1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/sched/signal.h> 33 #include <linux/export.h> 34 #include <linux/swap.h> 35 #include <linux/uio.h> 36 #include <linux/khugepaged.h> 37 38 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 39 40 static struct vfsmount *shm_mnt; 41 42 #ifdef CONFIG_SHMEM 43 /* 44 * This virtual memory filesystem is heavily based on the ramfs. It 45 * extends ramfs by the ability to use swap and honor resource limits 46 * which makes it a completely usable filesystem. 47 */ 48 49 #include <linux/xattr.h> 50 #include <linux/exportfs.h> 51 #include <linux/posix_acl.h> 52 #include <linux/posix_acl_xattr.h> 53 #include <linux/mman.h> 54 #include <linux/string.h> 55 #include <linux/slab.h> 56 #include <linux/backing-dev.h> 57 #include <linux/shmem_fs.h> 58 #include <linux/writeback.h> 59 #include <linux/blkdev.h> 60 #include <linux/pagevec.h> 61 #include <linux/percpu_counter.h> 62 #include <linux/falloc.h> 63 #include <linux/splice.h> 64 #include <linux/security.h> 65 #include <linux/swapops.h> 66 #include <linux/mempolicy.h> 67 #include <linux/namei.h> 68 #include <linux/ctype.h> 69 #include <linux/migrate.h> 70 #include <linux/highmem.h> 71 #include <linux/seq_file.h> 72 #include <linux/magic.h> 73 #include <linux/syscalls.h> 74 #include <linux/fcntl.h> 75 #include <uapi/linux/memfd.h> 76 #include <linux/userfaultfd_k.h> 77 #include <linux/rmap.h> 78 #include <linux/uuid.h> 79 80 #include <linux/uaccess.h> 81 #include <asm/pgtable.h> 82 83 #include "internal.h" 84 85 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 86 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 87 88 /* Pretend that each entry is of this size in directory's i_size */ 89 #define BOGO_DIRENT_SIZE 20 90 91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 92 #define SHORT_SYMLINK_LEN 128 93 94 /* 95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 96 * inode->i_private (with i_mutex making sure that it has only one user at 97 * a time): we would prefer not to enlarge the shmem inode just for that. 98 */ 99 struct shmem_falloc { 100 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 101 pgoff_t start; /* start of range currently being fallocated */ 102 pgoff_t next; /* the next page offset to be fallocated */ 103 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 104 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 105 }; 106 107 #ifdef CONFIG_TMPFS 108 static unsigned long shmem_default_max_blocks(void) 109 { 110 return totalram_pages / 2; 111 } 112 113 static unsigned long shmem_default_max_inodes(void) 114 { 115 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 116 } 117 #endif 118 119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 120 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 121 struct shmem_inode_info *info, pgoff_t index); 122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 123 struct page **pagep, enum sgp_type sgp, 124 gfp_t gfp, struct vm_area_struct *vma, 125 struct vm_fault *vmf, int *fault_type); 126 127 int shmem_getpage(struct inode *inode, pgoff_t index, 128 struct page **pagep, enum sgp_type sgp) 129 { 130 return shmem_getpage_gfp(inode, index, pagep, sgp, 131 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 132 } 133 134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 135 { 136 return sb->s_fs_info; 137 } 138 139 /* 140 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 141 * for shared memory and for shared anonymous (/dev/zero) mappings 142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 143 * consistent with the pre-accounting of private mappings ... 144 */ 145 static inline int shmem_acct_size(unsigned long flags, loff_t size) 146 { 147 return (flags & VM_NORESERVE) ? 148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 149 } 150 151 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 152 { 153 if (!(flags & VM_NORESERVE)) 154 vm_unacct_memory(VM_ACCT(size)); 155 } 156 157 static inline int shmem_reacct_size(unsigned long flags, 158 loff_t oldsize, loff_t newsize) 159 { 160 if (!(flags & VM_NORESERVE)) { 161 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 162 return security_vm_enough_memory_mm(current->mm, 163 VM_ACCT(newsize) - VM_ACCT(oldsize)); 164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 166 } 167 return 0; 168 } 169 170 /* 171 * ... whereas tmpfs objects are accounted incrementally as 172 * pages are allocated, in order to allow large sparse files. 173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 175 */ 176 static inline int shmem_acct_block(unsigned long flags, long pages) 177 { 178 if (!(flags & VM_NORESERVE)) 179 return 0; 180 181 return security_vm_enough_memory_mm(current->mm, 182 pages * VM_ACCT(PAGE_SIZE)); 183 } 184 185 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 186 { 187 if (flags & VM_NORESERVE) 188 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 189 } 190 191 static const struct super_operations shmem_ops; 192 static const struct address_space_operations shmem_aops; 193 static const struct file_operations shmem_file_operations; 194 static const struct inode_operations shmem_inode_operations; 195 static const struct inode_operations shmem_dir_inode_operations; 196 static const struct inode_operations shmem_special_inode_operations; 197 static const struct vm_operations_struct shmem_vm_ops; 198 static struct file_system_type shmem_fs_type; 199 200 bool vma_is_shmem(struct vm_area_struct *vma) 201 { 202 return vma->vm_ops == &shmem_vm_ops; 203 } 204 205 static LIST_HEAD(shmem_swaplist); 206 static DEFINE_MUTEX(shmem_swaplist_mutex); 207 208 static int shmem_reserve_inode(struct super_block *sb) 209 { 210 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 211 if (sbinfo->max_inodes) { 212 spin_lock(&sbinfo->stat_lock); 213 if (!sbinfo->free_inodes) { 214 spin_unlock(&sbinfo->stat_lock); 215 return -ENOSPC; 216 } 217 sbinfo->free_inodes--; 218 spin_unlock(&sbinfo->stat_lock); 219 } 220 return 0; 221 } 222 223 static void shmem_free_inode(struct super_block *sb) 224 { 225 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 226 if (sbinfo->max_inodes) { 227 spin_lock(&sbinfo->stat_lock); 228 sbinfo->free_inodes++; 229 spin_unlock(&sbinfo->stat_lock); 230 } 231 } 232 233 /** 234 * shmem_recalc_inode - recalculate the block usage of an inode 235 * @inode: inode to recalc 236 * 237 * We have to calculate the free blocks since the mm can drop 238 * undirtied hole pages behind our back. 239 * 240 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 241 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 242 * 243 * It has to be called with the spinlock held. 244 */ 245 static void shmem_recalc_inode(struct inode *inode) 246 { 247 struct shmem_inode_info *info = SHMEM_I(inode); 248 long freed; 249 250 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 251 if (freed > 0) { 252 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 253 if (sbinfo->max_blocks) 254 percpu_counter_add(&sbinfo->used_blocks, -freed); 255 info->alloced -= freed; 256 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 257 shmem_unacct_blocks(info->flags, freed); 258 } 259 } 260 261 bool shmem_charge(struct inode *inode, long pages) 262 { 263 struct shmem_inode_info *info = SHMEM_I(inode); 264 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 265 unsigned long flags; 266 267 if (shmem_acct_block(info->flags, pages)) 268 return false; 269 spin_lock_irqsave(&info->lock, flags); 270 info->alloced += pages; 271 inode->i_blocks += pages * BLOCKS_PER_PAGE; 272 shmem_recalc_inode(inode); 273 spin_unlock_irqrestore(&info->lock, flags); 274 inode->i_mapping->nrpages += pages; 275 276 if (!sbinfo->max_blocks) 277 return true; 278 if (percpu_counter_compare(&sbinfo->used_blocks, 279 sbinfo->max_blocks - pages) > 0) { 280 inode->i_mapping->nrpages -= pages; 281 spin_lock_irqsave(&info->lock, flags); 282 info->alloced -= pages; 283 shmem_recalc_inode(inode); 284 spin_unlock_irqrestore(&info->lock, flags); 285 shmem_unacct_blocks(info->flags, pages); 286 return false; 287 } 288 percpu_counter_add(&sbinfo->used_blocks, pages); 289 return true; 290 } 291 292 void shmem_uncharge(struct inode *inode, long pages) 293 { 294 struct shmem_inode_info *info = SHMEM_I(inode); 295 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 296 unsigned long flags; 297 298 spin_lock_irqsave(&info->lock, flags); 299 info->alloced -= pages; 300 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 301 shmem_recalc_inode(inode); 302 spin_unlock_irqrestore(&info->lock, flags); 303 304 if (sbinfo->max_blocks) 305 percpu_counter_sub(&sbinfo->used_blocks, pages); 306 shmem_unacct_blocks(info->flags, pages); 307 } 308 309 /* 310 * Replace item expected in radix tree by a new item, while holding tree lock. 311 */ 312 static int shmem_radix_tree_replace(struct address_space *mapping, 313 pgoff_t index, void *expected, void *replacement) 314 { 315 struct radix_tree_node *node; 316 void **pslot; 317 void *item; 318 319 VM_BUG_ON(!expected); 320 VM_BUG_ON(!replacement); 321 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot); 322 if (!item) 323 return -ENOENT; 324 if (item != expected) 325 return -ENOENT; 326 __radix_tree_replace(&mapping->page_tree, node, pslot, 327 replacement, NULL, NULL); 328 return 0; 329 } 330 331 /* 332 * Sometimes, before we decide whether to proceed or to fail, we must check 333 * that an entry was not already brought back from swap by a racing thread. 334 * 335 * Checking page is not enough: by the time a SwapCache page is locked, it 336 * might be reused, and again be SwapCache, using the same swap as before. 337 */ 338 static bool shmem_confirm_swap(struct address_space *mapping, 339 pgoff_t index, swp_entry_t swap) 340 { 341 void *item; 342 343 rcu_read_lock(); 344 item = radix_tree_lookup(&mapping->page_tree, index); 345 rcu_read_unlock(); 346 return item == swp_to_radix_entry(swap); 347 } 348 349 /* 350 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 351 * 352 * SHMEM_HUGE_NEVER: 353 * disables huge pages for the mount; 354 * SHMEM_HUGE_ALWAYS: 355 * enables huge pages for the mount; 356 * SHMEM_HUGE_WITHIN_SIZE: 357 * only allocate huge pages if the page will be fully within i_size, 358 * also respect fadvise()/madvise() hints; 359 * SHMEM_HUGE_ADVISE: 360 * only allocate huge pages if requested with fadvise()/madvise(); 361 */ 362 363 #define SHMEM_HUGE_NEVER 0 364 #define SHMEM_HUGE_ALWAYS 1 365 #define SHMEM_HUGE_WITHIN_SIZE 2 366 #define SHMEM_HUGE_ADVISE 3 367 368 /* 369 * Special values. 370 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 371 * 372 * SHMEM_HUGE_DENY: 373 * disables huge on shm_mnt and all mounts, for emergency use; 374 * SHMEM_HUGE_FORCE: 375 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 376 * 377 */ 378 #define SHMEM_HUGE_DENY (-1) 379 #define SHMEM_HUGE_FORCE (-2) 380 381 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 382 /* ifdef here to avoid bloating shmem.o when not necessary */ 383 384 int shmem_huge __read_mostly; 385 386 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 387 static int shmem_parse_huge(const char *str) 388 { 389 if (!strcmp(str, "never")) 390 return SHMEM_HUGE_NEVER; 391 if (!strcmp(str, "always")) 392 return SHMEM_HUGE_ALWAYS; 393 if (!strcmp(str, "within_size")) 394 return SHMEM_HUGE_WITHIN_SIZE; 395 if (!strcmp(str, "advise")) 396 return SHMEM_HUGE_ADVISE; 397 if (!strcmp(str, "deny")) 398 return SHMEM_HUGE_DENY; 399 if (!strcmp(str, "force")) 400 return SHMEM_HUGE_FORCE; 401 return -EINVAL; 402 } 403 404 static const char *shmem_format_huge(int huge) 405 { 406 switch (huge) { 407 case SHMEM_HUGE_NEVER: 408 return "never"; 409 case SHMEM_HUGE_ALWAYS: 410 return "always"; 411 case SHMEM_HUGE_WITHIN_SIZE: 412 return "within_size"; 413 case SHMEM_HUGE_ADVISE: 414 return "advise"; 415 case SHMEM_HUGE_DENY: 416 return "deny"; 417 case SHMEM_HUGE_FORCE: 418 return "force"; 419 default: 420 VM_BUG_ON(1); 421 return "bad_val"; 422 } 423 } 424 #endif 425 426 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 427 struct shrink_control *sc, unsigned long nr_to_split) 428 { 429 LIST_HEAD(list), *pos, *next; 430 LIST_HEAD(to_remove); 431 struct inode *inode; 432 struct shmem_inode_info *info; 433 struct page *page; 434 unsigned long batch = sc ? sc->nr_to_scan : 128; 435 int removed = 0, split = 0; 436 437 if (list_empty(&sbinfo->shrinklist)) 438 return SHRINK_STOP; 439 440 spin_lock(&sbinfo->shrinklist_lock); 441 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 442 info = list_entry(pos, struct shmem_inode_info, shrinklist); 443 444 /* pin the inode */ 445 inode = igrab(&info->vfs_inode); 446 447 /* inode is about to be evicted */ 448 if (!inode) { 449 list_del_init(&info->shrinklist); 450 removed++; 451 goto next; 452 } 453 454 /* Check if there's anything to gain */ 455 if (round_up(inode->i_size, PAGE_SIZE) == 456 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 457 list_move(&info->shrinklist, &to_remove); 458 removed++; 459 goto next; 460 } 461 462 list_move(&info->shrinklist, &list); 463 next: 464 if (!--batch) 465 break; 466 } 467 spin_unlock(&sbinfo->shrinklist_lock); 468 469 list_for_each_safe(pos, next, &to_remove) { 470 info = list_entry(pos, struct shmem_inode_info, shrinklist); 471 inode = &info->vfs_inode; 472 list_del_init(&info->shrinklist); 473 iput(inode); 474 } 475 476 list_for_each_safe(pos, next, &list) { 477 int ret; 478 479 info = list_entry(pos, struct shmem_inode_info, shrinklist); 480 inode = &info->vfs_inode; 481 482 if (nr_to_split && split >= nr_to_split) { 483 iput(inode); 484 continue; 485 } 486 487 page = find_lock_page(inode->i_mapping, 488 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 489 if (!page) 490 goto drop; 491 492 if (!PageTransHuge(page)) { 493 unlock_page(page); 494 put_page(page); 495 goto drop; 496 } 497 498 ret = split_huge_page(page); 499 unlock_page(page); 500 put_page(page); 501 502 if (ret) { 503 /* split failed: leave it on the list */ 504 iput(inode); 505 continue; 506 } 507 508 split++; 509 drop: 510 list_del_init(&info->shrinklist); 511 removed++; 512 iput(inode); 513 } 514 515 spin_lock(&sbinfo->shrinklist_lock); 516 list_splice_tail(&list, &sbinfo->shrinklist); 517 sbinfo->shrinklist_len -= removed; 518 spin_unlock(&sbinfo->shrinklist_lock); 519 520 return split; 521 } 522 523 static long shmem_unused_huge_scan(struct super_block *sb, 524 struct shrink_control *sc) 525 { 526 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 527 528 if (!READ_ONCE(sbinfo->shrinklist_len)) 529 return SHRINK_STOP; 530 531 return shmem_unused_huge_shrink(sbinfo, sc, 0); 532 } 533 534 static long shmem_unused_huge_count(struct super_block *sb, 535 struct shrink_control *sc) 536 { 537 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 538 return READ_ONCE(sbinfo->shrinklist_len); 539 } 540 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 541 542 #define shmem_huge SHMEM_HUGE_DENY 543 544 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 545 struct shrink_control *sc, unsigned long nr_to_split) 546 { 547 return 0; 548 } 549 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 550 551 /* 552 * Like add_to_page_cache_locked, but error if expected item has gone. 553 */ 554 static int shmem_add_to_page_cache(struct page *page, 555 struct address_space *mapping, 556 pgoff_t index, void *expected) 557 { 558 int error, nr = hpage_nr_pages(page); 559 560 VM_BUG_ON_PAGE(PageTail(page), page); 561 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 562 VM_BUG_ON_PAGE(!PageLocked(page), page); 563 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 564 VM_BUG_ON(expected && PageTransHuge(page)); 565 566 page_ref_add(page, nr); 567 page->mapping = mapping; 568 page->index = index; 569 570 spin_lock_irq(&mapping->tree_lock); 571 if (PageTransHuge(page)) { 572 void __rcu **results; 573 pgoff_t idx; 574 int i; 575 576 error = 0; 577 if (radix_tree_gang_lookup_slot(&mapping->page_tree, 578 &results, &idx, index, 1) && 579 idx < index + HPAGE_PMD_NR) { 580 error = -EEXIST; 581 } 582 583 if (!error) { 584 for (i = 0; i < HPAGE_PMD_NR; i++) { 585 error = radix_tree_insert(&mapping->page_tree, 586 index + i, page + i); 587 VM_BUG_ON(error); 588 } 589 count_vm_event(THP_FILE_ALLOC); 590 } 591 } else if (!expected) { 592 error = radix_tree_insert(&mapping->page_tree, index, page); 593 } else { 594 error = shmem_radix_tree_replace(mapping, index, expected, 595 page); 596 } 597 598 if (!error) { 599 mapping->nrpages += nr; 600 if (PageTransHuge(page)) 601 __inc_node_page_state(page, NR_SHMEM_THPS); 602 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 603 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); 604 spin_unlock_irq(&mapping->tree_lock); 605 } else { 606 page->mapping = NULL; 607 spin_unlock_irq(&mapping->tree_lock); 608 page_ref_sub(page, nr); 609 } 610 return error; 611 } 612 613 /* 614 * Like delete_from_page_cache, but substitutes swap for page. 615 */ 616 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 617 { 618 struct address_space *mapping = page->mapping; 619 int error; 620 621 VM_BUG_ON_PAGE(PageCompound(page), page); 622 623 spin_lock_irq(&mapping->tree_lock); 624 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 625 page->mapping = NULL; 626 mapping->nrpages--; 627 __dec_node_page_state(page, NR_FILE_PAGES); 628 __dec_node_page_state(page, NR_SHMEM); 629 spin_unlock_irq(&mapping->tree_lock); 630 put_page(page); 631 BUG_ON(error); 632 } 633 634 /* 635 * Remove swap entry from radix tree, free the swap and its page cache. 636 */ 637 static int shmem_free_swap(struct address_space *mapping, 638 pgoff_t index, void *radswap) 639 { 640 void *old; 641 642 spin_lock_irq(&mapping->tree_lock); 643 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 644 spin_unlock_irq(&mapping->tree_lock); 645 if (old != radswap) 646 return -ENOENT; 647 free_swap_and_cache(radix_to_swp_entry(radswap)); 648 return 0; 649 } 650 651 /* 652 * Determine (in bytes) how many of the shmem object's pages mapped by the 653 * given offsets are swapped out. 654 * 655 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 656 * as long as the inode doesn't go away and racy results are not a problem. 657 */ 658 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 659 pgoff_t start, pgoff_t end) 660 { 661 struct radix_tree_iter iter; 662 void **slot; 663 struct page *page; 664 unsigned long swapped = 0; 665 666 rcu_read_lock(); 667 668 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 669 if (iter.index >= end) 670 break; 671 672 page = radix_tree_deref_slot(slot); 673 674 if (radix_tree_deref_retry(page)) { 675 slot = radix_tree_iter_retry(&iter); 676 continue; 677 } 678 679 if (radix_tree_exceptional_entry(page)) 680 swapped++; 681 682 if (need_resched()) { 683 slot = radix_tree_iter_resume(slot, &iter); 684 cond_resched_rcu(); 685 } 686 } 687 688 rcu_read_unlock(); 689 690 return swapped << PAGE_SHIFT; 691 } 692 693 /* 694 * Determine (in bytes) how many of the shmem object's pages mapped by the 695 * given vma is swapped out. 696 * 697 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 698 * as long as the inode doesn't go away and racy results are not a problem. 699 */ 700 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 701 { 702 struct inode *inode = file_inode(vma->vm_file); 703 struct shmem_inode_info *info = SHMEM_I(inode); 704 struct address_space *mapping = inode->i_mapping; 705 unsigned long swapped; 706 707 /* Be careful as we don't hold info->lock */ 708 swapped = READ_ONCE(info->swapped); 709 710 /* 711 * The easier cases are when the shmem object has nothing in swap, or 712 * the vma maps it whole. Then we can simply use the stats that we 713 * already track. 714 */ 715 if (!swapped) 716 return 0; 717 718 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 719 return swapped << PAGE_SHIFT; 720 721 /* Here comes the more involved part */ 722 return shmem_partial_swap_usage(mapping, 723 linear_page_index(vma, vma->vm_start), 724 linear_page_index(vma, vma->vm_end)); 725 } 726 727 /* 728 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 729 */ 730 void shmem_unlock_mapping(struct address_space *mapping) 731 { 732 struct pagevec pvec; 733 pgoff_t indices[PAGEVEC_SIZE]; 734 pgoff_t index = 0; 735 736 pagevec_init(&pvec, 0); 737 /* 738 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 739 */ 740 while (!mapping_unevictable(mapping)) { 741 /* 742 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 743 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 744 */ 745 pvec.nr = find_get_entries(mapping, index, 746 PAGEVEC_SIZE, pvec.pages, indices); 747 if (!pvec.nr) 748 break; 749 index = indices[pvec.nr - 1] + 1; 750 pagevec_remove_exceptionals(&pvec); 751 check_move_unevictable_pages(pvec.pages, pvec.nr); 752 pagevec_release(&pvec); 753 cond_resched(); 754 } 755 } 756 757 /* 758 * Remove range of pages and swap entries from radix tree, and free them. 759 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 760 */ 761 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 762 bool unfalloc) 763 { 764 struct address_space *mapping = inode->i_mapping; 765 struct shmem_inode_info *info = SHMEM_I(inode); 766 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 767 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 768 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 769 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 770 struct pagevec pvec; 771 pgoff_t indices[PAGEVEC_SIZE]; 772 long nr_swaps_freed = 0; 773 pgoff_t index; 774 int i; 775 776 if (lend == -1) 777 end = -1; /* unsigned, so actually very big */ 778 779 pagevec_init(&pvec, 0); 780 index = start; 781 while (index < end) { 782 pvec.nr = find_get_entries(mapping, index, 783 min(end - index, (pgoff_t)PAGEVEC_SIZE), 784 pvec.pages, indices); 785 if (!pvec.nr) 786 break; 787 for (i = 0; i < pagevec_count(&pvec); i++) { 788 struct page *page = pvec.pages[i]; 789 790 index = indices[i]; 791 if (index >= end) 792 break; 793 794 if (radix_tree_exceptional_entry(page)) { 795 if (unfalloc) 796 continue; 797 nr_swaps_freed += !shmem_free_swap(mapping, 798 index, page); 799 continue; 800 } 801 802 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 803 804 if (!trylock_page(page)) 805 continue; 806 807 if (PageTransTail(page)) { 808 /* Middle of THP: zero out the page */ 809 clear_highpage(page); 810 unlock_page(page); 811 continue; 812 } else if (PageTransHuge(page)) { 813 if (index == round_down(end, HPAGE_PMD_NR)) { 814 /* 815 * Range ends in the middle of THP: 816 * zero out the page 817 */ 818 clear_highpage(page); 819 unlock_page(page); 820 continue; 821 } 822 index += HPAGE_PMD_NR - 1; 823 i += HPAGE_PMD_NR - 1; 824 } 825 826 if (!unfalloc || !PageUptodate(page)) { 827 VM_BUG_ON_PAGE(PageTail(page), page); 828 if (page_mapping(page) == mapping) { 829 VM_BUG_ON_PAGE(PageWriteback(page), page); 830 truncate_inode_page(mapping, page); 831 } 832 } 833 unlock_page(page); 834 } 835 pagevec_remove_exceptionals(&pvec); 836 pagevec_release(&pvec); 837 cond_resched(); 838 index++; 839 } 840 841 if (partial_start) { 842 struct page *page = NULL; 843 shmem_getpage(inode, start - 1, &page, SGP_READ); 844 if (page) { 845 unsigned int top = PAGE_SIZE; 846 if (start > end) { 847 top = partial_end; 848 partial_end = 0; 849 } 850 zero_user_segment(page, partial_start, top); 851 set_page_dirty(page); 852 unlock_page(page); 853 put_page(page); 854 } 855 } 856 if (partial_end) { 857 struct page *page = NULL; 858 shmem_getpage(inode, end, &page, SGP_READ); 859 if (page) { 860 zero_user_segment(page, 0, partial_end); 861 set_page_dirty(page); 862 unlock_page(page); 863 put_page(page); 864 } 865 } 866 if (start >= end) 867 return; 868 869 index = start; 870 while (index < end) { 871 cond_resched(); 872 873 pvec.nr = find_get_entries(mapping, index, 874 min(end - index, (pgoff_t)PAGEVEC_SIZE), 875 pvec.pages, indices); 876 if (!pvec.nr) { 877 /* If all gone or hole-punch or unfalloc, we're done */ 878 if (index == start || end != -1) 879 break; 880 /* But if truncating, restart to make sure all gone */ 881 index = start; 882 continue; 883 } 884 for (i = 0; i < pagevec_count(&pvec); i++) { 885 struct page *page = pvec.pages[i]; 886 887 index = indices[i]; 888 if (index >= end) 889 break; 890 891 if (radix_tree_exceptional_entry(page)) { 892 if (unfalloc) 893 continue; 894 if (shmem_free_swap(mapping, index, page)) { 895 /* Swap was replaced by page: retry */ 896 index--; 897 break; 898 } 899 nr_swaps_freed++; 900 continue; 901 } 902 903 lock_page(page); 904 905 if (PageTransTail(page)) { 906 /* Middle of THP: zero out the page */ 907 clear_highpage(page); 908 unlock_page(page); 909 /* 910 * Partial thp truncate due 'start' in middle 911 * of THP: don't need to look on these pages 912 * again on !pvec.nr restart. 913 */ 914 if (index != round_down(end, HPAGE_PMD_NR)) 915 start++; 916 continue; 917 } else if (PageTransHuge(page)) { 918 if (index == round_down(end, HPAGE_PMD_NR)) { 919 /* 920 * Range ends in the middle of THP: 921 * zero out the page 922 */ 923 clear_highpage(page); 924 unlock_page(page); 925 continue; 926 } 927 index += HPAGE_PMD_NR - 1; 928 i += HPAGE_PMD_NR - 1; 929 } 930 931 if (!unfalloc || !PageUptodate(page)) { 932 VM_BUG_ON_PAGE(PageTail(page), page); 933 if (page_mapping(page) == mapping) { 934 VM_BUG_ON_PAGE(PageWriteback(page), page); 935 truncate_inode_page(mapping, page); 936 } else { 937 /* Page was replaced by swap: retry */ 938 unlock_page(page); 939 index--; 940 break; 941 } 942 } 943 unlock_page(page); 944 } 945 pagevec_remove_exceptionals(&pvec); 946 pagevec_release(&pvec); 947 index++; 948 } 949 950 spin_lock_irq(&info->lock); 951 info->swapped -= nr_swaps_freed; 952 shmem_recalc_inode(inode); 953 spin_unlock_irq(&info->lock); 954 } 955 956 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 957 { 958 shmem_undo_range(inode, lstart, lend, false); 959 inode->i_ctime = inode->i_mtime = current_time(inode); 960 } 961 EXPORT_SYMBOL_GPL(shmem_truncate_range); 962 963 static int shmem_getattr(const struct path *path, struct kstat *stat, 964 u32 request_mask, unsigned int query_flags) 965 { 966 struct inode *inode = path->dentry->d_inode; 967 struct shmem_inode_info *info = SHMEM_I(inode); 968 969 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 970 spin_lock_irq(&info->lock); 971 shmem_recalc_inode(inode); 972 spin_unlock_irq(&info->lock); 973 } 974 generic_fillattr(inode, stat); 975 return 0; 976 } 977 978 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 979 { 980 struct inode *inode = d_inode(dentry); 981 struct shmem_inode_info *info = SHMEM_I(inode); 982 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 983 int error; 984 985 error = setattr_prepare(dentry, attr); 986 if (error) 987 return error; 988 989 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 990 loff_t oldsize = inode->i_size; 991 loff_t newsize = attr->ia_size; 992 993 /* protected by i_mutex */ 994 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 995 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 996 return -EPERM; 997 998 if (newsize != oldsize) { 999 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1000 oldsize, newsize); 1001 if (error) 1002 return error; 1003 i_size_write(inode, newsize); 1004 inode->i_ctime = inode->i_mtime = current_time(inode); 1005 } 1006 if (newsize <= oldsize) { 1007 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1008 if (oldsize > holebegin) 1009 unmap_mapping_range(inode->i_mapping, 1010 holebegin, 0, 1); 1011 if (info->alloced) 1012 shmem_truncate_range(inode, 1013 newsize, (loff_t)-1); 1014 /* unmap again to remove racily COWed private pages */ 1015 if (oldsize > holebegin) 1016 unmap_mapping_range(inode->i_mapping, 1017 holebegin, 0, 1); 1018 1019 /* 1020 * Part of the huge page can be beyond i_size: subject 1021 * to shrink under memory pressure. 1022 */ 1023 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 1024 spin_lock(&sbinfo->shrinklist_lock); 1025 /* 1026 * _careful to defend against unlocked access to 1027 * ->shrink_list in shmem_unused_huge_shrink() 1028 */ 1029 if (list_empty_careful(&info->shrinklist)) { 1030 list_add_tail(&info->shrinklist, 1031 &sbinfo->shrinklist); 1032 sbinfo->shrinklist_len++; 1033 } 1034 spin_unlock(&sbinfo->shrinklist_lock); 1035 } 1036 } 1037 } 1038 1039 setattr_copy(inode, attr); 1040 if (attr->ia_valid & ATTR_MODE) 1041 error = posix_acl_chmod(inode, inode->i_mode); 1042 return error; 1043 } 1044 1045 static void shmem_evict_inode(struct inode *inode) 1046 { 1047 struct shmem_inode_info *info = SHMEM_I(inode); 1048 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1049 1050 if (inode->i_mapping->a_ops == &shmem_aops) { 1051 shmem_unacct_size(info->flags, inode->i_size); 1052 inode->i_size = 0; 1053 shmem_truncate_range(inode, 0, (loff_t)-1); 1054 if (!list_empty(&info->shrinklist)) { 1055 spin_lock(&sbinfo->shrinklist_lock); 1056 if (!list_empty(&info->shrinklist)) { 1057 list_del_init(&info->shrinklist); 1058 sbinfo->shrinklist_len--; 1059 } 1060 spin_unlock(&sbinfo->shrinklist_lock); 1061 } 1062 if (!list_empty(&info->swaplist)) { 1063 mutex_lock(&shmem_swaplist_mutex); 1064 list_del_init(&info->swaplist); 1065 mutex_unlock(&shmem_swaplist_mutex); 1066 } 1067 } 1068 1069 simple_xattrs_free(&info->xattrs); 1070 WARN_ON(inode->i_blocks); 1071 shmem_free_inode(inode->i_sb); 1072 clear_inode(inode); 1073 } 1074 1075 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item) 1076 { 1077 struct radix_tree_iter iter; 1078 void **slot; 1079 unsigned long found = -1; 1080 unsigned int checked = 0; 1081 1082 rcu_read_lock(); 1083 radix_tree_for_each_slot(slot, root, &iter, 0) { 1084 if (*slot == item) { 1085 found = iter.index; 1086 break; 1087 } 1088 checked++; 1089 if ((checked % 4096) != 0) 1090 continue; 1091 slot = radix_tree_iter_resume(slot, &iter); 1092 cond_resched_rcu(); 1093 } 1094 1095 rcu_read_unlock(); 1096 return found; 1097 } 1098 1099 /* 1100 * If swap found in inode, free it and move page from swapcache to filecache. 1101 */ 1102 static int shmem_unuse_inode(struct shmem_inode_info *info, 1103 swp_entry_t swap, struct page **pagep) 1104 { 1105 struct address_space *mapping = info->vfs_inode.i_mapping; 1106 void *radswap; 1107 pgoff_t index; 1108 gfp_t gfp; 1109 int error = 0; 1110 1111 radswap = swp_to_radix_entry(swap); 1112 index = find_swap_entry(&mapping->page_tree, radswap); 1113 if (index == -1) 1114 return -EAGAIN; /* tell shmem_unuse we found nothing */ 1115 1116 /* 1117 * Move _head_ to start search for next from here. 1118 * But be careful: shmem_evict_inode checks list_empty without taking 1119 * mutex, and there's an instant in list_move_tail when info->swaplist 1120 * would appear empty, if it were the only one on shmem_swaplist. 1121 */ 1122 if (shmem_swaplist.next != &info->swaplist) 1123 list_move_tail(&shmem_swaplist, &info->swaplist); 1124 1125 gfp = mapping_gfp_mask(mapping); 1126 if (shmem_should_replace_page(*pagep, gfp)) { 1127 mutex_unlock(&shmem_swaplist_mutex); 1128 error = shmem_replace_page(pagep, gfp, info, index); 1129 mutex_lock(&shmem_swaplist_mutex); 1130 /* 1131 * We needed to drop mutex to make that restrictive page 1132 * allocation, but the inode might have been freed while we 1133 * dropped it: although a racing shmem_evict_inode() cannot 1134 * complete without emptying the radix_tree, our page lock 1135 * on this swapcache page is not enough to prevent that - 1136 * free_swap_and_cache() of our swap entry will only 1137 * trylock_page(), removing swap from radix_tree whatever. 1138 * 1139 * We must not proceed to shmem_add_to_page_cache() if the 1140 * inode has been freed, but of course we cannot rely on 1141 * inode or mapping or info to check that. However, we can 1142 * safely check if our swap entry is still in use (and here 1143 * it can't have got reused for another page): if it's still 1144 * in use, then the inode cannot have been freed yet, and we 1145 * can safely proceed (if it's no longer in use, that tells 1146 * nothing about the inode, but we don't need to unuse swap). 1147 */ 1148 if (!page_swapcount(*pagep)) 1149 error = -ENOENT; 1150 } 1151 1152 /* 1153 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 1154 * but also to hold up shmem_evict_inode(): so inode cannot be freed 1155 * beneath us (pagelock doesn't help until the page is in pagecache). 1156 */ 1157 if (!error) 1158 error = shmem_add_to_page_cache(*pagep, mapping, index, 1159 radswap); 1160 if (error != -ENOMEM) { 1161 /* 1162 * Truncation and eviction use free_swap_and_cache(), which 1163 * only does trylock page: if we raced, best clean up here. 1164 */ 1165 delete_from_swap_cache(*pagep); 1166 set_page_dirty(*pagep); 1167 if (!error) { 1168 spin_lock_irq(&info->lock); 1169 info->swapped--; 1170 spin_unlock_irq(&info->lock); 1171 swap_free(swap); 1172 } 1173 } 1174 return error; 1175 } 1176 1177 /* 1178 * Search through swapped inodes to find and replace swap by page. 1179 */ 1180 int shmem_unuse(swp_entry_t swap, struct page *page) 1181 { 1182 struct list_head *this, *next; 1183 struct shmem_inode_info *info; 1184 struct mem_cgroup *memcg; 1185 int error = 0; 1186 1187 /* 1188 * There's a faint possibility that swap page was replaced before 1189 * caller locked it: caller will come back later with the right page. 1190 */ 1191 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 1192 goto out; 1193 1194 /* 1195 * Charge page using GFP_KERNEL while we can wait, before taking 1196 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 1197 * Charged back to the user (not to caller) when swap account is used. 1198 */ 1199 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg, 1200 false); 1201 if (error) 1202 goto out; 1203 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 1204 error = -EAGAIN; 1205 1206 mutex_lock(&shmem_swaplist_mutex); 1207 list_for_each_safe(this, next, &shmem_swaplist) { 1208 info = list_entry(this, struct shmem_inode_info, swaplist); 1209 if (info->swapped) 1210 error = shmem_unuse_inode(info, swap, &page); 1211 else 1212 list_del_init(&info->swaplist); 1213 cond_resched(); 1214 if (error != -EAGAIN) 1215 break; 1216 /* found nothing in this: move on to search the next */ 1217 } 1218 mutex_unlock(&shmem_swaplist_mutex); 1219 1220 if (error) { 1221 if (error != -ENOMEM) 1222 error = 0; 1223 mem_cgroup_cancel_charge(page, memcg, false); 1224 } else 1225 mem_cgroup_commit_charge(page, memcg, true, false); 1226 out: 1227 unlock_page(page); 1228 put_page(page); 1229 return error; 1230 } 1231 1232 /* 1233 * Move the page from the page cache to the swap cache. 1234 */ 1235 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1236 { 1237 struct shmem_inode_info *info; 1238 struct address_space *mapping; 1239 struct inode *inode; 1240 swp_entry_t swap; 1241 pgoff_t index; 1242 1243 VM_BUG_ON_PAGE(PageCompound(page), page); 1244 BUG_ON(!PageLocked(page)); 1245 mapping = page->mapping; 1246 index = page->index; 1247 inode = mapping->host; 1248 info = SHMEM_I(inode); 1249 if (info->flags & VM_LOCKED) 1250 goto redirty; 1251 if (!total_swap_pages) 1252 goto redirty; 1253 1254 /* 1255 * Our capabilities prevent regular writeback or sync from ever calling 1256 * shmem_writepage; but a stacking filesystem might use ->writepage of 1257 * its underlying filesystem, in which case tmpfs should write out to 1258 * swap only in response to memory pressure, and not for the writeback 1259 * threads or sync. 1260 */ 1261 if (!wbc->for_reclaim) { 1262 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1263 goto redirty; 1264 } 1265 1266 /* 1267 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1268 * value into swapfile.c, the only way we can correctly account for a 1269 * fallocated page arriving here is now to initialize it and write it. 1270 * 1271 * That's okay for a page already fallocated earlier, but if we have 1272 * not yet completed the fallocation, then (a) we want to keep track 1273 * of this page in case we have to undo it, and (b) it may not be a 1274 * good idea to continue anyway, once we're pushing into swap. So 1275 * reactivate the page, and let shmem_fallocate() quit when too many. 1276 */ 1277 if (!PageUptodate(page)) { 1278 if (inode->i_private) { 1279 struct shmem_falloc *shmem_falloc; 1280 spin_lock(&inode->i_lock); 1281 shmem_falloc = inode->i_private; 1282 if (shmem_falloc && 1283 !shmem_falloc->waitq && 1284 index >= shmem_falloc->start && 1285 index < shmem_falloc->next) 1286 shmem_falloc->nr_unswapped++; 1287 else 1288 shmem_falloc = NULL; 1289 spin_unlock(&inode->i_lock); 1290 if (shmem_falloc) 1291 goto redirty; 1292 } 1293 clear_highpage(page); 1294 flush_dcache_page(page); 1295 SetPageUptodate(page); 1296 } 1297 1298 swap = get_swap_page(page); 1299 if (!swap.val) 1300 goto redirty; 1301 1302 if (mem_cgroup_try_charge_swap(page, swap)) 1303 goto free_swap; 1304 1305 /* 1306 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1307 * if it's not already there. Do it now before the page is 1308 * moved to swap cache, when its pagelock no longer protects 1309 * the inode from eviction. But don't unlock the mutex until 1310 * we've incremented swapped, because shmem_unuse_inode() will 1311 * prune a !swapped inode from the swaplist under this mutex. 1312 */ 1313 mutex_lock(&shmem_swaplist_mutex); 1314 if (list_empty(&info->swaplist)) 1315 list_add_tail(&info->swaplist, &shmem_swaplist); 1316 1317 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1318 spin_lock_irq(&info->lock); 1319 shmem_recalc_inode(inode); 1320 info->swapped++; 1321 spin_unlock_irq(&info->lock); 1322 1323 swap_shmem_alloc(swap); 1324 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1325 1326 mutex_unlock(&shmem_swaplist_mutex); 1327 BUG_ON(page_mapped(page)); 1328 swap_writepage(page, wbc); 1329 return 0; 1330 } 1331 1332 mutex_unlock(&shmem_swaplist_mutex); 1333 free_swap: 1334 put_swap_page(page, swap); 1335 redirty: 1336 set_page_dirty(page); 1337 if (wbc->for_reclaim) 1338 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1339 unlock_page(page); 1340 return 0; 1341 } 1342 1343 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1344 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1345 { 1346 char buffer[64]; 1347 1348 if (!mpol || mpol->mode == MPOL_DEFAULT) 1349 return; /* show nothing */ 1350 1351 mpol_to_str(buffer, sizeof(buffer), mpol); 1352 1353 seq_printf(seq, ",mpol=%s", buffer); 1354 } 1355 1356 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1357 { 1358 struct mempolicy *mpol = NULL; 1359 if (sbinfo->mpol) { 1360 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1361 mpol = sbinfo->mpol; 1362 mpol_get(mpol); 1363 spin_unlock(&sbinfo->stat_lock); 1364 } 1365 return mpol; 1366 } 1367 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1368 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1369 { 1370 } 1371 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1372 { 1373 return NULL; 1374 } 1375 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1376 #ifndef CONFIG_NUMA 1377 #define vm_policy vm_private_data 1378 #endif 1379 1380 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1381 struct shmem_inode_info *info, pgoff_t index) 1382 { 1383 /* Create a pseudo vma that just contains the policy */ 1384 vma->vm_start = 0; 1385 /* Bias interleave by inode number to distribute better across nodes */ 1386 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1387 vma->vm_ops = NULL; 1388 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1389 } 1390 1391 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1392 { 1393 /* Drop reference taken by mpol_shared_policy_lookup() */ 1394 mpol_cond_put(vma->vm_policy); 1395 } 1396 1397 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1398 struct shmem_inode_info *info, pgoff_t index) 1399 { 1400 struct vm_area_struct pvma; 1401 struct page *page; 1402 1403 shmem_pseudo_vma_init(&pvma, info, index); 1404 page = swapin_readahead(swap, gfp, &pvma, 0); 1405 shmem_pseudo_vma_destroy(&pvma); 1406 1407 return page; 1408 } 1409 1410 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1411 struct shmem_inode_info *info, pgoff_t index) 1412 { 1413 struct vm_area_struct pvma; 1414 struct inode *inode = &info->vfs_inode; 1415 struct address_space *mapping = inode->i_mapping; 1416 pgoff_t idx, hindex; 1417 void __rcu **results; 1418 struct page *page; 1419 1420 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1421 return NULL; 1422 1423 hindex = round_down(index, HPAGE_PMD_NR); 1424 rcu_read_lock(); 1425 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx, 1426 hindex, 1) && idx < hindex + HPAGE_PMD_NR) { 1427 rcu_read_unlock(); 1428 return NULL; 1429 } 1430 rcu_read_unlock(); 1431 1432 shmem_pseudo_vma_init(&pvma, info, hindex); 1433 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1434 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1435 shmem_pseudo_vma_destroy(&pvma); 1436 if (page) 1437 prep_transhuge_page(page); 1438 return page; 1439 } 1440 1441 static struct page *shmem_alloc_page(gfp_t gfp, 1442 struct shmem_inode_info *info, pgoff_t index) 1443 { 1444 struct vm_area_struct pvma; 1445 struct page *page; 1446 1447 shmem_pseudo_vma_init(&pvma, info, index); 1448 page = alloc_page_vma(gfp, &pvma, 0); 1449 shmem_pseudo_vma_destroy(&pvma); 1450 1451 return page; 1452 } 1453 1454 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1455 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo, 1456 pgoff_t index, bool huge) 1457 { 1458 struct page *page; 1459 int nr; 1460 int err = -ENOSPC; 1461 1462 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1463 huge = false; 1464 nr = huge ? HPAGE_PMD_NR : 1; 1465 1466 if (shmem_acct_block(info->flags, nr)) 1467 goto failed; 1468 if (sbinfo->max_blocks) { 1469 if (percpu_counter_compare(&sbinfo->used_blocks, 1470 sbinfo->max_blocks - nr) > 0) 1471 goto unacct; 1472 percpu_counter_add(&sbinfo->used_blocks, nr); 1473 } 1474 1475 if (huge) 1476 page = shmem_alloc_hugepage(gfp, info, index); 1477 else 1478 page = shmem_alloc_page(gfp, info, index); 1479 if (page) { 1480 __SetPageLocked(page); 1481 __SetPageSwapBacked(page); 1482 return page; 1483 } 1484 1485 err = -ENOMEM; 1486 if (sbinfo->max_blocks) 1487 percpu_counter_add(&sbinfo->used_blocks, -nr); 1488 unacct: 1489 shmem_unacct_blocks(info->flags, nr); 1490 failed: 1491 return ERR_PTR(err); 1492 } 1493 1494 /* 1495 * When a page is moved from swapcache to shmem filecache (either by the 1496 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1497 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1498 * ignorance of the mapping it belongs to. If that mapping has special 1499 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1500 * we may need to copy to a suitable page before moving to filecache. 1501 * 1502 * In a future release, this may well be extended to respect cpuset and 1503 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1504 * but for now it is a simple matter of zone. 1505 */ 1506 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1507 { 1508 return page_zonenum(page) > gfp_zone(gfp); 1509 } 1510 1511 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1512 struct shmem_inode_info *info, pgoff_t index) 1513 { 1514 struct page *oldpage, *newpage; 1515 struct address_space *swap_mapping; 1516 pgoff_t swap_index; 1517 int error; 1518 1519 oldpage = *pagep; 1520 swap_index = page_private(oldpage); 1521 swap_mapping = page_mapping(oldpage); 1522 1523 /* 1524 * We have arrived here because our zones are constrained, so don't 1525 * limit chance of success by further cpuset and node constraints. 1526 */ 1527 gfp &= ~GFP_CONSTRAINT_MASK; 1528 newpage = shmem_alloc_page(gfp, info, index); 1529 if (!newpage) 1530 return -ENOMEM; 1531 1532 get_page(newpage); 1533 copy_highpage(newpage, oldpage); 1534 flush_dcache_page(newpage); 1535 1536 __SetPageLocked(newpage); 1537 __SetPageSwapBacked(newpage); 1538 SetPageUptodate(newpage); 1539 set_page_private(newpage, swap_index); 1540 SetPageSwapCache(newpage); 1541 1542 /* 1543 * Our caller will very soon move newpage out of swapcache, but it's 1544 * a nice clean interface for us to replace oldpage by newpage there. 1545 */ 1546 spin_lock_irq(&swap_mapping->tree_lock); 1547 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1548 newpage); 1549 if (!error) { 1550 __inc_node_page_state(newpage, NR_FILE_PAGES); 1551 __dec_node_page_state(oldpage, NR_FILE_PAGES); 1552 } 1553 spin_unlock_irq(&swap_mapping->tree_lock); 1554 1555 if (unlikely(error)) { 1556 /* 1557 * Is this possible? I think not, now that our callers check 1558 * both PageSwapCache and page_private after getting page lock; 1559 * but be defensive. Reverse old to newpage for clear and free. 1560 */ 1561 oldpage = newpage; 1562 } else { 1563 mem_cgroup_migrate(oldpage, newpage); 1564 lru_cache_add_anon(newpage); 1565 *pagep = newpage; 1566 } 1567 1568 ClearPageSwapCache(oldpage); 1569 set_page_private(oldpage, 0); 1570 1571 unlock_page(oldpage); 1572 put_page(oldpage); 1573 put_page(oldpage); 1574 return error; 1575 } 1576 1577 /* 1578 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1579 * 1580 * If we allocate a new one we do not mark it dirty. That's up to the 1581 * vm. If we swap it in we mark it dirty since we also free the swap 1582 * entry since a page cannot live in both the swap and page cache. 1583 * 1584 * fault_mm and fault_type are only supplied by shmem_fault: 1585 * otherwise they are NULL. 1586 */ 1587 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1588 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1589 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type) 1590 { 1591 struct address_space *mapping = inode->i_mapping; 1592 struct shmem_inode_info *info = SHMEM_I(inode); 1593 struct shmem_sb_info *sbinfo; 1594 struct mm_struct *charge_mm; 1595 struct mem_cgroup *memcg; 1596 struct page *page; 1597 swp_entry_t swap; 1598 enum sgp_type sgp_huge = sgp; 1599 pgoff_t hindex = index; 1600 int error; 1601 int once = 0; 1602 int alloced = 0; 1603 1604 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1605 return -EFBIG; 1606 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1607 sgp = SGP_CACHE; 1608 repeat: 1609 swap.val = 0; 1610 page = find_lock_entry(mapping, index); 1611 if (radix_tree_exceptional_entry(page)) { 1612 swap = radix_to_swp_entry(page); 1613 page = NULL; 1614 } 1615 1616 if (sgp <= SGP_CACHE && 1617 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1618 error = -EINVAL; 1619 goto unlock; 1620 } 1621 1622 if (page && sgp == SGP_WRITE) 1623 mark_page_accessed(page); 1624 1625 /* fallocated page? */ 1626 if (page && !PageUptodate(page)) { 1627 if (sgp != SGP_READ) 1628 goto clear; 1629 unlock_page(page); 1630 put_page(page); 1631 page = NULL; 1632 } 1633 if (page || (sgp == SGP_READ && !swap.val)) { 1634 *pagep = page; 1635 return 0; 1636 } 1637 1638 /* 1639 * Fast cache lookup did not find it: 1640 * bring it back from swap or allocate. 1641 */ 1642 sbinfo = SHMEM_SB(inode->i_sb); 1643 charge_mm = vma ? vma->vm_mm : current->mm; 1644 1645 if (swap.val) { 1646 /* Look it up and read it in.. */ 1647 page = lookup_swap_cache(swap); 1648 if (!page) { 1649 /* Or update major stats only when swapin succeeds?? */ 1650 if (fault_type) { 1651 *fault_type |= VM_FAULT_MAJOR; 1652 count_vm_event(PGMAJFAULT); 1653 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1654 } 1655 /* Here we actually start the io */ 1656 page = shmem_swapin(swap, gfp, info, index); 1657 if (!page) { 1658 error = -ENOMEM; 1659 goto failed; 1660 } 1661 } 1662 1663 /* We have to do this with page locked to prevent races */ 1664 lock_page(page); 1665 if (!PageSwapCache(page) || page_private(page) != swap.val || 1666 !shmem_confirm_swap(mapping, index, swap)) { 1667 error = -EEXIST; /* try again */ 1668 goto unlock; 1669 } 1670 if (!PageUptodate(page)) { 1671 error = -EIO; 1672 goto failed; 1673 } 1674 wait_on_page_writeback(page); 1675 1676 if (shmem_should_replace_page(page, gfp)) { 1677 error = shmem_replace_page(&page, gfp, info, index); 1678 if (error) 1679 goto failed; 1680 } 1681 1682 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1683 false); 1684 if (!error) { 1685 error = shmem_add_to_page_cache(page, mapping, index, 1686 swp_to_radix_entry(swap)); 1687 /* 1688 * We already confirmed swap under page lock, and make 1689 * no memory allocation here, so usually no possibility 1690 * of error; but free_swap_and_cache() only trylocks a 1691 * page, so it is just possible that the entry has been 1692 * truncated or holepunched since swap was confirmed. 1693 * shmem_undo_range() will have done some of the 1694 * unaccounting, now delete_from_swap_cache() will do 1695 * the rest. 1696 * Reset swap.val? No, leave it so "failed" goes back to 1697 * "repeat": reading a hole and writing should succeed. 1698 */ 1699 if (error) { 1700 mem_cgroup_cancel_charge(page, memcg, false); 1701 delete_from_swap_cache(page); 1702 } 1703 } 1704 if (error) 1705 goto failed; 1706 1707 mem_cgroup_commit_charge(page, memcg, true, false); 1708 1709 spin_lock_irq(&info->lock); 1710 info->swapped--; 1711 shmem_recalc_inode(inode); 1712 spin_unlock_irq(&info->lock); 1713 1714 if (sgp == SGP_WRITE) 1715 mark_page_accessed(page); 1716 1717 delete_from_swap_cache(page); 1718 set_page_dirty(page); 1719 swap_free(swap); 1720 1721 } else { 1722 if (vma && userfaultfd_missing(vma)) { 1723 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1724 return 0; 1725 } 1726 1727 /* shmem_symlink() */ 1728 if (mapping->a_ops != &shmem_aops) 1729 goto alloc_nohuge; 1730 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1731 goto alloc_nohuge; 1732 if (shmem_huge == SHMEM_HUGE_FORCE) 1733 goto alloc_huge; 1734 switch (sbinfo->huge) { 1735 loff_t i_size; 1736 pgoff_t off; 1737 case SHMEM_HUGE_NEVER: 1738 goto alloc_nohuge; 1739 case SHMEM_HUGE_WITHIN_SIZE: 1740 off = round_up(index, HPAGE_PMD_NR); 1741 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1742 if (i_size >= HPAGE_PMD_SIZE && 1743 i_size >> PAGE_SHIFT >= off) 1744 goto alloc_huge; 1745 /* fallthrough */ 1746 case SHMEM_HUGE_ADVISE: 1747 if (sgp_huge == SGP_HUGE) 1748 goto alloc_huge; 1749 /* TODO: implement fadvise() hints */ 1750 goto alloc_nohuge; 1751 } 1752 1753 alloc_huge: 1754 page = shmem_alloc_and_acct_page(gfp, info, sbinfo, 1755 index, true); 1756 if (IS_ERR(page)) { 1757 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo, 1758 index, false); 1759 } 1760 if (IS_ERR(page)) { 1761 int retry = 5; 1762 error = PTR_ERR(page); 1763 page = NULL; 1764 if (error != -ENOSPC) 1765 goto failed; 1766 /* 1767 * Try to reclaim some spece by splitting a huge page 1768 * beyond i_size on the filesystem. 1769 */ 1770 while (retry--) { 1771 int ret; 1772 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1773 if (ret == SHRINK_STOP) 1774 break; 1775 if (ret) 1776 goto alloc_nohuge; 1777 } 1778 goto failed; 1779 } 1780 1781 if (PageTransHuge(page)) 1782 hindex = round_down(index, HPAGE_PMD_NR); 1783 else 1784 hindex = index; 1785 1786 if (sgp == SGP_WRITE) 1787 __SetPageReferenced(page); 1788 1789 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1790 PageTransHuge(page)); 1791 if (error) 1792 goto unacct; 1793 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK, 1794 compound_order(page)); 1795 if (!error) { 1796 error = shmem_add_to_page_cache(page, mapping, hindex, 1797 NULL); 1798 radix_tree_preload_end(); 1799 } 1800 if (error) { 1801 mem_cgroup_cancel_charge(page, memcg, 1802 PageTransHuge(page)); 1803 goto unacct; 1804 } 1805 mem_cgroup_commit_charge(page, memcg, false, 1806 PageTransHuge(page)); 1807 lru_cache_add_anon(page); 1808 1809 spin_lock_irq(&info->lock); 1810 info->alloced += 1 << compound_order(page); 1811 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1812 shmem_recalc_inode(inode); 1813 spin_unlock_irq(&info->lock); 1814 alloced = true; 1815 1816 if (PageTransHuge(page) && 1817 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1818 hindex + HPAGE_PMD_NR - 1) { 1819 /* 1820 * Part of the huge page is beyond i_size: subject 1821 * to shrink under memory pressure. 1822 */ 1823 spin_lock(&sbinfo->shrinklist_lock); 1824 /* 1825 * _careful to defend against unlocked access to 1826 * ->shrink_list in shmem_unused_huge_shrink() 1827 */ 1828 if (list_empty_careful(&info->shrinklist)) { 1829 list_add_tail(&info->shrinklist, 1830 &sbinfo->shrinklist); 1831 sbinfo->shrinklist_len++; 1832 } 1833 spin_unlock(&sbinfo->shrinklist_lock); 1834 } 1835 1836 /* 1837 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1838 */ 1839 if (sgp == SGP_FALLOC) 1840 sgp = SGP_WRITE; 1841 clear: 1842 /* 1843 * Let SGP_WRITE caller clear ends if write does not fill page; 1844 * but SGP_FALLOC on a page fallocated earlier must initialize 1845 * it now, lest undo on failure cancel our earlier guarantee. 1846 */ 1847 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1848 struct page *head = compound_head(page); 1849 int i; 1850 1851 for (i = 0; i < (1 << compound_order(head)); i++) { 1852 clear_highpage(head + i); 1853 flush_dcache_page(head + i); 1854 } 1855 SetPageUptodate(head); 1856 } 1857 } 1858 1859 /* Perhaps the file has been truncated since we checked */ 1860 if (sgp <= SGP_CACHE && 1861 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1862 if (alloced) { 1863 ClearPageDirty(page); 1864 delete_from_page_cache(page); 1865 spin_lock_irq(&info->lock); 1866 shmem_recalc_inode(inode); 1867 spin_unlock_irq(&info->lock); 1868 } 1869 error = -EINVAL; 1870 goto unlock; 1871 } 1872 *pagep = page + index - hindex; 1873 return 0; 1874 1875 /* 1876 * Error recovery. 1877 */ 1878 unacct: 1879 if (sbinfo->max_blocks) 1880 percpu_counter_sub(&sbinfo->used_blocks, 1881 1 << compound_order(page)); 1882 shmem_unacct_blocks(info->flags, 1 << compound_order(page)); 1883 1884 if (PageTransHuge(page)) { 1885 unlock_page(page); 1886 put_page(page); 1887 goto alloc_nohuge; 1888 } 1889 failed: 1890 if (swap.val && !shmem_confirm_swap(mapping, index, swap)) 1891 error = -EEXIST; 1892 unlock: 1893 if (page) { 1894 unlock_page(page); 1895 put_page(page); 1896 } 1897 if (error == -ENOSPC && !once++) { 1898 spin_lock_irq(&info->lock); 1899 shmem_recalc_inode(inode); 1900 spin_unlock_irq(&info->lock); 1901 goto repeat; 1902 } 1903 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1904 goto repeat; 1905 return error; 1906 } 1907 1908 /* 1909 * This is like autoremove_wake_function, but it removes the wait queue 1910 * entry unconditionally - even if something else had already woken the 1911 * target. 1912 */ 1913 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1914 { 1915 int ret = default_wake_function(wait, mode, sync, key); 1916 list_del_init(&wait->entry); 1917 return ret; 1918 } 1919 1920 static int shmem_fault(struct vm_fault *vmf) 1921 { 1922 struct vm_area_struct *vma = vmf->vma; 1923 struct inode *inode = file_inode(vma->vm_file); 1924 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1925 enum sgp_type sgp; 1926 int error; 1927 int ret = VM_FAULT_LOCKED; 1928 1929 /* 1930 * Trinity finds that probing a hole which tmpfs is punching can 1931 * prevent the hole-punch from ever completing: which in turn 1932 * locks writers out with its hold on i_mutex. So refrain from 1933 * faulting pages into the hole while it's being punched. Although 1934 * shmem_undo_range() does remove the additions, it may be unable to 1935 * keep up, as each new page needs its own unmap_mapping_range() call, 1936 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1937 * 1938 * It does not matter if we sometimes reach this check just before the 1939 * hole-punch begins, so that one fault then races with the punch: 1940 * we just need to make racing faults a rare case. 1941 * 1942 * The implementation below would be much simpler if we just used a 1943 * standard mutex or completion: but we cannot take i_mutex in fault, 1944 * and bloating every shmem inode for this unlikely case would be sad. 1945 */ 1946 if (unlikely(inode->i_private)) { 1947 struct shmem_falloc *shmem_falloc; 1948 1949 spin_lock(&inode->i_lock); 1950 shmem_falloc = inode->i_private; 1951 if (shmem_falloc && 1952 shmem_falloc->waitq && 1953 vmf->pgoff >= shmem_falloc->start && 1954 vmf->pgoff < shmem_falloc->next) { 1955 wait_queue_head_t *shmem_falloc_waitq; 1956 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 1957 1958 ret = VM_FAULT_NOPAGE; 1959 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1960 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1961 /* It's polite to up mmap_sem if we can */ 1962 up_read(&vma->vm_mm->mmap_sem); 1963 ret = VM_FAULT_RETRY; 1964 } 1965 1966 shmem_falloc_waitq = shmem_falloc->waitq; 1967 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1968 TASK_UNINTERRUPTIBLE); 1969 spin_unlock(&inode->i_lock); 1970 schedule(); 1971 1972 /* 1973 * shmem_falloc_waitq points into the shmem_fallocate() 1974 * stack of the hole-punching task: shmem_falloc_waitq 1975 * is usually invalid by the time we reach here, but 1976 * finish_wait() does not dereference it in that case; 1977 * though i_lock needed lest racing with wake_up_all(). 1978 */ 1979 spin_lock(&inode->i_lock); 1980 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1981 spin_unlock(&inode->i_lock); 1982 return ret; 1983 } 1984 spin_unlock(&inode->i_lock); 1985 } 1986 1987 sgp = SGP_CACHE; 1988 1989 if ((vma->vm_flags & VM_NOHUGEPAGE) || 1990 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 1991 sgp = SGP_NOHUGE; 1992 else if (vma->vm_flags & VM_HUGEPAGE) 1993 sgp = SGP_HUGE; 1994 1995 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 1996 gfp, vma, vmf, &ret); 1997 if (error) 1998 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1999 return ret; 2000 } 2001 2002 unsigned long shmem_get_unmapped_area(struct file *file, 2003 unsigned long uaddr, unsigned long len, 2004 unsigned long pgoff, unsigned long flags) 2005 { 2006 unsigned long (*get_area)(struct file *, 2007 unsigned long, unsigned long, unsigned long, unsigned long); 2008 unsigned long addr; 2009 unsigned long offset; 2010 unsigned long inflated_len; 2011 unsigned long inflated_addr; 2012 unsigned long inflated_offset; 2013 2014 if (len > TASK_SIZE) 2015 return -ENOMEM; 2016 2017 get_area = current->mm->get_unmapped_area; 2018 addr = get_area(file, uaddr, len, pgoff, flags); 2019 2020 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 2021 return addr; 2022 if (IS_ERR_VALUE(addr)) 2023 return addr; 2024 if (addr & ~PAGE_MASK) 2025 return addr; 2026 if (addr > TASK_SIZE - len) 2027 return addr; 2028 2029 if (shmem_huge == SHMEM_HUGE_DENY) 2030 return addr; 2031 if (len < HPAGE_PMD_SIZE) 2032 return addr; 2033 if (flags & MAP_FIXED) 2034 return addr; 2035 /* 2036 * Our priority is to support MAP_SHARED mapped hugely; 2037 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2038 * But if caller specified an address hint, respect that as before. 2039 */ 2040 if (uaddr) 2041 return addr; 2042 2043 if (shmem_huge != SHMEM_HUGE_FORCE) { 2044 struct super_block *sb; 2045 2046 if (file) { 2047 VM_BUG_ON(file->f_op != &shmem_file_operations); 2048 sb = file_inode(file)->i_sb; 2049 } else { 2050 /* 2051 * Called directly from mm/mmap.c, or drivers/char/mem.c 2052 * for "/dev/zero", to create a shared anonymous object. 2053 */ 2054 if (IS_ERR(shm_mnt)) 2055 return addr; 2056 sb = shm_mnt->mnt_sb; 2057 } 2058 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2059 return addr; 2060 } 2061 2062 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2063 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2064 return addr; 2065 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2066 return addr; 2067 2068 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2069 if (inflated_len > TASK_SIZE) 2070 return addr; 2071 if (inflated_len < len) 2072 return addr; 2073 2074 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags); 2075 if (IS_ERR_VALUE(inflated_addr)) 2076 return addr; 2077 if (inflated_addr & ~PAGE_MASK) 2078 return addr; 2079 2080 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2081 inflated_addr += offset - inflated_offset; 2082 if (inflated_offset > offset) 2083 inflated_addr += HPAGE_PMD_SIZE; 2084 2085 if (inflated_addr > TASK_SIZE - len) 2086 return addr; 2087 return inflated_addr; 2088 } 2089 2090 #ifdef CONFIG_NUMA 2091 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2092 { 2093 struct inode *inode = file_inode(vma->vm_file); 2094 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2095 } 2096 2097 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2098 unsigned long addr) 2099 { 2100 struct inode *inode = file_inode(vma->vm_file); 2101 pgoff_t index; 2102 2103 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2104 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2105 } 2106 #endif 2107 2108 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2109 { 2110 struct inode *inode = file_inode(file); 2111 struct shmem_inode_info *info = SHMEM_I(inode); 2112 int retval = -ENOMEM; 2113 2114 spin_lock_irq(&info->lock); 2115 if (lock && !(info->flags & VM_LOCKED)) { 2116 if (!user_shm_lock(inode->i_size, user)) 2117 goto out_nomem; 2118 info->flags |= VM_LOCKED; 2119 mapping_set_unevictable(file->f_mapping); 2120 } 2121 if (!lock && (info->flags & VM_LOCKED) && user) { 2122 user_shm_unlock(inode->i_size, user); 2123 info->flags &= ~VM_LOCKED; 2124 mapping_clear_unevictable(file->f_mapping); 2125 } 2126 retval = 0; 2127 2128 out_nomem: 2129 spin_unlock_irq(&info->lock); 2130 return retval; 2131 } 2132 2133 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2134 { 2135 file_accessed(file); 2136 vma->vm_ops = &shmem_vm_ops; 2137 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 2138 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2139 (vma->vm_end & HPAGE_PMD_MASK)) { 2140 khugepaged_enter(vma, vma->vm_flags); 2141 } 2142 return 0; 2143 } 2144 2145 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2146 umode_t mode, dev_t dev, unsigned long flags) 2147 { 2148 struct inode *inode; 2149 struct shmem_inode_info *info; 2150 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2151 2152 if (shmem_reserve_inode(sb)) 2153 return NULL; 2154 2155 inode = new_inode(sb); 2156 if (inode) { 2157 inode->i_ino = get_next_ino(); 2158 inode_init_owner(inode, dir, mode); 2159 inode->i_blocks = 0; 2160 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2161 inode->i_generation = get_seconds(); 2162 info = SHMEM_I(inode); 2163 memset(info, 0, (char *)inode - (char *)info); 2164 spin_lock_init(&info->lock); 2165 info->seals = F_SEAL_SEAL; 2166 info->flags = flags & VM_NORESERVE; 2167 INIT_LIST_HEAD(&info->shrinklist); 2168 INIT_LIST_HEAD(&info->swaplist); 2169 simple_xattrs_init(&info->xattrs); 2170 cache_no_acl(inode); 2171 2172 switch (mode & S_IFMT) { 2173 default: 2174 inode->i_op = &shmem_special_inode_operations; 2175 init_special_inode(inode, mode, dev); 2176 break; 2177 case S_IFREG: 2178 inode->i_mapping->a_ops = &shmem_aops; 2179 inode->i_op = &shmem_inode_operations; 2180 inode->i_fop = &shmem_file_operations; 2181 mpol_shared_policy_init(&info->policy, 2182 shmem_get_sbmpol(sbinfo)); 2183 break; 2184 case S_IFDIR: 2185 inc_nlink(inode); 2186 /* Some things misbehave if size == 0 on a directory */ 2187 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2188 inode->i_op = &shmem_dir_inode_operations; 2189 inode->i_fop = &simple_dir_operations; 2190 break; 2191 case S_IFLNK: 2192 /* 2193 * Must not load anything in the rbtree, 2194 * mpol_free_shared_policy will not be called. 2195 */ 2196 mpol_shared_policy_init(&info->policy, NULL); 2197 break; 2198 } 2199 } else 2200 shmem_free_inode(sb); 2201 return inode; 2202 } 2203 2204 bool shmem_mapping(struct address_space *mapping) 2205 { 2206 return mapping->a_ops == &shmem_aops; 2207 } 2208 2209 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2210 pmd_t *dst_pmd, 2211 struct vm_area_struct *dst_vma, 2212 unsigned long dst_addr, 2213 unsigned long src_addr, 2214 struct page **pagep) 2215 { 2216 struct inode *inode = file_inode(dst_vma->vm_file); 2217 struct shmem_inode_info *info = SHMEM_I(inode); 2218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2219 struct address_space *mapping = inode->i_mapping; 2220 gfp_t gfp = mapping_gfp_mask(mapping); 2221 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2222 struct mem_cgroup *memcg; 2223 spinlock_t *ptl; 2224 void *page_kaddr; 2225 struct page *page; 2226 pte_t _dst_pte, *dst_pte; 2227 int ret; 2228 2229 ret = -ENOMEM; 2230 if (shmem_acct_block(info->flags, 1)) 2231 goto out; 2232 if (sbinfo->max_blocks) { 2233 if (percpu_counter_compare(&sbinfo->used_blocks, 2234 sbinfo->max_blocks) >= 0) 2235 goto out_unacct_blocks; 2236 percpu_counter_inc(&sbinfo->used_blocks); 2237 } 2238 2239 if (!*pagep) { 2240 page = shmem_alloc_page(gfp, info, pgoff); 2241 if (!page) 2242 goto out_dec_used_blocks; 2243 2244 page_kaddr = kmap_atomic(page); 2245 ret = copy_from_user(page_kaddr, (const void __user *)src_addr, 2246 PAGE_SIZE); 2247 kunmap_atomic(page_kaddr); 2248 2249 /* fallback to copy_from_user outside mmap_sem */ 2250 if (unlikely(ret)) { 2251 *pagep = page; 2252 if (sbinfo->max_blocks) 2253 percpu_counter_add(&sbinfo->used_blocks, -1); 2254 shmem_unacct_blocks(info->flags, 1); 2255 /* don't free the page */ 2256 return -EFAULT; 2257 } 2258 } else { 2259 page = *pagep; 2260 *pagep = NULL; 2261 } 2262 2263 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2264 __SetPageLocked(page); 2265 __SetPageSwapBacked(page); 2266 __SetPageUptodate(page); 2267 2268 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false); 2269 if (ret) 2270 goto out_release; 2271 2272 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 2273 if (!ret) { 2274 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL); 2275 radix_tree_preload_end(); 2276 } 2277 if (ret) 2278 goto out_release_uncharge; 2279 2280 mem_cgroup_commit_charge(page, memcg, false, false); 2281 2282 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2283 if (dst_vma->vm_flags & VM_WRITE) 2284 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2285 2286 ret = -EEXIST; 2287 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2288 if (!pte_none(*dst_pte)) 2289 goto out_release_uncharge_unlock; 2290 2291 lru_cache_add_anon(page); 2292 2293 spin_lock(&info->lock); 2294 info->alloced++; 2295 inode->i_blocks += BLOCKS_PER_PAGE; 2296 shmem_recalc_inode(inode); 2297 spin_unlock(&info->lock); 2298 2299 inc_mm_counter(dst_mm, mm_counter_file(page)); 2300 page_add_file_rmap(page, false); 2301 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2302 2303 /* No need to invalidate - it was non-present before */ 2304 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2305 unlock_page(page); 2306 pte_unmap_unlock(dst_pte, ptl); 2307 ret = 0; 2308 out: 2309 return ret; 2310 out_release_uncharge_unlock: 2311 pte_unmap_unlock(dst_pte, ptl); 2312 out_release_uncharge: 2313 mem_cgroup_cancel_charge(page, memcg, false); 2314 out_release: 2315 unlock_page(page); 2316 put_page(page); 2317 out_dec_used_blocks: 2318 if (sbinfo->max_blocks) 2319 percpu_counter_add(&sbinfo->used_blocks, -1); 2320 out_unacct_blocks: 2321 shmem_unacct_blocks(info->flags, 1); 2322 goto out; 2323 } 2324 2325 #ifdef CONFIG_TMPFS 2326 static const struct inode_operations shmem_symlink_inode_operations; 2327 static const struct inode_operations shmem_short_symlink_operations; 2328 2329 #ifdef CONFIG_TMPFS_XATTR 2330 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2331 #else 2332 #define shmem_initxattrs NULL 2333 #endif 2334 2335 static int 2336 shmem_write_begin(struct file *file, struct address_space *mapping, 2337 loff_t pos, unsigned len, unsigned flags, 2338 struct page **pagep, void **fsdata) 2339 { 2340 struct inode *inode = mapping->host; 2341 struct shmem_inode_info *info = SHMEM_I(inode); 2342 pgoff_t index = pos >> PAGE_SHIFT; 2343 2344 /* i_mutex is held by caller */ 2345 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) { 2346 if (info->seals & F_SEAL_WRITE) 2347 return -EPERM; 2348 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2349 return -EPERM; 2350 } 2351 2352 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2353 } 2354 2355 static int 2356 shmem_write_end(struct file *file, struct address_space *mapping, 2357 loff_t pos, unsigned len, unsigned copied, 2358 struct page *page, void *fsdata) 2359 { 2360 struct inode *inode = mapping->host; 2361 2362 if (pos + copied > inode->i_size) 2363 i_size_write(inode, pos + copied); 2364 2365 if (!PageUptodate(page)) { 2366 struct page *head = compound_head(page); 2367 if (PageTransCompound(page)) { 2368 int i; 2369 2370 for (i = 0; i < HPAGE_PMD_NR; i++) { 2371 if (head + i == page) 2372 continue; 2373 clear_highpage(head + i); 2374 flush_dcache_page(head + i); 2375 } 2376 } 2377 if (copied < PAGE_SIZE) { 2378 unsigned from = pos & (PAGE_SIZE - 1); 2379 zero_user_segments(page, 0, from, 2380 from + copied, PAGE_SIZE); 2381 } 2382 SetPageUptodate(head); 2383 } 2384 set_page_dirty(page); 2385 unlock_page(page); 2386 put_page(page); 2387 2388 return copied; 2389 } 2390 2391 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2392 { 2393 struct file *file = iocb->ki_filp; 2394 struct inode *inode = file_inode(file); 2395 struct address_space *mapping = inode->i_mapping; 2396 pgoff_t index; 2397 unsigned long offset; 2398 enum sgp_type sgp = SGP_READ; 2399 int error = 0; 2400 ssize_t retval = 0; 2401 loff_t *ppos = &iocb->ki_pos; 2402 2403 /* 2404 * Might this read be for a stacking filesystem? Then when reading 2405 * holes of a sparse file, we actually need to allocate those pages, 2406 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2407 */ 2408 if (!iter_is_iovec(to)) 2409 sgp = SGP_CACHE; 2410 2411 index = *ppos >> PAGE_SHIFT; 2412 offset = *ppos & ~PAGE_MASK; 2413 2414 for (;;) { 2415 struct page *page = NULL; 2416 pgoff_t end_index; 2417 unsigned long nr, ret; 2418 loff_t i_size = i_size_read(inode); 2419 2420 end_index = i_size >> PAGE_SHIFT; 2421 if (index > end_index) 2422 break; 2423 if (index == end_index) { 2424 nr = i_size & ~PAGE_MASK; 2425 if (nr <= offset) 2426 break; 2427 } 2428 2429 error = shmem_getpage(inode, index, &page, sgp); 2430 if (error) { 2431 if (error == -EINVAL) 2432 error = 0; 2433 break; 2434 } 2435 if (page) { 2436 if (sgp == SGP_CACHE) 2437 set_page_dirty(page); 2438 unlock_page(page); 2439 } 2440 2441 /* 2442 * We must evaluate after, since reads (unlike writes) 2443 * are called without i_mutex protection against truncate 2444 */ 2445 nr = PAGE_SIZE; 2446 i_size = i_size_read(inode); 2447 end_index = i_size >> PAGE_SHIFT; 2448 if (index == end_index) { 2449 nr = i_size & ~PAGE_MASK; 2450 if (nr <= offset) { 2451 if (page) 2452 put_page(page); 2453 break; 2454 } 2455 } 2456 nr -= offset; 2457 2458 if (page) { 2459 /* 2460 * If users can be writing to this page using arbitrary 2461 * virtual addresses, take care about potential aliasing 2462 * before reading the page on the kernel side. 2463 */ 2464 if (mapping_writably_mapped(mapping)) 2465 flush_dcache_page(page); 2466 /* 2467 * Mark the page accessed if we read the beginning. 2468 */ 2469 if (!offset) 2470 mark_page_accessed(page); 2471 } else { 2472 page = ZERO_PAGE(0); 2473 get_page(page); 2474 } 2475 2476 /* 2477 * Ok, we have the page, and it's up-to-date, so 2478 * now we can copy it to user space... 2479 */ 2480 ret = copy_page_to_iter(page, offset, nr, to); 2481 retval += ret; 2482 offset += ret; 2483 index += offset >> PAGE_SHIFT; 2484 offset &= ~PAGE_MASK; 2485 2486 put_page(page); 2487 if (!iov_iter_count(to)) 2488 break; 2489 if (ret < nr) { 2490 error = -EFAULT; 2491 break; 2492 } 2493 cond_resched(); 2494 } 2495 2496 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2497 file_accessed(file); 2498 return retval ? retval : error; 2499 } 2500 2501 /* 2502 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 2503 */ 2504 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2505 pgoff_t index, pgoff_t end, int whence) 2506 { 2507 struct page *page; 2508 struct pagevec pvec; 2509 pgoff_t indices[PAGEVEC_SIZE]; 2510 bool done = false; 2511 int i; 2512 2513 pagevec_init(&pvec, 0); 2514 pvec.nr = 1; /* start small: we may be there already */ 2515 while (!done) { 2516 pvec.nr = find_get_entries(mapping, index, 2517 pvec.nr, pvec.pages, indices); 2518 if (!pvec.nr) { 2519 if (whence == SEEK_DATA) 2520 index = end; 2521 break; 2522 } 2523 for (i = 0; i < pvec.nr; i++, index++) { 2524 if (index < indices[i]) { 2525 if (whence == SEEK_HOLE) { 2526 done = true; 2527 break; 2528 } 2529 index = indices[i]; 2530 } 2531 page = pvec.pages[i]; 2532 if (page && !radix_tree_exceptional_entry(page)) { 2533 if (!PageUptodate(page)) 2534 page = NULL; 2535 } 2536 if (index >= end || 2537 (page && whence == SEEK_DATA) || 2538 (!page && whence == SEEK_HOLE)) { 2539 done = true; 2540 break; 2541 } 2542 } 2543 pagevec_remove_exceptionals(&pvec); 2544 pagevec_release(&pvec); 2545 pvec.nr = PAGEVEC_SIZE; 2546 cond_resched(); 2547 } 2548 return index; 2549 } 2550 2551 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2552 { 2553 struct address_space *mapping = file->f_mapping; 2554 struct inode *inode = mapping->host; 2555 pgoff_t start, end; 2556 loff_t new_offset; 2557 2558 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2559 return generic_file_llseek_size(file, offset, whence, 2560 MAX_LFS_FILESIZE, i_size_read(inode)); 2561 inode_lock(inode); 2562 /* We're holding i_mutex so we can access i_size directly */ 2563 2564 if (offset < 0) 2565 offset = -EINVAL; 2566 else if (offset >= inode->i_size) 2567 offset = -ENXIO; 2568 else { 2569 start = offset >> PAGE_SHIFT; 2570 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2571 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2572 new_offset <<= PAGE_SHIFT; 2573 if (new_offset > offset) { 2574 if (new_offset < inode->i_size) 2575 offset = new_offset; 2576 else if (whence == SEEK_DATA) 2577 offset = -ENXIO; 2578 else 2579 offset = inode->i_size; 2580 } 2581 } 2582 2583 if (offset >= 0) 2584 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2585 inode_unlock(inode); 2586 return offset; 2587 } 2588 2589 /* 2590 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, 2591 * so reuse a tag which we firmly believe is never set or cleared on shmem. 2592 */ 2593 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE 2594 #define LAST_SCAN 4 /* about 150ms max */ 2595 2596 static void shmem_tag_pins(struct address_space *mapping) 2597 { 2598 struct radix_tree_iter iter; 2599 void **slot; 2600 pgoff_t start; 2601 struct page *page; 2602 2603 lru_add_drain(); 2604 start = 0; 2605 rcu_read_lock(); 2606 2607 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 2608 page = radix_tree_deref_slot(slot); 2609 if (!page || radix_tree_exception(page)) { 2610 if (radix_tree_deref_retry(page)) { 2611 slot = radix_tree_iter_retry(&iter); 2612 continue; 2613 } 2614 } else if (page_count(page) - page_mapcount(page) > 1) { 2615 spin_lock_irq(&mapping->tree_lock); 2616 radix_tree_tag_set(&mapping->page_tree, iter.index, 2617 SHMEM_TAG_PINNED); 2618 spin_unlock_irq(&mapping->tree_lock); 2619 } 2620 2621 if (need_resched()) { 2622 slot = radix_tree_iter_resume(slot, &iter); 2623 cond_resched_rcu(); 2624 } 2625 } 2626 rcu_read_unlock(); 2627 } 2628 2629 /* 2630 * Setting SEAL_WRITE requires us to verify there's no pending writer. However, 2631 * via get_user_pages(), drivers might have some pending I/O without any active 2632 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages 2633 * and see whether it has an elevated ref-count. If so, we tag them and wait for 2634 * them to be dropped. 2635 * The caller must guarantee that no new user will acquire writable references 2636 * to those pages to avoid races. 2637 */ 2638 static int shmem_wait_for_pins(struct address_space *mapping) 2639 { 2640 struct radix_tree_iter iter; 2641 void **slot; 2642 pgoff_t start; 2643 struct page *page; 2644 int error, scan; 2645 2646 shmem_tag_pins(mapping); 2647 2648 error = 0; 2649 for (scan = 0; scan <= LAST_SCAN; scan++) { 2650 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) 2651 break; 2652 2653 if (!scan) 2654 lru_add_drain_all(); 2655 else if (schedule_timeout_killable((HZ << scan) / 200)) 2656 scan = LAST_SCAN; 2657 2658 start = 0; 2659 rcu_read_lock(); 2660 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 2661 start, SHMEM_TAG_PINNED) { 2662 2663 page = radix_tree_deref_slot(slot); 2664 if (radix_tree_exception(page)) { 2665 if (radix_tree_deref_retry(page)) { 2666 slot = radix_tree_iter_retry(&iter); 2667 continue; 2668 } 2669 2670 page = NULL; 2671 } 2672 2673 if (page && 2674 page_count(page) - page_mapcount(page) != 1) { 2675 if (scan < LAST_SCAN) 2676 goto continue_resched; 2677 2678 /* 2679 * On the last scan, we clean up all those tags 2680 * we inserted; but make a note that we still 2681 * found pages pinned. 2682 */ 2683 error = -EBUSY; 2684 } 2685 2686 spin_lock_irq(&mapping->tree_lock); 2687 radix_tree_tag_clear(&mapping->page_tree, 2688 iter.index, SHMEM_TAG_PINNED); 2689 spin_unlock_irq(&mapping->tree_lock); 2690 continue_resched: 2691 if (need_resched()) { 2692 slot = radix_tree_iter_resume(slot, &iter); 2693 cond_resched_rcu(); 2694 } 2695 } 2696 rcu_read_unlock(); 2697 } 2698 2699 return error; 2700 } 2701 2702 #define F_ALL_SEALS (F_SEAL_SEAL | \ 2703 F_SEAL_SHRINK | \ 2704 F_SEAL_GROW | \ 2705 F_SEAL_WRITE) 2706 2707 int shmem_add_seals(struct file *file, unsigned int seals) 2708 { 2709 struct inode *inode = file_inode(file); 2710 struct shmem_inode_info *info = SHMEM_I(inode); 2711 int error; 2712 2713 /* 2714 * SEALING 2715 * Sealing allows multiple parties to share a shmem-file but restrict 2716 * access to a specific subset of file operations. Seals can only be 2717 * added, but never removed. This way, mutually untrusted parties can 2718 * share common memory regions with a well-defined policy. A malicious 2719 * peer can thus never perform unwanted operations on a shared object. 2720 * 2721 * Seals are only supported on special shmem-files and always affect 2722 * the whole underlying inode. Once a seal is set, it may prevent some 2723 * kinds of access to the file. Currently, the following seals are 2724 * defined: 2725 * SEAL_SEAL: Prevent further seals from being set on this file 2726 * SEAL_SHRINK: Prevent the file from shrinking 2727 * SEAL_GROW: Prevent the file from growing 2728 * SEAL_WRITE: Prevent write access to the file 2729 * 2730 * As we don't require any trust relationship between two parties, we 2731 * must prevent seals from being removed. Therefore, sealing a file 2732 * only adds a given set of seals to the file, it never touches 2733 * existing seals. Furthermore, the "setting seals"-operation can be 2734 * sealed itself, which basically prevents any further seal from being 2735 * added. 2736 * 2737 * Semantics of sealing are only defined on volatile files. Only 2738 * anonymous shmem files support sealing. More importantly, seals are 2739 * never written to disk. Therefore, there's no plan to support it on 2740 * other file types. 2741 */ 2742 2743 if (file->f_op != &shmem_file_operations) 2744 return -EINVAL; 2745 if (!(file->f_mode & FMODE_WRITE)) 2746 return -EPERM; 2747 if (seals & ~(unsigned int)F_ALL_SEALS) 2748 return -EINVAL; 2749 2750 inode_lock(inode); 2751 2752 if (info->seals & F_SEAL_SEAL) { 2753 error = -EPERM; 2754 goto unlock; 2755 } 2756 2757 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) { 2758 error = mapping_deny_writable(file->f_mapping); 2759 if (error) 2760 goto unlock; 2761 2762 error = shmem_wait_for_pins(file->f_mapping); 2763 if (error) { 2764 mapping_allow_writable(file->f_mapping); 2765 goto unlock; 2766 } 2767 } 2768 2769 info->seals |= seals; 2770 error = 0; 2771 2772 unlock: 2773 inode_unlock(inode); 2774 return error; 2775 } 2776 EXPORT_SYMBOL_GPL(shmem_add_seals); 2777 2778 int shmem_get_seals(struct file *file) 2779 { 2780 if (file->f_op != &shmem_file_operations) 2781 return -EINVAL; 2782 2783 return SHMEM_I(file_inode(file))->seals; 2784 } 2785 EXPORT_SYMBOL_GPL(shmem_get_seals); 2786 2787 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2788 { 2789 long error; 2790 2791 switch (cmd) { 2792 case F_ADD_SEALS: 2793 /* disallow upper 32bit */ 2794 if (arg > UINT_MAX) 2795 return -EINVAL; 2796 2797 error = shmem_add_seals(file, arg); 2798 break; 2799 case F_GET_SEALS: 2800 error = shmem_get_seals(file); 2801 break; 2802 default: 2803 error = -EINVAL; 2804 break; 2805 } 2806 2807 return error; 2808 } 2809 2810 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2811 loff_t len) 2812 { 2813 struct inode *inode = file_inode(file); 2814 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2815 struct shmem_inode_info *info = SHMEM_I(inode); 2816 struct shmem_falloc shmem_falloc; 2817 pgoff_t start, index, end; 2818 int error; 2819 2820 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2821 return -EOPNOTSUPP; 2822 2823 inode_lock(inode); 2824 2825 if (mode & FALLOC_FL_PUNCH_HOLE) { 2826 struct address_space *mapping = file->f_mapping; 2827 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2828 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2829 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2830 2831 /* protected by i_mutex */ 2832 if (info->seals & F_SEAL_WRITE) { 2833 error = -EPERM; 2834 goto out; 2835 } 2836 2837 shmem_falloc.waitq = &shmem_falloc_waitq; 2838 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2839 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2840 spin_lock(&inode->i_lock); 2841 inode->i_private = &shmem_falloc; 2842 spin_unlock(&inode->i_lock); 2843 2844 if ((u64)unmap_end > (u64)unmap_start) 2845 unmap_mapping_range(mapping, unmap_start, 2846 1 + unmap_end - unmap_start, 0); 2847 shmem_truncate_range(inode, offset, offset + len - 1); 2848 /* No need to unmap again: hole-punching leaves COWed pages */ 2849 2850 spin_lock(&inode->i_lock); 2851 inode->i_private = NULL; 2852 wake_up_all(&shmem_falloc_waitq); 2853 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2854 spin_unlock(&inode->i_lock); 2855 error = 0; 2856 goto out; 2857 } 2858 2859 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2860 error = inode_newsize_ok(inode, offset + len); 2861 if (error) 2862 goto out; 2863 2864 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2865 error = -EPERM; 2866 goto out; 2867 } 2868 2869 start = offset >> PAGE_SHIFT; 2870 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2871 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2872 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2873 error = -ENOSPC; 2874 goto out; 2875 } 2876 2877 shmem_falloc.waitq = NULL; 2878 shmem_falloc.start = start; 2879 shmem_falloc.next = start; 2880 shmem_falloc.nr_falloced = 0; 2881 shmem_falloc.nr_unswapped = 0; 2882 spin_lock(&inode->i_lock); 2883 inode->i_private = &shmem_falloc; 2884 spin_unlock(&inode->i_lock); 2885 2886 for (index = start; index < end; index++) { 2887 struct page *page; 2888 2889 /* 2890 * Good, the fallocate(2) manpage permits EINTR: we may have 2891 * been interrupted because we are using up too much memory. 2892 */ 2893 if (signal_pending(current)) 2894 error = -EINTR; 2895 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2896 error = -ENOMEM; 2897 else 2898 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2899 if (error) { 2900 /* Remove the !PageUptodate pages we added */ 2901 if (index > start) { 2902 shmem_undo_range(inode, 2903 (loff_t)start << PAGE_SHIFT, 2904 ((loff_t)index << PAGE_SHIFT) - 1, true); 2905 } 2906 goto undone; 2907 } 2908 2909 /* 2910 * Inform shmem_writepage() how far we have reached. 2911 * No need for lock or barrier: we have the page lock. 2912 */ 2913 shmem_falloc.next++; 2914 if (!PageUptodate(page)) 2915 shmem_falloc.nr_falloced++; 2916 2917 /* 2918 * If !PageUptodate, leave it that way so that freeable pages 2919 * can be recognized if we need to rollback on error later. 2920 * But set_page_dirty so that memory pressure will swap rather 2921 * than free the pages we are allocating (and SGP_CACHE pages 2922 * might still be clean: we now need to mark those dirty too). 2923 */ 2924 set_page_dirty(page); 2925 unlock_page(page); 2926 put_page(page); 2927 cond_resched(); 2928 } 2929 2930 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2931 i_size_write(inode, offset + len); 2932 inode->i_ctime = current_time(inode); 2933 undone: 2934 spin_lock(&inode->i_lock); 2935 inode->i_private = NULL; 2936 spin_unlock(&inode->i_lock); 2937 out: 2938 inode_unlock(inode); 2939 return error; 2940 } 2941 2942 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2943 { 2944 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2945 2946 buf->f_type = TMPFS_MAGIC; 2947 buf->f_bsize = PAGE_SIZE; 2948 buf->f_namelen = NAME_MAX; 2949 if (sbinfo->max_blocks) { 2950 buf->f_blocks = sbinfo->max_blocks; 2951 buf->f_bavail = 2952 buf->f_bfree = sbinfo->max_blocks - 2953 percpu_counter_sum(&sbinfo->used_blocks); 2954 } 2955 if (sbinfo->max_inodes) { 2956 buf->f_files = sbinfo->max_inodes; 2957 buf->f_ffree = sbinfo->free_inodes; 2958 } 2959 /* else leave those fields 0 like simple_statfs */ 2960 return 0; 2961 } 2962 2963 /* 2964 * File creation. Allocate an inode, and we're done.. 2965 */ 2966 static int 2967 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2968 { 2969 struct inode *inode; 2970 int error = -ENOSPC; 2971 2972 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2973 if (inode) { 2974 error = simple_acl_create(dir, inode); 2975 if (error) 2976 goto out_iput; 2977 error = security_inode_init_security(inode, dir, 2978 &dentry->d_name, 2979 shmem_initxattrs, NULL); 2980 if (error && error != -EOPNOTSUPP) 2981 goto out_iput; 2982 2983 error = 0; 2984 dir->i_size += BOGO_DIRENT_SIZE; 2985 dir->i_ctime = dir->i_mtime = current_time(dir); 2986 d_instantiate(dentry, inode); 2987 dget(dentry); /* Extra count - pin the dentry in core */ 2988 } 2989 return error; 2990 out_iput: 2991 iput(inode); 2992 return error; 2993 } 2994 2995 static int 2996 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2997 { 2998 struct inode *inode; 2999 int error = -ENOSPC; 3000 3001 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 3002 if (inode) { 3003 error = security_inode_init_security(inode, dir, 3004 NULL, 3005 shmem_initxattrs, NULL); 3006 if (error && error != -EOPNOTSUPP) 3007 goto out_iput; 3008 error = simple_acl_create(dir, inode); 3009 if (error) 3010 goto out_iput; 3011 d_tmpfile(dentry, inode); 3012 } 3013 return error; 3014 out_iput: 3015 iput(inode); 3016 return error; 3017 } 3018 3019 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3020 { 3021 int error; 3022 3023 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 3024 return error; 3025 inc_nlink(dir); 3026 return 0; 3027 } 3028 3029 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 3030 bool excl) 3031 { 3032 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 3033 } 3034 3035 /* 3036 * Link a file.. 3037 */ 3038 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 3039 { 3040 struct inode *inode = d_inode(old_dentry); 3041 int ret; 3042 3043 /* 3044 * No ordinary (disk based) filesystem counts links as inodes; 3045 * but each new link needs a new dentry, pinning lowmem, and 3046 * tmpfs dentries cannot be pruned until they are unlinked. 3047 */ 3048 ret = shmem_reserve_inode(inode->i_sb); 3049 if (ret) 3050 goto out; 3051 3052 dir->i_size += BOGO_DIRENT_SIZE; 3053 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3054 inc_nlink(inode); 3055 ihold(inode); /* New dentry reference */ 3056 dget(dentry); /* Extra pinning count for the created dentry */ 3057 d_instantiate(dentry, inode); 3058 out: 3059 return ret; 3060 } 3061 3062 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3063 { 3064 struct inode *inode = d_inode(dentry); 3065 3066 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3067 shmem_free_inode(inode->i_sb); 3068 3069 dir->i_size -= BOGO_DIRENT_SIZE; 3070 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3071 drop_nlink(inode); 3072 dput(dentry); /* Undo the count from "create" - this does all the work */ 3073 return 0; 3074 } 3075 3076 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3077 { 3078 if (!simple_empty(dentry)) 3079 return -ENOTEMPTY; 3080 3081 drop_nlink(d_inode(dentry)); 3082 drop_nlink(dir); 3083 return shmem_unlink(dir, dentry); 3084 } 3085 3086 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 3087 { 3088 bool old_is_dir = d_is_dir(old_dentry); 3089 bool new_is_dir = d_is_dir(new_dentry); 3090 3091 if (old_dir != new_dir && old_is_dir != new_is_dir) { 3092 if (old_is_dir) { 3093 drop_nlink(old_dir); 3094 inc_nlink(new_dir); 3095 } else { 3096 drop_nlink(new_dir); 3097 inc_nlink(old_dir); 3098 } 3099 } 3100 old_dir->i_ctime = old_dir->i_mtime = 3101 new_dir->i_ctime = new_dir->i_mtime = 3102 d_inode(old_dentry)->i_ctime = 3103 d_inode(new_dentry)->i_ctime = current_time(old_dir); 3104 3105 return 0; 3106 } 3107 3108 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 3109 { 3110 struct dentry *whiteout; 3111 int error; 3112 3113 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3114 if (!whiteout) 3115 return -ENOMEM; 3116 3117 error = shmem_mknod(old_dir, whiteout, 3118 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3119 dput(whiteout); 3120 if (error) 3121 return error; 3122 3123 /* 3124 * Cheat and hash the whiteout while the old dentry is still in 3125 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3126 * 3127 * d_lookup() will consistently find one of them at this point, 3128 * not sure which one, but that isn't even important. 3129 */ 3130 d_rehash(whiteout); 3131 return 0; 3132 } 3133 3134 /* 3135 * The VFS layer already does all the dentry stuff for rename, 3136 * we just have to decrement the usage count for the target if 3137 * it exists so that the VFS layer correctly free's it when it 3138 * gets overwritten. 3139 */ 3140 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 3141 { 3142 struct inode *inode = d_inode(old_dentry); 3143 int they_are_dirs = S_ISDIR(inode->i_mode); 3144 3145 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3146 return -EINVAL; 3147 3148 if (flags & RENAME_EXCHANGE) 3149 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3150 3151 if (!simple_empty(new_dentry)) 3152 return -ENOTEMPTY; 3153 3154 if (flags & RENAME_WHITEOUT) { 3155 int error; 3156 3157 error = shmem_whiteout(old_dir, old_dentry); 3158 if (error) 3159 return error; 3160 } 3161 3162 if (d_really_is_positive(new_dentry)) { 3163 (void) shmem_unlink(new_dir, new_dentry); 3164 if (they_are_dirs) { 3165 drop_nlink(d_inode(new_dentry)); 3166 drop_nlink(old_dir); 3167 } 3168 } else if (they_are_dirs) { 3169 drop_nlink(old_dir); 3170 inc_nlink(new_dir); 3171 } 3172 3173 old_dir->i_size -= BOGO_DIRENT_SIZE; 3174 new_dir->i_size += BOGO_DIRENT_SIZE; 3175 old_dir->i_ctime = old_dir->i_mtime = 3176 new_dir->i_ctime = new_dir->i_mtime = 3177 inode->i_ctime = current_time(old_dir); 3178 return 0; 3179 } 3180 3181 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3182 { 3183 int error; 3184 int len; 3185 struct inode *inode; 3186 struct page *page; 3187 struct shmem_inode_info *info; 3188 3189 len = strlen(symname) + 1; 3190 if (len > PAGE_SIZE) 3191 return -ENAMETOOLONG; 3192 3193 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 3194 if (!inode) 3195 return -ENOSPC; 3196 3197 error = security_inode_init_security(inode, dir, &dentry->d_name, 3198 shmem_initxattrs, NULL); 3199 if (error) { 3200 if (error != -EOPNOTSUPP) { 3201 iput(inode); 3202 return error; 3203 } 3204 error = 0; 3205 } 3206 3207 info = SHMEM_I(inode); 3208 inode->i_size = len-1; 3209 if (len <= SHORT_SYMLINK_LEN) { 3210 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3211 if (!inode->i_link) { 3212 iput(inode); 3213 return -ENOMEM; 3214 } 3215 inode->i_op = &shmem_short_symlink_operations; 3216 } else { 3217 inode_nohighmem(inode); 3218 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3219 if (error) { 3220 iput(inode); 3221 return error; 3222 } 3223 inode->i_mapping->a_ops = &shmem_aops; 3224 inode->i_op = &shmem_symlink_inode_operations; 3225 memcpy(page_address(page), symname, len); 3226 SetPageUptodate(page); 3227 set_page_dirty(page); 3228 unlock_page(page); 3229 put_page(page); 3230 } 3231 dir->i_size += BOGO_DIRENT_SIZE; 3232 dir->i_ctime = dir->i_mtime = current_time(dir); 3233 d_instantiate(dentry, inode); 3234 dget(dentry); 3235 return 0; 3236 } 3237 3238 static void shmem_put_link(void *arg) 3239 { 3240 mark_page_accessed(arg); 3241 put_page(arg); 3242 } 3243 3244 static const char *shmem_get_link(struct dentry *dentry, 3245 struct inode *inode, 3246 struct delayed_call *done) 3247 { 3248 struct page *page = NULL; 3249 int error; 3250 if (!dentry) { 3251 page = find_get_page(inode->i_mapping, 0); 3252 if (!page) 3253 return ERR_PTR(-ECHILD); 3254 if (!PageUptodate(page)) { 3255 put_page(page); 3256 return ERR_PTR(-ECHILD); 3257 } 3258 } else { 3259 error = shmem_getpage(inode, 0, &page, SGP_READ); 3260 if (error) 3261 return ERR_PTR(error); 3262 unlock_page(page); 3263 } 3264 set_delayed_call(done, shmem_put_link, page); 3265 return page_address(page); 3266 } 3267 3268 #ifdef CONFIG_TMPFS_XATTR 3269 /* 3270 * Superblocks without xattr inode operations may get some security.* xattr 3271 * support from the LSM "for free". As soon as we have any other xattrs 3272 * like ACLs, we also need to implement the security.* handlers at 3273 * filesystem level, though. 3274 */ 3275 3276 /* 3277 * Callback for security_inode_init_security() for acquiring xattrs. 3278 */ 3279 static int shmem_initxattrs(struct inode *inode, 3280 const struct xattr *xattr_array, 3281 void *fs_info) 3282 { 3283 struct shmem_inode_info *info = SHMEM_I(inode); 3284 const struct xattr *xattr; 3285 struct simple_xattr *new_xattr; 3286 size_t len; 3287 3288 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3289 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3290 if (!new_xattr) 3291 return -ENOMEM; 3292 3293 len = strlen(xattr->name) + 1; 3294 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3295 GFP_KERNEL); 3296 if (!new_xattr->name) { 3297 kfree(new_xattr); 3298 return -ENOMEM; 3299 } 3300 3301 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3302 XATTR_SECURITY_PREFIX_LEN); 3303 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3304 xattr->name, len); 3305 3306 simple_xattr_list_add(&info->xattrs, new_xattr); 3307 } 3308 3309 return 0; 3310 } 3311 3312 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3313 struct dentry *unused, struct inode *inode, 3314 const char *name, void *buffer, size_t size) 3315 { 3316 struct shmem_inode_info *info = SHMEM_I(inode); 3317 3318 name = xattr_full_name(handler, name); 3319 return simple_xattr_get(&info->xattrs, name, buffer, size); 3320 } 3321 3322 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3323 struct dentry *unused, struct inode *inode, 3324 const char *name, const void *value, 3325 size_t size, int flags) 3326 { 3327 struct shmem_inode_info *info = SHMEM_I(inode); 3328 3329 name = xattr_full_name(handler, name); 3330 return simple_xattr_set(&info->xattrs, name, value, size, flags); 3331 } 3332 3333 static const struct xattr_handler shmem_security_xattr_handler = { 3334 .prefix = XATTR_SECURITY_PREFIX, 3335 .get = shmem_xattr_handler_get, 3336 .set = shmem_xattr_handler_set, 3337 }; 3338 3339 static const struct xattr_handler shmem_trusted_xattr_handler = { 3340 .prefix = XATTR_TRUSTED_PREFIX, 3341 .get = shmem_xattr_handler_get, 3342 .set = shmem_xattr_handler_set, 3343 }; 3344 3345 static const struct xattr_handler *shmem_xattr_handlers[] = { 3346 #ifdef CONFIG_TMPFS_POSIX_ACL 3347 &posix_acl_access_xattr_handler, 3348 &posix_acl_default_xattr_handler, 3349 #endif 3350 &shmem_security_xattr_handler, 3351 &shmem_trusted_xattr_handler, 3352 NULL 3353 }; 3354 3355 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3356 { 3357 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3358 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3359 } 3360 #endif /* CONFIG_TMPFS_XATTR */ 3361 3362 static const struct inode_operations shmem_short_symlink_operations = { 3363 .get_link = simple_get_link, 3364 #ifdef CONFIG_TMPFS_XATTR 3365 .listxattr = shmem_listxattr, 3366 #endif 3367 }; 3368 3369 static const struct inode_operations shmem_symlink_inode_operations = { 3370 .get_link = shmem_get_link, 3371 #ifdef CONFIG_TMPFS_XATTR 3372 .listxattr = shmem_listxattr, 3373 #endif 3374 }; 3375 3376 static struct dentry *shmem_get_parent(struct dentry *child) 3377 { 3378 return ERR_PTR(-ESTALE); 3379 } 3380 3381 static int shmem_match(struct inode *ino, void *vfh) 3382 { 3383 __u32 *fh = vfh; 3384 __u64 inum = fh[2]; 3385 inum = (inum << 32) | fh[1]; 3386 return ino->i_ino == inum && fh[0] == ino->i_generation; 3387 } 3388 3389 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3390 struct fid *fid, int fh_len, int fh_type) 3391 { 3392 struct inode *inode; 3393 struct dentry *dentry = NULL; 3394 u64 inum; 3395 3396 if (fh_len < 3) 3397 return NULL; 3398 3399 inum = fid->raw[2]; 3400 inum = (inum << 32) | fid->raw[1]; 3401 3402 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3403 shmem_match, fid->raw); 3404 if (inode) { 3405 dentry = d_find_alias(inode); 3406 iput(inode); 3407 } 3408 3409 return dentry; 3410 } 3411 3412 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3413 struct inode *parent) 3414 { 3415 if (*len < 3) { 3416 *len = 3; 3417 return FILEID_INVALID; 3418 } 3419 3420 if (inode_unhashed(inode)) { 3421 /* Unfortunately insert_inode_hash is not idempotent, 3422 * so as we hash inodes here rather than at creation 3423 * time, we need a lock to ensure we only try 3424 * to do it once 3425 */ 3426 static DEFINE_SPINLOCK(lock); 3427 spin_lock(&lock); 3428 if (inode_unhashed(inode)) 3429 __insert_inode_hash(inode, 3430 inode->i_ino + inode->i_generation); 3431 spin_unlock(&lock); 3432 } 3433 3434 fh[0] = inode->i_generation; 3435 fh[1] = inode->i_ino; 3436 fh[2] = ((__u64)inode->i_ino) >> 32; 3437 3438 *len = 3; 3439 return 1; 3440 } 3441 3442 static const struct export_operations shmem_export_ops = { 3443 .get_parent = shmem_get_parent, 3444 .encode_fh = shmem_encode_fh, 3445 .fh_to_dentry = shmem_fh_to_dentry, 3446 }; 3447 3448 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 3449 bool remount) 3450 { 3451 char *this_char, *value, *rest; 3452 struct mempolicy *mpol = NULL; 3453 uid_t uid; 3454 gid_t gid; 3455 3456 while (options != NULL) { 3457 this_char = options; 3458 for (;;) { 3459 /* 3460 * NUL-terminate this option: unfortunately, 3461 * mount options form a comma-separated list, 3462 * but mpol's nodelist may also contain commas. 3463 */ 3464 options = strchr(options, ','); 3465 if (options == NULL) 3466 break; 3467 options++; 3468 if (!isdigit(*options)) { 3469 options[-1] = '\0'; 3470 break; 3471 } 3472 } 3473 if (!*this_char) 3474 continue; 3475 if ((value = strchr(this_char,'=')) != NULL) { 3476 *value++ = 0; 3477 } else { 3478 pr_err("tmpfs: No value for mount option '%s'\n", 3479 this_char); 3480 goto error; 3481 } 3482 3483 if (!strcmp(this_char,"size")) { 3484 unsigned long long size; 3485 size = memparse(value,&rest); 3486 if (*rest == '%') { 3487 size <<= PAGE_SHIFT; 3488 size *= totalram_pages; 3489 do_div(size, 100); 3490 rest++; 3491 } 3492 if (*rest) 3493 goto bad_val; 3494 sbinfo->max_blocks = 3495 DIV_ROUND_UP(size, PAGE_SIZE); 3496 } else if (!strcmp(this_char,"nr_blocks")) { 3497 sbinfo->max_blocks = memparse(value, &rest); 3498 if (*rest) 3499 goto bad_val; 3500 } else if (!strcmp(this_char,"nr_inodes")) { 3501 sbinfo->max_inodes = memparse(value, &rest); 3502 if (*rest) 3503 goto bad_val; 3504 } else if (!strcmp(this_char,"mode")) { 3505 if (remount) 3506 continue; 3507 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 3508 if (*rest) 3509 goto bad_val; 3510 } else if (!strcmp(this_char,"uid")) { 3511 if (remount) 3512 continue; 3513 uid = simple_strtoul(value, &rest, 0); 3514 if (*rest) 3515 goto bad_val; 3516 sbinfo->uid = make_kuid(current_user_ns(), uid); 3517 if (!uid_valid(sbinfo->uid)) 3518 goto bad_val; 3519 } else if (!strcmp(this_char,"gid")) { 3520 if (remount) 3521 continue; 3522 gid = simple_strtoul(value, &rest, 0); 3523 if (*rest) 3524 goto bad_val; 3525 sbinfo->gid = make_kgid(current_user_ns(), gid); 3526 if (!gid_valid(sbinfo->gid)) 3527 goto bad_val; 3528 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3529 } else if (!strcmp(this_char, "huge")) { 3530 int huge; 3531 huge = shmem_parse_huge(value); 3532 if (huge < 0) 3533 goto bad_val; 3534 if (!has_transparent_hugepage() && 3535 huge != SHMEM_HUGE_NEVER) 3536 goto bad_val; 3537 sbinfo->huge = huge; 3538 #endif 3539 #ifdef CONFIG_NUMA 3540 } else if (!strcmp(this_char,"mpol")) { 3541 mpol_put(mpol); 3542 mpol = NULL; 3543 if (mpol_parse_str(value, &mpol)) 3544 goto bad_val; 3545 #endif 3546 } else { 3547 pr_err("tmpfs: Bad mount option %s\n", this_char); 3548 goto error; 3549 } 3550 } 3551 sbinfo->mpol = mpol; 3552 return 0; 3553 3554 bad_val: 3555 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n", 3556 value, this_char); 3557 error: 3558 mpol_put(mpol); 3559 return 1; 3560 3561 } 3562 3563 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 3564 { 3565 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3566 struct shmem_sb_info config = *sbinfo; 3567 unsigned long inodes; 3568 int error = -EINVAL; 3569 3570 config.mpol = NULL; 3571 if (shmem_parse_options(data, &config, true)) 3572 return error; 3573 3574 spin_lock(&sbinfo->stat_lock); 3575 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3576 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 3577 goto out; 3578 if (config.max_inodes < inodes) 3579 goto out; 3580 /* 3581 * Those tests disallow limited->unlimited while any are in use; 3582 * but we must separately disallow unlimited->limited, because 3583 * in that case we have no record of how much is already in use. 3584 */ 3585 if (config.max_blocks && !sbinfo->max_blocks) 3586 goto out; 3587 if (config.max_inodes && !sbinfo->max_inodes) 3588 goto out; 3589 3590 error = 0; 3591 sbinfo->huge = config.huge; 3592 sbinfo->max_blocks = config.max_blocks; 3593 sbinfo->max_inodes = config.max_inodes; 3594 sbinfo->free_inodes = config.max_inodes - inodes; 3595 3596 /* 3597 * Preserve previous mempolicy unless mpol remount option was specified. 3598 */ 3599 if (config.mpol) { 3600 mpol_put(sbinfo->mpol); 3601 sbinfo->mpol = config.mpol; /* transfers initial ref */ 3602 } 3603 out: 3604 spin_unlock(&sbinfo->stat_lock); 3605 return error; 3606 } 3607 3608 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3609 { 3610 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3611 3612 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3613 seq_printf(seq, ",size=%luk", 3614 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3615 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3616 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3617 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 3618 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3619 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3620 seq_printf(seq, ",uid=%u", 3621 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3622 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3623 seq_printf(seq, ",gid=%u", 3624 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3625 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3626 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3627 if (sbinfo->huge) 3628 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3629 #endif 3630 shmem_show_mpol(seq, sbinfo->mpol); 3631 return 0; 3632 } 3633 3634 #define MFD_NAME_PREFIX "memfd:" 3635 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) 3636 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) 3637 3638 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING) 3639 3640 SYSCALL_DEFINE2(memfd_create, 3641 const char __user *, uname, 3642 unsigned int, flags) 3643 { 3644 struct shmem_inode_info *info; 3645 struct file *file; 3646 int fd, error; 3647 char *name; 3648 long len; 3649 3650 if (flags & ~(unsigned int)MFD_ALL_FLAGS) 3651 return -EINVAL; 3652 3653 /* length includes terminating zero */ 3654 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); 3655 if (len <= 0) 3656 return -EFAULT; 3657 if (len > MFD_NAME_MAX_LEN + 1) 3658 return -EINVAL; 3659 3660 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY); 3661 if (!name) 3662 return -ENOMEM; 3663 3664 strcpy(name, MFD_NAME_PREFIX); 3665 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { 3666 error = -EFAULT; 3667 goto err_name; 3668 } 3669 3670 /* terminating-zero may have changed after strnlen_user() returned */ 3671 if (name[len + MFD_NAME_PREFIX_LEN - 1]) { 3672 error = -EFAULT; 3673 goto err_name; 3674 } 3675 3676 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); 3677 if (fd < 0) { 3678 error = fd; 3679 goto err_name; 3680 } 3681 3682 file = shmem_file_setup(name, 0, VM_NORESERVE); 3683 if (IS_ERR(file)) { 3684 error = PTR_ERR(file); 3685 goto err_fd; 3686 } 3687 info = SHMEM_I(file_inode(file)); 3688 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; 3689 file->f_flags |= O_RDWR | O_LARGEFILE; 3690 if (flags & MFD_ALLOW_SEALING) 3691 info->seals &= ~F_SEAL_SEAL; 3692 3693 fd_install(fd, file); 3694 kfree(name); 3695 return fd; 3696 3697 err_fd: 3698 put_unused_fd(fd); 3699 err_name: 3700 kfree(name); 3701 return error; 3702 } 3703 3704 #endif /* CONFIG_TMPFS */ 3705 3706 static void shmem_put_super(struct super_block *sb) 3707 { 3708 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3709 3710 percpu_counter_destroy(&sbinfo->used_blocks); 3711 mpol_put(sbinfo->mpol); 3712 kfree(sbinfo); 3713 sb->s_fs_info = NULL; 3714 } 3715 3716 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3717 { 3718 struct inode *inode; 3719 struct shmem_sb_info *sbinfo; 3720 int err = -ENOMEM; 3721 3722 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3723 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3724 L1_CACHE_BYTES), GFP_KERNEL); 3725 if (!sbinfo) 3726 return -ENOMEM; 3727 3728 sbinfo->mode = S_IRWXUGO | S_ISVTX; 3729 sbinfo->uid = current_fsuid(); 3730 sbinfo->gid = current_fsgid(); 3731 sb->s_fs_info = sbinfo; 3732 3733 #ifdef CONFIG_TMPFS 3734 /* 3735 * Per default we only allow half of the physical ram per 3736 * tmpfs instance, limiting inodes to one per page of lowmem; 3737 * but the internal instance is left unlimited. 3738 */ 3739 if (!(sb->s_flags & MS_KERNMOUNT)) { 3740 sbinfo->max_blocks = shmem_default_max_blocks(); 3741 sbinfo->max_inodes = shmem_default_max_inodes(); 3742 if (shmem_parse_options(data, sbinfo, false)) { 3743 err = -EINVAL; 3744 goto failed; 3745 } 3746 } else { 3747 sb->s_flags |= MS_NOUSER; 3748 } 3749 sb->s_export_op = &shmem_export_ops; 3750 sb->s_flags |= MS_NOSEC; 3751 #else 3752 sb->s_flags |= MS_NOUSER; 3753 #endif 3754 3755 spin_lock_init(&sbinfo->stat_lock); 3756 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3757 goto failed; 3758 sbinfo->free_inodes = sbinfo->max_inodes; 3759 spin_lock_init(&sbinfo->shrinklist_lock); 3760 INIT_LIST_HEAD(&sbinfo->shrinklist); 3761 3762 sb->s_maxbytes = MAX_LFS_FILESIZE; 3763 sb->s_blocksize = PAGE_SIZE; 3764 sb->s_blocksize_bits = PAGE_SHIFT; 3765 sb->s_magic = TMPFS_MAGIC; 3766 sb->s_op = &shmem_ops; 3767 sb->s_time_gran = 1; 3768 #ifdef CONFIG_TMPFS_XATTR 3769 sb->s_xattr = shmem_xattr_handlers; 3770 #endif 3771 #ifdef CONFIG_TMPFS_POSIX_ACL 3772 sb->s_flags |= MS_POSIXACL; 3773 #endif 3774 uuid_gen(&sb->s_uuid); 3775 3776 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3777 if (!inode) 3778 goto failed; 3779 inode->i_uid = sbinfo->uid; 3780 inode->i_gid = sbinfo->gid; 3781 sb->s_root = d_make_root(inode); 3782 if (!sb->s_root) 3783 goto failed; 3784 return 0; 3785 3786 failed: 3787 shmem_put_super(sb); 3788 return err; 3789 } 3790 3791 static struct kmem_cache *shmem_inode_cachep; 3792 3793 static struct inode *shmem_alloc_inode(struct super_block *sb) 3794 { 3795 struct shmem_inode_info *info; 3796 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3797 if (!info) 3798 return NULL; 3799 return &info->vfs_inode; 3800 } 3801 3802 static void shmem_destroy_callback(struct rcu_head *head) 3803 { 3804 struct inode *inode = container_of(head, struct inode, i_rcu); 3805 if (S_ISLNK(inode->i_mode)) 3806 kfree(inode->i_link); 3807 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3808 } 3809 3810 static void shmem_destroy_inode(struct inode *inode) 3811 { 3812 if (S_ISREG(inode->i_mode)) 3813 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3814 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3815 } 3816 3817 static void shmem_init_inode(void *foo) 3818 { 3819 struct shmem_inode_info *info = foo; 3820 inode_init_once(&info->vfs_inode); 3821 } 3822 3823 static int shmem_init_inodecache(void) 3824 { 3825 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3826 sizeof(struct shmem_inode_info), 3827 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3828 return 0; 3829 } 3830 3831 static void shmem_destroy_inodecache(void) 3832 { 3833 kmem_cache_destroy(shmem_inode_cachep); 3834 } 3835 3836 static const struct address_space_operations shmem_aops = { 3837 .writepage = shmem_writepage, 3838 .set_page_dirty = __set_page_dirty_no_writeback, 3839 #ifdef CONFIG_TMPFS 3840 .write_begin = shmem_write_begin, 3841 .write_end = shmem_write_end, 3842 #endif 3843 #ifdef CONFIG_MIGRATION 3844 .migratepage = migrate_page, 3845 #endif 3846 .error_remove_page = generic_error_remove_page, 3847 }; 3848 3849 static const struct file_operations shmem_file_operations = { 3850 .mmap = shmem_mmap, 3851 .get_unmapped_area = shmem_get_unmapped_area, 3852 #ifdef CONFIG_TMPFS 3853 .llseek = shmem_file_llseek, 3854 .read_iter = shmem_file_read_iter, 3855 .write_iter = generic_file_write_iter, 3856 .fsync = noop_fsync, 3857 .splice_read = generic_file_splice_read, 3858 .splice_write = iter_file_splice_write, 3859 .fallocate = shmem_fallocate, 3860 #endif 3861 }; 3862 3863 static const struct inode_operations shmem_inode_operations = { 3864 .getattr = shmem_getattr, 3865 .setattr = shmem_setattr, 3866 #ifdef CONFIG_TMPFS_XATTR 3867 .listxattr = shmem_listxattr, 3868 .set_acl = simple_set_acl, 3869 #endif 3870 }; 3871 3872 static const struct inode_operations shmem_dir_inode_operations = { 3873 #ifdef CONFIG_TMPFS 3874 .create = shmem_create, 3875 .lookup = simple_lookup, 3876 .link = shmem_link, 3877 .unlink = shmem_unlink, 3878 .symlink = shmem_symlink, 3879 .mkdir = shmem_mkdir, 3880 .rmdir = shmem_rmdir, 3881 .mknod = shmem_mknod, 3882 .rename = shmem_rename2, 3883 .tmpfile = shmem_tmpfile, 3884 #endif 3885 #ifdef CONFIG_TMPFS_XATTR 3886 .listxattr = shmem_listxattr, 3887 #endif 3888 #ifdef CONFIG_TMPFS_POSIX_ACL 3889 .setattr = shmem_setattr, 3890 .set_acl = simple_set_acl, 3891 #endif 3892 }; 3893 3894 static const struct inode_operations shmem_special_inode_operations = { 3895 #ifdef CONFIG_TMPFS_XATTR 3896 .listxattr = shmem_listxattr, 3897 #endif 3898 #ifdef CONFIG_TMPFS_POSIX_ACL 3899 .setattr = shmem_setattr, 3900 .set_acl = simple_set_acl, 3901 #endif 3902 }; 3903 3904 static const struct super_operations shmem_ops = { 3905 .alloc_inode = shmem_alloc_inode, 3906 .destroy_inode = shmem_destroy_inode, 3907 #ifdef CONFIG_TMPFS 3908 .statfs = shmem_statfs, 3909 .remount_fs = shmem_remount_fs, 3910 .show_options = shmem_show_options, 3911 #endif 3912 .evict_inode = shmem_evict_inode, 3913 .drop_inode = generic_delete_inode, 3914 .put_super = shmem_put_super, 3915 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3916 .nr_cached_objects = shmem_unused_huge_count, 3917 .free_cached_objects = shmem_unused_huge_scan, 3918 #endif 3919 }; 3920 3921 static const struct vm_operations_struct shmem_vm_ops = { 3922 .fault = shmem_fault, 3923 .map_pages = filemap_map_pages, 3924 #ifdef CONFIG_NUMA 3925 .set_policy = shmem_set_policy, 3926 .get_policy = shmem_get_policy, 3927 #endif 3928 }; 3929 3930 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3931 int flags, const char *dev_name, void *data) 3932 { 3933 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3934 } 3935 3936 static struct file_system_type shmem_fs_type = { 3937 .owner = THIS_MODULE, 3938 .name = "tmpfs", 3939 .mount = shmem_mount, 3940 .kill_sb = kill_litter_super, 3941 .fs_flags = FS_USERNS_MOUNT, 3942 }; 3943 3944 int __init shmem_init(void) 3945 { 3946 int error; 3947 3948 /* If rootfs called this, don't re-init */ 3949 if (shmem_inode_cachep) 3950 return 0; 3951 3952 error = shmem_init_inodecache(); 3953 if (error) 3954 goto out3; 3955 3956 error = register_filesystem(&shmem_fs_type); 3957 if (error) { 3958 pr_err("Could not register tmpfs\n"); 3959 goto out2; 3960 } 3961 3962 shm_mnt = kern_mount(&shmem_fs_type); 3963 if (IS_ERR(shm_mnt)) { 3964 error = PTR_ERR(shm_mnt); 3965 pr_err("Could not kern_mount tmpfs\n"); 3966 goto out1; 3967 } 3968 3969 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3970 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY) 3971 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3972 else 3973 shmem_huge = 0; /* just in case it was patched */ 3974 #endif 3975 return 0; 3976 3977 out1: 3978 unregister_filesystem(&shmem_fs_type); 3979 out2: 3980 shmem_destroy_inodecache(); 3981 out3: 3982 shm_mnt = ERR_PTR(error); 3983 return error; 3984 } 3985 3986 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS) 3987 static ssize_t shmem_enabled_show(struct kobject *kobj, 3988 struct kobj_attribute *attr, char *buf) 3989 { 3990 int values[] = { 3991 SHMEM_HUGE_ALWAYS, 3992 SHMEM_HUGE_WITHIN_SIZE, 3993 SHMEM_HUGE_ADVISE, 3994 SHMEM_HUGE_NEVER, 3995 SHMEM_HUGE_DENY, 3996 SHMEM_HUGE_FORCE, 3997 }; 3998 int i, count; 3999 4000 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 4001 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 4002 4003 count += sprintf(buf + count, fmt, 4004 shmem_format_huge(values[i])); 4005 } 4006 buf[count - 1] = '\n'; 4007 return count; 4008 } 4009 4010 static ssize_t shmem_enabled_store(struct kobject *kobj, 4011 struct kobj_attribute *attr, const char *buf, size_t count) 4012 { 4013 char tmp[16]; 4014 int huge; 4015 4016 if (count + 1 > sizeof(tmp)) 4017 return -EINVAL; 4018 memcpy(tmp, buf, count); 4019 tmp[count] = '\0'; 4020 if (count && tmp[count - 1] == '\n') 4021 tmp[count - 1] = '\0'; 4022 4023 huge = shmem_parse_huge(tmp); 4024 if (huge == -EINVAL) 4025 return -EINVAL; 4026 if (!has_transparent_hugepage() && 4027 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4028 return -EINVAL; 4029 4030 shmem_huge = huge; 4031 if (shmem_huge < SHMEM_HUGE_DENY) 4032 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4033 return count; 4034 } 4035 4036 struct kobj_attribute shmem_enabled_attr = 4037 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 4038 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */ 4039 4040 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 4041 bool shmem_huge_enabled(struct vm_area_struct *vma) 4042 { 4043 struct inode *inode = file_inode(vma->vm_file); 4044 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4045 loff_t i_size; 4046 pgoff_t off; 4047 4048 if (shmem_huge == SHMEM_HUGE_FORCE) 4049 return true; 4050 if (shmem_huge == SHMEM_HUGE_DENY) 4051 return false; 4052 switch (sbinfo->huge) { 4053 case SHMEM_HUGE_NEVER: 4054 return false; 4055 case SHMEM_HUGE_ALWAYS: 4056 return true; 4057 case SHMEM_HUGE_WITHIN_SIZE: 4058 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 4059 i_size = round_up(i_size_read(inode), PAGE_SIZE); 4060 if (i_size >= HPAGE_PMD_SIZE && 4061 i_size >> PAGE_SHIFT >= off) 4062 return true; 4063 case SHMEM_HUGE_ADVISE: 4064 /* TODO: implement fadvise() hints */ 4065 return (vma->vm_flags & VM_HUGEPAGE); 4066 default: 4067 VM_BUG_ON(1); 4068 return false; 4069 } 4070 } 4071 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 4072 4073 #else /* !CONFIG_SHMEM */ 4074 4075 /* 4076 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4077 * 4078 * This is intended for small system where the benefits of the full 4079 * shmem code (swap-backed and resource-limited) are outweighed by 4080 * their complexity. On systems without swap this code should be 4081 * effectively equivalent, but much lighter weight. 4082 */ 4083 4084 static struct file_system_type shmem_fs_type = { 4085 .name = "tmpfs", 4086 .mount = ramfs_mount, 4087 .kill_sb = kill_litter_super, 4088 .fs_flags = FS_USERNS_MOUNT, 4089 }; 4090 4091 int __init shmem_init(void) 4092 { 4093 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4094 4095 shm_mnt = kern_mount(&shmem_fs_type); 4096 BUG_ON(IS_ERR(shm_mnt)); 4097 4098 return 0; 4099 } 4100 4101 int shmem_unuse(swp_entry_t swap, struct page *page) 4102 { 4103 return 0; 4104 } 4105 4106 int shmem_lock(struct file *file, int lock, struct user_struct *user) 4107 { 4108 return 0; 4109 } 4110 4111 void shmem_unlock_mapping(struct address_space *mapping) 4112 { 4113 } 4114 4115 #ifdef CONFIG_MMU 4116 unsigned long shmem_get_unmapped_area(struct file *file, 4117 unsigned long addr, unsigned long len, 4118 unsigned long pgoff, unsigned long flags) 4119 { 4120 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4121 } 4122 #endif 4123 4124 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4125 { 4126 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4127 } 4128 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4129 4130 #define shmem_vm_ops generic_file_vm_ops 4131 #define shmem_file_operations ramfs_file_operations 4132 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4133 #define shmem_acct_size(flags, size) 0 4134 #define shmem_unacct_size(flags, size) do {} while (0) 4135 4136 #endif /* CONFIG_SHMEM */ 4137 4138 /* common code */ 4139 4140 static const struct dentry_operations anon_ops = { 4141 .d_dname = simple_dname 4142 }; 4143 4144 static struct file *__shmem_file_setup(const char *name, loff_t size, 4145 unsigned long flags, unsigned int i_flags) 4146 { 4147 struct file *res; 4148 struct inode *inode; 4149 struct path path; 4150 struct super_block *sb; 4151 struct qstr this; 4152 4153 if (IS_ERR(shm_mnt)) 4154 return ERR_CAST(shm_mnt); 4155 4156 if (size < 0 || size > MAX_LFS_FILESIZE) 4157 return ERR_PTR(-EINVAL); 4158 4159 if (shmem_acct_size(flags, size)) 4160 return ERR_PTR(-ENOMEM); 4161 4162 res = ERR_PTR(-ENOMEM); 4163 this.name = name; 4164 this.len = strlen(name); 4165 this.hash = 0; /* will go */ 4166 sb = shm_mnt->mnt_sb; 4167 path.mnt = mntget(shm_mnt); 4168 path.dentry = d_alloc_pseudo(sb, &this); 4169 if (!path.dentry) 4170 goto put_memory; 4171 d_set_d_op(path.dentry, &anon_ops); 4172 4173 res = ERR_PTR(-ENOSPC); 4174 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 4175 if (!inode) 4176 goto put_memory; 4177 4178 inode->i_flags |= i_flags; 4179 d_instantiate(path.dentry, inode); 4180 inode->i_size = size; 4181 clear_nlink(inode); /* It is unlinked */ 4182 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4183 if (IS_ERR(res)) 4184 goto put_path; 4185 4186 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 4187 &shmem_file_operations); 4188 if (IS_ERR(res)) 4189 goto put_path; 4190 4191 return res; 4192 4193 put_memory: 4194 shmem_unacct_size(flags, size); 4195 put_path: 4196 path_put(&path); 4197 return res; 4198 } 4199 4200 /** 4201 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4202 * kernel internal. There will be NO LSM permission checks against the 4203 * underlying inode. So users of this interface must do LSM checks at a 4204 * higher layer. The users are the big_key and shm implementations. LSM 4205 * checks are provided at the key or shm level rather than the inode. 4206 * @name: name for dentry (to be seen in /proc/<pid>/maps 4207 * @size: size to be set for the file 4208 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4209 */ 4210 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4211 { 4212 return __shmem_file_setup(name, size, flags, S_PRIVATE); 4213 } 4214 4215 /** 4216 * shmem_file_setup - get an unlinked file living in tmpfs 4217 * @name: name for dentry (to be seen in /proc/<pid>/maps 4218 * @size: size to be set for the file 4219 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4220 */ 4221 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4222 { 4223 return __shmem_file_setup(name, size, flags, 0); 4224 } 4225 EXPORT_SYMBOL_GPL(shmem_file_setup); 4226 4227 /** 4228 * shmem_zero_setup - setup a shared anonymous mapping 4229 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 4230 */ 4231 int shmem_zero_setup(struct vm_area_struct *vma) 4232 { 4233 struct file *file; 4234 loff_t size = vma->vm_end - vma->vm_start; 4235 4236 /* 4237 * Cloning a new file under mmap_sem leads to a lock ordering conflict 4238 * between XFS directory reading and selinux: since this file is only 4239 * accessible to the user through its mapping, use S_PRIVATE flag to 4240 * bypass file security, in the same way as shmem_kernel_file_setup(). 4241 */ 4242 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE); 4243 if (IS_ERR(file)) 4244 return PTR_ERR(file); 4245 4246 if (vma->vm_file) 4247 fput(vma->vm_file); 4248 vma->vm_file = file; 4249 vma->vm_ops = &shmem_vm_ops; 4250 4251 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 4252 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4253 (vma->vm_end & HPAGE_PMD_MASK)) { 4254 khugepaged_enter(vma, vma->vm_flags); 4255 } 4256 4257 return 0; 4258 } 4259 4260 /** 4261 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4262 * @mapping: the page's address_space 4263 * @index: the page index 4264 * @gfp: the page allocator flags to use if allocating 4265 * 4266 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4267 * with any new page allocations done using the specified allocation flags. 4268 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4269 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4270 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4271 * 4272 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4273 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4274 */ 4275 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4276 pgoff_t index, gfp_t gfp) 4277 { 4278 #ifdef CONFIG_SHMEM 4279 struct inode *inode = mapping->host; 4280 struct page *page; 4281 int error; 4282 4283 BUG_ON(mapping->a_ops != &shmem_aops); 4284 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4285 gfp, NULL, NULL, NULL); 4286 if (error) 4287 page = ERR_PTR(error); 4288 else 4289 unlock_page(page); 4290 return page; 4291 #else 4292 /* 4293 * The tiny !SHMEM case uses ramfs without swap 4294 */ 4295 return read_cache_page_gfp(mapping, index, gfp); 4296 #endif 4297 } 4298 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4299