xref: /linux/mm/shmem.c (revision be239684b18e1cdcafcf8c7face4a2f562c745ad)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44 
45 static struct vfsmount *shm_mnt __ro_after_init;
46 
47 #ifdef CONFIG_SHMEM
48 /*
49  * This virtual memory filesystem is heavily based on the ramfs. It
50  * extends ramfs by the ability to use swap and honor resource limits
51  * which makes it a completely usable filesystem.
52  */
53 
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 #include <linux/quotaops.h>
82 #include <linux/rcupdate_wait.h>
83 
84 #include <linux/uaccess.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Pretend that one inode + its dentry occupy this much memory */
95 #define BOGO_INODE_SIZE 1024
96 
97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98 #define SHORT_SYMLINK_LEN 128
99 
100 /*
101  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
102  * inode->i_private (with i_rwsem making sure that it has only one user at
103  * a time): we would prefer not to enlarge the shmem inode just for that.
104  */
105 struct shmem_falloc {
106 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 	pgoff_t start;		/* start of range currently being fallocated */
108 	pgoff_t next;		/* the next page offset to be fallocated */
109 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
110 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
111 };
112 
113 struct shmem_options {
114 	unsigned long long blocks;
115 	unsigned long long inodes;
116 	struct mempolicy *mpol;
117 	kuid_t uid;
118 	kgid_t gid;
119 	umode_t mode;
120 	bool full_inums;
121 	int huge;
122 	int seen;
123 	bool noswap;
124 	unsigned short quota_types;
125 	struct shmem_quota_limits qlimits;
126 #define SHMEM_SEEN_BLOCKS 1
127 #define SHMEM_SEEN_INODES 2
128 #define SHMEM_SEEN_HUGE 4
129 #define SHMEM_SEEN_INUMS 8
130 #define SHMEM_SEEN_NOSWAP 16
131 #define SHMEM_SEEN_QUOTA 32
132 };
133 
134 #ifdef CONFIG_TMPFS
135 static unsigned long shmem_default_max_blocks(void)
136 {
137 	return totalram_pages() / 2;
138 }
139 
140 static unsigned long shmem_default_max_inodes(void)
141 {
142 	unsigned long nr_pages = totalram_pages();
143 
144 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
145 			ULONG_MAX / BOGO_INODE_SIZE);
146 }
147 #endif
148 
149 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
150 			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
151 			struct mm_struct *fault_mm, vm_fault_t *fault_type);
152 
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 	return sb->s_fs_info;
156 }
157 
158 /*
159  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160  * for shared memory and for shared anonymous (/dev/zero) mappings
161  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162  * consistent with the pre-accounting of private mappings ...
163  */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 	return (flags & VM_NORESERVE) ?
167 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169 
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 	if (!(flags & VM_NORESERVE))
173 		vm_unacct_memory(VM_ACCT(size));
174 }
175 
176 static inline int shmem_reacct_size(unsigned long flags,
177 		loff_t oldsize, loff_t newsize)
178 {
179 	if (!(flags & VM_NORESERVE)) {
180 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 			return security_vm_enough_memory_mm(current->mm,
182 					VM_ACCT(newsize) - VM_ACCT(oldsize));
183 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 	}
186 	return 0;
187 }
188 
189 /*
190  * ... whereas tmpfs objects are accounted incrementally as
191  * pages are allocated, in order to allow large sparse files.
192  * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
193  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194  */
195 static inline int shmem_acct_blocks(unsigned long flags, long pages)
196 {
197 	if (!(flags & VM_NORESERVE))
198 		return 0;
199 
200 	return security_vm_enough_memory_mm(current->mm,
201 			pages * VM_ACCT(PAGE_SIZE));
202 }
203 
204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206 	if (flags & VM_NORESERVE)
207 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
211 {
212 	struct shmem_inode_info *info = SHMEM_I(inode);
213 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 	int err = -ENOSPC;
215 
216 	if (shmem_acct_blocks(info->flags, pages))
217 		return err;
218 
219 	might_sleep();	/* when quotas */
220 	if (sbinfo->max_blocks) {
221 		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
222 						sbinfo->max_blocks, pages))
223 			goto unacct;
224 
225 		err = dquot_alloc_block_nodirty(inode, pages);
226 		if (err) {
227 			percpu_counter_sub(&sbinfo->used_blocks, pages);
228 			goto unacct;
229 		}
230 	} else {
231 		err = dquot_alloc_block_nodirty(inode, pages);
232 		if (err)
233 			goto unacct;
234 	}
235 
236 	return 0;
237 
238 unacct:
239 	shmem_unacct_blocks(info->flags, pages);
240 	return err;
241 }
242 
243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
244 {
245 	struct shmem_inode_info *info = SHMEM_I(inode);
246 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247 
248 	might_sleep();	/* when quotas */
249 	dquot_free_block_nodirty(inode, pages);
250 
251 	if (sbinfo->max_blocks)
252 		percpu_counter_sub(&sbinfo->used_blocks, pages);
253 	shmem_unacct_blocks(info->flags, pages);
254 }
255 
256 static const struct super_operations shmem_ops;
257 const struct address_space_operations shmem_aops;
258 static const struct file_operations shmem_file_operations;
259 static const struct inode_operations shmem_inode_operations;
260 static const struct inode_operations shmem_dir_inode_operations;
261 static const struct inode_operations shmem_special_inode_operations;
262 static const struct vm_operations_struct shmem_vm_ops;
263 static const struct vm_operations_struct shmem_anon_vm_ops;
264 static struct file_system_type shmem_fs_type;
265 
266 bool vma_is_anon_shmem(struct vm_area_struct *vma)
267 {
268 	return vma->vm_ops == &shmem_anon_vm_ops;
269 }
270 
271 bool vma_is_shmem(struct vm_area_struct *vma)
272 {
273 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
274 }
275 
276 static LIST_HEAD(shmem_swaplist);
277 static DEFINE_MUTEX(shmem_swaplist_mutex);
278 
279 #ifdef CONFIG_TMPFS_QUOTA
280 
281 static int shmem_enable_quotas(struct super_block *sb,
282 			       unsigned short quota_types)
283 {
284 	int type, err = 0;
285 
286 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
287 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
288 		if (!(quota_types & (1 << type)))
289 			continue;
290 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
291 					  DQUOT_USAGE_ENABLED |
292 					  DQUOT_LIMITS_ENABLED);
293 		if (err)
294 			goto out_err;
295 	}
296 	return 0;
297 
298 out_err:
299 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
300 		type, err);
301 	for (type--; type >= 0; type--)
302 		dquot_quota_off(sb, type);
303 	return err;
304 }
305 
306 static void shmem_disable_quotas(struct super_block *sb)
307 {
308 	int type;
309 
310 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
311 		dquot_quota_off(sb, type);
312 }
313 
314 static struct dquot **shmem_get_dquots(struct inode *inode)
315 {
316 	return SHMEM_I(inode)->i_dquot;
317 }
318 #endif /* CONFIG_TMPFS_QUOTA */
319 
320 /*
321  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
322  * produces a novel ino for the newly allocated inode.
323  *
324  * It may also be called when making a hard link to permit the space needed by
325  * each dentry. However, in that case, no new inode number is needed since that
326  * internally draws from another pool of inode numbers (currently global
327  * get_next_ino()). This case is indicated by passing NULL as inop.
328  */
329 #define SHMEM_INO_BATCH 1024
330 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
331 {
332 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
333 	ino_t ino;
334 
335 	if (!(sb->s_flags & SB_KERNMOUNT)) {
336 		raw_spin_lock(&sbinfo->stat_lock);
337 		if (sbinfo->max_inodes) {
338 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
339 				raw_spin_unlock(&sbinfo->stat_lock);
340 				return -ENOSPC;
341 			}
342 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
343 		}
344 		if (inop) {
345 			ino = sbinfo->next_ino++;
346 			if (unlikely(is_zero_ino(ino)))
347 				ino = sbinfo->next_ino++;
348 			if (unlikely(!sbinfo->full_inums &&
349 				     ino > UINT_MAX)) {
350 				/*
351 				 * Emulate get_next_ino uint wraparound for
352 				 * compatibility
353 				 */
354 				if (IS_ENABLED(CONFIG_64BIT))
355 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
356 						__func__, MINOR(sb->s_dev));
357 				sbinfo->next_ino = 1;
358 				ino = sbinfo->next_ino++;
359 			}
360 			*inop = ino;
361 		}
362 		raw_spin_unlock(&sbinfo->stat_lock);
363 	} else if (inop) {
364 		/*
365 		 * __shmem_file_setup, one of our callers, is lock-free: it
366 		 * doesn't hold stat_lock in shmem_reserve_inode since
367 		 * max_inodes is always 0, and is called from potentially
368 		 * unknown contexts. As such, use a per-cpu batched allocator
369 		 * which doesn't require the per-sb stat_lock unless we are at
370 		 * the batch boundary.
371 		 *
372 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
373 		 * shmem mounts are not exposed to userspace, so we don't need
374 		 * to worry about things like glibc compatibility.
375 		 */
376 		ino_t *next_ino;
377 
378 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
379 		ino = *next_ino;
380 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
381 			raw_spin_lock(&sbinfo->stat_lock);
382 			ino = sbinfo->next_ino;
383 			sbinfo->next_ino += SHMEM_INO_BATCH;
384 			raw_spin_unlock(&sbinfo->stat_lock);
385 			if (unlikely(is_zero_ino(ino)))
386 				ino++;
387 		}
388 		*inop = ino;
389 		*next_ino = ++ino;
390 		put_cpu();
391 	}
392 
393 	return 0;
394 }
395 
396 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
397 {
398 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
399 	if (sbinfo->max_inodes) {
400 		raw_spin_lock(&sbinfo->stat_lock);
401 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
402 		raw_spin_unlock(&sbinfo->stat_lock);
403 	}
404 }
405 
406 /**
407  * shmem_recalc_inode - recalculate the block usage of an inode
408  * @inode: inode to recalc
409  * @alloced: the change in number of pages allocated to inode
410  * @swapped: the change in number of pages swapped from inode
411  *
412  * We have to calculate the free blocks since the mm can drop
413  * undirtied hole pages behind our back.
414  *
415  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
416  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
417  */
418 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
419 {
420 	struct shmem_inode_info *info = SHMEM_I(inode);
421 	long freed;
422 
423 	spin_lock(&info->lock);
424 	info->alloced += alloced;
425 	info->swapped += swapped;
426 	freed = info->alloced - info->swapped -
427 		READ_ONCE(inode->i_mapping->nrpages);
428 	/*
429 	 * Special case: whereas normally shmem_recalc_inode() is called
430 	 * after i_mapping->nrpages has already been adjusted (up or down),
431 	 * shmem_writepage() has to raise swapped before nrpages is lowered -
432 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
433 	 * been freed.  Compensate here, to avoid the need for a followup call.
434 	 */
435 	if (swapped > 0)
436 		freed += swapped;
437 	if (freed > 0)
438 		info->alloced -= freed;
439 	spin_unlock(&info->lock);
440 
441 	/* The quota case may block */
442 	if (freed > 0)
443 		shmem_inode_unacct_blocks(inode, freed);
444 }
445 
446 bool shmem_charge(struct inode *inode, long pages)
447 {
448 	struct address_space *mapping = inode->i_mapping;
449 
450 	if (shmem_inode_acct_blocks(inode, pages))
451 		return false;
452 
453 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
454 	xa_lock_irq(&mapping->i_pages);
455 	mapping->nrpages += pages;
456 	xa_unlock_irq(&mapping->i_pages);
457 
458 	shmem_recalc_inode(inode, pages, 0);
459 	return true;
460 }
461 
462 void shmem_uncharge(struct inode *inode, long pages)
463 {
464 	/* pages argument is currently unused: keep it to help debugging */
465 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
466 
467 	shmem_recalc_inode(inode, 0, 0);
468 }
469 
470 /*
471  * Replace item expected in xarray by a new item, while holding xa_lock.
472  */
473 static int shmem_replace_entry(struct address_space *mapping,
474 			pgoff_t index, void *expected, void *replacement)
475 {
476 	XA_STATE(xas, &mapping->i_pages, index);
477 	void *item;
478 
479 	VM_BUG_ON(!expected);
480 	VM_BUG_ON(!replacement);
481 	item = xas_load(&xas);
482 	if (item != expected)
483 		return -ENOENT;
484 	xas_store(&xas, replacement);
485 	return 0;
486 }
487 
488 /*
489  * Sometimes, before we decide whether to proceed or to fail, we must check
490  * that an entry was not already brought back from swap by a racing thread.
491  *
492  * Checking page is not enough: by the time a SwapCache page is locked, it
493  * might be reused, and again be SwapCache, using the same swap as before.
494  */
495 static bool shmem_confirm_swap(struct address_space *mapping,
496 			       pgoff_t index, swp_entry_t swap)
497 {
498 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
499 }
500 
501 /*
502  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
503  *
504  * SHMEM_HUGE_NEVER:
505  *	disables huge pages for the mount;
506  * SHMEM_HUGE_ALWAYS:
507  *	enables huge pages for the mount;
508  * SHMEM_HUGE_WITHIN_SIZE:
509  *	only allocate huge pages if the page will be fully within i_size,
510  *	also respect fadvise()/madvise() hints;
511  * SHMEM_HUGE_ADVISE:
512  *	only allocate huge pages if requested with fadvise()/madvise();
513  */
514 
515 #define SHMEM_HUGE_NEVER	0
516 #define SHMEM_HUGE_ALWAYS	1
517 #define SHMEM_HUGE_WITHIN_SIZE	2
518 #define SHMEM_HUGE_ADVISE	3
519 
520 /*
521  * Special values.
522  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
523  *
524  * SHMEM_HUGE_DENY:
525  *	disables huge on shm_mnt and all mounts, for emergency use;
526  * SHMEM_HUGE_FORCE:
527  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
528  *
529  */
530 #define SHMEM_HUGE_DENY		(-1)
531 #define SHMEM_HUGE_FORCE	(-2)
532 
533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
534 /* ifdef here to avoid bloating shmem.o when not necessary */
535 
536 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
537 
538 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
539 		   struct mm_struct *mm, unsigned long vm_flags)
540 {
541 	loff_t i_size;
542 
543 	if (!S_ISREG(inode->i_mode))
544 		return false;
545 	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
546 		return false;
547 	if (shmem_huge == SHMEM_HUGE_DENY)
548 		return false;
549 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
550 		return true;
551 
552 	switch (SHMEM_SB(inode->i_sb)->huge) {
553 	case SHMEM_HUGE_ALWAYS:
554 		return true;
555 	case SHMEM_HUGE_WITHIN_SIZE:
556 		index = round_up(index + 1, HPAGE_PMD_NR);
557 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
558 		if (i_size >> PAGE_SHIFT >= index)
559 			return true;
560 		fallthrough;
561 	case SHMEM_HUGE_ADVISE:
562 		if (mm && (vm_flags & VM_HUGEPAGE))
563 			return true;
564 		fallthrough;
565 	default:
566 		return false;
567 	}
568 }
569 
570 #if defined(CONFIG_SYSFS)
571 static int shmem_parse_huge(const char *str)
572 {
573 	if (!strcmp(str, "never"))
574 		return SHMEM_HUGE_NEVER;
575 	if (!strcmp(str, "always"))
576 		return SHMEM_HUGE_ALWAYS;
577 	if (!strcmp(str, "within_size"))
578 		return SHMEM_HUGE_WITHIN_SIZE;
579 	if (!strcmp(str, "advise"))
580 		return SHMEM_HUGE_ADVISE;
581 	if (!strcmp(str, "deny"))
582 		return SHMEM_HUGE_DENY;
583 	if (!strcmp(str, "force"))
584 		return SHMEM_HUGE_FORCE;
585 	return -EINVAL;
586 }
587 #endif
588 
589 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
590 static const char *shmem_format_huge(int huge)
591 {
592 	switch (huge) {
593 	case SHMEM_HUGE_NEVER:
594 		return "never";
595 	case SHMEM_HUGE_ALWAYS:
596 		return "always";
597 	case SHMEM_HUGE_WITHIN_SIZE:
598 		return "within_size";
599 	case SHMEM_HUGE_ADVISE:
600 		return "advise";
601 	case SHMEM_HUGE_DENY:
602 		return "deny";
603 	case SHMEM_HUGE_FORCE:
604 		return "force";
605 	default:
606 		VM_BUG_ON(1);
607 		return "bad_val";
608 	}
609 }
610 #endif
611 
612 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
613 		struct shrink_control *sc, unsigned long nr_to_split)
614 {
615 	LIST_HEAD(list), *pos, *next;
616 	LIST_HEAD(to_remove);
617 	struct inode *inode;
618 	struct shmem_inode_info *info;
619 	struct folio *folio;
620 	unsigned long batch = sc ? sc->nr_to_scan : 128;
621 	int split = 0;
622 
623 	if (list_empty(&sbinfo->shrinklist))
624 		return SHRINK_STOP;
625 
626 	spin_lock(&sbinfo->shrinklist_lock);
627 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
628 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
629 
630 		/* pin the inode */
631 		inode = igrab(&info->vfs_inode);
632 
633 		/* inode is about to be evicted */
634 		if (!inode) {
635 			list_del_init(&info->shrinklist);
636 			goto next;
637 		}
638 
639 		/* Check if there's anything to gain */
640 		if (round_up(inode->i_size, PAGE_SIZE) ==
641 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
642 			list_move(&info->shrinklist, &to_remove);
643 			goto next;
644 		}
645 
646 		list_move(&info->shrinklist, &list);
647 next:
648 		sbinfo->shrinklist_len--;
649 		if (!--batch)
650 			break;
651 	}
652 	spin_unlock(&sbinfo->shrinklist_lock);
653 
654 	list_for_each_safe(pos, next, &to_remove) {
655 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
656 		inode = &info->vfs_inode;
657 		list_del_init(&info->shrinklist);
658 		iput(inode);
659 	}
660 
661 	list_for_each_safe(pos, next, &list) {
662 		int ret;
663 		pgoff_t index;
664 
665 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
666 		inode = &info->vfs_inode;
667 
668 		if (nr_to_split && split >= nr_to_split)
669 			goto move_back;
670 
671 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
672 		folio = filemap_get_folio(inode->i_mapping, index);
673 		if (IS_ERR(folio))
674 			goto drop;
675 
676 		/* No huge page at the end of the file: nothing to split */
677 		if (!folio_test_large(folio)) {
678 			folio_put(folio);
679 			goto drop;
680 		}
681 
682 		/*
683 		 * Move the inode on the list back to shrinklist if we failed
684 		 * to lock the page at this time.
685 		 *
686 		 * Waiting for the lock may lead to deadlock in the
687 		 * reclaim path.
688 		 */
689 		if (!folio_trylock(folio)) {
690 			folio_put(folio);
691 			goto move_back;
692 		}
693 
694 		ret = split_folio(folio);
695 		folio_unlock(folio);
696 		folio_put(folio);
697 
698 		/* If split failed move the inode on the list back to shrinklist */
699 		if (ret)
700 			goto move_back;
701 
702 		split++;
703 drop:
704 		list_del_init(&info->shrinklist);
705 		goto put;
706 move_back:
707 		/*
708 		 * Make sure the inode is either on the global list or deleted
709 		 * from any local list before iput() since it could be deleted
710 		 * in another thread once we put the inode (then the local list
711 		 * is corrupted).
712 		 */
713 		spin_lock(&sbinfo->shrinklist_lock);
714 		list_move(&info->shrinklist, &sbinfo->shrinklist);
715 		sbinfo->shrinklist_len++;
716 		spin_unlock(&sbinfo->shrinklist_lock);
717 put:
718 		iput(inode);
719 	}
720 
721 	return split;
722 }
723 
724 static long shmem_unused_huge_scan(struct super_block *sb,
725 		struct shrink_control *sc)
726 {
727 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
728 
729 	if (!READ_ONCE(sbinfo->shrinklist_len))
730 		return SHRINK_STOP;
731 
732 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
733 }
734 
735 static long shmem_unused_huge_count(struct super_block *sb,
736 		struct shrink_control *sc)
737 {
738 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
739 	return READ_ONCE(sbinfo->shrinklist_len);
740 }
741 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
742 
743 #define shmem_huge SHMEM_HUGE_DENY
744 
745 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
746 		   struct mm_struct *mm, unsigned long vm_flags)
747 {
748 	return false;
749 }
750 
751 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
752 		struct shrink_control *sc, unsigned long nr_to_split)
753 {
754 	return 0;
755 }
756 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
757 
758 /*
759  * Somewhat like filemap_add_folio, but error if expected item has gone.
760  */
761 static int shmem_add_to_page_cache(struct folio *folio,
762 				   struct address_space *mapping,
763 				   pgoff_t index, void *expected, gfp_t gfp)
764 {
765 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
766 	long nr = folio_nr_pages(folio);
767 
768 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
769 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
770 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
771 	VM_BUG_ON(expected && folio_test_large(folio));
772 
773 	folio_ref_add(folio, nr);
774 	folio->mapping = mapping;
775 	folio->index = index;
776 
777 	gfp &= GFP_RECLAIM_MASK;
778 	folio_throttle_swaprate(folio, gfp);
779 
780 	do {
781 		xas_lock_irq(&xas);
782 		if (expected != xas_find_conflict(&xas)) {
783 			xas_set_err(&xas, -EEXIST);
784 			goto unlock;
785 		}
786 		if (expected && xas_find_conflict(&xas)) {
787 			xas_set_err(&xas, -EEXIST);
788 			goto unlock;
789 		}
790 		xas_store(&xas, folio);
791 		if (xas_error(&xas))
792 			goto unlock;
793 		if (folio_test_pmd_mappable(folio))
794 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
795 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
796 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
797 		mapping->nrpages += nr;
798 unlock:
799 		xas_unlock_irq(&xas);
800 	} while (xas_nomem(&xas, gfp));
801 
802 	if (xas_error(&xas)) {
803 		folio->mapping = NULL;
804 		folio_ref_sub(folio, nr);
805 		return xas_error(&xas);
806 	}
807 
808 	return 0;
809 }
810 
811 /*
812  * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
813  */
814 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
815 {
816 	struct address_space *mapping = folio->mapping;
817 	long nr = folio_nr_pages(folio);
818 	int error;
819 
820 	xa_lock_irq(&mapping->i_pages);
821 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
822 	folio->mapping = NULL;
823 	mapping->nrpages -= nr;
824 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
825 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
826 	xa_unlock_irq(&mapping->i_pages);
827 	folio_put(folio);
828 	BUG_ON(error);
829 }
830 
831 /*
832  * Remove swap entry from page cache, free the swap and its page cache.
833  */
834 static int shmem_free_swap(struct address_space *mapping,
835 			   pgoff_t index, void *radswap)
836 {
837 	void *old;
838 
839 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
840 	if (old != radswap)
841 		return -ENOENT;
842 	free_swap_and_cache(radix_to_swp_entry(radswap));
843 	return 0;
844 }
845 
846 /*
847  * Determine (in bytes) how many of the shmem object's pages mapped by the
848  * given offsets are swapped out.
849  *
850  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
851  * as long as the inode doesn't go away and racy results are not a problem.
852  */
853 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
854 						pgoff_t start, pgoff_t end)
855 {
856 	XA_STATE(xas, &mapping->i_pages, start);
857 	struct page *page;
858 	unsigned long swapped = 0;
859 	unsigned long max = end - 1;
860 
861 	rcu_read_lock();
862 	xas_for_each(&xas, page, max) {
863 		if (xas_retry(&xas, page))
864 			continue;
865 		if (xa_is_value(page))
866 			swapped++;
867 		if (xas.xa_index == max)
868 			break;
869 		if (need_resched()) {
870 			xas_pause(&xas);
871 			cond_resched_rcu();
872 		}
873 	}
874 	rcu_read_unlock();
875 
876 	return swapped << PAGE_SHIFT;
877 }
878 
879 /*
880  * Determine (in bytes) how many of the shmem object's pages mapped by the
881  * given vma is swapped out.
882  *
883  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
884  * as long as the inode doesn't go away and racy results are not a problem.
885  */
886 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
887 {
888 	struct inode *inode = file_inode(vma->vm_file);
889 	struct shmem_inode_info *info = SHMEM_I(inode);
890 	struct address_space *mapping = inode->i_mapping;
891 	unsigned long swapped;
892 
893 	/* Be careful as we don't hold info->lock */
894 	swapped = READ_ONCE(info->swapped);
895 
896 	/*
897 	 * The easier cases are when the shmem object has nothing in swap, or
898 	 * the vma maps it whole. Then we can simply use the stats that we
899 	 * already track.
900 	 */
901 	if (!swapped)
902 		return 0;
903 
904 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
905 		return swapped << PAGE_SHIFT;
906 
907 	/* Here comes the more involved part */
908 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
909 					vma->vm_pgoff + vma_pages(vma));
910 }
911 
912 /*
913  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
914  */
915 void shmem_unlock_mapping(struct address_space *mapping)
916 {
917 	struct folio_batch fbatch;
918 	pgoff_t index = 0;
919 
920 	folio_batch_init(&fbatch);
921 	/*
922 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
923 	 */
924 	while (!mapping_unevictable(mapping) &&
925 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
926 		check_move_unevictable_folios(&fbatch);
927 		folio_batch_release(&fbatch);
928 		cond_resched();
929 	}
930 }
931 
932 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
933 {
934 	struct folio *folio;
935 
936 	/*
937 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
938 	 * beyond i_size, and reports fallocated folios as holes.
939 	 */
940 	folio = filemap_get_entry(inode->i_mapping, index);
941 	if (!folio)
942 		return folio;
943 	if (!xa_is_value(folio)) {
944 		folio_lock(folio);
945 		if (folio->mapping == inode->i_mapping)
946 			return folio;
947 		/* The folio has been swapped out */
948 		folio_unlock(folio);
949 		folio_put(folio);
950 	}
951 	/*
952 	 * But read a folio back from swap if any of it is within i_size
953 	 * (although in some cases this is just a waste of time).
954 	 */
955 	folio = NULL;
956 	shmem_get_folio(inode, index, &folio, SGP_READ);
957 	return folio;
958 }
959 
960 /*
961  * Remove range of pages and swap entries from page cache, and free them.
962  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
963  */
964 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
965 								 bool unfalloc)
966 {
967 	struct address_space *mapping = inode->i_mapping;
968 	struct shmem_inode_info *info = SHMEM_I(inode);
969 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
970 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
971 	struct folio_batch fbatch;
972 	pgoff_t indices[PAGEVEC_SIZE];
973 	struct folio *folio;
974 	bool same_folio;
975 	long nr_swaps_freed = 0;
976 	pgoff_t index;
977 	int i;
978 
979 	if (lend == -1)
980 		end = -1;	/* unsigned, so actually very big */
981 
982 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
983 		info->fallocend = start;
984 
985 	folio_batch_init(&fbatch);
986 	index = start;
987 	while (index < end && find_lock_entries(mapping, &index, end - 1,
988 			&fbatch, indices)) {
989 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
990 			folio = fbatch.folios[i];
991 
992 			if (xa_is_value(folio)) {
993 				if (unfalloc)
994 					continue;
995 				nr_swaps_freed += !shmem_free_swap(mapping,
996 							indices[i], folio);
997 				continue;
998 			}
999 
1000 			if (!unfalloc || !folio_test_uptodate(folio))
1001 				truncate_inode_folio(mapping, folio);
1002 			folio_unlock(folio);
1003 		}
1004 		folio_batch_remove_exceptionals(&fbatch);
1005 		folio_batch_release(&fbatch);
1006 		cond_resched();
1007 	}
1008 
1009 	/*
1010 	 * When undoing a failed fallocate, we want none of the partial folio
1011 	 * zeroing and splitting below, but shall want to truncate the whole
1012 	 * folio when !uptodate indicates that it was added by this fallocate,
1013 	 * even when [lstart, lend] covers only a part of the folio.
1014 	 */
1015 	if (unfalloc)
1016 		goto whole_folios;
1017 
1018 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1019 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1020 	if (folio) {
1021 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1022 		folio_mark_dirty(folio);
1023 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1024 			start = folio_next_index(folio);
1025 			if (same_folio)
1026 				end = folio->index;
1027 		}
1028 		folio_unlock(folio);
1029 		folio_put(folio);
1030 		folio = NULL;
1031 	}
1032 
1033 	if (!same_folio)
1034 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1035 	if (folio) {
1036 		folio_mark_dirty(folio);
1037 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1038 			end = folio->index;
1039 		folio_unlock(folio);
1040 		folio_put(folio);
1041 	}
1042 
1043 whole_folios:
1044 
1045 	index = start;
1046 	while (index < end) {
1047 		cond_resched();
1048 
1049 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1050 				indices)) {
1051 			/* If all gone or hole-punch or unfalloc, we're done */
1052 			if (index == start || end != -1)
1053 				break;
1054 			/* But if truncating, restart to make sure all gone */
1055 			index = start;
1056 			continue;
1057 		}
1058 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1059 			folio = fbatch.folios[i];
1060 
1061 			if (xa_is_value(folio)) {
1062 				if (unfalloc)
1063 					continue;
1064 				if (shmem_free_swap(mapping, indices[i], folio)) {
1065 					/* Swap was replaced by page: retry */
1066 					index = indices[i];
1067 					break;
1068 				}
1069 				nr_swaps_freed++;
1070 				continue;
1071 			}
1072 
1073 			folio_lock(folio);
1074 
1075 			if (!unfalloc || !folio_test_uptodate(folio)) {
1076 				if (folio_mapping(folio) != mapping) {
1077 					/* Page was replaced by swap: retry */
1078 					folio_unlock(folio);
1079 					index = indices[i];
1080 					break;
1081 				}
1082 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1083 						folio);
1084 
1085 				if (!folio_test_large(folio)) {
1086 					truncate_inode_folio(mapping, folio);
1087 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1088 					/*
1089 					 * If we split a page, reset the loop so
1090 					 * that we pick up the new sub pages.
1091 					 * Otherwise the THP was entirely
1092 					 * dropped or the target range was
1093 					 * zeroed, so just continue the loop as
1094 					 * is.
1095 					 */
1096 					if (!folio_test_large(folio)) {
1097 						folio_unlock(folio);
1098 						index = start;
1099 						break;
1100 					}
1101 				}
1102 			}
1103 			folio_unlock(folio);
1104 		}
1105 		folio_batch_remove_exceptionals(&fbatch);
1106 		folio_batch_release(&fbatch);
1107 	}
1108 
1109 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1110 }
1111 
1112 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1113 {
1114 	shmem_undo_range(inode, lstart, lend, false);
1115 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1116 	inode_inc_iversion(inode);
1117 }
1118 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1119 
1120 static int shmem_getattr(struct mnt_idmap *idmap,
1121 			 const struct path *path, struct kstat *stat,
1122 			 u32 request_mask, unsigned int query_flags)
1123 {
1124 	struct inode *inode = path->dentry->d_inode;
1125 	struct shmem_inode_info *info = SHMEM_I(inode);
1126 
1127 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1128 		shmem_recalc_inode(inode, 0, 0);
1129 
1130 	if (info->fsflags & FS_APPEND_FL)
1131 		stat->attributes |= STATX_ATTR_APPEND;
1132 	if (info->fsflags & FS_IMMUTABLE_FL)
1133 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1134 	if (info->fsflags & FS_NODUMP_FL)
1135 		stat->attributes |= STATX_ATTR_NODUMP;
1136 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1137 			STATX_ATTR_IMMUTABLE |
1138 			STATX_ATTR_NODUMP);
1139 	generic_fillattr(idmap, request_mask, inode, stat);
1140 
1141 	if (shmem_is_huge(inode, 0, false, NULL, 0))
1142 		stat->blksize = HPAGE_PMD_SIZE;
1143 
1144 	if (request_mask & STATX_BTIME) {
1145 		stat->result_mask |= STATX_BTIME;
1146 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1147 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 static int shmem_setattr(struct mnt_idmap *idmap,
1154 			 struct dentry *dentry, struct iattr *attr)
1155 {
1156 	struct inode *inode = d_inode(dentry);
1157 	struct shmem_inode_info *info = SHMEM_I(inode);
1158 	int error;
1159 	bool update_mtime = false;
1160 	bool update_ctime = true;
1161 
1162 	error = setattr_prepare(idmap, dentry, attr);
1163 	if (error)
1164 		return error;
1165 
1166 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1167 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1168 			return -EPERM;
1169 		}
1170 	}
1171 
1172 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1173 		loff_t oldsize = inode->i_size;
1174 		loff_t newsize = attr->ia_size;
1175 
1176 		/* protected by i_rwsem */
1177 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1178 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1179 			return -EPERM;
1180 
1181 		if (newsize != oldsize) {
1182 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1183 					oldsize, newsize);
1184 			if (error)
1185 				return error;
1186 			i_size_write(inode, newsize);
1187 			update_mtime = true;
1188 		} else {
1189 			update_ctime = false;
1190 		}
1191 		if (newsize <= oldsize) {
1192 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1193 			if (oldsize > holebegin)
1194 				unmap_mapping_range(inode->i_mapping,
1195 							holebegin, 0, 1);
1196 			if (info->alloced)
1197 				shmem_truncate_range(inode,
1198 							newsize, (loff_t)-1);
1199 			/* unmap again to remove racily COWed private pages */
1200 			if (oldsize > holebegin)
1201 				unmap_mapping_range(inode->i_mapping,
1202 							holebegin, 0, 1);
1203 		}
1204 	}
1205 
1206 	if (is_quota_modification(idmap, inode, attr)) {
1207 		error = dquot_initialize(inode);
1208 		if (error)
1209 			return error;
1210 	}
1211 
1212 	/* Transfer quota accounting */
1213 	if (i_uid_needs_update(idmap, attr, inode) ||
1214 	    i_gid_needs_update(idmap, attr, inode)) {
1215 		error = dquot_transfer(idmap, inode, attr);
1216 		if (error)
1217 			return error;
1218 	}
1219 
1220 	setattr_copy(idmap, inode, attr);
1221 	if (attr->ia_valid & ATTR_MODE)
1222 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1223 	if (!error && update_ctime) {
1224 		inode_set_ctime_current(inode);
1225 		if (update_mtime)
1226 			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1227 		inode_inc_iversion(inode);
1228 	}
1229 	return error;
1230 }
1231 
1232 static void shmem_evict_inode(struct inode *inode)
1233 {
1234 	struct shmem_inode_info *info = SHMEM_I(inode);
1235 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1236 	size_t freed = 0;
1237 
1238 	if (shmem_mapping(inode->i_mapping)) {
1239 		shmem_unacct_size(info->flags, inode->i_size);
1240 		inode->i_size = 0;
1241 		mapping_set_exiting(inode->i_mapping);
1242 		shmem_truncate_range(inode, 0, (loff_t)-1);
1243 		if (!list_empty(&info->shrinklist)) {
1244 			spin_lock(&sbinfo->shrinklist_lock);
1245 			if (!list_empty(&info->shrinklist)) {
1246 				list_del_init(&info->shrinklist);
1247 				sbinfo->shrinklist_len--;
1248 			}
1249 			spin_unlock(&sbinfo->shrinklist_lock);
1250 		}
1251 		while (!list_empty(&info->swaplist)) {
1252 			/* Wait while shmem_unuse() is scanning this inode... */
1253 			wait_var_event(&info->stop_eviction,
1254 				       !atomic_read(&info->stop_eviction));
1255 			mutex_lock(&shmem_swaplist_mutex);
1256 			/* ...but beware of the race if we peeked too early */
1257 			if (!atomic_read(&info->stop_eviction))
1258 				list_del_init(&info->swaplist);
1259 			mutex_unlock(&shmem_swaplist_mutex);
1260 		}
1261 	}
1262 
1263 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1264 	shmem_free_inode(inode->i_sb, freed);
1265 	WARN_ON(inode->i_blocks);
1266 	clear_inode(inode);
1267 #ifdef CONFIG_TMPFS_QUOTA
1268 	dquot_free_inode(inode);
1269 	dquot_drop(inode);
1270 #endif
1271 }
1272 
1273 static int shmem_find_swap_entries(struct address_space *mapping,
1274 				   pgoff_t start, struct folio_batch *fbatch,
1275 				   pgoff_t *indices, unsigned int type)
1276 {
1277 	XA_STATE(xas, &mapping->i_pages, start);
1278 	struct folio *folio;
1279 	swp_entry_t entry;
1280 
1281 	rcu_read_lock();
1282 	xas_for_each(&xas, folio, ULONG_MAX) {
1283 		if (xas_retry(&xas, folio))
1284 			continue;
1285 
1286 		if (!xa_is_value(folio))
1287 			continue;
1288 
1289 		entry = radix_to_swp_entry(folio);
1290 		/*
1291 		 * swapin error entries can be found in the mapping. But they're
1292 		 * deliberately ignored here as we've done everything we can do.
1293 		 */
1294 		if (swp_type(entry) != type)
1295 			continue;
1296 
1297 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1298 		if (!folio_batch_add(fbatch, folio))
1299 			break;
1300 
1301 		if (need_resched()) {
1302 			xas_pause(&xas);
1303 			cond_resched_rcu();
1304 		}
1305 	}
1306 	rcu_read_unlock();
1307 
1308 	return xas.xa_index;
1309 }
1310 
1311 /*
1312  * Move the swapped pages for an inode to page cache. Returns the count
1313  * of pages swapped in, or the error in case of failure.
1314  */
1315 static int shmem_unuse_swap_entries(struct inode *inode,
1316 		struct folio_batch *fbatch, pgoff_t *indices)
1317 {
1318 	int i = 0;
1319 	int ret = 0;
1320 	int error = 0;
1321 	struct address_space *mapping = inode->i_mapping;
1322 
1323 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1324 		struct folio *folio = fbatch->folios[i];
1325 
1326 		if (!xa_is_value(folio))
1327 			continue;
1328 		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1329 					mapping_gfp_mask(mapping), NULL, NULL);
1330 		if (error == 0) {
1331 			folio_unlock(folio);
1332 			folio_put(folio);
1333 			ret++;
1334 		}
1335 		if (error == -ENOMEM)
1336 			break;
1337 		error = 0;
1338 	}
1339 	return error ? error : ret;
1340 }
1341 
1342 /*
1343  * If swap found in inode, free it and move page from swapcache to filecache.
1344  */
1345 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1346 {
1347 	struct address_space *mapping = inode->i_mapping;
1348 	pgoff_t start = 0;
1349 	struct folio_batch fbatch;
1350 	pgoff_t indices[PAGEVEC_SIZE];
1351 	int ret = 0;
1352 
1353 	do {
1354 		folio_batch_init(&fbatch);
1355 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1356 		if (folio_batch_count(&fbatch) == 0) {
1357 			ret = 0;
1358 			break;
1359 		}
1360 
1361 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1362 		if (ret < 0)
1363 			break;
1364 
1365 		start = indices[folio_batch_count(&fbatch) - 1];
1366 	} while (true);
1367 
1368 	return ret;
1369 }
1370 
1371 /*
1372  * Read all the shared memory data that resides in the swap
1373  * device 'type' back into memory, so the swap device can be
1374  * unused.
1375  */
1376 int shmem_unuse(unsigned int type)
1377 {
1378 	struct shmem_inode_info *info, *next;
1379 	int error = 0;
1380 
1381 	if (list_empty(&shmem_swaplist))
1382 		return 0;
1383 
1384 	mutex_lock(&shmem_swaplist_mutex);
1385 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1386 		if (!info->swapped) {
1387 			list_del_init(&info->swaplist);
1388 			continue;
1389 		}
1390 		/*
1391 		 * Drop the swaplist mutex while searching the inode for swap;
1392 		 * but before doing so, make sure shmem_evict_inode() will not
1393 		 * remove placeholder inode from swaplist, nor let it be freed
1394 		 * (igrab() would protect from unlink, but not from unmount).
1395 		 */
1396 		atomic_inc(&info->stop_eviction);
1397 		mutex_unlock(&shmem_swaplist_mutex);
1398 
1399 		error = shmem_unuse_inode(&info->vfs_inode, type);
1400 		cond_resched();
1401 
1402 		mutex_lock(&shmem_swaplist_mutex);
1403 		next = list_next_entry(info, swaplist);
1404 		if (!info->swapped)
1405 			list_del_init(&info->swaplist);
1406 		if (atomic_dec_and_test(&info->stop_eviction))
1407 			wake_up_var(&info->stop_eviction);
1408 		if (error)
1409 			break;
1410 	}
1411 	mutex_unlock(&shmem_swaplist_mutex);
1412 
1413 	return error;
1414 }
1415 
1416 /*
1417  * Move the page from the page cache to the swap cache.
1418  */
1419 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1420 {
1421 	struct folio *folio = page_folio(page);
1422 	struct address_space *mapping = folio->mapping;
1423 	struct inode *inode = mapping->host;
1424 	struct shmem_inode_info *info = SHMEM_I(inode);
1425 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1426 	swp_entry_t swap;
1427 	pgoff_t index;
1428 
1429 	/*
1430 	 * Our capabilities prevent regular writeback or sync from ever calling
1431 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1432 	 * its underlying filesystem, in which case tmpfs should write out to
1433 	 * swap only in response to memory pressure, and not for the writeback
1434 	 * threads or sync.
1435 	 */
1436 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1437 		goto redirty;
1438 
1439 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1440 		goto redirty;
1441 
1442 	if (!total_swap_pages)
1443 		goto redirty;
1444 
1445 	/*
1446 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1447 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1448 	 * and its shmem_writeback() needs them to be split when swapping.
1449 	 */
1450 	if (folio_test_large(folio)) {
1451 		/* Ensure the subpages are still dirty */
1452 		folio_test_set_dirty(folio);
1453 		if (split_huge_page(page) < 0)
1454 			goto redirty;
1455 		folio = page_folio(page);
1456 		folio_clear_dirty(folio);
1457 	}
1458 
1459 	index = folio->index;
1460 
1461 	/*
1462 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1463 	 * value into swapfile.c, the only way we can correctly account for a
1464 	 * fallocated folio arriving here is now to initialize it and write it.
1465 	 *
1466 	 * That's okay for a folio already fallocated earlier, but if we have
1467 	 * not yet completed the fallocation, then (a) we want to keep track
1468 	 * of this folio in case we have to undo it, and (b) it may not be a
1469 	 * good idea to continue anyway, once we're pushing into swap.  So
1470 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1471 	 */
1472 	if (!folio_test_uptodate(folio)) {
1473 		if (inode->i_private) {
1474 			struct shmem_falloc *shmem_falloc;
1475 			spin_lock(&inode->i_lock);
1476 			shmem_falloc = inode->i_private;
1477 			if (shmem_falloc &&
1478 			    !shmem_falloc->waitq &&
1479 			    index >= shmem_falloc->start &&
1480 			    index < shmem_falloc->next)
1481 				shmem_falloc->nr_unswapped++;
1482 			else
1483 				shmem_falloc = NULL;
1484 			spin_unlock(&inode->i_lock);
1485 			if (shmem_falloc)
1486 				goto redirty;
1487 		}
1488 		folio_zero_range(folio, 0, folio_size(folio));
1489 		flush_dcache_folio(folio);
1490 		folio_mark_uptodate(folio);
1491 	}
1492 
1493 	swap = folio_alloc_swap(folio);
1494 	if (!swap.val)
1495 		goto redirty;
1496 
1497 	/*
1498 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1499 	 * if it's not already there.  Do it now before the folio is
1500 	 * moved to swap cache, when its pagelock no longer protects
1501 	 * the inode from eviction.  But don't unlock the mutex until
1502 	 * we've incremented swapped, because shmem_unuse_inode() will
1503 	 * prune a !swapped inode from the swaplist under this mutex.
1504 	 */
1505 	mutex_lock(&shmem_swaplist_mutex);
1506 	if (list_empty(&info->swaplist))
1507 		list_add(&info->swaplist, &shmem_swaplist);
1508 
1509 	if (add_to_swap_cache(folio, swap,
1510 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1511 			NULL) == 0) {
1512 		shmem_recalc_inode(inode, 0, 1);
1513 		swap_shmem_alloc(swap);
1514 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1515 
1516 		mutex_unlock(&shmem_swaplist_mutex);
1517 		BUG_ON(folio_mapped(folio));
1518 		return swap_writepage(&folio->page, wbc);
1519 	}
1520 
1521 	mutex_unlock(&shmem_swaplist_mutex);
1522 	put_swap_folio(folio, swap);
1523 redirty:
1524 	folio_mark_dirty(folio);
1525 	if (wbc->for_reclaim)
1526 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1527 	folio_unlock(folio);
1528 	return 0;
1529 }
1530 
1531 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1532 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1533 {
1534 	char buffer[64];
1535 
1536 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1537 		return;		/* show nothing */
1538 
1539 	mpol_to_str(buffer, sizeof(buffer), mpol);
1540 
1541 	seq_printf(seq, ",mpol=%s", buffer);
1542 }
1543 
1544 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1545 {
1546 	struct mempolicy *mpol = NULL;
1547 	if (sbinfo->mpol) {
1548 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1549 		mpol = sbinfo->mpol;
1550 		mpol_get(mpol);
1551 		raw_spin_unlock(&sbinfo->stat_lock);
1552 	}
1553 	return mpol;
1554 }
1555 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1556 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1557 {
1558 }
1559 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1560 {
1561 	return NULL;
1562 }
1563 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1564 
1565 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1566 			pgoff_t index, unsigned int order, pgoff_t *ilx);
1567 
1568 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1569 			struct shmem_inode_info *info, pgoff_t index)
1570 {
1571 	struct mempolicy *mpol;
1572 	pgoff_t ilx;
1573 	struct folio *folio;
1574 
1575 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1576 	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1577 	mpol_cond_put(mpol);
1578 
1579 	return folio;
1580 }
1581 
1582 /*
1583  * Make sure huge_gfp is always more limited than limit_gfp.
1584  * Some of the flags set permissions, while others set limitations.
1585  */
1586 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1587 {
1588 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1589 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1590 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1591 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1592 
1593 	/* Allow allocations only from the originally specified zones. */
1594 	result |= zoneflags;
1595 
1596 	/*
1597 	 * Minimize the result gfp by taking the union with the deny flags,
1598 	 * and the intersection of the allow flags.
1599 	 */
1600 	result |= (limit_gfp & denyflags);
1601 	result |= (huge_gfp & limit_gfp) & allowflags;
1602 
1603 	return result;
1604 }
1605 
1606 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1607 		struct shmem_inode_info *info, pgoff_t index)
1608 {
1609 	struct mempolicy *mpol;
1610 	pgoff_t ilx;
1611 	struct page *page;
1612 
1613 	mpol = shmem_get_pgoff_policy(info, index, HPAGE_PMD_ORDER, &ilx);
1614 	page = alloc_pages_mpol(gfp, HPAGE_PMD_ORDER, mpol, ilx, numa_node_id());
1615 	mpol_cond_put(mpol);
1616 
1617 	return page_rmappable_folio(page);
1618 }
1619 
1620 static struct folio *shmem_alloc_folio(gfp_t gfp,
1621 		struct shmem_inode_info *info, pgoff_t index)
1622 {
1623 	struct mempolicy *mpol;
1624 	pgoff_t ilx;
1625 	struct page *page;
1626 
1627 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1628 	page = alloc_pages_mpol(gfp, 0, mpol, ilx, numa_node_id());
1629 	mpol_cond_put(mpol);
1630 
1631 	return (struct folio *)page;
1632 }
1633 
1634 static struct folio *shmem_alloc_and_add_folio(gfp_t gfp,
1635 		struct inode *inode, pgoff_t index,
1636 		struct mm_struct *fault_mm, bool huge)
1637 {
1638 	struct address_space *mapping = inode->i_mapping;
1639 	struct shmem_inode_info *info = SHMEM_I(inode);
1640 	struct folio *folio;
1641 	long pages;
1642 	int error;
1643 
1644 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1645 		huge = false;
1646 
1647 	if (huge) {
1648 		pages = HPAGE_PMD_NR;
1649 		index = round_down(index, HPAGE_PMD_NR);
1650 
1651 		/*
1652 		 * Check for conflict before waiting on a huge allocation.
1653 		 * Conflict might be that a huge page has just been allocated
1654 		 * and added to page cache by a racing thread, or that there
1655 		 * is already at least one small page in the huge extent.
1656 		 * Be careful to retry when appropriate, but not forever!
1657 		 * Elsewhere -EEXIST would be the right code, but not here.
1658 		 */
1659 		if (xa_find(&mapping->i_pages, &index,
1660 				index + HPAGE_PMD_NR - 1, XA_PRESENT))
1661 			return ERR_PTR(-E2BIG);
1662 
1663 		folio = shmem_alloc_hugefolio(gfp, info, index);
1664 		if (!folio)
1665 			count_vm_event(THP_FILE_FALLBACK);
1666 	} else {
1667 		pages = 1;
1668 		folio = shmem_alloc_folio(gfp, info, index);
1669 	}
1670 	if (!folio)
1671 		return ERR_PTR(-ENOMEM);
1672 
1673 	__folio_set_locked(folio);
1674 	__folio_set_swapbacked(folio);
1675 
1676 	gfp &= GFP_RECLAIM_MASK;
1677 	error = mem_cgroup_charge(folio, fault_mm, gfp);
1678 	if (error) {
1679 		if (xa_find(&mapping->i_pages, &index,
1680 				index + pages - 1, XA_PRESENT)) {
1681 			error = -EEXIST;
1682 		} else if (huge) {
1683 			count_vm_event(THP_FILE_FALLBACK);
1684 			count_vm_event(THP_FILE_FALLBACK_CHARGE);
1685 		}
1686 		goto unlock;
1687 	}
1688 
1689 	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1690 	if (error)
1691 		goto unlock;
1692 
1693 	error = shmem_inode_acct_blocks(inode, pages);
1694 	if (error) {
1695 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1696 		long freed;
1697 		/*
1698 		 * Try to reclaim some space by splitting a few
1699 		 * large folios beyond i_size on the filesystem.
1700 		 */
1701 		shmem_unused_huge_shrink(sbinfo, NULL, 2);
1702 		/*
1703 		 * And do a shmem_recalc_inode() to account for freed pages:
1704 		 * except our folio is there in cache, so not quite balanced.
1705 		 */
1706 		spin_lock(&info->lock);
1707 		freed = pages + info->alloced - info->swapped -
1708 			READ_ONCE(mapping->nrpages);
1709 		if (freed > 0)
1710 			info->alloced -= freed;
1711 		spin_unlock(&info->lock);
1712 		if (freed > 0)
1713 			shmem_inode_unacct_blocks(inode, freed);
1714 		error = shmem_inode_acct_blocks(inode, pages);
1715 		if (error) {
1716 			filemap_remove_folio(folio);
1717 			goto unlock;
1718 		}
1719 	}
1720 
1721 	shmem_recalc_inode(inode, pages, 0);
1722 	folio_add_lru(folio);
1723 	return folio;
1724 
1725 unlock:
1726 	folio_unlock(folio);
1727 	folio_put(folio);
1728 	return ERR_PTR(error);
1729 }
1730 
1731 /*
1732  * When a page is moved from swapcache to shmem filecache (either by the
1733  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1734  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1735  * ignorance of the mapping it belongs to.  If that mapping has special
1736  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1737  * we may need to copy to a suitable page before moving to filecache.
1738  *
1739  * In a future release, this may well be extended to respect cpuset and
1740  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1741  * but for now it is a simple matter of zone.
1742  */
1743 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1744 {
1745 	return folio_zonenum(folio) > gfp_zone(gfp);
1746 }
1747 
1748 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1749 				struct shmem_inode_info *info, pgoff_t index)
1750 {
1751 	struct folio *old, *new;
1752 	struct address_space *swap_mapping;
1753 	swp_entry_t entry;
1754 	pgoff_t swap_index;
1755 	int error;
1756 
1757 	old = *foliop;
1758 	entry = old->swap;
1759 	swap_index = swp_offset(entry);
1760 	swap_mapping = swap_address_space(entry);
1761 
1762 	/*
1763 	 * We have arrived here because our zones are constrained, so don't
1764 	 * limit chance of success by further cpuset and node constraints.
1765 	 */
1766 	gfp &= ~GFP_CONSTRAINT_MASK;
1767 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1768 	new = shmem_alloc_folio(gfp, info, index);
1769 	if (!new)
1770 		return -ENOMEM;
1771 
1772 	folio_get(new);
1773 	folio_copy(new, old);
1774 	flush_dcache_folio(new);
1775 
1776 	__folio_set_locked(new);
1777 	__folio_set_swapbacked(new);
1778 	folio_mark_uptodate(new);
1779 	new->swap = entry;
1780 	folio_set_swapcache(new);
1781 
1782 	/*
1783 	 * Our caller will very soon move newpage out of swapcache, but it's
1784 	 * a nice clean interface for us to replace oldpage by newpage there.
1785 	 */
1786 	xa_lock_irq(&swap_mapping->i_pages);
1787 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1788 	if (!error) {
1789 		mem_cgroup_migrate(old, new);
1790 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1791 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1792 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1793 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1794 	}
1795 	xa_unlock_irq(&swap_mapping->i_pages);
1796 
1797 	if (unlikely(error)) {
1798 		/*
1799 		 * Is this possible?  I think not, now that our callers check
1800 		 * both PageSwapCache and page_private after getting page lock;
1801 		 * but be defensive.  Reverse old to newpage for clear and free.
1802 		 */
1803 		old = new;
1804 	} else {
1805 		folio_add_lru(new);
1806 		*foliop = new;
1807 	}
1808 
1809 	folio_clear_swapcache(old);
1810 	old->private = NULL;
1811 
1812 	folio_unlock(old);
1813 	folio_put_refs(old, 2);
1814 	return error;
1815 }
1816 
1817 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1818 					 struct folio *folio, swp_entry_t swap)
1819 {
1820 	struct address_space *mapping = inode->i_mapping;
1821 	swp_entry_t swapin_error;
1822 	void *old;
1823 
1824 	swapin_error = make_poisoned_swp_entry();
1825 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1826 			     swp_to_radix_entry(swap),
1827 			     swp_to_radix_entry(swapin_error), 0);
1828 	if (old != swp_to_radix_entry(swap))
1829 		return;
1830 
1831 	folio_wait_writeback(folio);
1832 	delete_from_swap_cache(folio);
1833 	/*
1834 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
1835 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
1836 	 * in shmem_evict_inode().
1837 	 */
1838 	shmem_recalc_inode(inode, -1, -1);
1839 	swap_free(swap);
1840 }
1841 
1842 /*
1843  * Swap in the folio pointed to by *foliop.
1844  * Caller has to make sure that *foliop contains a valid swapped folio.
1845  * Returns 0 and the folio in foliop if success. On failure, returns the
1846  * error code and NULL in *foliop.
1847  */
1848 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1849 			     struct folio **foliop, enum sgp_type sgp,
1850 			     gfp_t gfp, struct mm_struct *fault_mm,
1851 			     vm_fault_t *fault_type)
1852 {
1853 	struct address_space *mapping = inode->i_mapping;
1854 	struct shmem_inode_info *info = SHMEM_I(inode);
1855 	struct swap_info_struct *si;
1856 	struct folio *folio = NULL;
1857 	swp_entry_t swap;
1858 	int error;
1859 
1860 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1861 	swap = radix_to_swp_entry(*foliop);
1862 	*foliop = NULL;
1863 
1864 	if (is_poisoned_swp_entry(swap))
1865 		return -EIO;
1866 
1867 	si = get_swap_device(swap);
1868 	if (!si) {
1869 		if (!shmem_confirm_swap(mapping, index, swap))
1870 			return -EEXIST;
1871 		else
1872 			return -EINVAL;
1873 	}
1874 
1875 	/* Look it up and read it in.. */
1876 	folio = swap_cache_get_folio(swap, NULL, 0);
1877 	if (!folio) {
1878 		/* Or update major stats only when swapin succeeds?? */
1879 		if (fault_type) {
1880 			*fault_type |= VM_FAULT_MAJOR;
1881 			count_vm_event(PGMAJFAULT);
1882 			count_memcg_event_mm(fault_mm, PGMAJFAULT);
1883 		}
1884 		/* Here we actually start the io */
1885 		folio = shmem_swapin_cluster(swap, gfp, info, index);
1886 		if (!folio) {
1887 			error = -ENOMEM;
1888 			goto failed;
1889 		}
1890 	}
1891 
1892 	/* We have to do this with folio locked to prevent races */
1893 	folio_lock(folio);
1894 	if (!folio_test_swapcache(folio) ||
1895 	    folio->swap.val != swap.val ||
1896 	    !shmem_confirm_swap(mapping, index, swap)) {
1897 		error = -EEXIST;
1898 		goto unlock;
1899 	}
1900 	if (!folio_test_uptodate(folio)) {
1901 		error = -EIO;
1902 		goto failed;
1903 	}
1904 	folio_wait_writeback(folio);
1905 
1906 	/*
1907 	 * Some architectures may have to restore extra metadata to the
1908 	 * folio after reading from swap.
1909 	 */
1910 	arch_swap_restore(swap, folio);
1911 
1912 	if (shmem_should_replace_folio(folio, gfp)) {
1913 		error = shmem_replace_folio(&folio, gfp, info, index);
1914 		if (error)
1915 			goto failed;
1916 	}
1917 
1918 	error = shmem_add_to_page_cache(folio, mapping, index,
1919 					swp_to_radix_entry(swap), gfp);
1920 	if (error)
1921 		goto failed;
1922 
1923 	shmem_recalc_inode(inode, 0, -1);
1924 
1925 	if (sgp == SGP_WRITE)
1926 		folio_mark_accessed(folio);
1927 
1928 	delete_from_swap_cache(folio);
1929 	folio_mark_dirty(folio);
1930 	swap_free(swap);
1931 	put_swap_device(si);
1932 
1933 	*foliop = folio;
1934 	return 0;
1935 failed:
1936 	if (!shmem_confirm_swap(mapping, index, swap))
1937 		error = -EEXIST;
1938 	if (error == -EIO)
1939 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1940 unlock:
1941 	if (folio) {
1942 		folio_unlock(folio);
1943 		folio_put(folio);
1944 	}
1945 	put_swap_device(si);
1946 
1947 	return error;
1948 }
1949 
1950 /*
1951  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1952  *
1953  * If we allocate a new one we do not mark it dirty. That's up to the
1954  * vm. If we swap it in we mark it dirty since we also free the swap
1955  * entry since a page cannot live in both the swap and page cache.
1956  *
1957  * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
1958  */
1959 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1960 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1961 		struct vm_fault *vmf, vm_fault_t *fault_type)
1962 {
1963 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1964 	struct mm_struct *fault_mm;
1965 	struct folio *folio;
1966 	int error;
1967 	bool alloced;
1968 
1969 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1970 		return -EFBIG;
1971 repeat:
1972 	if (sgp <= SGP_CACHE &&
1973 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
1974 		return -EINVAL;
1975 
1976 	alloced = false;
1977 	fault_mm = vma ? vma->vm_mm : NULL;
1978 
1979 	folio = filemap_get_entry(inode->i_mapping, index);
1980 	if (folio && vma && userfaultfd_minor(vma)) {
1981 		if (!xa_is_value(folio))
1982 			folio_put(folio);
1983 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1984 		return 0;
1985 	}
1986 
1987 	if (xa_is_value(folio)) {
1988 		error = shmem_swapin_folio(inode, index, &folio,
1989 					   sgp, gfp, fault_mm, fault_type);
1990 		if (error == -EEXIST)
1991 			goto repeat;
1992 
1993 		*foliop = folio;
1994 		return error;
1995 	}
1996 
1997 	if (folio) {
1998 		folio_lock(folio);
1999 
2000 		/* Has the folio been truncated or swapped out? */
2001 		if (unlikely(folio->mapping != inode->i_mapping)) {
2002 			folio_unlock(folio);
2003 			folio_put(folio);
2004 			goto repeat;
2005 		}
2006 		if (sgp == SGP_WRITE)
2007 			folio_mark_accessed(folio);
2008 		if (folio_test_uptodate(folio))
2009 			goto out;
2010 		/* fallocated folio */
2011 		if (sgp != SGP_READ)
2012 			goto clear;
2013 		folio_unlock(folio);
2014 		folio_put(folio);
2015 	}
2016 
2017 	/*
2018 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2019 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2020 	 */
2021 	*foliop = NULL;
2022 	if (sgp == SGP_READ)
2023 		return 0;
2024 	if (sgp == SGP_NOALLOC)
2025 		return -ENOENT;
2026 
2027 	/*
2028 	 * Fast cache lookup and swap lookup did not find it: allocate.
2029 	 */
2030 
2031 	if (vma && userfaultfd_missing(vma)) {
2032 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2033 		return 0;
2034 	}
2035 
2036 	if (shmem_is_huge(inode, index, false, fault_mm,
2037 			  vma ? vma->vm_flags : 0)) {
2038 		gfp_t huge_gfp;
2039 
2040 		huge_gfp = vma_thp_gfp_mask(vma);
2041 		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2042 		folio = shmem_alloc_and_add_folio(huge_gfp,
2043 				inode, index, fault_mm, true);
2044 		if (!IS_ERR(folio)) {
2045 			count_vm_event(THP_FILE_ALLOC);
2046 			goto alloced;
2047 		}
2048 		if (PTR_ERR(folio) == -EEXIST)
2049 			goto repeat;
2050 	}
2051 
2052 	folio = shmem_alloc_and_add_folio(gfp, inode, index, fault_mm, false);
2053 	if (IS_ERR(folio)) {
2054 		error = PTR_ERR(folio);
2055 		if (error == -EEXIST)
2056 			goto repeat;
2057 		folio = NULL;
2058 		goto unlock;
2059 	}
2060 
2061 alloced:
2062 	alloced = true;
2063 	if (folio_test_pmd_mappable(folio) &&
2064 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2065 					folio_next_index(folio) - 1) {
2066 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2067 		struct shmem_inode_info *info = SHMEM_I(inode);
2068 		/*
2069 		 * Part of the large folio is beyond i_size: subject
2070 		 * to shrink under memory pressure.
2071 		 */
2072 		spin_lock(&sbinfo->shrinklist_lock);
2073 		/*
2074 		 * _careful to defend against unlocked access to
2075 		 * ->shrink_list in shmem_unused_huge_shrink()
2076 		 */
2077 		if (list_empty_careful(&info->shrinklist)) {
2078 			list_add_tail(&info->shrinklist,
2079 				      &sbinfo->shrinklist);
2080 			sbinfo->shrinklist_len++;
2081 		}
2082 		spin_unlock(&sbinfo->shrinklist_lock);
2083 	}
2084 
2085 	if (sgp == SGP_WRITE)
2086 		folio_set_referenced(folio);
2087 	/*
2088 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2089 	 */
2090 	if (sgp == SGP_FALLOC)
2091 		sgp = SGP_WRITE;
2092 clear:
2093 	/*
2094 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2095 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2096 	 * it now, lest undo on failure cancel our earlier guarantee.
2097 	 */
2098 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2099 		long i, n = folio_nr_pages(folio);
2100 
2101 		for (i = 0; i < n; i++)
2102 			clear_highpage(folio_page(folio, i));
2103 		flush_dcache_folio(folio);
2104 		folio_mark_uptodate(folio);
2105 	}
2106 
2107 	/* Perhaps the file has been truncated since we checked */
2108 	if (sgp <= SGP_CACHE &&
2109 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2110 		error = -EINVAL;
2111 		goto unlock;
2112 	}
2113 out:
2114 	*foliop = folio;
2115 	return 0;
2116 
2117 	/*
2118 	 * Error recovery.
2119 	 */
2120 unlock:
2121 	if (alloced)
2122 		filemap_remove_folio(folio);
2123 	shmem_recalc_inode(inode, 0, 0);
2124 	if (folio) {
2125 		folio_unlock(folio);
2126 		folio_put(folio);
2127 	}
2128 	return error;
2129 }
2130 
2131 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2132 		enum sgp_type sgp)
2133 {
2134 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2135 			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2136 }
2137 
2138 /*
2139  * This is like autoremove_wake_function, but it removes the wait queue
2140  * entry unconditionally - even if something else had already woken the
2141  * target.
2142  */
2143 static int synchronous_wake_function(wait_queue_entry_t *wait,
2144 			unsigned int mode, int sync, void *key)
2145 {
2146 	int ret = default_wake_function(wait, mode, sync, key);
2147 	list_del_init(&wait->entry);
2148 	return ret;
2149 }
2150 
2151 /*
2152  * Trinity finds that probing a hole which tmpfs is punching can
2153  * prevent the hole-punch from ever completing: which in turn
2154  * locks writers out with its hold on i_rwsem.  So refrain from
2155  * faulting pages into the hole while it's being punched.  Although
2156  * shmem_undo_range() does remove the additions, it may be unable to
2157  * keep up, as each new page needs its own unmap_mapping_range() call,
2158  * and the i_mmap tree grows ever slower to scan if new vmas are added.
2159  *
2160  * It does not matter if we sometimes reach this check just before the
2161  * hole-punch begins, so that one fault then races with the punch:
2162  * we just need to make racing faults a rare case.
2163  *
2164  * The implementation below would be much simpler if we just used a
2165  * standard mutex or completion: but we cannot take i_rwsem in fault,
2166  * and bloating every shmem inode for this unlikely case would be sad.
2167  */
2168 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2169 {
2170 	struct shmem_falloc *shmem_falloc;
2171 	struct file *fpin = NULL;
2172 	vm_fault_t ret = 0;
2173 
2174 	spin_lock(&inode->i_lock);
2175 	shmem_falloc = inode->i_private;
2176 	if (shmem_falloc &&
2177 	    shmem_falloc->waitq &&
2178 	    vmf->pgoff >= shmem_falloc->start &&
2179 	    vmf->pgoff < shmem_falloc->next) {
2180 		wait_queue_head_t *shmem_falloc_waitq;
2181 		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2182 
2183 		ret = VM_FAULT_NOPAGE;
2184 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2185 		shmem_falloc_waitq = shmem_falloc->waitq;
2186 		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2187 				TASK_UNINTERRUPTIBLE);
2188 		spin_unlock(&inode->i_lock);
2189 		schedule();
2190 
2191 		/*
2192 		 * shmem_falloc_waitq points into the shmem_fallocate()
2193 		 * stack of the hole-punching task: shmem_falloc_waitq
2194 		 * is usually invalid by the time we reach here, but
2195 		 * finish_wait() does not dereference it in that case;
2196 		 * though i_lock needed lest racing with wake_up_all().
2197 		 */
2198 		spin_lock(&inode->i_lock);
2199 		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2200 	}
2201 	spin_unlock(&inode->i_lock);
2202 	if (fpin) {
2203 		fput(fpin);
2204 		ret = VM_FAULT_RETRY;
2205 	}
2206 	return ret;
2207 }
2208 
2209 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2210 {
2211 	struct inode *inode = file_inode(vmf->vma->vm_file);
2212 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2213 	struct folio *folio = NULL;
2214 	vm_fault_t ret = 0;
2215 	int err;
2216 
2217 	/*
2218 	 * Trinity finds that probing a hole which tmpfs is punching can
2219 	 * prevent the hole-punch from ever completing: noted in i_private.
2220 	 */
2221 	if (unlikely(inode->i_private)) {
2222 		ret = shmem_falloc_wait(vmf, inode);
2223 		if (ret)
2224 			return ret;
2225 	}
2226 
2227 	WARN_ON_ONCE(vmf->page != NULL);
2228 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2229 				  gfp, vmf, &ret);
2230 	if (err)
2231 		return vmf_error(err);
2232 	if (folio) {
2233 		vmf->page = folio_file_page(folio, vmf->pgoff);
2234 		ret |= VM_FAULT_LOCKED;
2235 	}
2236 	return ret;
2237 }
2238 
2239 unsigned long shmem_get_unmapped_area(struct file *file,
2240 				      unsigned long uaddr, unsigned long len,
2241 				      unsigned long pgoff, unsigned long flags)
2242 {
2243 	unsigned long (*get_area)(struct file *,
2244 		unsigned long, unsigned long, unsigned long, unsigned long);
2245 	unsigned long addr;
2246 	unsigned long offset;
2247 	unsigned long inflated_len;
2248 	unsigned long inflated_addr;
2249 	unsigned long inflated_offset;
2250 
2251 	if (len > TASK_SIZE)
2252 		return -ENOMEM;
2253 
2254 	get_area = current->mm->get_unmapped_area;
2255 	addr = get_area(file, uaddr, len, pgoff, flags);
2256 
2257 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2258 		return addr;
2259 	if (IS_ERR_VALUE(addr))
2260 		return addr;
2261 	if (addr & ~PAGE_MASK)
2262 		return addr;
2263 	if (addr > TASK_SIZE - len)
2264 		return addr;
2265 
2266 	if (shmem_huge == SHMEM_HUGE_DENY)
2267 		return addr;
2268 	if (len < HPAGE_PMD_SIZE)
2269 		return addr;
2270 	if (flags & MAP_FIXED)
2271 		return addr;
2272 	/*
2273 	 * Our priority is to support MAP_SHARED mapped hugely;
2274 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2275 	 * But if caller specified an address hint and we allocated area there
2276 	 * successfully, respect that as before.
2277 	 */
2278 	if (uaddr == addr)
2279 		return addr;
2280 
2281 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2282 		struct super_block *sb;
2283 
2284 		if (file) {
2285 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2286 			sb = file_inode(file)->i_sb;
2287 		} else {
2288 			/*
2289 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2290 			 * for "/dev/zero", to create a shared anonymous object.
2291 			 */
2292 			if (IS_ERR(shm_mnt))
2293 				return addr;
2294 			sb = shm_mnt->mnt_sb;
2295 		}
2296 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2297 			return addr;
2298 	}
2299 
2300 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2301 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2302 		return addr;
2303 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2304 		return addr;
2305 
2306 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2307 	if (inflated_len > TASK_SIZE)
2308 		return addr;
2309 	if (inflated_len < len)
2310 		return addr;
2311 
2312 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2313 	if (IS_ERR_VALUE(inflated_addr))
2314 		return addr;
2315 	if (inflated_addr & ~PAGE_MASK)
2316 		return addr;
2317 
2318 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2319 	inflated_addr += offset - inflated_offset;
2320 	if (inflated_offset > offset)
2321 		inflated_addr += HPAGE_PMD_SIZE;
2322 
2323 	if (inflated_addr > TASK_SIZE - len)
2324 		return addr;
2325 	return inflated_addr;
2326 }
2327 
2328 #ifdef CONFIG_NUMA
2329 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2330 {
2331 	struct inode *inode = file_inode(vma->vm_file);
2332 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2333 }
2334 
2335 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2336 					  unsigned long addr, pgoff_t *ilx)
2337 {
2338 	struct inode *inode = file_inode(vma->vm_file);
2339 	pgoff_t index;
2340 
2341 	/*
2342 	 * Bias interleave by inode number to distribute better across nodes;
2343 	 * but this interface is independent of which page order is used, so
2344 	 * supplies only that bias, letting caller apply the offset (adjusted
2345 	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2346 	 */
2347 	*ilx = inode->i_ino;
2348 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2349 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2350 }
2351 
2352 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2353 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2354 {
2355 	struct mempolicy *mpol;
2356 
2357 	/* Bias interleave by inode number to distribute better across nodes */
2358 	*ilx = info->vfs_inode.i_ino + (index >> order);
2359 
2360 	mpol = mpol_shared_policy_lookup(&info->policy, index);
2361 	return mpol ? mpol : get_task_policy(current);
2362 }
2363 #else
2364 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2365 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2366 {
2367 	*ilx = 0;
2368 	return NULL;
2369 }
2370 #endif /* CONFIG_NUMA */
2371 
2372 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2373 {
2374 	struct inode *inode = file_inode(file);
2375 	struct shmem_inode_info *info = SHMEM_I(inode);
2376 	int retval = -ENOMEM;
2377 
2378 	/*
2379 	 * What serializes the accesses to info->flags?
2380 	 * ipc_lock_object() when called from shmctl_do_lock(),
2381 	 * no serialization needed when called from shm_destroy().
2382 	 */
2383 	if (lock && !(info->flags & VM_LOCKED)) {
2384 		if (!user_shm_lock(inode->i_size, ucounts))
2385 			goto out_nomem;
2386 		info->flags |= VM_LOCKED;
2387 		mapping_set_unevictable(file->f_mapping);
2388 	}
2389 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2390 		user_shm_unlock(inode->i_size, ucounts);
2391 		info->flags &= ~VM_LOCKED;
2392 		mapping_clear_unevictable(file->f_mapping);
2393 	}
2394 	retval = 0;
2395 
2396 out_nomem:
2397 	return retval;
2398 }
2399 
2400 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2401 {
2402 	struct inode *inode = file_inode(file);
2403 	struct shmem_inode_info *info = SHMEM_I(inode);
2404 	int ret;
2405 
2406 	ret = seal_check_write(info->seals, vma);
2407 	if (ret)
2408 		return ret;
2409 
2410 	/* arm64 - allow memory tagging on RAM-based files */
2411 	vm_flags_set(vma, VM_MTE_ALLOWED);
2412 
2413 	file_accessed(file);
2414 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2415 	if (inode->i_nlink)
2416 		vma->vm_ops = &shmem_vm_ops;
2417 	else
2418 		vma->vm_ops = &shmem_anon_vm_ops;
2419 	return 0;
2420 }
2421 
2422 static int shmem_file_open(struct inode *inode, struct file *file)
2423 {
2424 	file->f_mode |= FMODE_CAN_ODIRECT;
2425 	return generic_file_open(inode, file);
2426 }
2427 
2428 #ifdef CONFIG_TMPFS_XATTR
2429 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2430 
2431 /*
2432  * chattr's fsflags are unrelated to extended attributes,
2433  * but tmpfs has chosen to enable them under the same config option.
2434  */
2435 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2436 {
2437 	unsigned int i_flags = 0;
2438 
2439 	if (fsflags & FS_NOATIME_FL)
2440 		i_flags |= S_NOATIME;
2441 	if (fsflags & FS_APPEND_FL)
2442 		i_flags |= S_APPEND;
2443 	if (fsflags & FS_IMMUTABLE_FL)
2444 		i_flags |= S_IMMUTABLE;
2445 	/*
2446 	 * But FS_NODUMP_FL does not require any action in i_flags.
2447 	 */
2448 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2449 }
2450 #else
2451 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2452 {
2453 }
2454 #define shmem_initxattrs NULL
2455 #endif
2456 
2457 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2458 {
2459 	return &SHMEM_I(inode)->dir_offsets;
2460 }
2461 
2462 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2463 					     struct super_block *sb,
2464 					     struct inode *dir, umode_t mode,
2465 					     dev_t dev, unsigned long flags)
2466 {
2467 	struct inode *inode;
2468 	struct shmem_inode_info *info;
2469 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2470 	ino_t ino;
2471 	int err;
2472 
2473 	err = shmem_reserve_inode(sb, &ino);
2474 	if (err)
2475 		return ERR_PTR(err);
2476 
2477 	inode = new_inode(sb);
2478 	if (!inode) {
2479 		shmem_free_inode(sb, 0);
2480 		return ERR_PTR(-ENOSPC);
2481 	}
2482 
2483 	inode->i_ino = ino;
2484 	inode_init_owner(idmap, inode, dir, mode);
2485 	inode->i_blocks = 0;
2486 	simple_inode_init_ts(inode);
2487 	inode->i_generation = get_random_u32();
2488 	info = SHMEM_I(inode);
2489 	memset(info, 0, (char *)inode - (char *)info);
2490 	spin_lock_init(&info->lock);
2491 	atomic_set(&info->stop_eviction, 0);
2492 	info->seals = F_SEAL_SEAL;
2493 	info->flags = flags & VM_NORESERVE;
2494 	info->i_crtime = inode_get_mtime(inode);
2495 	info->fsflags = (dir == NULL) ? 0 :
2496 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2497 	if (info->fsflags)
2498 		shmem_set_inode_flags(inode, info->fsflags);
2499 	INIT_LIST_HEAD(&info->shrinklist);
2500 	INIT_LIST_HEAD(&info->swaplist);
2501 	simple_xattrs_init(&info->xattrs);
2502 	cache_no_acl(inode);
2503 	if (sbinfo->noswap)
2504 		mapping_set_unevictable(inode->i_mapping);
2505 	mapping_set_large_folios(inode->i_mapping);
2506 
2507 	switch (mode & S_IFMT) {
2508 	default:
2509 		inode->i_op = &shmem_special_inode_operations;
2510 		init_special_inode(inode, mode, dev);
2511 		break;
2512 	case S_IFREG:
2513 		inode->i_mapping->a_ops = &shmem_aops;
2514 		inode->i_op = &shmem_inode_operations;
2515 		inode->i_fop = &shmem_file_operations;
2516 		mpol_shared_policy_init(&info->policy,
2517 					 shmem_get_sbmpol(sbinfo));
2518 		break;
2519 	case S_IFDIR:
2520 		inc_nlink(inode);
2521 		/* Some things misbehave if size == 0 on a directory */
2522 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2523 		inode->i_op = &shmem_dir_inode_operations;
2524 		inode->i_fop = &simple_offset_dir_operations;
2525 		simple_offset_init(shmem_get_offset_ctx(inode));
2526 		break;
2527 	case S_IFLNK:
2528 		/*
2529 		 * Must not load anything in the rbtree,
2530 		 * mpol_free_shared_policy will not be called.
2531 		 */
2532 		mpol_shared_policy_init(&info->policy, NULL);
2533 		break;
2534 	}
2535 
2536 	lockdep_annotate_inode_mutex_key(inode);
2537 	return inode;
2538 }
2539 
2540 #ifdef CONFIG_TMPFS_QUOTA
2541 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2542 				     struct super_block *sb, struct inode *dir,
2543 				     umode_t mode, dev_t dev, unsigned long flags)
2544 {
2545 	int err;
2546 	struct inode *inode;
2547 
2548 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2549 	if (IS_ERR(inode))
2550 		return inode;
2551 
2552 	err = dquot_initialize(inode);
2553 	if (err)
2554 		goto errout;
2555 
2556 	err = dquot_alloc_inode(inode);
2557 	if (err) {
2558 		dquot_drop(inode);
2559 		goto errout;
2560 	}
2561 	return inode;
2562 
2563 errout:
2564 	inode->i_flags |= S_NOQUOTA;
2565 	iput(inode);
2566 	return ERR_PTR(err);
2567 }
2568 #else
2569 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2570 				     struct super_block *sb, struct inode *dir,
2571 				     umode_t mode, dev_t dev, unsigned long flags)
2572 {
2573 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2574 }
2575 #endif /* CONFIG_TMPFS_QUOTA */
2576 
2577 #ifdef CONFIG_USERFAULTFD
2578 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2579 			   struct vm_area_struct *dst_vma,
2580 			   unsigned long dst_addr,
2581 			   unsigned long src_addr,
2582 			   uffd_flags_t flags,
2583 			   struct folio **foliop)
2584 {
2585 	struct inode *inode = file_inode(dst_vma->vm_file);
2586 	struct shmem_inode_info *info = SHMEM_I(inode);
2587 	struct address_space *mapping = inode->i_mapping;
2588 	gfp_t gfp = mapping_gfp_mask(mapping);
2589 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2590 	void *page_kaddr;
2591 	struct folio *folio;
2592 	int ret;
2593 	pgoff_t max_off;
2594 
2595 	if (shmem_inode_acct_blocks(inode, 1)) {
2596 		/*
2597 		 * We may have got a page, returned -ENOENT triggering a retry,
2598 		 * and now we find ourselves with -ENOMEM. Release the page, to
2599 		 * avoid a BUG_ON in our caller.
2600 		 */
2601 		if (unlikely(*foliop)) {
2602 			folio_put(*foliop);
2603 			*foliop = NULL;
2604 		}
2605 		return -ENOMEM;
2606 	}
2607 
2608 	if (!*foliop) {
2609 		ret = -ENOMEM;
2610 		folio = shmem_alloc_folio(gfp, info, pgoff);
2611 		if (!folio)
2612 			goto out_unacct_blocks;
2613 
2614 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2615 			page_kaddr = kmap_local_folio(folio, 0);
2616 			/*
2617 			 * The read mmap_lock is held here.  Despite the
2618 			 * mmap_lock being read recursive a deadlock is still
2619 			 * possible if a writer has taken a lock.  For example:
2620 			 *
2621 			 * process A thread 1 takes read lock on own mmap_lock
2622 			 * process A thread 2 calls mmap, blocks taking write lock
2623 			 * process B thread 1 takes page fault, read lock on own mmap lock
2624 			 * process B thread 2 calls mmap, blocks taking write lock
2625 			 * process A thread 1 blocks taking read lock on process B
2626 			 * process B thread 1 blocks taking read lock on process A
2627 			 *
2628 			 * Disable page faults to prevent potential deadlock
2629 			 * and retry the copy outside the mmap_lock.
2630 			 */
2631 			pagefault_disable();
2632 			ret = copy_from_user(page_kaddr,
2633 					     (const void __user *)src_addr,
2634 					     PAGE_SIZE);
2635 			pagefault_enable();
2636 			kunmap_local(page_kaddr);
2637 
2638 			/* fallback to copy_from_user outside mmap_lock */
2639 			if (unlikely(ret)) {
2640 				*foliop = folio;
2641 				ret = -ENOENT;
2642 				/* don't free the page */
2643 				goto out_unacct_blocks;
2644 			}
2645 
2646 			flush_dcache_folio(folio);
2647 		} else {		/* ZEROPAGE */
2648 			clear_user_highpage(&folio->page, dst_addr);
2649 		}
2650 	} else {
2651 		folio = *foliop;
2652 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2653 		*foliop = NULL;
2654 	}
2655 
2656 	VM_BUG_ON(folio_test_locked(folio));
2657 	VM_BUG_ON(folio_test_swapbacked(folio));
2658 	__folio_set_locked(folio);
2659 	__folio_set_swapbacked(folio);
2660 	__folio_mark_uptodate(folio);
2661 
2662 	ret = -EFAULT;
2663 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2664 	if (unlikely(pgoff >= max_off))
2665 		goto out_release;
2666 
2667 	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
2668 	if (ret)
2669 		goto out_release;
2670 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
2671 	if (ret)
2672 		goto out_release;
2673 
2674 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2675 				       &folio->page, true, flags);
2676 	if (ret)
2677 		goto out_delete_from_cache;
2678 
2679 	shmem_recalc_inode(inode, 1, 0);
2680 	folio_unlock(folio);
2681 	return 0;
2682 out_delete_from_cache:
2683 	filemap_remove_folio(folio);
2684 out_release:
2685 	folio_unlock(folio);
2686 	folio_put(folio);
2687 out_unacct_blocks:
2688 	shmem_inode_unacct_blocks(inode, 1);
2689 	return ret;
2690 }
2691 #endif /* CONFIG_USERFAULTFD */
2692 
2693 #ifdef CONFIG_TMPFS
2694 static const struct inode_operations shmem_symlink_inode_operations;
2695 static const struct inode_operations shmem_short_symlink_operations;
2696 
2697 static int
2698 shmem_write_begin(struct file *file, struct address_space *mapping,
2699 			loff_t pos, unsigned len,
2700 			struct page **pagep, void **fsdata)
2701 {
2702 	struct inode *inode = mapping->host;
2703 	struct shmem_inode_info *info = SHMEM_I(inode);
2704 	pgoff_t index = pos >> PAGE_SHIFT;
2705 	struct folio *folio;
2706 	int ret = 0;
2707 
2708 	/* i_rwsem is held by caller */
2709 	if (unlikely(info->seals & (F_SEAL_GROW |
2710 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2711 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2712 			return -EPERM;
2713 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2714 			return -EPERM;
2715 	}
2716 
2717 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2718 	if (ret)
2719 		return ret;
2720 
2721 	*pagep = folio_file_page(folio, index);
2722 	if (PageHWPoison(*pagep)) {
2723 		folio_unlock(folio);
2724 		folio_put(folio);
2725 		*pagep = NULL;
2726 		return -EIO;
2727 	}
2728 
2729 	return 0;
2730 }
2731 
2732 static int
2733 shmem_write_end(struct file *file, struct address_space *mapping,
2734 			loff_t pos, unsigned len, unsigned copied,
2735 			struct page *page, void *fsdata)
2736 {
2737 	struct folio *folio = page_folio(page);
2738 	struct inode *inode = mapping->host;
2739 
2740 	if (pos + copied > inode->i_size)
2741 		i_size_write(inode, pos + copied);
2742 
2743 	if (!folio_test_uptodate(folio)) {
2744 		if (copied < folio_size(folio)) {
2745 			size_t from = offset_in_folio(folio, pos);
2746 			folio_zero_segments(folio, 0, from,
2747 					from + copied, folio_size(folio));
2748 		}
2749 		folio_mark_uptodate(folio);
2750 	}
2751 	folio_mark_dirty(folio);
2752 	folio_unlock(folio);
2753 	folio_put(folio);
2754 
2755 	return copied;
2756 }
2757 
2758 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2759 {
2760 	struct file *file = iocb->ki_filp;
2761 	struct inode *inode = file_inode(file);
2762 	struct address_space *mapping = inode->i_mapping;
2763 	pgoff_t index;
2764 	unsigned long offset;
2765 	int error = 0;
2766 	ssize_t retval = 0;
2767 	loff_t *ppos = &iocb->ki_pos;
2768 
2769 	index = *ppos >> PAGE_SHIFT;
2770 	offset = *ppos & ~PAGE_MASK;
2771 
2772 	for (;;) {
2773 		struct folio *folio = NULL;
2774 		struct page *page = NULL;
2775 		pgoff_t end_index;
2776 		unsigned long nr, ret;
2777 		loff_t i_size = i_size_read(inode);
2778 
2779 		end_index = i_size >> PAGE_SHIFT;
2780 		if (index > end_index)
2781 			break;
2782 		if (index == end_index) {
2783 			nr = i_size & ~PAGE_MASK;
2784 			if (nr <= offset)
2785 				break;
2786 		}
2787 
2788 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2789 		if (error) {
2790 			if (error == -EINVAL)
2791 				error = 0;
2792 			break;
2793 		}
2794 		if (folio) {
2795 			folio_unlock(folio);
2796 
2797 			page = folio_file_page(folio, index);
2798 			if (PageHWPoison(page)) {
2799 				folio_put(folio);
2800 				error = -EIO;
2801 				break;
2802 			}
2803 		}
2804 
2805 		/*
2806 		 * We must evaluate after, since reads (unlike writes)
2807 		 * are called without i_rwsem protection against truncate
2808 		 */
2809 		nr = PAGE_SIZE;
2810 		i_size = i_size_read(inode);
2811 		end_index = i_size >> PAGE_SHIFT;
2812 		if (index == end_index) {
2813 			nr = i_size & ~PAGE_MASK;
2814 			if (nr <= offset) {
2815 				if (folio)
2816 					folio_put(folio);
2817 				break;
2818 			}
2819 		}
2820 		nr -= offset;
2821 
2822 		if (folio) {
2823 			/*
2824 			 * If users can be writing to this page using arbitrary
2825 			 * virtual addresses, take care about potential aliasing
2826 			 * before reading the page on the kernel side.
2827 			 */
2828 			if (mapping_writably_mapped(mapping))
2829 				flush_dcache_page(page);
2830 			/*
2831 			 * Mark the page accessed if we read the beginning.
2832 			 */
2833 			if (!offset)
2834 				folio_mark_accessed(folio);
2835 			/*
2836 			 * Ok, we have the page, and it's up-to-date, so
2837 			 * now we can copy it to user space...
2838 			 */
2839 			ret = copy_page_to_iter(page, offset, nr, to);
2840 			folio_put(folio);
2841 
2842 		} else if (user_backed_iter(to)) {
2843 			/*
2844 			 * Copy to user tends to be so well optimized, but
2845 			 * clear_user() not so much, that it is noticeably
2846 			 * faster to copy the zero page instead of clearing.
2847 			 */
2848 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2849 		} else {
2850 			/*
2851 			 * But submitting the same page twice in a row to
2852 			 * splice() - or others? - can result in confusion:
2853 			 * so don't attempt that optimization on pipes etc.
2854 			 */
2855 			ret = iov_iter_zero(nr, to);
2856 		}
2857 
2858 		retval += ret;
2859 		offset += ret;
2860 		index += offset >> PAGE_SHIFT;
2861 		offset &= ~PAGE_MASK;
2862 
2863 		if (!iov_iter_count(to))
2864 			break;
2865 		if (ret < nr) {
2866 			error = -EFAULT;
2867 			break;
2868 		}
2869 		cond_resched();
2870 	}
2871 
2872 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2873 	file_accessed(file);
2874 	return retval ? retval : error;
2875 }
2876 
2877 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2878 {
2879 	struct file *file = iocb->ki_filp;
2880 	struct inode *inode = file->f_mapping->host;
2881 	ssize_t ret;
2882 
2883 	inode_lock(inode);
2884 	ret = generic_write_checks(iocb, from);
2885 	if (ret <= 0)
2886 		goto unlock;
2887 	ret = file_remove_privs(file);
2888 	if (ret)
2889 		goto unlock;
2890 	ret = file_update_time(file);
2891 	if (ret)
2892 		goto unlock;
2893 	ret = generic_perform_write(iocb, from);
2894 unlock:
2895 	inode_unlock(inode);
2896 	return ret;
2897 }
2898 
2899 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
2900 			      struct pipe_buffer *buf)
2901 {
2902 	return true;
2903 }
2904 
2905 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
2906 				  struct pipe_buffer *buf)
2907 {
2908 }
2909 
2910 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
2911 				    struct pipe_buffer *buf)
2912 {
2913 	return false;
2914 }
2915 
2916 static const struct pipe_buf_operations zero_pipe_buf_ops = {
2917 	.release	= zero_pipe_buf_release,
2918 	.try_steal	= zero_pipe_buf_try_steal,
2919 	.get		= zero_pipe_buf_get,
2920 };
2921 
2922 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
2923 					loff_t fpos, size_t size)
2924 {
2925 	size_t offset = fpos & ~PAGE_MASK;
2926 
2927 	size = min_t(size_t, size, PAGE_SIZE - offset);
2928 
2929 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2930 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2931 
2932 		*buf = (struct pipe_buffer) {
2933 			.ops	= &zero_pipe_buf_ops,
2934 			.page	= ZERO_PAGE(0),
2935 			.offset	= offset,
2936 			.len	= size,
2937 		};
2938 		pipe->head++;
2939 	}
2940 
2941 	return size;
2942 }
2943 
2944 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2945 				      struct pipe_inode_info *pipe,
2946 				      size_t len, unsigned int flags)
2947 {
2948 	struct inode *inode = file_inode(in);
2949 	struct address_space *mapping = inode->i_mapping;
2950 	struct folio *folio = NULL;
2951 	size_t total_spliced = 0, used, npages, n, part;
2952 	loff_t isize;
2953 	int error = 0;
2954 
2955 	/* Work out how much data we can actually add into the pipe */
2956 	used = pipe_occupancy(pipe->head, pipe->tail);
2957 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2958 	len = min_t(size_t, len, npages * PAGE_SIZE);
2959 
2960 	do {
2961 		if (*ppos >= i_size_read(inode))
2962 			break;
2963 
2964 		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
2965 					SGP_READ);
2966 		if (error) {
2967 			if (error == -EINVAL)
2968 				error = 0;
2969 			break;
2970 		}
2971 		if (folio) {
2972 			folio_unlock(folio);
2973 
2974 			if (folio_test_hwpoison(folio) ||
2975 			    (folio_test_large(folio) &&
2976 			     folio_test_has_hwpoisoned(folio))) {
2977 				error = -EIO;
2978 				break;
2979 			}
2980 		}
2981 
2982 		/*
2983 		 * i_size must be checked after we know the pages are Uptodate.
2984 		 *
2985 		 * Checking i_size after the check allows us to calculate
2986 		 * the correct value for "nr", which means the zero-filled
2987 		 * part of the page is not copied back to userspace (unless
2988 		 * another truncate extends the file - this is desired though).
2989 		 */
2990 		isize = i_size_read(inode);
2991 		if (unlikely(*ppos >= isize))
2992 			break;
2993 		part = min_t(loff_t, isize - *ppos, len);
2994 
2995 		if (folio) {
2996 			/*
2997 			 * If users can be writing to this page using arbitrary
2998 			 * virtual addresses, take care about potential aliasing
2999 			 * before reading the page on the kernel side.
3000 			 */
3001 			if (mapping_writably_mapped(mapping))
3002 				flush_dcache_folio(folio);
3003 			folio_mark_accessed(folio);
3004 			/*
3005 			 * Ok, we have the page, and it's up-to-date, so we can
3006 			 * now splice it into the pipe.
3007 			 */
3008 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3009 			folio_put(folio);
3010 			folio = NULL;
3011 		} else {
3012 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3013 		}
3014 
3015 		if (!n)
3016 			break;
3017 		len -= n;
3018 		total_spliced += n;
3019 		*ppos += n;
3020 		in->f_ra.prev_pos = *ppos;
3021 		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3022 			break;
3023 
3024 		cond_resched();
3025 	} while (len);
3026 
3027 	if (folio)
3028 		folio_put(folio);
3029 
3030 	file_accessed(in);
3031 	return total_spliced ? total_spliced : error;
3032 }
3033 
3034 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3035 {
3036 	struct address_space *mapping = file->f_mapping;
3037 	struct inode *inode = mapping->host;
3038 
3039 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3040 		return generic_file_llseek_size(file, offset, whence,
3041 					MAX_LFS_FILESIZE, i_size_read(inode));
3042 	if (offset < 0)
3043 		return -ENXIO;
3044 
3045 	inode_lock(inode);
3046 	/* We're holding i_rwsem so we can access i_size directly */
3047 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3048 	if (offset >= 0)
3049 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3050 	inode_unlock(inode);
3051 	return offset;
3052 }
3053 
3054 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3055 							 loff_t len)
3056 {
3057 	struct inode *inode = file_inode(file);
3058 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3059 	struct shmem_inode_info *info = SHMEM_I(inode);
3060 	struct shmem_falloc shmem_falloc;
3061 	pgoff_t start, index, end, undo_fallocend;
3062 	int error;
3063 
3064 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3065 		return -EOPNOTSUPP;
3066 
3067 	inode_lock(inode);
3068 
3069 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3070 		struct address_space *mapping = file->f_mapping;
3071 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3072 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3073 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3074 
3075 		/* protected by i_rwsem */
3076 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3077 			error = -EPERM;
3078 			goto out;
3079 		}
3080 
3081 		shmem_falloc.waitq = &shmem_falloc_waitq;
3082 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3083 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3084 		spin_lock(&inode->i_lock);
3085 		inode->i_private = &shmem_falloc;
3086 		spin_unlock(&inode->i_lock);
3087 
3088 		if ((u64)unmap_end > (u64)unmap_start)
3089 			unmap_mapping_range(mapping, unmap_start,
3090 					    1 + unmap_end - unmap_start, 0);
3091 		shmem_truncate_range(inode, offset, offset + len - 1);
3092 		/* No need to unmap again: hole-punching leaves COWed pages */
3093 
3094 		spin_lock(&inode->i_lock);
3095 		inode->i_private = NULL;
3096 		wake_up_all(&shmem_falloc_waitq);
3097 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3098 		spin_unlock(&inode->i_lock);
3099 		error = 0;
3100 		goto out;
3101 	}
3102 
3103 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3104 	error = inode_newsize_ok(inode, offset + len);
3105 	if (error)
3106 		goto out;
3107 
3108 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3109 		error = -EPERM;
3110 		goto out;
3111 	}
3112 
3113 	start = offset >> PAGE_SHIFT;
3114 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3115 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3116 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3117 		error = -ENOSPC;
3118 		goto out;
3119 	}
3120 
3121 	shmem_falloc.waitq = NULL;
3122 	shmem_falloc.start = start;
3123 	shmem_falloc.next  = start;
3124 	shmem_falloc.nr_falloced = 0;
3125 	shmem_falloc.nr_unswapped = 0;
3126 	spin_lock(&inode->i_lock);
3127 	inode->i_private = &shmem_falloc;
3128 	spin_unlock(&inode->i_lock);
3129 
3130 	/*
3131 	 * info->fallocend is only relevant when huge pages might be
3132 	 * involved: to prevent split_huge_page() freeing fallocated
3133 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3134 	 */
3135 	undo_fallocend = info->fallocend;
3136 	if (info->fallocend < end)
3137 		info->fallocend = end;
3138 
3139 	for (index = start; index < end; ) {
3140 		struct folio *folio;
3141 
3142 		/*
3143 		 * Good, the fallocate(2) manpage permits EINTR: we may have
3144 		 * been interrupted because we are using up too much memory.
3145 		 */
3146 		if (signal_pending(current))
3147 			error = -EINTR;
3148 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3149 			error = -ENOMEM;
3150 		else
3151 			error = shmem_get_folio(inode, index, &folio,
3152 						SGP_FALLOC);
3153 		if (error) {
3154 			info->fallocend = undo_fallocend;
3155 			/* Remove the !uptodate folios we added */
3156 			if (index > start) {
3157 				shmem_undo_range(inode,
3158 				    (loff_t)start << PAGE_SHIFT,
3159 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3160 			}
3161 			goto undone;
3162 		}
3163 
3164 		/*
3165 		 * Here is a more important optimization than it appears:
3166 		 * a second SGP_FALLOC on the same large folio will clear it,
3167 		 * making it uptodate and un-undoable if we fail later.
3168 		 */
3169 		index = folio_next_index(folio);
3170 		/* Beware 32-bit wraparound */
3171 		if (!index)
3172 			index--;
3173 
3174 		/*
3175 		 * Inform shmem_writepage() how far we have reached.
3176 		 * No need for lock or barrier: we have the page lock.
3177 		 */
3178 		if (!folio_test_uptodate(folio))
3179 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3180 		shmem_falloc.next = index;
3181 
3182 		/*
3183 		 * If !uptodate, leave it that way so that freeable folios
3184 		 * can be recognized if we need to rollback on error later.
3185 		 * But mark it dirty so that memory pressure will swap rather
3186 		 * than free the folios we are allocating (and SGP_CACHE folios
3187 		 * might still be clean: we now need to mark those dirty too).
3188 		 */
3189 		folio_mark_dirty(folio);
3190 		folio_unlock(folio);
3191 		folio_put(folio);
3192 		cond_resched();
3193 	}
3194 
3195 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3196 		i_size_write(inode, offset + len);
3197 undone:
3198 	spin_lock(&inode->i_lock);
3199 	inode->i_private = NULL;
3200 	spin_unlock(&inode->i_lock);
3201 out:
3202 	if (!error)
3203 		file_modified(file);
3204 	inode_unlock(inode);
3205 	return error;
3206 }
3207 
3208 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3209 {
3210 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3211 
3212 	buf->f_type = TMPFS_MAGIC;
3213 	buf->f_bsize = PAGE_SIZE;
3214 	buf->f_namelen = NAME_MAX;
3215 	if (sbinfo->max_blocks) {
3216 		buf->f_blocks = sbinfo->max_blocks;
3217 		buf->f_bavail =
3218 		buf->f_bfree  = sbinfo->max_blocks -
3219 				percpu_counter_sum(&sbinfo->used_blocks);
3220 	}
3221 	if (sbinfo->max_inodes) {
3222 		buf->f_files = sbinfo->max_inodes;
3223 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3224 	}
3225 	/* else leave those fields 0 like simple_statfs */
3226 
3227 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3228 
3229 	return 0;
3230 }
3231 
3232 /*
3233  * File creation. Allocate an inode, and we're done..
3234  */
3235 static int
3236 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3237 	    struct dentry *dentry, umode_t mode, dev_t dev)
3238 {
3239 	struct inode *inode;
3240 	int error;
3241 
3242 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3243 	if (IS_ERR(inode))
3244 		return PTR_ERR(inode);
3245 
3246 	error = simple_acl_create(dir, inode);
3247 	if (error)
3248 		goto out_iput;
3249 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3250 					     shmem_initxattrs, NULL);
3251 	if (error && error != -EOPNOTSUPP)
3252 		goto out_iput;
3253 
3254 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3255 	if (error)
3256 		goto out_iput;
3257 
3258 	dir->i_size += BOGO_DIRENT_SIZE;
3259 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3260 	inode_inc_iversion(dir);
3261 	d_instantiate(dentry, inode);
3262 	dget(dentry); /* Extra count - pin the dentry in core */
3263 	return error;
3264 
3265 out_iput:
3266 	iput(inode);
3267 	return error;
3268 }
3269 
3270 static int
3271 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3272 	      struct file *file, umode_t mode)
3273 {
3274 	struct inode *inode;
3275 	int error;
3276 
3277 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3278 	if (IS_ERR(inode)) {
3279 		error = PTR_ERR(inode);
3280 		goto err_out;
3281 	}
3282 	error = security_inode_init_security(inode, dir, NULL,
3283 					     shmem_initxattrs, NULL);
3284 	if (error && error != -EOPNOTSUPP)
3285 		goto out_iput;
3286 	error = simple_acl_create(dir, inode);
3287 	if (error)
3288 		goto out_iput;
3289 	d_tmpfile(file, inode);
3290 
3291 err_out:
3292 	return finish_open_simple(file, error);
3293 out_iput:
3294 	iput(inode);
3295 	return error;
3296 }
3297 
3298 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3299 		       struct dentry *dentry, umode_t mode)
3300 {
3301 	int error;
3302 
3303 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3304 	if (error)
3305 		return error;
3306 	inc_nlink(dir);
3307 	return 0;
3308 }
3309 
3310 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3311 			struct dentry *dentry, umode_t mode, bool excl)
3312 {
3313 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3314 }
3315 
3316 /*
3317  * Link a file..
3318  */
3319 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3320 		      struct dentry *dentry)
3321 {
3322 	struct inode *inode = d_inode(old_dentry);
3323 	int ret = 0;
3324 
3325 	/*
3326 	 * No ordinary (disk based) filesystem counts links as inodes;
3327 	 * but each new link needs a new dentry, pinning lowmem, and
3328 	 * tmpfs dentries cannot be pruned until they are unlinked.
3329 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3330 	 * first link must skip that, to get the accounting right.
3331 	 */
3332 	if (inode->i_nlink) {
3333 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3334 		if (ret)
3335 			goto out;
3336 	}
3337 
3338 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3339 	if (ret) {
3340 		if (inode->i_nlink)
3341 			shmem_free_inode(inode->i_sb, 0);
3342 		goto out;
3343 	}
3344 
3345 	dir->i_size += BOGO_DIRENT_SIZE;
3346 	inode_set_mtime_to_ts(dir,
3347 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3348 	inode_inc_iversion(dir);
3349 	inc_nlink(inode);
3350 	ihold(inode);	/* New dentry reference */
3351 	dget(dentry);	/* Extra pinning count for the created dentry */
3352 	d_instantiate(dentry, inode);
3353 out:
3354 	return ret;
3355 }
3356 
3357 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3358 {
3359 	struct inode *inode = d_inode(dentry);
3360 
3361 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3362 		shmem_free_inode(inode->i_sb, 0);
3363 
3364 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3365 
3366 	dir->i_size -= BOGO_DIRENT_SIZE;
3367 	inode_set_mtime_to_ts(dir,
3368 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3369 	inode_inc_iversion(dir);
3370 	drop_nlink(inode);
3371 	dput(dentry);	/* Undo the count from "create" - does all the work */
3372 	return 0;
3373 }
3374 
3375 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3376 {
3377 	if (!simple_empty(dentry))
3378 		return -ENOTEMPTY;
3379 
3380 	drop_nlink(d_inode(dentry));
3381 	drop_nlink(dir);
3382 	return shmem_unlink(dir, dentry);
3383 }
3384 
3385 static int shmem_whiteout(struct mnt_idmap *idmap,
3386 			  struct inode *old_dir, struct dentry *old_dentry)
3387 {
3388 	struct dentry *whiteout;
3389 	int error;
3390 
3391 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3392 	if (!whiteout)
3393 		return -ENOMEM;
3394 
3395 	error = shmem_mknod(idmap, old_dir, whiteout,
3396 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3397 	dput(whiteout);
3398 	if (error)
3399 		return error;
3400 
3401 	/*
3402 	 * Cheat and hash the whiteout while the old dentry is still in
3403 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3404 	 *
3405 	 * d_lookup() will consistently find one of them at this point,
3406 	 * not sure which one, but that isn't even important.
3407 	 */
3408 	d_rehash(whiteout);
3409 	return 0;
3410 }
3411 
3412 /*
3413  * The VFS layer already does all the dentry stuff for rename,
3414  * we just have to decrement the usage count for the target if
3415  * it exists so that the VFS layer correctly free's it when it
3416  * gets overwritten.
3417  */
3418 static int shmem_rename2(struct mnt_idmap *idmap,
3419 			 struct inode *old_dir, struct dentry *old_dentry,
3420 			 struct inode *new_dir, struct dentry *new_dentry,
3421 			 unsigned int flags)
3422 {
3423 	struct inode *inode = d_inode(old_dentry);
3424 	int they_are_dirs = S_ISDIR(inode->i_mode);
3425 	int error;
3426 
3427 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3428 		return -EINVAL;
3429 
3430 	if (flags & RENAME_EXCHANGE)
3431 		return simple_offset_rename_exchange(old_dir, old_dentry,
3432 						     new_dir, new_dentry);
3433 
3434 	if (!simple_empty(new_dentry))
3435 		return -ENOTEMPTY;
3436 
3437 	if (flags & RENAME_WHITEOUT) {
3438 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3439 		if (error)
3440 			return error;
3441 	}
3442 
3443 	simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry);
3444 	error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry);
3445 	if (error)
3446 		return error;
3447 
3448 	if (d_really_is_positive(new_dentry)) {
3449 		(void) shmem_unlink(new_dir, new_dentry);
3450 		if (they_are_dirs) {
3451 			drop_nlink(d_inode(new_dentry));
3452 			drop_nlink(old_dir);
3453 		}
3454 	} else if (they_are_dirs) {
3455 		drop_nlink(old_dir);
3456 		inc_nlink(new_dir);
3457 	}
3458 
3459 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3460 	new_dir->i_size += BOGO_DIRENT_SIZE;
3461 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3462 	inode_inc_iversion(old_dir);
3463 	inode_inc_iversion(new_dir);
3464 	return 0;
3465 }
3466 
3467 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3468 			 struct dentry *dentry, const char *symname)
3469 {
3470 	int error;
3471 	int len;
3472 	struct inode *inode;
3473 	struct folio *folio;
3474 
3475 	len = strlen(symname) + 1;
3476 	if (len > PAGE_SIZE)
3477 		return -ENAMETOOLONG;
3478 
3479 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3480 				VM_NORESERVE);
3481 	if (IS_ERR(inode))
3482 		return PTR_ERR(inode);
3483 
3484 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3485 					     shmem_initxattrs, NULL);
3486 	if (error && error != -EOPNOTSUPP)
3487 		goto out_iput;
3488 
3489 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3490 	if (error)
3491 		goto out_iput;
3492 
3493 	inode->i_size = len-1;
3494 	if (len <= SHORT_SYMLINK_LEN) {
3495 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3496 		if (!inode->i_link) {
3497 			error = -ENOMEM;
3498 			goto out_remove_offset;
3499 		}
3500 		inode->i_op = &shmem_short_symlink_operations;
3501 	} else {
3502 		inode_nohighmem(inode);
3503 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3504 		if (error)
3505 			goto out_remove_offset;
3506 		inode->i_mapping->a_ops = &shmem_aops;
3507 		inode->i_op = &shmem_symlink_inode_operations;
3508 		memcpy(folio_address(folio), symname, len);
3509 		folio_mark_uptodate(folio);
3510 		folio_mark_dirty(folio);
3511 		folio_unlock(folio);
3512 		folio_put(folio);
3513 	}
3514 	dir->i_size += BOGO_DIRENT_SIZE;
3515 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3516 	inode_inc_iversion(dir);
3517 	d_instantiate(dentry, inode);
3518 	dget(dentry);
3519 	return 0;
3520 
3521 out_remove_offset:
3522 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3523 out_iput:
3524 	iput(inode);
3525 	return error;
3526 }
3527 
3528 static void shmem_put_link(void *arg)
3529 {
3530 	folio_mark_accessed(arg);
3531 	folio_put(arg);
3532 }
3533 
3534 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3535 				  struct delayed_call *done)
3536 {
3537 	struct folio *folio = NULL;
3538 	int error;
3539 
3540 	if (!dentry) {
3541 		folio = filemap_get_folio(inode->i_mapping, 0);
3542 		if (IS_ERR(folio))
3543 			return ERR_PTR(-ECHILD);
3544 		if (PageHWPoison(folio_page(folio, 0)) ||
3545 		    !folio_test_uptodate(folio)) {
3546 			folio_put(folio);
3547 			return ERR_PTR(-ECHILD);
3548 		}
3549 	} else {
3550 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3551 		if (error)
3552 			return ERR_PTR(error);
3553 		if (!folio)
3554 			return ERR_PTR(-ECHILD);
3555 		if (PageHWPoison(folio_page(folio, 0))) {
3556 			folio_unlock(folio);
3557 			folio_put(folio);
3558 			return ERR_PTR(-ECHILD);
3559 		}
3560 		folio_unlock(folio);
3561 	}
3562 	set_delayed_call(done, shmem_put_link, folio);
3563 	return folio_address(folio);
3564 }
3565 
3566 #ifdef CONFIG_TMPFS_XATTR
3567 
3568 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3569 {
3570 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3571 
3572 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3573 
3574 	return 0;
3575 }
3576 
3577 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3578 			      struct dentry *dentry, struct fileattr *fa)
3579 {
3580 	struct inode *inode = d_inode(dentry);
3581 	struct shmem_inode_info *info = SHMEM_I(inode);
3582 
3583 	if (fileattr_has_fsx(fa))
3584 		return -EOPNOTSUPP;
3585 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3586 		return -EOPNOTSUPP;
3587 
3588 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3589 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3590 
3591 	shmem_set_inode_flags(inode, info->fsflags);
3592 	inode_set_ctime_current(inode);
3593 	inode_inc_iversion(inode);
3594 	return 0;
3595 }
3596 
3597 /*
3598  * Superblocks without xattr inode operations may get some security.* xattr
3599  * support from the LSM "for free". As soon as we have any other xattrs
3600  * like ACLs, we also need to implement the security.* handlers at
3601  * filesystem level, though.
3602  */
3603 
3604 /*
3605  * Callback for security_inode_init_security() for acquiring xattrs.
3606  */
3607 static int shmem_initxattrs(struct inode *inode,
3608 			    const struct xattr *xattr_array, void *fs_info)
3609 {
3610 	struct shmem_inode_info *info = SHMEM_I(inode);
3611 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3612 	const struct xattr *xattr;
3613 	struct simple_xattr *new_xattr;
3614 	size_t ispace = 0;
3615 	size_t len;
3616 
3617 	if (sbinfo->max_inodes) {
3618 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3619 			ispace += simple_xattr_space(xattr->name,
3620 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3621 		}
3622 		if (ispace) {
3623 			raw_spin_lock(&sbinfo->stat_lock);
3624 			if (sbinfo->free_ispace < ispace)
3625 				ispace = 0;
3626 			else
3627 				sbinfo->free_ispace -= ispace;
3628 			raw_spin_unlock(&sbinfo->stat_lock);
3629 			if (!ispace)
3630 				return -ENOSPC;
3631 		}
3632 	}
3633 
3634 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3635 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3636 		if (!new_xattr)
3637 			break;
3638 
3639 		len = strlen(xattr->name) + 1;
3640 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3641 					  GFP_KERNEL_ACCOUNT);
3642 		if (!new_xattr->name) {
3643 			kvfree(new_xattr);
3644 			break;
3645 		}
3646 
3647 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3648 		       XATTR_SECURITY_PREFIX_LEN);
3649 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3650 		       xattr->name, len);
3651 
3652 		simple_xattr_add(&info->xattrs, new_xattr);
3653 	}
3654 
3655 	if (xattr->name != NULL) {
3656 		if (ispace) {
3657 			raw_spin_lock(&sbinfo->stat_lock);
3658 			sbinfo->free_ispace += ispace;
3659 			raw_spin_unlock(&sbinfo->stat_lock);
3660 		}
3661 		simple_xattrs_free(&info->xattrs, NULL);
3662 		return -ENOMEM;
3663 	}
3664 
3665 	return 0;
3666 }
3667 
3668 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3669 				   struct dentry *unused, struct inode *inode,
3670 				   const char *name, void *buffer, size_t size)
3671 {
3672 	struct shmem_inode_info *info = SHMEM_I(inode);
3673 
3674 	name = xattr_full_name(handler, name);
3675 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3676 }
3677 
3678 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3679 				   struct mnt_idmap *idmap,
3680 				   struct dentry *unused, struct inode *inode,
3681 				   const char *name, const void *value,
3682 				   size_t size, int flags)
3683 {
3684 	struct shmem_inode_info *info = SHMEM_I(inode);
3685 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3686 	struct simple_xattr *old_xattr;
3687 	size_t ispace = 0;
3688 
3689 	name = xattr_full_name(handler, name);
3690 	if (value && sbinfo->max_inodes) {
3691 		ispace = simple_xattr_space(name, size);
3692 		raw_spin_lock(&sbinfo->stat_lock);
3693 		if (sbinfo->free_ispace < ispace)
3694 			ispace = 0;
3695 		else
3696 			sbinfo->free_ispace -= ispace;
3697 		raw_spin_unlock(&sbinfo->stat_lock);
3698 		if (!ispace)
3699 			return -ENOSPC;
3700 	}
3701 
3702 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
3703 	if (!IS_ERR(old_xattr)) {
3704 		ispace = 0;
3705 		if (old_xattr && sbinfo->max_inodes)
3706 			ispace = simple_xattr_space(old_xattr->name,
3707 						    old_xattr->size);
3708 		simple_xattr_free(old_xattr);
3709 		old_xattr = NULL;
3710 		inode_set_ctime_current(inode);
3711 		inode_inc_iversion(inode);
3712 	}
3713 	if (ispace) {
3714 		raw_spin_lock(&sbinfo->stat_lock);
3715 		sbinfo->free_ispace += ispace;
3716 		raw_spin_unlock(&sbinfo->stat_lock);
3717 	}
3718 	return PTR_ERR(old_xattr);
3719 }
3720 
3721 static const struct xattr_handler shmem_security_xattr_handler = {
3722 	.prefix = XATTR_SECURITY_PREFIX,
3723 	.get = shmem_xattr_handler_get,
3724 	.set = shmem_xattr_handler_set,
3725 };
3726 
3727 static const struct xattr_handler shmem_trusted_xattr_handler = {
3728 	.prefix = XATTR_TRUSTED_PREFIX,
3729 	.get = shmem_xattr_handler_get,
3730 	.set = shmem_xattr_handler_set,
3731 };
3732 
3733 static const struct xattr_handler shmem_user_xattr_handler = {
3734 	.prefix = XATTR_USER_PREFIX,
3735 	.get = shmem_xattr_handler_get,
3736 	.set = shmem_xattr_handler_set,
3737 };
3738 
3739 static const struct xattr_handler * const shmem_xattr_handlers[] = {
3740 	&shmem_security_xattr_handler,
3741 	&shmem_trusted_xattr_handler,
3742 	&shmem_user_xattr_handler,
3743 	NULL
3744 };
3745 
3746 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3747 {
3748 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3749 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3750 }
3751 #endif /* CONFIG_TMPFS_XATTR */
3752 
3753 static const struct inode_operations shmem_short_symlink_operations = {
3754 	.getattr	= shmem_getattr,
3755 	.setattr	= shmem_setattr,
3756 	.get_link	= simple_get_link,
3757 #ifdef CONFIG_TMPFS_XATTR
3758 	.listxattr	= shmem_listxattr,
3759 #endif
3760 };
3761 
3762 static const struct inode_operations shmem_symlink_inode_operations = {
3763 	.getattr	= shmem_getattr,
3764 	.setattr	= shmem_setattr,
3765 	.get_link	= shmem_get_link,
3766 #ifdef CONFIG_TMPFS_XATTR
3767 	.listxattr	= shmem_listxattr,
3768 #endif
3769 };
3770 
3771 static struct dentry *shmem_get_parent(struct dentry *child)
3772 {
3773 	return ERR_PTR(-ESTALE);
3774 }
3775 
3776 static int shmem_match(struct inode *ino, void *vfh)
3777 {
3778 	__u32 *fh = vfh;
3779 	__u64 inum = fh[2];
3780 	inum = (inum << 32) | fh[1];
3781 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3782 }
3783 
3784 /* Find any alias of inode, but prefer a hashed alias */
3785 static struct dentry *shmem_find_alias(struct inode *inode)
3786 {
3787 	struct dentry *alias = d_find_alias(inode);
3788 
3789 	return alias ?: d_find_any_alias(inode);
3790 }
3791 
3792 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3793 		struct fid *fid, int fh_len, int fh_type)
3794 {
3795 	struct inode *inode;
3796 	struct dentry *dentry = NULL;
3797 	u64 inum;
3798 
3799 	if (fh_len < 3)
3800 		return NULL;
3801 
3802 	inum = fid->raw[2];
3803 	inum = (inum << 32) | fid->raw[1];
3804 
3805 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3806 			shmem_match, fid->raw);
3807 	if (inode) {
3808 		dentry = shmem_find_alias(inode);
3809 		iput(inode);
3810 	}
3811 
3812 	return dentry;
3813 }
3814 
3815 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3816 				struct inode *parent)
3817 {
3818 	if (*len < 3) {
3819 		*len = 3;
3820 		return FILEID_INVALID;
3821 	}
3822 
3823 	if (inode_unhashed(inode)) {
3824 		/* Unfortunately insert_inode_hash is not idempotent,
3825 		 * so as we hash inodes here rather than at creation
3826 		 * time, we need a lock to ensure we only try
3827 		 * to do it once
3828 		 */
3829 		static DEFINE_SPINLOCK(lock);
3830 		spin_lock(&lock);
3831 		if (inode_unhashed(inode))
3832 			__insert_inode_hash(inode,
3833 					    inode->i_ino + inode->i_generation);
3834 		spin_unlock(&lock);
3835 	}
3836 
3837 	fh[0] = inode->i_generation;
3838 	fh[1] = inode->i_ino;
3839 	fh[2] = ((__u64)inode->i_ino) >> 32;
3840 
3841 	*len = 3;
3842 	return 1;
3843 }
3844 
3845 static const struct export_operations shmem_export_ops = {
3846 	.get_parent     = shmem_get_parent,
3847 	.encode_fh      = shmem_encode_fh,
3848 	.fh_to_dentry	= shmem_fh_to_dentry,
3849 };
3850 
3851 enum shmem_param {
3852 	Opt_gid,
3853 	Opt_huge,
3854 	Opt_mode,
3855 	Opt_mpol,
3856 	Opt_nr_blocks,
3857 	Opt_nr_inodes,
3858 	Opt_size,
3859 	Opt_uid,
3860 	Opt_inode32,
3861 	Opt_inode64,
3862 	Opt_noswap,
3863 	Opt_quota,
3864 	Opt_usrquota,
3865 	Opt_grpquota,
3866 	Opt_usrquota_block_hardlimit,
3867 	Opt_usrquota_inode_hardlimit,
3868 	Opt_grpquota_block_hardlimit,
3869 	Opt_grpquota_inode_hardlimit,
3870 };
3871 
3872 static const struct constant_table shmem_param_enums_huge[] = {
3873 	{"never",	SHMEM_HUGE_NEVER },
3874 	{"always",	SHMEM_HUGE_ALWAYS },
3875 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3876 	{"advise",	SHMEM_HUGE_ADVISE },
3877 	{}
3878 };
3879 
3880 const struct fs_parameter_spec shmem_fs_parameters[] = {
3881 	fsparam_u32   ("gid",		Opt_gid),
3882 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3883 	fsparam_u32oct("mode",		Opt_mode),
3884 	fsparam_string("mpol",		Opt_mpol),
3885 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3886 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3887 	fsparam_string("size",		Opt_size),
3888 	fsparam_u32   ("uid",		Opt_uid),
3889 	fsparam_flag  ("inode32",	Opt_inode32),
3890 	fsparam_flag  ("inode64",	Opt_inode64),
3891 	fsparam_flag  ("noswap",	Opt_noswap),
3892 #ifdef CONFIG_TMPFS_QUOTA
3893 	fsparam_flag  ("quota",		Opt_quota),
3894 	fsparam_flag  ("usrquota",	Opt_usrquota),
3895 	fsparam_flag  ("grpquota",	Opt_grpquota),
3896 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
3897 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
3898 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
3899 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
3900 #endif
3901 	{}
3902 };
3903 
3904 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3905 {
3906 	struct shmem_options *ctx = fc->fs_private;
3907 	struct fs_parse_result result;
3908 	unsigned long long size;
3909 	char *rest;
3910 	int opt;
3911 	kuid_t kuid;
3912 	kgid_t kgid;
3913 
3914 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3915 	if (opt < 0)
3916 		return opt;
3917 
3918 	switch (opt) {
3919 	case Opt_size:
3920 		size = memparse(param->string, &rest);
3921 		if (*rest == '%') {
3922 			size <<= PAGE_SHIFT;
3923 			size *= totalram_pages();
3924 			do_div(size, 100);
3925 			rest++;
3926 		}
3927 		if (*rest)
3928 			goto bad_value;
3929 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3930 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3931 		break;
3932 	case Opt_nr_blocks:
3933 		ctx->blocks = memparse(param->string, &rest);
3934 		if (*rest || ctx->blocks > LONG_MAX)
3935 			goto bad_value;
3936 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3937 		break;
3938 	case Opt_nr_inodes:
3939 		ctx->inodes = memparse(param->string, &rest);
3940 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
3941 			goto bad_value;
3942 		ctx->seen |= SHMEM_SEEN_INODES;
3943 		break;
3944 	case Opt_mode:
3945 		ctx->mode = result.uint_32 & 07777;
3946 		break;
3947 	case Opt_uid:
3948 		kuid = make_kuid(current_user_ns(), result.uint_32);
3949 		if (!uid_valid(kuid))
3950 			goto bad_value;
3951 
3952 		/*
3953 		 * The requested uid must be representable in the
3954 		 * filesystem's idmapping.
3955 		 */
3956 		if (!kuid_has_mapping(fc->user_ns, kuid))
3957 			goto bad_value;
3958 
3959 		ctx->uid = kuid;
3960 		break;
3961 	case Opt_gid:
3962 		kgid = make_kgid(current_user_ns(), result.uint_32);
3963 		if (!gid_valid(kgid))
3964 			goto bad_value;
3965 
3966 		/*
3967 		 * The requested gid must be representable in the
3968 		 * filesystem's idmapping.
3969 		 */
3970 		if (!kgid_has_mapping(fc->user_ns, kgid))
3971 			goto bad_value;
3972 
3973 		ctx->gid = kgid;
3974 		break;
3975 	case Opt_huge:
3976 		ctx->huge = result.uint_32;
3977 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3978 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3979 		      has_transparent_hugepage()))
3980 			goto unsupported_parameter;
3981 		ctx->seen |= SHMEM_SEEN_HUGE;
3982 		break;
3983 	case Opt_mpol:
3984 		if (IS_ENABLED(CONFIG_NUMA)) {
3985 			mpol_put(ctx->mpol);
3986 			ctx->mpol = NULL;
3987 			if (mpol_parse_str(param->string, &ctx->mpol))
3988 				goto bad_value;
3989 			break;
3990 		}
3991 		goto unsupported_parameter;
3992 	case Opt_inode32:
3993 		ctx->full_inums = false;
3994 		ctx->seen |= SHMEM_SEEN_INUMS;
3995 		break;
3996 	case Opt_inode64:
3997 		if (sizeof(ino_t) < 8) {
3998 			return invalfc(fc,
3999 				       "Cannot use inode64 with <64bit inums in kernel\n");
4000 		}
4001 		ctx->full_inums = true;
4002 		ctx->seen |= SHMEM_SEEN_INUMS;
4003 		break;
4004 	case Opt_noswap:
4005 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4006 			return invalfc(fc,
4007 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4008 		}
4009 		ctx->noswap = true;
4010 		ctx->seen |= SHMEM_SEEN_NOSWAP;
4011 		break;
4012 	case Opt_quota:
4013 		if (fc->user_ns != &init_user_ns)
4014 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4015 		ctx->seen |= SHMEM_SEEN_QUOTA;
4016 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4017 		break;
4018 	case Opt_usrquota:
4019 		if (fc->user_ns != &init_user_ns)
4020 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4021 		ctx->seen |= SHMEM_SEEN_QUOTA;
4022 		ctx->quota_types |= QTYPE_MASK_USR;
4023 		break;
4024 	case Opt_grpquota:
4025 		if (fc->user_ns != &init_user_ns)
4026 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4027 		ctx->seen |= SHMEM_SEEN_QUOTA;
4028 		ctx->quota_types |= QTYPE_MASK_GRP;
4029 		break;
4030 	case Opt_usrquota_block_hardlimit:
4031 		size = memparse(param->string, &rest);
4032 		if (*rest || !size)
4033 			goto bad_value;
4034 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4035 			return invalfc(fc,
4036 				       "User quota block hardlimit too large.");
4037 		ctx->qlimits.usrquota_bhardlimit = size;
4038 		break;
4039 	case Opt_grpquota_block_hardlimit:
4040 		size = memparse(param->string, &rest);
4041 		if (*rest || !size)
4042 			goto bad_value;
4043 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4044 			return invalfc(fc,
4045 				       "Group quota block hardlimit too large.");
4046 		ctx->qlimits.grpquota_bhardlimit = size;
4047 		break;
4048 	case Opt_usrquota_inode_hardlimit:
4049 		size = memparse(param->string, &rest);
4050 		if (*rest || !size)
4051 			goto bad_value;
4052 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4053 			return invalfc(fc,
4054 				       "User quota inode hardlimit too large.");
4055 		ctx->qlimits.usrquota_ihardlimit = size;
4056 		break;
4057 	case Opt_grpquota_inode_hardlimit:
4058 		size = memparse(param->string, &rest);
4059 		if (*rest || !size)
4060 			goto bad_value;
4061 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4062 			return invalfc(fc,
4063 				       "Group quota inode hardlimit too large.");
4064 		ctx->qlimits.grpquota_ihardlimit = size;
4065 		break;
4066 	}
4067 	return 0;
4068 
4069 unsupported_parameter:
4070 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4071 bad_value:
4072 	return invalfc(fc, "Bad value for '%s'", param->key);
4073 }
4074 
4075 static int shmem_parse_options(struct fs_context *fc, void *data)
4076 {
4077 	char *options = data;
4078 
4079 	if (options) {
4080 		int err = security_sb_eat_lsm_opts(options, &fc->security);
4081 		if (err)
4082 			return err;
4083 	}
4084 
4085 	while (options != NULL) {
4086 		char *this_char = options;
4087 		for (;;) {
4088 			/*
4089 			 * NUL-terminate this option: unfortunately,
4090 			 * mount options form a comma-separated list,
4091 			 * but mpol's nodelist may also contain commas.
4092 			 */
4093 			options = strchr(options, ',');
4094 			if (options == NULL)
4095 				break;
4096 			options++;
4097 			if (!isdigit(*options)) {
4098 				options[-1] = '\0';
4099 				break;
4100 			}
4101 		}
4102 		if (*this_char) {
4103 			char *value = strchr(this_char, '=');
4104 			size_t len = 0;
4105 			int err;
4106 
4107 			if (value) {
4108 				*value++ = '\0';
4109 				len = strlen(value);
4110 			}
4111 			err = vfs_parse_fs_string(fc, this_char, value, len);
4112 			if (err < 0)
4113 				return err;
4114 		}
4115 	}
4116 	return 0;
4117 }
4118 
4119 /*
4120  * Reconfigure a shmem filesystem.
4121  */
4122 static int shmem_reconfigure(struct fs_context *fc)
4123 {
4124 	struct shmem_options *ctx = fc->fs_private;
4125 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4126 	unsigned long used_isp;
4127 	struct mempolicy *mpol = NULL;
4128 	const char *err;
4129 
4130 	raw_spin_lock(&sbinfo->stat_lock);
4131 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4132 
4133 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4134 		if (!sbinfo->max_blocks) {
4135 			err = "Cannot retroactively limit size";
4136 			goto out;
4137 		}
4138 		if (percpu_counter_compare(&sbinfo->used_blocks,
4139 					   ctx->blocks) > 0) {
4140 			err = "Too small a size for current use";
4141 			goto out;
4142 		}
4143 	}
4144 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4145 		if (!sbinfo->max_inodes) {
4146 			err = "Cannot retroactively limit inodes";
4147 			goto out;
4148 		}
4149 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4150 			err = "Too few inodes for current use";
4151 			goto out;
4152 		}
4153 	}
4154 
4155 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4156 	    sbinfo->next_ino > UINT_MAX) {
4157 		err = "Current inum too high to switch to 32-bit inums";
4158 		goto out;
4159 	}
4160 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4161 		err = "Cannot disable swap on remount";
4162 		goto out;
4163 	}
4164 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4165 		err = "Cannot enable swap on remount if it was disabled on first mount";
4166 		goto out;
4167 	}
4168 
4169 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4170 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4171 		err = "Cannot enable quota on remount";
4172 		goto out;
4173 	}
4174 
4175 #ifdef CONFIG_TMPFS_QUOTA
4176 #define CHANGED_LIMIT(name)						\
4177 	(ctx->qlimits.name## hardlimit &&				\
4178 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4179 
4180 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4181 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4182 		err = "Cannot change global quota limit on remount";
4183 		goto out;
4184 	}
4185 #endif /* CONFIG_TMPFS_QUOTA */
4186 
4187 	if (ctx->seen & SHMEM_SEEN_HUGE)
4188 		sbinfo->huge = ctx->huge;
4189 	if (ctx->seen & SHMEM_SEEN_INUMS)
4190 		sbinfo->full_inums = ctx->full_inums;
4191 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4192 		sbinfo->max_blocks  = ctx->blocks;
4193 	if (ctx->seen & SHMEM_SEEN_INODES) {
4194 		sbinfo->max_inodes  = ctx->inodes;
4195 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4196 	}
4197 
4198 	/*
4199 	 * Preserve previous mempolicy unless mpol remount option was specified.
4200 	 */
4201 	if (ctx->mpol) {
4202 		mpol = sbinfo->mpol;
4203 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4204 		ctx->mpol = NULL;
4205 	}
4206 
4207 	if (ctx->noswap)
4208 		sbinfo->noswap = true;
4209 
4210 	raw_spin_unlock(&sbinfo->stat_lock);
4211 	mpol_put(mpol);
4212 	return 0;
4213 out:
4214 	raw_spin_unlock(&sbinfo->stat_lock);
4215 	return invalfc(fc, "%s", err);
4216 }
4217 
4218 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4219 {
4220 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4221 	struct mempolicy *mpol;
4222 
4223 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4224 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4225 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4226 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4227 	if (sbinfo->mode != (0777 | S_ISVTX))
4228 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4229 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4230 		seq_printf(seq, ",uid=%u",
4231 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4232 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4233 		seq_printf(seq, ",gid=%u",
4234 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4235 
4236 	/*
4237 	 * Showing inode{64,32} might be useful even if it's the system default,
4238 	 * since then people don't have to resort to checking both here and
4239 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4240 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4241 	 *
4242 	 * We hide it when inode64 isn't the default and we are using 32-bit
4243 	 * inodes, since that probably just means the feature isn't even under
4244 	 * consideration.
4245 	 *
4246 	 * As such:
4247 	 *
4248 	 *                     +-----------------+-----------------+
4249 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4250 	 *  +------------------+-----------------+-----------------+
4251 	 *  | full_inums=true  | show            | show            |
4252 	 *  | full_inums=false | show            | hide            |
4253 	 *  +------------------+-----------------+-----------------+
4254 	 *
4255 	 */
4256 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4257 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4259 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4260 	if (sbinfo->huge)
4261 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4262 #endif
4263 	mpol = shmem_get_sbmpol(sbinfo);
4264 	shmem_show_mpol(seq, mpol);
4265 	mpol_put(mpol);
4266 	if (sbinfo->noswap)
4267 		seq_printf(seq, ",noswap");
4268 	return 0;
4269 }
4270 
4271 #endif /* CONFIG_TMPFS */
4272 
4273 static void shmem_put_super(struct super_block *sb)
4274 {
4275 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4276 
4277 #ifdef CONFIG_TMPFS_QUOTA
4278 	shmem_disable_quotas(sb);
4279 #endif
4280 	free_percpu(sbinfo->ino_batch);
4281 	percpu_counter_destroy(&sbinfo->used_blocks);
4282 	mpol_put(sbinfo->mpol);
4283 	kfree(sbinfo);
4284 	sb->s_fs_info = NULL;
4285 }
4286 
4287 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4288 {
4289 	struct shmem_options *ctx = fc->fs_private;
4290 	struct inode *inode;
4291 	struct shmem_sb_info *sbinfo;
4292 	int error = -ENOMEM;
4293 
4294 	/* Round up to L1_CACHE_BYTES to resist false sharing */
4295 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4296 				L1_CACHE_BYTES), GFP_KERNEL);
4297 	if (!sbinfo)
4298 		return error;
4299 
4300 	sb->s_fs_info = sbinfo;
4301 
4302 #ifdef CONFIG_TMPFS
4303 	/*
4304 	 * Per default we only allow half of the physical ram per
4305 	 * tmpfs instance, limiting inodes to one per page of lowmem;
4306 	 * but the internal instance is left unlimited.
4307 	 */
4308 	if (!(sb->s_flags & SB_KERNMOUNT)) {
4309 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4310 			ctx->blocks = shmem_default_max_blocks();
4311 		if (!(ctx->seen & SHMEM_SEEN_INODES))
4312 			ctx->inodes = shmem_default_max_inodes();
4313 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4314 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4315 		sbinfo->noswap = ctx->noswap;
4316 	} else {
4317 		sb->s_flags |= SB_NOUSER;
4318 	}
4319 	sb->s_export_op = &shmem_export_ops;
4320 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4321 #else
4322 	sb->s_flags |= SB_NOUSER;
4323 #endif
4324 	sbinfo->max_blocks = ctx->blocks;
4325 	sbinfo->max_inodes = ctx->inodes;
4326 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4327 	if (sb->s_flags & SB_KERNMOUNT) {
4328 		sbinfo->ino_batch = alloc_percpu(ino_t);
4329 		if (!sbinfo->ino_batch)
4330 			goto failed;
4331 	}
4332 	sbinfo->uid = ctx->uid;
4333 	sbinfo->gid = ctx->gid;
4334 	sbinfo->full_inums = ctx->full_inums;
4335 	sbinfo->mode = ctx->mode;
4336 	sbinfo->huge = ctx->huge;
4337 	sbinfo->mpol = ctx->mpol;
4338 	ctx->mpol = NULL;
4339 
4340 	raw_spin_lock_init(&sbinfo->stat_lock);
4341 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4342 		goto failed;
4343 	spin_lock_init(&sbinfo->shrinklist_lock);
4344 	INIT_LIST_HEAD(&sbinfo->shrinklist);
4345 
4346 	sb->s_maxbytes = MAX_LFS_FILESIZE;
4347 	sb->s_blocksize = PAGE_SIZE;
4348 	sb->s_blocksize_bits = PAGE_SHIFT;
4349 	sb->s_magic = TMPFS_MAGIC;
4350 	sb->s_op = &shmem_ops;
4351 	sb->s_time_gran = 1;
4352 #ifdef CONFIG_TMPFS_XATTR
4353 	sb->s_xattr = shmem_xattr_handlers;
4354 #endif
4355 #ifdef CONFIG_TMPFS_POSIX_ACL
4356 	sb->s_flags |= SB_POSIXACL;
4357 #endif
4358 	uuid_gen(&sb->s_uuid);
4359 
4360 #ifdef CONFIG_TMPFS_QUOTA
4361 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4362 		sb->dq_op = &shmem_quota_operations;
4363 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4364 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4365 
4366 		/* Copy the default limits from ctx into sbinfo */
4367 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4368 		       sizeof(struct shmem_quota_limits));
4369 
4370 		if (shmem_enable_quotas(sb, ctx->quota_types))
4371 			goto failed;
4372 	}
4373 #endif /* CONFIG_TMPFS_QUOTA */
4374 
4375 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
4376 				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
4377 	if (IS_ERR(inode)) {
4378 		error = PTR_ERR(inode);
4379 		goto failed;
4380 	}
4381 	inode->i_uid = sbinfo->uid;
4382 	inode->i_gid = sbinfo->gid;
4383 	sb->s_root = d_make_root(inode);
4384 	if (!sb->s_root)
4385 		goto failed;
4386 	return 0;
4387 
4388 failed:
4389 	shmem_put_super(sb);
4390 	return error;
4391 }
4392 
4393 static int shmem_get_tree(struct fs_context *fc)
4394 {
4395 	return get_tree_nodev(fc, shmem_fill_super);
4396 }
4397 
4398 static void shmem_free_fc(struct fs_context *fc)
4399 {
4400 	struct shmem_options *ctx = fc->fs_private;
4401 
4402 	if (ctx) {
4403 		mpol_put(ctx->mpol);
4404 		kfree(ctx);
4405 	}
4406 }
4407 
4408 static const struct fs_context_operations shmem_fs_context_ops = {
4409 	.free			= shmem_free_fc,
4410 	.get_tree		= shmem_get_tree,
4411 #ifdef CONFIG_TMPFS
4412 	.parse_monolithic	= shmem_parse_options,
4413 	.parse_param		= shmem_parse_one,
4414 	.reconfigure		= shmem_reconfigure,
4415 #endif
4416 };
4417 
4418 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4419 
4420 static struct inode *shmem_alloc_inode(struct super_block *sb)
4421 {
4422 	struct shmem_inode_info *info;
4423 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4424 	if (!info)
4425 		return NULL;
4426 	return &info->vfs_inode;
4427 }
4428 
4429 static void shmem_free_in_core_inode(struct inode *inode)
4430 {
4431 	if (S_ISLNK(inode->i_mode))
4432 		kfree(inode->i_link);
4433 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4434 }
4435 
4436 static void shmem_destroy_inode(struct inode *inode)
4437 {
4438 	if (S_ISREG(inode->i_mode))
4439 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4440 	if (S_ISDIR(inode->i_mode))
4441 		simple_offset_destroy(shmem_get_offset_ctx(inode));
4442 }
4443 
4444 static void shmem_init_inode(void *foo)
4445 {
4446 	struct shmem_inode_info *info = foo;
4447 	inode_init_once(&info->vfs_inode);
4448 }
4449 
4450 static void __init shmem_init_inodecache(void)
4451 {
4452 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4453 				sizeof(struct shmem_inode_info),
4454 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4455 }
4456 
4457 static void __init shmem_destroy_inodecache(void)
4458 {
4459 	kmem_cache_destroy(shmem_inode_cachep);
4460 }
4461 
4462 /* Keep the page in page cache instead of truncating it */
4463 static int shmem_error_remove_folio(struct address_space *mapping,
4464 				   struct folio *folio)
4465 {
4466 	return 0;
4467 }
4468 
4469 const struct address_space_operations shmem_aops = {
4470 	.writepage	= shmem_writepage,
4471 	.dirty_folio	= noop_dirty_folio,
4472 #ifdef CONFIG_TMPFS
4473 	.write_begin	= shmem_write_begin,
4474 	.write_end	= shmem_write_end,
4475 #endif
4476 #ifdef CONFIG_MIGRATION
4477 	.migrate_folio	= migrate_folio,
4478 #endif
4479 	.error_remove_folio = shmem_error_remove_folio,
4480 };
4481 EXPORT_SYMBOL(shmem_aops);
4482 
4483 static const struct file_operations shmem_file_operations = {
4484 	.mmap		= shmem_mmap,
4485 	.open		= shmem_file_open,
4486 	.get_unmapped_area = shmem_get_unmapped_area,
4487 #ifdef CONFIG_TMPFS
4488 	.llseek		= shmem_file_llseek,
4489 	.read_iter	= shmem_file_read_iter,
4490 	.write_iter	= shmem_file_write_iter,
4491 	.fsync		= noop_fsync,
4492 	.splice_read	= shmem_file_splice_read,
4493 	.splice_write	= iter_file_splice_write,
4494 	.fallocate	= shmem_fallocate,
4495 #endif
4496 };
4497 
4498 static const struct inode_operations shmem_inode_operations = {
4499 	.getattr	= shmem_getattr,
4500 	.setattr	= shmem_setattr,
4501 #ifdef CONFIG_TMPFS_XATTR
4502 	.listxattr	= shmem_listxattr,
4503 	.set_acl	= simple_set_acl,
4504 	.fileattr_get	= shmem_fileattr_get,
4505 	.fileattr_set	= shmem_fileattr_set,
4506 #endif
4507 };
4508 
4509 static const struct inode_operations shmem_dir_inode_operations = {
4510 #ifdef CONFIG_TMPFS
4511 	.getattr	= shmem_getattr,
4512 	.create		= shmem_create,
4513 	.lookup		= simple_lookup,
4514 	.link		= shmem_link,
4515 	.unlink		= shmem_unlink,
4516 	.symlink	= shmem_symlink,
4517 	.mkdir		= shmem_mkdir,
4518 	.rmdir		= shmem_rmdir,
4519 	.mknod		= shmem_mknod,
4520 	.rename		= shmem_rename2,
4521 	.tmpfile	= shmem_tmpfile,
4522 	.get_offset_ctx	= shmem_get_offset_ctx,
4523 #endif
4524 #ifdef CONFIG_TMPFS_XATTR
4525 	.listxattr	= shmem_listxattr,
4526 	.fileattr_get	= shmem_fileattr_get,
4527 	.fileattr_set	= shmem_fileattr_set,
4528 #endif
4529 #ifdef CONFIG_TMPFS_POSIX_ACL
4530 	.setattr	= shmem_setattr,
4531 	.set_acl	= simple_set_acl,
4532 #endif
4533 };
4534 
4535 static const struct inode_operations shmem_special_inode_operations = {
4536 	.getattr	= shmem_getattr,
4537 #ifdef CONFIG_TMPFS_XATTR
4538 	.listxattr	= shmem_listxattr,
4539 #endif
4540 #ifdef CONFIG_TMPFS_POSIX_ACL
4541 	.setattr	= shmem_setattr,
4542 	.set_acl	= simple_set_acl,
4543 #endif
4544 };
4545 
4546 static const struct super_operations shmem_ops = {
4547 	.alloc_inode	= shmem_alloc_inode,
4548 	.free_inode	= shmem_free_in_core_inode,
4549 	.destroy_inode	= shmem_destroy_inode,
4550 #ifdef CONFIG_TMPFS
4551 	.statfs		= shmem_statfs,
4552 	.show_options	= shmem_show_options,
4553 #endif
4554 #ifdef CONFIG_TMPFS_QUOTA
4555 	.get_dquots	= shmem_get_dquots,
4556 #endif
4557 	.evict_inode	= shmem_evict_inode,
4558 	.drop_inode	= generic_delete_inode,
4559 	.put_super	= shmem_put_super,
4560 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4561 	.nr_cached_objects	= shmem_unused_huge_count,
4562 	.free_cached_objects	= shmem_unused_huge_scan,
4563 #endif
4564 };
4565 
4566 static const struct vm_operations_struct shmem_vm_ops = {
4567 	.fault		= shmem_fault,
4568 	.map_pages	= filemap_map_pages,
4569 #ifdef CONFIG_NUMA
4570 	.set_policy     = shmem_set_policy,
4571 	.get_policy     = shmem_get_policy,
4572 #endif
4573 };
4574 
4575 static const struct vm_operations_struct shmem_anon_vm_ops = {
4576 	.fault		= shmem_fault,
4577 	.map_pages	= filemap_map_pages,
4578 #ifdef CONFIG_NUMA
4579 	.set_policy     = shmem_set_policy,
4580 	.get_policy     = shmem_get_policy,
4581 #endif
4582 };
4583 
4584 int shmem_init_fs_context(struct fs_context *fc)
4585 {
4586 	struct shmem_options *ctx;
4587 
4588 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4589 	if (!ctx)
4590 		return -ENOMEM;
4591 
4592 	ctx->mode = 0777 | S_ISVTX;
4593 	ctx->uid = current_fsuid();
4594 	ctx->gid = current_fsgid();
4595 
4596 	fc->fs_private = ctx;
4597 	fc->ops = &shmem_fs_context_ops;
4598 	return 0;
4599 }
4600 
4601 static struct file_system_type shmem_fs_type = {
4602 	.owner		= THIS_MODULE,
4603 	.name		= "tmpfs",
4604 	.init_fs_context = shmem_init_fs_context,
4605 #ifdef CONFIG_TMPFS
4606 	.parameters	= shmem_fs_parameters,
4607 #endif
4608 	.kill_sb	= kill_litter_super,
4609 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4610 };
4611 
4612 void __init shmem_init(void)
4613 {
4614 	int error;
4615 
4616 	shmem_init_inodecache();
4617 
4618 #ifdef CONFIG_TMPFS_QUOTA
4619 	error = register_quota_format(&shmem_quota_format);
4620 	if (error < 0) {
4621 		pr_err("Could not register quota format\n");
4622 		goto out3;
4623 	}
4624 #endif
4625 
4626 	error = register_filesystem(&shmem_fs_type);
4627 	if (error) {
4628 		pr_err("Could not register tmpfs\n");
4629 		goto out2;
4630 	}
4631 
4632 	shm_mnt = kern_mount(&shmem_fs_type);
4633 	if (IS_ERR(shm_mnt)) {
4634 		error = PTR_ERR(shm_mnt);
4635 		pr_err("Could not kern_mount tmpfs\n");
4636 		goto out1;
4637 	}
4638 
4639 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4640 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4641 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4642 	else
4643 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4644 #endif
4645 	return;
4646 
4647 out1:
4648 	unregister_filesystem(&shmem_fs_type);
4649 out2:
4650 #ifdef CONFIG_TMPFS_QUOTA
4651 	unregister_quota_format(&shmem_quota_format);
4652 out3:
4653 #endif
4654 	shmem_destroy_inodecache();
4655 	shm_mnt = ERR_PTR(error);
4656 }
4657 
4658 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4659 static ssize_t shmem_enabled_show(struct kobject *kobj,
4660 				  struct kobj_attribute *attr, char *buf)
4661 {
4662 	static const int values[] = {
4663 		SHMEM_HUGE_ALWAYS,
4664 		SHMEM_HUGE_WITHIN_SIZE,
4665 		SHMEM_HUGE_ADVISE,
4666 		SHMEM_HUGE_NEVER,
4667 		SHMEM_HUGE_DENY,
4668 		SHMEM_HUGE_FORCE,
4669 	};
4670 	int len = 0;
4671 	int i;
4672 
4673 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4674 		len += sysfs_emit_at(buf, len,
4675 				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4676 				i ? " " : "", shmem_format_huge(values[i]));
4677 	}
4678 	len += sysfs_emit_at(buf, len, "\n");
4679 
4680 	return len;
4681 }
4682 
4683 static ssize_t shmem_enabled_store(struct kobject *kobj,
4684 		struct kobj_attribute *attr, const char *buf, size_t count)
4685 {
4686 	char tmp[16];
4687 	int huge;
4688 
4689 	if (count + 1 > sizeof(tmp))
4690 		return -EINVAL;
4691 	memcpy(tmp, buf, count);
4692 	tmp[count] = '\0';
4693 	if (count && tmp[count - 1] == '\n')
4694 		tmp[count - 1] = '\0';
4695 
4696 	huge = shmem_parse_huge(tmp);
4697 	if (huge == -EINVAL)
4698 		return -EINVAL;
4699 	if (!has_transparent_hugepage() &&
4700 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4701 		return -EINVAL;
4702 
4703 	shmem_huge = huge;
4704 	if (shmem_huge > SHMEM_HUGE_DENY)
4705 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4706 	return count;
4707 }
4708 
4709 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4710 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4711 
4712 #else /* !CONFIG_SHMEM */
4713 
4714 /*
4715  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4716  *
4717  * This is intended for small system where the benefits of the full
4718  * shmem code (swap-backed and resource-limited) are outweighed by
4719  * their complexity. On systems without swap this code should be
4720  * effectively equivalent, but much lighter weight.
4721  */
4722 
4723 static struct file_system_type shmem_fs_type = {
4724 	.name		= "tmpfs",
4725 	.init_fs_context = ramfs_init_fs_context,
4726 	.parameters	= ramfs_fs_parameters,
4727 	.kill_sb	= ramfs_kill_sb,
4728 	.fs_flags	= FS_USERNS_MOUNT,
4729 };
4730 
4731 void __init shmem_init(void)
4732 {
4733 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4734 
4735 	shm_mnt = kern_mount(&shmem_fs_type);
4736 	BUG_ON(IS_ERR(shm_mnt));
4737 }
4738 
4739 int shmem_unuse(unsigned int type)
4740 {
4741 	return 0;
4742 }
4743 
4744 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4745 {
4746 	return 0;
4747 }
4748 
4749 void shmem_unlock_mapping(struct address_space *mapping)
4750 {
4751 }
4752 
4753 #ifdef CONFIG_MMU
4754 unsigned long shmem_get_unmapped_area(struct file *file,
4755 				      unsigned long addr, unsigned long len,
4756 				      unsigned long pgoff, unsigned long flags)
4757 {
4758 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4759 }
4760 #endif
4761 
4762 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4763 {
4764 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4765 }
4766 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4767 
4768 #define shmem_vm_ops				generic_file_vm_ops
4769 #define shmem_anon_vm_ops			generic_file_vm_ops
4770 #define shmem_file_operations			ramfs_file_operations
4771 #define shmem_acct_size(flags, size)		0
4772 #define shmem_unacct_size(flags, size)		do {} while (0)
4773 
4774 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
4775 				struct super_block *sb, struct inode *dir,
4776 				umode_t mode, dev_t dev, unsigned long flags)
4777 {
4778 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
4779 	return inode ? inode : ERR_PTR(-ENOSPC);
4780 }
4781 
4782 #endif /* CONFIG_SHMEM */
4783 
4784 /* common code */
4785 
4786 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
4787 			loff_t size, unsigned long flags, unsigned int i_flags)
4788 {
4789 	struct inode *inode;
4790 	struct file *res;
4791 
4792 	if (IS_ERR(mnt))
4793 		return ERR_CAST(mnt);
4794 
4795 	if (size < 0 || size > MAX_LFS_FILESIZE)
4796 		return ERR_PTR(-EINVAL);
4797 
4798 	if (shmem_acct_size(flags, size))
4799 		return ERR_PTR(-ENOMEM);
4800 
4801 	if (is_idmapped_mnt(mnt))
4802 		return ERR_PTR(-EINVAL);
4803 
4804 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4805 				S_IFREG | S_IRWXUGO, 0, flags);
4806 	if (IS_ERR(inode)) {
4807 		shmem_unacct_size(flags, size);
4808 		return ERR_CAST(inode);
4809 	}
4810 	inode->i_flags |= i_flags;
4811 	inode->i_size = size;
4812 	clear_nlink(inode);	/* It is unlinked */
4813 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4814 	if (!IS_ERR(res))
4815 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4816 				&shmem_file_operations);
4817 	if (IS_ERR(res))
4818 		iput(inode);
4819 	return res;
4820 }
4821 
4822 /**
4823  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4824  * 	kernel internal.  There will be NO LSM permission checks against the
4825  * 	underlying inode.  So users of this interface must do LSM checks at a
4826  *	higher layer.  The users are the big_key and shm implementations.  LSM
4827  *	checks are provided at the key or shm level rather than the inode.
4828  * @name: name for dentry (to be seen in /proc/<pid>/maps
4829  * @size: size to be set for the file
4830  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4831  */
4832 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4833 {
4834 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4835 }
4836 
4837 /**
4838  * shmem_file_setup - get an unlinked file living in tmpfs
4839  * @name: name for dentry (to be seen in /proc/<pid>/maps
4840  * @size: size to be set for the file
4841  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4842  */
4843 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4844 {
4845 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4846 }
4847 EXPORT_SYMBOL_GPL(shmem_file_setup);
4848 
4849 /**
4850  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4851  * @mnt: the tmpfs mount where the file will be created
4852  * @name: name for dentry (to be seen in /proc/<pid>/maps
4853  * @size: size to be set for the file
4854  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4855  */
4856 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4857 				       loff_t size, unsigned long flags)
4858 {
4859 	return __shmem_file_setup(mnt, name, size, flags, 0);
4860 }
4861 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4862 
4863 /**
4864  * shmem_zero_setup - setup a shared anonymous mapping
4865  * @vma: the vma to be mmapped is prepared by do_mmap
4866  */
4867 int shmem_zero_setup(struct vm_area_struct *vma)
4868 {
4869 	struct file *file;
4870 	loff_t size = vma->vm_end - vma->vm_start;
4871 
4872 	/*
4873 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4874 	 * between XFS directory reading and selinux: since this file is only
4875 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4876 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4877 	 */
4878 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4879 	if (IS_ERR(file))
4880 		return PTR_ERR(file);
4881 
4882 	if (vma->vm_file)
4883 		fput(vma->vm_file);
4884 	vma->vm_file = file;
4885 	vma->vm_ops = &shmem_anon_vm_ops;
4886 
4887 	return 0;
4888 }
4889 
4890 /**
4891  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4892  * @mapping:	the folio's address_space
4893  * @index:	the folio index
4894  * @gfp:	the page allocator flags to use if allocating
4895  *
4896  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4897  * with any new page allocations done using the specified allocation flags.
4898  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4899  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4900  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4901  *
4902  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4903  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4904  */
4905 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4906 		pgoff_t index, gfp_t gfp)
4907 {
4908 #ifdef CONFIG_SHMEM
4909 	struct inode *inode = mapping->host;
4910 	struct folio *folio;
4911 	int error;
4912 
4913 	BUG_ON(!shmem_mapping(mapping));
4914 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4915 				    gfp, NULL, NULL);
4916 	if (error)
4917 		return ERR_PTR(error);
4918 
4919 	folio_unlock(folio);
4920 	return folio;
4921 #else
4922 	/*
4923 	 * The tiny !SHMEM case uses ramfs without swap
4924 	 */
4925 	return mapping_read_folio_gfp(mapping, index, gfp);
4926 #endif
4927 }
4928 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4929 
4930 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4931 					 pgoff_t index, gfp_t gfp)
4932 {
4933 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4934 	struct page *page;
4935 
4936 	if (IS_ERR(folio))
4937 		return &folio->page;
4938 
4939 	page = folio_file_page(folio, index);
4940 	if (PageHWPoison(page)) {
4941 		folio_put(folio);
4942 		return ERR_PTR(-EIO);
4943 	}
4944 
4945 	return page;
4946 }
4947 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4948