xref: /linux/mm/shmem.c (revision bb9707077b4ee5f77bc9939b057ff8a0d410296f)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 
36 static struct vfsmount *shm_mnt;
37 
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44 
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72 
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75 
76 #include "internal.h"
77 
78 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
79 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
80 
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83 
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86 
87 /*
88  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89  * inode->i_private (with i_mutex making sure that it has only one user at
90  * a time): we would prefer not to enlarge the shmem inode just for that.
91  */
92 struct shmem_falloc {
93 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94 	pgoff_t start;		/* start of range currently being fallocated */
95 	pgoff_t next;		/* the next page offset to be fallocated */
96 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
97 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
98 };
99 
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102 	SGP_READ,	/* don't exceed i_size, don't allocate page */
103 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
104 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
105 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
106 };
107 
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 	return totalram_pages / 2;
112 }
113 
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119 
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 				struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 		struct page **pagep, enum sgp_type sgp,
125 		gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
126 
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128 		struct page **pagep, enum sgp_type sgp)
129 {
130 	return shmem_getpage_gfp(inode, index, pagep, sgp,
131 		mapping_gfp_mask(inode->i_mapping), NULL, NULL);
132 }
133 
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136 	return sb->s_fs_info;
137 }
138 
139 /*
140  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141  * for shared memory and for shared anonymous (/dev/zero) mappings
142  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143  * consistent with the pre-accounting of private mappings ...
144  */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147 	return (flags & VM_NORESERVE) ?
148 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150 
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153 	if (!(flags & VM_NORESERVE))
154 		vm_unacct_memory(VM_ACCT(size));
155 }
156 
157 static inline int shmem_reacct_size(unsigned long flags,
158 		loff_t oldsize, loff_t newsize)
159 {
160 	if (!(flags & VM_NORESERVE)) {
161 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 			return security_vm_enough_memory_mm(current->mm,
163 					VM_ACCT(newsize) - VM_ACCT(oldsize));
164 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 	}
167 	return 0;
168 }
169 
170 /*
171  * ... whereas tmpfs objects are accounted incrementally as
172  * pages are allocated, in order to allow large sparse files.
173  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175  */
176 static inline int shmem_acct_block(unsigned long flags)
177 {
178 	return (flags & VM_NORESERVE) ?
179 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_SIZE)) : 0;
180 }
181 
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 {
184 	if (flags & VM_NORESERVE)
185 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
186 }
187 
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
195 
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198 
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 	if (sbinfo->max_inodes) {
203 		spin_lock(&sbinfo->stat_lock);
204 		if (!sbinfo->free_inodes) {
205 			spin_unlock(&sbinfo->stat_lock);
206 			return -ENOSPC;
207 		}
208 		sbinfo->free_inodes--;
209 		spin_unlock(&sbinfo->stat_lock);
210 	}
211 	return 0;
212 }
213 
214 static void shmem_free_inode(struct super_block *sb)
215 {
216 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 	if (sbinfo->max_inodes) {
218 		spin_lock(&sbinfo->stat_lock);
219 		sbinfo->free_inodes++;
220 		spin_unlock(&sbinfo->stat_lock);
221 	}
222 }
223 
224 /**
225  * shmem_recalc_inode - recalculate the block usage of an inode
226  * @inode: inode to recalc
227  *
228  * We have to calculate the free blocks since the mm can drop
229  * undirtied hole pages behind our back.
230  *
231  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
232  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233  *
234  * It has to be called with the spinlock held.
235  */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238 	struct shmem_inode_info *info = SHMEM_I(inode);
239 	long freed;
240 
241 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 	if (freed > 0) {
243 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 		if (sbinfo->max_blocks)
245 			percpu_counter_add(&sbinfo->used_blocks, -freed);
246 		info->alloced -= freed;
247 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248 		shmem_unacct_blocks(info->flags, freed);
249 	}
250 }
251 
252 /*
253  * Replace item expected in radix tree by a new item, while holding tree lock.
254  */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256 			pgoff_t index, void *expected, void *replacement)
257 {
258 	void **pslot;
259 	void *item;
260 
261 	VM_BUG_ON(!expected);
262 	VM_BUG_ON(!replacement);
263 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264 	if (!pslot)
265 		return -ENOENT;
266 	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267 	if (item != expected)
268 		return -ENOENT;
269 	radix_tree_replace_slot(pslot, replacement);
270 	return 0;
271 }
272 
273 /*
274  * Sometimes, before we decide whether to proceed or to fail, we must check
275  * that an entry was not already brought back from swap by a racing thread.
276  *
277  * Checking page is not enough: by the time a SwapCache page is locked, it
278  * might be reused, and again be SwapCache, using the same swap as before.
279  */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281 			       pgoff_t index, swp_entry_t swap)
282 {
283 	void *item;
284 
285 	rcu_read_lock();
286 	item = radix_tree_lookup(&mapping->page_tree, index);
287 	rcu_read_unlock();
288 	return item == swp_to_radix_entry(swap);
289 }
290 
291 /*
292  * Like add_to_page_cache_locked, but error if expected item has gone.
293  */
294 static int shmem_add_to_page_cache(struct page *page,
295 				   struct address_space *mapping,
296 				   pgoff_t index, void *expected)
297 {
298 	int error;
299 
300 	VM_BUG_ON_PAGE(!PageLocked(page), page);
301 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302 
303 	get_page(page);
304 	page->mapping = mapping;
305 	page->index = index;
306 
307 	spin_lock_irq(&mapping->tree_lock);
308 	if (!expected)
309 		error = radix_tree_insert(&mapping->page_tree, index, page);
310 	else
311 		error = shmem_radix_tree_replace(mapping, index, expected,
312 								 page);
313 	if (!error) {
314 		mapping->nrpages++;
315 		__inc_zone_page_state(page, NR_FILE_PAGES);
316 		__inc_zone_page_state(page, NR_SHMEM);
317 		spin_unlock_irq(&mapping->tree_lock);
318 	} else {
319 		page->mapping = NULL;
320 		spin_unlock_irq(&mapping->tree_lock);
321 		put_page(page);
322 	}
323 	return error;
324 }
325 
326 /*
327  * Like delete_from_page_cache, but substitutes swap for page.
328  */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331 	struct address_space *mapping = page->mapping;
332 	int error;
333 
334 	spin_lock_irq(&mapping->tree_lock);
335 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 	page->mapping = NULL;
337 	mapping->nrpages--;
338 	__dec_zone_page_state(page, NR_FILE_PAGES);
339 	__dec_zone_page_state(page, NR_SHMEM);
340 	spin_unlock_irq(&mapping->tree_lock);
341 	put_page(page);
342 	BUG_ON(error);
343 }
344 
345 /*
346  * Remove swap entry from radix tree, free the swap and its page cache.
347  */
348 static int shmem_free_swap(struct address_space *mapping,
349 			   pgoff_t index, void *radswap)
350 {
351 	void *old;
352 
353 	spin_lock_irq(&mapping->tree_lock);
354 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355 	spin_unlock_irq(&mapping->tree_lock);
356 	if (old != radswap)
357 		return -ENOENT;
358 	free_swap_and_cache(radix_to_swp_entry(radswap));
359 	return 0;
360 }
361 
362 /*
363  * Determine (in bytes) how many of the shmem object's pages mapped by the
364  * given offsets are swapped out.
365  *
366  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
367  * as long as the inode doesn't go away and racy results are not a problem.
368  */
369 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
370 						pgoff_t start, pgoff_t end)
371 {
372 	struct radix_tree_iter iter;
373 	void **slot;
374 	struct page *page;
375 	unsigned long swapped = 0;
376 
377 	rcu_read_lock();
378 
379 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
380 		if (iter.index >= end)
381 			break;
382 
383 		page = radix_tree_deref_slot(slot);
384 
385 		if (radix_tree_deref_retry(page)) {
386 			slot = radix_tree_iter_retry(&iter);
387 			continue;
388 		}
389 
390 		if (radix_tree_exceptional_entry(page))
391 			swapped++;
392 
393 		if (need_resched()) {
394 			cond_resched_rcu();
395 			slot = radix_tree_iter_next(&iter);
396 		}
397 	}
398 
399 	rcu_read_unlock();
400 
401 	return swapped << PAGE_SHIFT;
402 }
403 
404 /*
405  * Determine (in bytes) how many of the shmem object's pages mapped by the
406  * given vma is swapped out.
407  *
408  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
409  * as long as the inode doesn't go away and racy results are not a problem.
410  */
411 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
412 {
413 	struct inode *inode = file_inode(vma->vm_file);
414 	struct shmem_inode_info *info = SHMEM_I(inode);
415 	struct address_space *mapping = inode->i_mapping;
416 	unsigned long swapped;
417 
418 	/* Be careful as we don't hold info->lock */
419 	swapped = READ_ONCE(info->swapped);
420 
421 	/*
422 	 * The easier cases are when the shmem object has nothing in swap, or
423 	 * the vma maps it whole. Then we can simply use the stats that we
424 	 * already track.
425 	 */
426 	if (!swapped)
427 		return 0;
428 
429 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
430 		return swapped << PAGE_SHIFT;
431 
432 	/* Here comes the more involved part */
433 	return shmem_partial_swap_usage(mapping,
434 			linear_page_index(vma, vma->vm_start),
435 			linear_page_index(vma, vma->vm_end));
436 }
437 
438 /*
439  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
440  */
441 void shmem_unlock_mapping(struct address_space *mapping)
442 {
443 	struct pagevec pvec;
444 	pgoff_t indices[PAGEVEC_SIZE];
445 	pgoff_t index = 0;
446 
447 	pagevec_init(&pvec, 0);
448 	/*
449 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
450 	 */
451 	while (!mapping_unevictable(mapping)) {
452 		/*
453 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
454 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
455 		 */
456 		pvec.nr = find_get_entries(mapping, index,
457 					   PAGEVEC_SIZE, pvec.pages, indices);
458 		if (!pvec.nr)
459 			break;
460 		index = indices[pvec.nr - 1] + 1;
461 		pagevec_remove_exceptionals(&pvec);
462 		check_move_unevictable_pages(pvec.pages, pvec.nr);
463 		pagevec_release(&pvec);
464 		cond_resched();
465 	}
466 }
467 
468 /*
469  * Remove range of pages and swap entries from radix tree, and free them.
470  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
471  */
472 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
473 								 bool unfalloc)
474 {
475 	struct address_space *mapping = inode->i_mapping;
476 	struct shmem_inode_info *info = SHMEM_I(inode);
477 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
478 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
479 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
480 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
481 	struct pagevec pvec;
482 	pgoff_t indices[PAGEVEC_SIZE];
483 	long nr_swaps_freed = 0;
484 	pgoff_t index;
485 	int i;
486 
487 	if (lend == -1)
488 		end = -1;	/* unsigned, so actually very big */
489 
490 	pagevec_init(&pvec, 0);
491 	index = start;
492 	while (index < end) {
493 		pvec.nr = find_get_entries(mapping, index,
494 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
495 			pvec.pages, indices);
496 		if (!pvec.nr)
497 			break;
498 		for (i = 0; i < pagevec_count(&pvec); i++) {
499 			struct page *page = pvec.pages[i];
500 
501 			index = indices[i];
502 			if (index >= end)
503 				break;
504 
505 			if (radix_tree_exceptional_entry(page)) {
506 				if (unfalloc)
507 					continue;
508 				nr_swaps_freed += !shmem_free_swap(mapping,
509 								index, page);
510 				continue;
511 			}
512 
513 			if (!trylock_page(page))
514 				continue;
515 			if (!unfalloc || !PageUptodate(page)) {
516 				if (page->mapping == mapping) {
517 					VM_BUG_ON_PAGE(PageWriteback(page), page);
518 					truncate_inode_page(mapping, page);
519 				}
520 			}
521 			unlock_page(page);
522 		}
523 		pagevec_remove_exceptionals(&pvec);
524 		pagevec_release(&pvec);
525 		cond_resched();
526 		index++;
527 	}
528 
529 	if (partial_start) {
530 		struct page *page = NULL;
531 		shmem_getpage(inode, start - 1, &page, SGP_READ);
532 		if (page) {
533 			unsigned int top = PAGE_SIZE;
534 			if (start > end) {
535 				top = partial_end;
536 				partial_end = 0;
537 			}
538 			zero_user_segment(page, partial_start, top);
539 			set_page_dirty(page);
540 			unlock_page(page);
541 			put_page(page);
542 		}
543 	}
544 	if (partial_end) {
545 		struct page *page = NULL;
546 		shmem_getpage(inode, end, &page, SGP_READ);
547 		if (page) {
548 			zero_user_segment(page, 0, partial_end);
549 			set_page_dirty(page);
550 			unlock_page(page);
551 			put_page(page);
552 		}
553 	}
554 	if (start >= end)
555 		return;
556 
557 	index = start;
558 	while (index < end) {
559 		cond_resched();
560 
561 		pvec.nr = find_get_entries(mapping, index,
562 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
563 				pvec.pages, indices);
564 		if (!pvec.nr) {
565 			/* If all gone or hole-punch or unfalloc, we're done */
566 			if (index == start || end != -1)
567 				break;
568 			/* But if truncating, restart to make sure all gone */
569 			index = start;
570 			continue;
571 		}
572 		for (i = 0; i < pagevec_count(&pvec); i++) {
573 			struct page *page = pvec.pages[i];
574 
575 			index = indices[i];
576 			if (index >= end)
577 				break;
578 
579 			if (radix_tree_exceptional_entry(page)) {
580 				if (unfalloc)
581 					continue;
582 				if (shmem_free_swap(mapping, index, page)) {
583 					/* Swap was replaced by page: retry */
584 					index--;
585 					break;
586 				}
587 				nr_swaps_freed++;
588 				continue;
589 			}
590 
591 			lock_page(page);
592 			if (!unfalloc || !PageUptodate(page)) {
593 				if (page->mapping == mapping) {
594 					VM_BUG_ON_PAGE(PageWriteback(page), page);
595 					truncate_inode_page(mapping, page);
596 				} else {
597 					/* Page was replaced by swap: retry */
598 					unlock_page(page);
599 					index--;
600 					break;
601 				}
602 			}
603 			unlock_page(page);
604 		}
605 		pagevec_remove_exceptionals(&pvec);
606 		pagevec_release(&pvec);
607 		index++;
608 	}
609 
610 	spin_lock(&info->lock);
611 	info->swapped -= nr_swaps_freed;
612 	shmem_recalc_inode(inode);
613 	spin_unlock(&info->lock);
614 }
615 
616 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
617 {
618 	shmem_undo_range(inode, lstart, lend, false);
619 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
620 }
621 EXPORT_SYMBOL_GPL(shmem_truncate_range);
622 
623 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
624 			 struct kstat *stat)
625 {
626 	struct inode *inode = dentry->d_inode;
627 	struct shmem_inode_info *info = SHMEM_I(inode);
628 
629 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
630 		spin_lock(&info->lock);
631 		shmem_recalc_inode(inode);
632 		spin_unlock(&info->lock);
633 	}
634 	generic_fillattr(inode, stat);
635 	return 0;
636 }
637 
638 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
639 {
640 	struct inode *inode = d_inode(dentry);
641 	struct shmem_inode_info *info = SHMEM_I(inode);
642 	int error;
643 
644 	error = inode_change_ok(inode, attr);
645 	if (error)
646 		return error;
647 
648 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
649 		loff_t oldsize = inode->i_size;
650 		loff_t newsize = attr->ia_size;
651 
652 		/* protected by i_mutex */
653 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
654 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
655 			return -EPERM;
656 
657 		if (newsize != oldsize) {
658 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
659 					oldsize, newsize);
660 			if (error)
661 				return error;
662 			i_size_write(inode, newsize);
663 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
664 		}
665 		if (newsize <= oldsize) {
666 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
667 			if (oldsize > holebegin)
668 				unmap_mapping_range(inode->i_mapping,
669 							holebegin, 0, 1);
670 			if (info->alloced)
671 				shmem_truncate_range(inode,
672 							newsize, (loff_t)-1);
673 			/* unmap again to remove racily COWed private pages */
674 			if (oldsize > holebegin)
675 				unmap_mapping_range(inode->i_mapping,
676 							holebegin, 0, 1);
677 		}
678 	}
679 
680 	setattr_copy(inode, attr);
681 	if (attr->ia_valid & ATTR_MODE)
682 		error = posix_acl_chmod(inode, inode->i_mode);
683 	return error;
684 }
685 
686 static void shmem_evict_inode(struct inode *inode)
687 {
688 	struct shmem_inode_info *info = SHMEM_I(inode);
689 
690 	if (inode->i_mapping->a_ops == &shmem_aops) {
691 		shmem_unacct_size(info->flags, inode->i_size);
692 		inode->i_size = 0;
693 		shmem_truncate_range(inode, 0, (loff_t)-1);
694 		if (!list_empty(&info->swaplist)) {
695 			mutex_lock(&shmem_swaplist_mutex);
696 			list_del_init(&info->swaplist);
697 			mutex_unlock(&shmem_swaplist_mutex);
698 		}
699 	}
700 
701 	simple_xattrs_free(&info->xattrs);
702 	WARN_ON(inode->i_blocks);
703 	shmem_free_inode(inode->i_sb);
704 	clear_inode(inode);
705 }
706 
707 /*
708  * If swap found in inode, free it and move page from swapcache to filecache.
709  */
710 static int shmem_unuse_inode(struct shmem_inode_info *info,
711 			     swp_entry_t swap, struct page **pagep)
712 {
713 	struct address_space *mapping = info->vfs_inode.i_mapping;
714 	void *radswap;
715 	pgoff_t index;
716 	gfp_t gfp;
717 	int error = 0;
718 
719 	radswap = swp_to_radix_entry(swap);
720 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
721 	if (index == -1)
722 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
723 
724 	/*
725 	 * Move _head_ to start search for next from here.
726 	 * But be careful: shmem_evict_inode checks list_empty without taking
727 	 * mutex, and there's an instant in list_move_tail when info->swaplist
728 	 * would appear empty, if it were the only one on shmem_swaplist.
729 	 */
730 	if (shmem_swaplist.next != &info->swaplist)
731 		list_move_tail(&shmem_swaplist, &info->swaplist);
732 
733 	gfp = mapping_gfp_mask(mapping);
734 	if (shmem_should_replace_page(*pagep, gfp)) {
735 		mutex_unlock(&shmem_swaplist_mutex);
736 		error = shmem_replace_page(pagep, gfp, info, index);
737 		mutex_lock(&shmem_swaplist_mutex);
738 		/*
739 		 * We needed to drop mutex to make that restrictive page
740 		 * allocation, but the inode might have been freed while we
741 		 * dropped it: although a racing shmem_evict_inode() cannot
742 		 * complete without emptying the radix_tree, our page lock
743 		 * on this swapcache page is not enough to prevent that -
744 		 * free_swap_and_cache() of our swap entry will only
745 		 * trylock_page(), removing swap from radix_tree whatever.
746 		 *
747 		 * We must not proceed to shmem_add_to_page_cache() if the
748 		 * inode has been freed, but of course we cannot rely on
749 		 * inode or mapping or info to check that.  However, we can
750 		 * safely check if our swap entry is still in use (and here
751 		 * it can't have got reused for another page): if it's still
752 		 * in use, then the inode cannot have been freed yet, and we
753 		 * can safely proceed (if it's no longer in use, that tells
754 		 * nothing about the inode, but we don't need to unuse swap).
755 		 */
756 		if (!page_swapcount(*pagep))
757 			error = -ENOENT;
758 	}
759 
760 	/*
761 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
762 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
763 	 * beneath us (pagelock doesn't help until the page is in pagecache).
764 	 */
765 	if (!error)
766 		error = shmem_add_to_page_cache(*pagep, mapping, index,
767 						radswap);
768 	if (error != -ENOMEM) {
769 		/*
770 		 * Truncation and eviction use free_swap_and_cache(), which
771 		 * only does trylock page: if we raced, best clean up here.
772 		 */
773 		delete_from_swap_cache(*pagep);
774 		set_page_dirty(*pagep);
775 		if (!error) {
776 			spin_lock(&info->lock);
777 			info->swapped--;
778 			spin_unlock(&info->lock);
779 			swap_free(swap);
780 		}
781 	}
782 	return error;
783 }
784 
785 /*
786  * Search through swapped inodes to find and replace swap by page.
787  */
788 int shmem_unuse(swp_entry_t swap, struct page *page)
789 {
790 	struct list_head *this, *next;
791 	struct shmem_inode_info *info;
792 	struct mem_cgroup *memcg;
793 	int error = 0;
794 
795 	/*
796 	 * There's a faint possibility that swap page was replaced before
797 	 * caller locked it: caller will come back later with the right page.
798 	 */
799 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
800 		goto out;
801 
802 	/*
803 	 * Charge page using GFP_KERNEL while we can wait, before taking
804 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
805 	 * Charged back to the user (not to caller) when swap account is used.
806 	 */
807 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
808 			false);
809 	if (error)
810 		goto out;
811 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
812 	error = -EAGAIN;
813 
814 	mutex_lock(&shmem_swaplist_mutex);
815 	list_for_each_safe(this, next, &shmem_swaplist) {
816 		info = list_entry(this, struct shmem_inode_info, swaplist);
817 		if (info->swapped)
818 			error = shmem_unuse_inode(info, swap, &page);
819 		else
820 			list_del_init(&info->swaplist);
821 		cond_resched();
822 		if (error != -EAGAIN)
823 			break;
824 		/* found nothing in this: move on to search the next */
825 	}
826 	mutex_unlock(&shmem_swaplist_mutex);
827 
828 	if (error) {
829 		if (error != -ENOMEM)
830 			error = 0;
831 		mem_cgroup_cancel_charge(page, memcg, false);
832 	} else
833 		mem_cgroup_commit_charge(page, memcg, true, false);
834 out:
835 	unlock_page(page);
836 	put_page(page);
837 	return error;
838 }
839 
840 /*
841  * Move the page from the page cache to the swap cache.
842  */
843 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
844 {
845 	struct shmem_inode_info *info;
846 	struct address_space *mapping;
847 	struct inode *inode;
848 	swp_entry_t swap;
849 	pgoff_t index;
850 
851 	BUG_ON(!PageLocked(page));
852 	mapping = page->mapping;
853 	index = page->index;
854 	inode = mapping->host;
855 	info = SHMEM_I(inode);
856 	if (info->flags & VM_LOCKED)
857 		goto redirty;
858 	if (!total_swap_pages)
859 		goto redirty;
860 
861 	/*
862 	 * Our capabilities prevent regular writeback or sync from ever calling
863 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
864 	 * its underlying filesystem, in which case tmpfs should write out to
865 	 * swap only in response to memory pressure, and not for the writeback
866 	 * threads or sync.
867 	 */
868 	if (!wbc->for_reclaim) {
869 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
870 		goto redirty;
871 	}
872 
873 	/*
874 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
875 	 * value into swapfile.c, the only way we can correctly account for a
876 	 * fallocated page arriving here is now to initialize it and write it.
877 	 *
878 	 * That's okay for a page already fallocated earlier, but if we have
879 	 * not yet completed the fallocation, then (a) we want to keep track
880 	 * of this page in case we have to undo it, and (b) it may not be a
881 	 * good idea to continue anyway, once we're pushing into swap.  So
882 	 * reactivate the page, and let shmem_fallocate() quit when too many.
883 	 */
884 	if (!PageUptodate(page)) {
885 		if (inode->i_private) {
886 			struct shmem_falloc *shmem_falloc;
887 			spin_lock(&inode->i_lock);
888 			shmem_falloc = inode->i_private;
889 			if (shmem_falloc &&
890 			    !shmem_falloc->waitq &&
891 			    index >= shmem_falloc->start &&
892 			    index < shmem_falloc->next)
893 				shmem_falloc->nr_unswapped++;
894 			else
895 				shmem_falloc = NULL;
896 			spin_unlock(&inode->i_lock);
897 			if (shmem_falloc)
898 				goto redirty;
899 		}
900 		clear_highpage(page);
901 		flush_dcache_page(page);
902 		SetPageUptodate(page);
903 	}
904 
905 	swap = get_swap_page();
906 	if (!swap.val)
907 		goto redirty;
908 
909 	if (mem_cgroup_try_charge_swap(page, swap))
910 		goto free_swap;
911 
912 	/*
913 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
914 	 * if it's not already there.  Do it now before the page is
915 	 * moved to swap cache, when its pagelock no longer protects
916 	 * the inode from eviction.  But don't unlock the mutex until
917 	 * we've incremented swapped, because shmem_unuse_inode() will
918 	 * prune a !swapped inode from the swaplist under this mutex.
919 	 */
920 	mutex_lock(&shmem_swaplist_mutex);
921 	if (list_empty(&info->swaplist))
922 		list_add_tail(&info->swaplist, &shmem_swaplist);
923 
924 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
925 		spin_lock(&info->lock);
926 		shmem_recalc_inode(inode);
927 		info->swapped++;
928 		spin_unlock(&info->lock);
929 
930 		swap_shmem_alloc(swap);
931 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
932 
933 		mutex_unlock(&shmem_swaplist_mutex);
934 		BUG_ON(page_mapped(page));
935 		swap_writepage(page, wbc);
936 		return 0;
937 	}
938 
939 	mutex_unlock(&shmem_swaplist_mutex);
940 free_swap:
941 	swapcache_free(swap);
942 redirty:
943 	set_page_dirty(page);
944 	if (wbc->for_reclaim)
945 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
946 	unlock_page(page);
947 	return 0;
948 }
949 
950 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
951 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
952 {
953 	char buffer[64];
954 
955 	if (!mpol || mpol->mode == MPOL_DEFAULT)
956 		return;		/* show nothing */
957 
958 	mpol_to_str(buffer, sizeof(buffer), mpol);
959 
960 	seq_printf(seq, ",mpol=%s", buffer);
961 }
962 
963 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
964 {
965 	struct mempolicy *mpol = NULL;
966 	if (sbinfo->mpol) {
967 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
968 		mpol = sbinfo->mpol;
969 		mpol_get(mpol);
970 		spin_unlock(&sbinfo->stat_lock);
971 	}
972 	return mpol;
973 }
974 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
975 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
976 {
977 }
978 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
979 {
980 	return NULL;
981 }
982 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
983 #ifndef CONFIG_NUMA
984 #define vm_policy vm_private_data
985 #endif
986 
987 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
988 			struct shmem_inode_info *info, pgoff_t index)
989 {
990 	struct vm_area_struct pvma;
991 	struct page *page;
992 
993 	/* Create a pseudo vma that just contains the policy */
994 	pvma.vm_start = 0;
995 	/* Bias interleave by inode number to distribute better across nodes */
996 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
997 	pvma.vm_ops = NULL;
998 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
999 
1000 	page = swapin_readahead(swap, gfp, &pvma, 0);
1001 
1002 	/* Drop reference taken by mpol_shared_policy_lookup() */
1003 	mpol_cond_put(pvma.vm_policy);
1004 
1005 	return page;
1006 }
1007 
1008 static struct page *shmem_alloc_page(gfp_t gfp,
1009 			struct shmem_inode_info *info, pgoff_t index)
1010 {
1011 	struct vm_area_struct pvma;
1012 	struct page *page;
1013 
1014 	/* Create a pseudo vma that just contains the policy */
1015 	pvma.vm_start = 0;
1016 	/* Bias interleave by inode number to distribute better across nodes */
1017 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1018 	pvma.vm_ops = NULL;
1019 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1020 
1021 	page = alloc_pages_vma(gfp, 0, &pvma, 0, numa_node_id(), false);
1022 	if (page) {
1023 		__SetPageLocked(page);
1024 		__SetPageSwapBacked(page);
1025 	}
1026 
1027 	/* Drop reference taken by mpol_shared_policy_lookup() */
1028 	mpol_cond_put(pvma.vm_policy);
1029 
1030 	return page;
1031 }
1032 
1033 /*
1034  * When a page is moved from swapcache to shmem filecache (either by the
1035  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1036  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1037  * ignorance of the mapping it belongs to.  If that mapping has special
1038  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1039  * we may need to copy to a suitable page before moving to filecache.
1040  *
1041  * In a future release, this may well be extended to respect cpuset and
1042  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1043  * but for now it is a simple matter of zone.
1044  */
1045 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1046 {
1047 	return page_zonenum(page) > gfp_zone(gfp);
1048 }
1049 
1050 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1051 				struct shmem_inode_info *info, pgoff_t index)
1052 {
1053 	struct page *oldpage, *newpage;
1054 	struct address_space *swap_mapping;
1055 	pgoff_t swap_index;
1056 	int error;
1057 
1058 	oldpage = *pagep;
1059 	swap_index = page_private(oldpage);
1060 	swap_mapping = page_mapping(oldpage);
1061 
1062 	/*
1063 	 * We have arrived here because our zones are constrained, so don't
1064 	 * limit chance of success by further cpuset and node constraints.
1065 	 */
1066 	gfp &= ~GFP_CONSTRAINT_MASK;
1067 	newpage = shmem_alloc_page(gfp, info, index);
1068 	if (!newpage)
1069 		return -ENOMEM;
1070 
1071 	get_page(newpage);
1072 	copy_highpage(newpage, oldpage);
1073 	flush_dcache_page(newpage);
1074 
1075 	SetPageUptodate(newpage);
1076 	set_page_private(newpage, swap_index);
1077 	SetPageSwapCache(newpage);
1078 
1079 	/*
1080 	 * Our caller will very soon move newpage out of swapcache, but it's
1081 	 * a nice clean interface for us to replace oldpage by newpage there.
1082 	 */
1083 	spin_lock_irq(&swap_mapping->tree_lock);
1084 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1085 								   newpage);
1086 	if (!error) {
1087 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1088 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1089 	}
1090 	spin_unlock_irq(&swap_mapping->tree_lock);
1091 
1092 	if (unlikely(error)) {
1093 		/*
1094 		 * Is this possible?  I think not, now that our callers check
1095 		 * both PageSwapCache and page_private after getting page lock;
1096 		 * but be defensive.  Reverse old to newpage for clear and free.
1097 		 */
1098 		oldpage = newpage;
1099 	} else {
1100 		mem_cgroup_migrate(oldpage, newpage);
1101 		lru_cache_add_anon(newpage);
1102 		*pagep = newpage;
1103 	}
1104 
1105 	ClearPageSwapCache(oldpage);
1106 	set_page_private(oldpage, 0);
1107 
1108 	unlock_page(oldpage);
1109 	put_page(oldpage);
1110 	put_page(oldpage);
1111 	return error;
1112 }
1113 
1114 /*
1115  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1116  *
1117  * If we allocate a new one we do not mark it dirty. That's up to the
1118  * vm. If we swap it in we mark it dirty since we also free the swap
1119  * entry since a page cannot live in both the swap and page cache.
1120  *
1121  * fault_mm and fault_type are only supplied by shmem_fault:
1122  * otherwise they are NULL.
1123  */
1124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1125 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1126 	struct mm_struct *fault_mm, int *fault_type)
1127 {
1128 	struct address_space *mapping = inode->i_mapping;
1129 	struct shmem_inode_info *info;
1130 	struct shmem_sb_info *sbinfo;
1131 	struct mm_struct *charge_mm;
1132 	struct mem_cgroup *memcg;
1133 	struct page *page;
1134 	swp_entry_t swap;
1135 	int error;
1136 	int once = 0;
1137 	int alloced = 0;
1138 
1139 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1140 		return -EFBIG;
1141 repeat:
1142 	swap.val = 0;
1143 	page = find_lock_entry(mapping, index);
1144 	if (radix_tree_exceptional_entry(page)) {
1145 		swap = radix_to_swp_entry(page);
1146 		page = NULL;
1147 	}
1148 
1149 	if (sgp <= SGP_CACHE &&
1150 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1151 		error = -EINVAL;
1152 		goto unlock;
1153 	}
1154 
1155 	if (page && sgp == SGP_WRITE)
1156 		mark_page_accessed(page);
1157 
1158 	/* fallocated page? */
1159 	if (page && !PageUptodate(page)) {
1160 		if (sgp != SGP_READ)
1161 			goto clear;
1162 		unlock_page(page);
1163 		put_page(page);
1164 		page = NULL;
1165 	}
1166 	if (page || (sgp == SGP_READ && !swap.val)) {
1167 		*pagep = page;
1168 		return 0;
1169 	}
1170 
1171 	/*
1172 	 * Fast cache lookup did not find it:
1173 	 * bring it back from swap or allocate.
1174 	 */
1175 	info = SHMEM_I(inode);
1176 	sbinfo = SHMEM_SB(inode->i_sb);
1177 	charge_mm = fault_mm ? : current->mm;
1178 
1179 	if (swap.val) {
1180 		/* Look it up and read it in.. */
1181 		page = lookup_swap_cache(swap);
1182 		if (!page) {
1183 			/* Or update major stats only when swapin succeeds?? */
1184 			if (fault_type) {
1185 				*fault_type |= VM_FAULT_MAJOR;
1186 				count_vm_event(PGMAJFAULT);
1187 				mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1188 			}
1189 			/* Here we actually start the io */
1190 			page = shmem_swapin(swap, gfp, info, index);
1191 			if (!page) {
1192 				error = -ENOMEM;
1193 				goto failed;
1194 			}
1195 		}
1196 
1197 		/* We have to do this with page locked to prevent races */
1198 		lock_page(page);
1199 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1200 		    !shmem_confirm_swap(mapping, index, swap)) {
1201 			error = -EEXIST;	/* try again */
1202 			goto unlock;
1203 		}
1204 		if (!PageUptodate(page)) {
1205 			error = -EIO;
1206 			goto failed;
1207 		}
1208 		wait_on_page_writeback(page);
1209 
1210 		if (shmem_should_replace_page(page, gfp)) {
1211 			error = shmem_replace_page(&page, gfp, info, index);
1212 			if (error)
1213 				goto failed;
1214 		}
1215 
1216 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1217 				false);
1218 		if (!error) {
1219 			error = shmem_add_to_page_cache(page, mapping, index,
1220 						swp_to_radix_entry(swap));
1221 			/*
1222 			 * We already confirmed swap under page lock, and make
1223 			 * no memory allocation here, so usually no possibility
1224 			 * of error; but free_swap_and_cache() only trylocks a
1225 			 * page, so it is just possible that the entry has been
1226 			 * truncated or holepunched since swap was confirmed.
1227 			 * shmem_undo_range() will have done some of the
1228 			 * unaccounting, now delete_from_swap_cache() will do
1229 			 * the rest.
1230 			 * Reset swap.val? No, leave it so "failed" goes back to
1231 			 * "repeat": reading a hole and writing should succeed.
1232 			 */
1233 			if (error) {
1234 				mem_cgroup_cancel_charge(page, memcg, false);
1235 				delete_from_swap_cache(page);
1236 			}
1237 		}
1238 		if (error)
1239 			goto failed;
1240 
1241 		mem_cgroup_commit_charge(page, memcg, true, false);
1242 
1243 		spin_lock(&info->lock);
1244 		info->swapped--;
1245 		shmem_recalc_inode(inode);
1246 		spin_unlock(&info->lock);
1247 
1248 		if (sgp == SGP_WRITE)
1249 			mark_page_accessed(page);
1250 
1251 		delete_from_swap_cache(page);
1252 		set_page_dirty(page);
1253 		swap_free(swap);
1254 
1255 	} else {
1256 		if (shmem_acct_block(info->flags)) {
1257 			error = -ENOSPC;
1258 			goto failed;
1259 		}
1260 		if (sbinfo->max_blocks) {
1261 			if (percpu_counter_compare(&sbinfo->used_blocks,
1262 						sbinfo->max_blocks) >= 0) {
1263 				error = -ENOSPC;
1264 				goto unacct;
1265 			}
1266 			percpu_counter_inc(&sbinfo->used_blocks);
1267 		}
1268 
1269 		page = shmem_alloc_page(gfp, info, index);
1270 		if (!page) {
1271 			error = -ENOMEM;
1272 			goto decused;
1273 		}
1274 		if (sgp == SGP_WRITE)
1275 			__SetPageReferenced(page);
1276 
1277 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1278 				false);
1279 		if (error)
1280 			goto decused;
1281 		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1282 		if (!error) {
1283 			error = shmem_add_to_page_cache(page, mapping, index,
1284 							NULL);
1285 			radix_tree_preload_end();
1286 		}
1287 		if (error) {
1288 			mem_cgroup_cancel_charge(page, memcg, false);
1289 			goto decused;
1290 		}
1291 		mem_cgroup_commit_charge(page, memcg, false, false);
1292 		lru_cache_add_anon(page);
1293 
1294 		spin_lock(&info->lock);
1295 		info->alloced++;
1296 		inode->i_blocks += BLOCKS_PER_PAGE;
1297 		shmem_recalc_inode(inode);
1298 		spin_unlock(&info->lock);
1299 		alloced = true;
1300 
1301 		/*
1302 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1303 		 */
1304 		if (sgp == SGP_FALLOC)
1305 			sgp = SGP_WRITE;
1306 clear:
1307 		/*
1308 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1309 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1310 		 * it now, lest undo on failure cancel our earlier guarantee.
1311 		 */
1312 		if (sgp != SGP_WRITE) {
1313 			clear_highpage(page);
1314 			flush_dcache_page(page);
1315 			SetPageUptodate(page);
1316 		}
1317 	}
1318 
1319 	/* Perhaps the file has been truncated since we checked */
1320 	if (sgp <= SGP_CACHE &&
1321 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1322 		if (alloced) {
1323 			ClearPageDirty(page);
1324 			delete_from_page_cache(page);
1325 			spin_lock(&info->lock);
1326 			shmem_recalc_inode(inode);
1327 			spin_unlock(&info->lock);
1328 		}
1329 		error = -EINVAL;
1330 		goto unlock;
1331 	}
1332 	*pagep = page;
1333 	return 0;
1334 
1335 	/*
1336 	 * Error recovery.
1337 	 */
1338 decused:
1339 	if (sbinfo->max_blocks)
1340 		percpu_counter_add(&sbinfo->used_blocks, -1);
1341 unacct:
1342 	shmem_unacct_blocks(info->flags, 1);
1343 failed:
1344 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1345 		error = -EEXIST;
1346 unlock:
1347 	if (page) {
1348 		unlock_page(page);
1349 		put_page(page);
1350 	}
1351 	if (error == -ENOSPC && !once++) {
1352 		info = SHMEM_I(inode);
1353 		spin_lock(&info->lock);
1354 		shmem_recalc_inode(inode);
1355 		spin_unlock(&info->lock);
1356 		goto repeat;
1357 	}
1358 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1359 		goto repeat;
1360 	return error;
1361 }
1362 
1363 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1364 {
1365 	struct inode *inode = file_inode(vma->vm_file);
1366 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1367 	int error;
1368 	int ret = VM_FAULT_LOCKED;
1369 
1370 	/*
1371 	 * Trinity finds that probing a hole which tmpfs is punching can
1372 	 * prevent the hole-punch from ever completing: which in turn
1373 	 * locks writers out with its hold on i_mutex.  So refrain from
1374 	 * faulting pages into the hole while it's being punched.  Although
1375 	 * shmem_undo_range() does remove the additions, it may be unable to
1376 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1377 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1378 	 *
1379 	 * It does not matter if we sometimes reach this check just before the
1380 	 * hole-punch begins, so that one fault then races with the punch:
1381 	 * we just need to make racing faults a rare case.
1382 	 *
1383 	 * The implementation below would be much simpler if we just used a
1384 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1385 	 * and bloating every shmem inode for this unlikely case would be sad.
1386 	 */
1387 	if (unlikely(inode->i_private)) {
1388 		struct shmem_falloc *shmem_falloc;
1389 
1390 		spin_lock(&inode->i_lock);
1391 		shmem_falloc = inode->i_private;
1392 		if (shmem_falloc &&
1393 		    shmem_falloc->waitq &&
1394 		    vmf->pgoff >= shmem_falloc->start &&
1395 		    vmf->pgoff < shmem_falloc->next) {
1396 			wait_queue_head_t *shmem_falloc_waitq;
1397 			DEFINE_WAIT(shmem_fault_wait);
1398 
1399 			ret = VM_FAULT_NOPAGE;
1400 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1401 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1402 				/* It's polite to up mmap_sem if we can */
1403 				up_read(&vma->vm_mm->mmap_sem);
1404 				ret = VM_FAULT_RETRY;
1405 			}
1406 
1407 			shmem_falloc_waitq = shmem_falloc->waitq;
1408 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1409 					TASK_UNINTERRUPTIBLE);
1410 			spin_unlock(&inode->i_lock);
1411 			schedule();
1412 
1413 			/*
1414 			 * shmem_falloc_waitq points into the shmem_fallocate()
1415 			 * stack of the hole-punching task: shmem_falloc_waitq
1416 			 * is usually invalid by the time we reach here, but
1417 			 * finish_wait() does not dereference it in that case;
1418 			 * though i_lock needed lest racing with wake_up_all().
1419 			 */
1420 			spin_lock(&inode->i_lock);
1421 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1422 			spin_unlock(&inode->i_lock);
1423 			return ret;
1424 		}
1425 		spin_unlock(&inode->i_lock);
1426 	}
1427 
1428 	error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
1429 				  gfp, vma->vm_mm, &ret);
1430 	if (error)
1431 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1432 	return ret;
1433 }
1434 
1435 #ifdef CONFIG_NUMA
1436 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1437 {
1438 	struct inode *inode = file_inode(vma->vm_file);
1439 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1440 }
1441 
1442 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1443 					  unsigned long addr)
1444 {
1445 	struct inode *inode = file_inode(vma->vm_file);
1446 	pgoff_t index;
1447 
1448 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1449 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1450 }
1451 #endif
1452 
1453 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1454 {
1455 	struct inode *inode = file_inode(file);
1456 	struct shmem_inode_info *info = SHMEM_I(inode);
1457 	int retval = -ENOMEM;
1458 
1459 	spin_lock(&info->lock);
1460 	if (lock && !(info->flags & VM_LOCKED)) {
1461 		if (!user_shm_lock(inode->i_size, user))
1462 			goto out_nomem;
1463 		info->flags |= VM_LOCKED;
1464 		mapping_set_unevictable(file->f_mapping);
1465 	}
1466 	if (!lock && (info->flags & VM_LOCKED) && user) {
1467 		user_shm_unlock(inode->i_size, user);
1468 		info->flags &= ~VM_LOCKED;
1469 		mapping_clear_unevictable(file->f_mapping);
1470 	}
1471 	retval = 0;
1472 
1473 out_nomem:
1474 	spin_unlock(&info->lock);
1475 	return retval;
1476 }
1477 
1478 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1479 {
1480 	file_accessed(file);
1481 	vma->vm_ops = &shmem_vm_ops;
1482 	return 0;
1483 }
1484 
1485 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1486 				     umode_t mode, dev_t dev, unsigned long flags)
1487 {
1488 	struct inode *inode;
1489 	struct shmem_inode_info *info;
1490 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1491 
1492 	if (shmem_reserve_inode(sb))
1493 		return NULL;
1494 
1495 	inode = new_inode(sb);
1496 	if (inode) {
1497 		inode->i_ino = get_next_ino();
1498 		inode_init_owner(inode, dir, mode);
1499 		inode->i_blocks = 0;
1500 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1501 		inode->i_generation = get_seconds();
1502 		info = SHMEM_I(inode);
1503 		memset(info, 0, (char *)inode - (char *)info);
1504 		spin_lock_init(&info->lock);
1505 		info->seals = F_SEAL_SEAL;
1506 		info->flags = flags & VM_NORESERVE;
1507 		INIT_LIST_HEAD(&info->swaplist);
1508 		simple_xattrs_init(&info->xattrs);
1509 		cache_no_acl(inode);
1510 
1511 		switch (mode & S_IFMT) {
1512 		default:
1513 			inode->i_op = &shmem_special_inode_operations;
1514 			init_special_inode(inode, mode, dev);
1515 			break;
1516 		case S_IFREG:
1517 			inode->i_mapping->a_ops = &shmem_aops;
1518 			inode->i_op = &shmem_inode_operations;
1519 			inode->i_fop = &shmem_file_operations;
1520 			mpol_shared_policy_init(&info->policy,
1521 						 shmem_get_sbmpol(sbinfo));
1522 			break;
1523 		case S_IFDIR:
1524 			inc_nlink(inode);
1525 			/* Some things misbehave if size == 0 on a directory */
1526 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1527 			inode->i_op = &shmem_dir_inode_operations;
1528 			inode->i_fop = &simple_dir_operations;
1529 			break;
1530 		case S_IFLNK:
1531 			/*
1532 			 * Must not load anything in the rbtree,
1533 			 * mpol_free_shared_policy will not be called.
1534 			 */
1535 			mpol_shared_policy_init(&info->policy, NULL);
1536 			break;
1537 		}
1538 	} else
1539 		shmem_free_inode(sb);
1540 	return inode;
1541 }
1542 
1543 bool shmem_mapping(struct address_space *mapping)
1544 {
1545 	if (!mapping->host)
1546 		return false;
1547 
1548 	return mapping->host->i_sb->s_op == &shmem_ops;
1549 }
1550 
1551 #ifdef CONFIG_TMPFS
1552 static const struct inode_operations shmem_symlink_inode_operations;
1553 static const struct inode_operations shmem_short_symlink_operations;
1554 
1555 #ifdef CONFIG_TMPFS_XATTR
1556 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1557 #else
1558 #define shmem_initxattrs NULL
1559 #endif
1560 
1561 static int
1562 shmem_write_begin(struct file *file, struct address_space *mapping,
1563 			loff_t pos, unsigned len, unsigned flags,
1564 			struct page **pagep, void **fsdata)
1565 {
1566 	struct inode *inode = mapping->host;
1567 	struct shmem_inode_info *info = SHMEM_I(inode);
1568 	pgoff_t index = pos >> PAGE_SHIFT;
1569 
1570 	/* i_mutex is held by caller */
1571 	if (unlikely(info->seals)) {
1572 		if (info->seals & F_SEAL_WRITE)
1573 			return -EPERM;
1574 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1575 			return -EPERM;
1576 	}
1577 
1578 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
1579 }
1580 
1581 static int
1582 shmem_write_end(struct file *file, struct address_space *mapping,
1583 			loff_t pos, unsigned len, unsigned copied,
1584 			struct page *page, void *fsdata)
1585 {
1586 	struct inode *inode = mapping->host;
1587 
1588 	if (pos + copied > inode->i_size)
1589 		i_size_write(inode, pos + copied);
1590 
1591 	if (!PageUptodate(page)) {
1592 		if (copied < PAGE_SIZE) {
1593 			unsigned from = pos & (PAGE_SIZE - 1);
1594 			zero_user_segments(page, 0, from,
1595 					from + copied, PAGE_SIZE);
1596 		}
1597 		SetPageUptodate(page);
1598 	}
1599 	set_page_dirty(page);
1600 	unlock_page(page);
1601 	put_page(page);
1602 
1603 	return copied;
1604 }
1605 
1606 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1607 {
1608 	struct file *file = iocb->ki_filp;
1609 	struct inode *inode = file_inode(file);
1610 	struct address_space *mapping = inode->i_mapping;
1611 	pgoff_t index;
1612 	unsigned long offset;
1613 	enum sgp_type sgp = SGP_READ;
1614 	int error = 0;
1615 	ssize_t retval = 0;
1616 	loff_t *ppos = &iocb->ki_pos;
1617 
1618 	/*
1619 	 * Might this read be for a stacking filesystem?  Then when reading
1620 	 * holes of a sparse file, we actually need to allocate those pages,
1621 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1622 	 */
1623 	if (!iter_is_iovec(to))
1624 		sgp = SGP_CACHE;
1625 
1626 	index = *ppos >> PAGE_SHIFT;
1627 	offset = *ppos & ~PAGE_MASK;
1628 
1629 	for (;;) {
1630 		struct page *page = NULL;
1631 		pgoff_t end_index;
1632 		unsigned long nr, ret;
1633 		loff_t i_size = i_size_read(inode);
1634 
1635 		end_index = i_size >> PAGE_SHIFT;
1636 		if (index > end_index)
1637 			break;
1638 		if (index == end_index) {
1639 			nr = i_size & ~PAGE_MASK;
1640 			if (nr <= offset)
1641 				break;
1642 		}
1643 
1644 		error = shmem_getpage(inode, index, &page, sgp);
1645 		if (error) {
1646 			if (error == -EINVAL)
1647 				error = 0;
1648 			break;
1649 		}
1650 		if (page) {
1651 			if (sgp == SGP_CACHE)
1652 				set_page_dirty(page);
1653 			unlock_page(page);
1654 		}
1655 
1656 		/*
1657 		 * We must evaluate after, since reads (unlike writes)
1658 		 * are called without i_mutex protection against truncate
1659 		 */
1660 		nr = PAGE_SIZE;
1661 		i_size = i_size_read(inode);
1662 		end_index = i_size >> PAGE_SHIFT;
1663 		if (index == end_index) {
1664 			nr = i_size & ~PAGE_MASK;
1665 			if (nr <= offset) {
1666 				if (page)
1667 					put_page(page);
1668 				break;
1669 			}
1670 		}
1671 		nr -= offset;
1672 
1673 		if (page) {
1674 			/*
1675 			 * If users can be writing to this page using arbitrary
1676 			 * virtual addresses, take care about potential aliasing
1677 			 * before reading the page on the kernel side.
1678 			 */
1679 			if (mapping_writably_mapped(mapping))
1680 				flush_dcache_page(page);
1681 			/*
1682 			 * Mark the page accessed if we read the beginning.
1683 			 */
1684 			if (!offset)
1685 				mark_page_accessed(page);
1686 		} else {
1687 			page = ZERO_PAGE(0);
1688 			get_page(page);
1689 		}
1690 
1691 		/*
1692 		 * Ok, we have the page, and it's up-to-date, so
1693 		 * now we can copy it to user space...
1694 		 */
1695 		ret = copy_page_to_iter(page, offset, nr, to);
1696 		retval += ret;
1697 		offset += ret;
1698 		index += offset >> PAGE_SHIFT;
1699 		offset &= ~PAGE_MASK;
1700 
1701 		put_page(page);
1702 		if (!iov_iter_count(to))
1703 			break;
1704 		if (ret < nr) {
1705 			error = -EFAULT;
1706 			break;
1707 		}
1708 		cond_resched();
1709 	}
1710 
1711 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
1712 	file_accessed(file);
1713 	return retval ? retval : error;
1714 }
1715 
1716 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1717 				struct pipe_inode_info *pipe, size_t len,
1718 				unsigned int flags)
1719 {
1720 	struct address_space *mapping = in->f_mapping;
1721 	struct inode *inode = mapping->host;
1722 	unsigned int loff, nr_pages, req_pages;
1723 	struct page *pages[PIPE_DEF_BUFFERS];
1724 	struct partial_page partial[PIPE_DEF_BUFFERS];
1725 	struct page *page;
1726 	pgoff_t index, end_index;
1727 	loff_t isize, left;
1728 	int error, page_nr;
1729 	struct splice_pipe_desc spd = {
1730 		.pages = pages,
1731 		.partial = partial,
1732 		.nr_pages_max = PIPE_DEF_BUFFERS,
1733 		.flags = flags,
1734 		.ops = &page_cache_pipe_buf_ops,
1735 		.spd_release = spd_release_page,
1736 	};
1737 
1738 	isize = i_size_read(inode);
1739 	if (unlikely(*ppos >= isize))
1740 		return 0;
1741 
1742 	left = isize - *ppos;
1743 	if (unlikely(left < len))
1744 		len = left;
1745 
1746 	if (splice_grow_spd(pipe, &spd))
1747 		return -ENOMEM;
1748 
1749 	index = *ppos >> PAGE_SHIFT;
1750 	loff = *ppos & ~PAGE_MASK;
1751 	req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
1752 	nr_pages = min(req_pages, spd.nr_pages_max);
1753 
1754 	spd.nr_pages = find_get_pages_contig(mapping, index,
1755 						nr_pages, spd.pages);
1756 	index += spd.nr_pages;
1757 	error = 0;
1758 
1759 	while (spd.nr_pages < nr_pages) {
1760 		error = shmem_getpage(inode, index, &page, SGP_CACHE);
1761 		if (error)
1762 			break;
1763 		unlock_page(page);
1764 		spd.pages[spd.nr_pages++] = page;
1765 		index++;
1766 	}
1767 
1768 	index = *ppos >> PAGE_SHIFT;
1769 	nr_pages = spd.nr_pages;
1770 	spd.nr_pages = 0;
1771 
1772 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1773 		unsigned int this_len;
1774 
1775 		if (!len)
1776 			break;
1777 
1778 		this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
1779 		page = spd.pages[page_nr];
1780 
1781 		if (!PageUptodate(page) || page->mapping != mapping) {
1782 			error = shmem_getpage(inode, index, &page, SGP_CACHE);
1783 			if (error)
1784 				break;
1785 			unlock_page(page);
1786 			put_page(spd.pages[page_nr]);
1787 			spd.pages[page_nr] = page;
1788 		}
1789 
1790 		isize = i_size_read(inode);
1791 		end_index = (isize - 1) >> PAGE_SHIFT;
1792 		if (unlikely(!isize || index > end_index))
1793 			break;
1794 
1795 		if (end_index == index) {
1796 			unsigned int plen;
1797 
1798 			plen = ((isize - 1) & ~PAGE_MASK) + 1;
1799 			if (plen <= loff)
1800 				break;
1801 
1802 			this_len = min(this_len, plen - loff);
1803 			len = this_len;
1804 		}
1805 
1806 		spd.partial[page_nr].offset = loff;
1807 		spd.partial[page_nr].len = this_len;
1808 		len -= this_len;
1809 		loff = 0;
1810 		spd.nr_pages++;
1811 		index++;
1812 	}
1813 
1814 	while (page_nr < nr_pages)
1815 		put_page(spd.pages[page_nr++]);
1816 
1817 	if (spd.nr_pages)
1818 		error = splice_to_pipe(pipe, &spd);
1819 
1820 	splice_shrink_spd(&spd);
1821 
1822 	if (error > 0) {
1823 		*ppos += error;
1824 		file_accessed(in);
1825 	}
1826 	return error;
1827 }
1828 
1829 /*
1830  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1831  */
1832 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1833 				    pgoff_t index, pgoff_t end, int whence)
1834 {
1835 	struct page *page;
1836 	struct pagevec pvec;
1837 	pgoff_t indices[PAGEVEC_SIZE];
1838 	bool done = false;
1839 	int i;
1840 
1841 	pagevec_init(&pvec, 0);
1842 	pvec.nr = 1;		/* start small: we may be there already */
1843 	while (!done) {
1844 		pvec.nr = find_get_entries(mapping, index,
1845 					pvec.nr, pvec.pages, indices);
1846 		if (!pvec.nr) {
1847 			if (whence == SEEK_DATA)
1848 				index = end;
1849 			break;
1850 		}
1851 		for (i = 0; i < pvec.nr; i++, index++) {
1852 			if (index < indices[i]) {
1853 				if (whence == SEEK_HOLE) {
1854 					done = true;
1855 					break;
1856 				}
1857 				index = indices[i];
1858 			}
1859 			page = pvec.pages[i];
1860 			if (page && !radix_tree_exceptional_entry(page)) {
1861 				if (!PageUptodate(page))
1862 					page = NULL;
1863 			}
1864 			if (index >= end ||
1865 			    (page && whence == SEEK_DATA) ||
1866 			    (!page && whence == SEEK_HOLE)) {
1867 				done = true;
1868 				break;
1869 			}
1870 		}
1871 		pagevec_remove_exceptionals(&pvec);
1872 		pagevec_release(&pvec);
1873 		pvec.nr = PAGEVEC_SIZE;
1874 		cond_resched();
1875 	}
1876 	return index;
1877 }
1878 
1879 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1880 {
1881 	struct address_space *mapping = file->f_mapping;
1882 	struct inode *inode = mapping->host;
1883 	pgoff_t start, end;
1884 	loff_t new_offset;
1885 
1886 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1887 		return generic_file_llseek_size(file, offset, whence,
1888 					MAX_LFS_FILESIZE, i_size_read(inode));
1889 	inode_lock(inode);
1890 	/* We're holding i_mutex so we can access i_size directly */
1891 
1892 	if (offset < 0)
1893 		offset = -EINVAL;
1894 	else if (offset >= inode->i_size)
1895 		offset = -ENXIO;
1896 	else {
1897 		start = offset >> PAGE_SHIFT;
1898 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1899 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1900 		new_offset <<= PAGE_SHIFT;
1901 		if (new_offset > offset) {
1902 			if (new_offset < inode->i_size)
1903 				offset = new_offset;
1904 			else if (whence == SEEK_DATA)
1905 				offset = -ENXIO;
1906 			else
1907 				offset = inode->i_size;
1908 		}
1909 	}
1910 
1911 	if (offset >= 0)
1912 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1913 	inode_unlock(inode);
1914 	return offset;
1915 }
1916 
1917 /*
1918  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1919  * so reuse a tag which we firmly believe is never set or cleared on shmem.
1920  */
1921 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1922 #define LAST_SCAN               4       /* about 150ms max */
1923 
1924 static void shmem_tag_pins(struct address_space *mapping)
1925 {
1926 	struct radix_tree_iter iter;
1927 	void **slot;
1928 	pgoff_t start;
1929 	struct page *page;
1930 
1931 	lru_add_drain();
1932 	start = 0;
1933 	rcu_read_lock();
1934 
1935 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1936 		page = radix_tree_deref_slot(slot);
1937 		if (!page || radix_tree_exception(page)) {
1938 			if (radix_tree_deref_retry(page)) {
1939 				slot = radix_tree_iter_retry(&iter);
1940 				continue;
1941 			}
1942 		} else if (page_count(page) - page_mapcount(page) > 1) {
1943 			spin_lock_irq(&mapping->tree_lock);
1944 			radix_tree_tag_set(&mapping->page_tree, iter.index,
1945 					   SHMEM_TAG_PINNED);
1946 			spin_unlock_irq(&mapping->tree_lock);
1947 		}
1948 
1949 		if (need_resched()) {
1950 			cond_resched_rcu();
1951 			slot = radix_tree_iter_next(&iter);
1952 		}
1953 	}
1954 	rcu_read_unlock();
1955 }
1956 
1957 /*
1958  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1959  * via get_user_pages(), drivers might have some pending I/O without any active
1960  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1961  * and see whether it has an elevated ref-count. If so, we tag them and wait for
1962  * them to be dropped.
1963  * The caller must guarantee that no new user will acquire writable references
1964  * to those pages to avoid races.
1965  */
1966 static int shmem_wait_for_pins(struct address_space *mapping)
1967 {
1968 	struct radix_tree_iter iter;
1969 	void **slot;
1970 	pgoff_t start;
1971 	struct page *page;
1972 	int error, scan;
1973 
1974 	shmem_tag_pins(mapping);
1975 
1976 	error = 0;
1977 	for (scan = 0; scan <= LAST_SCAN; scan++) {
1978 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1979 			break;
1980 
1981 		if (!scan)
1982 			lru_add_drain_all();
1983 		else if (schedule_timeout_killable((HZ << scan) / 200))
1984 			scan = LAST_SCAN;
1985 
1986 		start = 0;
1987 		rcu_read_lock();
1988 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1989 					   start, SHMEM_TAG_PINNED) {
1990 
1991 			page = radix_tree_deref_slot(slot);
1992 			if (radix_tree_exception(page)) {
1993 				if (radix_tree_deref_retry(page)) {
1994 					slot = radix_tree_iter_retry(&iter);
1995 					continue;
1996 				}
1997 
1998 				page = NULL;
1999 			}
2000 
2001 			if (page &&
2002 			    page_count(page) - page_mapcount(page) != 1) {
2003 				if (scan < LAST_SCAN)
2004 					goto continue_resched;
2005 
2006 				/*
2007 				 * On the last scan, we clean up all those tags
2008 				 * we inserted; but make a note that we still
2009 				 * found pages pinned.
2010 				 */
2011 				error = -EBUSY;
2012 			}
2013 
2014 			spin_lock_irq(&mapping->tree_lock);
2015 			radix_tree_tag_clear(&mapping->page_tree,
2016 					     iter.index, SHMEM_TAG_PINNED);
2017 			spin_unlock_irq(&mapping->tree_lock);
2018 continue_resched:
2019 			if (need_resched()) {
2020 				cond_resched_rcu();
2021 				slot = radix_tree_iter_next(&iter);
2022 			}
2023 		}
2024 		rcu_read_unlock();
2025 	}
2026 
2027 	return error;
2028 }
2029 
2030 #define F_ALL_SEALS (F_SEAL_SEAL | \
2031 		     F_SEAL_SHRINK | \
2032 		     F_SEAL_GROW | \
2033 		     F_SEAL_WRITE)
2034 
2035 int shmem_add_seals(struct file *file, unsigned int seals)
2036 {
2037 	struct inode *inode = file_inode(file);
2038 	struct shmem_inode_info *info = SHMEM_I(inode);
2039 	int error;
2040 
2041 	/*
2042 	 * SEALING
2043 	 * Sealing allows multiple parties to share a shmem-file but restrict
2044 	 * access to a specific subset of file operations. Seals can only be
2045 	 * added, but never removed. This way, mutually untrusted parties can
2046 	 * share common memory regions with a well-defined policy. A malicious
2047 	 * peer can thus never perform unwanted operations on a shared object.
2048 	 *
2049 	 * Seals are only supported on special shmem-files and always affect
2050 	 * the whole underlying inode. Once a seal is set, it may prevent some
2051 	 * kinds of access to the file. Currently, the following seals are
2052 	 * defined:
2053 	 *   SEAL_SEAL: Prevent further seals from being set on this file
2054 	 *   SEAL_SHRINK: Prevent the file from shrinking
2055 	 *   SEAL_GROW: Prevent the file from growing
2056 	 *   SEAL_WRITE: Prevent write access to the file
2057 	 *
2058 	 * As we don't require any trust relationship between two parties, we
2059 	 * must prevent seals from being removed. Therefore, sealing a file
2060 	 * only adds a given set of seals to the file, it never touches
2061 	 * existing seals. Furthermore, the "setting seals"-operation can be
2062 	 * sealed itself, which basically prevents any further seal from being
2063 	 * added.
2064 	 *
2065 	 * Semantics of sealing are only defined on volatile files. Only
2066 	 * anonymous shmem files support sealing. More importantly, seals are
2067 	 * never written to disk. Therefore, there's no plan to support it on
2068 	 * other file types.
2069 	 */
2070 
2071 	if (file->f_op != &shmem_file_operations)
2072 		return -EINVAL;
2073 	if (!(file->f_mode & FMODE_WRITE))
2074 		return -EPERM;
2075 	if (seals & ~(unsigned int)F_ALL_SEALS)
2076 		return -EINVAL;
2077 
2078 	inode_lock(inode);
2079 
2080 	if (info->seals & F_SEAL_SEAL) {
2081 		error = -EPERM;
2082 		goto unlock;
2083 	}
2084 
2085 	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2086 		error = mapping_deny_writable(file->f_mapping);
2087 		if (error)
2088 			goto unlock;
2089 
2090 		error = shmem_wait_for_pins(file->f_mapping);
2091 		if (error) {
2092 			mapping_allow_writable(file->f_mapping);
2093 			goto unlock;
2094 		}
2095 	}
2096 
2097 	info->seals |= seals;
2098 	error = 0;
2099 
2100 unlock:
2101 	inode_unlock(inode);
2102 	return error;
2103 }
2104 EXPORT_SYMBOL_GPL(shmem_add_seals);
2105 
2106 int shmem_get_seals(struct file *file)
2107 {
2108 	if (file->f_op != &shmem_file_operations)
2109 		return -EINVAL;
2110 
2111 	return SHMEM_I(file_inode(file))->seals;
2112 }
2113 EXPORT_SYMBOL_GPL(shmem_get_seals);
2114 
2115 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2116 {
2117 	long error;
2118 
2119 	switch (cmd) {
2120 	case F_ADD_SEALS:
2121 		/* disallow upper 32bit */
2122 		if (arg > UINT_MAX)
2123 			return -EINVAL;
2124 
2125 		error = shmem_add_seals(file, arg);
2126 		break;
2127 	case F_GET_SEALS:
2128 		error = shmem_get_seals(file);
2129 		break;
2130 	default:
2131 		error = -EINVAL;
2132 		break;
2133 	}
2134 
2135 	return error;
2136 }
2137 
2138 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2139 							 loff_t len)
2140 {
2141 	struct inode *inode = file_inode(file);
2142 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2143 	struct shmem_inode_info *info = SHMEM_I(inode);
2144 	struct shmem_falloc shmem_falloc;
2145 	pgoff_t start, index, end;
2146 	int error;
2147 
2148 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2149 		return -EOPNOTSUPP;
2150 
2151 	inode_lock(inode);
2152 
2153 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2154 		struct address_space *mapping = file->f_mapping;
2155 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2156 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2157 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2158 
2159 		/* protected by i_mutex */
2160 		if (info->seals & F_SEAL_WRITE) {
2161 			error = -EPERM;
2162 			goto out;
2163 		}
2164 
2165 		shmem_falloc.waitq = &shmem_falloc_waitq;
2166 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2167 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2168 		spin_lock(&inode->i_lock);
2169 		inode->i_private = &shmem_falloc;
2170 		spin_unlock(&inode->i_lock);
2171 
2172 		if ((u64)unmap_end > (u64)unmap_start)
2173 			unmap_mapping_range(mapping, unmap_start,
2174 					    1 + unmap_end - unmap_start, 0);
2175 		shmem_truncate_range(inode, offset, offset + len - 1);
2176 		/* No need to unmap again: hole-punching leaves COWed pages */
2177 
2178 		spin_lock(&inode->i_lock);
2179 		inode->i_private = NULL;
2180 		wake_up_all(&shmem_falloc_waitq);
2181 		spin_unlock(&inode->i_lock);
2182 		error = 0;
2183 		goto out;
2184 	}
2185 
2186 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2187 	error = inode_newsize_ok(inode, offset + len);
2188 	if (error)
2189 		goto out;
2190 
2191 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2192 		error = -EPERM;
2193 		goto out;
2194 	}
2195 
2196 	start = offset >> PAGE_SHIFT;
2197 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2198 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2199 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2200 		error = -ENOSPC;
2201 		goto out;
2202 	}
2203 
2204 	shmem_falloc.waitq = NULL;
2205 	shmem_falloc.start = start;
2206 	shmem_falloc.next  = start;
2207 	shmem_falloc.nr_falloced = 0;
2208 	shmem_falloc.nr_unswapped = 0;
2209 	spin_lock(&inode->i_lock);
2210 	inode->i_private = &shmem_falloc;
2211 	spin_unlock(&inode->i_lock);
2212 
2213 	for (index = start; index < end; index++) {
2214 		struct page *page;
2215 
2216 		/*
2217 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2218 		 * been interrupted because we are using up too much memory.
2219 		 */
2220 		if (signal_pending(current))
2221 			error = -EINTR;
2222 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2223 			error = -ENOMEM;
2224 		else
2225 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2226 		if (error) {
2227 			/* Remove the !PageUptodate pages we added */
2228 			shmem_undo_range(inode,
2229 				(loff_t)start << PAGE_SHIFT,
2230 				((loff_t)index << PAGE_SHIFT) - 1, true);
2231 			goto undone;
2232 		}
2233 
2234 		/*
2235 		 * Inform shmem_writepage() how far we have reached.
2236 		 * No need for lock or barrier: we have the page lock.
2237 		 */
2238 		shmem_falloc.next++;
2239 		if (!PageUptodate(page))
2240 			shmem_falloc.nr_falloced++;
2241 
2242 		/*
2243 		 * If !PageUptodate, leave it that way so that freeable pages
2244 		 * can be recognized if we need to rollback on error later.
2245 		 * But set_page_dirty so that memory pressure will swap rather
2246 		 * than free the pages we are allocating (and SGP_CACHE pages
2247 		 * might still be clean: we now need to mark those dirty too).
2248 		 */
2249 		set_page_dirty(page);
2250 		unlock_page(page);
2251 		put_page(page);
2252 		cond_resched();
2253 	}
2254 
2255 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2256 		i_size_write(inode, offset + len);
2257 	inode->i_ctime = CURRENT_TIME;
2258 undone:
2259 	spin_lock(&inode->i_lock);
2260 	inode->i_private = NULL;
2261 	spin_unlock(&inode->i_lock);
2262 out:
2263 	inode_unlock(inode);
2264 	return error;
2265 }
2266 
2267 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2268 {
2269 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2270 
2271 	buf->f_type = TMPFS_MAGIC;
2272 	buf->f_bsize = PAGE_SIZE;
2273 	buf->f_namelen = NAME_MAX;
2274 	if (sbinfo->max_blocks) {
2275 		buf->f_blocks = sbinfo->max_blocks;
2276 		buf->f_bavail =
2277 		buf->f_bfree  = sbinfo->max_blocks -
2278 				percpu_counter_sum(&sbinfo->used_blocks);
2279 	}
2280 	if (sbinfo->max_inodes) {
2281 		buf->f_files = sbinfo->max_inodes;
2282 		buf->f_ffree = sbinfo->free_inodes;
2283 	}
2284 	/* else leave those fields 0 like simple_statfs */
2285 	return 0;
2286 }
2287 
2288 /*
2289  * File creation. Allocate an inode, and we're done..
2290  */
2291 static int
2292 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2293 {
2294 	struct inode *inode;
2295 	int error = -ENOSPC;
2296 
2297 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2298 	if (inode) {
2299 		error = simple_acl_create(dir, inode);
2300 		if (error)
2301 			goto out_iput;
2302 		error = security_inode_init_security(inode, dir,
2303 						     &dentry->d_name,
2304 						     shmem_initxattrs, NULL);
2305 		if (error && error != -EOPNOTSUPP)
2306 			goto out_iput;
2307 
2308 		error = 0;
2309 		dir->i_size += BOGO_DIRENT_SIZE;
2310 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2311 		d_instantiate(dentry, inode);
2312 		dget(dentry); /* Extra count - pin the dentry in core */
2313 	}
2314 	return error;
2315 out_iput:
2316 	iput(inode);
2317 	return error;
2318 }
2319 
2320 static int
2321 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2322 {
2323 	struct inode *inode;
2324 	int error = -ENOSPC;
2325 
2326 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2327 	if (inode) {
2328 		error = security_inode_init_security(inode, dir,
2329 						     NULL,
2330 						     shmem_initxattrs, NULL);
2331 		if (error && error != -EOPNOTSUPP)
2332 			goto out_iput;
2333 		error = simple_acl_create(dir, inode);
2334 		if (error)
2335 			goto out_iput;
2336 		d_tmpfile(dentry, inode);
2337 	}
2338 	return error;
2339 out_iput:
2340 	iput(inode);
2341 	return error;
2342 }
2343 
2344 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2345 {
2346 	int error;
2347 
2348 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2349 		return error;
2350 	inc_nlink(dir);
2351 	return 0;
2352 }
2353 
2354 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2355 		bool excl)
2356 {
2357 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2358 }
2359 
2360 /*
2361  * Link a file..
2362  */
2363 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2364 {
2365 	struct inode *inode = d_inode(old_dentry);
2366 	int ret;
2367 
2368 	/*
2369 	 * No ordinary (disk based) filesystem counts links as inodes;
2370 	 * but each new link needs a new dentry, pinning lowmem, and
2371 	 * tmpfs dentries cannot be pruned until they are unlinked.
2372 	 */
2373 	ret = shmem_reserve_inode(inode->i_sb);
2374 	if (ret)
2375 		goto out;
2376 
2377 	dir->i_size += BOGO_DIRENT_SIZE;
2378 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2379 	inc_nlink(inode);
2380 	ihold(inode);	/* New dentry reference */
2381 	dget(dentry);		/* Extra pinning count for the created dentry */
2382 	d_instantiate(dentry, inode);
2383 out:
2384 	return ret;
2385 }
2386 
2387 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2388 {
2389 	struct inode *inode = d_inode(dentry);
2390 
2391 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2392 		shmem_free_inode(inode->i_sb);
2393 
2394 	dir->i_size -= BOGO_DIRENT_SIZE;
2395 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2396 	drop_nlink(inode);
2397 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2398 	return 0;
2399 }
2400 
2401 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2402 {
2403 	if (!simple_empty(dentry))
2404 		return -ENOTEMPTY;
2405 
2406 	drop_nlink(d_inode(dentry));
2407 	drop_nlink(dir);
2408 	return shmem_unlink(dir, dentry);
2409 }
2410 
2411 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2412 {
2413 	bool old_is_dir = d_is_dir(old_dentry);
2414 	bool new_is_dir = d_is_dir(new_dentry);
2415 
2416 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2417 		if (old_is_dir) {
2418 			drop_nlink(old_dir);
2419 			inc_nlink(new_dir);
2420 		} else {
2421 			drop_nlink(new_dir);
2422 			inc_nlink(old_dir);
2423 		}
2424 	}
2425 	old_dir->i_ctime = old_dir->i_mtime =
2426 	new_dir->i_ctime = new_dir->i_mtime =
2427 	d_inode(old_dentry)->i_ctime =
2428 	d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2429 
2430 	return 0;
2431 }
2432 
2433 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2434 {
2435 	struct dentry *whiteout;
2436 	int error;
2437 
2438 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2439 	if (!whiteout)
2440 		return -ENOMEM;
2441 
2442 	error = shmem_mknod(old_dir, whiteout,
2443 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2444 	dput(whiteout);
2445 	if (error)
2446 		return error;
2447 
2448 	/*
2449 	 * Cheat and hash the whiteout while the old dentry is still in
2450 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2451 	 *
2452 	 * d_lookup() will consistently find one of them at this point,
2453 	 * not sure which one, but that isn't even important.
2454 	 */
2455 	d_rehash(whiteout);
2456 	return 0;
2457 }
2458 
2459 /*
2460  * The VFS layer already does all the dentry stuff for rename,
2461  * we just have to decrement the usage count for the target if
2462  * it exists so that the VFS layer correctly free's it when it
2463  * gets overwritten.
2464  */
2465 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2466 {
2467 	struct inode *inode = d_inode(old_dentry);
2468 	int they_are_dirs = S_ISDIR(inode->i_mode);
2469 
2470 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2471 		return -EINVAL;
2472 
2473 	if (flags & RENAME_EXCHANGE)
2474 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2475 
2476 	if (!simple_empty(new_dentry))
2477 		return -ENOTEMPTY;
2478 
2479 	if (flags & RENAME_WHITEOUT) {
2480 		int error;
2481 
2482 		error = shmem_whiteout(old_dir, old_dentry);
2483 		if (error)
2484 			return error;
2485 	}
2486 
2487 	if (d_really_is_positive(new_dentry)) {
2488 		(void) shmem_unlink(new_dir, new_dentry);
2489 		if (they_are_dirs) {
2490 			drop_nlink(d_inode(new_dentry));
2491 			drop_nlink(old_dir);
2492 		}
2493 	} else if (they_are_dirs) {
2494 		drop_nlink(old_dir);
2495 		inc_nlink(new_dir);
2496 	}
2497 
2498 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2499 	new_dir->i_size += BOGO_DIRENT_SIZE;
2500 	old_dir->i_ctime = old_dir->i_mtime =
2501 	new_dir->i_ctime = new_dir->i_mtime =
2502 	inode->i_ctime = CURRENT_TIME;
2503 	return 0;
2504 }
2505 
2506 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2507 {
2508 	int error;
2509 	int len;
2510 	struct inode *inode;
2511 	struct page *page;
2512 	struct shmem_inode_info *info;
2513 
2514 	len = strlen(symname) + 1;
2515 	if (len > PAGE_SIZE)
2516 		return -ENAMETOOLONG;
2517 
2518 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2519 	if (!inode)
2520 		return -ENOSPC;
2521 
2522 	error = security_inode_init_security(inode, dir, &dentry->d_name,
2523 					     shmem_initxattrs, NULL);
2524 	if (error) {
2525 		if (error != -EOPNOTSUPP) {
2526 			iput(inode);
2527 			return error;
2528 		}
2529 		error = 0;
2530 	}
2531 
2532 	info = SHMEM_I(inode);
2533 	inode->i_size = len-1;
2534 	if (len <= SHORT_SYMLINK_LEN) {
2535 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2536 		if (!inode->i_link) {
2537 			iput(inode);
2538 			return -ENOMEM;
2539 		}
2540 		inode->i_op = &shmem_short_symlink_operations;
2541 	} else {
2542 		inode_nohighmem(inode);
2543 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
2544 		if (error) {
2545 			iput(inode);
2546 			return error;
2547 		}
2548 		inode->i_mapping->a_ops = &shmem_aops;
2549 		inode->i_op = &shmem_symlink_inode_operations;
2550 		memcpy(page_address(page), symname, len);
2551 		SetPageUptodate(page);
2552 		set_page_dirty(page);
2553 		unlock_page(page);
2554 		put_page(page);
2555 	}
2556 	dir->i_size += BOGO_DIRENT_SIZE;
2557 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2558 	d_instantiate(dentry, inode);
2559 	dget(dentry);
2560 	return 0;
2561 }
2562 
2563 static void shmem_put_link(void *arg)
2564 {
2565 	mark_page_accessed(arg);
2566 	put_page(arg);
2567 }
2568 
2569 static const char *shmem_get_link(struct dentry *dentry,
2570 				  struct inode *inode,
2571 				  struct delayed_call *done)
2572 {
2573 	struct page *page = NULL;
2574 	int error;
2575 	if (!dentry) {
2576 		page = find_get_page(inode->i_mapping, 0);
2577 		if (!page)
2578 			return ERR_PTR(-ECHILD);
2579 		if (!PageUptodate(page)) {
2580 			put_page(page);
2581 			return ERR_PTR(-ECHILD);
2582 		}
2583 	} else {
2584 		error = shmem_getpage(inode, 0, &page, SGP_READ);
2585 		if (error)
2586 			return ERR_PTR(error);
2587 		unlock_page(page);
2588 	}
2589 	set_delayed_call(done, shmem_put_link, page);
2590 	return page_address(page);
2591 }
2592 
2593 #ifdef CONFIG_TMPFS_XATTR
2594 /*
2595  * Superblocks without xattr inode operations may get some security.* xattr
2596  * support from the LSM "for free". As soon as we have any other xattrs
2597  * like ACLs, we also need to implement the security.* handlers at
2598  * filesystem level, though.
2599  */
2600 
2601 /*
2602  * Callback for security_inode_init_security() for acquiring xattrs.
2603  */
2604 static int shmem_initxattrs(struct inode *inode,
2605 			    const struct xattr *xattr_array,
2606 			    void *fs_info)
2607 {
2608 	struct shmem_inode_info *info = SHMEM_I(inode);
2609 	const struct xattr *xattr;
2610 	struct simple_xattr *new_xattr;
2611 	size_t len;
2612 
2613 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2614 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2615 		if (!new_xattr)
2616 			return -ENOMEM;
2617 
2618 		len = strlen(xattr->name) + 1;
2619 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2620 					  GFP_KERNEL);
2621 		if (!new_xattr->name) {
2622 			kfree(new_xattr);
2623 			return -ENOMEM;
2624 		}
2625 
2626 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2627 		       XATTR_SECURITY_PREFIX_LEN);
2628 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2629 		       xattr->name, len);
2630 
2631 		simple_xattr_list_add(&info->xattrs, new_xattr);
2632 	}
2633 
2634 	return 0;
2635 }
2636 
2637 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2638 				   struct dentry *unused, struct inode *inode,
2639 				   const char *name, void *buffer, size_t size)
2640 {
2641 	struct shmem_inode_info *info = SHMEM_I(inode);
2642 
2643 	name = xattr_full_name(handler, name);
2644 	return simple_xattr_get(&info->xattrs, name, buffer, size);
2645 }
2646 
2647 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2648 				   struct dentry *unused, struct inode *inode,
2649 				   const char *name, const void *value,
2650 				   size_t size, int flags)
2651 {
2652 	struct shmem_inode_info *info = SHMEM_I(inode);
2653 
2654 	name = xattr_full_name(handler, name);
2655 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2656 }
2657 
2658 static const struct xattr_handler shmem_security_xattr_handler = {
2659 	.prefix = XATTR_SECURITY_PREFIX,
2660 	.get = shmem_xattr_handler_get,
2661 	.set = shmem_xattr_handler_set,
2662 };
2663 
2664 static const struct xattr_handler shmem_trusted_xattr_handler = {
2665 	.prefix = XATTR_TRUSTED_PREFIX,
2666 	.get = shmem_xattr_handler_get,
2667 	.set = shmem_xattr_handler_set,
2668 };
2669 
2670 static const struct xattr_handler *shmem_xattr_handlers[] = {
2671 #ifdef CONFIG_TMPFS_POSIX_ACL
2672 	&posix_acl_access_xattr_handler,
2673 	&posix_acl_default_xattr_handler,
2674 #endif
2675 	&shmem_security_xattr_handler,
2676 	&shmem_trusted_xattr_handler,
2677 	NULL
2678 };
2679 
2680 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2681 {
2682 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2683 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2684 }
2685 #endif /* CONFIG_TMPFS_XATTR */
2686 
2687 static const struct inode_operations shmem_short_symlink_operations = {
2688 	.readlink	= generic_readlink,
2689 	.get_link	= simple_get_link,
2690 #ifdef CONFIG_TMPFS_XATTR
2691 	.setxattr	= generic_setxattr,
2692 	.getxattr	= generic_getxattr,
2693 	.listxattr	= shmem_listxattr,
2694 	.removexattr	= generic_removexattr,
2695 #endif
2696 };
2697 
2698 static const struct inode_operations shmem_symlink_inode_operations = {
2699 	.readlink	= generic_readlink,
2700 	.get_link	= shmem_get_link,
2701 #ifdef CONFIG_TMPFS_XATTR
2702 	.setxattr	= generic_setxattr,
2703 	.getxattr	= generic_getxattr,
2704 	.listxattr	= shmem_listxattr,
2705 	.removexattr	= generic_removexattr,
2706 #endif
2707 };
2708 
2709 static struct dentry *shmem_get_parent(struct dentry *child)
2710 {
2711 	return ERR_PTR(-ESTALE);
2712 }
2713 
2714 static int shmem_match(struct inode *ino, void *vfh)
2715 {
2716 	__u32 *fh = vfh;
2717 	__u64 inum = fh[2];
2718 	inum = (inum << 32) | fh[1];
2719 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2720 }
2721 
2722 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2723 		struct fid *fid, int fh_len, int fh_type)
2724 {
2725 	struct inode *inode;
2726 	struct dentry *dentry = NULL;
2727 	u64 inum;
2728 
2729 	if (fh_len < 3)
2730 		return NULL;
2731 
2732 	inum = fid->raw[2];
2733 	inum = (inum << 32) | fid->raw[1];
2734 
2735 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2736 			shmem_match, fid->raw);
2737 	if (inode) {
2738 		dentry = d_find_alias(inode);
2739 		iput(inode);
2740 	}
2741 
2742 	return dentry;
2743 }
2744 
2745 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2746 				struct inode *parent)
2747 {
2748 	if (*len < 3) {
2749 		*len = 3;
2750 		return FILEID_INVALID;
2751 	}
2752 
2753 	if (inode_unhashed(inode)) {
2754 		/* Unfortunately insert_inode_hash is not idempotent,
2755 		 * so as we hash inodes here rather than at creation
2756 		 * time, we need a lock to ensure we only try
2757 		 * to do it once
2758 		 */
2759 		static DEFINE_SPINLOCK(lock);
2760 		spin_lock(&lock);
2761 		if (inode_unhashed(inode))
2762 			__insert_inode_hash(inode,
2763 					    inode->i_ino + inode->i_generation);
2764 		spin_unlock(&lock);
2765 	}
2766 
2767 	fh[0] = inode->i_generation;
2768 	fh[1] = inode->i_ino;
2769 	fh[2] = ((__u64)inode->i_ino) >> 32;
2770 
2771 	*len = 3;
2772 	return 1;
2773 }
2774 
2775 static const struct export_operations shmem_export_ops = {
2776 	.get_parent     = shmem_get_parent,
2777 	.encode_fh      = shmem_encode_fh,
2778 	.fh_to_dentry	= shmem_fh_to_dentry,
2779 };
2780 
2781 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2782 			       bool remount)
2783 {
2784 	char *this_char, *value, *rest;
2785 	struct mempolicy *mpol = NULL;
2786 	uid_t uid;
2787 	gid_t gid;
2788 
2789 	while (options != NULL) {
2790 		this_char = options;
2791 		for (;;) {
2792 			/*
2793 			 * NUL-terminate this option: unfortunately,
2794 			 * mount options form a comma-separated list,
2795 			 * but mpol's nodelist may also contain commas.
2796 			 */
2797 			options = strchr(options, ',');
2798 			if (options == NULL)
2799 				break;
2800 			options++;
2801 			if (!isdigit(*options)) {
2802 				options[-1] = '\0';
2803 				break;
2804 			}
2805 		}
2806 		if (!*this_char)
2807 			continue;
2808 		if ((value = strchr(this_char,'=')) != NULL) {
2809 			*value++ = 0;
2810 		} else {
2811 			pr_err("tmpfs: No value for mount option '%s'\n",
2812 			       this_char);
2813 			goto error;
2814 		}
2815 
2816 		if (!strcmp(this_char,"size")) {
2817 			unsigned long long size;
2818 			size = memparse(value,&rest);
2819 			if (*rest == '%') {
2820 				size <<= PAGE_SHIFT;
2821 				size *= totalram_pages;
2822 				do_div(size, 100);
2823 				rest++;
2824 			}
2825 			if (*rest)
2826 				goto bad_val;
2827 			sbinfo->max_blocks =
2828 				DIV_ROUND_UP(size, PAGE_SIZE);
2829 		} else if (!strcmp(this_char,"nr_blocks")) {
2830 			sbinfo->max_blocks = memparse(value, &rest);
2831 			if (*rest)
2832 				goto bad_val;
2833 		} else if (!strcmp(this_char,"nr_inodes")) {
2834 			sbinfo->max_inodes = memparse(value, &rest);
2835 			if (*rest)
2836 				goto bad_val;
2837 		} else if (!strcmp(this_char,"mode")) {
2838 			if (remount)
2839 				continue;
2840 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2841 			if (*rest)
2842 				goto bad_val;
2843 		} else if (!strcmp(this_char,"uid")) {
2844 			if (remount)
2845 				continue;
2846 			uid = simple_strtoul(value, &rest, 0);
2847 			if (*rest)
2848 				goto bad_val;
2849 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2850 			if (!uid_valid(sbinfo->uid))
2851 				goto bad_val;
2852 		} else if (!strcmp(this_char,"gid")) {
2853 			if (remount)
2854 				continue;
2855 			gid = simple_strtoul(value, &rest, 0);
2856 			if (*rest)
2857 				goto bad_val;
2858 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2859 			if (!gid_valid(sbinfo->gid))
2860 				goto bad_val;
2861 		} else if (!strcmp(this_char,"mpol")) {
2862 			mpol_put(mpol);
2863 			mpol = NULL;
2864 			if (mpol_parse_str(value, &mpol))
2865 				goto bad_val;
2866 		} else {
2867 			pr_err("tmpfs: Bad mount option %s\n", this_char);
2868 			goto error;
2869 		}
2870 	}
2871 	sbinfo->mpol = mpol;
2872 	return 0;
2873 
2874 bad_val:
2875 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
2876 	       value, this_char);
2877 error:
2878 	mpol_put(mpol);
2879 	return 1;
2880 
2881 }
2882 
2883 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2884 {
2885 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2886 	struct shmem_sb_info config = *sbinfo;
2887 	unsigned long inodes;
2888 	int error = -EINVAL;
2889 
2890 	config.mpol = NULL;
2891 	if (shmem_parse_options(data, &config, true))
2892 		return error;
2893 
2894 	spin_lock(&sbinfo->stat_lock);
2895 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2896 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2897 		goto out;
2898 	if (config.max_inodes < inodes)
2899 		goto out;
2900 	/*
2901 	 * Those tests disallow limited->unlimited while any are in use;
2902 	 * but we must separately disallow unlimited->limited, because
2903 	 * in that case we have no record of how much is already in use.
2904 	 */
2905 	if (config.max_blocks && !sbinfo->max_blocks)
2906 		goto out;
2907 	if (config.max_inodes && !sbinfo->max_inodes)
2908 		goto out;
2909 
2910 	error = 0;
2911 	sbinfo->max_blocks  = config.max_blocks;
2912 	sbinfo->max_inodes  = config.max_inodes;
2913 	sbinfo->free_inodes = config.max_inodes - inodes;
2914 
2915 	/*
2916 	 * Preserve previous mempolicy unless mpol remount option was specified.
2917 	 */
2918 	if (config.mpol) {
2919 		mpol_put(sbinfo->mpol);
2920 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2921 	}
2922 out:
2923 	spin_unlock(&sbinfo->stat_lock);
2924 	return error;
2925 }
2926 
2927 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2928 {
2929 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2930 
2931 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2932 		seq_printf(seq, ",size=%luk",
2933 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
2934 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2935 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2936 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2937 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2938 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2939 		seq_printf(seq, ",uid=%u",
2940 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2941 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2942 		seq_printf(seq, ",gid=%u",
2943 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2944 	shmem_show_mpol(seq, sbinfo->mpol);
2945 	return 0;
2946 }
2947 
2948 #define MFD_NAME_PREFIX "memfd:"
2949 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2950 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2951 
2952 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2953 
2954 SYSCALL_DEFINE2(memfd_create,
2955 		const char __user *, uname,
2956 		unsigned int, flags)
2957 {
2958 	struct shmem_inode_info *info;
2959 	struct file *file;
2960 	int fd, error;
2961 	char *name;
2962 	long len;
2963 
2964 	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2965 		return -EINVAL;
2966 
2967 	/* length includes terminating zero */
2968 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2969 	if (len <= 0)
2970 		return -EFAULT;
2971 	if (len > MFD_NAME_MAX_LEN + 1)
2972 		return -EINVAL;
2973 
2974 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2975 	if (!name)
2976 		return -ENOMEM;
2977 
2978 	strcpy(name, MFD_NAME_PREFIX);
2979 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2980 		error = -EFAULT;
2981 		goto err_name;
2982 	}
2983 
2984 	/* terminating-zero may have changed after strnlen_user() returned */
2985 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2986 		error = -EFAULT;
2987 		goto err_name;
2988 	}
2989 
2990 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2991 	if (fd < 0) {
2992 		error = fd;
2993 		goto err_name;
2994 	}
2995 
2996 	file = shmem_file_setup(name, 0, VM_NORESERVE);
2997 	if (IS_ERR(file)) {
2998 		error = PTR_ERR(file);
2999 		goto err_fd;
3000 	}
3001 	info = SHMEM_I(file_inode(file));
3002 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3003 	file->f_flags |= O_RDWR | O_LARGEFILE;
3004 	if (flags & MFD_ALLOW_SEALING)
3005 		info->seals &= ~F_SEAL_SEAL;
3006 
3007 	fd_install(fd, file);
3008 	kfree(name);
3009 	return fd;
3010 
3011 err_fd:
3012 	put_unused_fd(fd);
3013 err_name:
3014 	kfree(name);
3015 	return error;
3016 }
3017 
3018 #endif /* CONFIG_TMPFS */
3019 
3020 static void shmem_put_super(struct super_block *sb)
3021 {
3022 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3023 
3024 	percpu_counter_destroy(&sbinfo->used_blocks);
3025 	mpol_put(sbinfo->mpol);
3026 	kfree(sbinfo);
3027 	sb->s_fs_info = NULL;
3028 }
3029 
3030 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3031 {
3032 	struct inode *inode;
3033 	struct shmem_sb_info *sbinfo;
3034 	int err = -ENOMEM;
3035 
3036 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3037 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3038 				L1_CACHE_BYTES), GFP_KERNEL);
3039 	if (!sbinfo)
3040 		return -ENOMEM;
3041 
3042 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3043 	sbinfo->uid = current_fsuid();
3044 	sbinfo->gid = current_fsgid();
3045 	sb->s_fs_info = sbinfo;
3046 
3047 #ifdef CONFIG_TMPFS
3048 	/*
3049 	 * Per default we only allow half of the physical ram per
3050 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3051 	 * but the internal instance is left unlimited.
3052 	 */
3053 	if (!(sb->s_flags & MS_KERNMOUNT)) {
3054 		sbinfo->max_blocks = shmem_default_max_blocks();
3055 		sbinfo->max_inodes = shmem_default_max_inodes();
3056 		if (shmem_parse_options(data, sbinfo, false)) {
3057 			err = -EINVAL;
3058 			goto failed;
3059 		}
3060 	} else {
3061 		sb->s_flags |= MS_NOUSER;
3062 	}
3063 	sb->s_export_op = &shmem_export_ops;
3064 	sb->s_flags |= MS_NOSEC;
3065 #else
3066 	sb->s_flags |= MS_NOUSER;
3067 #endif
3068 
3069 	spin_lock_init(&sbinfo->stat_lock);
3070 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3071 		goto failed;
3072 	sbinfo->free_inodes = sbinfo->max_inodes;
3073 
3074 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3075 	sb->s_blocksize = PAGE_SIZE;
3076 	sb->s_blocksize_bits = PAGE_SHIFT;
3077 	sb->s_magic = TMPFS_MAGIC;
3078 	sb->s_op = &shmem_ops;
3079 	sb->s_time_gran = 1;
3080 #ifdef CONFIG_TMPFS_XATTR
3081 	sb->s_xattr = shmem_xattr_handlers;
3082 #endif
3083 #ifdef CONFIG_TMPFS_POSIX_ACL
3084 	sb->s_flags |= MS_POSIXACL;
3085 #endif
3086 
3087 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3088 	if (!inode)
3089 		goto failed;
3090 	inode->i_uid = sbinfo->uid;
3091 	inode->i_gid = sbinfo->gid;
3092 	sb->s_root = d_make_root(inode);
3093 	if (!sb->s_root)
3094 		goto failed;
3095 	return 0;
3096 
3097 failed:
3098 	shmem_put_super(sb);
3099 	return err;
3100 }
3101 
3102 static struct kmem_cache *shmem_inode_cachep;
3103 
3104 static struct inode *shmem_alloc_inode(struct super_block *sb)
3105 {
3106 	struct shmem_inode_info *info;
3107 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3108 	if (!info)
3109 		return NULL;
3110 	return &info->vfs_inode;
3111 }
3112 
3113 static void shmem_destroy_callback(struct rcu_head *head)
3114 {
3115 	struct inode *inode = container_of(head, struct inode, i_rcu);
3116 	if (S_ISLNK(inode->i_mode))
3117 		kfree(inode->i_link);
3118 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3119 }
3120 
3121 static void shmem_destroy_inode(struct inode *inode)
3122 {
3123 	if (S_ISREG(inode->i_mode))
3124 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3125 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3126 }
3127 
3128 static void shmem_init_inode(void *foo)
3129 {
3130 	struct shmem_inode_info *info = foo;
3131 	inode_init_once(&info->vfs_inode);
3132 }
3133 
3134 static int shmem_init_inodecache(void)
3135 {
3136 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3137 				sizeof(struct shmem_inode_info),
3138 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3139 	return 0;
3140 }
3141 
3142 static void shmem_destroy_inodecache(void)
3143 {
3144 	kmem_cache_destroy(shmem_inode_cachep);
3145 }
3146 
3147 static const struct address_space_operations shmem_aops = {
3148 	.writepage	= shmem_writepage,
3149 	.set_page_dirty	= __set_page_dirty_no_writeback,
3150 #ifdef CONFIG_TMPFS
3151 	.write_begin	= shmem_write_begin,
3152 	.write_end	= shmem_write_end,
3153 #endif
3154 #ifdef CONFIG_MIGRATION
3155 	.migratepage	= migrate_page,
3156 #endif
3157 	.error_remove_page = generic_error_remove_page,
3158 };
3159 
3160 static const struct file_operations shmem_file_operations = {
3161 	.mmap		= shmem_mmap,
3162 #ifdef CONFIG_TMPFS
3163 	.llseek		= shmem_file_llseek,
3164 	.read_iter	= shmem_file_read_iter,
3165 	.write_iter	= generic_file_write_iter,
3166 	.fsync		= noop_fsync,
3167 	.splice_read	= shmem_file_splice_read,
3168 	.splice_write	= iter_file_splice_write,
3169 	.fallocate	= shmem_fallocate,
3170 #endif
3171 };
3172 
3173 static const struct inode_operations shmem_inode_operations = {
3174 	.getattr	= shmem_getattr,
3175 	.setattr	= shmem_setattr,
3176 #ifdef CONFIG_TMPFS_XATTR
3177 	.setxattr	= generic_setxattr,
3178 	.getxattr	= generic_getxattr,
3179 	.listxattr	= shmem_listxattr,
3180 	.removexattr	= generic_removexattr,
3181 	.set_acl	= simple_set_acl,
3182 #endif
3183 };
3184 
3185 static const struct inode_operations shmem_dir_inode_operations = {
3186 #ifdef CONFIG_TMPFS
3187 	.create		= shmem_create,
3188 	.lookup		= simple_lookup,
3189 	.link		= shmem_link,
3190 	.unlink		= shmem_unlink,
3191 	.symlink	= shmem_symlink,
3192 	.mkdir		= shmem_mkdir,
3193 	.rmdir		= shmem_rmdir,
3194 	.mknod		= shmem_mknod,
3195 	.rename2	= shmem_rename2,
3196 	.tmpfile	= shmem_tmpfile,
3197 #endif
3198 #ifdef CONFIG_TMPFS_XATTR
3199 	.setxattr	= generic_setxattr,
3200 	.getxattr	= generic_getxattr,
3201 	.listxattr	= shmem_listxattr,
3202 	.removexattr	= generic_removexattr,
3203 #endif
3204 #ifdef CONFIG_TMPFS_POSIX_ACL
3205 	.setattr	= shmem_setattr,
3206 	.set_acl	= simple_set_acl,
3207 #endif
3208 };
3209 
3210 static const struct inode_operations shmem_special_inode_operations = {
3211 #ifdef CONFIG_TMPFS_XATTR
3212 	.setxattr	= generic_setxattr,
3213 	.getxattr	= generic_getxattr,
3214 	.listxattr	= shmem_listxattr,
3215 	.removexattr	= generic_removexattr,
3216 #endif
3217 #ifdef CONFIG_TMPFS_POSIX_ACL
3218 	.setattr	= shmem_setattr,
3219 	.set_acl	= simple_set_acl,
3220 #endif
3221 };
3222 
3223 static const struct super_operations shmem_ops = {
3224 	.alloc_inode	= shmem_alloc_inode,
3225 	.destroy_inode	= shmem_destroy_inode,
3226 #ifdef CONFIG_TMPFS
3227 	.statfs		= shmem_statfs,
3228 	.remount_fs	= shmem_remount_fs,
3229 	.show_options	= shmem_show_options,
3230 #endif
3231 	.evict_inode	= shmem_evict_inode,
3232 	.drop_inode	= generic_delete_inode,
3233 	.put_super	= shmem_put_super,
3234 };
3235 
3236 static const struct vm_operations_struct shmem_vm_ops = {
3237 	.fault		= shmem_fault,
3238 	.map_pages	= filemap_map_pages,
3239 #ifdef CONFIG_NUMA
3240 	.set_policy     = shmem_set_policy,
3241 	.get_policy     = shmem_get_policy,
3242 #endif
3243 };
3244 
3245 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3246 	int flags, const char *dev_name, void *data)
3247 {
3248 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3249 }
3250 
3251 static struct file_system_type shmem_fs_type = {
3252 	.owner		= THIS_MODULE,
3253 	.name		= "tmpfs",
3254 	.mount		= shmem_mount,
3255 	.kill_sb	= kill_litter_super,
3256 	.fs_flags	= FS_USERNS_MOUNT,
3257 };
3258 
3259 int __init shmem_init(void)
3260 {
3261 	int error;
3262 
3263 	/* If rootfs called this, don't re-init */
3264 	if (shmem_inode_cachep)
3265 		return 0;
3266 
3267 	error = shmem_init_inodecache();
3268 	if (error)
3269 		goto out3;
3270 
3271 	error = register_filesystem(&shmem_fs_type);
3272 	if (error) {
3273 		pr_err("Could not register tmpfs\n");
3274 		goto out2;
3275 	}
3276 
3277 	shm_mnt = kern_mount(&shmem_fs_type);
3278 	if (IS_ERR(shm_mnt)) {
3279 		error = PTR_ERR(shm_mnt);
3280 		pr_err("Could not kern_mount tmpfs\n");
3281 		goto out1;
3282 	}
3283 	return 0;
3284 
3285 out1:
3286 	unregister_filesystem(&shmem_fs_type);
3287 out2:
3288 	shmem_destroy_inodecache();
3289 out3:
3290 	shm_mnt = ERR_PTR(error);
3291 	return error;
3292 }
3293 
3294 #else /* !CONFIG_SHMEM */
3295 
3296 /*
3297  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3298  *
3299  * This is intended for small system where the benefits of the full
3300  * shmem code (swap-backed and resource-limited) are outweighed by
3301  * their complexity. On systems without swap this code should be
3302  * effectively equivalent, but much lighter weight.
3303  */
3304 
3305 static struct file_system_type shmem_fs_type = {
3306 	.name		= "tmpfs",
3307 	.mount		= ramfs_mount,
3308 	.kill_sb	= kill_litter_super,
3309 	.fs_flags	= FS_USERNS_MOUNT,
3310 };
3311 
3312 int __init shmem_init(void)
3313 {
3314 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3315 
3316 	shm_mnt = kern_mount(&shmem_fs_type);
3317 	BUG_ON(IS_ERR(shm_mnt));
3318 
3319 	return 0;
3320 }
3321 
3322 int shmem_unuse(swp_entry_t swap, struct page *page)
3323 {
3324 	return 0;
3325 }
3326 
3327 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3328 {
3329 	return 0;
3330 }
3331 
3332 void shmem_unlock_mapping(struct address_space *mapping)
3333 {
3334 }
3335 
3336 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3337 {
3338 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3339 }
3340 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3341 
3342 #define shmem_vm_ops				generic_file_vm_ops
3343 #define shmem_file_operations			ramfs_file_operations
3344 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3345 #define shmem_acct_size(flags, size)		0
3346 #define shmem_unacct_size(flags, size)		do {} while (0)
3347 
3348 #endif /* CONFIG_SHMEM */
3349 
3350 /* common code */
3351 
3352 static struct dentry_operations anon_ops = {
3353 	.d_dname = simple_dname
3354 };
3355 
3356 static struct file *__shmem_file_setup(const char *name, loff_t size,
3357 				       unsigned long flags, unsigned int i_flags)
3358 {
3359 	struct file *res;
3360 	struct inode *inode;
3361 	struct path path;
3362 	struct super_block *sb;
3363 	struct qstr this;
3364 
3365 	if (IS_ERR(shm_mnt))
3366 		return ERR_CAST(shm_mnt);
3367 
3368 	if (size < 0 || size > MAX_LFS_FILESIZE)
3369 		return ERR_PTR(-EINVAL);
3370 
3371 	if (shmem_acct_size(flags, size))
3372 		return ERR_PTR(-ENOMEM);
3373 
3374 	res = ERR_PTR(-ENOMEM);
3375 	this.name = name;
3376 	this.len = strlen(name);
3377 	this.hash = 0; /* will go */
3378 	sb = shm_mnt->mnt_sb;
3379 	path.mnt = mntget(shm_mnt);
3380 	path.dentry = d_alloc_pseudo(sb, &this);
3381 	if (!path.dentry)
3382 		goto put_memory;
3383 	d_set_d_op(path.dentry, &anon_ops);
3384 
3385 	res = ERR_PTR(-ENOSPC);
3386 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3387 	if (!inode)
3388 		goto put_memory;
3389 
3390 	inode->i_flags |= i_flags;
3391 	d_instantiate(path.dentry, inode);
3392 	inode->i_size = size;
3393 	clear_nlink(inode);	/* It is unlinked */
3394 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3395 	if (IS_ERR(res))
3396 		goto put_path;
3397 
3398 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3399 		  &shmem_file_operations);
3400 	if (IS_ERR(res))
3401 		goto put_path;
3402 
3403 	return res;
3404 
3405 put_memory:
3406 	shmem_unacct_size(flags, size);
3407 put_path:
3408 	path_put(&path);
3409 	return res;
3410 }
3411 
3412 /**
3413  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3414  * 	kernel internal.  There will be NO LSM permission checks against the
3415  * 	underlying inode.  So users of this interface must do LSM checks at a
3416  *	higher layer.  The users are the big_key and shm implementations.  LSM
3417  *	checks are provided at the key or shm level rather than the inode.
3418  * @name: name for dentry (to be seen in /proc/<pid>/maps
3419  * @size: size to be set for the file
3420  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3421  */
3422 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3423 {
3424 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
3425 }
3426 
3427 /**
3428  * shmem_file_setup - get an unlinked file living in tmpfs
3429  * @name: name for dentry (to be seen in /proc/<pid>/maps
3430  * @size: size to be set for the file
3431  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3432  */
3433 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3434 {
3435 	return __shmem_file_setup(name, size, flags, 0);
3436 }
3437 EXPORT_SYMBOL_GPL(shmem_file_setup);
3438 
3439 /**
3440  * shmem_zero_setup - setup a shared anonymous mapping
3441  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3442  */
3443 int shmem_zero_setup(struct vm_area_struct *vma)
3444 {
3445 	struct file *file;
3446 	loff_t size = vma->vm_end - vma->vm_start;
3447 
3448 	/*
3449 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3450 	 * between XFS directory reading and selinux: since this file is only
3451 	 * accessible to the user through its mapping, use S_PRIVATE flag to
3452 	 * bypass file security, in the same way as shmem_kernel_file_setup().
3453 	 */
3454 	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3455 	if (IS_ERR(file))
3456 		return PTR_ERR(file);
3457 
3458 	if (vma->vm_file)
3459 		fput(vma->vm_file);
3460 	vma->vm_file = file;
3461 	vma->vm_ops = &shmem_vm_ops;
3462 	return 0;
3463 }
3464 
3465 /**
3466  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3467  * @mapping:	the page's address_space
3468  * @index:	the page index
3469  * @gfp:	the page allocator flags to use if allocating
3470  *
3471  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3472  * with any new page allocations done using the specified allocation flags.
3473  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3474  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3475  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3476  *
3477  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3478  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3479  */
3480 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3481 					 pgoff_t index, gfp_t gfp)
3482 {
3483 #ifdef CONFIG_SHMEM
3484 	struct inode *inode = mapping->host;
3485 	struct page *page;
3486 	int error;
3487 
3488 	BUG_ON(mapping->a_ops != &shmem_aops);
3489 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
3490 				  gfp, NULL, NULL);
3491 	if (error)
3492 		page = ERR_PTR(error);
3493 	else
3494 		unlock_page(page);
3495 	return page;
3496 #else
3497 	/*
3498 	 * The tiny !SHMEM case uses ramfs without swap
3499 	 */
3500 	return read_cache_page_gfp(mapping, index, gfp);
3501 #endif
3502 }
3503 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3504