3339 len -= n; 3340 total_spliced += n; 3341 *ppos += n; 3342 in->f_ra.prev_pos = *ppos; 3343 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 3344 break; 3345 3346 cond_resched(); 3347 } while (len); 3348 3349 if (folio) 3350 folio_put(folio); 3351 3352 file_accessed(in); 3353 return total_spliced ? total_spliced : error; 3354 } 3355 3356 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3357 { 3358 struct address_space *mapping = file->f_mapping; 3359 struct inode *inode = mapping->host; 3360 3361 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3362 return generic_file_llseek_size(file, offset, whence, 3363 MAX_LFS_FILESIZE, i_size_read(inode)); 3364 if (offset < 0) 3365 return -ENXIO; 3366 3367 inode_lock(inode); 3368 /* We're holding i_rwsem so we can access i_size directly */ 3369 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3370 if (offset >= 0) 3371 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3372 inode_unlock(inode); 3373 return offset; 3374 } 3375 3376 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3377 loff_t len) 3378 { 3379 struct inode *inode = file_inode(file); 3380 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3381 struct shmem_inode_info *info = SHMEM_I(inode); 3382 struct shmem_falloc shmem_falloc; 3383 pgoff_t start, index, end, undo_fallocend; 3384 int error; 3385 3386 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3387 return -EOPNOTSUPP; 3388 3389 inode_lock(inode); 3390 3391 if (mode & FALLOC_FL_PUNCH_HOLE) { 3392 struct address_space *mapping = file->f_mapping; 3393 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3394 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3395 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3396 3397 /* protected by i_rwsem */ 3398 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3399 error = -EPERM; 3400 goto out; 3401 } 3402 3403 shmem_falloc.waitq = &shmem_falloc_waitq; 3404 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3405 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3406 spin_lock(&inode->i_lock); 3407 inode->i_private = &shmem_falloc; 3408 spin_unlock(&inode->i_lock); 3409 3410 if ((u64)unmap_end > (u64)unmap_start) 3411 unmap_mapping_range(mapping, unmap_start, 3412 1 + unmap_end - unmap_start, 0); 3413 shmem_truncate_range(inode, offset, offset + len - 1); 3414 /* No need to unmap again: hole-punching leaves COWed pages */ 3415 3416 spin_lock(&inode->i_lock); 3417 inode->i_private = NULL; 3418 wake_up_all(&shmem_falloc_waitq); 3419 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3420 spin_unlock(&inode->i_lock); 3421 error = 0; 3422 goto out; 3423 } 3424 3425 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3426 error = inode_newsize_ok(inode, offset + len); 3427 if (error) 3428 goto out; 3429 3430 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3431 error = -EPERM; 3432 goto out; 3433 } 3434 3435 start = offset >> PAGE_SHIFT; 3436 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3437 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3438 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3439 error = -ENOSPC; 3440 goto out; 3441 } 3442 3443 shmem_falloc.waitq = NULL; 3444 shmem_falloc.start = start; 3445 shmem_falloc.next = start; 3446 shmem_falloc.nr_falloced = 0; 3447 shmem_falloc.nr_unswapped = 0; 3448 spin_lock(&inode->i_lock); 3449 inode->i_private = &shmem_falloc; 3450 spin_unlock(&inode->i_lock); 3451 3452 /* 3453 * info->fallocend is only relevant when huge pages might be 3454 * involved: to prevent split_huge_page() freeing fallocated 3455 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3456 */ 3457 undo_fallocend = info->fallocend; 3458 if (info->fallocend < end) 3459 info->fallocend = end; 3460 3461 for (index = start; index < end; ) { 3462 struct folio *folio; 3463 3464 /* 3465 * Check for fatal signal so that we abort early in OOM 3466 * situations. We don't want to abort in case of non-fatal 3467 * signals as large fallocate can take noticeable time and 3468 * e.g. periodic timers may result in fallocate constantly 3469 * restarting. 3470 */ 3471 if (fatal_signal_pending(current)) 3472 error = -EINTR; 3473 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3474 error = -ENOMEM; 3475 else 3476 error = shmem_get_folio(inode, index, offset + len, 3477 &folio, SGP_FALLOC); 3478 if (error) { 3479 info->fallocend = undo_fallocend; 3480 /* Remove the !uptodate folios we added */ 3481 if (index > start) { 3482 shmem_undo_range(inode, 3483 (loff_t)start << PAGE_SHIFT, 3484 ((loff_t)index << PAGE_SHIFT) - 1, true); 3485 } 3486 goto undone; 3487 } 3488 3489 /* 3490 * Here is a more important optimization than it appears: 3491 * a second SGP_FALLOC on the same large folio will clear it, 3492 * making it uptodate and un-undoable if we fail later. 3493 */ 3494 index = folio_next_index(folio); 3495 /* Beware 32-bit wraparound */ 3496 if (!index) 3497 index--; 3498 3499 /* 3500 * Inform shmem_writepage() how far we have reached. 3501 * No need for lock or barrier: we have the page lock. 3502 */ 3503 if (!folio_test_uptodate(folio)) 3504 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3505 shmem_falloc.next = index; 3506 3507 /* 3508 * If !uptodate, leave it that way so that freeable folios 3509 * can be recognized if we need to rollback on error later. 3510 * But mark it dirty so that memory pressure will swap rather 3511 * than free the folios we are allocating (and SGP_CACHE folios 3512 * might still be clean: we now need to mark those dirty too). 3513 */ 3514 folio_mark_dirty(folio); 3515 folio_unlock(folio); 3516 folio_put(folio); 3517 cond_resched(); 3518 } 3519 3520 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3521 i_size_write(inode, offset + len); 3522 undone: 3523 spin_lock(&inode->i_lock); 3524 inode->i_private = NULL; 3525 spin_unlock(&inode->i_lock); 3526 out: 3527 if (!error) 3528 file_modified(file); 3529 inode_unlock(inode); 3530 return error; 3531 } 3532 3533 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3534 { 3535 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3536 3537 buf->f_type = TMPFS_MAGIC; 3538 buf->f_bsize = PAGE_SIZE; 3539 buf->f_namelen = NAME_MAX; 3540 if (sbinfo->max_blocks) { 3541 buf->f_blocks = sbinfo->max_blocks; 3542 buf->f_bavail = 3543 buf->f_bfree = sbinfo->max_blocks - 3544 percpu_counter_sum(&sbinfo->used_blocks); 3545 } 3546 if (sbinfo->max_inodes) { 3547 buf->f_files = sbinfo->max_inodes; 3548 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3549 } 3550 /* else leave those fields 0 like simple_statfs */ 3551 3552 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3553 3554 return 0; 3555 } 3556 3557 /* 3558 * File creation. Allocate an inode, and we're done.. 3559 */ 3560 static int 3561 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3562 struct dentry *dentry, umode_t mode, dev_t dev) 3563 { 3564 struct inode *inode; 3565 int error; 3566 3567 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3568 if (IS_ERR(inode)) 3569 return PTR_ERR(inode); 3570 3571 error = simple_acl_create(dir, inode); 3572 if (error) 3573 goto out_iput; 3574 error = security_inode_init_security(inode, dir, &dentry->d_name, 3575 shmem_initxattrs, NULL); 3576 if (error && error != -EOPNOTSUPP) 3577 goto out_iput; 3578 3579 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3580 if (error) 3581 goto out_iput; 3582 3583 dir->i_size += BOGO_DIRENT_SIZE; 3584 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3585 inode_inc_iversion(dir); 3586 d_instantiate(dentry, inode); 3587 dget(dentry); /* Extra count - pin the dentry in core */ 3588 return error; 3589 3590 out_iput: 3591 iput(inode); 3592 return error; 3593 } 3594 3595 static int 3596 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3597 struct file *file, umode_t mode) 3598 { 3599 struct inode *inode; 3600 int error; 3601 3602 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3603 if (IS_ERR(inode)) { 3604 error = PTR_ERR(inode); 3605 goto err_out; 3606 } 3607 error = security_inode_init_security(inode, dir, NULL, 3608 shmem_initxattrs, NULL); 3609 if (error && error != -EOPNOTSUPP) 3610 goto out_iput; 3611 error = simple_acl_create(dir, inode); 3612 if (error) 3613 goto out_iput; 3614 d_tmpfile(file, inode); 3615 3616 err_out: 3617 return finish_open_simple(file, error); 3618 out_iput: 3619 iput(inode); 3620 return error; 3621 } 3622 3623 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3624 struct dentry *dentry, umode_t mode) 3625 { 3626 int error; 3627 3628 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3629 if (error) 3630 return error; 3631 inc_nlink(dir); 3632 return 0; 3633 } 3634 3635 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3636 struct dentry *dentry, umode_t mode, bool excl) 3637 { 3638 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3639 } 3640 3641 /* 3642 * Link a file.. 3643 */ 3644 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3645 struct dentry *dentry) 3646 { 3647 struct inode *inode = d_inode(old_dentry); 3648 int ret = 0; 3649 3650 /* 3651 * No ordinary (disk based) filesystem counts links as inodes; 3652 * but each new link needs a new dentry, pinning lowmem, and 3653 * tmpfs dentries cannot be pruned until they are unlinked. 3654 * But if an O_TMPFILE file is linked into the tmpfs, the 3655 * first link must skip that, to get the accounting right. 3656 */ 3657 if (inode->i_nlink) { 3658 ret = shmem_reserve_inode(inode->i_sb, NULL); 3659 if (ret) 3660 goto out; 3661 } 3662 3663 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3664 if (ret) { 3665 if (inode->i_nlink) 3666 shmem_free_inode(inode->i_sb, 0); 3667 goto out; 3668 } 3669 3670 dir->i_size += BOGO_DIRENT_SIZE; 3671 inode_set_mtime_to_ts(dir, 3672 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3673 inode_inc_iversion(dir); 3674 inc_nlink(inode); 3675 ihold(inode); /* New dentry reference */ 3676 dget(dentry); /* Extra pinning count for the created dentry */ 3677 d_instantiate(dentry, inode); 3678 out: 3679 return ret; 3680 } 3681 3682 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3683 { 3684 struct inode *inode = d_inode(dentry); 3685 3686 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3687 shmem_free_inode(inode->i_sb, 0); 3688 3689 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3690 3691 dir->i_size -= BOGO_DIRENT_SIZE; 3692 inode_set_mtime_to_ts(dir, 3693 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3694 inode_inc_iversion(dir); 3695 drop_nlink(inode); 3696 dput(dentry); /* Undo the count from "create" - does all the work */ 3697 return 0; 3698 } 3699 3700 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3701 { 3702 if (!simple_offset_empty(dentry)) 3703 return -ENOTEMPTY; 3704 3705 drop_nlink(d_inode(dentry)); 3706 drop_nlink(dir); 3707 return shmem_unlink(dir, dentry); 3708 } 3709 3710 static int shmem_whiteout(struct mnt_idmap *idmap, 3711 struct inode *old_dir, struct dentry *old_dentry) 3712 { 3713 struct dentry *whiteout; 3714 int error; 3715 3716 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3717 if (!whiteout) 3718 return -ENOMEM; 3719 3720 error = shmem_mknod(idmap, old_dir, whiteout, 3721 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3722 dput(whiteout); 3723 if (error) 3724 return error; 3725 3726 /* 3727 * Cheat and hash the whiteout while the old dentry is still in 3728 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3729 * 3730 * d_lookup() will consistently find one of them at this point, 3731 * not sure which one, but that isn't even important. 3732 */ 3733 d_rehash(whiteout); 3734 return 0; 3735 } 3736 3737 /* 3738 * The VFS layer already does all the dentry stuff for rename, 3739 * we just have to decrement the usage count for the target if 3740 * it exists so that the VFS layer correctly free's it when it 3741 * gets overwritten. 3742 */ 3743 static int shmem_rename2(struct mnt_idmap *idmap, 3744 struct inode *old_dir, struct dentry *old_dentry, 3745 struct inode *new_dir, struct dentry *new_dentry, 3746 unsigned int flags) 3747 { 3748 struct inode *inode = d_inode(old_dentry); 3749 int they_are_dirs = S_ISDIR(inode->i_mode); 3750 int error; 3751 3752 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3753 return -EINVAL; 3754 3755 if (flags & RENAME_EXCHANGE) 3756 return simple_offset_rename_exchange(old_dir, old_dentry, 3757 new_dir, new_dentry); 3758 3759 if (!simple_offset_empty(new_dentry)) 3760 return -ENOTEMPTY; 3761 3762 if (flags & RENAME_WHITEOUT) { 3763 error = shmem_whiteout(idmap, old_dir, old_dentry); 3764 if (error) 3765 return error; 3766 } 3767 3768 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 3769 if (error) 3770 return error; 3771 3772 if (d_really_is_positive(new_dentry)) { 3773 (void) shmem_unlink(new_dir, new_dentry); 3774 if (they_are_dirs) { 3775 drop_nlink(d_inode(new_dentry)); 3776 drop_nlink(old_dir); 3777 } 3778 } else if (they_are_dirs) { 3779 drop_nlink(old_dir); 3780 inc_nlink(new_dir); 3781 } 3782 3783 old_dir->i_size -= BOGO_DIRENT_SIZE; 3784 new_dir->i_size += BOGO_DIRENT_SIZE; 3785 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 3786 inode_inc_iversion(old_dir); 3787 inode_inc_iversion(new_dir); 3788 return 0; 3789 } 3790 3791 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3792 struct dentry *dentry, const char *symname) 3793 { 3794 int error; 3795 int len; 3796 struct inode *inode; 3797 struct folio *folio; 3798 3799 len = strlen(symname) + 1; 3800 if (len > PAGE_SIZE) 3801 return -ENAMETOOLONG; 3802 3803 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3804 VM_NORESERVE); 3805 if (IS_ERR(inode)) 3806 return PTR_ERR(inode); 3807 3808 error = security_inode_init_security(inode, dir, &dentry->d_name, 3809 shmem_initxattrs, NULL); 3810 if (error && error != -EOPNOTSUPP) 3811 goto out_iput; 3812 3813 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3814 if (error) 3815 goto out_iput; 3816 3817 inode->i_size = len-1; 3818 if (len <= SHORT_SYMLINK_LEN) { 3819 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3820 if (!inode->i_link) { 3821 error = -ENOMEM; 3822 goto out_remove_offset; 3823 } 3824 inode->i_op = &shmem_short_symlink_operations; 3825 } else { 3826 inode_nohighmem(inode); 3827 inode->i_mapping->a_ops = &shmem_aops; 3828 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE); 3829 if (error) 3830 goto out_remove_offset; 3831 inode->i_op = &shmem_symlink_inode_operations; 3832 memcpy(folio_address(folio), symname, len); 3833 folio_mark_uptodate(folio); 3834 folio_mark_dirty(folio); 3835 folio_unlock(folio); 3836 folio_put(folio); 3837 } 3838 dir->i_size += BOGO_DIRENT_SIZE; 3839 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3840 inode_inc_iversion(dir); 3841 d_instantiate(dentry, inode); 3842 dget(dentry); 3843 return 0; 3844 3845 out_remove_offset: 3846 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3847 out_iput: 3848 iput(inode); 3849 return error; 3850 } 3851 3852 static void shmem_put_link(void *arg) 3853 { 3854 folio_mark_accessed(arg); 3855 folio_put(arg); 3856 } 3857 3858 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 3859 struct delayed_call *done) 3860 { 3861 struct folio *folio = NULL; 3862 int error; 3863 3864 if (!dentry) { 3865 folio = filemap_get_folio(inode->i_mapping, 0); 3866 if (IS_ERR(folio)) 3867 return ERR_PTR(-ECHILD); 3868 if (PageHWPoison(folio_page(folio, 0)) || 3869 !folio_test_uptodate(folio)) { 3870 folio_put(folio); 3871 return ERR_PTR(-ECHILD); 3872 } 3873 } else { 3874 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ); 3875 if (error) 3876 return ERR_PTR(error); 3877 if (!folio) 3878 return ERR_PTR(-ECHILD); 3879 if (PageHWPoison(folio_page(folio, 0))) { 3880 folio_unlock(folio); 3881 folio_put(folio); 3882 return ERR_PTR(-ECHILD); 3883 } 3884 folio_unlock(folio); 3885 } 3886 set_delayed_call(done, shmem_put_link, folio); 3887 return folio_address(folio); 3888 } 3889 3890 #ifdef CONFIG_TMPFS_XATTR 3891 3892 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3893 { 3894 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3895 3896 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3897 3898 return 0; 3899 } 3900 3901 static int shmem_fileattr_set(struct mnt_idmap *idmap, 3902 struct dentry *dentry, struct fileattr *fa) 3903 { 3904 struct inode *inode = d_inode(dentry); 3905 struct shmem_inode_info *info = SHMEM_I(inode); 3906 3907 if (fileattr_has_fsx(fa)) 3908 return -EOPNOTSUPP; 3909 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3910 return -EOPNOTSUPP; 3911 3912 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3913 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3914 3915 shmem_set_inode_flags(inode, info->fsflags); 3916 inode_set_ctime_current(inode); 3917 inode_inc_iversion(inode); 3918 return 0; 3919 } 3920 3921 /* 3922 * Superblocks without xattr inode operations may get some security.* xattr 3923 * support from the LSM "for free". As soon as we have any other xattrs 3924 * like ACLs, we also need to implement the security.* handlers at 3925 * filesystem level, though. 3926 */ 3927 3928 /* 3929 * Callback for security_inode_init_security() for acquiring xattrs. 3930 */ 3931 static int shmem_initxattrs(struct inode *inode, 3932 const struct xattr *xattr_array, void *fs_info) 3933 { 3934 struct shmem_inode_info *info = SHMEM_I(inode); 3935 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3936 const struct xattr *xattr; 3937 struct simple_xattr *new_xattr; 3938 size_t ispace = 0; 3939 size_t len; 3940 3941 if (sbinfo->max_inodes) { 3942 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3943 ispace += simple_xattr_space(xattr->name, 3944 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 3945 } 3946 if (ispace) { 3947 raw_spin_lock(&sbinfo->stat_lock); 3948 if (sbinfo->free_ispace < ispace) 3949 ispace = 0; 3950 else 3951 sbinfo->free_ispace -= ispace; 3952 raw_spin_unlock(&sbinfo->stat_lock); 3953 if (!ispace) 3954 return -ENOSPC; 3955 } 3956 } 3957 3958 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3959 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3960 if (!new_xattr) 3961 break; 3962 3963 len = strlen(xattr->name) + 1; 3964 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3965 GFP_KERNEL_ACCOUNT); 3966 if (!new_xattr->name) { 3967 kvfree(new_xattr); 3968 break; 3969 } 3970 3971 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3972 XATTR_SECURITY_PREFIX_LEN); 3973 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3974 xattr->name, len); 3975 3976 simple_xattr_add(&info->xattrs, new_xattr); 3977 } 3978 3979 if (xattr->name != NULL) { 3980 if (ispace) { 3981 raw_spin_lock(&sbinfo->stat_lock); 3982 sbinfo->free_ispace += ispace; 3983 raw_spin_unlock(&sbinfo->stat_lock); 3984 } 3985 simple_xattrs_free(&info->xattrs, NULL); 3986 return -ENOMEM; 3987 } 3988 3989 return 0; 3990 } 3991 3992 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3993 struct dentry *unused, struct inode *inode, 3994 const char *name, void *buffer, size_t size) 3995 { 3996 struct shmem_inode_info *info = SHMEM_I(inode); 3997 3998 name = xattr_full_name(handler, name); 3999 return simple_xattr_get(&info->xattrs, name, buffer, size); 4000 } 4001 4002 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 4003 struct mnt_idmap *idmap, 4004 struct dentry *unused, struct inode *inode, 4005 const char *name, const void *value, 4006 size_t size, int flags) 4007 { 4008 struct shmem_inode_info *info = SHMEM_I(inode); 4009 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4010 struct simple_xattr *old_xattr; 4011 size_t ispace = 0; 4012 4013 name = xattr_full_name(handler, name); 4014 if (value && sbinfo->max_inodes) { 4015 ispace = simple_xattr_space(name, size); 4016 raw_spin_lock(&sbinfo->stat_lock); 4017 if (sbinfo->free_ispace < ispace) 4018 ispace = 0; 4019 else 4020 sbinfo->free_ispace -= ispace; 4021 raw_spin_unlock(&sbinfo->stat_lock); 4022 if (!ispace) 4023 return -ENOSPC; 4024 } 4025 4026 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 4027 if (!IS_ERR(old_xattr)) { 4028 ispace = 0; 4029 if (old_xattr && sbinfo->max_inodes) 4030 ispace = simple_xattr_space(old_xattr->name, 4031 old_xattr->size); 4032 simple_xattr_free(old_xattr); 4033 old_xattr = NULL; 4034 inode_set_ctime_current(inode); 4035 inode_inc_iversion(inode); 4036 } 4037 if (ispace) { 4038 raw_spin_lock(&sbinfo->stat_lock); 4039 sbinfo->free_ispace += ispace; 4040 raw_spin_unlock(&sbinfo->stat_lock); 4041 } 4042 return PTR_ERR(old_xattr); 4043 } 4044 4045 static const struct xattr_handler shmem_security_xattr_handler = { 4046 .prefix = XATTR_SECURITY_PREFIX, 4047 .get = shmem_xattr_handler_get, 4048 .set = shmem_xattr_handler_set, 4049 }; 4050 4051 static const struct xattr_handler shmem_trusted_xattr_handler = { 4052 .prefix = XATTR_TRUSTED_PREFIX, 4053 .get = shmem_xattr_handler_get, 4054 .set = shmem_xattr_handler_set, 4055 }; 4056 4057 static const struct xattr_handler shmem_user_xattr_handler = { 4058 .prefix = XATTR_USER_PREFIX, 4059 .get = shmem_xattr_handler_get, 4060 .set = shmem_xattr_handler_set, 4061 }; 4062 4063 static const struct xattr_handler * const shmem_xattr_handlers[] = { 4064 &shmem_security_xattr_handler, 4065 &shmem_trusted_xattr_handler, 4066 &shmem_user_xattr_handler, 4067 NULL 4068 }; 4069 4070 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 4071 { 4072 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4073 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 4074 } 4075 #endif /* CONFIG_TMPFS_XATTR */ 4076 4077 static const struct inode_operations shmem_short_symlink_operations = { 4078 .getattr = shmem_getattr, 4079 .setattr = shmem_setattr, 4080 .get_link = simple_get_link, 4081 #ifdef CONFIG_TMPFS_XATTR 4082 .listxattr = shmem_listxattr, 4083 #endif 4084 }; 4085 4086 static const struct inode_operations shmem_symlink_inode_operations = { 4087 .getattr = shmem_getattr, 4088 .setattr = shmem_setattr, 4089 .get_link = shmem_get_link, 4090 #ifdef CONFIG_TMPFS_XATTR 4091 .listxattr = shmem_listxattr, 4092 #endif 4093 }; 4094 4095 static struct dentry *shmem_get_parent(struct dentry *child) 4096 { 4097 return ERR_PTR(-ESTALE); 4098 } 4099 4100 static int shmem_match(struct inode *ino, void *vfh) 4101 { 4102 __u32 *fh = vfh; 4103 __u64 inum = fh[2]; 4104 inum = (inum << 32) | fh[1]; 4105 return ino->i_ino == inum && fh[0] == ino->i_generation; 4106 } 4107 4108 /* Find any alias of inode, but prefer a hashed alias */ 4109 static struct dentry *shmem_find_alias(struct inode *inode) 4110 { 4111 struct dentry *alias = d_find_alias(inode); 4112 4113 return alias ?: d_find_any_alias(inode); 4114 } 4115 4116 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 4117 struct fid *fid, int fh_len, int fh_type) 4118 { 4119 struct inode *inode; 4120 struct dentry *dentry = NULL; 4121 u64 inum; 4122 4123 if (fh_len < 3) 4124 return NULL; 4125 4126 inum = fid->raw[2]; 4127 inum = (inum << 32) | fid->raw[1]; 4128 4129 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 4130 shmem_match, fid->raw); 4131 if (inode) { 4132 dentry = shmem_find_alias(inode); 4133 iput(inode); 4134 } 4135 4136 return dentry; 4137 } 4138 4139 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 4140 struct inode *parent) 4141 { 4142 if (*len < 3) { 4143 *len = 3; 4144 return FILEID_INVALID; 4145 } 4146 4147 if (inode_unhashed(inode)) { 4148 /* Unfortunately insert_inode_hash is not idempotent, 4149 * so as we hash inodes here rather than at creation 4150 * time, we need a lock to ensure we only try 4151 * to do it once 4152 */ 4153 static DEFINE_SPINLOCK(lock); 4154 spin_lock(&lock); 4155 if (inode_unhashed(inode)) 4156 __insert_inode_hash(inode, 4157 inode->i_ino + inode->i_generation); 4158 spin_unlock(&lock); 4159 } 4160 4161 fh[0] = inode->i_generation; 4162 fh[1] = inode->i_ino; 4163 fh[2] = ((__u64)inode->i_ino) >> 32; 4164 4165 *len = 3; 4166 return 1; 4167 } 4168 4169 static const struct export_operations shmem_export_ops = { 4170 .get_parent = shmem_get_parent, 4171 .encode_fh = shmem_encode_fh, 4172 .fh_to_dentry = shmem_fh_to_dentry, 4173 }; 4174 4175 enum shmem_param { 4176 Opt_gid, 4177 Opt_huge, 4178 Opt_mode, 4179 Opt_mpol, 4180 Opt_nr_blocks, 4181 Opt_nr_inodes, 4182 Opt_size, 4183 Opt_uid, 4184 Opt_inode32, 4185 Opt_inode64, 4186 Opt_noswap, 4187 Opt_quota, 4188 Opt_usrquota, 4189 Opt_grpquota, 4190 Opt_usrquota_block_hardlimit, 4191 Opt_usrquota_inode_hardlimit, 4192 Opt_grpquota_block_hardlimit, 4193 Opt_grpquota_inode_hardlimit, 4194 }; 4195 4196 static const struct constant_table shmem_param_enums_huge[] = { 4197 {"never", SHMEM_HUGE_NEVER }, 4198 {"always", SHMEM_HUGE_ALWAYS }, 4199 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 4200 {"advise", SHMEM_HUGE_ADVISE }, 4201 {} 4202 }; 4203 4204 const struct fs_parameter_spec shmem_fs_parameters[] = { 4205 fsparam_gid ("gid", Opt_gid), 4206 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 4207 fsparam_u32oct("mode", Opt_mode), 4208 fsparam_string("mpol", Opt_mpol), 4209 fsparam_string("nr_blocks", Opt_nr_blocks), 4210 fsparam_string("nr_inodes", Opt_nr_inodes), 4211 fsparam_string("size", Opt_size), 4212 fsparam_uid ("uid", Opt_uid), 4213 fsparam_flag ("inode32", Opt_inode32), 4214 fsparam_flag ("inode64", Opt_inode64), 4215 fsparam_flag ("noswap", Opt_noswap), 4216 #ifdef CONFIG_TMPFS_QUOTA 4217 fsparam_flag ("quota", Opt_quota), 4218 fsparam_flag ("usrquota", Opt_usrquota), 4219 fsparam_flag ("grpquota", Opt_grpquota), 4220 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 4221 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 4222 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 4223 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 4224 #endif 4225 {} 4226 }; 4227 4228 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 4229 { 4230 struct shmem_options *ctx = fc->fs_private; 4231 struct fs_parse_result result; 4232 unsigned long long size; 4233 char *rest; 4234 int opt; 4235 kuid_t kuid; 4236 kgid_t kgid; 4237 4238 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 4239 if (opt < 0) 4240 return opt; 4241 4242 switch (opt) { 4243 case Opt_size: 4244 size = memparse(param->string, &rest); 4245 if (*rest == '%') { 4246 size <<= PAGE_SHIFT; 4247 size *= totalram_pages(); 4248 do_div(size, 100); 4249 rest++; 4250 } 4251 if (*rest) 4252 goto bad_value; 4253 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 4254 ctx->seen |= SHMEM_SEEN_BLOCKS; 4255 break; 4256 case Opt_nr_blocks: 4257 ctx->blocks = memparse(param->string, &rest); 4258 if (*rest || ctx->blocks > LONG_MAX) 4259 goto bad_value; 4260 ctx->seen |= SHMEM_SEEN_BLOCKS; 4261 break; 4262 case Opt_nr_inodes: 4263 ctx->inodes = memparse(param->string, &rest); 4264 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 4265 goto bad_value; 4266 ctx->seen |= SHMEM_SEEN_INODES; 4267 break; 4268 case Opt_mode: 4269 ctx->mode = result.uint_32 & 07777; 4270 break; 4271 case Opt_uid: 4272 kuid = result.uid; 4273 4274 /* 4275 * The requested uid must be representable in the 4276 * filesystem's idmapping. 4277 */ 4278 if (!kuid_has_mapping(fc->user_ns, kuid)) 4279 goto bad_value; 4280 4281 ctx->uid = kuid; 4282 break; 4283 case Opt_gid: 4284 kgid = result.gid; 4285 4286 /* 4287 * The requested gid must be representable in the 4288 * filesystem's idmapping. 4289 */ 4290 if (!kgid_has_mapping(fc->user_ns, kgid)) 4291 goto bad_value; 4292 4293 ctx->gid = kgid; 4294 break; 4295 case Opt_huge: 4296 ctx->huge = result.uint_32; 4297 if (ctx->huge != SHMEM_HUGE_NEVER && 4298 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4299 has_transparent_hugepage())) 4300 goto unsupported_parameter; 4301 ctx->seen |= SHMEM_SEEN_HUGE; 4302 break; 4303 case Opt_mpol: 4304 if (IS_ENABLED(CONFIG_NUMA)) { 4305 mpol_put(ctx->mpol); 4306 ctx->mpol = NULL; 4307 if (mpol_parse_str(param->string, &ctx->mpol)) 4308 goto bad_value; 4309 break; 4310 } 4311 goto unsupported_parameter; 4312 case Opt_inode32: 4313 ctx->full_inums = false; 4314 ctx->seen |= SHMEM_SEEN_INUMS; 4315 break; 4316 case Opt_inode64: 4317 if (sizeof(ino_t) < 8) { 4318 return invalfc(fc, 4319 "Cannot use inode64 with <64bit inums in kernel\n"); 4320 } 4321 ctx->full_inums = true; 4322 ctx->seen |= SHMEM_SEEN_INUMS; 4323 break; 4324 case Opt_noswap: 4325 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4326 return invalfc(fc, 4327 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4328 } 4329 ctx->noswap = true; 4330 ctx->seen |= SHMEM_SEEN_NOSWAP; 4331 break; 4332 case Opt_quota: 4333 if (fc->user_ns != &init_user_ns) 4334 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4335 ctx->seen |= SHMEM_SEEN_QUOTA; 4336 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4337 break; 4338 case Opt_usrquota: 4339 if (fc->user_ns != &init_user_ns) 4340 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4341 ctx->seen |= SHMEM_SEEN_QUOTA; 4342 ctx->quota_types |= QTYPE_MASK_USR; 4343 break; 4344 case Opt_grpquota: 4345 if (fc->user_ns != &init_user_ns) 4346 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4347 ctx->seen |= SHMEM_SEEN_QUOTA; 4348 ctx->quota_types |= QTYPE_MASK_GRP; 4349 break; 4350 case Opt_usrquota_block_hardlimit: 4351 size = memparse(param->string, &rest); 4352 if (*rest || !size) 4353 goto bad_value; 4354 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4355 return invalfc(fc, 4356 "User quota block hardlimit too large."); 4357 ctx->qlimits.usrquota_bhardlimit = size; 4358 break; 4359 case Opt_grpquota_block_hardlimit: 4360 size = memparse(param->string, &rest); 4361 if (*rest || !size) 4362 goto bad_value; 4363 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4364 return invalfc(fc, 4365 "Group quota block hardlimit too large."); 4366 ctx->qlimits.grpquota_bhardlimit = size; 4367 break; 4368 case Opt_usrquota_inode_hardlimit: 4369 size = memparse(param->string, &rest); 4370 if (*rest || !size) 4371 goto bad_value; 4372 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4373 return invalfc(fc, 4374 "User quota inode hardlimit too large."); 4375 ctx->qlimits.usrquota_ihardlimit = size; 4376 break; 4377 case Opt_grpquota_inode_hardlimit: 4378 size = memparse(param->string, &rest); 4379 if (*rest || !size) 4380 goto bad_value; 4381 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4382 return invalfc(fc, 4383 "Group quota inode hardlimit too large."); 4384 ctx->qlimits.grpquota_ihardlimit = size; 4385 break; 4386 } 4387 return 0; 4388 4389 unsupported_parameter: 4390 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4391 bad_value: 4392 return invalfc(fc, "Bad value for '%s'", param->key); 4393 } 4394 4395 static int shmem_parse_options(struct fs_context *fc, void *data) 4396 { 4397 char *options = data; 4398 4399 if (options) { 4400 int err = security_sb_eat_lsm_opts(options, &fc->security); 4401 if (err) 4402 return err; 4403 } 4404 4405 while (options != NULL) { 4406 char *this_char = options; 4407 for (;;) { 4408 /* 4409 * NUL-terminate this option: unfortunately, 4410 * mount options form a comma-separated list, 4411 * but mpol's nodelist may also contain commas. 4412 */ 4413 options = strchr(options, ','); 4414 if (options == NULL) 4415 break; 4416 options++; 4417 if (!isdigit(*options)) { 4418 options[-1] = '\0'; 4419 break; 4420 } 4421 } 4422 if (*this_char) { 4423 char *value = strchr(this_char, '='); 4424 size_t len = 0; 4425 int err; 4426 4427 if (value) { 4428 *value++ = '\0'; 4429 len = strlen(value); 4430 } 4431 err = vfs_parse_fs_string(fc, this_char, value, len); 4432 if (err < 0) 4433 return err; 4434 } 4435 } 4436 return 0; 4437 } 4438 4439 /* 4440 * Reconfigure a shmem filesystem. 4441 */ 4442 static int shmem_reconfigure(struct fs_context *fc) 4443 { 4444 struct shmem_options *ctx = fc->fs_private; 4445 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4446 unsigned long used_isp; 4447 struct mempolicy *mpol = NULL; 4448 const char *err; 4449 4450 raw_spin_lock(&sbinfo->stat_lock); 4451 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4452 4453 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4454 if (!sbinfo->max_blocks) { 4455 err = "Cannot retroactively limit size"; 4456 goto out; 4457 } 4458 if (percpu_counter_compare(&sbinfo->used_blocks, 4459 ctx->blocks) > 0) { 4460 err = "Too small a size for current use"; 4461 goto out; 4462 } 4463 } 4464 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4465 if (!sbinfo->max_inodes) { 4466 err = "Cannot retroactively limit inodes"; 4467 goto out; 4468 } 4469 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4470 err = "Too few inodes for current use"; 4471 goto out; 4472 } 4473 } 4474 4475 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4476 sbinfo->next_ino > UINT_MAX) { 4477 err = "Current inum too high to switch to 32-bit inums"; 4478 goto out; 4479 } 4480 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4481 err = "Cannot disable swap on remount"; 4482 goto out; 4483 } 4484 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4485 err = "Cannot enable swap on remount if it was disabled on first mount"; 4486 goto out; 4487 } 4488 4489 if (ctx->seen & SHMEM_SEEN_QUOTA && 4490 !sb_any_quota_loaded(fc->root->d_sb)) { 4491 err = "Cannot enable quota on remount"; 4492 goto out; 4493 } 4494 4495 #ifdef CONFIG_TMPFS_QUOTA 4496 #define CHANGED_LIMIT(name) \ 4497 (ctx->qlimits.name## hardlimit && \ 4498 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4499 4500 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4501 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4502 err = "Cannot change global quota limit on remount"; 4503 goto out; 4504 } 4505 #endif /* CONFIG_TMPFS_QUOTA */ 4506 4507 if (ctx->seen & SHMEM_SEEN_HUGE) 4508 sbinfo->huge = ctx->huge; 4509 if (ctx->seen & SHMEM_SEEN_INUMS) 4510 sbinfo->full_inums = ctx->full_inums; 4511 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4512 sbinfo->max_blocks = ctx->blocks; 4513 if (ctx->seen & SHMEM_SEEN_INODES) { 4514 sbinfo->max_inodes = ctx->inodes; 4515 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4516 } 4517 4518 /* 4519 * Preserve previous mempolicy unless mpol remount option was specified. 4520 */ 4521 if (ctx->mpol) { 4522 mpol = sbinfo->mpol; 4523 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4524 ctx->mpol = NULL; 4525 } 4526 4527 if (ctx->noswap) 4528 sbinfo->noswap = true; 4529 4530 raw_spin_unlock(&sbinfo->stat_lock); 4531 mpol_put(mpol); 4532 return 0; 4533 out: 4534 raw_spin_unlock(&sbinfo->stat_lock); 4535 return invalfc(fc, "%s", err); 4536 } 4537 4538 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4539 { 4540 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4541 struct mempolicy *mpol; 4542 4543 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4544 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4545 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4546 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4547 if (sbinfo->mode != (0777 | S_ISVTX)) 4548 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4549 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4550 seq_printf(seq, ",uid=%u", 4551 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4552 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4553 seq_printf(seq, ",gid=%u", 4554 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4555 4556 /* 4557 * Showing inode{64,32} might be useful even if it's the system default, 4558 * since then people don't have to resort to checking both here and 4559 * /proc/config.gz to confirm 64-bit inums were successfully applied 4560 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4561 * 4562 * We hide it when inode64 isn't the default and we are using 32-bit 4563 * inodes, since that probably just means the feature isn't even under 4564 * consideration. 4565 * 4566 * As such: 4567 * 4568 * +-----------------+-----------------+ 4569 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4570 * +------------------+-----------------+-----------------+ 4571 * | full_inums=true | show | show | 4572 * | full_inums=false | show | hide | 4573 * +------------------+-----------------+-----------------+ 4574 * 4575 */ 4576 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4577 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4578 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4579 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4580 if (sbinfo->huge) 4581 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4582 #endif 4583 mpol = shmem_get_sbmpol(sbinfo); 4584 shmem_show_mpol(seq, mpol); 4585 mpol_put(mpol); 4586 if (sbinfo->noswap) 4587 seq_printf(seq, ",noswap"); 4588 #ifdef CONFIG_TMPFS_QUOTA 4589 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4590 seq_printf(seq, ",usrquota"); 4591 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4592 seq_printf(seq, ",grpquota"); 4593 if (sbinfo->qlimits.usrquota_bhardlimit) 4594 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4595 sbinfo->qlimits.usrquota_bhardlimit); 4596 if (sbinfo->qlimits.grpquota_bhardlimit) 4597 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4598 sbinfo->qlimits.grpquota_bhardlimit); 4599 if (sbinfo->qlimits.usrquota_ihardlimit) 4600 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4601 sbinfo->qlimits.usrquota_ihardlimit); 4602 if (sbinfo->qlimits.grpquota_ihardlimit) 4603 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4604 sbinfo->qlimits.grpquota_ihardlimit); 4605 #endif 4606 return 0; 4607 } 4608 4609 #endif /* CONFIG_TMPFS */ 4610 4611 static void shmem_put_super(struct super_block *sb) 4612 { 4613 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4614 4615 #ifdef CONFIG_TMPFS_QUOTA 4616 shmem_disable_quotas(sb); 4617 #endif 4618 free_percpu(sbinfo->ino_batch); 4619 percpu_counter_destroy(&sbinfo->used_blocks); 4620 mpol_put(sbinfo->mpol); 4621 kfree(sbinfo); 4622 sb->s_fs_info = NULL; 4623 } 4624 4625 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4626 { 4627 struct shmem_options *ctx = fc->fs_private; 4628 struct inode *inode; 4629 struct shmem_sb_info *sbinfo; 4630 int error = -ENOMEM; 4631 4632 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4633 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4634 L1_CACHE_BYTES), GFP_KERNEL); 4635 if (!sbinfo) 4636 return error; 4637 4638 sb->s_fs_info = sbinfo; 4639 4640 #ifdef CONFIG_TMPFS 4641 /* 4642 * Per default we only allow half of the physical ram per 4643 * tmpfs instance, limiting inodes to one per page of lowmem; 4644 * but the internal instance is left unlimited. 4645 */ 4646 if (!(sb->s_flags & SB_KERNMOUNT)) { 4647 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 4648 ctx->blocks = shmem_default_max_blocks(); 4649 if (!(ctx->seen & SHMEM_SEEN_INODES)) 4650 ctx->inodes = shmem_default_max_inodes(); 4651 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 4652 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 4653 sbinfo->noswap = ctx->noswap; 4654 } else { 4655 sb->s_flags |= SB_NOUSER; 4656 } 4657 sb->s_export_op = &shmem_export_ops; 4658 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 4659 #else 4660 sb->s_flags |= SB_NOUSER; 4661 #endif 4662 sbinfo->max_blocks = ctx->blocks; 4663 sbinfo->max_inodes = ctx->inodes; 4664 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 4665 if (sb->s_flags & SB_KERNMOUNT) { 4666 sbinfo->ino_batch = alloc_percpu(ino_t); 4667 if (!sbinfo->ino_batch) 4668 goto failed; 4669 } 4670 sbinfo->uid = ctx->uid; 4671 sbinfo->gid = ctx->gid; 4672 sbinfo->full_inums = ctx->full_inums; 4673 sbinfo->mode = ctx->mode; 4674 sbinfo->huge = ctx->huge; 4675 sbinfo->mpol = ctx->mpol; 4676 ctx->mpol = NULL; 4677 4678 raw_spin_lock_init(&sbinfo->stat_lock); 4679 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 4680 goto failed; 4681 spin_lock_init(&sbinfo->shrinklist_lock); 4682 INIT_LIST_HEAD(&sbinfo->shrinklist); 4683 4684 sb->s_maxbytes = MAX_LFS_FILESIZE; 4685 sb->s_blocksize = PAGE_SIZE; 4686 sb->s_blocksize_bits = PAGE_SHIFT; 4687 sb->s_magic = TMPFS_MAGIC; 4688 sb->s_op = &shmem_ops; 4689 sb->s_time_gran = 1; 4690 #ifdef CONFIG_TMPFS_XATTR 4691 sb->s_xattr = shmem_xattr_handlers; 4692 #endif 4693 #ifdef CONFIG_TMPFS_POSIX_ACL 4694 sb->s_flags |= SB_POSIXACL; 4695 #endif 4696 uuid_t uuid; 4697 uuid_gen(&uuid); 4698 super_set_uuid(sb, uuid.b, sizeof(uuid)); 4699 4700 #ifdef CONFIG_TMPFS_QUOTA 4701 if (ctx->seen & SHMEM_SEEN_QUOTA) { 4702 sb->dq_op = &shmem_quota_operations; 4703 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4704 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4705 4706 /* Copy the default limits from ctx into sbinfo */ 4707 memcpy(&sbinfo->qlimits, &ctx->qlimits, 4708 sizeof(struct shmem_quota_limits)); 4709 4710 if (shmem_enable_quotas(sb, ctx->quota_types)) 4711 goto failed; 4712 } 4713 #endif /* CONFIG_TMPFS_QUOTA */ 4714 4715 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 4716 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 4717 if (IS_ERR(inode)) { 4718 error = PTR_ERR(inode); 4719 goto failed; 4720 } 4721 inode->i_uid = sbinfo->uid; 4722 inode->i_gid = sbinfo->gid; 4723 sb->s_root = d_make_root(inode); 4724 if (!sb->s_root) 4725 goto failed; 4726 return 0; 4727 4728 failed: 4729 shmem_put_super(sb); 4730 return error; 4731 } 4732 4733 static int shmem_get_tree(struct fs_context *fc) 4734 { 4735 return get_tree_nodev(fc, shmem_fill_super); 4736 } 4737 4738 static void shmem_free_fc(struct fs_context *fc) 4739 { 4740 struct shmem_options *ctx = fc->fs_private; 4741 4742 if (ctx) { 4743 mpol_put(ctx->mpol); 4744 kfree(ctx); 4745 } 4746 } 4747 4748 static const struct fs_context_operations shmem_fs_context_ops = { 4749 .free = shmem_free_fc, 4750 .get_tree = shmem_get_tree, 4751 #ifdef CONFIG_TMPFS 4752 .parse_monolithic = shmem_parse_options, 4753 .parse_param = shmem_parse_one, 4754 .reconfigure = shmem_reconfigure, 4755 #endif 4756 }; 4757 4758 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 4759 4760 static struct inode *shmem_alloc_inode(struct super_block *sb) 4761 { 4762 struct shmem_inode_info *info; 4763 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 4764 if (!info) 4765 return NULL; 4766 return &info->vfs_inode; 4767 } 4768 4769 static void shmem_free_in_core_inode(struct inode *inode) 4770 { 4771 if (S_ISLNK(inode->i_mode)) 4772 kfree(inode->i_link); 4773 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 4774 } 4775 4776 static void shmem_destroy_inode(struct inode *inode) 4777 { 4778 if (S_ISREG(inode->i_mode)) 4779 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 4780 if (S_ISDIR(inode->i_mode)) 4781 simple_offset_destroy(shmem_get_offset_ctx(inode)); 4782 } 4783 4784 static void shmem_init_inode(void *foo) 4785 { 4786 struct shmem_inode_info *info = foo; 4787 inode_init_once(&info->vfs_inode); 4788 } 4789 4790 static void __init shmem_init_inodecache(void) 4791 { 4792 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 4793 sizeof(struct shmem_inode_info), 4794 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 4795 } 4796 4797 static void __init shmem_destroy_inodecache(void) 4798 { 4799 kmem_cache_destroy(shmem_inode_cachep); 4800 } 4801 4802 /* Keep the page in page cache instead of truncating it */ 4803 static int shmem_error_remove_folio(struct address_space *mapping, 4804 struct folio *folio) 4805 { 4806 return 0; 4807 } 4808 4809 static const struct address_space_operations shmem_aops = { 4810 .writepage = shmem_writepage, 4811 .dirty_folio = noop_dirty_folio, 4812 #ifdef CONFIG_TMPFS 4813 .write_begin = shmem_write_begin, 4814 .write_end = shmem_write_end, 4815 #endif 4816 #ifdef CONFIG_MIGRATION 4817 .migrate_folio = migrate_folio, 4818 #endif 4819 .error_remove_folio = shmem_error_remove_folio, 4820 }; 4821 4822 static const struct file_operations shmem_file_operations = { 4823 .mmap = shmem_mmap, 4824 .open = shmem_file_open, 4825 .get_unmapped_area = shmem_get_unmapped_area, 4826 #ifdef CONFIG_TMPFS 4827 .llseek = shmem_file_llseek, 4828 .read_iter = shmem_file_read_iter, 4829 .write_iter = shmem_file_write_iter, 4830 .fsync = noop_fsync, 4831 .splice_read = shmem_file_splice_read, 4832 .splice_write = iter_file_splice_write, 4833 .fallocate = shmem_fallocate, 4834 #endif 4835 }; 4836 4837 static const struct inode_operations shmem_inode_operations = { 4838 .getattr = shmem_getattr, 4839 .setattr = shmem_setattr, 4840 #ifdef CONFIG_TMPFS_XATTR 4841 .listxattr = shmem_listxattr, 4842 .set_acl = simple_set_acl, 4843 .fileattr_get = shmem_fileattr_get, 4844 .fileattr_set = shmem_fileattr_set, 4845 #endif 4846 }; 4847 4848 static const struct inode_operations shmem_dir_inode_operations = { 4849 #ifdef CONFIG_TMPFS 4850 .getattr = shmem_getattr, 4851 .create = shmem_create, 4852 .lookup = simple_lookup, 4853 .link = shmem_link, 4854 .unlink = shmem_unlink, 4855 .symlink = shmem_symlink, 4856 .mkdir = shmem_mkdir, 4857 .rmdir = shmem_rmdir, 4858 .mknod = shmem_mknod, 4859 .rename = shmem_rename2, 4860 .tmpfile = shmem_tmpfile, 4861 .get_offset_ctx = shmem_get_offset_ctx, 4862 #endif 4863 #ifdef CONFIG_TMPFS_XATTR 4864 .listxattr = shmem_listxattr, 4865 .fileattr_get = shmem_fileattr_get, 4866 .fileattr_set = shmem_fileattr_set, 4867 #endif 4868 #ifdef CONFIG_TMPFS_POSIX_ACL 4869 .setattr = shmem_setattr, 4870 .set_acl = simple_set_acl, 4871 #endif 4872 }; 4873 4874 static const struct inode_operations shmem_special_inode_operations = { 4875 .getattr = shmem_getattr, 4876 #ifdef CONFIG_TMPFS_XATTR 4877 .listxattr = shmem_listxattr, 4878 #endif 4879 #ifdef CONFIG_TMPFS_POSIX_ACL 4880 .setattr = shmem_setattr, 4881 .set_acl = simple_set_acl, 4882 #endif 4883 }; 4884 4885 static const struct super_operations shmem_ops = { 4886 .alloc_inode = shmem_alloc_inode, 4887 .free_inode = shmem_free_in_core_inode, 4888 .destroy_inode = shmem_destroy_inode, 4889 #ifdef CONFIG_TMPFS 4890 .statfs = shmem_statfs, 4891 .show_options = shmem_show_options, 4892 #endif 4893 #ifdef CONFIG_TMPFS_QUOTA 4894 .get_dquots = shmem_get_dquots, 4895 #endif 4896 .evict_inode = shmem_evict_inode, 4897 .drop_inode = generic_delete_inode, 4898 .put_super = shmem_put_super, 4899 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4900 .nr_cached_objects = shmem_unused_huge_count, 4901 .free_cached_objects = shmem_unused_huge_scan, 4902 #endif 4903 }; 4904 4905 static const struct vm_operations_struct shmem_vm_ops = { 4906 .fault = shmem_fault, 4907 .map_pages = filemap_map_pages, 4908 #ifdef CONFIG_NUMA 4909 .set_policy = shmem_set_policy, 4910 .get_policy = shmem_get_policy, 4911 #endif 4912 }; 4913 4914 static const struct vm_operations_struct shmem_anon_vm_ops = { 4915 .fault = shmem_fault, 4916 .map_pages = filemap_map_pages, 4917 #ifdef CONFIG_NUMA 4918 .set_policy = shmem_set_policy, 4919 .get_policy = shmem_get_policy, 4920 #endif 4921 }; 4922 4923 int shmem_init_fs_context(struct fs_context *fc) 4924 { 4925 struct shmem_options *ctx; 4926 4927 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4928 if (!ctx) 4929 return -ENOMEM; 4930 4931 ctx->mode = 0777 | S_ISVTX; 4932 ctx->uid = current_fsuid(); 4933 ctx->gid = current_fsgid(); 4934 4935 fc->fs_private = ctx; 4936 fc->ops = &shmem_fs_context_ops; 4937 return 0; 4938 } 4939 4940 static struct file_system_type shmem_fs_type = { 4941 .owner = THIS_MODULE, 4942 .name = "tmpfs", 4943 .init_fs_context = shmem_init_fs_context, 4944 #ifdef CONFIG_TMPFS 4945 .parameters = shmem_fs_parameters, 4946 #endif 4947 .kill_sb = kill_litter_super, 4948 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP, 4949 }; 4950 4951 void __init shmem_init(void) 4952 { 4953 int error; 4954 4955 shmem_init_inodecache(); 4956 4957 #ifdef CONFIG_TMPFS_QUOTA 4958 register_quota_format(&shmem_quota_format); 4959 #endif 4960 4961 error = register_filesystem(&shmem_fs_type); 4962 if (error) { 4963 pr_err("Could not register tmpfs\n"); 4964 goto out2; 4965 } 4966 4967 shm_mnt = kern_mount(&shmem_fs_type); 4968 if (IS_ERR(shm_mnt)) { 4969 error = PTR_ERR(shm_mnt); 4970 pr_err("Could not kern_mount tmpfs\n"); 4971 goto out1; 4972 } 4973 4974 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4975 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4976 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4977 else 4978 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4979 4980 /* 4981 * Default to setting PMD-sized THP to inherit the global setting and 4982 * disable all other multi-size THPs. 4983 */ 4984 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER); 4985 #endif 4986 return; 4987 4988 out1: 4989 unregister_filesystem(&shmem_fs_type); 4990 out2: 4991 #ifdef CONFIG_TMPFS_QUOTA 4992 unregister_quota_format(&shmem_quota_format); 4993 #endif 4994 shmem_destroy_inodecache(); 4995 shm_mnt = ERR_PTR(error); 4996 } 4997 4998 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4999 static ssize_t shmem_enabled_show(struct kobject *kobj, 5000 struct kobj_attribute *attr, char *buf) 5001 { 5002 static const int values[] = { 5003 SHMEM_HUGE_ALWAYS, 5004 SHMEM_HUGE_WITHIN_SIZE, 5005 SHMEM_HUGE_ADVISE, 5006 SHMEM_HUGE_NEVER, 5007 SHMEM_HUGE_DENY, 5008 SHMEM_HUGE_FORCE, 5009 }; 5010 int len = 0; 5011 int i; 5012 5013 for (i = 0; i < ARRAY_SIZE(values); i++) { 5014 len += sysfs_emit_at(buf, len, 5015 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 5016 i ? " " : "", shmem_format_huge(values[i])); 5017 } 5018 len += sysfs_emit_at(buf, len, "\n"); 5019 5020 return len; 5021 } 5022 5023 static ssize_t shmem_enabled_store(struct kobject *kobj, 5024 struct kobj_attribute *attr, const char *buf, size_t count) 5025 { 5026 char tmp[16]; 5027 int huge; 5028 5029 if (count + 1 > sizeof(tmp)) 5030 return -EINVAL; 5031 memcpy(tmp, buf, count); 5032 tmp[count] = '\0'; 5033 if (count && tmp[count - 1] == '\n') 5034 tmp[count - 1] = '\0'; 5035 5036 huge = shmem_parse_huge(tmp); 5037 if (huge == -EINVAL) 5038 return -EINVAL; 5039 if (!has_transparent_hugepage() && 5040 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 5041 return -EINVAL; 5042 5043 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5044 if (huge == SHMEM_HUGE_FORCE && 5045 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER)) 5046 return -EINVAL; 5047 5048 shmem_huge = huge; 5049 if (shmem_huge > SHMEM_HUGE_DENY) 5050 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5051 return count; 5052 } 5053 5054 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 5055 static DEFINE_SPINLOCK(huge_shmem_orders_lock); 5056 5057 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj, 5058 struct kobj_attribute *attr, char *buf) 5059 { 5060 int order = to_thpsize(kobj)->order; 5061 const char *output; 5062 5063 if (test_bit(order, &huge_shmem_orders_always)) 5064 output = "[always] inherit within_size advise never"; 5065 else if (test_bit(order, &huge_shmem_orders_inherit)) 5066 output = "always [inherit] within_size advise never"; 5067 else if (test_bit(order, &huge_shmem_orders_within_size)) 5068 output = "always inherit [within_size] advise never"; 5069 else if (test_bit(order, &huge_shmem_orders_madvise)) 5070 output = "always inherit within_size [advise] never"; 5071 else 5072 output = "always inherit within_size advise [never]"; 5073 5074 return sysfs_emit(buf, "%s\n", output); 5075 } 5076 5077 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj, 5078 struct kobj_attribute *attr, 5079 const char *buf, size_t count) 5080 { 5081 int order = to_thpsize(kobj)->order; 5082 ssize_t ret = count; 5083 5084 if (sysfs_streq(buf, "always")) { 5085 spin_lock(&huge_shmem_orders_lock); 5086 clear_bit(order, &huge_shmem_orders_inherit); 5087 clear_bit(order, &huge_shmem_orders_madvise); 5088 clear_bit(order, &huge_shmem_orders_within_size); 5089 set_bit(order, &huge_shmem_orders_always); 5090 spin_unlock(&huge_shmem_orders_lock); 5091 } else if (sysfs_streq(buf, "inherit")) { 5092 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5093 if (shmem_huge == SHMEM_HUGE_FORCE && 5094 order != HPAGE_PMD_ORDER) 5095 return -EINVAL; 5096 5097 spin_lock(&huge_shmem_orders_lock); 5098 clear_bit(order, &huge_shmem_orders_always); 5099 clear_bit(order, &huge_shmem_orders_madvise); 5100 clear_bit(order, &huge_shmem_orders_within_size); 5101 set_bit(order, &huge_shmem_orders_inherit); 5102 spin_unlock(&huge_shmem_orders_lock); 5103 } else if (sysfs_streq(buf, "within_size")) { 5104 spin_lock(&huge_shmem_orders_lock); 5105 clear_bit(order, &huge_shmem_orders_always); 5106 clear_bit(order, &huge_shmem_orders_inherit); 5107 clear_bit(order, &huge_shmem_orders_madvise); 5108 set_bit(order, &huge_shmem_orders_within_size); 5109 spin_unlock(&huge_shmem_orders_lock); 5110 } else if (sysfs_streq(buf, "advise")) { 5111 spin_lock(&huge_shmem_orders_lock); 5112 clear_bit(order, &huge_shmem_orders_always); 5113 clear_bit(order, &huge_shmem_orders_inherit); 5114 clear_bit(order, &huge_shmem_orders_within_size); 5115 set_bit(order, &huge_shmem_orders_madvise); 5116 spin_unlock(&huge_shmem_orders_lock); 5117 } else if (sysfs_streq(buf, "never")) { 5118 spin_lock(&huge_shmem_orders_lock); 5119 clear_bit(order, &huge_shmem_orders_always); 5120 clear_bit(order, &huge_shmem_orders_inherit); 5121 clear_bit(order, &huge_shmem_orders_within_size); 5122 clear_bit(order, &huge_shmem_orders_madvise); 5123 spin_unlock(&huge_shmem_orders_lock); 5124 } else { 5125 ret = -EINVAL; 5126 } 5127 5128 return ret; 5129 } 5130 5131 struct kobj_attribute thpsize_shmem_enabled_attr = 5132 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store); 5133 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 5134 5135 #else /* !CONFIG_SHMEM */ 5136 5137 /* 5138 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 5139 * 5140 * This is intended for small system where the benefits of the full 5141 * shmem code (swap-backed and resource-limited) are outweighed by 5142 * their complexity. On systems without swap this code should be 5143 * effectively equivalent, but much lighter weight. 5144 */ 5145 5146 static struct file_system_type shmem_fs_type = { 5147 .name = "tmpfs", 5148 .init_fs_context = ramfs_init_fs_context, 5149 .parameters = ramfs_fs_parameters, 5150 .kill_sb = ramfs_kill_sb, 5151 .fs_flags = FS_USERNS_MOUNT, 5152 }; 5153 5154 void __init shmem_init(void) 5155 { 5156 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 5157 5158 shm_mnt = kern_mount(&shmem_fs_type); 5159 BUG_ON(IS_ERR(shm_mnt)); 5160 } 5161 5162 int shmem_unuse(unsigned int type) 5163 { 5164 return 0; 5165 } 5166 5167 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 5168 { 5169 return 0; 5170 } 5171 5172 void shmem_unlock_mapping(struct address_space *mapping) 5173 { 5174 } 5175 5176 #ifdef CONFIG_MMU 5177 unsigned long shmem_get_unmapped_area(struct file *file, 5178 unsigned long addr, unsigned long len, 5179 unsigned long pgoff, unsigned long flags) 5180 { 5181 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags); 5182 } 5183 #endif 5184 5185 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 5186 { 5187 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 5188 } 5189 EXPORT_SYMBOL_GPL(shmem_truncate_range); 5190 5191 #define shmem_vm_ops generic_file_vm_ops 5192 #define shmem_anon_vm_ops generic_file_vm_ops 5193 #define shmem_file_operations ramfs_file_operations 5194 #define shmem_acct_size(flags, size) 0 5195 #define shmem_unacct_size(flags, size) do {} while (0) 5196 5197 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 5198 struct super_block *sb, struct inode *dir, 5199 umode_t mode, dev_t dev, unsigned long flags) 5200 { 5201 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 5202 return inode ? inode : ERR_PTR(-ENOSPC); 5203 } 5204 5205 #endif /* CONFIG_SHMEM */ 5206 5207 /* common code */ 5208 5209 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 5210 loff_t size, unsigned long flags, unsigned int i_flags) 5211 { 5212 struct inode *inode; 5213 struct file *res; 5214 5215 if (IS_ERR(mnt)) 5216 return ERR_CAST(mnt); 5217 5218 if (size < 0 || size > MAX_LFS_FILESIZE) 5219 return ERR_PTR(-EINVAL); 5220 5221 if (shmem_acct_size(flags, size)) 5222 return ERR_PTR(-ENOMEM); 5223 5224 if (is_idmapped_mnt(mnt)) 5225 return ERR_PTR(-EINVAL); 5226 5227 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 5228 S_IFREG | S_IRWXUGO, 0, flags); 5229 if (IS_ERR(inode)) { 5230 shmem_unacct_size(flags, size); 5231 return ERR_CAST(inode); 5232 } 5233 inode->i_flags |= i_flags; 5234 inode->i_size = size; 5235 clear_nlink(inode); /* It is unlinked */ 5236 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 5237 if (!IS_ERR(res)) 5238 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 5239 &shmem_file_operations); 5240 if (IS_ERR(res)) 5241 iput(inode); 5242 return res; 5243 } 5244 5245 /** 5246 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 5247 * kernel internal. There will be NO LSM permission checks against the 5248 * underlying inode. So users of this interface must do LSM checks at a 5249 * higher layer. The users are the big_key and shm implementations. LSM 5250 * checks are provided at the key or shm level rather than the inode. 5251 * @name: name for dentry (to be seen in /proc/<pid>/maps 5252 * @size: size to be set for the file 5253 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5254 */ 5255 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 5256 { 5257 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 5258 } 5259 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 5260 5261 /** 5262 * shmem_file_setup - get an unlinked file living in tmpfs 5263 * @name: name for dentry (to be seen in /proc/<pid>/maps 5264 * @size: size to be set for the file 5265 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5266 */ 5267 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 5268 { 5269 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 5270 } 5271 EXPORT_SYMBOL_GPL(shmem_file_setup); 5272 5273 /** 5274 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 5275 * @mnt: the tmpfs mount where the file will be created 5276 * @name: name for dentry (to be seen in /proc/<pid>/maps 5277 * @size: size to be set for the file 5278 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5279 */ 5280 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 5281 loff_t size, unsigned long flags) 5282 { 5283 return __shmem_file_setup(mnt, name, size, flags, 0); 5284 } 5285 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 5286 5287 /** 5288 * shmem_zero_setup - setup a shared anonymous mapping 5289 * @vma: the vma to be mmapped is prepared by do_mmap 5290 */ 5291 int shmem_zero_setup(struct vm_area_struct *vma) 5292 { 5293 struct file *file; 5294 loff_t size = vma->vm_end - vma->vm_start; 5295 5296 /* 5297 * Cloning a new file under mmap_lock leads to a lock ordering conflict 5298 * between XFS directory reading and selinux: since this file is only 5299 * accessible to the user through its mapping, use S_PRIVATE flag to 5300 * bypass file security, in the same way as shmem_kernel_file_setup(). 5301 */ 5302 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 5303 if (IS_ERR(file)) 5304 return PTR_ERR(file); 5305 5306 if (vma->vm_file) 5307 fput(vma->vm_file); 5308 vma->vm_file = file; 5309 vma->vm_ops = &shmem_anon_vm_ops; 5310 5311 return 0; 5312 } 5313 5314 /** 5315 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 5316 * @mapping: the folio's address_space 5317 * @index: the folio index 5318 * @gfp: the page allocator flags to use if allocating 5319 * 5320 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 5321 * with any new page allocations done using the specified allocation flags. 5322 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 5323 * suit tmpfs, since it may have pages in swapcache, and needs to find those 5324 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 5325 * 5326 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 5327 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 5328 */ 5329 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 5330 pgoff_t index, gfp_t gfp) 5331 { 5332 #ifdef CONFIG_SHMEM 5333 struct inode *inode = mapping->host; 5334 struct folio *folio; 5335 int error; 5336 5337 error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE, 5338 gfp, NULL, NULL); 5339 if (error) 5340 return ERR_PTR(error); 5341 5342 folio_unlock(folio); 5343 return folio; 5344 #else 5345 /* 5346 * The tiny !SHMEM case uses ramfs without swap 5347 */ 5348 return mapping_read_folio_gfp(mapping, index, gfp); 5349 #endif 5350 } 5351 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 5352 5353 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 5354 pgoff_t index, gfp_t gfp) 5355 { 5356 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 5357 struct page *page; 5358 5359 if (IS_ERR(folio)) 5360 return &folio->page; 5361 5362 page = folio_file_page(folio, index); 5363 if (PageHWPoison(page)) { 5364 folio_put(folio); 5365 return ERR_PTR(-EIO); 5366 } 5367 5368 return page; 5369 } 5370 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 5371