1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/sched/signal.h> 33 #include <linux/export.h> 34 #include <linux/swap.h> 35 #include <linux/uio.h> 36 #include <linux/khugepaged.h> 37 #include <linux/hugetlb.h> 38 39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 40 41 static struct vfsmount *shm_mnt; 42 43 #ifdef CONFIG_SHMEM 44 /* 45 * This virtual memory filesystem is heavily based on the ramfs. It 46 * extends ramfs by the ability to use swap and honor resource limits 47 * which makes it a completely usable filesystem. 48 */ 49 50 #include <linux/xattr.h> 51 #include <linux/exportfs.h> 52 #include <linux/posix_acl.h> 53 #include <linux/posix_acl_xattr.h> 54 #include <linux/mman.h> 55 #include <linux/string.h> 56 #include <linux/slab.h> 57 #include <linux/backing-dev.h> 58 #include <linux/shmem_fs.h> 59 #include <linux/writeback.h> 60 #include <linux/blkdev.h> 61 #include <linux/pagevec.h> 62 #include <linux/percpu_counter.h> 63 #include <linux/falloc.h> 64 #include <linux/splice.h> 65 #include <linux/security.h> 66 #include <linux/swapops.h> 67 #include <linux/mempolicy.h> 68 #include <linux/namei.h> 69 #include <linux/ctype.h> 70 #include <linux/migrate.h> 71 #include <linux/highmem.h> 72 #include <linux/seq_file.h> 73 #include <linux/magic.h> 74 #include <linux/syscalls.h> 75 #include <linux/fcntl.h> 76 #include <uapi/linux/memfd.h> 77 #include <linux/userfaultfd_k.h> 78 #include <linux/rmap.h> 79 #include <linux/uuid.h> 80 81 #include <linux/uaccess.h> 82 #include <asm/pgtable.h> 83 84 #include "internal.h" 85 86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 88 89 /* Pretend that each entry is of this size in directory's i_size */ 90 #define BOGO_DIRENT_SIZE 20 91 92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 93 #define SHORT_SYMLINK_LEN 128 94 95 /* 96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 97 * inode->i_private (with i_mutex making sure that it has only one user at 98 * a time): we would prefer not to enlarge the shmem inode just for that. 99 */ 100 struct shmem_falloc { 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 102 pgoff_t start; /* start of range currently being fallocated */ 103 pgoff_t next; /* the next page offset to be fallocated */ 104 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 106 }; 107 108 #ifdef CONFIG_TMPFS 109 static unsigned long shmem_default_max_blocks(void) 110 { 111 return totalram_pages / 2; 112 } 113 114 static unsigned long shmem_default_max_inodes(void) 115 { 116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 117 } 118 #endif 119 120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 121 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 122 struct shmem_inode_info *info, pgoff_t index); 123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 124 struct page **pagep, enum sgp_type sgp, 125 gfp_t gfp, struct vm_area_struct *vma, 126 struct vm_fault *vmf, int *fault_type); 127 128 int shmem_getpage(struct inode *inode, pgoff_t index, 129 struct page **pagep, enum sgp_type sgp) 130 { 131 return shmem_getpage_gfp(inode, index, pagep, sgp, 132 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 133 } 134 135 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 136 { 137 return sb->s_fs_info; 138 } 139 140 /* 141 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 142 * for shared memory and for shared anonymous (/dev/zero) mappings 143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 144 * consistent with the pre-accounting of private mappings ... 145 */ 146 static inline int shmem_acct_size(unsigned long flags, loff_t size) 147 { 148 return (flags & VM_NORESERVE) ? 149 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 150 } 151 152 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 153 { 154 if (!(flags & VM_NORESERVE)) 155 vm_unacct_memory(VM_ACCT(size)); 156 } 157 158 static inline int shmem_reacct_size(unsigned long flags, 159 loff_t oldsize, loff_t newsize) 160 { 161 if (!(flags & VM_NORESERVE)) { 162 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 163 return security_vm_enough_memory_mm(current->mm, 164 VM_ACCT(newsize) - VM_ACCT(oldsize)); 165 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 166 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 167 } 168 return 0; 169 } 170 171 /* 172 * ... whereas tmpfs objects are accounted incrementally as 173 * pages are allocated, in order to allow large sparse files. 174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 176 */ 177 static inline int shmem_acct_block(unsigned long flags, long pages) 178 { 179 if (!(flags & VM_NORESERVE)) 180 return 0; 181 182 return security_vm_enough_memory_mm(current->mm, 183 pages * VM_ACCT(PAGE_SIZE)); 184 } 185 186 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 187 { 188 if (flags & VM_NORESERVE) 189 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 190 } 191 192 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 193 { 194 struct shmem_inode_info *info = SHMEM_I(inode); 195 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 196 197 if (shmem_acct_block(info->flags, pages)) 198 return false; 199 200 if (sbinfo->max_blocks) { 201 if (percpu_counter_compare(&sbinfo->used_blocks, 202 sbinfo->max_blocks - pages) > 0) 203 goto unacct; 204 percpu_counter_add(&sbinfo->used_blocks, pages); 205 } 206 207 return true; 208 209 unacct: 210 shmem_unacct_blocks(info->flags, pages); 211 return false; 212 } 213 214 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 215 { 216 struct shmem_inode_info *info = SHMEM_I(inode); 217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 218 219 if (sbinfo->max_blocks) 220 percpu_counter_sub(&sbinfo->used_blocks, pages); 221 shmem_unacct_blocks(info->flags, pages); 222 } 223 224 static const struct super_operations shmem_ops; 225 static const struct address_space_operations shmem_aops; 226 static const struct file_operations shmem_file_operations; 227 static const struct inode_operations shmem_inode_operations; 228 static const struct inode_operations shmem_dir_inode_operations; 229 static const struct inode_operations shmem_special_inode_operations; 230 static const struct vm_operations_struct shmem_vm_ops; 231 static struct file_system_type shmem_fs_type; 232 233 bool vma_is_shmem(struct vm_area_struct *vma) 234 { 235 return vma->vm_ops == &shmem_vm_ops; 236 } 237 238 static LIST_HEAD(shmem_swaplist); 239 static DEFINE_MUTEX(shmem_swaplist_mutex); 240 241 static int shmem_reserve_inode(struct super_block *sb) 242 { 243 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 244 if (sbinfo->max_inodes) { 245 spin_lock(&sbinfo->stat_lock); 246 if (!sbinfo->free_inodes) { 247 spin_unlock(&sbinfo->stat_lock); 248 return -ENOSPC; 249 } 250 sbinfo->free_inodes--; 251 spin_unlock(&sbinfo->stat_lock); 252 } 253 return 0; 254 } 255 256 static void shmem_free_inode(struct super_block *sb) 257 { 258 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 259 if (sbinfo->max_inodes) { 260 spin_lock(&sbinfo->stat_lock); 261 sbinfo->free_inodes++; 262 spin_unlock(&sbinfo->stat_lock); 263 } 264 } 265 266 /** 267 * shmem_recalc_inode - recalculate the block usage of an inode 268 * @inode: inode to recalc 269 * 270 * We have to calculate the free blocks since the mm can drop 271 * undirtied hole pages behind our back. 272 * 273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 275 * 276 * It has to be called with the spinlock held. 277 */ 278 static void shmem_recalc_inode(struct inode *inode) 279 { 280 struct shmem_inode_info *info = SHMEM_I(inode); 281 long freed; 282 283 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 284 if (freed > 0) { 285 info->alloced -= freed; 286 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 287 shmem_inode_unacct_blocks(inode, freed); 288 } 289 } 290 291 bool shmem_charge(struct inode *inode, long pages) 292 { 293 struct shmem_inode_info *info = SHMEM_I(inode); 294 unsigned long flags; 295 296 if (!shmem_inode_acct_block(inode, pages)) 297 return false; 298 299 spin_lock_irqsave(&info->lock, flags); 300 info->alloced += pages; 301 inode->i_blocks += pages * BLOCKS_PER_PAGE; 302 shmem_recalc_inode(inode); 303 spin_unlock_irqrestore(&info->lock, flags); 304 inode->i_mapping->nrpages += pages; 305 306 return true; 307 } 308 309 void shmem_uncharge(struct inode *inode, long pages) 310 { 311 struct shmem_inode_info *info = SHMEM_I(inode); 312 unsigned long flags; 313 314 spin_lock_irqsave(&info->lock, flags); 315 info->alloced -= pages; 316 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 317 shmem_recalc_inode(inode); 318 spin_unlock_irqrestore(&info->lock, flags); 319 320 shmem_inode_unacct_blocks(inode, pages); 321 } 322 323 /* 324 * Replace item expected in radix tree by a new item, while holding tree lock. 325 */ 326 static int shmem_radix_tree_replace(struct address_space *mapping, 327 pgoff_t index, void *expected, void *replacement) 328 { 329 struct radix_tree_node *node; 330 void __rcu **pslot; 331 void *item; 332 333 VM_BUG_ON(!expected); 334 VM_BUG_ON(!replacement); 335 item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot); 336 if (!item) 337 return -ENOENT; 338 if (item != expected) 339 return -ENOENT; 340 __radix_tree_replace(&mapping->i_pages, node, pslot, 341 replacement, NULL); 342 return 0; 343 } 344 345 /* 346 * Sometimes, before we decide whether to proceed or to fail, we must check 347 * that an entry was not already brought back from swap by a racing thread. 348 * 349 * Checking page is not enough: by the time a SwapCache page is locked, it 350 * might be reused, and again be SwapCache, using the same swap as before. 351 */ 352 static bool shmem_confirm_swap(struct address_space *mapping, 353 pgoff_t index, swp_entry_t swap) 354 { 355 void *item; 356 357 rcu_read_lock(); 358 item = radix_tree_lookup(&mapping->i_pages, index); 359 rcu_read_unlock(); 360 return item == swp_to_radix_entry(swap); 361 } 362 363 /* 364 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 365 * 366 * SHMEM_HUGE_NEVER: 367 * disables huge pages for the mount; 368 * SHMEM_HUGE_ALWAYS: 369 * enables huge pages for the mount; 370 * SHMEM_HUGE_WITHIN_SIZE: 371 * only allocate huge pages if the page will be fully within i_size, 372 * also respect fadvise()/madvise() hints; 373 * SHMEM_HUGE_ADVISE: 374 * only allocate huge pages if requested with fadvise()/madvise(); 375 */ 376 377 #define SHMEM_HUGE_NEVER 0 378 #define SHMEM_HUGE_ALWAYS 1 379 #define SHMEM_HUGE_WITHIN_SIZE 2 380 #define SHMEM_HUGE_ADVISE 3 381 382 /* 383 * Special values. 384 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 385 * 386 * SHMEM_HUGE_DENY: 387 * disables huge on shm_mnt and all mounts, for emergency use; 388 * SHMEM_HUGE_FORCE: 389 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 390 * 391 */ 392 #define SHMEM_HUGE_DENY (-1) 393 #define SHMEM_HUGE_FORCE (-2) 394 395 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 396 /* ifdef here to avoid bloating shmem.o when not necessary */ 397 398 static int shmem_huge __read_mostly; 399 400 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 401 static int shmem_parse_huge(const char *str) 402 { 403 if (!strcmp(str, "never")) 404 return SHMEM_HUGE_NEVER; 405 if (!strcmp(str, "always")) 406 return SHMEM_HUGE_ALWAYS; 407 if (!strcmp(str, "within_size")) 408 return SHMEM_HUGE_WITHIN_SIZE; 409 if (!strcmp(str, "advise")) 410 return SHMEM_HUGE_ADVISE; 411 if (!strcmp(str, "deny")) 412 return SHMEM_HUGE_DENY; 413 if (!strcmp(str, "force")) 414 return SHMEM_HUGE_FORCE; 415 return -EINVAL; 416 } 417 418 static const char *shmem_format_huge(int huge) 419 { 420 switch (huge) { 421 case SHMEM_HUGE_NEVER: 422 return "never"; 423 case SHMEM_HUGE_ALWAYS: 424 return "always"; 425 case SHMEM_HUGE_WITHIN_SIZE: 426 return "within_size"; 427 case SHMEM_HUGE_ADVISE: 428 return "advise"; 429 case SHMEM_HUGE_DENY: 430 return "deny"; 431 case SHMEM_HUGE_FORCE: 432 return "force"; 433 default: 434 VM_BUG_ON(1); 435 return "bad_val"; 436 } 437 } 438 #endif 439 440 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 441 struct shrink_control *sc, unsigned long nr_to_split) 442 { 443 LIST_HEAD(list), *pos, *next; 444 LIST_HEAD(to_remove); 445 struct inode *inode; 446 struct shmem_inode_info *info; 447 struct page *page; 448 unsigned long batch = sc ? sc->nr_to_scan : 128; 449 int removed = 0, split = 0; 450 451 if (list_empty(&sbinfo->shrinklist)) 452 return SHRINK_STOP; 453 454 spin_lock(&sbinfo->shrinklist_lock); 455 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 456 info = list_entry(pos, struct shmem_inode_info, shrinklist); 457 458 /* pin the inode */ 459 inode = igrab(&info->vfs_inode); 460 461 /* inode is about to be evicted */ 462 if (!inode) { 463 list_del_init(&info->shrinklist); 464 removed++; 465 goto next; 466 } 467 468 /* Check if there's anything to gain */ 469 if (round_up(inode->i_size, PAGE_SIZE) == 470 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 471 list_move(&info->shrinklist, &to_remove); 472 removed++; 473 goto next; 474 } 475 476 list_move(&info->shrinklist, &list); 477 next: 478 if (!--batch) 479 break; 480 } 481 spin_unlock(&sbinfo->shrinklist_lock); 482 483 list_for_each_safe(pos, next, &to_remove) { 484 info = list_entry(pos, struct shmem_inode_info, shrinklist); 485 inode = &info->vfs_inode; 486 list_del_init(&info->shrinklist); 487 iput(inode); 488 } 489 490 list_for_each_safe(pos, next, &list) { 491 int ret; 492 493 info = list_entry(pos, struct shmem_inode_info, shrinklist); 494 inode = &info->vfs_inode; 495 496 if (nr_to_split && split >= nr_to_split) 497 goto leave; 498 499 page = find_get_page(inode->i_mapping, 500 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 501 if (!page) 502 goto drop; 503 504 /* No huge page at the end of the file: nothing to split */ 505 if (!PageTransHuge(page)) { 506 put_page(page); 507 goto drop; 508 } 509 510 /* 511 * Leave the inode on the list if we failed to lock 512 * the page at this time. 513 * 514 * Waiting for the lock may lead to deadlock in the 515 * reclaim path. 516 */ 517 if (!trylock_page(page)) { 518 put_page(page); 519 goto leave; 520 } 521 522 ret = split_huge_page(page); 523 unlock_page(page); 524 put_page(page); 525 526 /* If split failed leave the inode on the list */ 527 if (ret) 528 goto leave; 529 530 split++; 531 drop: 532 list_del_init(&info->shrinklist); 533 removed++; 534 leave: 535 iput(inode); 536 } 537 538 spin_lock(&sbinfo->shrinklist_lock); 539 list_splice_tail(&list, &sbinfo->shrinklist); 540 sbinfo->shrinklist_len -= removed; 541 spin_unlock(&sbinfo->shrinklist_lock); 542 543 return split; 544 } 545 546 static long shmem_unused_huge_scan(struct super_block *sb, 547 struct shrink_control *sc) 548 { 549 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 550 551 if (!READ_ONCE(sbinfo->shrinklist_len)) 552 return SHRINK_STOP; 553 554 return shmem_unused_huge_shrink(sbinfo, sc, 0); 555 } 556 557 static long shmem_unused_huge_count(struct super_block *sb, 558 struct shrink_control *sc) 559 { 560 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 561 return READ_ONCE(sbinfo->shrinklist_len); 562 } 563 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 564 565 #define shmem_huge SHMEM_HUGE_DENY 566 567 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 568 struct shrink_control *sc, unsigned long nr_to_split) 569 { 570 return 0; 571 } 572 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 573 574 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) 575 { 576 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 577 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && 578 shmem_huge != SHMEM_HUGE_DENY) 579 return true; 580 return false; 581 } 582 583 /* 584 * Like add_to_page_cache_locked, but error if expected item has gone. 585 */ 586 static int shmem_add_to_page_cache(struct page *page, 587 struct address_space *mapping, 588 pgoff_t index, void *expected) 589 { 590 int error, nr = hpage_nr_pages(page); 591 592 VM_BUG_ON_PAGE(PageTail(page), page); 593 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 594 VM_BUG_ON_PAGE(!PageLocked(page), page); 595 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 596 VM_BUG_ON(expected && PageTransHuge(page)); 597 598 page_ref_add(page, nr); 599 page->mapping = mapping; 600 page->index = index; 601 602 xa_lock_irq(&mapping->i_pages); 603 if (PageTransHuge(page)) { 604 void __rcu **results; 605 pgoff_t idx; 606 int i; 607 608 error = 0; 609 if (radix_tree_gang_lookup_slot(&mapping->i_pages, 610 &results, &idx, index, 1) && 611 idx < index + HPAGE_PMD_NR) { 612 error = -EEXIST; 613 } 614 615 if (!error) { 616 for (i = 0; i < HPAGE_PMD_NR; i++) { 617 error = radix_tree_insert(&mapping->i_pages, 618 index + i, page + i); 619 VM_BUG_ON(error); 620 } 621 count_vm_event(THP_FILE_ALLOC); 622 } 623 } else if (!expected) { 624 error = radix_tree_insert(&mapping->i_pages, index, page); 625 } else { 626 error = shmem_radix_tree_replace(mapping, index, expected, 627 page); 628 } 629 630 if (!error) { 631 mapping->nrpages += nr; 632 if (PageTransHuge(page)) 633 __inc_node_page_state(page, NR_SHMEM_THPS); 634 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 635 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); 636 xa_unlock_irq(&mapping->i_pages); 637 } else { 638 page->mapping = NULL; 639 xa_unlock_irq(&mapping->i_pages); 640 page_ref_sub(page, nr); 641 } 642 return error; 643 } 644 645 /* 646 * Like delete_from_page_cache, but substitutes swap for page. 647 */ 648 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 649 { 650 struct address_space *mapping = page->mapping; 651 int error; 652 653 VM_BUG_ON_PAGE(PageCompound(page), page); 654 655 xa_lock_irq(&mapping->i_pages); 656 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 657 page->mapping = NULL; 658 mapping->nrpages--; 659 __dec_node_page_state(page, NR_FILE_PAGES); 660 __dec_node_page_state(page, NR_SHMEM); 661 xa_unlock_irq(&mapping->i_pages); 662 put_page(page); 663 BUG_ON(error); 664 } 665 666 /* 667 * Remove swap entry from radix tree, free the swap and its page cache. 668 */ 669 static int shmem_free_swap(struct address_space *mapping, 670 pgoff_t index, void *radswap) 671 { 672 void *old; 673 674 xa_lock_irq(&mapping->i_pages); 675 old = radix_tree_delete_item(&mapping->i_pages, index, radswap); 676 xa_unlock_irq(&mapping->i_pages); 677 if (old != radswap) 678 return -ENOENT; 679 free_swap_and_cache(radix_to_swp_entry(radswap)); 680 return 0; 681 } 682 683 /* 684 * Determine (in bytes) how many of the shmem object's pages mapped by the 685 * given offsets are swapped out. 686 * 687 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 688 * as long as the inode doesn't go away and racy results are not a problem. 689 */ 690 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 691 pgoff_t start, pgoff_t end) 692 { 693 struct radix_tree_iter iter; 694 void __rcu **slot; 695 struct page *page; 696 unsigned long swapped = 0; 697 698 rcu_read_lock(); 699 700 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) { 701 if (iter.index >= end) 702 break; 703 704 page = radix_tree_deref_slot(slot); 705 706 if (radix_tree_deref_retry(page)) { 707 slot = radix_tree_iter_retry(&iter); 708 continue; 709 } 710 711 if (radix_tree_exceptional_entry(page)) 712 swapped++; 713 714 if (need_resched()) { 715 slot = radix_tree_iter_resume(slot, &iter); 716 cond_resched_rcu(); 717 } 718 } 719 720 rcu_read_unlock(); 721 722 return swapped << PAGE_SHIFT; 723 } 724 725 /* 726 * Determine (in bytes) how many of the shmem object's pages mapped by the 727 * given vma is swapped out. 728 * 729 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 730 * as long as the inode doesn't go away and racy results are not a problem. 731 */ 732 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 733 { 734 struct inode *inode = file_inode(vma->vm_file); 735 struct shmem_inode_info *info = SHMEM_I(inode); 736 struct address_space *mapping = inode->i_mapping; 737 unsigned long swapped; 738 739 /* Be careful as we don't hold info->lock */ 740 swapped = READ_ONCE(info->swapped); 741 742 /* 743 * The easier cases are when the shmem object has nothing in swap, or 744 * the vma maps it whole. Then we can simply use the stats that we 745 * already track. 746 */ 747 if (!swapped) 748 return 0; 749 750 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 751 return swapped << PAGE_SHIFT; 752 753 /* Here comes the more involved part */ 754 return shmem_partial_swap_usage(mapping, 755 linear_page_index(vma, vma->vm_start), 756 linear_page_index(vma, vma->vm_end)); 757 } 758 759 /* 760 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 761 */ 762 void shmem_unlock_mapping(struct address_space *mapping) 763 { 764 struct pagevec pvec; 765 pgoff_t indices[PAGEVEC_SIZE]; 766 pgoff_t index = 0; 767 768 pagevec_init(&pvec); 769 /* 770 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 771 */ 772 while (!mapping_unevictable(mapping)) { 773 /* 774 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 775 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 776 */ 777 pvec.nr = find_get_entries(mapping, index, 778 PAGEVEC_SIZE, pvec.pages, indices); 779 if (!pvec.nr) 780 break; 781 index = indices[pvec.nr - 1] + 1; 782 pagevec_remove_exceptionals(&pvec); 783 check_move_unevictable_pages(pvec.pages, pvec.nr); 784 pagevec_release(&pvec); 785 cond_resched(); 786 } 787 } 788 789 /* 790 * Remove range of pages and swap entries from radix tree, and free them. 791 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 792 */ 793 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 794 bool unfalloc) 795 { 796 struct address_space *mapping = inode->i_mapping; 797 struct shmem_inode_info *info = SHMEM_I(inode); 798 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 799 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 800 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 801 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 802 struct pagevec pvec; 803 pgoff_t indices[PAGEVEC_SIZE]; 804 long nr_swaps_freed = 0; 805 pgoff_t index; 806 int i; 807 808 if (lend == -1) 809 end = -1; /* unsigned, so actually very big */ 810 811 pagevec_init(&pvec); 812 index = start; 813 while (index < end) { 814 pvec.nr = find_get_entries(mapping, index, 815 min(end - index, (pgoff_t)PAGEVEC_SIZE), 816 pvec.pages, indices); 817 if (!pvec.nr) 818 break; 819 for (i = 0; i < pagevec_count(&pvec); i++) { 820 struct page *page = pvec.pages[i]; 821 822 index = indices[i]; 823 if (index >= end) 824 break; 825 826 if (radix_tree_exceptional_entry(page)) { 827 if (unfalloc) 828 continue; 829 nr_swaps_freed += !shmem_free_swap(mapping, 830 index, page); 831 continue; 832 } 833 834 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 835 836 if (!trylock_page(page)) 837 continue; 838 839 if (PageTransTail(page)) { 840 /* Middle of THP: zero out the page */ 841 clear_highpage(page); 842 unlock_page(page); 843 continue; 844 } else if (PageTransHuge(page)) { 845 if (index == round_down(end, HPAGE_PMD_NR)) { 846 /* 847 * Range ends in the middle of THP: 848 * zero out the page 849 */ 850 clear_highpage(page); 851 unlock_page(page); 852 continue; 853 } 854 index += HPAGE_PMD_NR - 1; 855 i += HPAGE_PMD_NR - 1; 856 } 857 858 if (!unfalloc || !PageUptodate(page)) { 859 VM_BUG_ON_PAGE(PageTail(page), page); 860 if (page_mapping(page) == mapping) { 861 VM_BUG_ON_PAGE(PageWriteback(page), page); 862 truncate_inode_page(mapping, page); 863 } 864 } 865 unlock_page(page); 866 } 867 pagevec_remove_exceptionals(&pvec); 868 pagevec_release(&pvec); 869 cond_resched(); 870 index++; 871 } 872 873 if (partial_start) { 874 struct page *page = NULL; 875 shmem_getpage(inode, start - 1, &page, SGP_READ); 876 if (page) { 877 unsigned int top = PAGE_SIZE; 878 if (start > end) { 879 top = partial_end; 880 partial_end = 0; 881 } 882 zero_user_segment(page, partial_start, top); 883 set_page_dirty(page); 884 unlock_page(page); 885 put_page(page); 886 } 887 } 888 if (partial_end) { 889 struct page *page = NULL; 890 shmem_getpage(inode, end, &page, SGP_READ); 891 if (page) { 892 zero_user_segment(page, 0, partial_end); 893 set_page_dirty(page); 894 unlock_page(page); 895 put_page(page); 896 } 897 } 898 if (start >= end) 899 return; 900 901 index = start; 902 while (index < end) { 903 cond_resched(); 904 905 pvec.nr = find_get_entries(mapping, index, 906 min(end - index, (pgoff_t)PAGEVEC_SIZE), 907 pvec.pages, indices); 908 if (!pvec.nr) { 909 /* If all gone or hole-punch or unfalloc, we're done */ 910 if (index == start || end != -1) 911 break; 912 /* But if truncating, restart to make sure all gone */ 913 index = start; 914 continue; 915 } 916 for (i = 0; i < pagevec_count(&pvec); i++) { 917 struct page *page = pvec.pages[i]; 918 919 index = indices[i]; 920 if (index >= end) 921 break; 922 923 if (radix_tree_exceptional_entry(page)) { 924 if (unfalloc) 925 continue; 926 if (shmem_free_swap(mapping, index, page)) { 927 /* Swap was replaced by page: retry */ 928 index--; 929 break; 930 } 931 nr_swaps_freed++; 932 continue; 933 } 934 935 lock_page(page); 936 937 if (PageTransTail(page)) { 938 /* Middle of THP: zero out the page */ 939 clear_highpage(page); 940 unlock_page(page); 941 /* 942 * Partial thp truncate due 'start' in middle 943 * of THP: don't need to look on these pages 944 * again on !pvec.nr restart. 945 */ 946 if (index != round_down(end, HPAGE_PMD_NR)) 947 start++; 948 continue; 949 } else if (PageTransHuge(page)) { 950 if (index == round_down(end, HPAGE_PMD_NR)) { 951 /* 952 * Range ends in the middle of THP: 953 * zero out the page 954 */ 955 clear_highpage(page); 956 unlock_page(page); 957 continue; 958 } 959 index += HPAGE_PMD_NR - 1; 960 i += HPAGE_PMD_NR - 1; 961 } 962 963 if (!unfalloc || !PageUptodate(page)) { 964 VM_BUG_ON_PAGE(PageTail(page), page); 965 if (page_mapping(page) == mapping) { 966 VM_BUG_ON_PAGE(PageWriteback(page), page); 967 truncate_inode_page(mapping, page); 968 } else { 969 /* Page was replaced by swap: retry */ 970 unlock_page(page); 971 index--; 972 break; 973 } 974 } 975 unlock_page(page); 976 } 977 pagevec_remove_exceptionals(&pvec); 978 pagevec_release(&pvec); 979 index++; 980 } 981 982 spin_lock_irq(&info->lock); 983 info->swapped -= nr_swaps_freed; 984 shmem_recalc_inode(inode); 985 spin_unlock_irq(&info->lock); 986 } 987 988 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 989 { 990 shmem_undo_range(inode, lstart, lend, false); 991 inode->i_ctime = inode->i_mtime = current_time(inode); 992 } 993 EXPORT_SYMBOL_GPL(shmem_truncate_range); 994 995 static int shmem_getattr(const struct path *path, struct kstat *stat, 996 u32 request_mask, unsigned int query_flags) 997 { 998 struct inode *inode = path->dentry->d_inode; 999 struct shmem_inode_info *info = SHMEM_I(inode); 1000 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); 1001 1002 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1003 spin_lock_irq(&info->lock); 1004 shmem_recalc_inode(inode); 1005 spin_unlock_irq(&info->lock); 1006 } 1007 generic_fillattr(inode, stat); 1008 1009 if (is_huge_enabled(sb_info)) 1010 stat->blksize = HPAGE_PMD_SIZE; 1011 1012 return 0; 1013 } 1014 1015 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 1016 { 1017 struct inode *inode = d_inode(dentry); 1018 struct shmem_inode_info *info = SHMEM_I(inode); 1019 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1020 int error; 1021 1022 error = setattr_prepare(dentry, attr); 1023 if (error) 1024 return error; 1025 1026 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1027 loff_t oldsize = inode->i_size; 1028 loff_t newsize = attr->ia_size; 1029 1030 /* protected by i_mutex */ 1031 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1032 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1033 return -EPERM; 1034 1035 if (newsize != oldsize) { 1036 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1037 oldsize, newsize); 1038 if (error) 1039 return error; 1040 i_size_write(inode, newsize); 1041 inode->i_ctime = inode->i_mtime = current_time(inode); 1042 } 1043 if (newsize <= oldsize) { 1044 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1045 if (oldsize > holebegin) 1046 unmap_mapping_range(inode->i_mapping, 1047 holebegin, 0, 1); 1048 if (info->alloced) 1049 shmem_truncate_range(inode, 1050 newsize, (loff_t)-1); 1051 /* unmap again to remove racily COWed private pages */ 1052 if (oldsize > holebegin) 1053 unmap_mapping_range(inode->i_mapping, 1054 holebegin, 0, 1); 1055 1056 /* 1057 * Part of the huge page can be beyond i_size: subject 1058 * to shrink under memory pressure. 1059 */ 1060 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 1061 spin_lock(&sbinfo->shrinklist_lock); 1062 /* 1063 * _careful to defend against unlocked access to 1064 * ->shrink_list in shmem_unused_huge_shrink() 1065 */ 1066 if (list_empty_careful(&info->shrinklist)) { 1067 list_add_tail(&info->shrinklist, 1068 &sbinfo->shrinklist); 1069 sbinfo->shrinklist_len++; 1070 } 1071 spin_unlock(&sbinfo->shrinklist_lock); 1072 } 1073 } 1074 } 1075 1076 setattr_copy(inode, attr); 1077 if (attr->ia_valid & ATTR_MODE) 1078 error = posix_acl_chmod(inode, inode->i_mode); 1079 return error; 1080 } 1081 1082 static void shmem_evict_inode(struct inode *inode) 1083 { 1084 struct shmem_inode_info *info = SHMEM_I(inode); 1085 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1086 1087 if (inode->i_mapping->a_ops == &shmem_aops) { 1088 shmem_unacct_size(info->flags, inode->i_size); 1089 inode->i_size = 0; 1090 shmem_truncate_range(inode, 0, (loff_t)-1); 1091 if (!list_empty(&info->shrinklist)) { 1092 spin_lock(&sbinfo->shrinklist_lock); 1093 if (!list_empty(&info->shrinklist)) { 1094 list_del_init(&info->shrinklist); 1095 sbinfo->shrinklist_len--; 1096 } 1097 spin_unlock(&sbinfo->shrinklist_lock); 1098 } 1099 if (!list_empty(&info->swaplist)) { 1100 mutex_lock(&shmem_swaplist_mutex); 1101 list_del_init(&info->swaplist); 1102 mutex_unlock(&shmem_swaplist_mutex); 1103 } 1104 } 1105 1106 simple_xattrs_free(&info->xattrs); 1107 WARN_ON(inode->i_blocks); 1108 shmem_free_inode(inode->i_sb); 1109 clear_inode(inode); 1110 } 1111 1112 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item) 1113 { 1114 struct radix_tree_iter iter; 1115 void __rcu **slot; 1116 unsigned long found = -1; 1117 unsigned int checked = 0; 1118 1119 rcu_read_lock(); 1120 radix_tree_for_each_slot(slot, root, &iter, 0) { 1121 void *entry = radix_tree_deref_slot(slot); 1122 1123 if (radix_tree_deref_retry(entry)) { 1124 slot = radix_tree_iter_retry(&iter); 1125 continue; 1126 } 1127 if (entry == item) { 1128 found = iter.index; 1129 break; 1130 } 1131 checked++; 1132 if ((checked % 4096) != 0) 1133 continue; 1134 slot = radix_tree_iter_resume(slot, &iter); 1135 cond_resched_rcu(); 1136 } 1137 1138 rcu_read_unlock(); 1139 return found; 1140 } 1141 1142 /* 1143 * If swap found in inode, free it and move page from swapcache to filecache. 1144 */ 1145 static int shmem_unuse_inode(struct shmem_inode_info *info, 1146 swp_entry_t swap, struct page **pagep) 1147 { 1148 struct address_space *mapping = info->vfs_inode.i_mapping; 1149 void *radswap; 1150 pgoff_t index; 1151 gfp_t gfp; 1152 int error = 0; 1153 1154 radswap = swp_to_radix_entry(swap); 1155 index = find_swap_entry(&mapping->i_pages, radswap); 1156 if (index == -1) 1157 return -EAGAIN; /* tell shmem_unuse we found nothing */ 1158 1159 /* 1160 * Move _head_ to start search for next from here. 1161 * But be careful: shmem_evict_inode checks list_empty without taking 1162 * mutex, and there's an instant in list_move_tail when info->swaplist 1163 * would appear empty, if it were the only one on shmem_swaplist. 1164 */ 1165 if (shmem_swaplist.next != &info->swaplist) 1166 list_move_tail(&shmem_swaplist, &info->swaplist); 1167 1168 gfp = mapping_gfp_mask(mapping); 1169 if (shmem_should_replace_page(*pagep, gfp)) { 1170 mutex_unlock(&shmem_swaplist_mutex); 1171 error = shmem_replace_page(pagep, gfp, info, index); 1172 mutex_lock(&shmem_swaplist_mutex); 1173 /* 1174 * We needed to drop mutex to make that restrictive page 1175 * allocation, but the inode might have been freed while we 1176 * dropped it: although a racing shmem_evict_inode() cannot 1177 * complete without emptying the radix_tree, our page lock 1178 * on this swapcache page is not enough to prevent that - 1179 * free_swap_and_cache() of our swap entry will only 1180 * trylock_page(), removing swap from radix_tree whatever. 1181 * 1182 * We must not proceed to shmem_add_to_page_cache() if the 1183 * inode has been freed, but of course we cannot rely on 1184 * inode or mapping or info to check that. However, we can 1185 * safely check if our swap entry is still in use (and here 1186 * it can't have got reused for another page): if it's still 1187 * in use, then the inode cannot have been freed yet, and we 1188 * can safely proceed (if it's no longer in use, that tells 1189 * nothing about the inode, but we don't need to unuse swap). 1190 */ 1191 if (!page_swapcount(*pagep)) 1192 error = -ENOENT; 1193 } 1194 1195 /* 1196 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 1197 * but also to hold up shmem_evict_inode(): so inode cannot be freed 1198 * beneath us (pagelock doesn't help until the page is in pagecache). 1199 */ 1200 if (!error) 1201 error = shmem_add_to_page_cache(*pagep, mapping, index, 1202 radswap); 1203 if (error != -ENOMEM) { 1204 /* 1205 * Truncation and eviction use free_swap_and_cache(), which 1206 * only does trylock page: if we raced, best clean up here. 1207 */ 1208 delete_from_swap_cache(*pagep); 1209 set_page_dirty(*pagep); 1210 if (!error) { 1211 spin_lock_irq(&info->lock); 1212 info->swapped--; 1213 spin_unlock_irq(&info->lock); 1214 swap_free(swap); 1215 } 1216 } 1217 return error; 1218 } 1219 1220 /* 1221 * Search through swapped inodes to find and replace swap by page. 1222 */ 1223 int shmem_unuse(swp_entry_t swap, struct page *page) 1224 { 1225 struct list_head *this, *next; 1226 struct shmem_inode_info *info; 1227 struct mem_cgroup *memcg; 1228 int error = 0; 1229 1230 /* 1231 * There's a faint possibility that swap page was replaced before 1232 * caller locked it: caller will come back later with the right page. 1233 */ 1234 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 1235 goto out; 1236 1237 /* 1238 * Charge page using GFP_KERNEL while we can wait, before taking 1239 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 1240 * Charged back to the user (not to caller) when swap account is used. 1241 */ 1242 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg, 1243 false); 1244 if (error) 1245 goto out; 1246 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 1247 error = -EAGAIN; 1248 1249 mutex_lock(&shmem_swaplist_mutex); 1250 list_for_each_safe(this, next, &shmem_swaplist) { 1251 info = list_entry(this, struct shmem_inode_info, swaplist); 1252 if (info->swapped) 1253 error = shmem_unuse_inode(info, swap, &page); 1254 else 1255 list_del_init(&info->swaplist); 1256 cond_resched(); 1257 if (error != -EAGAIN) 1258 break; 1259 /* found nothing in this: move on to search the next */ 1260 } 1261 mutex_unlock(&shmem_swaplist_mutex); 1262 1263 if (error) { 1264 if (error != -ENOMEM) 1265 error = 0; 1266 mem_cgroup_cancel_charge(page, memcg, false); 1267 } else 1268 mem_cgroup_commit_charge(page, memcg, true, false); 1269 out: 1270 unlock_page(page); 1271 put_page(page); 1272 return error; 1273 } 1274 1275 /* 1276 * Move the page from the page cache to the swap cache. 1277 */ 1278 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1279 { 1280 struct shmem_inode_info *info; 1281 struct address_space *mapping; 1282 struct inode *inode; 1283 swp_entry_t swap; 1284 pgoff_t index; 1285 1286 VM_BUG_ON_PAGE(PageCompound(page), page); 1287 BUG_ON(!PageLocked(page)); 1288 mapping = page->mapping; 1289 index = page->index; 1290 inode = mapping->host; 1291 info = SHMEM_I(inode); 1292 if (info->flags & VM_LOCKED) 1293 goto redirty; 1294 if (!total_swap_pages) 1295 goto redirty; 1296 1297 /* 1298 * Our capabilities prevent regular writeback or sync from ever calling 1299 * shmem_writepage; but a stacking filesystem might use ->writepage of 1300 * its underlying filesystem, in which case tmpfs should write out to 1301 * swap only in response to memory pressure, and not for the writeback 1302 * threads or sync. 1303 */ 1304 if (!wbc->for_reclaim) { 1305 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1306 goto redirty; 1307 } 1308 1309 /* 1310 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1311 * value into swapfile.c, the only way we can correctly account for a 1312 * fallocated page arriving here is now to initialize it and write it. 1313 * 1314 * That's okay for a page already fallocated earlier, but if we have 1315 * not yet completed the fallocation, then (a) we want to keep track 1316 * of this page in case we have to undo it, and (b) it may not be a 1317 * good idea to continue anyway, once we're pushing into swap. So 1318 * reactivate the page, and let shmem_fallocate() quit when too many. 1319 */ 1320 if (!PageUptodate(page)) { 1321 if (inode->i_private) { 1322 struct shmem_falloc *shmem_falloc; 1323 spin_lock(&inode->i_lock); 1324 shmem_falloc = inode->i_private; 1325 if (shmem_falloc && 1326 !shmem_falloc->waitq && 1327 index >= shmem_falloc->start && 1328 index < shmem_falloc->next) 1329 shmem_falloc->nr_unswapped++; 1330 else 1331 shmem_falloc = NULL; 1332 spin_unlock(&inode->i_lock); 1333 if (shmem_falloc) 1334 goto redirty; 1335 } 1336 clear_highpage(page); 1337 flush_dcache_page(page); 1338 SetPageUptodate(page); 1339 } 1340 1341 swap = get_swap_page(page); 1342 if (!swap.val) 1343 goto redirty; 1344 1345 /* 1346 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1347 * if it's not already there. Do it now before the page is 1348 * moved to swap cache, when its pagelock no longer protects 1349 * the inode from eviction. But don't unlock the mutex until 1350 * we've incremented swapped, because shmem_unuse_inode() will 1351 * prune a !swapped inode from the swaplist under this mutex. 1352 */ 1353 mutex_lock(&shmem_swaplist_mutex); 1354 if (list_empty(&info->swaplist)) 1355 list_add_tail(&info->swaplist, &shmem_swaplist); 1356 1357 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1358 spin_lock_irq(&info->lock); 1359 shmem_recalc_inode(inode); 1360 info->swapped++; 1361 spin_unlock_irq(&info->lock); 1362 1363 swap_shmem_alloc(swap); 1364 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1365 1366 mutex_unlock(&shmem_swaplist_mutex); 1367 BUG_ON(page_mapped(page)); 1368 swap_writepage(page, wbc); 1369 return 0; 1370 } 1371 1372 mutex_unlock(&shmem_swaplist_mutex); 1373 put_swap_page(page, swap); 1374 redirty: 1375 set_page_dirty(page); 1376 if (wbc->for_reclaim) 1377 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1378 unlock_page(page); 1379 return 0; 1380 } 1381 1382 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1383 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1384 { 1385 char buffer[64]; 1386 1387 if (!mpol || mpol->mode == MPOL_DEFAULT) 1388 return; /* show nothing */ 1389 1390 mpol_to_str(buffer, sizeof(buffer), mpol); 1391 1392 seq_printf(seq, ",mpol=%s", buffer); 1393 } 1394 1395 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1396 { 1397 struct mempolicy *mpol = NULL; 1398 if (sbinfo->mpol) { 1399 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1400 mpol = sbinfo->mpol; 1401 mpol_get(mpol); 1402 spin_unlock(&sbinfo->stat_lock); 1403 } 1404 return mpol; 1405 } 1406 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1407 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1408 { 1409 } 1410 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1411 { 1412 return NULL; 1413 } 1414 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1415 #ifndef CONFIG_NUMA 1416 #define vm_policy vm_private_data 1417 #endif 1418 1419 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1420 struct shmem_inode_info *info, pgoff_t index) 1421 { 1422 /* Create a pseudo vma that just contains the policy */ 1423 memset(vma, 0, sizeof(*vma)); 1424 vma_init(vma, NULL); 1425 /* Bias interleave by inode number to distribute better across nodes */ 1426 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1427 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1428 } 1429 1430 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1431 { 1432 /* Drop reference taken by mpol_shared_policy_lookup() */ 1433 mpol_cond_put(vma->vm_policy); 1434 } 1435 1436 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1437 struct shmem_inode_info *info, pgoff_t index) 1438 { 1439 struct vm_area_struct pvma; 1440 struct page *page; 1441 struct vm_fault vmf; 1442 1443 shmem_pseudo_vma_init(&pvma, info, index); 1444 vmf.vma = &pvma; 1445 vmf.address = 0; 1446 page = swap_cluster_readahead(swap, gfp, &vmf); 1447 shmem_pseudo_vma_destroy(&pvma); 1448 1449 return page; 1450 } 1451 1452 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1453 struct shmem_inode_info *info, pgoff_t index) 1454 { 1455 struct vm_area_struct pvma; 1456 struct inode *inode = &info->vfs_inode; 1457 struct address_space *mapping = inode->i_mapping; 1458 pgoff_t idx, hindex; 1459 void __rcu **results; 1460 struct page *page; 1461 1462 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1463 return NULL; 1464 1465 hindex = round_down(index, HPAGE_PMD_NR); 1466 rcu_read_lock(); 1467 if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx, 1468 hindex, 1) && idx < hindex + HPAGE_PMD_NR) { 1469 rcu_read_unlock(); 1470 return NULL; 1471 } 1472 rcu_read_unlock(); 1473 1474 shmem_pseudo_vma_init(&pvma, info, hindex); 1475 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1476 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1477 shmem_pseudo_vma_destroy(&pvma); 1478 if (page) 1479 prep_transhuge_page(page); 1480 return page; 1481 } 1482 1483 static struct page *shmem_alloc_page(gfp_t gfp, 1484 struct shmem_inode_info *info, pgoff_t index) 1485 { 1486 struct vm_area_struct pvma; 1487 struct page *page; 1488 1489 shmem_pseudo_vma_init(&pvma, info, index); 1490 page = alloc_page_vma(gfp, &pvma, 0); 1491 shmem_pseudo_vma_destroy(&pvma); 1492 1493 return page; 1494 } 1495 1496 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1497 struct inode *inode, 1498 pgoff_t index, bool huge) 1499 { 1500 struct shmem_inode_info *info = SHMEM_I(inode); 1501 struct page *page; 1502 int nr; 1503 int err = -ENOSPC; 1504 1505 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1506 huge = false; 1507 nr = huge ? HPAGE_PMD_NR : 1; 1508 1509 if (!shmem_inode_acct_block(inode, nr)) 1510 goto failed; 1511 1512 if (huge) 1513 page = shmem_alloc_hugepage(gfp, info, index); 1514 else 1515 page = shmem_alloc_page(gfp, info, index); 1516 if (page) { 1517 __SetPageLocked(page); 1518 __SetPageSwapBacked(page); 1519 return page; 1520 } 1521 1522 err = -ENOMEM; 1523 shmem_inode_unacct_blocks(inode, nr); 1524 failed: 1525 return ERR_PTR(err); 1526 } 1527 1528 /* 1529 * When a page is moved from swapcache to shmem filecache (either by the 1530 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1531 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1532 * ignorance of the mapping it belongs to. If that mapping has special 1533 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1534 * we may need to copy to a suitable page before moving to filecache. 1535 * 1536 * In a future release, this may well be extended to respect cpuset and 1537 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1538 * but for now it is a simple matter of zone. 1539 */ 1540 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1541 { 1542 return page_zonenum(page) > gfp_zone(gfp); 1543 } 1544 1545 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1546 struct shmem_inode_info *info, pgoff_t index) 1547 { 1548 struct page *oldpage, *newpage; 1549 struct address_space *swap_mapping; 1550 pgoff_t swap_index; 1551 int error; 1552 1553 oldpage = *pagep; 1554 swap_index = page_private(oldpage); 1555 swap_mapping = page_mapping(oldpage); 1556 1557 /* 1558 * We have arrived here because our zones are constrained, so don't 1559 * limit chance of success by further cpuset and node constraints. 1560 */ 1561 gfp &= ~GFP_CONSTRAINT_MASK; 1562 newpage = shmem_alloc_page(gfp, info, index); 1563 if (!newpage) 1564 return -ENOMEM; 1565 1566 get_page(newpage); 1567 copy_highpage(newpage, oldpage); 1568 flush_dcache_page(newpage); 1569 1570 __SetPageLocked(newpage); 1571 __SetPageSwapBacked(newpage); 1572 SetPageUptodate(newpage); 1573 set_page_private(newpage, swap_index); 1574 SetPageSwapCache(newpage); 1575 1576 /* 1577 * Our caller will very soon move newpage out of swapcache, but it's 1578 * a nice clean interface for us to replace oldpage by newpage there. 1579 */ 1580 xa_lock_irq(&swap_mapping->i_pages); 1581 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1582 newpage); 1583 if (!error) { 1584 __inc_node_page_state(newpage, NR_FILE_PAGES); 1585 __dec_node_page_state(oldpage, NR_FILE_PAGES); 1586 } 1587 xa_unlock_irq(&swap_mapping->i_pages); 1588 1589 if (unlikely(error)) { 1590 /* 1591 * Is this possible? I think not, now that our callers check 1592 * both PageSwapCache and page_private after getting page lock; 1593 * but be defensive. Reverse old to newpage for clear and free. 1594 */ 1595 oldpage = newpage; 1596 } else { 1597 mem_cgroup_migrate(oldpage, newpage); 1598 lru_cache_add_anon(newpage); 1599 *pagep = newpage; 1600 } 1601 1602 ClearPageSwapCache(oldpage); 1603 set_page_private(oldpage, 0); 1604 1605 unlock_page(oldpage); 1606 put_page(oldpage); 1607 put_page(oldpage); 1608 return error; 1609 } 1610 1611 /* 1612 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1613 * 1614 * If we allocate a new one we do not mark it dirty. That's up to the 1615 * vm. If we swap it in we mark it dirty since we also free the swap 1616 * entry since a page cannot live in both the swap and page cache. 1617 * 1618 * fault_mm and fault_type are only supplied by shmem_fault: 1619 * otherwise they are NULL. 1620 */ 1621 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1622 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1623 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type) 1624 { 1625 struct address_space *mapping = inode->i_mapping; 1626 struct shmem_inode_info *info = SHMEM_I(inode); 1627 struct shmem_sb_info *sbinfo; 1628 struct mm_struct *charge_mm; 1629 struct mem_cgroup *memcg; 1630 struct page *page; 1631 swp_entry_t swap; 1632 enum sgp_type sgp_huge = sgp; 1633 pgoff_t hindex = index; 1634 int error; 1635 int once = 0; 1636 int alloced = 0; 1637 1638 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1639 return -EFBIG; 1640 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1641 sgp = SGP_CACHE; 1642 repeat: 1643 swap.val = 0; 1644 page = find_lock_entry(mapping, index); 1645 if (radix_tree_exceptional_entry(page)) { 1646 swap = radix_to_swp_entry(page); 1647 page = NULL; 1648 } 1649 1650 if (sgp <= SGP_CACHE && 1651 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1652 error = -EINVAL; 1653 goto unlock; 1654 } 1655 1656 if (page && sgp == SGP_WRITE) 1657 mark_page_accessed(page); 1658 1659 /* fallocated page? */ 1660 if (page && !PageUptodate(page)) { 1661 if (sgp != SGP_READ) 1662 goto clear; 1663 unlock_page(page); 1664 put_page(page); 1665 page = NULL; 1666 } 1667 if (page || (sgp == SGP_READ && !swap.val)) { 1668 *pagep = page; 1669 return 0; 1670 } 1671 1672 /* 1673 * Fast cache lookup did not find it: 1674 * bring it back from swap or allocate. 1675 */ 1676 sbinfo = SHMEM_SB(inode->i_sb); 1677 charge_mm = vma ? vma->vm_mm : current->mm; 1678 1679 if (swap.val) { 1680 /* Look it up and read it in.. */ 1681 page = lookup_swap_cache(swap, NULL, 0); 1682 if (!page) { 1683 /* Or update major stats only when swapin succeeds?? */ 1684 if (fault_type) { 1685 *fault_type |= VM_FAULT_MAJOR; 1686 count_vm_event(PGMAJFAULT); 1687 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1688 } 1689 /* Here we actually start the io */ 1690 page = shmem_swapin(swap, gfp, info, index); 1691 if (!page) { 1692 error = -ENOMEM; 1693 goto failed; 1694 } 1695 } 1696 1697 /* We have to do this with page locked to prevent races */ 1698 lock_page(page); 1699 if (!PageSwapCache(page) || page_private(page) != swap.val || 1700 !shmem_confirm_swap(mapping, index, swap)) { 1701 error = -EEXIST; /* try again */ 1702 goto unlock; 1703 } 1704 if (!PageUptodate(page)) { 1705 error = -EIO; 1706 goto failed; 1707 } 1708 wait_on_page_writeback(page); 1709 1710 if (shmem_should_replace_page(page, gfp)) { 1711 error = shmem_replace_page(&page, gfp, info, index); 1712 if (error) 1713 goto failed; 1714 } 1715 1716 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1717 false); 1718 if (!error) { 1719 error = shmem_add_to_page_cache(page, mapping, index, 1720 swp_to_radix_entry(swap)); 1721 /* 1722 * We already confirmed swap under page lock, and make 1723 * no memory allocation here, so usually no possibility 1724 * of error; but free_swap_and_cache() only trylocks a 1725 * page, so it is just possible that the entry has been 1726 * truncated or holepunched since swap was confirmed. 1727 * shmem_undo_range() will have done some of the 1728 * unaccounting, now delete_from_swap_cache() will do 1729 * the rest. 1730 * Reset swap.val? No, leave it so "failed" goes back to 1731 * "repeat": reading a hole and writing should succeed. 1732 */ 1733 if (error) { 1734 mem_cgroup_cancel_charge(page, memcg, false); 1735 delete_from_swap_cache(page); 1736 } 1737 } 1738 if (error) 1739 goto failed; 1740 1741 mem_cgroup_commit_charge(page, memcg, true, false); 1742 1743 spin_lock_irq(&info->lock); 1744 info->swapped--; 1745 shmem_recalc_inode(inode); 1746 spin_unlock_irq(&info->lock); 1747 1748 if (sgp == SGP_WRITE) 1749 mark_page_accessed(page); 1750 1751 delete_from_swap_cache(page); 1752 set_page_dirty(page); 1753 swap_free(swap); 1754 1755 } else { 1756 if (vma && userfaultfd_missing(vma)) { 1757 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1758 return 0; 1759 } 1760 1761 /* shmem_symlink() */ 1762 if (mapping->a_ops != &shmem_aops) 1763 goto alloc_nohuge; 1764 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1765 goto alloc_nohuge; 1766 if (shmem_huge == SHMEM_HUGE_FORCE) 1767 goto alloc_huge; 1768 switch (sbinfo->huge) { 1769 loff_t i_size; 1770 pgoff_t off; 1771 case SHMEM_HUGE_NEVER: 1772 goto alloc_nohuge; 1773 case SHMEM_HUGE_WITHIN_SIZE: 1774 off = round_up(index, HPAGE_PMD_NR); 1775 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1776 if (i_size >= HPAGE_PMD_SIZE && 1777 i_size >> PAGE_SHIFT >= off) 1778 goto alloc_huge; 1779 /* fallthrough */ 1780 case SHMEM_HUGE_ADVISE: 1781 if (sgp_huge == SGP_HUGE) 1782 goto alloc_huge; 1783 /* TODO: implement fadvise() hints */ 1784 goto alloc_nohuge; 1785 } 1786 1787 alloc_huge: 1788 page = shmem_alloc_and_acct_page(gfp, inode, index, true); 1789 if (IS_ERR(page)) { 1790 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode, 1791 index, false); 1792 } 1793 if (IS_ERR(page)) { 1794 int retry = 5; 1795 error = PTR_ERR(page); 1796 page = NULL; 1797 if (error != -ENOSPC) 1798 goto failed; 1799 /* 1800 * Try to reclaim some spece by splitting a huge page 1801 * beyond i_size on the filesystem. 1802 */ 1803 while (retry--) { 1804 int ret; 1805 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1806 if (ret == SHRINK_STOP) 1807 break; 1808 if (ret) 1809 goto alloc_nohuge; 1810 } 1811 goto failed; 1812 } 1813 1814 if (PageTransHuge(page)) 1815 hindex = round_down(index, HPAGE_PMD_NR); 1816 else 1817 hindex = index; 1818 1819 if (sgp == SGP_WRITE) 1820 __SetPageReferenced(page); 1821 1822 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1823 PageTransHuge(page)); 1824 if (error) 1825 goto unacct; 1826 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK, 1827 compound_order(page)); 1828 if (!error) { 1829 error = shmem_add_to_page_cache(page, mapping, hindex, 1830 NULL); 1831 radix_tree_preload_end(); 1832 } 1833 if (error) { 1834 mem_cgroup_cancel_charge(page, memcg, 1835 PageTransHuge(page)); 1836 goto unacct; 1837 } 1838 mem_cgroup_commit_charge(page, memcg, false, 1839 PageTransHuge(page)); 1840 lru_cache_add_anon(page); 1841 1842 spin_lock_irq(&info->lock); 1843 info->alloced += 1 << compound_order(page); 1844 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1845 shmem_recalc_inode(inode); 1846 spin_unlock_irq(&info->lock); 1847 alloced = true; 1848 1849 if (PageTransHuge(page) && 1850 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1851 hindex + HPAGE_PMD_NR - 1) { 1852 /* 1853 * Part of the huge page is beyond i_size: subject 1854 * to shrink under memory pressure. 1855 */ 1856 spin_lock(&sbinfo->shrinklist_lock); 1857 /* 1858 * _careful to defend against unlocked access to 1859 * ->shrink_list in shmem_unused_huge_shrink() 1860 */ 1861 if (list_empty_careful(&info->shrinklist)) { 1862 list_add_tail(&info->shrinklist, 1863 &sbinfo->shrinklist); 1864 sbinfo->shrinklist_len++; 1865 } 1866 spin_unlock(&sbinfo->shrinklist_lock); 1867 } 1868 1869 /* 1870 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1871 */ 1872 if (sgp == SGP_FALLOC) 1873 sgp = SGP_WRITE; 1874 clear: 1875 /* 1876 * Let SGP_WRITE caller clear ends if write does not fill page; 1877 * but SGP_FALLOC on a page fallocated earlier must initialize 1878 * it now, lest undo on failure cancel our earlier guarantee. 1879 */ 1880 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1881 struct page *head = compound_head(page); 1882 int i; 1883 1884 for (i = 0; i < (1 << compound_order(head)); i++) { 1885 clear_highpage(head + i); 1886 flush_dcache_page(head + i); 1887 } 1888 SetPageUptodate(head); 1889 } 1890 } 1891 1892 /* Perhaps the file has been truncated since we checked */ 1893 if (sgp <= SGP_CACHE && 1894 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1895 if (alloced) { 1896 ClearPageDirty(page); 1897 delete_from_page_cache(page); 1898 spin_lock_irq(&info->lock); 1899 shmem_recalc_inode(inode); 1900 spin_unlock_irq(&info->lock); 1901 } 1902 error = -EINVAL; 1903 goto unlock; 1904 } 1905 *pagep = page + index - hindex; 1906 return 0; 1907 1908 /* 1909 * Error recovery. 1910 */ 1911 unacct: 1912 shmem_inode_unacct_blocks(inode, 1 << compound_order(page)); 1913 1914 if (PageTransHuge(page)) { 1915 unlock_page(page); 1916 put_page(page); 1917 goto alloc_nohuge; 1918 } 1919 failed: 1920 if (swap.val && !shmem_confirm_swap(mapping, index, swap)) 1921 error = -EEXIST; 1922 unlock: 1923 if (page) { 1924 unlock_page(page); 1925 put_page(page); 1926 } 1927 if (error == -ENOSPC && !once++) { 1928 spin_lock_irq(&info->lock); 1929 shmem_recalc_inode(inode); 1930 spin_unlock_irq(&info->lock); 1931 goto repeat; 1932 } 1933 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1934 goto repeat; 1935 return error; 1936 } 1937 1938 /* 1939 * This is like autoremove_wake_function, but it removes the wait queue 1940 * entry unconditionally - even if something else had already woken the 1941 * target. 1942 */ 1943 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1944 { 1945 int ret = default_wake_function(wait, mode, sync, key); 1946 list_del_init(&wait->entry); 1947 return ret; 1948 } 1949 1950 static vm_fault_t shmem_fault(struct vm_fault *vmf) 1951 { 1952 struct vm_area_struct *vma = vmf->vma; 1953 struct inode *inode = file_inode(vma->vm_file); 1954 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1955 enum sgp_type sgp; 1956 int err; 1957 vm_fault_t ret = VM_FAULT_LOCKED; 1958 1959 /* 1960 * Trinity finds that probing a hole which tmpfs is punching can 1961 * prevent the hole-punch from ever completing: which in turn 1962 * locks writers out with its hold on i_mutex. So refrain from 1963 * faulting pages into the hole while it's being punched. Although 1964 * shmem_undo_range() does remove the additions, it may be unable to 1965 * keep up, as each new page needs its own unmap_mapping_range() call, 1966 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1967 * 1968 * It does not matter if we sometimes reach this check just before the 1969 * hole-punch begins, so that one fault then races with the punch: 1970 * we just need to make racing faults a rare case. 1971 * 1972 * The implementation below would be much simpler if we just used a 1973 * standard mutex or completion: but we cannot take i_mutex in fault, 1974 * and bloating every shmem inode for this unlikely case would be sad. 1975 */ 1976 if (unlikely(inode->i_private)) { 1977 struct shmem_falloc *shmem_falloc; 1978 1979 spin_lock(&inode->i_lock); 1980 shmem_falloc = inode->i_private; 1981 if (shmem_falloc && 1982 shmem_falloc->waitq && 1983 vmf->pgoff >= shmem_falloc->start && 1984 vmf->pgoff < shmem_falloc->next) { 1985 wait_queue_head_t *shmem_falloc_waitq; 1986 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 1987 1988 ret = VM_FAULT_NOPAGE; 1989 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1990 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1991 /* It's polite to up mmap_sem if we can */ 1992 up_read(&vma->vm_mm->mmap_sem); 1993 ret = VM_FAULT_RETRY; 1994 } 1995 1996 shmem_falloc_waitq = shmem_falloc->waitq; 1997 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1998 TASK_UNINTERRUPTIBLE); 1999 spin_unlock(&inode->i_lock); 2000 schedule(); 2001 2002 /* 2003 * shmem_falloc_waitq points into the shmem_fallocate() 2004 * stack of the hole-punching task: shmem_falloc_waitq 2005 * is usually invalid by the time we reach here, but 2006 * finish_wait() does not dereference it in that case; 2007 * though i_lock needed lest racing with wake_up_all(). 2008 */ 2009 spin_lock(&inode->i_lock); 2010 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2011 spin_unlock(&inode->i_lock); 2012 return ret; 2013 } 2014 spin_unlock(&inode->i_lock); 2015 } 2016 2017 sgp = SGP_CACHE; 2018 2019 if ((vma->vm_flags & VM_NOHUGEPAGE) || 2020 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 2021 sgp = SGP_NOHUGE; 2022 else if (vma->vm_flags & VM_HUGEPAGE) 2023 sgp = SGP_HUGE; 2024 2025 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 2026 gfp, vma, vmf, &ret); 2027 if (err) 2028 return vmf_error(err); 2029 return ret; 2030 } 2031 2032 unsigned long shmem_get_unmapped_area(struct file *file, 2033 unsigned long uaddr, unsigned long len, 2034 unsigned long pgoff, unsigned long flags) 2035 { 2036 unsigned long (*get_area)(struct file *, 2037 unsigned long, unsigned long, unsigned long, unsigned long); 2038 unsigned long addr; 2039 unsigned long offset; 2040 unsigned long inflated_len; 2041 unsigned long inflated_addr; 2042 unsigned long inflated_offset; 2043 2044 if (len > TASK_SIZE) 2045 return -ENOMEM; 2046 2047 get_area = current->mm->get_unmapped_area; 2048 addr = get_area(file, uaddr, len, pgoff, flags); 2049 2050 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 2051 return addr; 2052 if (IS_ERR_VALUE(addr)) 2053 return addr; 2054 if (addr & ~PAGE_MASK) 2055 return addr; 2056 if (addr > TASK_SIZE - len) 2057 return addr; 2058 2059 if (shmem_huge == SHMEM_HUGE_DENY) 2060 return addr; 2061 if (len < HPAGE_PMD_SIZE) 2062 return addr; 2063 if (flags & MAP_FIXED) 2064 return addr; 2065 /* 2066 * Our priority is to support MAP_SHARED mapped hugely; 2067 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2068 * But if caller specified an address hint, respect that as before. 2069 */ 2070 if (uaddr) 2071 return addr; 2072 2073 if (shmem_huge != SHMEM_HUGE_FORCE) { 2074 struct super_block *sb; 2075 2076 if (file) { 2077 VM_BUG_ON(file->f_op != &shmem_file_operations); 2078 sb = file_inode(file)->i_sb; 2079 } else { 2080 /* 2081 * Called directly from mm/mmap.c, or drivers/char/mem.c 2082 * for "/dev/zero", to create a shared anonymous object. 2083 */ 2084 if (IS_ERR(shm_mnt)) 2085 return addr; 2086 sb = shm_mnt->mnt_sb; 2087 } 2088 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2089 return addr; 2090 } 2091 2092 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2093 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2094 return addr; 2095 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2096 return addr; 2097 2098 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2099 if (inflated_len > TASK_SIZE) 2100 return addr; 2101 if (inflated_len < len) 2102 return addr; 2103 2104 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags); 2105 if (IS_ERR_VALUE(inflated_addr)) 2106 return addr; 2107 if (inflated_addr & ~PAGE_MASK) 2108 return addr; 2109 2110 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2111 inflated_addr += offset - inflated_offset; 2112 if (inflated_offset > offset) 2113 inflated_addr += HPAGE_PMD_SIZE; 2114 2115 if (inflated_addr > TASK_SIZE - len) 2116 return addr; 2117 return inflated_addr; 2118 } 2119 2120 #ifdef CONFIG_NUMA 2121 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2122 { 2123 struct inode *inode = file_inode(vma->vm_file); 2124 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2125 } 2126 2127 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2128 unsigned long addr) 2129 { 2130 struct inode *inode = file_inode(vma->vm_file); 2131 pgoff_t index; 2132 2133 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2134 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2135 } 2136 #endif 2137 2138 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2139 { 2140 struct inode *inode = file_inode(file); 2141 struct shmem_inode_info *info = SHMEM_I(inode); 2142 int retval = -ENOMEM; 2143 2144 spin_lock_irq(&info->lock); 2145 if (lock && !(info->flags & VM_LOCKED)) { 2146 if (!user_shm_lock(inode->i_size, user)) 2147 goto out_nomem; 2148 info->flags |= VM_LOCKED; 2149 mapping_set_unevictable(file->f_mapping); 2150 } 2151 if (!lock && (info->flags & VM_LOCKED) && user) { 2152 user_shm_unlock(inode->i_size, user); 2153 info->flags &= ~VM_LOCKED; 2154 mapping_clear_unevictable(file->f_mapping); 2155 } 2156 retval = 0; 2157 2158 out_nomem: 2159 spin_unlock_irq(&info->lock); 2160 return retval; 2161 } 2162 2163 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2164 { 2165 file_accessed(file); 2166 vma->vm_ops = &shmem_vm_ops; 2167 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 2168 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2169 (vma->vm_end & HPAGE_PMD_MASK)) { 2170 khugepaged_enter(vma, vma->vm_flags); 2171 } 2172 return 0; 2173 } 2174 2175 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2176 umode_t mode, dev_t dev, unsigned long flags) 2177 { 2178 struct inode *inode; 2179 struct shmem_inode_info *info; 2180 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2181 2182 if (shmem_reserve_inode(sb)) 2183 return NULL; 2184 2185 inode = new_inode(sb); 2186 if (inode) { 2187 inode->i_ino = get_next_ino(); 2188 inode_init_owner(inode, dir, mode); 2189 inode->i_blocks = 0; 2190 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2191 inode->i_generation = get_seconds(); 2192 info = SHMEM_I(inode); 2193 memset(info, 0, (char *)inode - (char *)info); 2194 spin_lock_init(&info->lock); 2195 info->seals = F_SEAL_SEAL; 2196 info->flags = flags & VM_NORESERVE; 2197 INIT_LIST_HEAD(&info->shrinklist); 2198 INIT_LIST_HEAD(&info->swaplist); 2199 simple_xattrs_init(&info->xattrs); 2200 cache_no_acl(inode); 2201 2202 switch (mode & S_IFMT) { 2203 default: 2204 inode->i_op = &shmem_special_inode_operations; 2205 init_special_inode(inode, mode, dev); 2206 break; 2207 case S_IFREG: 2208 inode->i_mapping->a_ops = &shmem_aops; 2209 inode->i_op = &shmem_inode_operations; 2210 inode->i_fop = &shmem_file_operations; 2211 mpol_shared_policy_init(&info->policy, 2212 shmem_get_sbmpol(sbinfo)); 2213 break; 2214 case S_IFDIR: 2215 inc_nlink(inode); 2216 /* Some things misbehave if size == 0 on a directory */ 2217 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2218 inode->i_op = &shmem_dir_inode_operations; 2219 inode->i_fop = &simple_dir_operations; 2220 break; 2221 case S_IFLNK: 2222 /* 2223 * Must not load anything in the rbtree, 2224 * mpol_free_shared_policy will not be called. 2225 */ 2226 mpol_shared_policy_init(&info->policy, NULL); 2227 break; 2228 } 2229 } else 2230 shmem_free_inode(sb); 2231 return inode; 2232 } 2233 2234 bool shmem_mapping(struct address_space *mapping) 2235 { 2236 return mapping->a_ops == &shmem_aops; 2237 } 2238 2239 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2240 pmd_t *dst_pmd, 2241 struct vm_area_struct *dst_vma, 2242 unsigned long dst_addr, 2243 unsigned long src_addr, 2244 bool zeropage, 2245 struct page **pagep) 2246 { 2247 struct inode *inode = file_inode(dst_vma->vm_file); 2248 struct shmem_inode_info *info = SHMEM_I(inode); 2249 struct address_space *mapping = inode->i_mapping; 2250 gfp_t gfp = mapping_gfp_mask(mapping); 2251 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2252 struct mem_cgroup *memcg; 2253 spinlock_t *ptl; 2254 void *page_kaddr; 2255 struct page *page; 2256 pte_t _dst_pte, *dst_pte; 2257 int ret; 2258 2259 ret = -ENOMEM; 2260 if (!shmem_inode_acct_block(inode, 1)) 2261 goto out; 2262 2263 if (!*pagep) { 2264 page = shmem_alloc_page(gfp, info, pgoff); 2265 if (!page) 2266 goto out_unacct_blocks; 2267 2268 if (!zeropage) { /* mcopy_atomic */ 2269 page_kaddr = kmap_atomic(page); 2270 ret = copy_from_user(page_kaddr, 2271 (const void __user *)src_addr, 2272 PAGE_SIZE); 2273 kunmap_atomic(page_kaddr); 2274 2275 /* fallback to copy_from_user outside mmap_sem */ 2276 if (unlikely(ret)) { 2277 *pagep = page; 2278 shmem_inode_unacct_blocks(inode, 1); 2279 /* don't free the page */ 2280 return -EFAULT; 2281 } 2282 } else { /* mfill_zeropage_atomic */ 2283 clear_highpage(page); 2284 } 2285 } else { 2286 page = *pagep; 2287 *pagep = NULL; 2288 } 2289 2290 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2291 __SetPageLocked(page); 2292 __SetPageSwapBacked(page); 2293 __SetPageUptodate(page); 2294 2295 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false); 2296 if (ret) 2297 goto out_release; 2298 2299 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 2300 if (!ret) { 2301 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL); 2302 radix_tree_preload_end(); 2303 } 2304 if (ret) 2305 goto out_release_uncharge; 2306 2307 mem_cgroup_commit_charge(page, memcg, false, false); 2308 2309 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2310 if (dst_vma->vm_flags & VM_WRITE) 2311 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2312 2313 ret = -EEXIST; 2314 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2315 if (!pte_none(*dst_pte)) 2316 goto out_release_uncharge_unlock; 2317 2318 lru_cache_add_anon(page); 2319 2320 spin_lock(&info->lock); 2321 info->alloced++; 2322 inode->i_blocks += BLOCKS_PER_PAGE; 2323 shmem_recalc_inode(inode); 2324 spin_unlock(&info->lock); 2325 2326 inc_mm_counter(dst_mm, mm_counter_file(page)); 2327 page_add_file_rmap(page, false); 2328 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2329 2330 /* No need to invalidate - it was non-present before */ 2331 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2332 unlock_page(page); 2333 pte_unmap_unlock(dst_pte, ptl); 2334 ret = 0; 2335 out: 2336 return ret; 2337 out_release_uncharge_unlock: 2338 pte_unmap_unlock(dst_pte, ptl); 2339 out_release_uncharge: 2340 mem_cgroup_cancel_charge(page, memcg, false); 2341 out_release: 2342 unlock_page(page); 2343 put_page(page); 2344 out_unacct_blocks: 2345 shmem_inode_unacct_blocks(inode, 1); 2346 goto out; 2347 } 2348 2349 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2350 pmd_t *dst_pmd, 2351 struct vm_area_struct *dst_vma, 2352 unsigned long dst_addr, 2353 unsigned long src_addr, 2354 struct page **pagep) 2355 { 2356 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2357 dst_addr, src_addr, false, pagep); 2358 } 2359 2360 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, 2361 pmd_t *dst_pmd, 2362 struct vm_area_struct *dst_vma, 2363 unsigned long dst_addr) 2364 { 2365 struct page *page = NULL; 2366 2367 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2368 dst_addr, 0, true, &page); 2369 } 2370 2371 #ifdef CONFIG_TMPFS 2372 static const struct inode_operations shmem_symlink_inode_operations; 2373 static const struct inode_operations shmem_short_symlink_operations; 2374 2375 #ifdef CONFIG_TMPFS_XATTR 2376 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2377 #else 2378 #define shmem_initxattrs NULL 2379 #endif 2380 2381 static int 2382 shmem_write_begin(struct file *file, struct address_space *mapping, 2383 loff_t pos, unsigned len, unsigned flags, 2384 struct page **pagep, void **fsdata) 2385 { 2386 struct inode *inode = mapping->host; 2387 struct shmem_inode_info *info = SHMEM_I(inode); 2388 pgoff_t index = pos >> PAGE_SHIFT; 2389 2390 /* i_mutex is held by caller */ 2391 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) { 2392 if (info->seals & F_SEAL_WRITE) 2393 return -EPERM; 2394 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2395 return -EPERM; 2396 } 2397 2398 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2399 } 2400 2401 static int 2402 shmem_write_end(struct file *file, struct address_space *mapping, 2403 loff_t pos, unsigned len, unsigned copied, 2404 struct page *page, void *fsdata) 2405 { 2406 struct inode *inode = mapping->host; 2407 2408 if (pos + copied > inode->i_size) 2409 i_size_write(inode, pos + copied); 2410 2411 if (!PageUptodate(page)) { 2412 struct page *head = compound_head(page); 2413 if (PageTransCompound(page)) { 2414 int i; 2415 2416 for (i = 0; i < HPAGE_PMD_NR; i++) { 2417 if (head + i == page) 2418 continue; 2419 clear_highpage(head + i); 2420 flush_dcache_page(head + i); 2421 } 2422 } 2423 if (copied < PAGE_SIZE) { 2424 unsigned from = pos & (PAGE_SIZE - 1); 2425 zero_user_segments(page, 0, from, 2426 from + copied, PAGE_SIZE); 2427 } 2428 SetPageUptodate(head); 2429 } 2430 set_page_dirty(page); 2431 unlock_page(page); 2432 put_page(page); 2433 2434 return copied; 2435 } 2436 2437 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2438 { 2439 struct file *file = iocb->ki_filp; 2440 struct inode *inode = file_inode(file); 2441 struct address_space *mapping = inode->i_mapping; 2442 pgoff_t index; 2443 unsigned long offset; 2444 enum sgp_type sgp = SGP_READ; 2445 int error = 0; 2446 ssize_t retval = 0; 2447 loff_t *ppos = &iocb->ki_pos; 2448 2449 /* 2450 * Might this read be for a stacking filesystem? Then when reading 2451 * holes of a sparse file, we actually need to allocate those pages, 2452 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2453 */ 2454 if (!iter_is_iovec(to)) 2455 sgp = SGP_CACHE; 2456 2457 index = *ppos >> PAGE_SHIFT; 2458 offset = *ppos & ~PAGE_MASK; 2459 2460 for (;;) { 2461 struct page *page = NULL; 2462 pgoff_t end_index; 2463 unsigned long nr, ret; 2464 loff_t i_size = i_size_read(inode); 2465 2466 end_index = i_size >> PAGE_SHIFT; 2467 if (index > end_index) 2468 break; 2469 if (index == end_index) { 2470 nr = i_size & ~PAGE_MASK; 2471 if (nr <= offset) 2472 break; 2473 } 2474 2475 error = shmem_getpage(inode, index, &page, sgp); 2476 if (error) { 2477 if (error == -EINVAL) 2478 error = 0; 2479 break; 2480 } 2481 if (page) { 2482 if (sgp == SGP_CACHE) 2483 set_page_dirty(page); 2484 unlock_page(page); 2485 } 2486 2487 /* 2488 * We must evaluate after, since reads (unlike writes) 2489 * are called without i_mutex protection against truncate 2490 */ 2491 nr = PAGE_SIZE; 2492 i_size = i_size_read(inode); 2493 end_index = i_size >> PAGE_SHIFT; 2494 if (index == end_index) { 2495 nr = i_size & ~PAGE_MASK; 2496 if (nr <= offset) { 2497 if (page) 2498 put_page(page); 2499 break; 2500 } 2501 } 2502 nr -= offset; 2503 2504 if (page) { 2505 /* 2506 * If users can be writing to this page using arbitrary 2507 * virtual addresses, take care about potential aliasing 2508 * before reading the page on the kernel side. 2509 */ 2510 if (mapping_writably_mapped(mapping)) 2511 flush_dcache_page(page); 2512 /* 2513 * Mark the page accessed if we read the beginning. 2514 */ 2515 if (!offset) 2516 mark_page_accessed(page); 2517 } else { 2518 page = ZERO_PAGE(0); 2519 get_page(page); 2520 } 2521 2522 /* 2523 * Ok, we have the page, and it's up-to-date, so 2524 * now we can copy it to user space... 2525 */ 2526 ret = copy_page_to_iter(page, offset, nr, to); 2527 retval += ret; 2528 offset += ret; 2529 index += offset >> PAGE_SHIFT; 2530 offset &= ~PAGE_MASK; 2531 2532 put_page(page); 2533 if (!iov_iter_count(to)) 2534 break; 2535 if (ret < nr) { 2536 error = -EFAULT; 2537 break; 2538 } 2539 cond_resched(); 2540 } 2541 2542 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2543 file_accessed(file); 2544 return retval ? retval : error; 2545 } 2546 2547 /* 2548 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 2549 */ 2550 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2551 pgoff_t index, pgoff_t end, int whence) 2552 { 2553 struct page *page; 2554 struct pagevec pvec; 2555 pgoff_t indices[PAGEVEC_SIZE]; 2556 bool done = false; 2557 int i; 2558 2559 pagevec_init(&pvec); 2560 pvec.nr = 1; /* start small: we may be there already */ 2561 while (!done) { 2562 pvec.nr = find_get_entries(mapping, index, 2563 pvec.nr, pvec.pages, indices); 2564 if (!pvec.nr) { 2565 if (whence == SEEK_DATA) 2566 index = end; 2567 break; 2568 } 2569 for (i = 0; i < pvec.nr; i++, index++) { 2570 if (index < indices[i]) { 2571 if (whence == SEEK_HOLE) { 2572 done = true; 2573 break; 2574 } 2575 index = indices[i]; 2576 } 2577 page = pvec.pages[i]; 2578 if (page && !radix_tree_exceptional_entry(page)) { 2579 if (!PageUptodate(page)) 2580 page = NULL; 2581 } 2582 if (index >= end || 2583 (page && whence == SEEK_DATA) || 2584 (!page && whence == SEEK_HOLE)) { 2585 done = true; 2586 break; 2587 } 2588 } 2589 pagevec_remove_exceptionals(&pvec); 2590 pagevec_release(&pvec); 2591 pvec.nr = PAGEVEC_SIZE; 2592 cond_resched(); 2593 } 2594 return index; 2595 } 2596 2597 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2598 { 2599 struct address_space *mapping = file->f_mapping; 2600 struct inode *inode = mapping->host; 2601 pgoff_t start, end; 2602 loff_t new_offset; 2603 2604 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2605 return generic_file_llseek_size(file, offset, whence, 2606 MAX_LFS_FILESIZE, i_size_read(inode)); 2607 inode_lock(inode); 2608 /* We're holding i_mutex so we can access i_size directly */ 2609 2610 if (offset < 0) 2611 offset = -EINVAL; 2612 else if (offset >= inode->i_size) 2613 offset = -ENXIO; 2614 else { 2615 start = offset >> PAGE_SHIFT; 2616 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2617 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2618 new_offset <<= PAGE_SHIFT; 2619 if (new_offset > offset) { 2620 if (new_offset < inode->i_size) 2621 offset = new_offset; 2622 else if (whence == SEEK_DATA) 2623 offset = -ENXIO; 2624 else 2625 offset = inode->i_size; 2626 } 2627 } 2628 2629 if (offset >= 0) 2630 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2631 inode_unlock(inode); 2632 return offset; 2633 } 2634 2635 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2636 loff_t len) 2637 { 2638 struct inode *inode = file_inode(file); 2639 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2640 struct shmem_inode_info *info = SHMEM_I(inode); 2641 struct shmem_falloc shmem_falloc; 2642 pgoff_t start, index, end; 2643 int error; 2644 2645 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2646 return -EOPNOTSUPP; 2647 2648 inode_lock(inode); 2649 2650 if (mode & FALLOC_FL_PUNCH_HOLE) { 2651 struct address_space *mapping = file->f_mapping; 2652 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2653 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2654 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2655 2656 /* protected by i_mutex */ 2657 if (info->seals & F_SEAL_WRITE) { 2658 error = -EPERM; 2659 goto out; 2660 } 2661 2662 shmem_falloc.waitq = &shmem_falloc_waitq; 2663 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2664 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2665 spin_lock(&inode->i_lock); 2666 inode->i_private = &shmem_falloc; 2667 spin_unlock(&inode->i_lock); 2668 2669 if ((u64)unmap_end > (u64)unmap_start) 2670 unmap_mapping_range(mapping, unmap_start, 2671 1 + unmap_end - unmap_start, 0); 2672 shmem_truncate_range(inode, offset, offset + len - 1); 2673 /* No need to unmap again: hole-punching leaves COWed pages */ 2674 2675 spin_lock(&inode->i_lock); 2676 inode->i_private = NULL; 2677 wake_up_all(&shmem_falloc_waitq); 2678 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2679 spin_unlock(&inode->i_lock); 2680 error = 0; 2681 goto out; 2682 } 2683 2684 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2685 error = inode_newsize_ok(inode, offset + len); 2686 if (error) 2687 goto out; 2688 2689 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2690 error = -EPERM; 2691 goto out; 2692 } 2693 2694 start = offset >> PAGE_SHIFT; 2695 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2696 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2697 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2698 error = -ENOSPC; 2699 goto out; 2700 } 2701 2702 shmem_falloc.waitq = NULL; 2703 shmem_falloc.start = start; 2704 shmem_falloc.next = start; 2705 shmem_falloc.nr_falloced = 0; 2706 shmem_falloc.nr_unswapped = 0; 2707 spin_lock(&inode->i_lock); 2708 inode->i_private = &shmem_falloc; 2709 spin_unlock(&inode->i_lock); 2710 2711 for (index = start; index < end; index++) { 2712 struct page *page; 2713 2714 /* 2715 * Good, the fallocate(2) manpage permits EINTR: we may have 2716 * been interrupted because we are using up too much memory. 2717 */ 2718 if (signal_pending(current)) 2719 error = -EINTR; 2720 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2721 error = -ENOMEM; 2722 else 2723 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2724 if (error) { 2725 /* Remove the !PageUptodate pages we added */ 2726 if (index > start) { 2727 shmem_undo_range(inode, 2728 (loff_t)start << PAGE_SHIFT, 2729 ((loff_t)index << PAGE_SHIFT) - 1, true); 2730 } 2731 goto undone; 2732 } 2733 2734 /* 2735 * Inform shmem_writepage() how far we have reached. 2736 * No need for lock or barrier: we have the page lock. 2737 */ 2738 shmem_falloc.next++; 2739 if (!PageUptodate(page)) 2740 shmem_falloc.nr_falloced++; 2741 2742 /* 2743 * If !PageUptodate, leave it that way so that freeable pages 2744 * can be recognized if we need to rollback on error later. 2745 * But set_page_dirty so that memory pressure will swap rather 2746 * than free the pages we are allocating (and SGP_CACHE pages 2747 * might still be clean: we now need to mark those dirty too). 2748 */ 2749 set_page_dirty(page); 2750 unlock_page(page); 2751 put_page(page); 2752 cond_resched(); 2753 } 2754 2755 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2756 i_size_write(inode, offset + len); 2757 inode->i_ctime = current_time(inode); 2758 undone: 2759 spin_lock(&inode->i_lock); 2760 inode->i_private = NULL; 2761 spin_unlock(&inode->i_lock); 2762 out: 2763 inode_unlock(inode); 2764 return error; 2765 } 2766 2767 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2768 { 2769 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2770 2771 buf->f_type = TMPFS_MAGIC; 2772 buf->f_bsize = PAGE_SIZE; 2773 buf->f_namelen = NAME_MAX; 2774 if (sbinfo->max_blocks) { 2775 buf->f_blocks = sbinfo->max_blocks; 2776 buf->f_bavail = 2777 buf->f_bfree = sbinfo->max_blocks - 2778 percpu_counter_sum(&sbinfo->used_blocks); 2779 } 2780 if (sbinfo->max_inodes) { 2781 buf->f_files = sbinfo->max_inodes; 2782 buf->f_ffree = sbinfo->free_inodes; 2783 } 2784 /* else leave those fields 0 like simple_statfs */ 2785 return 0; 2786 } 2787 2788 /* 2789 * File creation. Allocate an inode, and we're done.. 2790 */ 2791 static int 2792 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2793 { 2794 struct inode *inode; 2795 int error = -ENOSPC; 2796 2797 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2798 if (inode) { 2799 error = simple_acl_create(dir, inode); 2800 if (error) 2801 goto out_iput; 2802 error = security_inode_init_security(inode, dir, 2803 &dentry->d_name, 2804 shmem_initxattrs, NULL); 2805 if (error && error != -EOPNOTSUPP) 2806 goto out_iput; 2807 2808 error = 0; 2809 dir->i_size += BOGO_DIRENT_SIZE; 2810 dir->i_ctime = dir->i_mtime = current_time(dir); 2811 d_instantiate(dentry, inode); 2812 dget(dentry); /* Extra count - pin the dentry in core */ 2813 } 2814 return error; 2815 out_iput: 2816 iput(inode); 2817 return error; 2818 } 2819 2820 static int 2821 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2822 { 2823 struct inode *inode; 2824 int error = -ENOSPC; 2825 2826 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2827 if (inode) { 2828 error = security_inode_init_security(inode, dir, 2829 NULL, 2830 shmem_initxattrs, NULL); 2831 if (error && error != -EOPNOTSUPP) 2832 goto out_iput; 2833 error = simple_acl_create(dir, inode); 2834 if (error) 2835 goto out_iput; 2836 d_tmpfile(dentry, inode); 2837 } 2838 return error; 2839 out_iput: 2840 iput(inode); 2841 return error; 2842 } 2843 2844 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2845 { 2846 int error; 2847 2848 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2849 return error; 2850 inc_nlink(dir); 2851 return 0; 2852 } 2853 2854 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2855 bool excl) 2856 { 2857 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2858 } 2859 2860 /* 2861 * Link a file.. 2862 */ 2863 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2864 { 2865 struct inode *inode = d_inode(old_dentry); 2866 int ret; 2867 2868 /* 2869 * No ordinary (disk based) filesystem counts links as inodes; 2870 * but each new link needs a new dentry, pinning lowmem, and 2871 * tmpfs dentries cannot be pruned until they are unlinked. 2872 */ 2873 ret = shmem_reserve_inode(inode->i_sb); 2874 if (ret) 2875 goto out; 2876 2877 dir->i_size += BOGO_DIRENT_SIZE; 2878 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2879 inc_nlink(inode); 2880 ihold(inode); /* New dentry reference */ 2881 dget(dentry); /* Extra pinning count for the created dentry */ 2882 d_instantiate(dentry, inode); 2883 out: 2884 return ret; 2885 } 2886 2887 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2888 { 2889 struct inode *inode = d_inode(dentry); 2890 2891 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2892 shmem_free_inode(inode->i_sb); 2893 2894 dir->i_size -= BOGO_DIRENT_SIZE; 2895 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2896 drop_nlink(inode); 2897 dput(dentry); /* Undo the count from "create" - this does all the work */ 2898 return 0; 2899 } 2900 2901 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2902 { 2903 if (!simple_empty(dentry)) 2904 return -ENOTEMPTY; 2905 2906 drop_nlink(d_inode(dentry)); 2907 drop_nlink(dir); 2908 return shmem_unlink(dir, dentry); 2909 } 2910 2911 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2912 { 2913 bool old_is_dir = d_is_dir(old_dentry); 2914 bool new_is_dir = d_is_dir(new_dentry); 2915 2916 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2917 if (old_is_dir) { 2918 drop_nlink(old_dir); 2919 inc_nlink(new_dir); 2920 } else { 2921 drop_nlink(new_dir); 2922 inc_nlink(old_dir); 2923 } 2924 } 2925 old_dir->i_ctime = old_dir->i_mtime = 2926 new_dir->i_ctime = new_dir->i_mtime = 2927 d_inode(old_dentry)->i_ctime = 2928 d_inode(new_dentry)->i_ctime = current_time(old_dir); 2929 2930 return 0; 2931 } 2932 2933 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 2934 { 2935 struct dentry *whiteout; 2936 int error; 2937 2938 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2939 if (!whiteout) 2940 return -ENOMEM; 2941 2942 error = shmem_mknod(old_dir, whiteout, 2943 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2944 dput(whiteout); 2945 if (error) 2946 return error; 2947 2948 /* 2949 * Cheat and hash the whiteout while the old dentry is still in 2950 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2951 * 2952 * d_lookup() will consistently find one of them at this point, 2953 * not sure which one, but that isn't even important. 2954 */ 2955 d_rehash(whiteout); 2956 return 0; 2957 } 2958 2959 /* 2960 * The VFS layer already does all the dentry stuff for rename, 2961 * we just have to decrement the usage count for the target if 2962 * it exists so that the VFS layer correctly free's it when it 2963 * gets overwritten. 2964 */ 2965 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 2966 { 2967 struct inode *inode = d_inode(old_dentry); 2968 int they_are_dirs = S_ISDIR(inode->i_mode); 2969 2970 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 2971 return -EINVAL; 2972 2973 if (flags & RENAME_EXCHANGE) 2974 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 2975 2976 if (!simple_empty(new_dentry)) 2977 return -ENOTEMPTY; 2978 2979 if (flags & RENAME_WHITEOUT) { 2980 int error; 2981 2982 error = shmem_whiteout(old_dir, old_dentry); 2983 if (error) 2984 return error; 2985 } 2986 2987 if (d_really_is_positive(new_dentry)) { 2988 (void) shmem_unlink(new_dir, new_dentry); 2989 if (they_are_dirs) { 2990 drop_nlink(d_inode(new_dentry)); 2991 drop_nlink(old_dir); 2992 } 2993 } else if (they_are_dirs) { 2994 drop_nlink(old_dir); 2995 inc_nlink(new_dir); 2996 } 2997 2998 old_dir->i_size -= BOGO_DIRENT_SIZE; 2999 new_dir->i_size += BOGO_DIRENT_SIZE; 3000 old_dir->i_ctime = old_dir->i_mtime = 3001 new_dir->i_ctime = new_dir->i_mtime = 3002 inode->i_ctime = current_time(old_dir); 3003 return 0; 3004 } 3005 3006 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3007 { 3008 int error; 3009 int len; 3010 struct inode *inode; 3011 struct page *page; 3012 3013 len = strlen(symname) + 1; 3014 if (len > PAGE_SIZE) 3015 return -ENAMETOOLONG; 3016 3017 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3018 VM_NORESERVE); 3019 if (!inode) 3020 return -ENOSPC; 3021 3022 error = security_inode_init_security(inode, dir, &dentry->d_name, 3023 shmem_initxattrs, NULL); 3024 if (error) { 3025 if (error != -EOPNOTSUPP) { 3026 iput(inode); 3027 return error; 3028 } 3029 error = 0; 3030 } 3031 3032 inode->i_size = len-1; 3033 if (len <= SHORT_SYMLINK_LEN) { 3034 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3035 if (!inode->i_link) { 3036 iput(inode); 3037 return -ENOMEM; 3038 } 3039 inode->i_op = &shmem_short_symlink_operations; 3040 } else { 3041 inode_nohighmem(inode); 3042 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3043 if (error) { 3044 iput(inode); 3045 return error; 3046 } 3047 inode->i_mapping->a_ops = &shmem_aops; 3048 inode->i_op = &shmem_symlink_inode_operations; 3049 memcpy(page_address(page), symname, len); 3050 SetPageUptodate(page); 3051 set_page_dirty(page); 3052 unlock_page(page); 3053 put_page(page); 3054 } 3055 dir->i_size += BOGO_DIRENT_SIZE; 3056 dir->i_ctime = dir->i_mtime = current_time(dir); 3057 d_instantiate(dentry, inode); 3058 dget(dentry); 3059 return 0; 3060 } 3061 3062 static void shmem_put_link(void *arg) 3063 { 3064 mark_page_accessed(arg); 3065 put_page(arg); 3066 } 3067 3068 static const char *shmem_get_link(struct dentry *dentry, 3069 struct inode *inode, 3070 struct delayed_call *done) 3071 { 3072 struct page *page = NULL; 3073 int error; 3074 if (!dentry) { 3075 page = find_get_page(inode->i_mapping, 0); 3076 if (!page) 3077 return ERR_PTR(-ECHILD); 3078 if (!PageUptodate(page)) { 3079 put_page(page); 3080 return ERR_PTR(-ECHILD); 3081 } 3082 } else { 3083 error = shmem_getpage(inode, 0, &page, SGP_READ); 3084 if (error) 3085 return ERR_PTR(error); 3086 unlock_page(page); 3087 } 3088 set_delayed_call(done, shmem_put_link, page); 3089 return page_address(page); 3090 } 3091 3092 #ifdef CONFIG_TMPFS_XATTR 3093 /* 3094 * Superblocks without xattr inode operations may get some security.* xattr 3095 * support from the LSM "for free". As soon as we have any other xattrs 3096 * like ACLs, we also need to implement the security.* handlers at 3097 * filesystem level, though. 3098 */ 3099 3100 /* 3101 * Callback for security_inode_init_security() for acquiring xattrs. 3102 */ 3103 static int shmem_initxattrs(struct inode *inode, 3104 const struct xattr *xattr_array, 3105 void *fs_info) 3106 { 3107 struct shmem_inode_info *info = SHMEM_I(inode); 3108 const struct xattr *xattr; 3109 struct simple_xattr *new_xattr; 3110 size_t len; 3111 3112 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3113 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3114 if (!new_xattr) 3115 return -ENOMEM; 3116 3117 len = strlen(xattr->name) + 1; 3118 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3119 GFP_KERNEL); 3120 if (!new_xattr->name) { 3121 kfree(new_xattr); 3122 return -ENOMEM; 3123 } 3124 3125 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3126 XATTR_SECURITY_PREFIX_LEN); 3127 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3128 xattr->name, len); 3129 3130 simple_xattr_list_add(&info->xattrs, new_xattr); 3131 } 3132 3133 return 0; 3134 } 3135 3136 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3137 struct dentry *unused, struct inode *inode, 3138 const char *name, void *buffer, size_t size) 3139 { 3140 struct shmem_inode_info *info = SHMEM_I(inode); 3141 3142 name = xattr_full_name(handler, name); 3143 return simple_xattr_get(&info->xattrs, name, buffer, size); 3144 } 3145 3146 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3147 struct dentry *unused, struct inode *inode, 3148 const char *name, const void *value, 3149 size_t size, int flags) 3150 { 3151 struct shmem_inode_info *info = SHMEM_I(inode); 3152 3153 name = xattr_full_name(handler, name); 3154 return simple_xattr_set(&info->xattrs, name, value, size, flags); 3155 } 3156 3157 static const struct xattr_handler shmem_security_xattr_handler = { 3158 .prefix = XATTR_SECURITY_PREFIX, 3159 .get = shmem_xattr_handler_get, 3160 .set = shmem_xattr_handler_set, 3161 }; 3162 3163 static const struct xattr_handler shmem_trusted_xattr_handler = { 3164 .prefix = XATTR_TRUSTED_PREFIX, 3165 .get = shmem_xattr_handler_get, 3166 .set = shmem_xattr_handler_set, 3167 }; 3168 3169 static const struct xattr_handler *shmem_xattr_handlers[] = { 3170 #ifdef CONFIG_TMPFS_POSIX_ACL 3171 &posix_acl_access_xattr_handler, 3172 &posix_acl_default_xattr_handler, 3173 #endif 3174 &shmem_security_xattr_handler, 3175 &shmem_trusted_xattr_handler, 3176 NULL 3177 }; 3178 3179 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3180 { 3181 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3182 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3183 } 3184 #endif /* CONFIG_TMPFS_XATTR */ 3185 3186 static const struct inode_operations shmem_short_symlink_operations = { 3187 .get_link = simple_get_link, 3188 #ifdef CONFIG_TMPFS_XATTR 3189 .listxattr = shmem_listxattr, 3190 #endif 3191 }; 3192 3193 static const struct inode_operations shmem_symlink_inode_operations = { 3194 .get_link = shmem_get_link, 3195 #ifdef CONFIG_TMPFS_XATTR 3196 .listxattr = shmem_listxattr, 3197 #endif 3198 }; 3199 3200 static struct dentry *shmem_get_parent(struct dentry *child) 3201 { 3202 return ERR_PTR(-ESTALE); 3203 } 3204 3205 static int shmem_match(struct inode *ino, void *vfh) 3206 { 3207 __u32 *fh = vfh; 3208 __u64 inum = fh[2]; 3209 inum = (inum << 32) | fh[1]; 3210 return ino->i_ino == inum && fh[0] == ino->i_generation; 3211 } 3212 3213 /* Find any alias of inode, but prefer a hashed alias */ 3214 static struct dentry *shmem_find_alias(struct inode *inode) 3215 { 3216 struct dentry *alias = d_find_alias(inode); 3217 3218 return alias ?: d_find_any_alias(inode); 3219 } 3220 3221 3222 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3223 struct fid *fid, int fh_len, int fh_type) 3224 { 3225 struct inode *inode; 3226 struct dentry *dentry = NULL; 3227 u64 inum; 3228 3229 if (fh_len < 3) 3230 return NULL; 3231 3232 inum = fid->raw[2]; 3233 inum = (inum << 32) | fid->raw[1]; 3234 3235 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3236 shmem_match, fid->raw); 3237 if (inode) { 3238 dentry = shmem_find_alias(inode); 3239 iput(inode); 3240 } 3241 3242 return dentry; 3243 } 3244 3245 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3246 struct inode *parent) 3247 { 3248 if (*len < 3) { 3249 *len = 3; 3250 return FILEID_INVALID; 3251 } 3252 3253 if (inode_unhashed(inode)) { 3254 /* Unfortunately insert_inode_hash is not idempotent, 3255 * so as we hash inodes here rather than at creation 3256 * time, we need a lock to ensure we only try 3257 * to do it once 3258 */ 3259 static DEFINE_SPINLOCK(lock); 3260 spin_lock(&lock); 3261 if (inode_unhashed(inode)) 3262 __insert_inode_hash(inode, 3263 inode->i_ino + inode->i_generation); 3264 spin_unlock(&lock); 3265 } 3266 3267 fh[0] = inode->i_generation; 3268 fh[1] = inode->i_ino; 3269 fh[2] = ((__u64)inode->i_ino) >> 32; 3270 3271 *len = 3; 3272 return 1; 3273 } 3274 3275 static const struct export_operations shmem_export_ops = { 3276 .get_parent = shmem_get_parent, 3277 .encode_fh = shmem_encode_fh, 3278 .fh_to_dentry = shmem_fh_to_dentry, 3279 }; 3280 3281 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 3282 bool remount) 3283 { 3284 char *this_char, *value, *rest; 3285 struct mempolicy *mpol = NULL; 3286 uid_t uid; 3287 gid_t gid; 3288 3289 while (options != NULL) { 3290 this_char = options; 3291 for (;;) { 3292 /* 3293 * NUL-terminate this option: unfortunately, 3294 * mount options form a comma-separated list, 3295 * but mpol's nodelist may also contain commas. 3296 */ 3297 options = strchr(options, ','); 3298 if (options == NULL) 3299 break; 3300 options++; 3301 if (!isdigit(*options)) { 3302 options[-1] = '\0'; 3303 break; 3304 } 3305 } 3306 if (!*this_char) 3307 continue; 3308 if ((value = strchr(this_char,'=')) != NULL) { 3309 *value++ = 0; 3310 } else { 3311 pr_err("tmpfs: No value for mount option '%s'\n", 3312 this_char); 3313 goto error; 3314 } 3315 3316 if (!strcmp(this_char,"size")) { 3317 unsigned long long size; 3318 size = memparse(value,&rest); 3319 if (*rest == '%') { 3320 size <<= PAGE_SHIFT; 3321 size *= totalram_pages; 3322 do_div(size, 100); 3323 rest++; 3324 } 3325 if (*rest) 3326 goto bad_val; 3327 sbinfo->max_blocks = 3328 DIV_ROUND_UP(size, PAGE_SIZE); 3329 } else if (!strcmp(this_char,"nr_blocks")) { 3330 sbinfo->max_blocks = memparse(value, &rest); 3331 if (*rest) 3332 goto bad_val; 3333 } else if (!strcmp(this_char,"nr_inodes")) { 3334 sbinfo->max_inodes = memparse(value, &rest); 3335 if (*rest) 3336 goto bad_val; 3337 } else if (!strcmp(this_char,"mode")) { 3338 if (remount) 3339 continue; 3340 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 3341 if (*rest) 3342 goto bad_val; 3343 } else if (!strcmp(this_char,"uid")) { 3344 if (remount) 3345 continue; 3346 uid = simple_strtoul(value, &rest, 0); 3347 if (*rest) 3348 goto bad_val; 3349 sbinfo->uid = make_kuid(current_user_ns(), uid); 3350 if (!uid_valid(sbinfo->uid)) 3351 goto bad_val; 3352 } else if (!strcmp(this_char,"gid")) { 3353 if (remount) 3354 continue; 3355 gid = simple_strtoul(value, &rest, 0); 3356 if (*rest) 3357 goto bad_val; 3358 sbinfo->gid = make_kgid(current_user_ns(), gid); 3359 if (!gid_valid(sbinfo->gid)) 3360 goto bad_val; 3361 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3362 } else if (!strcmp(this_char, "huge")) { 3363 int huge; 3364 huge = shmem_parse_huge(value); 3365 if (huge < 0) 3366 goto bad_val; 3367 if (!has_transparent_hugepage() && 3368 huge != SHMEM_HUGE_NEVER) 3369 goto bad_val; 3370 sbinfo->huge = huge; 3371 #endif 3372 #ifdef CONFIG_NUMA 3373 } else if (!strcmp(this_char,"mpol")) { 3374 mpol_put(mpol); 3375 mpol = NULL; 3376 if (mpol_parse_str(value, &mpol)) 3377 goto bad_val; 3378 #endif 3379 } else { 3380 pr_err("tmpfs: Bad mount option %s\n", this_char); 3381 goto error; 3382 } 3383 } 3384 sbinfo->mpol = mpol; 3385 return 0; 3386 3387 bad_val: 3388 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n", 3389 value, this_char); 3390 error: 3391 mpol_put(mpol); 3392 return 1; 3393 3394 } 3395 3396 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 3397 { 3398 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3399 struct shmem_sb_info config = *sbinfo; 3400 unsigned long inodes; 3401 int error = -EINVAL; 3402 3403 config.mpol = NULL; 3404 if (shmem_parse_options(data, &config, true)) 3405 return error; 3406 3407 spin_lock(&sbinfo->stat_lock); 3408 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3409 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 3410 goto out; 3411 if (config.max_inodes < inodes) 3412 goto out; 3413 /* 3414 * Those tests disallow limited->unlimited while any are in use; 3415 * but we must separately disallow unlimited->limited, because 3416 * in that case we have no record of how much is already in use. 3417 */ 3418 if (config.max_blocks && !sbinfo->max_blocks) 3419 goto out; 3420 if (config.max_inodes && !sbinfo->max_inodes) 3421 goto out; 3422 3423 error = 0; 3424 sbinfo->huge = config.huge; 3425 sbinfo->max_blocks = config.max_blocks; 3426 sbinfo->max_inodes = config.max_inodes; 3427 sbinfo->free_inodes = config.max_inodes - inodes; 3428 3429 /* 3430 * Preserve previous mempolicy unless mpol remount option was specified. 3431 */ 3432 if (config.mpol) { 3433 mpol_put(sbinfo->mpol); 3434 sbinfo->mpol = config.mpol; /* transfers initial ref */ 3435 } 3436 out: 3437 spin_unlock(&sbinfo->stat_lock); 3438 return error; 3439 } 3440 3441 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3442 { 3443 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3444 3445 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3446 seq_printf(seq, ",size=%luk", 3447 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3448 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3449 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3450 if (sbinfo->mode != (0777 | S_ISVTX)) 3451 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3452 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3453 seq_printf(seq, ",uid=%u", 3454 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3455 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3456 seq_printf(seq, ",gid=%u", 3457 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3458 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3459 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3460 if (sbinfo->huge) 3461 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3462 #endif 3463 shmem_show_mpol(seq, sbinfo->mpol); 3464 return 0; 3465 } 3466 3467 #endif /* CONFIG_TMPFS */ 3468 3469 static void shmem_put_super(struct super_block *sb) 3470 { 3471 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3472 3473 percpu_counter_destroy(&sbinfo->used_blocks); 3474 mpol_put(sbinfo->mpol); 3475 kfree(sbinfo); 3476 sb->s_fs_info = NULL; 3477 } 3478 3479 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3480 { 3481 struct inode *inode; 3482 struct shmem_sb_info *sbinfo; 3483 int err = -ENOMEM; 3484 3485 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3486 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3487 L1_CACHE_BYTES), GFP_KERNEL); 3488 if (!sbinfo) 3489 return -ENOMEM; 3490 3491 sbinfo->mode = 0777 | S_ISVTX; 3492 sbinfo->uid = current_fsuid(); 3493 sbinfo->gid = current_fsgid(); 3494 sb->s_fs_info = sbinfo; 3495 3496 #ifdef CONFIG_TMPFS 3497 /* 3498 * Per default we only allow half of the physical ram per 3499 * tmpfs instance, limiting inodes to one per page of lowmem; 3500 * but the internal instance is left unlimited. 3501 */ 3502 if (!(sb->s_flags & SB_KERNMOUNT)) { 3503 sbinfo->max_blocks = shmem_default_max_blocks(); 3504 sbinfo->max_inodes = shmem_default_max_inodes(); 3505 if (shmem_parse_options(data, sbinfo, false)) { 3506 err = -EINVAL; 3507 goto failed; 3508 } 3509 } else { 3510 sb->s_flags |= SB_NOUSER; 3511 } 3512 sb->s_export_op = &shmem_export_ops; 3513 sb->s_flags |= SB_NOSEC; 3514 #else 3515 sb->s_flags |= SB_NOUSER; 3516 #endif 3517 3518 spin_lock_init(&sbinfo->stat_lock); 3519 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3520 goto failed; 3521 sbinfo->free_inodes = sbinfo->max_inodes; 3522 spin_lock_init(&sbinfo->shrinklist_lock); 3523 INIT_LIST_HEAD(&sbinfo->shrinklist); 3524 3525 sb->s_maxbytes = MAX_LFS_FILESIZE; 3526 sb->s_blocksize = PAGE_SIZE; 3527 sb->s_blocksize_bits = PAGE_SHIFT; 3528 sb->s_magic = TMPFS_MAGIC; 3529 sb->s_op = &shmem_ops; 3530 sb->s_time_gran = 1; 3531 #ifdef CONFIG_TMPFS_XATTR 3532 sb->s_xattr = shmem_xattr_handlers; 3533 #endif 3534 #ifdef CONFIG_TMPFS_POSIX_ACL 3535 sb->s_flags |= SB_POSIXACL; 3536 #endif 3537 uuid_gen(&sb->s_uuid); 3538 3539 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3540 if (!inode) 3541 goto failed; 3542 inode->i_uid = sbinfo->uid; 3543 inode->i_gid = sbinfo->gid; 3544 sb->s_root = d_make_root(inode); 3545 if (!sb->s_root) 3546 goto failed; 3547 return 0; 3548 3549 failed: 3550 shmem_put_super(sb); 3551 return err; 3552 } 3553 3554 static struct kmem_cache *shmem_inode_cachep; 3555 3556 static struct inode *shmem_alloc_inode(struct super_block *sb) 3557 { 3558 struct shmem_inode_info *info; 3559 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3560 if (!info) 3561 return NULL; 3562 return &info->vfs_inode; 3563 } 3564 3565 static void shmem_destroy_callback(struct rcu_head *head) 3566 { 3567 struct inode *inode = container_of(head, struct inode, i_rcu); 3568 if (S_ISLNK(inode->i_mode)) 3569 kfree(inode->i_link); 3570 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3571 } 3572 3573 static void shmem_destroy_inode(struct inode *inode) 3574 { 3575 if (S_ISREG(inode->i_mode)) 3576 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3577 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3578 } 3579 3580 static void shmem_init_inode(void *foo) 3581 { 3582 struct shmem_inode_info *info = foo; 3583 inode_init_once(&info->vfs_inode); 3584 } 3585 3586 static void shmem_init_inodecache(void) 3587 { 3588 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3589 sizeof(struct shmem_inode_info), 3590 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3591 } 3592 3593 static void shmem_destroy_inodecache(void) 3594 { 3595 kmem_cache_destroy(shmem_inode_cachep); 3596 } 3597 3598 static const struct address_space_operations shmem_aops = { 3599 .writepage = shmem_writepage, 3600 .set_page_dirty = __set_page_dirty_no_writeback, 3601 #ifdef CONFIG_TMPFS 3602 .write_begin = shmem_write_begin, 3603 .write_end = shmem_write_end, 3604 #endif 3605 #ifdef CONFIG_MIGRATION 3606 .migratepage = migrate_page, 3607 #endif 3608 .error_remove_page = generic_error_remove_page, 3609 }; 3610 3611 static const struct file_operations shmem_file_operations = { 3612 .mmap = shmem_mmap, 3613 .get_unmapped_area = shmem_get_unmapped_area, 3614 #ifdef CONFIG_TMPFS 3615 .llseek = shmem_file_llseek, 3616 .read_iter = shmem_file_read_iter, 3617 .write_iter = generic_file_write_iter, 3618 .fsync = noop_fsync, 3619 .splice_read = generic_file_splice_read, 3620 .splice_write = iter_file_splice_write, 3621 .fallocate = shmem_fallocate, 3622 #endif 3623 }; 3624 3625 static const struct inode_operations shmem_inode_operations = { 3626 .getattr = shmem_getattr, 3627 .setattr = shmem_setattr, 3628 #ifdef CONFIG_TMPFS_XATTR 3629 .listxattr = shmem_listxattr, 3630 .set_acl = simple_set_acl, 3631 #endif 3632 }; 3633 3634 static const struct inode_operations shmem_dir_inode_operations = { 3635 #ifdef CONFIG_TMPFS 3636 .create = shmem_create, 3637 .lookup = simple_lookup, 3638 .link = shmem_link, 3639 .unlink = shmem_unlink, 3640 .symlink = shmem_symlink, 3641 .mkdir = shmem_mkdir, 3642 .rmdir = shmem_rmdir, 3643 .mknod = shmem_mknod, 3644 .rename = shmem_rename2, 3645 .tmpfile = shmem_tmpfile, 3646 #endif 3647 #ifdef CONFIG_TMPFS_XATTR 3648 .listxattr = shmem_listxattr, 3649 #endif 3650 #ifdef CONFIG_TMPFS_POSIX_ACL 3651 .setattr = shmem_setattr, 3652 .set_acl = simple_set_acl, 3653 #endif 3654 }; 3655 3656 static const struct inode_operations shmem_special_inode_operations = { 3657 #ifdef CONFIG_TMPFS_XATTR 3658 .listxattr = shmem_listxattr, 3659 #endif 3660 #ifdef CONFIG_TMPFS_POSIX_ACL 3661 .setattr = shmem_setattr, 3662 .set_acl = simple_set_acl, 3663 #endif 3664 }; 3665 3666 static const struct super_operations shmem_ops = { 3667 .alloc_inode = shmem_alloc_inode, 3668 .destroy_inode = shmem_destroy_inode, 3669 #ifdef CONFIG_TMPFS 3670 .statfs = shmem_statfs, 3671 .remount_fs = shmem_remount_fs, 3672 .show_options = shmem_show_options, 3673 #endif 3674 .evict_inode = shmem_evict_inode, 3675 .drop_inode = generic_delete_inode, 3676 .put_super = shmem_put_super, 3677 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3678 .nr_cached_objects = shmem_unused_huge_count, 3679 .free_cached_objects = shmem_unused_huge_scan, 3680 #endif 3681 }; 3682 3683 static const struct vm_operations_struct shmem_vm_ops = { 3684 .fault = shmem_fault, 3685 .map_pages = filemap_map_pages, 3686 #ifdef CONFIG_NUMA 3687 .set_policy = shmem_set_policy, 3688 .get_policy = shmem_get_policy, 3689 #endif 3690 }; 3691 3692 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3693 int flags, const char *dev_name, void *data) 3694 { 3695 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3696 } 3697 3698 static struct file_system_type shmem_fs_type = { 3699 .owner = THIS_MODULE, 3700 .name = "tmpfs", 3701 .mount = shmem_mount, 3702 .kill_sb = kill_litter_super, 3703 .fs_flags = FS_USERNS_MOUNT, 3704 }; 3705 3706 int __init shmem_init(void) 3707 { 3708 int error; 3709 3710 /* If rootfs called this, don't re-init */ 3711 if (shmem_inode_cachep) 3712 return 0; 3713 3714 shmem_init_inodecache(); 3715 3716 error = register_filesystem(&shmem_fs_type); 3717 if (error) { 3718 pr_err("Could not register tmpfs\n"); 3719 goto out2; 3720 } 3721 3722 shm_mnt = kern_mount(&shmem_fs_type); 3723 if (IS_ERR(shm_mnt)) { 3724 error = PTR_ERR(shm_mnt); 3725 pr_err("Could not kern_mount tmpfs\n"); 3726 goto out1; 3727 } 3728 3729 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3730 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3731 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3732 else 3733 shmem_huge = 0; /* just in case it was patched */ 3734 #endif 3735 return 0; 3736 3737 out1: 3738 unregister_filesystem(&shmem_fs_type); 3739 out2: 3740 shmem_destroy_inodecache(); 3741 shm_mnt = ERR_PTR(error); 3742 return error; 3743 } 3744 3745 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS) 3746 static ssize_t shmem_enabled_show(struct kobject *kobj, 3747 struct kobj_attribute *attr, char *buf) 3748 { 3749 int values[] = { 3750 SHMEM_HUGE_ALWAYS, 3751 SHMEM_HUGE_WITHIN_SIZE, 3752 SHMEM_HUGE_ADVISE, 3753 SHMEM_HUGE_NEVER, 3754 SHMEM_HUGE_DENY, 3755 SHMEM_HUGE_FORCE, 3756 }; 3757 int i, count; 3758 3759 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 3760 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 3761 3762 count += sprintf(buf + count, fmt, 3763 shmem_format_huge(values[i])); 3764 } 3765 buf[count - 1] = '\n'; 3766 return count; 3767 } 3768 3769 static ssize_t shmem_enabled_store(struct kobject *kobj, 3770 struct kobj_attribute *attr, const char *buf, size_t count) 3771 { 3772 char tmp[16]; 3773 int huge; 3774 3775 if (count + 1 > sizeof(tmp)) 3776 return -EINVAL; 3777 memcpy(tmp, buf, count); 3778 tmp[count] = '\0'; 3779 if (count && tmp[count - 1] == '\n') 3780 tmp[count - 1] = '\0'; 3781 3782 huge = shmem_parse_huge(tmp); 3783 if (huge == -EINVAL) 3784 return -EINVAL; 3785 if (!has_transparent_hugepage() && 3786 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3787 return -EINVAL; 3788 3789 shmem_huge = huge; 3790 if (shmem_huge > SHMEM_HUGE_DENY) 3791 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3792 return count; 3793 } 3794 3795 struct kobj_attribute shmem_enabled_attr = 3796 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 3797 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */ 3798 3799 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3800 bool shmem_huge_enabled(struct vm_area_struct *vma) 3801 { 3802 struct inode *inode = file_inode(vma->vm_file); 3803 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3804 loff_t i_size; 3805 pgoff_t off; 3806 3807 if (shmem_huge == SHMEM_HUGE_FORCE) 3808 return true; 3809 if (shmem_huge == SHMEM_HUGE_DENY) 3810 return false; 3811 switch (sbinfo->huge) { 3812 case SHMEM_HUGE_NEVER: 3813 return false; 3814 case SHMEM_HUGE_ALWAYS: 3815 return true; 3816 case SHMEM_HUGE_WITHIN_SIZE: 3817 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 3818 i_size = round_up(i_size_read(inode), PAGE_SIZE); 3819 if (i_size >= HPAGE_PMD_SIZE && 3820 i_size >> PAGE_SHIFT >= off) 3821 return true; 3822 /* fall through */ 3823 case SHMEM_HUGE_ADVISE: 3824 /* TODO: implement fadvise() hints */ 3825 return (vma->vm_flags & VM_HUGEPAGE); 3826 default: 3827 VM_BUG_ON(1); 3828 return false; 3829 } 3830 } 3831 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 3832 3833 #else /* !CONFIG_SHMEM */ 3834 3835 /* 3836 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3837 * 3838 * This is intended for small system where the benefits of the full 3839 * shmem code (swap-backed and resource-limited) are outweighed by 3840 * their complexity. On systems without swap this code should be 3841 * effectively equivalent, but much lighter weight. 3842 */ 3843 3844 static struct file_system_type shmem_fs_type = { 3845 .name = "tmpfs", 3846 .mount = ramfs_mount, 3847 .kill_sb = kill_litter_super, 3848 .fs_flags = FS_USERNS_MOUNT, 3849 }; 3850 3851 int __init shmem_init(void) 3852 { 3853 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3854 3855 shm_mnt = kern_mount(&shmem_fs_type); 3856 BUG_ON(IS_ERR(shm_mnt)); 3857 3858 return 0; 3859 } 3860 3861 int shmem_unuse(swp_entry_t swap, struct page *page) 3862 { 3863 return 0; 3864 } 3865 3866 int shmem_lock(struct file *file, int lock, struct user_struct *user) 3867 { 3868 return 0; 3869 } 3870 3871 void shmem_unlock_mapping(struct address_space *mapping) 3872 { 3873 } 3874 3875 #ifdef CONFIG_MMU 3876 unsigned long shmem_get_unmapped_area(struct file *file, 3877 unsigned long addr, unsigned long len, 3878 unsigned long pgoff, unsigned long flags) 3879 { 3880 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 3881 } 3882 #endif 3883 3884 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 3885 { 3886 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 3887 } 3888 EXPORT_SYMBOL_GPL(shmem_truncate_range); 3889 3890 #define shmem_vm_ops generic_file_vm_ops 3891 #define shmem_file_operations ramfs_file_operations 3892 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 3893 #define shmem_acct_size(flags, size) 0 3894 #define shmem_unacct_size(flags, size) do {} while (0) 3895 3896 #endif /* CONFIG_SHMEM */ 3897 3898 /* common code */ 3899 3900 static const struct dentry_operations anon_ops = { 3901 .d_dname = simple_dname 3902 }; 3903 3904 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 3905 unsigned long flags, unsigned int i_flags) 3906 { 3907 struct file *res; 3908 struct inode *inode; 3909 struct path path; 3910 struct super_block *sb; 3911 struct qstr this; 3912 3913 if (IS_ERR(mnt)) 3914 return ERR_CAST(mnt); 3915 3916 if (size < 0 || size > MAX_LFS_FILESIZE) 3917 return ERR_PTR(-EINVAL); 3918 3919 if (shmem_acct_size(flags, size)) 3920 return ERR_PTR(-ENOMEM); 3921 3922 res = ERR_PTR(-ENOMEM); 3923 this.name = name; 3924 this.len = strlen(name); 3925 this.hash = 0; /* will go */ 3926 sb = mnt->mnt_sb; 3927 path.mnt = mntget(mnt); 3928 path.dentry = d_alloc_pseudo(sb, &this); 3929 if (!path.dentry) 3930 goto put_memory; 3931 d_set_d_op(path.dentry, &anon_ops); 3932 3933 res = ERR_PTR(-ENOSPC); 3934 inode = shmem_get_inode(sb, NULL, S_IFREG | 0777, 0, flags); 3935 if (!inode) 3936 goto put_memory; 3937 3938 inode->i_flags |= i_flags; 3939 d_instantiate(path.dentry, inode); 3940 inode->i_size = size; 3941 clear_nlink(inode); /* It is unlinked */ 3942 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 3943 if (IS_ERR(res)) 3944 goto put_path; 3945 3946 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 3947 &shmem_file_operations); 3948 if (IS_ERR(res)) 3949 goto put_path; 3950 3951 return res; 3952 3953 put_memory: 3954 shmem_unacct_size(flags, size); 3955 put_path: 3956 path_put(&path); 3957 return res; 3958 } 3959 3960 /** 3961 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 3962 * kernel internal. There will be NO LSM permission checks against the 3963 * underlying inode. So users of this interface must do LSM checks at a 3964 * higher layer. The users are the big_key and shm implementations. LSM 3965 * checks are provided at the key or shm level rather than the inode. 3966 * @name: name for dentry (to be seen in /proc/<pid>/maps 3967 * @size: size to be set for the file 3968 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3969 */ 3970 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 3971 { 3972 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 3973 } 3974 3975 /** 3976 * shmem_file_setup - get an unlinked file living in tmpfs 3977 * @name: name for dentry (to be seen in /proc/<pid>/maps 3978 * @size: size to be set for the file 3979 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3980 */ 3981 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 3982 { 3983 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 3984 } 3985 EXPORT_SYMBOL_GPL(shmem_file_setup); 3986 3987 /** 3988 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 3989 * @mnt: the tmpfs mount where the file will be created 3990 * @name: name for dentry (to be seen in /proc/<pid>/maps 3991 * @size: size to be set for the file 3992 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3993 */ 3994 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 3995 loff_t size, unsigned long flags) 3996 { 3997 return __shmem_file_setup(mnt, name, size, flags, 0); 3998 } 3999 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4000 4001 /** 4002 * shmem_zero_setup - setup a shared anonymous mapping 4003 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 4004 */ 4005 int shmem_zero_setup(struct vm_area_struct *vma) 4006 { 4007 struct file *file; 4008 loff_t size = vma->vm_end - vma->vm_start; 4009 4010 /* 4011 * Cloning a new file under mmap_sem leads to a lock ordering conflict 4012 * between XFS directory reading and selinux: since this file is only 4013 * accessible to the user through its mapping, use S_PRIVATE flag to 4014 * bypass file security, in the same way as shmem_kernel_file_setup(). 4015 */ 4016 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4017 if (IS_ERR(file)) 4018 return PTR_ERR(file); 4019 4020 if (vma->vm_file) 4021 fput(vma->vm_file); 4022 vma->vm_file = file; 4023 vma->vm_ops = &shmem_vm_ops; 4024 4025 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 4026 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4027 (vma->vm_end & HPAGE_PMD_MASK)) { 4028 khugepaged_enter(vma, vma->vm_flags); 4029 } 4030 4031 return 0; 4032 } 4033 4034 /** 4035 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4036 * @mapping: the page's address_space 4037 * @index: the page index 4038 * @gfp: the page allocator flags to use if allocating 4039 * 4040 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4041 * with any new page allocations done using the specified allocation flags. 4042 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4043 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4044 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4045 * 4046 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4047 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4048 */ 4049 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4050 pgoff_t index, gfp_t gfp) 4051 { 4052 #ifdef CONFIG_SHMEM 4053 struct inode *inode = mapping->host; 4054 struct page *page; 4055 int error; 4056 4057 BUG_ON(mapping->a_ops != &shmem_aops); 4058 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4059 gfp, NULL, NULL, NULL); 4060 if (error) 4061 page = ERR_PTR(error); 4062 else 4063 unlock_page(page); 4064 return page; 4065 #else 4066 /* 4067 * The tiny !SHMEM case uses ramfs without swap 4068 */ 4069 return read_cache_page_gfp(mapping, index, gfp); 4070 #endif 4071 } 4072 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4073