xref: /linux/mm/shmem.c (revision b8e4b0529d59a3ccd0b25a31d3cfc8b0f3b34068)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44 
45 static struct vfsmount *shm_mnt __ro_after_init;
46 
47 #ifdef CONFIG_SHMEM
48 /*
49  * This virtual memory filesystem is heavily based on the ramfs. It
50  * extends ramfs by the ability to use swap and honor resource limits
51  * which makes it a completely usable filesystem.
52  */
53 
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 #include <linux/quotaops.h>
82 #include <linux/rcupdate_wait.h>
83 
84 #include <linux/uaccess.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Pretend that one inode + its dentry occupy this much memory */
95 #define BOGO_INODE_SIZE 1024
96 
97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98 #define SHORT_SYMLINK_LEN 128
99 
100 /*
101  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
102  * inode->i_private (with i_rwsem making sure that it has only one user at
103  * a time): we would prefer not to enlarge the shmem inode just for that.
104  */
105 struct shmem_falloc {
106 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 	pgoff_t start;		/* start of range currently being fallocated */
108 	pgoff_t next;		/* the next page offset to be fallocated */
109 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
110 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
111 };
112 
113 struct shmem_options {
114 	unsigned long long blocks;
115 	unsigned long long inodes;
116 	struct mempolicy *mpol;
117 	kuid_t uid;
118 	kgid_t gid;
119 	umode_t mode;
120 	bool full_inums;
121 	int huge;
122 	int seen;
123 	bool noswap;
124 	unsigned short quota_types;
125 	struct shmem_quota_limits qlimits;
126 #define SHMEM_SEEN_BLOCKS 1
127 #define SHMEM_SEEN_INODES 2
128 #define SHMEM_SEEN_HUGE 4
129 #define SHMEM_SEEN_INUMS 8
130 #define SHMEM_SEEN_NOSWAP 16
131 #define SHMEM_SEEN_QUOTA 32
132 };
133 
134 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
135 static unsigned long huge_shmem_orders_always __read_mostly;
136 static unsigned long huge_shmem_orders_madvise __read_mostly;
137 static unsigned long huge_shmem_orders_inherit __read_mostly;
138 static unsigned long huge_shmem_orders_within_size __read_mostly;
139 #endif
140 
141 #ifdef CONFIG_TMPFS
142 static unsigned long shmem_default_max_blocks(void)
143 {
144 	return totalram_pages() / 2;
145 }
146 
147 static unsigned long shmem_default_max_inodes(void)
148 {
149 	unsigned long nr_pages = totalram_pages();
150 
151 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
152 			ULONG_MAX / BOGO_INODE_SIZE);
153 }
154 #endif
155 
156 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
157 			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
158 			struct mm_struct *fault_mm, vm_fault_t *fault_type);
159 
160 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
161 {
162 	return sb->s_fs_info;
163 }
164 
165 /*
166  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
167  * for shared memory and for shared anonymous (/dev/zero) mappings
168  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
169  * consistent with the pre-accounting of private mappings ...
170  */
171 static inline int shmem_acct_size(unsigned long flags, loff_t size)
172 {
173 	return (flags & VM_NORESERVE) ?
174 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
175 }
176 
177 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
178 {
179 	if (!(flags & VM_NORESERVE))
180 		vm_unacct_memory(VM_ACCT(size));
181 }
182 
183 static inline int shmem_reacct_size(unsigned long flags,
184 		loff_t oldsize, loff_t newsize)
185 {
186 	if (!(flags & VM_NORESERVE)) {
187 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
188 			return security_vm_enough_memory_mm(current->mm,
189 					VM_ACCT(newsize) - VM_ACCT(oldsize));
190 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
191 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
192 	}
193 	return 0;
194 }
195 
196 /*
197  * ... whereas tmpfs objects are accounted incrementally as
198  * pages are allocated, in order to allow large sparse files.
199  * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
200  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
201  */
202 static inline int shmem_acct_blocks(unsigned long flags, long pages)
203 {
204 	if (!(flags & VM_NORESERVE))
205 		return 0;
206 
207 	return security_vm_enough_memory_mm(current->mm,
208 			pages * VM_ACCT(PAGE_SIZE));
209 }
210 
211 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
212 {
213 	if (flags & VM_NORESERVE)
214 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
215 }
216 
217 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
218 {
219 	struct shmem_inode_info *info = SHMEM_I(inode);
220 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
221 	int err = -ENOSPC;
222 
223 	if (shmem_acct_blocks(info->flags, pages))
224 		return err;
225 
226 	might_sleep();	/* when quotas */
227 	if (sbinfo->max_blocks) {
228 		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
229 						sbinfo->max_blocks, pages))
230 			goto unacct;
231 
232 		err = dquot_alloc_block_nodirty(inode, pages);
233 		if (err) {
234 			percpu_counter_sub(&sbinfo->used_blocks, pages);
235 			goto unacct;
236 		}
237 	} else {
238 		err = dquot_alloc_block_nodirty(inode, pages);
239 		if (err)
240 			goto unacct;
241 	}
242 
243 	return 0;
244 
245 unacct:
246 	shmem_unacct_blocks(info->flags, pages);
247 	return err;
248 }
249 
250 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
251 {
252 	struct shmem_inode_info *info = SHMEM_I(inode);
253 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
254 
255 	might_sleep();	/* when quotas */
256 	dquot_free_block_nodirty(inode, pages);
257 
258 	if (sbinfo->max_blocks)
259 		percpu_counter_sub(&sbinfo->used_blocks, pages);
260 	shmem_unacct_blocks(info->flags, pages);
261 }
262 
263 static const struct super_operations shmem_ops;
264 static const struct address_space_operations shmem_aops;
265 static const struct file_operations shmem_file_operations;
266 static const struct inode_operations shmem_inode_operations;
267 static const struct inode_operations shmem_dir_inode_operations;
268 static const struct inode_operations shmem_special_inode_operations;
269 static const struct vm_operations_struct shmem_vm_ops;
270 static const struct vm_operations_struct shmem_anon_vm_ops;
271 static struct file_system_type shmem_fs_type;
272 
273 bool shmem_mapping(struct address_space *mapping)
274 {
275 	return mapping->a_ops == &shmem_aops;
276 }
277 EXPORT_SYMBOL_GPL(shmem_mapping);
278 
279 bool vma_is_anon_shmem(struct vm_area_struct *vma)
280 {
281 	return vma->vm_ops == &shmem_anon_vm_ops;
282 }
283 
284 bool vma_is_shmem(struct vm_area_struct *vma)
285 {
286 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
287 }
288 
289 static LIST_HEAD(shmem_swaplist);
290 static DEFINE_MUTEX(shmem_swaplist_mutex);
291 
292 #ifdef CONFIG_TMPFS_QUOTA
293 
294 static int shmem_enable_quotas(struct super_block *sb,
295 			       unsigned short quota_types)
296 {
297 	int type, err = 0;
298 
299 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
300 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
301 		if (!(quota_types & (1 << type)))
302 			continue;
303 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
304 					  DQUOT_USAGE_ENABLED |
305 					  DQUOT_LIMITS_ENABLED);
306 		if (err)
307 			goto out_err;
308 	}
309 	return 0;
310 
311 out_err:
312 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
313 		type, err);
314 	for (type--; type >= 0; type--)
315 		dquot_quota_off(sb, type);
316 	return err;
317 }
318 
319 static void shmem_disable_quotas(struct super_block *sb)
320 {
321 	int type;
322 
323 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
324 		dquot_quota_off(sb, type);
325 }
326 
327 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
328 {
329 	return SHMEM_I(inode)->i_dquot;
330 }
331 #endif /* CONFIG_TMPFS_QUOTA */
332 
333 /*
334  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
335  * produces a novel ino for the newly allocated inode.
336  *
337  * It may also be called when making a hard link to permit the space needed by
338  * each dentry. However, in that case, no new inode number is needed since that
339  * internally draws from another pool of inode numbers (currently global
340  * get_next_ino()). This case is indicated by passing NULL as inop.
341  */
342 #define SHMEM_INO_BATCH 1024
343 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
344 {
345 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
346 	ino_t ino;
347 
348 	if (!(sb->s_flags & SB_KERNMOUNT)) {
349 		raw_spin_lock(&sbinfo->stat_lock);
350 		if (sbinfo->max_inodes) {
351 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
352 				raw_spin_unlock(&sbinfo->stat_lock);
353 				return -ENOSPC;
354 			}
355 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
356 		}
357 		if (inop) {
358 			ino = sbinfo->next_ino++;
359 			if (unlikely(is_zero_ino(ino)))
360 				ino = sbinfo->next_ino++;
361 			if (unlikely(!sbinfo->full_inums &&
362 				     ino > UINT_MAX)) {
363 				/*
364 				 * Emulate get_next_ino uint wraparound for
365 				 * compatibility
366 				 */
367 				if (IS_ENABLED(CONFIG_64BIT))
368 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
369 						__func__, MINOR(sb->s_dev));
370 				sbinfo->next_ino = 1;
371 				ino = sbinfo->next_ino++;
372 			}
373 			*inop = ino;
374 		}
375 		raw_spin_unlock(&sbinfo->stat_lock);
376 	} else if (inop) {
377 		/*
378 		 * __shmem_file_setup, one of our callers, is lock-free: it
379 		 * doesn't hold stat_lock in shmem_reserve_inode since
380 		 * max_inodes is always 0, and is called from potentially
381 		 * unknown contexts. As such, use a per-cpu batched allocator
382 		 * which doesn't require the per-sb stat_lock unless we are at
383 		 * the batch boundary.
384 		 *
385 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
386 		 * shmem mounts are not exposed to userspace, so we don't need
387 		 * to worry about things like glibc compatibility.
388 		 */
389 		ino_t *next_ino;
390 
391 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
392 		ino = *next_ino;
393 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
394 			raw_spin_lock(&sbinfo->stat_lock);
395 			ino = sbinfo->next_ino;
396 			sbinfo->next_ino += SHMEM_INO_BATCH;
397 			raw_spin_unlock(&sbinfo->stat_lock);
398 			if (unlikely(is_zero_ino(ino)))
399 				ino++;
400 		}
401 		*inop = ino;
402 		*next_ino = ++ino;
403 		put_cpu();
404 	}
405 
406 	return 0;
407 }
408 
409 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
410 {
411 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
412 	if (sbinfo->max_inodes) {
413 		raw_spin_lock(&sbinfo->stat_lock);
414 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
415 		raw_spin_unlock(&sbinfo->stat_lock);
416 	}
417 }
418 
419 /**
420  * shmem_recalc_inode - recalculate the block usage of an inode
421  * @inode: inode to recalc
422  * @alloced: the change in number of pages allocated to inode
423  * @swapped: the change in number of pages swapped from inode
424  *
425  * We have to calculate the free blocks since the mm can drop
426  * undirtied hole pages behind our back.
427  *
428  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
429  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
430  */
431 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
432 {
433 	struct shmem_inode_info *info = SHMEM_I(inode);
434 	long freed;
435 
436 	spin_lock(&info->lock);
437 	info->alloced += alloced;
438 	info->swapped += swapped;
439 	freed = info->alloced - info->swapped -
440 		READ_ONCE(inode->i_mapping->nrpages);
441 	/*
442 	 * Special case: whereas normally shmem_recalc_inode() is called
443 	 * after i_mapping->nrpages has already been adjusted (up or down),
444 	 * shmem_writepage() has to raise swapped before nrpages is lowered -
445 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
446 	 * been freed.  Compensate here, to avoid the need for a followup call.
447 	 */
448 	if (swapped > 0)
449 		freed += swapped;
450 	if (freed > 0)
451 		info->alloced -= freed;
452 	spin_unlock(&info->lock);
453 
454 	/* The quota case may block */
455 	if (freed > 0)
456 		shmem_inode_unacct_blocks(inode, freed);
457 }
458 
459 bool shmem_charge(struct inode *inode, long pages)
460 {
461 	struct address_space *mapping = inode->i_mapping;
462 
463 	if (shmem_inode_acct_blocks(inode, pages))
464 		return false;
465 
466 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
467 	xa_lock_irq(&mapping->i_pages);
468 	mapping->nrpages += pages;
469 	xa_unlock_irq(&mapping->i_pages);
470 
471 	shmem_recalc_inode(inode, pages, 0);
472 	return true;
473 }
474 
475 void shmem_uncharge(struct inode *inode, long pages)
476 {
477 	/* pages argument is currently unused: keep it to help debugging */
478 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
479 
480 	shmem_recalc_inode(inode, 0, 0);
481 }
482 
483 /*
484  * Replace item expected in xarray by a new item, while holding xa_lock.
485  */
486 static int shmem_replace_entry(struct address_space *mapping,
487 			pgoff_t index, void *expected, void *replacement)
488 {
489 	XA_STATE(xas, &mapping->i_pages, index);
490 	void *item;
491 
492 	VM_BUG_ON(!expected);
493 	VM_BUG_ON(!replacement);
494 	item = xas_load(&xas);
495 	if (item != expected)
496 		return -ENOENT;
497 	xas_store(&xas, replacement);
498 	return 0;
499 }
500 
501 /*
502  * Sometimes, before we decide whether to proceed or to fail, we must check
503  * that an entry was not already brought back from swap by a racing thread.
504  *
505  * Checking page is not enough: by the time a SwapCache page is locked, it
506  * might be reused, and again be SwapCache, using the same swap as before.
507  */
508 static bool shmem_confirm_swap(struct address_space *mapping,
509 			       pgoff_t index, swp_entry_t swap)
510 {
511 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
512 }
513 
514 /*
515  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
516  *
517  * SHMEM_HUGE_NEVER:
518  *	disables huge pages for the mount;
519  * SHMEM_HUGE_ALWAYS:
520  *	enables huge pages for the mount;
521  * SHMEM_HUGE_WITHIN_SIZE:
522  *	only allocate huge pages if the page will be fully within i_size,
523  *	also respect fadvise()/madvise() hints;
524  * SHMEM_HUGE_ADVISE:
525  *	only allocate huge pages if requested with fadvise()/madvise();
526  */
527 
528 #define SHMEM_HUGE_NEVER	0
529 #define SHMEM_HUGE_ALWAYS	1
530 #define SHMEM_HUGE_WITHIN_SIZE	2
531 #define SHMEM_HUGE_ADVISE	3
532 
533 /*
534  * Special values.
535  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
536  *
537  * SHMEM_HUGE_DENY:
538  *	disables huge on shm_mnt and all mounts, for emergency use;
539  * SHMEM_HUGE_FORCE:
540  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
541  *
542  */
543 #define SHMEM_HUGE_DENY		(-1)
544 #define SHMEM_HUGE_FORCE	(-2)
545 
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 /* ifdef here to avoid bloating shmem.o when not necessary */
548 
549 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
550 
551 static bool __shmem_is_huge(struct inode *inode, pgoff_t index,
552 			    bool shmem_huge_force, struct mm_struct *mm,
553 			    unsigned long vm_flags)
554 {
555 	loff_t i_size;
556 
557 	if (!S_ISREG(inode->i_mode))
558 		return false;
559 	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
560 		return false;
561 	if (shmem_huge == SHMEM_HUGE_DENY)
562 		return false;
563 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
564 		return true;
565 
566 	switch (SHMEM_SB(inode->i_sb)->huge) {
567 	case SHMEM_HUGE_ALWAYS:
568 		return true;
569 	case SHMEM_HUGE_WITHIN_SIZE:
570 		index = round_up(index + 1, HPAGE_PMD_NR);
571 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
572 		if (i_size >> PAGE_SHIFT >= index)
573 			return true;
574 		fallthrough;
575 	case SHMEM_HUGE_ADVISE:
576 		if (mm && (vm_flags & VM_HUGEPAGE))
577 			return true;
578 		fallthrough;
579 	default:
580 		return false;
581 	}
582 }
583 
584 bool shmem_is_huge(struct inode *inode, pgoff_t index,
585 		   bool shmem_huge_force, struct mm_struct *mm,
586 		   unsigned long vm_flags)
587 {
588 	if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER)
589 		return false;
590 
591 	return __shmem_is_huge(inode, index, shmem_huge_force, mm, vm_flags);
592 }
593 
594 #if defined(CONFIG_SYSFS)
595 static int shmem_parse_huge(const char *str)
596 {
597 	if (!strcmp(str, "never"))
598 		return SHMEM_HUGE_NEVER;
599 	if (!strcmp(str, "always"))
600 		return SHMEM_HUGE_ALWAYS;
601 	if (!strcmp(str, "within_size"))
602 		return SHMEM_HUGE_WITHIN_SIZE;
603 	if (!strcmp(str, "advise"))
604 		return SHMEM_HUGE_ADVISE;
605 	if (!strcmp(str, "deny"))
606 		return SHMEM_HUGE_DENY;
607 	if (!strcmp(str, "force"))
608 		return SHMEM_HUGE_FORCE;
609 	return -EINVAL;
610 }
611 #endif
612 
613 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
614 static const char *shmem_format_huge(int huge)
615 {
616 	switch (huge) {
617 	case SHMEM_HUGE_NEVER:
618 		return "never";
619 	case SHMEM_HUGE_ALWAYS:
620 		return "always";
621 	case SHMEM_HUGE_WITHIN_SIZE:
622 		return "within_size";
623 	case SHMEM_HUGE_ADVISE:
624 		return "advise";
625 	case SHMEM_HUGE_DENY:
626 		return "deny";
627 	case SHMEM_HUGE_FORCE:
628 		return "force";
629 	default:
630 		VM_BUG_ON(1);
631 		return "bad_val";
632 	}
633 }
634 #endif
635 
636 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
637 		struct shrink_control *sc, unsigned long nr_to_split)
638 {
639 	LIST_HEAD(list), *pos, *next;
640 	LIST_HEAD(to_remove);
641 	struct inode *inode;
642 	struct shmem_inode_info *info;
643 	struct folio *folio;
644 	unsigned long batch = sc ? sc->nr_to_scan : 128;
645 	int split = 0;
646 
647 	if (list_empty(&sbinfo->shrinklist))
648 		return SHRINK_STOP;
649 
650 	spin_lock(&sbinfo->shrinklist_lock);
651 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
652 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
653 
654 		/* pin the inode */
655 		inode = igrab(&info->vfs_inode);
656 
657 		/* inode is about to be evicted */
658 		if (!inode) {
659 			list_del_init(&info->shrinklist);
660 			goto next;
661 		}
662 
663 		/* Check if there's anything to gain */
664 		if (round_up(inode->i_size, PAGE_SIZE) ==
665 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
666 			list_move(&info->shrinklist, &to_remove);
667 			goto next;
668 		}
669 
670 		list_move(&info->shrinklist, &list);
671 next:
672 		sbinfo->shrinklist_len--;
673 		if (!--batch)
674 			break;
675 	}
676 	spin_unlock(&sbinfo->shrinklist_lock);
677 
678 	list_for_each_safe(pos, next, &to_remove) {
679 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
680 		inode = &info->vfs_inode;
681 		list_del_init(&info->shrinklist);
682 		iput(inode);
683 	}
684 
685 	list_for_each_safe(pos, next, &list) {
686 		int ret;
687 		pgoff_t index;
688 
689 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
690 		inode = &info->vfs_inode;
691 
692 		if (nr_to_split && split >= nr_to_split)
693 			goto move_back;
694 
695 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
696 		folio = filemap_get_folio(inode->i_mapping, index);
697 		if (IS_ERR(folio))
698 			goto drop;
699 
700 		/* No huge page at the end of the file: nothing to split */
701 		if (!folio_test_large(folio)) {
702 			folio_put(folio);
703 			goto drop;
704 		}
705 
706 		/*
707 		 * Move the inode on the list back to shrinklist if we failed
708 		 * to lock the page at this time.
709 		 *
710 		 * Waiting for the lock may lead to deadlock in the
711 		 * reclaim path.
712 		 */
713 		if (!folio_trylock(folio)) {
714 			folio_put(folio);
715 			goto move_back;
716 		}
717 
718 		ret = split_folio(folio);
719 		folio_unlock(folio);
720 		folio_put(folio);
721 
722 		/* If split failed move the inode on the list back to shrinklist */
723 		if (ret)
724 			goto move_back;
725 
726 		split++;
727 drop:
728 		list_del_init(&info->shrinklist);
729 		goto put;
730 move_back:
731 		/*
732 		 * Make sure the inode is either on the global list or deleted
733 		 * from any local list before iput() since it could be deleted
734 		 * in another thread once we put the inode (then the local list
735 		 * is corrupted).
736 		 */
737 		spin_lock(&sbinfo->shrinklist_lock);
738 		list_move(&info->shrinklist, &sbinfo->shrinklist);
739 		sbinfo->shrinklist_len++;
740 		spin_unlock(&sbinfo->shrinklist_lock);
741 put:
742 		iput(inode);
743 	}
744 
745 	return split;
746 }
747 
748 static long shmem_unused_huge_scan(struct super_block *sb,
749 		struct shrink_control *sc)
750 {
751 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
752 
753 	if (!READ_ONCE(sbinfo->shrinklist_len))
754 		return SHRINK_STOP;
755 
756 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
757 }
758 
759 static long shmem_unused_huge_count(struct super_block *sb,
760 		struct shrink_control *sc)
761 {
762 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
763 	return READ_ONCE(sbinfo->shrinklist_len);
764 }
765 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
766 
767 #define shmem_huge SHMEM_HUGE_DENY
768 
769 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
770 		struct shrink_control *sc, unsigned long nr_to_split)
771 {
772 	return 0;
773 }
774 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
775 
776 /*
777  * Somewhat like filemap_add_folio, but error if expected item has gone.
778  */
779 static int shmem_add_to_page_cache(struct folio *folio,
780 				   struct address_space *mapping,
781 				   pgoff_t index, void *expected, gfp_t gfp)
782 {
783 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
784 	long nr = folio_nr_pages(folio);
785 
786 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
787 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
788 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
789 	VM_BUG_ON(expected && folio_test_large(folio));
790 
791 	folio_ref_add(folio, nr);
792 	folio->mapping = mapping;
793 	folio->index = index;
794 
795 	gfp &= GFP_RECLAIM_MASK;
796 	folio_throttle_swaprate(folio, gfp);
797 
798 	do {
799 		xas_lock_irq(&xas);
800 		if (expected != xas_find_conflict(&xas)) {
801 			xas_set_err(&xas, -EEXIST);
802 			goto unlock;
803 		}
804 		if (expected && xas_find_conflict(&xas)) {
805 			xas_set_err(&xas, -EEXIST);
806 			goto unlock;
807 		}
808 		xas_store(&xas, folio);
809 		if (xas_error(&xas))
810 			goto unlock;
811 		if (folio_test_pmd_mappable(folio))
812 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
813 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
814 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
815 		mapping->nrpages += nr;
816 unlock:
817 		xas_unlock_irq(&xas);
818 	} while (xas_nomem(&xas, gfp));
819 
820 	if (xas_error(&xas)) {
821 		folio->mapping = NULL;
822 		folio_ref_sub(folio, nr);
823 		return xas_error(&xas);
824 	}
825 
826 	return 0;
827 }
828 
829 /*
830  * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
831  */
832 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
833 {
834 	struct address_space *mapping = folio->mapping;
835 	long nr = folio_nr_pages(folio);
836 	int error;
837 
838 	xa_lock_irq(&mapping->i_pages);
839 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
840 	folio->mapping = NULL;
841 	mapping->nrpages -= nr;
842 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
843 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
844 	xa_unlock_irq(&mapping->i_pages);
845 	folio_put(folio);
846 	BUG_ON(error);
847 }
848 
849 /*
850  * Remove swap entry from page cache, free the swap and its page cache.
851  */
852 static int shmem_free_swap(struct address_space *mapping,
853 			   pgoff_t index, void *radswap)
854 {
855 	void *old;
856 
857 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
858 	if (old != radswap)
859 		return -ENOENT;
860 	free_swap_and_cache(radix_to_swp_entry(radswap));
861 	return 0;
862 }
863 
864 /*
865  * Determine (in bytes) how many of the shmem object's pages mapped by the
866  * given offsets are swapped out.
867  *
868  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
869  * as long as the inode doesn't go away and racy results are not a problem.
870  */
871 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
872 						pgoff_t start, pgoff_t end)
873 {
874 	XA_STATE(xas, &mapping->i_pages, start);
875 	struct page *page;
876 	unsigned long swapped = 0;
877 	unsigned long max = end - 1;
878 
879 	rcu_read_lock();
880 	xas_for_each(&xas, page, max) {
881 		if (xas_retry(&xas, page))
882 			continue;
883 		if (xa_is_value(page))
884 			swapped++;
885 		if (xas.xa_index == max)
886 			break;
887 		if (need_resched()) {
888 			xas_pause(&xas);
889 			cond_resched_rcu();
890 		}
891 	}
892 	rcu_read_unlock();
893 
894 	return swapped << PAGE_SHIFT;
895 }
896 
897 /*
898  * Determine (in bytes) how many of the shmem object's pages mapped by the
899  * given vma is swapped out.
900  *
901  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
902  * as long as the inode doesn't go away and racy results are not a problem.
903  */
904 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
905 {
906 	struct inode *inode = file_inode(vma->vm_file);
907 	struct shmem_inode_info *info = SHMEM_I(inode);
908 	struct address_space *mapping = inode->i_mapping;
909 	unsigned long swapped;
910 
911 	/* Be careful as we don't hold info->lock */
912 	swapped = READ_ONCE(info->swapped);
913 
914 	/*
915 	 * The easier cases are when the shmem object has nothing in swap, or
916 	 * the vma maps it whole. Then we can simply use the stats that we
917 	 * already track.
918 	 */
919 	if (!swapped)
920 		return 0;
921 
922 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
923 		return swapped << PAGE_SHIFT;
924 
925 	/* Here comes the more involved part */
926 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
927 					vma->vm_pgoff + vma_pages(vma));
928 }
929 
930 /*
931  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
932  */
933 void shmem_unlock_mapping(struct address_space *mapping)
934 {
935 	struct folio_batch fbatch;
936 	pgoff_t index = 0;
937 
938 	folio_batch_init(&fbatch);
939 	/*
940 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
941 	 */
942 	while (!mapping_unevictable(mapping) &&
943 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
944 		check_move_unevictable_folios(&fbatch);
945 		folio_batch_release(&fbatch);
946 		cond_resched();
947 	}
948 }
949 
950 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
951 {
952 	struct folio *folio;
953 
954 	/*
955 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
956 	 * beyond i_size, and reports fallocated folios as holes.
957 	 */
958 	folio = filemap_get_entry(inode->i_mapping, index);
959 	if (!folio)
960 		return folio;
961 	if (!xa_is_value(folio)) {
962 		folio_lock(folio);
963 		if (folio->mapping == inode->i_mapping)
964 			return folio;
965 		/* The folio has been swapped out */
966 		folio_unlock(folio);
967 		folio_put(folio);
968 	}
969 	/*
970 	 * But read a folio back from swap if any of it is within i_size
971 	 * (although in some cases this is just a waste of time).
972 	 */
973 	folio = NULL;
974 	shmem_get_folio(inode, index, &folio, SGP_READ);
975 	return folio;
976 }
977 
978 /*
979  * Remove range of pages and swap entries from page cache, and free them.
980  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
981  */
982 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
983 								 bool unfalloc)
984 {
985 	struct address_space *mapping = inode->i_mapping;
986 	struct shmem_inode_info *info = SHMEM_I(inode);
987 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
988 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
989 	struct folio_batch fbatch;
990 	pgoff_t indices[PAGEVEC_SIZE];
991 	struct folio *folio;
992 	bool same_folio;
993 	long nr_swaps_freed = 0;
994 	pgoff_t index;
995 	int i;
996 
997 	if (lend == -1)
998 		end = -1;	/* unsigned, so actually very big */
999 
1000 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1001 		info->fallocend = start;
1002 
1003 	folio_batch_init(&fbatch);
1004 	index = start;
1005 	while (index < end && find_lock_entries(mapping, &index, end - 1,
1006 			&fbatch, indices)) {
1007 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1008 			folio = fbatch.folios[i];
1009 
1010 			if (xa_is_value(folio)) {
1011 				if (unfalloc)
1012 					continue;
1013 				nr_swaps_freed += !shmem_free_swap(mapping,
1014 							indices[i], folio);
1015 				continue;
1016 			}
1017 
1018 			if (!unfalloc || !folio_test_uptodate(folio))
1019 				truncate_inode_folio(mapping, folio);
1020 			folio_unlock(folio);
1021 		}
1022 		folio_batch_remove_exceptionals(&fbatch);
1023 		folio_batch_release(&fbatch);
1024 		cond_resched();
1025 	}
1026 
1027 	/*
1028 	 * When undoing a failed fallocate, we want none of the partial folio
1029 	 * zeroing and splitting below, but shall want to truncate the whole
1030 	 * folio when !uptodate indicates that it was added by this fallocate,
1031 	 * even when [lstart, lend] covers only a part of the folio.
1032 	 */
1033 	if (unfalloc)
1034 		goto whole_folios;
1035 
1036 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1037 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1038 	if (folio) {
1039 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1040 		folio_mark_dirty(folio);
1041 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1042 			start = folio_next_index(folio);
1043 			if (same_folio)
1044 				end = folio->index;
1045 		}
1046 		folio_unlock(folio);
1047 		folio_put(folio);
1048 		folio = NULL;
1049 	}
1050 
1051 	if (!same_folio)
1052 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1053 	if (folio) {
1054 		folio_mark_dirty(folio);
1055 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1056 			end = folio->index;
1057 		folio_unlock(folio);
1058 		folio_put(folio);
1059 	}
1060 
1061 whole_folios:
1062 
1063 	index = start;
1064 	while (index < end) {
1065 		cond_resched();
1066 
1067 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1068 				indices)) {
1069 			/* If all gone or hole-punch or unfalloc, we're done */
1070 			if (index == start || end != -1)
1071 				break;
1072 			/* But if truncating, restart to make sure all gone */
1073 			index = start;
1074 			continue;
1075 		}
1076 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1077 			folio = fbatch.folios[i];
1078 
1079 			if (xa_is_value(folio)) {
1080 				if (unfalloc)
1081 					continue;
1082 				if (shmem_free_swap(mapping, indices[i], folio)) {
1083 					/* Swap was replaced by page: retry */
1084 					index = indices[i];
1085 					break;
1086 				}
1087 				nr_swaps_freed++;
1088 				continue;
1089 			}
1090 
1091 			folio_lock(folio);
1092 
1093 			if (!unfalloc || !folio_test_uptodate(folio)) {
1094 				if (folio_mapping(folio) != mapping) {
1095 					/* Page was replaced by swap: retry */
1096 					folio_unlock(folio);
1097 					index = indices[i];
1098 					break;
1099 				}
1100 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1101 						folio);
1102 
1103 				if (!folio_test_large(folio)) {
1104 					truncate_inode_folio(mapping, folio);
1105 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1106 					/*
1107 					 * If we split a page, reset the loop so
1108 					 * that we pick up the new sub pages.
1109 					 * Otherwise the THP was entirely
1110 					 * dropped or the target range was
1111 					 * zeroed, so just continue the loop as
1112 					 * is.
1113 					 */
1114 					if (!folio_test_large(folio)) {
1115 						folio_unlock(folio);
1116 						index = start;
1117 						break;
1118 					}
1119 				}
1120 			}
1121 			folio_unlock(folio);
1122 		}
1123 		folio_batch_remove_exceptionals(&fbatch);
1124 		folio_batch_release(&fbatch);
1125 	}
1126 
1127 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1128 }
1129 
1130 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1131 {
1132 	shmem_undo_range(inode, lstart, lend, false);
1133 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1134 	inode_inc_iversion(inode);
1135 }
1136 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1137 
1138 static int shmem_getattr(struct mnt_idmap *idmap,
1139 			 const struct path *path, struct kstat *stat,
1140 			 u32 request_mask, unsigned int query_flags)
1141 {
1142 	struct inode *inode = path->dentry->d_inode;
1143 	struct shmem_inode_info *info = SHMEM_I(inode);
1144 
1145 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1146 		shmem_recalc_inode(inode, 0, 0);
1147 
1148 	if (info->fsflags & FS_APPEND_FL)
1149 		stat->attributes |= STATX_ATTR_APPEND;
1150 	if (info->fsflags & FS_IMMUTABLE_FL)
1151 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1152 	if (info->fsflags & FS_NODUMP_FL)
1153 		stat->attributes |= STATX_ATTR_NODUMP;
1154 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1155 			STATX_ATTR_IMMUTABLE |
1156 			STATX_ATTR_NODUMP);
1157 	generic_fillattr(idmap, request_mask, inode, stat);
1158 
1159 	if (shmem_is_huge(inode, 0, false, NULL, 0))
1160 		stat->blksize = HPAGE_PMD_SIZE;
1161 
1162 	if (request_mask & STATX_BTIME) {
1163 		stat->result_mask |= STATX_BTIME;
1164 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1165 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1166 	}
1167 
1168 	return 0;
1169 }
1170 
1171 static int shmem_setattr(struct mnt_idmap *idmap,
1172 			 struct dentry *dentry, struct iattr *attr)
1173 {
1174 	struct inode *inode = d_inode(dentry);
1175 	struct shmem_inode_info *info = SHMEM_I(inode);
1176 	int error;
1177 	bool update_mtime = false;
1178 	bool update_ctime = true;
1179 
1180 	error = setattr_prepare(idmap, dentry, attr);
1181 	if (error)
1182 		return error;
1183 
1184 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1185 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1186 			return -EPERM;
1187 		}
1188 	}
1189 
1190 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1191 		loff_t oldsize = inode->i_size;
1192 		loff_t newsize = attr->ia_size;
1193 
1194 		/* protected by i_rwsem */
1195 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1196 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1197 			return -EPERM;
1198 
1199 		if (newsize != oldsize) {
1200 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1201 					oldsize, newsize);
1202 			if (error)
1203 				return error;
1204 			i_size_write(inode, newsize);
1205 			update_mtime = true;
1206 		} else {
1207 			update_ctime = false;
1208 		}
1209 		if (newsize <= oldsize) {
1210 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1211 			if (oldsize > holebegin)
1212 				unmap_mapping_range(inode->i_mapping,
1213 							holebegin, 0, 1);
1214 			if (info->alloced)
1215 				shmem_truncate_range(inode,
1216 							newsize, (loff_t)-1);
1217 			/* unmap again to remove racily COWed private pages */
1218 			if (oldsize > holebegin)
1219 				unmap_mapping_range(inode->i_mapping,
1220 							holebegin, 0, 1);
1221 		}
1222 	}
1223 
1224 	if (is_quota_modification(idmap, inode, attr)) {
1225 		error = dquot_initialize(inode);
1226 		if (error)
1227 			return error;
1228 	}
1229 
1230 	/* Transfer quota accounting */
1231 	if (i_uid_needs_update(idmap, attr, inode) ||
1232 	    i_gid_needs_update(idmap, attr, inode)) {
1233 		error = dquot_transfer(idmap, inode, attr);
1234 		if (error)
1235 			return error;
1236 	}
1237 
1238 	setattr_copy(idmap, inode, attr);
1239 	if (attr->ia_valid & ATTR_MODE)
1240 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1241 	if (!error && update_ctime) {
1242 		inode_set_ctime_current(inode);
1243 		if (update_mtime)
1244 			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1245 		inode_inc_iversion(inode);
1246 	}
1247 	return error;
1248 }
1249 
1250 static void shmem_evict_inode(struct inode *inode)
1251 {
1252 	struct shmem_inode_info *info = SHMEM_I(inode);
1253 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1254 	size_t freed = 0;
1255 
1256 	if (shmem_mapping(inode->i_mapping)) {
1257 		shmem_unacct_size(info->flags, inode->i_size);
1258 		inode->i_size = 0;
1259 		mapping_set_exiting(inode->i_mapping);
1260 		shmem_truncate_range(inode, 0, (loff_t)-1);
1261 		if (!list_empty(&info->shrinklist)) {
1262 			spin_lock(&sbinfo->shrinklist_lock);
1263 			if (!list_empty(&info->shrinklist)) {
1264 				list_del_init(&info->shrinklist);
1265 				sbinfo->shrinklist_len--;
1266 			}
1267 			spin_unlock(&sbinfo->shrinklist_lock);
1268 		}
1269 		while (!list_empty(&info->swaplist)) {
1270 			/* Wait while shmem_unuse() is scanning this inode... */
1271 			wait_var_event(&info->stop_eviction,
1272 				       !atomic_read(&info->stop_eviction));
1273 			mutex_lock(&shmem_swaplist_mutex);
1274 			/* ...but beware of the race if we peeked too early */
1275 			if (!atomic_read(&info->stop_eviction))
1276 				list_del_init(&info->swaplist);
1277 			mutex_unlock(&shmem_swaplist_mutex);
1278 		}
1279 	}
1280 
1281 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1282 	shmem_free_inode(inode->i_sb, freed);
1283 	WARN_ON(inode->i_blocks);
1284 	clear_inode(inode);
1285 #ifdef CONFIG_TMPFS_QUOTA
1286 	dquot_free_inode(inode);
1287 	dquot_drop(inode);
1288 #endif
1289 }
1290 
1291 static int shmem_find_swap_entries(struct address_space *mapping,
1292 				   pgoff_t start, struct folio_batch *fbatch,
1293 				   pgoff_t *indices, unsigned int type)
1294 {
1295 	XA_STATE(xas, &mapping->i_pages, start);
1296 	struct folio *folio;
1297 	swp_entry_t entry;
1298 
1299 	rcu_read_lock();
1300 	xas_for_each(&xas, folio, ULONG_MAX) {
1301 		if (xas_retry(&xas, folio))
1302 			continue;
1303 
1304 		if (!xa_is_value(folio))
1305 			continue;
1306 
1307 		entry = radix_to_swp_entry(folio);
1308 		/*
1309 		 * swapin error entries can be found in the mapping. But they're
1310 		 * deliberately ignored here as we've done everything we can do.
1311 		 */
1312 		if (swp_type(entry) != type)
1313 			continue;
1314 
1315 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1316 		if (!folio_batch_add(fbatch, folio))
1317 			break;
1318 
1319 		if (need_resched()) {
1320 			xas_pause(&xas);
1321 			cond_resched_rcu();
1322 		}
1323 	}
1324 	rcu_read_unlock();
1325 
1326 	return xas.xa_index;
1327 }
1328 
1329 /*
1330  * Move the swapped pages for an inode to page cache. Returns the count
1331  * of pages swapped in, or the error in case of failure.
1332  */
1333 static int shmem_unuse_swap_entries(struct inode *inode,
1334 		struct folio_batch *fbatch, pgoff_t *indices)
1335 {
1336 	int i = 0;
1337 	int ret = 0;
1338 	int error = 0;
1339 	struct address_space *mapping = inode->i_mapping;
1340 
1341 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1342 		struct folio *folio = fbatch->folios[i];
1343 
1344 		if (!xa_is_value(folio))
1345 			continue;
1346 		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1347 					mapping_gfp_mask(mapping), NULL, NULL);
1348 		if (error == 0) {
1349 			folio_unlock(folio);
1350 			folio_put(folio);
1351 			ret++;
1352 		}
1353 		if (error == -ENOMEM)
1354 			break;
1355 		error = 0;
1356 	}
1357 	return error ? error : ret;
1358 }
1359 
1360 /*
1361  * If swap found in inode, free it and move page from swapcache to filecache.
1362  */
1363 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1364 {
1365 	struct address_space *mapping = inode->i_mapping;
1366 	pgoff_t start = 0;
1367 	struct folio_batch fbatch;
1368 	pgoff_t indices[PAGEVEC_SIZE];
1369 	int ret = 0;
1370 
1371 	do {
1372 		folio_batch_init(&fbatch);
1373 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1374 		if (folio_batch_count(&fbatch) == 0) {
1375 			ret = 0;
1376 			break;
1377 		}
1378 
1379 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1380 		if (ret < 0)
1381 			break;
1382 
1383 		start = indices[folio_batch_count(&fbatch) - 1];
1384 	} while (true);
1385 
1386 	return ret;
1387 }
1388 
1389 /*
1390  * Read all the shared memory data that resides in the swap
1391  * device 'type' back into memory, so the swap device can be
1392  * unused.
1393  */
1394 int shmem_unuse(unsigned int type)
1395 {
1396 	struct shmem_inode_info *info, *next;
1397 	int error = 0;
1398 
1399 	if (list_empty(&shmem_swaplist))
1400 		return 0;
1401 
1402 	mutex_lock(&shmem_swaplist_mutex);
1403 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1404 		if (!info->swapped) {
1405 			list_del_init(&info->swaplist);
1406 			continue;
1407 		}
1408 		/*
1409 		 * Drop the swaplist mutex while searching the inode for swap;
1410 		 * but before doing so, make sure shmem_evict_inode() will not
1411 		 * remove placeholder inode from swaplist, nor let it be freed
1412 		 * (igrab() would protect from unlink, but not from unmount).
1413 		 */
1414 		atomic_inc(&info->stop_eviction);
1415 		mutex_unlock(&shmem_swaplist_mutex);
1416 
1417 		error = shmem_unuse_inode(&info->vfs_inode, type);
1418 		cond_resched();
1419 
1420 		mutex_lock(&shmem_swaplist_mutex);
1421 		next = list_next_entry(info, swaplist);
1422 		if (!info->swapped)
1423 			list_del_init(&info->swaplist);
1424 		if (atomic_dec_and_test(&info->stop_eviction))
1425 			wake_up_var(&info->stop_eviction);
1426 		if (error)
1427 			break;
1428 	}
1429 	mutex_unlock(&shmem_swaplist_mutex);
1430 
1431 	return error;
1432 }
1433 
1434 /*
1435  * Move the page from the page cache to the swap cache.
1436  */
1437 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1438 {
1439 	struct folio *folio = page_folio(page);
1440 	struct address_space *mapping = folio->mapping;
1441 	struct inode *inode = mapping->host;
1442 	struct shmem_inode_info *info = SHMEM_I(inode);
1443 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1444 	swp_entry_t swap;
1445 	pgoff_t index;
1446 
1447 	/*
1448 	 * Our capabilities prevent regular writeback or sync from ever calling
1449 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1450 	 * its underlying filesystem, in which case tmpfs should write out to
1451 	 * swap only in response to memory pressure, and not for the writeback
1452 	 * threads or sync.
1453 	 */
1454 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1455 		goto redirty;
1456 
1457 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1458 		goto redirty;
1459 
1460 	if (!total_swap_pages)
1461 		goto redirty;
1462 
1463 	/*
1464 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1465 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1466 	 * and its shmem_writeback() needs them to be split when swapping.
1467 	 */
1468 	if (folio_test_large(folio)) {
1469 		/* Ensure the subpages are still dirty */
1470 		folio_test_set_dirty(folio);
1471 		if (split_huge_page(page) < 0)
1472 			goto redirty;
1473 		folio = page_folio(page);
1474 		folio_clear_dirty(folio);
1475 	}
1476 
1477 	index = folio->index;
1478 
1479 	/*
1480 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1481 	 * value into swapfile.c, the only way we can correctly account for a
1482 	 * fallocated folio arriving here is now to initialize it and write it.
1483 	 *
1484 	 * That's okay for a folio already fallocated earlier, but if we have
1485 	 * not yet completed the fallocation, then (a) we want to keep track
1486 	 * of this folio in case we have to undo it, and (b) it may not be a
1487 	 * good idea to continue anyway, once we're pushing into swap.  So
1488 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1489 	 */
1490 	if (!folio_test_uptodate(folio)) {
1491 		if (inode->i_private) {
1492 			struct shmem_falloc *shmem_falloc;
1493 			spin_lock(&inode->i_lock);
1494 			shmem_falloc = inode->i_private;
1495 			if (shmem_falloc &&
1496 			    !shmem_falloc->waitq &&
1497 			    index >= shmem_falloc->start &&
1498 			    index < shmem_falloc->next)
1499 				shmem_falloc->nr_unswapped++;
1500 			else
1501 				shmem_falloc = NULL;
1502 			spin_unlock(&inode->i_lock);
1503 			if (shmem_falloc)
1504 				goto redirty;
1505 		}
1506 		folio_zero_range(folio, 0, folio_size(folio));
1507 		flush_dcache_folio(folio);
1508 		folio_mark_uptodate(folio);
1509 	}
1510 
1511 	swap = folio_alloc_swap(folio);
1512 	if (!swap.val)
1513 		goto redirty;
1514 
1515 	/*
1516 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1517 	 * if it's not already there.  Do it now before the folio is
1518 	 * moved to swap cache, when its pagelock no longer protects
1519 	 * the inode from eviction.  But don't unlock the mutex until
1520 	 * we've incremented swapped, because shmem_unuse_inode() will
1521 	 * prune a !swapped inode from the swaplist under this mutex.
1522 	 */
1523 	mutex_lock(&shmem_swaplist_mutex);
1524 	if (list_empty(&info->swaplist))
1525 		list_add(&info->swaplist, &shmem_swaplist);
1526 
1527 	if (add_to_swap_cache(folio, swap,
1528 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1529 			NULL) == 0) {
1530 		shmem_recalc_inode(inode, 0, 1);
1531 		swap_shmem_alloc(swap);
1532 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1533 
1534 		mutex_unlock(&shmem_swaplist_mutex);
1535 		BUG_ON(folio_mapped(folio));
1536 		return swap_writepage(&folio->page, wbc);
1537 	}
1538 
1539 	mutex_unlock(&shmem_swaplist_mutex);
1540 	put_swap_folio(folio, swap);
1541 redirty:
1542 	folio_mark_dirty(folio);
1543 	if (wbc->for_reclaim)
1544 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1545 	folio_unlock(folio);
1546 	return 0;
1547 }
1548 
1549 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1550 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1551 {
1552 	char buffer[64];
1553 
1554 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1555 		return;		/* show nothing */
1556 
1557 	mpol_to_str(buffer, sizeof(buffer), mpol);
1558 
1559 	seq_printf(seq, ",mpol=%s", buffer);
1560 }
1561 
1562 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1563 {
1564 	struct mempolicy *mpol = NULL;
1565 	if (sbinfo->mpol) {
1566 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1567 		mpol = sbinfo->mpol;
1568 		mpol_get(mpol);
1569 		raw_spin_unlock(&sbinfo->stat_lock);
1570 	}
1571 	return mpol;
1572 }
1573 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1574 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1575 {
1576 }
1577 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1578 {
1579 	return NULL;
1580 }
1581 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1582 
1583 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1584 			pgoff_t index, unsigned int order, pgoff_t *ilx);
1585 
1586 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1587 			struct shmem_inode_info *info, pgoff_t index)
1588 {
1589 	struct mempolicy *mpol;
1590 	pgoff_t ilx;
1591 	struct folio *folio;
1592 
1593 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1594 	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1595 	mpol_cond_put(mpol);
1596 
1597 	return folio;
1598 }
1599 
1600 /*
1601  * Make sure huge_gfp is always more limited than limit_gfp.
1602  * Some of the flags set permissions, while others set limitations.
1603  */
1604 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1605 {
1606 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1607 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1608 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1609 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1610 
1611 	/* Allow allocations only from the originally specified zones. */
1612 	result |= zoneflags;
1613 
1614 	/*
1615 	 * Minimize the result gfp by taking the union with the deny flags,
1616 	 * and the intersection of the allow flags.
1617 	 */
1618 	result |= (limit_gfp & denyflags);
1619 	result |= (huge_gfp & limit_gfp) & allowflags;
1620 
1621 	return result;
1622 }
1623 
1624 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1625 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1626 				struct vm_area_struct *vma, pgoff_t index,
1627 				bool global_huge)
1628 {
1629 	unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1630 	unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1631 	unsigned long vm_flags = vma->vm_flags;
1632 	/*
1633 	 * Check all the (large) orders below HPAGE_PMD_ORDER + 1 that
1634 	 * are enabled for this vma.
1635 	 */
1636 	unsigned long orders = BIT(PMD_ORDER + 1) - 1;
1637 	loff_t i_size;
1638 	int order;
1639 
1640 	if ((vm_flags & VM_NOHUGEPAGE) ||
1641 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
1642 		return 0;
1643 
1644 	/* If the hardware/firmware marked hugepage support disabled. */
1645 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
1646 		return 0;
1647 
1648 	/*
1649 	 * Following the 'deny' semantics of the top level, force the huge
1650 	 * option off from all mounts.
1651 	 */
1652 	if (shmem_huge == SHMEM_HUGE_DENY)
1653 		return 0;
1654 
1655 	/*
1656 	 * Only allow inherit orders if the top-level value is 'force', which
1657 	 * means non-PMD sized THP can not override 'huge' mount option now.
1658 	 */
1659 	if (shmem_huge == SHMEM_HUGE_FORCE)
1660 		return READ_ONCE(huge_shmem_orders_inherit);
1661 
1662 	/* Allow mTHP that will be fully within i_size. */
1663 	order = highest_order(within_size_orders);
1664 	while (within_size_orders) {
1665 		index = round_up(index + 1, order);
1666 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1667 		if (i_size >> PAGE_SHIFT >= index) {
1668 			mask |= within_size_orders;
1669 			break;
1670 		}
1671 
1672 		order = next_order(&within_size_orders, order);
1673 	}
1674 
1675 	if (vm_flags & VM_HUGEPAGE)
1676 		mask |= READ_ONCE(huge_shmem_orders_madvise);
1677 
1678 	if (global_huge)
1679 		mask |= READ_ONCE(huge_shmem_orders_inherit);
1680 
1681 	return orders & mask;
1682 }
1683 
1684 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1685 					   struct address_space *mapping, pgoff_t index,
1686 					   unsigned long orders)
1687 {
1688 	struct vm_area_struct *vma = vmf->vma;
1689 	unsigned long pages;
1690 	int order;
1691 
1692 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1693 	if (!orders)
1694 		return 0;
1695 
1696 	/* Find the highest order that can add into the page cache */
1697 	order = highest_order(orders);
1698 	while (orders) {
1699 		pages = 1UL << order;
1700 		index = round_down(index, pages);
1701 		if (!xa_find(&mapping->i_pages, &index,
1702 			     index + pages - 1, XA_PRESENT))
1703 			break;
1704 		order = next_order(&orders, order);
1705 	}
1706 
1707 	return orders;
1708 }
1709 #else
1710 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1711 					   struct address_space *mapping, pgoff_t index,
1712 					   unsigned long orders)
1713 {
1714 	return 0;
1715 }
1716 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1717 
1718 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1719 		struct shmem_inode_info *info, pgoff_t index)
1720 {
1721 	struct mempolicy *mpol;
1722 	pgoff_t ilx;
1723 	struct folio *folio;
1724 
1725 	mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1726 	folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1727 	mpol_cond_put(mpol);
1728 
1729 	return folio;
1730 }
1731 
1732 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1733 		gfp_t gfp, struct inode *inode, pgoff_t index,
1734 		struct mm_struct *fault_mm, unsigned long orders)
1735 {
1736 	struct address_space *mapping = inode->i_mapping;
1737 	struct shmem_inode_info *info = SHMEM_I(inode);
1738 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1739 	unsigned long suitable_orders = 0;
1740 	struct folio *folio = NULL;
1741 	long pages;
1742 	int error, order;
1743 
1744 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1745 		orders = 0;
1746 
1747 	if (orders > 0) {
1748 		if (vma && vma_is_anon_shmem(vma)) {
1749 			suitable_orders = shmem_suitable_orders(inode, vmf,
1750 							mapping, index, orders);
1751 		} else if (orders & BIT(HPAGE_PMD_ORDER)) {
1752 			pages = HPAGE_PMD_NR;
1753 			suitable_orders = BIT(HPAGE_PMD_ORDER);
1754 			index = round_down(index, HPAGE_PMD_NR);
1755 
1756 			/*
1757 			 * Check for conflict before waiting on a huge allocation.
1758 			 * Conflict might be that a huge page has just been allocated
1759 			 * and added to page cache by a racing thread, or that there
1760 			 * is already at least one small page in the huge extent.
1761 			 * Be careful to retry when appropriate, but not forever!
1762 			 * Elsewhere -EEXIST would be the right code, but not here.
1763 			 */
1764 			if (xa_find(&mapping->i_pages, &index,
1765 				    index + HPAGE_PMD_NR - 1, XA_PRESENT))
1766 				return ERR_PTR(-E2BIG);
1767 		}
1768 
1769 		order = highest_order(suitable_orders);
1770 		while (suitable_orders) {
1771 			pages = 1UL << order;
1772 			index = round_down(index, pages);
1773 			folio = shmem_alloc_folio(gfp, order, info, index);
1774 			if (folio)
1775 				goto allocated;
1776 
1777 			if (pages == HPAGE_PMD_NR)
1778 				count_vm_event(THP_FILE_FALLBACK);
1779 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1780 			count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1781 #endif
1782 			order = next_order(&suitable_orders, order);
1783 		}
1784 	} else {
1785 		pages = 1;
1786 		folio = shmem_alloc_folio(gfp, 0, info, index);
1787 	}
1788 	if (!folio)
1789 		return ERR_PTR(-ENOMEM);
1790 
1791 allocated:
1792 	__folio_set_locked(folio);
1793 	__folio_set_swapbacked(folio);
1794 
1795 	gfp &= GFP_RECLAIM_MASK;
1796 	error = mem_cgroup_charge(folio, fault_mm, gfp);
1797 	if (error) {
1798 		if (xa_find(&mapping->i_pages, &index,
1799 				index + pages - 1, XA_PRESENT)) {
1800 			error = -EEXIST;
1801 		} else if (pages > 1) {
1802 			if (pages == HPAGE_PMD_NR) {
1803 				count_vm_event(THP_FILE_FALLBACK);
1804 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
1805 			}
1806 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1807 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1808 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1809 #endif
1810 		}
1811 		goto unlock;
1812 	}
1813 
1814 	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1815 	if (error)
1816 		goto unlock;
1817 
1818 	error = shmem_inode_acct_blocks(inode, pages);
1819 	if (error) {
1820 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1821 		long freed;
1822 		/*
1823 		 * Try to reclaim some space by splitting a few
1824 		 * large folios beyond i_size on the filesystem.
1825 		 */
1826 		shmem_unused_huge_shrink(sbinfo, NULL, 2);
1827 		/*
1828 		 * And do a shmem_recalc_inode() to account for freed pages:
1829 		 * except our folio is there in cache, so not quite balanced.
1830 		 */
1831 		spin_lock(&info->lock);
1832 		freed = pages + info->alloced - info->swapped -
1833 			READ_ONCE(mapping->nrpages);
1834 		if (freed > 0)
1835 			info->alloced -= freed;
1836 		spin_unlock(&info->lock);
1837 		if (freed > 0)
1838 			shmem_inode_unacct_blocks(inode, freed);
1839 		error = shmem_inode_acct_blocks(inode, pages);
1840 		if (error) {
1841 			filemap_remove_folio(folio);
1842 			goto unlock;
1843 		}
1844 	}
1845 
1846 	shmem_recalc_inode(inode, pages, 0);
1847 	folio_add_lru(folio);
1848 	return folio;
1849 
1850 unlock:
1851 	folio_unlock(folio);
1852 	folio_put(folio);
1853 	return ERR_PTR(error);
1854 }
1855 
1856 /*
1857  * When a page is moved from swapcache to shmem filecache (either by the
1858  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1859  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1860  * ignorance of the mapping it belongs to.  If that mapping has special
1861  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1862  * we may need to copy to a suitable page before moving to filecache.
1863  *
1864  * In a future release, this may well be extended to respect cpuset and
1865  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1866  * but for now it is a simple matter of zone.
1867  */
1868 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1869 {
1870 	return folio_zonenum(folio) > gfp_zone(gfp);
1871 }
1872 
1873 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1874 				struct shmem_inode_info *info, pgoff_t index)
1875 {
1876 	struct folio *old, *new;
1877 	struct address_space *swap_mapping;
1878 	swp_entry_t entry;
1879 	pgoff_t swap_index;
1880 	int error;
1881 
1882 	old = *foliop;
1883 	entry = old->swap;
1884 	swap_index = swap_cache_index(entry);
1885 	swap_mapping = swap_address_space(entry);
1886 
1887 	/*
1888 	 * We have arrived here because our zones are constrained, so don't
1889 	 * limit chance of success by further cpuset and node constraints.
1890 	 */
1891 	gfp &= ~GFP_CONSTRAINT_MASK;
1892 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1893 	new = shmem_alloc_folio(gfp, 0, info, index);
1894 	if (!new)
1895 		return -ENOMEM;
1896 
1897 	folio_get(new);
1898 	folio_copy(new, old);
1899 	flush_dcache_folio(new);
1900 
1901 	__folio_set_locked(new);
1902 	__folio_set_swapbacked(new);
1903 	folio_mark_uptodate(new);
1904 	new->swap = entry;
1905 	folio_set_swapcache(new);
1906 
1907 	/*
1908 	 * Our caller will very soon move newpage out of swapcache, but it's
1909 	 * a nice clean interface for us to replace oldpage by newpage there.
1910 	 */
1911 	xa_lock_irq(&swap_mapping->i_pages);
1912 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1913 	if (!error) {
1914 		mem_cgroup_replace_folio(old, new);
1915 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1916 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1917 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1918 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1919 	}
1920 	xa_unlock_irq(&swap_mapping->i_pages);
1921 
1922 	if (unlikely(error)) {
1923 		/*
1924 		 * Is this possible?  I think not, now that our callers check
1925 		 * both PageSwapCache and page_private after getting page lock;
1926 		 * but be defensive.  Reverse old to newpage for clear and free.
1927 		 */
1928 		old = new;
1929 	} else {
1930 		folio_add_lru(new);
1931 		*foliop = new;
1932 	}
1933 
1934 	folio_clear_swapcache(old);
1935 	old->private = NULL;
1936 
1937 	folio_unlock(old);
1938 	folio_put_refs(old, 2);
1939 	return error;
1940 }
1941 
1942 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1943 					 struct folio *folio, swp_entry_t swap)
1944 {
1945 	struct address_space *mapping = inode->i_mapping;
1946 	swp_entry_t swapin_error;
1947 	void *old;
1948 
1949 	swapin_error = make_poisoned_swp_entry();
1950 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1951 			     swp_to_radix_entry(swap),
1952 			     swp_to_radix_entry(swapin_error), 0);
1953 	if (old != swp_to_radix_entry(swap))
1954 		return;
1955 
1956 	folio_wait_writeback(folio);
1957 	delete_from_swap_cache(folio);
1958 	/*
1959 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
1960 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
1961 	 * in shmem_evict_inode().
1962 	 */
1963 	shmem_recalc_inode(inode, -1, -1);
1964 	swap_free(swap);
1965 }
1966 
1967 /*
1968  * Swap in the folio pointed to by *foliop.
1969  * Caller has to make sure that *foliop contains a valid swapped folio.
1970  * Returns 0 and the folio in foliop if success. On failure, returns the
1971  * error code and NULL in *foliop.
1972  */
1973 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1974 			     struct folio **foliop, enum sgp_type sgp,
1975 			     gfp_t gfp, struct mm_struct *fault_mm,
1976 			     vm_fault_t *fault_type)
1977 {
1978 	struct address_space *mapping = inode->i_mapping;
1979 	struct shmem_inode_info *info = SHMEM_I(inode);
1980 	struct swap_info_struct *si;
1981 	struct folio *folio = NULL;
1982 	swp_entry_t swap;
1983 	int error;
1984 
1985 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1986 	swap = radix_to_swp_entry(*foliop);
1987 	*foliop = NULL;
1988 
1989 	if (is_poisoned_swp_entry(swap))
1990 		return -EIO;
1991 
1992 	si = get_swap_device(swap);
1993 	if (!si) {
1994 		if (!shmem_confirm_swap(mapping, index, swap))
1995 			return -EEXIST;
1996 		else
1997 			return -EINVAL;
1998 	}
1999 
2000 	/* Look it up and read it in.. */
2001 	folio = swap_cache_get_folio(swap, NULL, 0);
2002 	if (!folio) {
2003 		/* Or update major stats only when swapin succeeds?? */
2004 		if (fault_type) {
2005 			*fault_type |= VM_FAULT_MAJOR;
2006 			count_vm_event(PGMAJFAULT);
2007 			count_memcg_event_mm(fault_mm, PGMAJFAULT);
2008 		}
2009 		/* Here we actually start the io */
2010 		folio = shmem_swapin_cluster(swap, gfp, info, index);
2011 		if (!folio) {
2012 			error = -ENOMEM;
2013 			goto failed;
2014 		}
2015 	}
2016 
2017 	/* We have to do this with folio locked to prevent races */
2018 	folio_lock(folio);
2019 	if (!folio_test_swapcache(folio) ||
2020 	    folio->swap.val != swap.val ||
2021 	    !shmem_confirm_swap(mapping, index, swap)) {
2022 		error = -EEXIST;
2023 		goto unlock;
2024 	}
2025 	if (!folio_test_uptodate(folio)) {
2026 		error = -EIO;
2027 		goto failed;
2028 	}
2029 	folio_wait_writeback(folio);
2030 
2031 	/*
2032 	 * Some architectures may have to restore extra metadata to the
2033 	 * folio after reading from swap.
2034 	 */
2035 	arch_swap_restore(folio_swap(swap, folio), folio);
2036 
2037 	if (shmem_should_replace_folio(folio, gfp)) {
2038 		error = shmem_replace_folio(&folio, gfp, info, index);
2039 		if (error)
2040 			goto failed;
2041 	}
2042 
2043 	error = shmem_add_to_page_cache(folio, mapping, index,
2044 					swp_to_radix_entry(swap), gfp);
2045 	if (error)
2046 		goto failed;
2047 
2048 	shmem_recalc_inode(inode, 0, -1);
2049 
2050 	if (sgp == SGP_WRITE)
2051 		folio_mark_accessed(folio);
2052 
2053 	delete_from_swap_cache(folio);
2054 	folio_mark_dirty(folio);
2055 	swap_free(swap);
2056 	put_swap_device(si);
2057 
2058 	*foliop = folio;
2059 	return 0;
2060 failed:
2061 	if (!shmem_confirm_swap(mapping, index, swap))
2062 		error = -EEXIST;
2063 	if (error == -EIO)
2064 		shmem_set_folio_swapin_error(inode, index, folio, swap);
2065 unlock:
2066 	if (folio) {
2067 		folio_unlock(folio);
2068 		folio_put(folio);
2069 	}
2070 	put_swap_device(si);
2071 
2072 	return error;
2073 }
2074 
2075 /*
2076  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2077  *
2078  * If we allocate a new one we do not mark it dirty. That's up to the
2079  * vm. If we swap it in we mark it dirty since we also free the swap
2080  * entry since a page cannot live in both the swap and page cache.
2081  *
2082  * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2083  */
2084 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2085 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
2086 		struct vm_fault *vmf, vm_fault_t *fault_type)
2087 {
2088 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2089 	struct mm_struct *fault_mm;
2090 	struct folio *folio;
2091 	int error;
2092 	bool alloced, huge;
2093 	unsigned long orders = 0;
2094 
2095 	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2096 		return -EINVAL;
2097 
2098 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2099 		return -EFBIG;
2100 repeat:
2101 	if (sgp <= SGP_CACHE &&
2102 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2103 		return -EINVAL;
2104 
2105 	alloced = false;
2106 	fault_mm = vma ? vma->vm_mm : NULL;
2107 
2108 	folio = filemap_get_entry(inode->i_mapping, index);
2109 	if (folio && vma && userfaultfd_minor(vma)) {
2110 		if (!xa_is_value(folio))
2111 			folio_put(folio);
2112 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2113 		return 0;
2114 	}
2115 
2116 	if (xa_is_value(folio)) {
2117 		error = shmem_swapin_folio(inode, index, &folio,
2118 					   sgp, gfp, fault_mm, fault_type);
2119 		if (error == -EEXIST)
2120 			goto repeat;
2121 
2122 		*foliop = folio;
2123 		return error;
2124 	}
2125 
2126 	if (folio) {
2127 		folio_lock(folio);
2128 
2129 		/* Has the folio been truncated or swapped out? */
2130 		if (unlikely(folio->mapping != inode->i_mapping)) {
2131 			folio_unlock(folio);
2132 			folio_put(folio);
2133 			goto repeat;
2134 		}
2135 		if (sgp == SGP_WRITE)
2136 			folio_mark_accessed(folio);
2137 		if (folio_test_uptodate(folio))
2138 			goto out;
2139 		/* fallocated folio */
2140 		if (sgp != SGP_READ)
2141 			goto clear;
2142 		folio_unlock(folio);
2143 		folio_put(folio);
2144 	}
2145 
2146 	/*
2147 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2148 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2149 	 */
2150 	*foliop = NULL;
2151 	if (sgp == SGP_READ)
2152 		return 0;
2153 	if (sgp == SGP_NOALLOC)
2154 		return -ENOENT;
2155 
2156 	/*
2157 	 * Fast cache lookup and swap lookup did not find it: allocate.
2158 	 */
2159 
2160 	if (vma && userfaultfd_missing(vma)) {
2161 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2162 		return 0;
2163 	}
2164 
2165 	huge = shmem_is_huge(inode, index, false, fault_mm,
2166 			     vma ? vma->vm_flags : 0);
2167 	/* Find hugepage orders that are allowed for anonymous shmem. */
2168 	if (vma && vma_is_anon_shmem(vma))
2169 		orders = shmem_allowable_huge_orders(inode, vma, index, huge);
2170 	else if (huge)
2171 		orders = BIT(HPAGE_PMD_ORDER);
2172 
2173 	if (orders > 0) {
2174 		gfp_t huge_gfp;
2175 
2176 		huge_gfp = vma_thp_gfp_mask(vma);
2177 		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2178 		folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2179 				inode, index, fault_mm, orders);
2180 		if (!IS_ERR(folio)) {
2181 			if (folio_test_pmd_mappable(folio))
2182 				count_vm_event(THP_FILE_ALLOC);
2183 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2184 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2185 #endif
2186 			goto alloced;
2187 		}
2188 		if (PTR_ERR(folio) == -EEXIST)
2189 			goto repeat;
2190 	}
2191 
2192 	folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2193 	if (IS_ERR(folio)) {
2194 		error = PTR_ERR(folio);
2195 		if (error == -EEXIST)
2196 			goto repeat;
2197 		folio = NULL;
2198 		goto unlock;
2199 	}
2200 
2201 alloced:
2202 	alloced = true;
2203 	if (folio_test_large(folio) &&
2204 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2205 					folio_next_index(folio) - 1) {
2206 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2207 		struct shmem_inode_info *info = SHMEM_I(inode);
2208 		/*
2209 		 * Part of the large folio is beyond i_size: subject
2210 		 * to shrink under memory pressure.
2211 		 */
2212 		spin_lock(&sbinfo->shrinklist_lock);
2213 		/*
2214 		 * _careful to defend against unlocked access to
2215 		 * ->shrink_list in shmem_unused_huge_shrink()
2216 		 */
2217 		if (list_empty_careful(&info->shrinklist)) {
2218 			list_add_tail(&info->shrinklist,
2219 				      &sbinfo->shrinklist);
2220 			sbinfo->shrinklist_len++;
2221 		}
2222 		spin_unlock(&sbinfo->shrinklist_lock);
2223 	}
2224 
2225 	if (sgp == SGP_WRITE)
2226 		folio_set_referenced(folio);
2227 	/*
2228 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2229 	 */
2230 	if (sgp == SGP_FALLOC)
2231 		sgp = SGP_WRITE;
2232 clear:
2233 	/*
2234 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2235 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2236 	 * it now, lest undo on failure cancel our earlier guarantee.
2237 	 */
2238 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2239 		long i, n = folio_nr_pages(folio);
2240 
2241 		for (i = 0; i < n; i++)
2242 			clear_highpage(folio_page(folio, i));
2243 		flush_dcache_folio(folio);
2244 		folio_mark_uptodate(folio);
2245 	}
2246 
2247 	/* Perhaps the file has been truncated since we checked */
2248 	if (sgp <= SGP_CACHE &&
2249 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2250 		error = -EINVAL;
2251 		goto unlock;
2252 	}
2253 out:
2254 	*foliop = folio;
2255 	return 0;
2256 
2257 	/*
2258 	 * Error recovery.
2259 	 */
2260 unlock:
2261 	if (alloced)
2262 		filemap_remove_folio(folio);
2263 	shmem_recalc_inode(inode, 0, 0);
2264 	if (folio) {
2265 		folio_unlock(folio);
2266 		folio_put(folio);
2267 	}
2268 	return error;
2269 }
2270 
2271 /**
2272  * shmem_get_folio - find, and lock a shmem folio.
2273  * @inode:	inode to search
2274  * @index:	the page index.
2275  * @foliop:	pointer to the folio if found
2276  * @sgp:	SGP_* flags to control behavior
2277  *
2278  * Looks up the page cache entry at @inode & @index.  If a folio is
2279  * present, it is returned locked with an increased refcount.
2280  *
2281  * If the caller modifies data in the folio, it must call folio_mark_dirty()
2282  * before unlocking the folio to ensure that the folio is not reclaimed.
2283  * There is no need to reserve space before calling folio_mark_dirty().
2284  *
2285  * When no folio is found, the behavior depends on @sgp:
2286  *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2287  *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2288  *  - for all other flags a new folio is allocated, inserted into the
2289  *    page cache and returned locked in @foliop.
2290  *
2291  * Context: May sleep.
2292  * Return: 0 if successful, else a negative error code.
2293  */
2294 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2295 		enum sgp_type sgp)
2296 {
2297 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2298 			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2299 }
2300 EXPORT_SYMBOL_GPL(shmem_get_folio);
2301 
2302 /*
2303  * This is like autoremove_wake_function, but it removes the wait queue
2304  * entry unconditionally - even if something else had already woken the
2305  * target.
2306  */
2307 static int synchronous_wake_function(wait_queue_entry_t *wait,
2308 			unsigned int mode, int sync, void *key)
2309 {
2310 	int ret = default_wake_function(wait, mode, sync, key);
2311 	list_del_init(&wait->entry);
2312 	return ret;
2313 }
2314 
2315 /*
2316  * Trinity finds that probing a hole which tmpfs is punching can
2317  * prevent the hole-punch from ever completing: which in turn
2318  * locks writers out with its hold on i_rwsem.  So refrain from
2319  * faulting pages into the hole while it's being punched.  Although
2320  * shmem_undo_range() does remove the additions, it may be unable to
2321  * keep up, as each new page needs its own unmap_mapping_range() call,
2322  * and the i_mmap tree grows ever slower to scan if new vmas are added.
2323  *
2324  * It does not matter if we sometimes reach this check just before the
2325  * hole-punch begins, so that one fault then races with the punch:
2326  * we just need to make racing faults a rare case.
2327  *
2328  * The implementation below would be much simpler if we just used a
2329  * standard mutex or completion: but we cannot take i_rwsem in fault,
2330  * and bloating every shmem inode for this unlikely case would be sad.
2331  */
2332 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2333 {
2334 	struct shmem_falloc *shmem_falloc;
2335 	struct file *fpin = NULL;
2336 	vm_fault_t ret = 0;
2337 
2338 	spin_lock(&inode->i_lock);
2339 	shmem_falloc = inode->i_private;
2340 	if (shmem_falloc &&
2341 	    shmem_falloc->waitq &&
2342 	    vmf->pgoff >= shmem_falloc->start &&
2343 	    vmf->pgoff < shmem_falloc->next) {
2344 		wait_queue_head_t *shmem_falloc_waitq;
2345 		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2346 
2347 		ret = VM_FAULT_NOPAGE;
2348 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2349 		shmem_falloc_waitq = shmem_falloc->waitq;
2350 		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2351 				TASK_UNINTERRUPTIBLE);
2352 		spin_unlock(&inode->i_lock);
2353 		schedule();
2354 
2355 		/*
2356 		 * shmem_falloc_waitq points into the shmem_fallocate()
2357 		 * stack of the hole-punching task: shmem_falloc_waitq
2358 		 * is usually invalid by the time we reach here, but
2359 		 * finish_wait() does not dereference it in that case;
2360 		 * though i_lock needed lest racing with wake_up_all().
2361 		 */
2362 		spin_lock(&inode->i_lock);
2363 		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2364 	}
2365 	spin_unlock(&inode->i_lock);
2366 	if (fpin) {
2367 		fput(fpin);
2368 		ret = VM_FAULT_RETRY;
2369 	}
2370 	return ret;
2371 }
2372 
2373 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2374 {
2375 	struct inode *inode = file_inode(vmf->vma->vm_file);
2376 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2377 	struct folio *folio = NULL;
2378 	vm_fault_t ret = 0;
2379 	int err;
2380 
2381 	/*
2382 	 * Trinity finds that probing a hole which tmpfs is punching can
2383 	 * prevent the hole-punch from ever completing: noted in i_private.
2384 	 */
2385 	if (unlikely(inode->i_private)) {
2386 		ret = shmem_falloc_wait(vmf, inode);
2387 		if (ret)
2388 			return ret;
2389 	}
2390 
2391 	WARN_ON_ONCE(vmf->page != NULL);
2392 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2393 				  gfp, vmf, &ret);
2394 	if (err)
2395 		return vmf_error(err);
2396 	if (folio) {
2397 		vmf->page = folio_file_page(folio, vmf->pgoff);
2398 		ret |= VM_FAULT_LOCKED;
2399 	}
2400 	return ret;
2401 }
2402 
2403 unsigned long shmem_get_unmapped_area(struct file *file,
2404 				      unsigned long uaddr, unsigned long len,
2405 				      unsigned long pgoff, unsigned long flags)
2406 {
2407 	unsigned long addr;
2408 	unsigned long offset;
2409 	unsigned long inflated_len;
2410 	unsigned long inflated_addr;
2411 	unsigned long inflated_offset;
2412 	unsigned long hpage_size;
2413 
2414 	if (len > TASK_SIZE)
2415 		return -ENOMEM;
2416 
2417 	addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2418 				    flags);
2419 
2420 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2421 		return addr;
2422 	if (IS_ERR_VALUE(addr))
2423 		return addr;
2424 	if (addr & ~PAGE_MASK)
2425 		return addr;
2426 	if (addr > TASK_SIZE - len)
2427 		return addr;
2428 
2429 	if (shmem_huge == SHMEM_HUGE_DENY)
2430 		return addr;
2431 	if (flags & MAP_FIXED)
2432 		return addr;
2433 	/*
2434 	 * Our priority is to support MAP_SHARED mapped hugely;
2435 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2436 	 * But if caller specified an address hint and we allocated area there
2437 	 * successfully, respect that as before.
2438 	 */
2439 	if (uaddr == addr)
2440 		return addr;
2441 
2442 	hpage_size = HPAGE_PMD_SIZE;
2443 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2444 		struct super_block *sb;
2445 		unsigned long __maybe_unused hpage_orders;
2446 		int order = 0;
2447 
2448 		if (file) {
2449 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2450 			sb = file_inode(file)->i_sb;
2451 		} else {
2452 			/*
2453 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2454 			 * for "/dev/zero", to create a shared anonymous object.
2455 			 */
2456 			if (IS_ERR(shm_mnt))
2457 				return addr;
2458 			sb = shm_mnt->mnt_sb;
2459 
2460 			/*
2461 			 * Find the highest mTHP order used for anonymous shmem to
2462 			 * provide a suitable alignment address.
2463 			 */
2464 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2465 			hpage_orders = READ_ONCE(huge_shmem_orders_always);
2466 			hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2467 			hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2468 			if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2469 				hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2470 
2471 			if (hpage_orders > 0) {
2472 				order = highest_order(hpage_orders);
2473 				hpage_size = PAGE_SIZE << order;
2474 			}
2475 #endif
2476 		}
2477 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2478 			return addr;
2479 	}
2480 
2481 	if (len < hpage_size)
2482 		return addr;
2483 
2484 	offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2485 	if (offset && offset + len < 2 * hpage_size)
2486 		return addr;
2487 	if ((addr & (hpage_size - 1)) == offset)
2488 		return addr;
2489 
2490 	inflated_len = len + hpage_size - PAGE_SIZE;
2491 	if (inflated_len > TASK_SIZE)
2492 		return addr;
2493 	if (inflated_len < len)
2494 		return addr;
2495 
2496 	inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2497 					     inflated_len, 0, flags);
2498 	if (IS_ERR_VALUE(inflated_addr))
2499 		return addr;
2500 	if (inflated_addr & ~PAGE_MASK)
2501 		return addr;
2502 
2503 	inflated_offset = inflated_addr & (hpage_size - 1);
2504 	inflated_addr += offset - inflated_offset;
2505 	if (inflated_offset > offset)
2506 		inflated_addr += hpage_size;
2507 
2508 	if (inflated_addr > TASK_SIZE - len)
2509 		return addr;
2510 	return inflated_addr;
2511 }
2512 
2513 #ifdef CONFIG_NUMA
2514 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2515 {
2516 	struct inode *inode = file_inode(vma->vm_file);
2517 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2518 }
2519 
2520 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2521 					  unsigned long addr, pgoff_t *ilx)
2522 {
2523 	struct inode *inode = file_inode(vma->vm_file);
2524 	pgoff_t index;
2525 
2526 	/*
2527 	 * Bias interleave by inode number to distribute better across nodes;
2528 	 * but this interface is independent of which page order is used, so
2529 	 * supplies only that bias, letting caller apply the offset (adjusted
2530 	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2531 	 */
2532 	*ilx = inode->i_ino;
2533 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2534 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2535 }
2536 
2537 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2538 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2539 {
2540 	struct mempolicy *mpol;
2541 
2542 	/* Bias interleave by inode number to distribute better across nodes */
2543 	*ilx = info->vfs_inode.i_ino + (index >> order);
2544 
2545 	mpol = mpol_shared_policy_lookup(&info->policy, index);
2546 	return mpol ? mpol : get_task_policy(current);
2547 }
2548 #else
2549 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2550 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2551 {
2552 	*ilx = 0;
2553 	return NULL;
2554 }
2555 #endif /* CONFIG_NUMA */
2556 
2557 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2558 {
2559 	struct inode *inode = file_inode(file);
2560 	struct shmem_inode_info *info = SHMEM_I(inode);
2561 	int retval = -ENOMEM;
2562 
2563 	/*
2564 	 * What serializes the accesses to info->flags?
2565 	 * ipc_lock_object() when called from shmctl_do_lock(),
2566 	 * no serialization needed when called from shm_destroy().
2567 	 */
2568 	if (lock && !(info->flags & VM_LOCKED)) {
2569 		if (!user_shm_lock(inode->i_size, ucounts))
2570 			goto out_nomem;
2571 		info->flags |= VM_LOCKED;
2572 		mapping_set_unevictable(file->f_mapping);
2573 	}
2574 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2575 		user_shm_unlock(inode->i_size, ucounts);
2576 		info->flags &= ~VM_LOCKED;
2577 		mapping_clear_unevictable(file->f_mapping);
2578 	}
2579 	retval = 0;
2580 
2581 out_nomem:
2582 	return retval;
2583 }
2584 
2585 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2586 {
2587 	struct inode *inode = file_inode(file);
2588 	struct shmem_inode_info *info = SHMEM_I(inode);
2589 	int ret;
2590 
2591 	ret = seal_check_write(info->seals, vma);
2592 	if (ret)
2593 		return ret;
2594 
2595 	/* arm64 - allow memory tagging on RAM-based files */
2596 	vm_flags_set(vma, VM_MTE_ALLOWED);
2597 
2598 	file_accessed(file);
2599 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2600 	if (inode->i_nlink)
2601 		vma->vm_ops = &shmem_vm_ops;
2602 	else
2603 		vma->vm_ops = &shmem_anon_vm_ops;
2604 	return 0;
2605 }
2606 
2607 static int shmem_file_open(struct inode *inode, struct file *file)
2608 {
2609 	file->f_mode |= FMODE_CAN_ODIRECT;
2610 	return generic_file_open(inode, file);
2611 }
2612 
2613 #ifdef CONFIG_TMPFS_XATTR
2614 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2615 
2616 /*
2617  * chattr's fsflags are unrelated to extended attributes,
2618  * but tmpfs has chosen to enable them under the same config option.
2619  */
2620 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2621 {
2622 	unsigned int i_flags = 0;
2623 
2624 	if (fsflags & FS_NOATIME_FL)
2625 		i_flags |= S_NOATIME;
2626 	if (fsflags & FS_APPEND_FL)
2627 		i_flags |= S_APPEND;
2628 	if (fsflags & FS_IMMUTABLE_FL)
2629 		i_flags |= S_IMMUTABLE;
2630 	/*
2631 	 * But FS_NODUMP_FL does not require any action in i_flags.
2632 	 */
2633 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2634 }
2635 #else
2636 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2637 {
2638 }
2639 #define shmem_initxattrs NULL
2640 #endif
2641 
2642 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2643 {
2644 	return &SHMEM_I(inode)->dir_offsets;
2645 }
2646 
2647 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2648 					     struct super_block *sb,
2649 					     struct inode *dir, umode_t mode,
2650 					     dev_t dev, unsigned long flags)
2651 {
2652 	struct inode *inode;
2653 	struct shmem_inode_info *info;
2654 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2655 	ino_t ino;
2656 	int err;
2657 
2658 	err = shmem_reserve_inode(sb, &ino);
2659 	if (err)
2660 		return ERR_PTR(err);
2661 
2662 	inode = new_inode(sb);
2663 	if (!inode) {
2664 		shmem_free_inode(sb, 0);
2665 		return ERR_PTR(-ENOSPC);
2666 	}
2667 
2668 	inode->i_ino = ino;
2669 	inode_init_owner(idmap, inode, dir, mode);
2670 	inode->i_blocks = 0;
2671 	simple_inode_init_ts(inode);
2672 	inode->i_generation = get_random_u32();
2673 	info = SHMEM_I(inode);
2674 	memset(info, 0, (char *)inode - (char *)info);
2675 	spin_lock_init(&info->lock);
2676 	atomic_set(&info->stop_eviction, 0);
2677 	info->seals = F_SEAL_SEAL;
2678 	info->flags = flags & VM_NORESERVE;
2679 	info->i_crtime = inode_get_mtime(inode);
2680 	info->fsflags = (dir == NULL) ? 0 :
2681 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2682 	if (info->fsflags)
2683 		shmem_set_inode_flags(inode, info->fsflags);
2684 	INIT_LIST_HEAD(&info->shrinklist);
2685 	INIT_LIST_HEAD(&info->swaplist);
2686 	simple_xattrs_init(&info->xattrs);
2687 	cache_no_acl(inode);
2688 	if (sbinfo->noswap)
2689 		mapping_set_unevictable(inode->i_mapping);
2690 	mapping_set_large_folios(inode->i_mapping);
2691 
2692 	switch (mode & S_IFMT) {
2693 	default:
2694 		inode->i_op = &shmem_special_inode_operations;
2695 		init_special_inode(inode, mode, dev);
2696 		break;
2697 	case S_IFREG:
2698 		inode->i_mapping->a_ops = &shmem_aops;
2699 		inode->i_op = &shmem_inode_operations;
2700 		inode->i_fop = &shmem_file_operations;
2701 		mpol_shared_policy_init(&info->policy,
2702 					 shmem_get_sbmpol(sbinfo));
2703 		break;
2704 	case S_IFDIR:
2705 		inc_nlink(inode);
2706 		/* Some things misbehave if size == 0 on a directory */
2707 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2708 		inode->i_op = &shmem_dir_inode_operations;
2709 		inode->i_fop = &simple_offset_dir_operations;
2710 		simple_offset_init(shmem_get_offset_ctx(inode));
2711 		break;
2712 	case S_IFLNK:
2713 		/*
2714 		 * Must not load anything in the rbtree,
2715 		 * mpol_free_shared_policy will not be called.
2716 		 */
2717 		mpol_shared_policy_init(&info->policy, NULL);
2718 		break;
2719 	}
2720 
2721 	lockdep_annotate_inode_mutex_key(inode);
2722 	return inode;
2723 }
2724 
2725 #ifdef CONFIG_TMPFS_QUOTA
2726 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2727 				     struct super_block *sb, struct inode *dir,
2728 				     umode_t mode, dev_t dev, unsigned long flags)
2729 {
2730 	int err;
2731 	struct inode *inode;
2732 
2733 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2734 	if (IS_ERR(inode))
2735 		return inode;
2736 
2737 	err = dquot_initialize(inode);
2738 	if (err)
2739 		goto errout;
2740 
2741 	err = dquot_alloc_inode(inode);
2742 	if (err) {
2743 		dquot_drop(inode);
2744 		goto errout;
2745 	}
2746 	return inode;
2747 
2748 errout:
2749 	inode->i_flags |= S_NOQUOTA;
2750 	iput(inode);
2751 	return ERR_PTR(err);
2752 }
2753 #else
2754 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2755 				     struct super_block *sb, struct inode *dir,
2756 				     umode_t mode, dev_t dev, unsigned long flags)
2757 {
2758 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2759 }
2760 #endif /* CONFIG_TMPFS_QUOTA */
2761 
2762 #ifdef CONFIG_USERFAULTFD
2763 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2764 			   struct vm_area_struct *dst_vma,
2765 			   unsigned long dst_addr,
2766 			   unsigned long src_addr,
2767 			   uffd_flags_t flags,
2768 			   struct folio **foliop)
2769 {
2770 	struct inode *inode = file_inode(dst_vma->vm_file);
2771 	struct shmem_inode_info *info = SHMEM_I(inode);
2772 	struct address_space *mapping = inode->i_mapping;
2773 	gfp_t gfp = mapping_gfp_mask(mapping);
2774 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2775 	void *page_kaddr;
2776 	struct folio *folio;
2777 	int ret;
2778 	pgoff_t max_off;
2779 
2780 	if (shmem_inode_acct_blocks(inode, 1)) {
2781 		/*
2782 		 * We may have got a page, returned -ENOENT triggering a retry,
2783 		 * and now we find ourselves with -ENOMEM. Release the page, to
2784 		 * avoid a BUG_ON in our caller.
2785 		 */
2786 		if (unlikely(*foliop)) {
2787 			folio_put(*foliop);
2788 			*foliop = NULL;
2789 		}
2790 		return -ENOMEM;
2791 	}
2792 
2793 	if (!*foliop) {
2794 		ret = -ENOMEM;
2795 		folio = shmem_alloc_folio(gfp, 0, info, pgoff);
2796 		if (!folio)
2797 			goto out_unacct_blocks;
2798 
2799 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2800 			page_kaddr = kmap_local_folio(folio, 0);
2801 			/*
2802 			 * The read mmap_lock is held here.  Despite the
2803 			 * mmap_lock being read recursive a deadlock is still
2804 			 * possible if a writer has taken a lock.  For example:
2805 			 *
2806 			 * process A thread 1 takes read lock on own mmap_lock
2807 			 * process A thread 2 calls mmap, blocks taking write lock
2808 			 * process B thread 1 takes page fault, read lock on own mmap lock
2809 			 * process B thread 2 calls mmap, blocks taking write lock
2810 			 * process A thread 1 blocks taking read lock on process B
2811 			 * process B thread 1 blocks taking read lock on process A
2812 			 *
2813 			 * Disable page faults to prevent potential deadlock
2814 			 * and retry the copy outside the mmap_lock.
2815 			 */
2816 			pagefault_disable();
2817 			ret = copy_from_user(page_kaddr,
2818 					     (const void __user *)src_addr,
2819 					     PAGE_SIZE);
2820 			pagefault_enable();
2821 			kunmap_local(page_kaddr);
2822 
2823 			/* fallback to copy_from_user outside mmap_lock */
2824 			if (unlikely(ret)) {
2825 				*foliop = folio;
2826 				ret = -ENOENT;
2827 				/* don't free the page */
2828 				goto out_unacct_blocks;
2829 			}
2830 
2831 			flush_dcache_folio(folio);
2832 		} else {		/* ZEROPAGE */
2833 			clear_user_highpage(&folio->page, dst_addr);
2834 		}
2835 	} else {
2836 		folio = *foliop;
2837 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2838 		*foliop = NULL;
2839 	}
2840 
2841 	VM_BUG_ON(folio_test_locked(folio));
2842 	VM_BUG_ON(folio_test_swapbacked(folio));
2843 	__folio_set_locked(folio);
2844 	__folio_set_swapbacked(folio);
2845 	__folio_mark_uptodate(folio);
2846 
2847 	ret = -EFAULT;
2848 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2849 	if (unlikely(pgoff >= max_off))
2850 		goto out_release;
2851 
2852 	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
2853 	if (ret)
2854 		goto out_release;
2855 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
2856 	if (ret)
2857 		goto out_release;
2858 
2859 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2860 				       &folio->page, true, flags);
2861 	if (ret)
2862 		goto out_delete_from_cache;
2863 
2864 	shmem_recalc_inode(inode, 1, 0);
2865 	folio_unlock(folio);
2866 	return 0;
2867 out_delete_from_cache:
2868 	filemap_remove_folio(folio);
2869 out_release:
2870 	folio_unlock(folio);
2871 	folio_put(folio);
2872 out_unacct_blocks:
2873 	shmem_inode_unacct_blocks(inode, 1);
2874 	return ret;
2875 }
2876 #endif /* CONFIG_USERFAULTFD */
2877 
2878 #ifdef CONFIG_TMPFS
2879 static const struct inode_operations shmem_symlink_inode_operations;
2880 static const struct inode_operations shmem_short_symlink_operations;
2881 
2882 static int
2883 shmem_write_begin(struct file *file, struct address_space *mapping,
2884 			loff_t pos, unsigned len,
2885 			struct page **pagep, void **fsdata)
2886 {
2887 	struct inode *inode = mapping->host;
2888 	struct shmem_inode_info *info = SHMEM_I(inode);
2889 	pgoff_t index = pos >> PAGE_SHIFT;
2890 	struct folio *folio;
2891 	int ret = 0;
2892 
2893 	/* i_rwsem is held by caller */
2894 	if (unlikely(info->seals & (F_SEAL_GROW |
2895 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2896 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2897 			return -EPERM;
2898 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2899 			return -EPERM;
2900 	}
2901 
2902 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2903 	if (ret)
2904 		return ret;
2905 
2906 	*pagep = folio_file_page(folio, index);
2907 	if (PageHWPoison(*pagep)) {
2908 		folio_unlock(folio);
2909 		folio_put(folio);
2910 		*pagep = NULL;
2911 		return -EIO;
2912 	}
2913 
2914 	return 0;
2915 }
2916 
2917 static int
2918 shmem_write_end(struct file *file, struct address_space *mapping,
2919 			loff_t pos, unsigned len, unsigned copied,
2920 			struct page *page, void *fsdata)
2921 {
2922 	struct folio *folio = page_folio(page);
2923 	struct inode *inode = mapping->host;
2924 
2925 	if (pos + copied > inode->i_size)
2926 		i_size_write(inode, pos + copied);
2927 
2928 	if (!folio_test_uptodate(folio)) {
2929 		if (copied < folio_size(folio)) {
2930 			size_t from = offset_in_folio(folio, pos);
2931 			folio_zero_segments(folio, 0, from,
2932 					from + copied, folio_size(folio));
2933 		}
2934 		folio_mark_uptodate(folio);
2935 	}
2936 	folio_mark_dirty(folio);
2937 	folio_unlock(folio);
2938 	folio_put(folio);
2939 
2940 	return copied;
2941 }
2942 
2943 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2944 {
2945 	struct file *file = iocb->ki_filp;
2946 	struct inode *inode = file_inode(file);
2947 	struct address_space *mapping = inode->i_mapping;
2948 	pgoff_t index;
2949 	unsigned long offset;
2950 	int error = 0;
2951 	ssize_t retval = 0;
2952 	loff_t *ppos = &iocb->ki_pos;
2953 
2954 	index = *ppos >> PAGE_SHIFT;
2955 	offset = *ppos & ~PAGE_MASK;
2956 
2957 	for (;;) {
2958 		struct folio *folio = NULL;
2959 		struct page *page = NULL;
2960 		pgoff_t end_index;
2961 		unsigned long nr, ret;
2962 		loff_t i_size = i_size_read(inode);
2963 
2964 		end_index = i_size >> PAGE_SHIFT;
2965 		if (index > end_index)
2966 			break;
2967 		if (index == end_index) {
2968 			nr = i_size & ~PAGE_MASK;
2969 			if (nr <= offset)
2970 				break;
2971 		}
2972 
2973 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2974 		if (error) {
2975 			if (error == -EINVAL)
2976 				error = 0;
2977 			break;
2978 		}
2979 		if (folio) {
2980 			folio_unlock(folio);
2981 
2982 			page = folio_file_page(folio, index);
2983 			if (PageHWPoison(page)) {
2984 				folio_put(folio);
2985 				error = -EIO;
2986 				break;
2987 			}
2988 		}
2989 
2990 		/*
2991 		 * We must evaluate after, since reads (unlike writes)
2992 		 * are called without i_rwsem protection against truncate
2993 		 */
2994 		nr = PAGE_SIZE;
2995 		i_size = i_size_read(inode);
2996 		end_index = i_size >> PAGE_SHIFT;
2997 		if (index == end_index) {
2998 			nr = i_size & ~PAGE_MASK;
2999 			if (nr <= offset) {
3000 				if (folio)
3001 					folio_put(folio);
3002 				break;
3003 			}
3004 		}
3005 		nr -= offset;
3006 
3007 		if (folio) {
3008 			/*
3009 			 * If users can be writing to this page using arbitrary
3010 			 * virtual addresses, take care about potential aliasing
3011 			 * before reading the page on the kernel side.
3012 			 */
3013 			if (mapping_writably_mapped(mapping))
3014 				flush_dcache_page(page);
3015 			/*
3016 			 * Mark the page accessed if we read the beginning.
3017 			 */
3018 			if (!offset)
3019 				folio_mark_accessed(folio);
3020 			/*
3021 			 * Ok, we have the page, and it's up-to-date, so
3022 			 * now we can copy it to user space...
3023 			 */
3024 			ret = copy_page_to_iter(page, offset, nr, to);
3025 			folio_put(folio);
3026 
3027 		} else if (user_backed_iter(to)) {
3028 			/*
3029 			 * Copy to user tends to be so well optimized, but
3030 			 * clear_user() not so much, that it is noticeably
3031 			 * faster to copy the zero page instead of clearing.
3032 			 */
3033 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3034 		} else {
3035 			/*
3036 			 * But submitting the same page twice in a row to
3037 			 * splice() - or others? - can result in confusion:
3038 			 * so don't attempt that optimization on pipes etc.
3039 			 */
3040 			ret = iov_iter_zero(nr, to);
3041 		}
3042 
3043 		retval += ret;
3044 		offset += ret;
3045 		index += offset >> PAGE_SHIFT;
3046 		offset &= ~PAGE_MASK;
3047 
3048 		if (!iov_iter_count(to))
3049 			break;
3050 		if (ret < nr) {
3051 			error = -EFAULT;
3052 			break;
3053 		}
3054 		cond_resched();
3055 	}
3056 
3057 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
3058 	file_accessed(file);
3059 	return retval ? retval : error;
3060 }
3061 
3062 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3063 {
3064 	struct file *file = iocb->ki_filp;
3065 	struct inode *inode = file->f_mapping->host;
3066 	ssize_t ret;
3067 
3068 	inode_lock(inode);
3069 	ret = generic_write_checks(iocb, from);
3070 	if (ret <= 0)
3071 		goto unlock;
3072 	ret = file_remove_privs(file);
3073 	if (ret)
3074 		goto unlock;
3075 	ret = file_update_time(file);
3076 	if (ret)
3077 		goto unlock;
3078 	ret = generic_perform_write(iocb, from);
3079 unlock:
3080 	inode_unlock(inode);
3081 	return ret;
3082 }
3083 
3084 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3085 			      struct pipe_buffer *buf)
3086 {
3087 	return true;
3088 }
3089 
3090 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3091 				  struct pipe_buffer *buf)
3092 {
3093 }
3094 
3095 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3096 				    struct pipe_buffer *buf)
3097 {
3098 	return false;
3099 }
3100 
3101 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3102 	.release	= zero_pipe_buf_release,
3103 	.try_steal	= zero_pipe_buf_try_steal,
3104 	.get		= zero_pipe_buf_get,
3105 };
3106 
3107 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3108 					loff_t fpos, size_t size)
3109 {
3110 	size_t offset = fpos & ~PAGE_MASK;
3111 
3112 	size = min_t(size_t, size, PAGE_SIZE - offset);
3113 
3114 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
3115 		struct pipe_buffer *buf = pipe_head_buf(pipe);
3116 
3117 		*buf = (struct pipe_buffer) {
3118 			.ops	= &zero_pipe_buf_ops,
3119 			.page	= ZERO_PAGE(0),
3120 			.offset	= offset,
3121 			.len	= size,
3122 		};
3123 		pipe->head++;
3124 	}
3125 
3126 	return size;
3127 }
3128 
3129 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3130 				      struct pipe_inode_info *pipe,
3131 				      size_t len, unsigned int flags)
3132 {
3133 	struct inode *inode = file_inode(in);
3134 	struct address_space *mapping = inode->i_mapping;
3135 	struct folio *folio = NULL;
3136 	size_t total_spliced = 0, used, npages, n, part;
3137 	loff_t isize;
3138 	int error = 0;
3139 
3140 	/* Work out how much data we can actually add into the pipe */
3141 	used = pipe_occupancy(pipe->head, pipe->tail);
3142 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
3143 	len = min_t(size_t, len, npages * PAGE_SIZE);
3144 
3145 	do {
3146 		if (*ppos >= i_size_read(inode))
3147 			break;
3148 
3149 		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
3150 					SGP_READ);
3151 		if (error) {
3152 			if (error == -EINVAL)
3153 				error = 0;
3154 			break;
3155 		}
3156 		if (folio) {
3157 			folio_unlock(folio);
3158 
3159 			if (folio_test_hwpoison(folio) ||
3160 			    (folio_test_large(folio) &&
3161 			     folio_test_has_hwpoisoned(folio))) {
3162 				error = -EIO;
3163 				break;
3164 			}
3165 		}
3166 
3167 		/*
3168 		 * i_size must be checked after we know the pages are Uptodate.
3169 		 *
3170 		 * Checking i_size after the check allows us to calculate
3171 		 * the correct value for "nr", which means the zero-filled
3172 		 * part of the page is not copied back to userspace (unless
3173 		 * another truncate extends the file - this is desired though).
3174 		 */
3175 		isize = i_size_read(inode);
3176 		if (unlikely(*ppos >= isize))
3177 			break;
3178 		part = min_t(loff_t, isize - *ppos, len);
3179 
3180 		if (folio) {
3181 			/*
3182 			 * If users can be writing to this page using arbitrary
3183 			 * virtual addresses, take care about potential aliasing
3184 			 * before reading the page on the kernel side.
3185 			 */
3186 			if (mapping_writably_mapped(mapping))
3187 				flush_dcache_folio(folio);
3188 			folio_mark_accessed(folio);
3189 			/*
3190 			 * Ok, we have the page, and it's up-to-date, so we can
3191 			 * now splice it into the pipe.
3192 			 */
3193 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3194 			folio_put(folio);
3195 			folio = NULL;
3196 		} else {
3197 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3198 		}
3199 
3200 		if (!n)
3201 			break;
3202 		len -= n;
3203 		total_spliced += n;
3204 		*ppos += n;
3205 		in->f_ra.prev_pos = *ppos;
3206 		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3207 			break;
3208 
3209 		cond_resched();
3210 	} while (len);
3211 
3212 	if (folio)
3213 		folio_put(folio);
3214 
3215 	file_accessed(in);
3216 	return total_spliced ? total_spliced : error;
3217 }
3218 
3219 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3220 {
3221 	struct address_space *mapping = file->f_mapping;
3222 	struct inode *inode = mapping->host;
3223 
3224 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3225 		return generic_file_llseek_size(file, offset, whence,
3226 					MAX_LFS_FILESIZE, i_size_read(inode));
3227 	if (offset < 0)
3228 		return -ENXIO;
3229 
3230 	inode_lock(inode);
3231 	/* We're holding i_rwsem so we can access i_size directly */
3232 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3233 	if (offset >= 0)
3234 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3235 	inode_unlock(inode);
3236 	return offset;
3237 }
3238 
3239 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3240 							 loff_t len)
3241 {
3242 	struct inode *inode = file_inode(file);
3243 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3244 	struct shmem_inode_info *info = SHMEM_I(inode);
3245 	struct shmem_falloc shmem_falloc;
3246 	pgoff_t start, index, end, undo_fallocend;
3247 	int error;
3248 
3249 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3250 		return -EOPNOTSUPP;
3251 
3252 	inode_lock(inode);
3253 
3254 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3255 		struct address_space *mapping = file->f_mapping;
3256 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3257 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3258 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3259 
3260 		/* protected by i_rwsem */
3261 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3262 			error = -EPERM;
3263 			goto out;
3264 		}
3265 
3266 		shmem_falloc.waitq = &shmem_falloc_waitq;
3267 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3268 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3269 		spin_lock(&inode->i_lock);
3270 		inode->i_private = &shmem_falloc;
3271 		spin_unlock(&inode->i_lock);
3272 
3273 		if ((u64)unmap_end > (u64)unmap_start)
3274 			unmap_mapping_range(mapping, unmap_start,
3275 					    1 + unmap_end - unmap_start, 0);
3276 		shmem_truncate_range(inode, offset, offset + len - 1);
3277 		/* No need to unmap again: hole-punching leaves COWed pages */
3278 
3279 		spin_lock(&inode->i_lock);
3280 		inode->i_private = NULL;
3281 		wake_up_all(&shmem_falloc_waitq);
3282 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3283 		spin_unlock(&inode->i_lock);
3284 		error = 0;
3285 		goto out;
3286 	}
3287 
3288 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3289 	error = inode_newsize_ok(inode, offset + len);
3290 	if (error)
3291 		goto out;
3292 
3293 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3294 		error = -EPERM;
3295 		goto out;
3296 	}
3297 
3298 	start = offset >> PAGE_SHIFT;
3299 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3300 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3301 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3302 		error = -ENOSPC;
3303 		goto out;
3304 	}
3305 
3306 	shmem_falloc.waitq = NULL;
3307 	shmem_falloc.start = start;
3308 	shmem_falloc.next  = start;
3309 	shmem_falloc.nr_falloced = 0;
3310 	shmem_falloc.nr_unswapped = 0;
3311 	spin_lock(&inode->i_lock);
3312 	inode->i_private = &shmem_falloc;
3313 	spin_unlock(&inode->i_lock);
3314 
3315 	/*
3316 	 * info->fallocend is only relevant when huge pages might be
3317 	 * involved: to prevent split_huge_page() freeing fallocated
3318 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3319 	 */
3320 	undo_fallocend = info->fallocend;
3321 	if (info->fallocend < end)
3322 		info->fallocend = end;
3323 
3324 	for (index = start; index < end; ) {
3325 		struct folio *folio;
3326 
3327 		/*
3328 		 * Check for fatal signal so that we abort early in OOM
3329 		 * situations. We don't want to abort in case of non-fatal
3330 		 * signals as large fallocate can take noticeable time and
3331 		 * e.g. periodic timers may result in fallocate constantly
3332 		 * restarting.
3333 		 */
3334 		if (fatal_signal_pending(current))
3335 			error = -EINTR;
3336 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3337 			error = -ENOMEM;
3338 		else
3339 			error = shmem_get_folio(inode, index, &folio,
3340 						SGP_FALLOC);
3341 		if (error) {
3342 			info->fallocend = undo_fallocend;
3343 			/* Remove the !uptodate folios we added */
3344 			if (index > start) {
3345 				shmem_undo_range(inode,
3346 				    (loff_t)start << PAGE_SHIFT,
3347 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3348 			}
3349 			goto undone;
3350 		}
3351 
3352 		/*
3353 		 * Here is a more important optimization than it appears:
3354 		 * a second SGP_FALLOC on the same large folio will clear it,
3355 		 * making it uptodate and un-undoable if we fail later.
3356 		 */
3357 		index = folio_next_index(folio);
3358 		/* Beware 32-bit wraparound */
3359 		if (!index)
3360 			index--;
3361 
3362 		/*
3363 		 * Inform shmem_writepage() how far we have reached.
3364 		 * No need for lock or barrier: we have the page lock.
3365 		 */
3366 		if (!folio_test_uptodate(folio))
3367 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3368 		shmem_falloc.next = index;
3369 
3370 		/*
3371 		 * If !uptodate, leave it that way so that freeable folios
3372 		 * can be recognized if we need to rollback on error later.
3373 		 * But mark it dirty so that memory pressure will swap rather
3374 		 * than free the folios we are allocating (and SGP_CACHE folios
3375 		 * might still be clean: we now need to mark those dirty too).
3376 		 */
3377 		folio_mark_dirty(folio);
3378 		folio_unlock(folio);
3379 		folio_put(folio);
3380 		cond_resched();
3381 	}
3382 
3383 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3384 		i_size_write(inode, offset + len);
3385 undone:
3386 	spin_lock(&inode->i_lock);
3387 	inode->i_private = NULL;
3388 	spin_unlock(&inode->i_lock);
3389 out:
3390 	if (!error)
3391 		file_modified(file);
3392 	inode_unlock(inode);
3393 	return error;
3394 }
3395 
3396 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3397 {
3398 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3399 
3400 	buf->f_type = TMPFS_MAGIC;
3401 	buf->f_bsize = PAGE_SIZE;
3402 	buf->f_namelen = NAME_MAX;
3403 	if (sbinfo->max_blocks) {
3404 		buf->f_blocks = sbinfo->max_blocks;
3405 		buf->f_bavail =
3406 		buf->f_bfree  = sbinfo->max_blocks -
3407 				percpu_counter_sum(&sbinfo->used_blocks);
3408 	}
3409 	if (sbinfo->max_inodes) {
3410 		buf->f_files = sbinfo->max_inodes;
3411 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3412 	}
3413 	/* else leave those fields 0 like simple_statfs */
3414 
3415 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3416 
3417 	return 0;
3418 }
3419 
3420 /*
3421  * File creation. Allocate an inode, and we're done..
3422  */
3423 static int
3424 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3425 	    struct dentry *dentry, umode_t mode, dev_t dev)
3426 {
3427 	struct inode *inode;
3428 	int error;
3429 
3430 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3431 	if (IS_ERR(inode))
3432 		return PTR_ERR(inode);
3433 
3434 	error = simple_acl_create(dir, inode);
3435 	if (error)
3436 		goto out_iput;
3437 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3438 					     shmem_initxattrs, NULL);
3439 	if (error && error != -EOPNOTSUPP)
3440 		goto out_iput;
3441 
3442 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3443 	if (error)
3444 		goto out_iput;
3445 
3446 	dir->i_size += BOGO_DIRENT_SIZE;
3447 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3448 	inode_inc_iversion(dir);
3449 	d_instantiate(dentry, inode);
3450 	dget(dentry); /* Extra count - pin the dentry in core */
3451 	return error;
3452 
3453 out_iput:
3454 	iput(inode);
3455 	return error;
3456 }
3457 
3458 static int
3459 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3460 	      struct file *file, umode_t mode)
3461 {
3462 	struct inode *inode;
3463 	int error;
3464 
3465 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3466 	if (IS_ERR(inode)) {
3467 		error = PTR_ERR(inode);
3468 		goto err_out;
3469 	}
3470 	error = security_inode_init_security(inode, dir, NULL,
3471 					     shmem_initxattrs, NULL);
3472 	if (error && error != -EOPNOTSUPP)
3473 		goto out_iput;
3474 	error = simple_acl_create(dir, inode);
3475 	if (error)
3476 		goto out_iput;
3477 	d_tmpfile(file, inode);
3478 
3479 err_out:
3480 	return finish_open_simple(file, error);
3481 out_iput:
3482 	iput(inode);
3483 	return error;
3484 }
3485 
3486 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3487 		       struct dentry *dentry, umode_t mode)
3488 {
3489 	int error;
3490 
3491 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3492 	if (error)
3493 		return error;
3494 	inc_nlink(dir);
3495 	return 0;
3496 }
3497 
3498 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3499 			struct dentry *dentry, umode_t mode, bool excl)
3500 {
3501 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3502 }
3503 
3504 /*
3505  * Link a file..
3506  */
3507 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3508 		      struct dentry *dentry)
3509 {
3510 	struct inode *inode = d_inode(old_dentry);
3511 	int ret = 0;
3512 
3513 	/*
3514 	 * No ordinary (disk based) filesystem counts links as inodes;
3515 	 * but each new link needs a new dentry, pinning lowmem, and
3516 	 * tmpfs dentries cannot be pruned until they are unlinked.
3517 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3518 	 * first link must skip that, to get the accounting right.
3519 	 */
3520 	if (inode->i_nlink) {
3521 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3522 		if (ret)
3523 			goto out;
3524 	}
3525 
3526 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3527 	if (ret) {
3528 		if (inode->i_nlink)
3529 			shmem_free_inode(inode->i_sb, 0);
3530 		goto out;
3531 	}
3532 
3533 	dir->i_size += BOGO_DIRENT_SIZE;
3534 	inode_set_mtime_to_ts(dir,
3535 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3536 	inode_inc_iversion(dir);
3537 	inc_nlink(inode);
3538 	ihold(inode);	/* New dentry reference */
3539 	dget(dentry);	/* Extra pinning count for the created dentry */
3540 	d_instantiate(dentry, inode);
3541 out:
3542 	return ret;
3543 }
3544 
3545 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3546 {
3547 	struct inode *inode = d_inode(dentry);
3548 
3549 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3550 		shmem_free_inode(inode->i_sb, 0);
3551 
3552 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3553 
3554 	dir->i_size -= BOGO_DIRENT_SIZE;
3555 	inode_set_mtime_to_ts(dir,
3556 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3557 	inode_inc_iversion(dir);
3558 	drop_nlink(inode);
3559 	dput(dentry);	/* Undo the count from "create" - does all the work */
3560 	return 0;
3561 }
3562 
3563 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3564 {
3565 	if (!simple_offset_empty(dentry))
3566 		return -ENOTEMPTY;
3567 
3568 	drop_nlink(d_inode(dentry));
3569 	drop_nlink(dir);
3570 	return shmem_unlink(dir, dentry);
3571 }
3572 
3573 static int shmem_whiteout(struct mnt_idmap *idmap,
3574 			  struct inode *old_dir, struct dentry *old_dentry)
3575 {
3576 	struct dentry *whiteout;
3577 	int error;
3578 
3579 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3580 	if (!whiteout)
3581 		return -ENOMEM;
3582 
3583 	error = shmem_mknod(idmap, old_dir, whiteout,
3584 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3585 	dput(whiteout);
3586 	if (error)
3587 		return error;
3588 
3589 	/*
3590 	 * Cheat and hash the whiteout while the old dentry is still in
3591 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3592 	 *
3593 	 * d_lookup() will consistently find one of them at this point,
3594 	 * not sure which one, but that isn't even important.
3595 	 */
3596 	d_rehash(whiteout);
3597 	return 0;
3598 }
3599 
3600 /*
3601  * The VFS layer already does all the dentry stuff for rename,
3602  * we just have to decrement the usage count for the target if
3603  * it exists so that the VFS layer correctly free's it when it
3604  * gets overwritten.
3605  */
3606 static int shmem_rename2(struct mnt_idmap *idmap,
3607 			 struct inode *old_dir, struct dentry *old_dentry,
3608 			 struct inode *new_dir, struct dentry *new_dentry,
3609 			 unsigned int flags)
3610 {
3611 	struct inode *inode = d_inode(old_dentry);
3612 	int they_are_dirs = S_ISDIR(inode->i_mode);
3613 	int error;
3614 
3615 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3616 		return -EINVAL;
3617 
3618 	if (flags & RENAME_EXCHANGE)
3619 		return simple_offset_rename_exchange(old_dir, old_dentry,
3620 						     new_dir, new_dentry);
3621 
3622 	if (!simple_offset_empty(new_dentry))
3623 		return -ENOTEMPTY;
3624 
3625 	if (flags & RENAME_WHITEOUT) {
3626 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3627 		if (error)
3628 			return error;
3629 	}
3630 
3631 	error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
3632 	if (error)
3633 		return error;
3634 
3635 	if (d_really_is_positive(new_dentry)) {
3636 		(void) shmem_unlink(new_dir, new_dentry);
3637 		if (they_are_dirs) {
3638 			drop_nlink(d_inode(new_dentry));
3639 			drop_nlink(old_dir);
3640 		}
3641 	} else if (they_are_dirs) {
3642 		drop_nlink(old_dir);
3643 		inc_nlink(new_dir);
3644 	}
3645 
3646 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3647 	new_dir->i_size += BOGO_DIRENT_SIZE;
3648 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3649 	inode_inc_iversion(old_dir);
3650 	inode_inc_iversion(new_dir);
3651 	return 0;
3652 }
3653 
3654 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3655 			 struct dentry *dentry, const char *symname)
3656 {
3657 	int error;
3658 	int len;
3659 	struct inode *inode;
3660 	struct folio *folio;
3661 
3662 	len = strlen(symname) + 1;
3663 	if (len > PAGE_SIZE)
3664 		return -ENAMETOOLONG;
3665 
3666 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3667 				VM_NORESERVE);
3668 	if (IS_ERR(inode))
3669 		return PTR_ERR(inode);
3670 
3671 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3672 					     shmem_initxattrs, NULL);
3673 	if (error && error != -EOPNOTSUPP)
3674 		goto out_iput;
3675 
3676 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3677 	if (error)
3678 		goto out_iput;
3679 
3680 	inode->i_size = len-1;
3681 	if (len <= SHORT_SYMLINK_LEN) {
3682 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3683 		if (!inode->i_link) {
3684 			error = -ENOMEM;
3685 			goto out_remove_offset;
3686 		}
3687 		inode->i_op = &shmem_short_symlink_operations;
3688 	} else {
3689 		inode_nohighmem(inode);
3690 		inode->i_mapping->a_ops = &shmem_aops;
3691 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3692 		if (error)
3693 			goto out_remove_offset;
3694 		inode->i_op = &shmem_symlink_inode_operations;
3695 		memcpy(folio_address(folio), symname, len);
3696 		folio_mark_uptodate(folio);
3697 		folio_mark_dirty(folio);
3698 		folio_unlock(folio);
3699 		folio_put(folio);
3700 	}
3701 	dir->i_size += BOGO_DIRENT_SIZE;
3702 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3703 	inode_inc_iversion(dir);
3704 	d_instantiate(dentry, inode);
3705 	dget(dentry);
3706 	return 0;
3707 
3708 out_remove_offset:
3709 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3710 out_iput:
3711 	iput(inode);
3712 	return error;
3713 }
3714 
3715 static void shmem_put_link(void *arg)
3716 {
3717 	folio_mark_accessed(arg);
3718 	folio_put(arg);
3719 }
3720 
3721 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3722 				  struct delayed_call *done)
3723 {
3724 	struct folio *folio = NULL;
3725 	int error;
3726 
3727 	if (!dentry) {
3728 		folio = filemap_get_folio(inode->i_mapping, 0);
3729 		if (IS_ERR(folio))
3730 			return ERR_PTR(-ECHILD);
3731 		if (PageHWPoison(folio_page(folio, 0)) ||
3732 		    !folio_test_uptodate(folio)) {
3733 			folio_put(folio);
3734 			return ERR_PTR(-ECHILD);
3735 		}
3736 	} else {
3737 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3738 		if (error)
3739 			return ERR_PTR(error);
3740 		if (!folio)
3741 			return ERR_PTR(-ECHILD);
3742 		if (PageHWPoison(folio_page(folio, 0))) {
3743 			folio_unlock(folio);
3744 			folio_put(folio);
3745 			return ERR_PTR(-ECHILD);
3746 		}
3747 		folio_unlock(folio);
3748 	}
3749 	set_delayed_call(done, shmem_put_link, folio);
3750 	return folio_address(folio);
3751 }
3752 
3753 #ifdef CONFIG_TMPFS_XATTR
3754 
3755 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3756 {
3757 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3758 
3759 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3760 
3761 	return 0;
3762 }
3763 
3764 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3765 			      struct dentry *dentry, struct fileattr *fa)
3766 {
3767 	struct inode *inode = d_inode(dentry);
3768 	struct shmem_inode_info *info = SHMEM_I(inode);
3769 
3770 	if (fileattr_has_fsx(fa))
3771 		return -EOPNOTSUPP;
3772 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3773 		return -EOPNOTSUPP;
3774 
3775 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3776 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3777 
3778 	shmem_set_inode_flags(inode, info->fsflags);
3779 	inode_set_ctime_current(inode);
3780 	inode_inc_iversion(inode);
3781 	return 0;
3782 }
3783 
3784 /*
3785  * Superblocks without xattr inode operations may get some security.* xattr
3786  * support from the LSM "for free". As soon as we have any other xattrs
3787  * like ACLs, we also need to implement the security.* handlers at
3788  * filesystem level, though.
3789  */
3790 
3791 /*
3792  * Callback for security_inode_init_security() for acquiring xattrs.
3793  */
3794 static int shmem_initxattrs(struct inode *inode,
3795 			    const struct xattr *xattr_array, void *fs_info)
3796 {
3797 	struct shmem_inode_info *info = SHMEM_I(inode);
3798 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3799 	const struct xattr *xattr;
3800 	struct simple_xattr *new_xattr;
3801 	size_t ispace = 0;
3802 	size_t len;
3803 
3804 	if (sbinfo->max_inodes) {
3805 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3806 			ispace += simple_xattr_space(xattr->name,
3807 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3808 		}
3809 		if (ispace) {
3810 			raw_spin_lock(&sbinfo->stat_lock);
3811 			if (sbinfo->free_ispace < ispace)
3812 				ispace = 0;
3813 			else
3814 				sbinfo->free_ispace -= ispace;
3815 			raw_spin_unlock(&sbinfo->stat_lock);
3816 			if (!ispace)
3817 				return -ENOSPC;
3818 		}
3819 	}
3820 
3821 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3822 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3823 		if (!new_xattr)
3824 			break;
3825 
3826 		len = strlen(xattr->name) + 1;
3827 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3828 					  GFP_KERNEL_ACCOUNT);
3829 		if (!new_xattr->name) {
3830 			kvfree(new_xattr);
3831 			break;
3832 		}
3833 
3834 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3835 		       XATTR_SECURITY_PREFIX_LEN);
3836 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3837 		       xattr->name, len);
3838 
3839 		simple_xattr_add(&info->xattrs, new_xattr);
3840 	}
3841 
3842 	if (xattr->name != NULL) {
3843 		if (ispace) {
3844 			raw_spin_lock(&sbinfo->stat_lock);
3845 			sbinfo->free_ispace += ispace;
3846 			raw_spin_unlock(&sbinfo->stat_lock);
3847 		}
3848 		simple_xattrs_free(&info->xattrs, NULL);
3849 		return -ENOMEM;
3850 	}
3851 
3852 	return 0;
3853 }
3854 
3855 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3856 				   struct dentry *unused, struct inode *inode,
3857 				   const char *name, void *buffer, size_t size)
3858 {
3859 	struct shmem_inode_info *info = SHMEM_I(inode);
3860 
3861 	name = xattr_full_name(handler, name);
3862 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3863 }
3864 
3865 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3866 				   struct mnt_idmap *idmap,
3867 				   struct dentry *unused, struct inode *inode,
3868 				   const char *name, const void *value,
3869 				   size_t size, int flags)
3870 {
3871 	struct shmem_inode_info *info = SHMEM_I(inode);
3872 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3873 	struct simple_xattr *old_xattr;
3874 	size_t ispace = 0;
3875 
3876 	name = xattr_full_name(handler, name);
3877 	if (value && sbinfo->max_inodes) {
3878 		ispace = simple_xattr_space(name, size);
3879 		raw_spin_lock(&sbinfo->stat_lock);
3880 		if (sbinfo->free_ispace < ispace)
3881 			ispace = 0;
3882 		else
3883 			sbinfo->free_ispace -= ispace;
3884 		raw_spin_unlock(&sbinfo->stat_lock);
3885 		if (!ispace)
3886 			return -ENOSPC;
3887 	}
3888 
3889 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
3890 	if (!IS_ERR(old_xattr)) {
3891 		ispace = 0;
3892 		if (old_xattr && sbinfo->max_inodes)
3893 			ispace = simple_xattr_space(old_xattr->name,
3894 						    old_xattr->size);
3895 		simple_xattr_free(old_xattr);
3896 		old_xattr = NULL;
3897 		inode_set_ctime_current(inode);
3898 		inode_inc_iversion(inode);
3899 	}
3900 	if (ispace) {
3901 		raw_spin_lock(&sbinfo->stat_lock);
3902 		sbinfo->free_ispace += ispace;
3903 		raw_spin_unlock(&sbinfo->stat_lock);
3904 	}
3905 	return PTR_ERR(old_xattr);
3906 }
3907 
3908 static const struct xattr_handler shmem_security_xattr_handler = {
3909 	.prefix = XATTR_SECURITY_PREFIX,
3910 	.get = shmem_xattr_handler_get,
3911 	.set = shmem_xattr_handler_set,
3912 };
3913 
3914 static const struct xattr_handler shmem_trusted_xattr_handler = {
3915 	.prefix = XATTR_TRUSTED_PREFIX,
3916 	.get = shmem_xattr_handler_get,
3917 	.set = shmem_xattr_handler_set,
3918 };
3919 
3920 static const struct xattr_handler shmem_user_xattr_handler = {
3921 	.prefix = XATTR_USER_PREFIX,
3922 	.get = shmem_xattr_handler_get,
3923 	.set = shmem_xattr_handler_set,
3924 };
3925 
3926 static const struct xattr_handler * const shmem_xattr_handlers[] = {
3927 	&shmem_security_xattr_handler,
3928 	&shmem_trusted_xattr_handler,
3929 	&shmem_user_xattr_handler,
3930 	NULL
3931 };
3932 
3933 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3934 {
3935 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3936 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3937 }
3938 #endif /* CONFIG_TMPFS_XATTR */
3939 
3940 static const struct inode_operations shmem_short_symlink_operations = {
3941 	.getattr	= shmem_getattr,
3942 	.setattr	= shmem_setattr,
3943 	.get_link	= simple_get_link,
3944 #ifdef CONFIG_TMPFS_XATTR
3945 	.listxattr	= shmem_listxattr,
3946 #endif
3947 };
3948 
3949 static const struct inode_operations shmem_symlink_inode_operations = {
3950 	.getattr	= shmem_getattr,
3951 	.setattr	= shmem_setattr,
3952 	.get_link	= shmem_get_link,
3953 #ifdef CONFIG_TMPFS_XATTR
3954 	.listxattr	= shmem_listxattr,
3955 #endif
3956 };
3957 
3958 static struct dentry *shmem_get_parent(struct dentry *child)
3959 {
3960 	return ERR_PTR(-ESTALE);
3961 }
3962 
3963 static int shmem_match(struct inode *ino, void *vfh)
3964 {
3965 	__u32 *fh = vfh;
3966 	__u64 inum = fh[2];
3967 	inum = (inum << 32) | fh[1];
3968 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3969 }
3970 
3971 /* Find any alias of inode, but prefer a hashed alias */
3972 static struct dentry *shmem_find_alias(struct inode *inode)
3973 {
3974 	struct dentry *alias = d_find_alias(inode);
3975 
3976 	return alias ?: d_find_any_alias(inode);
3977 }
3978 
3979 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3980 		struct fid *fid, int fh_len, int fh_type)
3981 {
3982 	struct inode *inode;
3983 	struct dentry *dentry = NULL;
3984 	u64 inum;
3985 
3986 	if (fh_len < 3)
3987 		return NULL;
3988 
3989 	inum = fid->raw[2];
3990 	inum = (inum << 32) | fid->raw[1];
3991 
3992 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3993 			shmem_match, fid->raw);
3994 	if (inode) {
3995 		dentry = shmem_find_alias(inode);
3996 		iput(inode);
3997 	}
3998 
3999 	return dentry;
4000 }
4001 
4002 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4003 				struct inode *parent)
4004 {
4005 	if (*len < 3) {
4006 		*len = 3;
4007 		return FILEID_INVALID;
4008 	}
4009 
4010 	if (inode_unhashed(inode)) {
4011 		/* Unfortunately insert_inode_hash is not idempotent,
4012 		 * so as we hash inodes here rather than at creation
4013 		 * time, we need a lock to ensure we only try
4014 		 * to do it once
4015 		 */
4016 		static DEFINE_SPINLOCK(lock);
4017 		spin_lock(&lock);
4018 		if (inode_unhashed(inode))
4019 			__insert_inode_hash(inode,
4020 					    inode->i_ino + inode->i_generation);
4021 		spin_unlock(&lock);
4022 	}
4023 
4024 	fh[0] = inode->i_generation;
4025 	fh[1] = inode->i_ino;
4026 	fh[2] = ((__u64)inode->i_ino) >> 32;
4027 
4028 	*len = 3;
4029 	return 1;
4030 }
4031 
4032 static const struct export_operations shmem_export_ops = {
4033 	.get_parent     = shmem_get_parent,
4034 	.encode_fh      = shmem_encode_fh,
4035 	.fh_to_dentry	= shmem_fh_to_dentry,
4036 };
4037 
4038 enum shmem_param {
4039 	Opt_gid,
4040 	Opt_huge,
4041 	Opt_mode,
4042 	Opt_mpol,
4043 	Opt_nr_blocks,
4044 	Opt_nr_inodes,
4045 	Opt_size,
4046 	Opt_uid,
4047 	Opt_inode32,
4048 	Opt_inode64,
4049 	Opt_noswap,
4050 	Opt_quota,
4051 	Opt_usrquota,
4052 	Opt_grpquota,
4053 	Opt_usrquota_block_hardlimit,
4054 	Opt_usrquota_inode_hardlimit,
4055 	Opt_grpquota_block_hardlimit,
4056 	Opt_grpquota_inode_hardlimit,
4057 };
4058 
4059 static const struct constant_table shmem_param_enums_huge[] = {
4060 	{"never",	SHMEM_HUGE_NEVER },
4061 	{"always",	SHMEM_HUGE_ALWAYS },
4062 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
4063 	{"advise",	SHMEM_HUGE_ADVISE },
4064 	{}
4065 };
4066 
4067 const struct fs_parameter_spec shmem_fs_parameters[] = {
4068 	fsparam_gid   ("gid",		Opt_gid),
4069 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
4070 	fsparam_u32oct("mode",		Opt_mode),
4071 	fsparam_string("mpol",		Opt_mpol),
4072 	fsparam_string("nr_blocks",	Opt_nr_blocks),
4073 	fsparam_string("nr_inodes",	Opt_nr_inodes),
4074 	fsparam_string("size",		Opt_size),
4075 	fsparam_uid   ("uid",		Opt_uid),
4076 	fsparam_flag  ("inode32",	Opt_inode32),
4077 	fsparam_flag  ("inode64",	Opt_inode64),
4078 	fsparam_flag  ("noswap",	Opt_noswap),
4079 #ifdef CONFIG_TMPFS_QUOTA
4080 	fsparam_flag  ("quota",		Opt_quota),
4081 	fsparam_flag  ("usrquota",	Opt_usrquota),
4082 	fsparam_flag  ("grpquota",	Opt_grpquota),
4083 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4084 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4085 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4086 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4087 #endif
4088 	{}
4089 };
4090 
4091 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4092 {
4093 	struct shmem_options *ctx = fc->fs_private;
4094 	struct fs_parse_result result;
4095 	unsigned long long size;
4096 	char *rest;
4097 	int opt;
4098 	kuid_t kuid;
4099 	kgid_t kgid;
4100 
4101 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4102 	if (opt < 0)
4103 		return opt;
4104 
4105 	switch (opt) {
4106 	case Opt_size:
4107 		size = memparse(param->string, &rest);
4108 		if (*rest == '%') {
4109 			size <<= PAGE_SHIFT;
4110 			size *= totalram_pages();
4111 			do_div(size, 100);
4112 			rest++;
4113 		}
4114 		if (*rest)
4115 			goto bad_value;
4116 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4117 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4118 		break;
4119 	case Opt_nr_blocks:
4120 		ctx->blocks = memparse(param->string, &rest);
4121 		if (*rest || ctx->blocks > LONG_MAX)
4122 			goto bad_value;
4123 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4124 		break;
4125 	case Opt_nr_inodes:
4126 		ctx->inodes = memparse(param->string, &rest);
4127 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4128 			goto bad_value;
4129 		ctx->seen |= SHMEM_SEEN_INODES;
4130 		break;
4131 	case Opt_mode:
4132 		ctx->mode = result.uint_32 & 07777;
4133 		break;
4134 	case Opt_uid:
4135 		kuid = result.uid;
4136 
4137 		/*
4138 		 * The requested uid must be representable in the
4139 		 * filesystem's idmapping.
4140 		 */
4141 		if (!kuid_has_mapping(fc->user_ns, kuid))
4142 			goto bad_value;
4143 
4144 		ctx->uid = kuid;
4145 		break;
4146 	case Opt_gid:
4147 		kgid = result.gid;
4148 
4149 		/*
4150 		 * The requested gid must be representable in the
4151 		 * filesystem's idmapping.
4152 		 */
4153 		if (!kgid_has_mapping(fc->user_ns, kgid))
4154 			goto bad_value;
4155 
4156 		ctx->gid = kgid;
4157 		break;
4158 	case Opt_huge:
4159 		ctx->huge = result.uint_32;
4160 		if (ctx->huge != SHMEM_HUGE_NEVER &&
4161 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4162 		      has_transparent_hugepage()))
4163 			goto unsupported_parameter;
4164 		ctx->seen |= SHMEM_SEEN_HUGE;
4165 		break;
4166 	case Opt_mpol:
4167 		if (IS_ENABLED(CONFIG_NUMA)) {
4168 			mpol_put(ctx->mpol);
4169 			ctx->mpol = NULL;
4170 			if (mpol_parse_str(param->string, &ctx->mpol))
4171 				goto bad_value;
4172 			break;
4173 		}
4174 		goto unsupported_parameter;
4175 	case Opt_inode32:
4176 		ctx->full_inums = false;
4177 		ctx->seen |= SHMEM_SEEN_INUMS;
4178 		break;
4179 	case Opt_inode64:
4180 		if (sizeof(ino_t) < 8) {
4181 			return invalfc(fc,
4182 				       "Cannot use inode64 with <64bit inums in kernel\n");
4183 		}
4184 		ctx->full_inums = true;
4185 		ctx->seen |= SHMEM_SEEN_INUMS;
4186 		break;
4187 	case Opt_noswap:
4188 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4189 			return invalfc(fc,
4190 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4191 		}
4192 		ctx->noswap = true;
4193 		ctx->seen |= SHMEM_SEEN_NOSWAP;
4194 		break;
4195 	case Opt_quota:
4196 		if (fc->user_ns != &init_user_ns)
4197 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4198 		ctx->seen |= SHMEM_SEEN_QUOTA;
4199 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4200 		break;
4201 	case Opt_usrquota:
4202 		if (fc->user_ns != &init_user_ns)
4203 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4204 		ctx->seen |= SHMEM_SEEN_QUOTA;
4205 		ctx->quota_types |= QTYPE_MASK_USR;
4206 		break;
4207 	case Opt_grpquota:
4208 		if (fc->user_ns != &init_user_ns)
4209 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4210 		ctx->seen |= SHMEM_SEEN_QUOTA;
4211 		ctx->quota_types |= QTYPE_MASK_GRP;
4212 		break;
4213 	case Opt_usrquota_block_hardlimit:
4214 		size = memparse(param->string, &rest);
4215 		if (*rest || !size)
4216 			goto bad_value;
4217 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4218 			return invalfc(fc,
4219 				       "User quota block hardlimit too large.");
4220 		ctx->qlimits.usrquota_bhardlimit = size;
4221 		break;
4222 	case Opt_grpquota_block_hardlimit:
4223 		size = memparse(param->string, &rest);
4224 		if (*rest || !size)
4225 			goto bad_value;
4226 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4227 			return invalfc(fc,
4228 				       "Group quota block hardlimit too large.");
4229 		ctx->qlimits.grpquota_bhardlimit = size;
4230 		break;
4231 	case Opt_usrquota_inode_hardlimit:
4232 		size = memparse(param->string, &rest);
4233 		if (*rest || !size)
4234 			goto bad_value;
4235 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4236 			return invalfc(fc,
4237 				       "User quota inode hardlimit too large.");
4238 		ctx->qlimits.usrquota_ihardlimit = size;
4239 		break;
4240 	case Opt_grpquota_inode_hardlimit:
4241 		size = memparse(param->string, &rest);
4242 		if (*rest || !size)
4243 			goto bad_value;
4244 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4245 			return invalfc(fc,
4246 				       "Group quota inode hardlimit too large.");
4247 		ctx->qlimits.grpquota_ihardlimit = size;
4248 		break;
4249 	}
4250 	return 0;
4251 
4252 unsupported_parameter:
4253 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4254 bad_value:
4255 	return invalfc(fc, "Bad value for '%s'", param->key);
4256 }
4257 
4258 static int shmem_parse_options(struct fs_context *fc, void *data)
4259 {
4260 	char *options = data;
4261 
4262 	if (options) {
4263 		int err = security_sb_eat_lsm_opts(options, &fc->security);
4264 		if (err)
4265 			return err;
4266 	}
4267 
4268 	while (options != NULL) {
4269 		char *this_char = options;
4270 		for (;;) {
4271 			/*
4272 			 * NUL-terminate this option: unfortunately,
4273 			 * mount options form a comma-separated list,
4274 			 * but mpol's nodelist may also contain commas.
4275 			 */
4276 			options = strchr(options, ',');
4277 			if (options == NULL)
4278 				break;
4279 			options++;
4280 			if (!isdigit(*options)) {
4281 				options[-1] = '\0';
4282 				break;
4283 			}
4284 		}
4285 		if (*this_char) {
4286 			char *value = strchr(this_char, '=');
4287 			size_t len = 0;
4288 			int err;
4289 
4290 			if (value) {
4291 				*value++ = '\0';
4292 				len = strlen(value);
4293 			}
4294 			err = vfs_parse_fs_string(fc, this_char, value, len);
4295 			if (err < 0)
4296 				return err;
4297 		}
4298 	}
4299 	return 0;
4300 }
4301 
4302 /*
4303  * Reconfigure a shmem filesystem.
4304  */
4305 static int shmem_reconfigure(struct fs_context *fc)
4306 {
4307 	struct shmem_options *ctx = fc->fs_private;
4308 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4309 	unsigned long used_isp;
4310 	struct mempolicy *mpol = NULL;
4311 	const char *err;
4312 
4313 	raw_spin_lock(&sbinfo->stat_lock);
4314 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4315 
4316 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4317 		if (!sbinfo->max_blocks) {
4318 			err = "Cannot retroactively limit size";
4319 			goto out;
4320 		}
4321 		if (percpu_counter_compare(&sbinfo->used_blocks,
4322 					   ctx->blocks) > 0) {
4323 			err = "Too small a size for current use";
4324 			goto out;
4325 		}
4326 	}
4327 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4328 		if (!sbinfo->max_inodes) {
4329 			err = "Cannot retroactively limit inodes";
4330 			goto out;
4331 		}
4332 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4333 			err = "Too few inodes for current use";
4334 			goto out;
4335 		}
4336 	}
4337 
4338 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4339 	    sbinfo->next_ino > UINT_MAX) {
4340 		err = "Current inum too high to switch to 32-bit inums";
4341 		goto out;
4342 	}
4343 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4344 		err = "Cannot disable swap on remount";
4345 		goto out;
4346 	}
4347 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4348 		err = "Cannot enable swap on remount if it was disabled on first mount";
4349 		goto out;
4350 	}
4351 
4352 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4353 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4354 		err = "Cannot enable quota on remount";
4355 		goto out;
4356 	}
4357 
4358 #ifdef CONFIG_TMPFS_QUOTA
4359 #define CHANGED_LIMIT(name)						\
4360 	(ctx->qlimits.name## hardlimit &&				\
4361 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4362 
4363 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4364 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4365 		err = "Cannot change global quota limit on remount";
4366 		goto out;
4367 	}
4368 #endif /* CONFIG_TMPFS_QUOTA */
4369 
4370 	if (ctx->seen & SHMEM_SEEN_HUGE)
4371 		sbinfo->huge = ctx->huge;
4372 	if (ctx->seen & SHMEM_SEEN_INUMS)
4373 		sbinfo->full_inums = ctx->full_inums;
4374 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4375 		sbinfo->max_blocks  = ctx->blocks;
4376 	if (ctx->seen & SHMEM_SEEN_INODES) {
4377 		sbinfo->max_inodes  = ctx->inodes;
4378 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4379 	}
4380 
4381 	/*
4382 	 * Preserve previous mempolicy unless mpol remount option was specified.
4383 	 */
4384 	if (ctx->mpol) {
4385 		mpol = sbinfo->mpol;
4386 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4387 		ctx->mpol = NULL;
4388 	}
4389 
4390 	if (ctx->noswap)
4391 		sbinfo->noswap = true;
4392 
4393 	raw_spin_unlock(&sbinfo->stat_lock);
4394 	mpol_put(mpol);
4395 	return 0;
4396 out:
4397 	raw_spin_unlock(&sbinfo->stat_lock);
4398 	return invalfc(fc, "%s", err);
4399 }
4400 
4401 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4402 {
4403 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4404 	struct mempolicy *mpol;
4405 
4406 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4407 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4408 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4409 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4410 	if (sbinfo->mode != (0777 | S_ISVTX))
4411 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4412 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4413 		seq_printf(seq, ",uid=%u",
4414 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4415 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4416 		seq_printf(seq, ",gid=%u",
4417 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4418 
4419 	/*
4420 	 * Showing inode{64,32} might be useful even if it's the system default,
4421 	 * since then people don't have to resort to checking both here and
4422 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4423 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4424 	 *
4425 	 * We hide it when inode64 isn't the default and we are using 32-bit
4426 	 * inodes, since that probably just means the feature isn't even under
4427 	 * consideration.
4428 	 *
4429 	 * As such:
4430 	 *
4431 	 *                     +-----------------+-----------------+
4432 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4433 	 *  +------------------+-----------------+-----------------+
4434 	 *  | full_inums=true  | show            | show            |
4435 	 *  | full_inums=false | show            | hide            |
4436 	 *  +------------------+-----------------+-----------------+
4437 	 *
4438 	 */
4439 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4440 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4441 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4442 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4443 	if (sbinfo->huge)
4444 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4445 #endif
4446 	mpol = shmem_get_sbmpol(sbinfo);
4447 	shmem_show_mpol(seq, mpol);
4448 	mpol_put(mpol);
4449 	if (sbinfo->noswap)
4450 		seq_printf(seq, ",noswap");
4451 #ifdef CONFIG_TMPFS_QUOTA
4452 	if (sb_has_quota_active(root->d_sb, USRQUOTA))
4453 		seq_printf(seq, ",usrquota");
4454 	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4455 		seq_printf(seq, ",grpquota");
4456 	if (sbinfo->qlimits.usrquota_bhardlimit)
4457 		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4458 			   sbinfo->qlimits.usrquota_bhardlimit);
4459 	if (sbinfo->qlimits.grpquota_bhardlimit)
4460 		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4461 			   sbinfo->qlimits.grpquota_bhardlimit);
4462 	if (sbinfo->qlimits.usrquota_ihardlimit)
4463 		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4464 			   sbinfo->qlimits.usrquota_ihardlimit);
4465 	if (sbinfo->qlimits.grpquota_ihardlimit)
4466 		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4467 			   sbinfo->qlimits.grpquota_ihardlimit);
4468 #endif
4469 	return 0;
4470 }
4471 
4472 #endif /* CONFIG_TMPFS */
4473 
4474 static void shmem_put_super(struct super_block *sb)
4475 {
4476 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4477 
4478 #ifdef CONFIG_TMPFS_QUOTA
4479 	shmem_disable_quotas(sb);
4480 #endif
4481 	free_percpu(sbinfo->ino_batch);
4482 	percpu_counter_destroy(&sbinfo->used_blocks);
4483 	mpol_put(sbinfo->mpol);
4484 	kfree(sbinfo);
4485 	sb->s_fs_info = NULL;
4486 }
4487 
4488 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4489 {
4490 	struct shmem_options *ctx = fc->fs_private;
4491 	struct inode *inode;
4492 	struct shmem_sb_info *sbinfo;
4493 	int error = -ENOMEM;
4494 
4495 	/* Round up to L1_CACHE_BYTES to resist false sharing */
4496 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4497 				L1_CACHE_BYTES), GFP_KERNEL);
4498 	if (!sbinfo)
4499 		return error;
4500 
4501 	sb->s_fs_info = sbinfo;
4502 
4503 #ifdef CONFIG_TMPFS
4504 	/*
4505 	 * Per default we only allow half of the physical ram per
4506 	 * tmpfs instance, limiting inodes to one per page of lowmem;
4507 	 * but the internal instance is left unlimited.
4508 	 */
4509 	if (!(sb->s_flags & SB_KERNMOUNT)) {
4510 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4511 			ctx->blocks = shmem_default_max_blocks();
4512 		if (!(ctx->seen & SHMEM_SEEN_INODES))
4513 			ctx->inodes = shmem_default_max_inodes();
4514 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4515 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4516 		sbinfo->noswap = ctx->noswap;
4517 	} else {
4518 		sb->s_flags |= SB_NOUSER;
4519 	}
4520 	sb->s_export_op = &shmem_export_ops;
4521 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4522 #else
4523 	sb->s_flags |= SB_NOUSER;
4524 #endif
4525 	sbinfo->max_blocks = ctx->blocks;
4526 	sbinfo->max_inodes = ctx->inodes;
4527 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4528 	if (sb->s_flags & SB_KERNMOUNT) {
4529 		sbinfo->ino_batch = alloc_percpu(ino_t);
4530 		if (!sbinfo->ino_batch)
4531 			goto failed;
4532 	}
4533 	sbinfo->uid = ctx->uid;
4534 	sbinfo->gid = ctx->gid;
4535 	sbinfo->full_inums = ctx->full_inums;
4536 	sbinfo->mode = ctx->mode;
4537 	sbinfo->huge = ctx->huge;
4538 	sbinfo->mpol = ctx->mpol;
4539 	ctx->mpol = NULL;
4540 
4541 	raw_spin_lock_init(&sbinfo->stat_lock);
4542 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4543 		goto failed;
4544 	spin_lock_init(&sbinfo->shrinklist_lock);
4545 	INIT_LIST_HEAD(&sbinfo->shrinklist);
4546 
4547 	sb->s_maxbytes = MAX_LFS_FILESIZE;
4548 	sb->s_blocksize = PAGE_SIZE;
4549 	sb->s_blocksize_bits = PAGE_SHIFT;
4550 	sb->s_magic = TMPFS_MAGIC;
4551 	sb->s_op = &shmem_ops;
4552 	sb->s_time_gran = 1;
4553 #ifdef CONFIG_TMPFS_XATTR
4554 	sb->s_xattr = shmem_xattr_handlers;
4555 #endif
4556 #ifdef CONFIG_TMPFS_POSIX_ACL
4557 	sb->s_flags |= SB_POSIXACL;
4558 #endif
4559 	uuid_t uuid;
4560 	uuid_gen(&uuid);
4561 	super_set_uuid(sb, uuid.b, sizeof(uuid));
4562 
4563 #ifdef CONFIG_TMPFS_QUOTA
4564 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4565 		sb->dq_op = &shmem_quota_operations;
4566 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4567 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4568 
4569 		/* Copy the default limits from ctx into sbinfo */
4570 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4571 		       sizeof(struct shmem_quota_limits));
4572 
4573 		if (shmem_enable_quotas(sb, ctx->quota_types))
4574 			goto failed;
4575 	}
4576 #endif /* CONFIG_TMPFS_QUOTA */
4577 
4578 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
4579 				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
4580 	if (IS_ERR(inode)) {
4581 		error = PTR_ERR(inode);
4582 		goto failed;
4583 	}
4584 	inode->i_uid = sbinfo->uid;
4585 	inode->i_gid = sbinfo->gid;
4586 	sb->s_root = d_make_root(inode);
4587 	if (!sb->s_root)
4588 		goto failed;
4589 	return 0;
4590 
4591 failed:
4592 	shmem_put_super(sb);
4593 	return error;
4594 }
4595 
4596 static int shmem_get_tree(struct fs_context *fc)
4597 {
4598 	return get_tree_nodev(fc, shmem_fill_super);
4599 }
4600 
4601 static void shmem_free_fc(struct fs_context *fc)
4602 {
4603 	struct shmem_options *ctx = fc->fs_private;
4604 
4605 	if (ctx) {
4606 		mpol_put(ctx->mpol);
4607 		kfree(ctx);
4608 	}
4609 }
4610 
4611 static const struct fs_context_operations shmem_fs_context_ops = {
4612 	.free			= shmem_free_fc,
4613 	.get_tree		= shmem_get_tree,
4614 #ifdef CONFIG_TMPFS
4615 	.parse_monolithic	= shmem_parse_options,
4616 	.parse_param		= shmem_parse_one,
4617 	.reconfigure		= shmem_reconfigure,
4618 #endif
4619 };
4620 
4621 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4622 
4623 static struct inode *shmem_alloc_inode(struct super_block *sb)
4624 {
4625 	struct shmem_inode_info *info;
4626 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4627 	if (!info)
4628 		return NULL;
4629 	return &info->vfs_inode;
4630 }
4631 
4632 static void shmem_free_in_core_inode(struct inode *inode)
4633 {
4634 	if (S_ISLNK(inode->i_mode))
4635 		kfree(inode->i_link);
4636 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4637 }
4638 
4639 static void shmem_destroy_inode(struct inode *inode)
4640 {
4641 	if (S_ISREG(inode->i_mode))
4642 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4643 	if (S_ISDIR(inode->i_mode))
4644 		simple_offset_destroy(shmem_get_offset_ctx(inode));
4645 }
4646 
4647 static void shmem_init_inode(void *foo)
4648 {
4649 	struct shmem_inode_info *info = foo;
4650 	inode_init_once(&info->vfs_inode);
4651 }
4652 
4653 static void __init shmem_init_inodecache(void)
4654 {
4655 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4656 				sizeof(struct shmem_inode_info),
4657 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4658 }
4659 
4660 static void __init shmem_destroy_inodecache(void)
4661 {
4662 	kmem_cache_destroy(shmem_inode_cachep);
4663 }
4664 
4665 /* Keep the page in page cache instead of truncating it */
4666 static int shmem_error_remove_folio(struct address_space *mapping,
4667 				   struct folio *folio)
4668 {
4669 	return 0;
4670 }
4671 
4672 static const struct address_space_operations shmem_aops = {
4673 	.writepage	= shmem_writepage,
4674 	.dirty_folio	= noop_dirty_folio,
4675 #ifdef CONFIG_TMPFS
4676 	.write_begin	= shmem_write_begin,
4677 	.write_end	= shmem_write_end,
4678 #endif
4679 #ifdef CONFIG_MIGRATION
4680 	.migrate_folio	= migrate_folio,
4681 #endif
4682 	.error_remove_folio = shmem_error_remove_folio,
4683 };
4684 
4685 static const struct file_operations shmem_file_operations = {
4686 	.mmap		= shmem_mmap,
4687 	.open		= shmem_file_open,
4688 	.get_unmapped_area = shmem_get_unmapped_area,
4689 #ifdef CONFIG_TMPFS
4690 	.llseek		= shmem_file_llseek,
4691 	.read_iter	= shmem_file_read_iter,
4692 	.write_iter	= shmem_file_write_iter,
4693 	.fsync		= noop_fsync,
4694 	.splice_read	= shmem_file_splice_read,
4695 	.splice_write	= iter_file_splice_write,
4696 	.fallocate	= shmem_fallocate,
4697 #endif
4698 };
4699 
4700 static const struct inode_operations shmem_inode_operations = {
4701 	.getattr	= shmem_getattr,
4702 	.setattr	= shmem_setattr,
4703 #ifdef CONFIG_TMPFS_XATTR
4704 	.listxattr	= shmem_listxattr,
4705 	.set_acl	= simple_set_acl,
4706 	.fileattr_get	= shmem_fileattr_get,
4707 	.fileattr_set	= shmem_fileattr_set,
4708 #endif
4709 };
4710 
4711 static const struct inode_operations shmem_dir_inode_operations = {
4712 #ifdef CONFIG_TMPFS
4713 	.getattr	= shmem_getattr,
4714 	.create		= shmem_create,
4715 	.lookup		= simple_lookup,
4716 	.link		= shmem_link,
4717 	.unlink		= shmem_unlink,
4718 	.symlink	= shmem_symlink,
4719 	.mkdir		= shmem_mkdir,
4720 	.rmdir		= shmem_rmdir,
4721 	.mknod		= shmem_mknod,
4722 	.rename		= shmem_rename2,
4723 	.tmpfile	= shmem_tmpfile,
4724 	.get_offset_ctx	= shmem_get_offset_ctx,
4725 #endif
4726 #ifdef CONFIG_TMPFS_XATTR
4727 	.listxattr	= shmem_listxattr,
4728 	.fileattr_get	= shmem_fileattr_get,
4729 	.fileattr_set	= shmem_fileattr_set,
4730 #endif
4731 #ifdef CONFIG_TMPFS_POSIX_ACL
4732 	.setattr	= shmem_setattr,
4733 	.set_acl	= simple_set_acl,
4734 #endif
4735 };
4736 
4737 static const struct inode_operations shmem_special_inode_operations = {
4738 	.getattr	= shmem_getattr,
4739 #ifdef CONFIG_TMPFS_XATTR
4740 	.listxattr	= shmem_listxattr,
4741 #endif
4742 #ifdef CONFIG_TMPFS_POSIX_ACL
4743 	.setattr	= shmem_setattr,
4744 	.set_acl	= simple_set_acl,
4745 #endif
4746 };
4747 
4748 static const struct super_operations shmem_ops = {
4749 	.alloc_inode	= shmem_alloc_inode,
4750 	.free_inode	= shmem_free_in_core_inode,
4751 	.destroy_inode	= shmem_destroy_inode,
4752 #ifdef CONFIG_TMPFS
4753 	.statfs		= shmem_statfs,
4754 	.show_options	= shmem_show_options,
4755 #endif
4756 #ifdef CONFIG_TMPFS_QUOTA
4757 	.get_dquots	= shmem_get_dquots,
4758 #endif
4759 	.evict_inode	= shmem_evict_inode,
4760 	.drop_inode	= generic_delete_inode,
4761 	.put_super	= shmem_put_super,
4762 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4763 	.nr_cached_objects	= shmem_unused_huge_count,
4764 	.free_cached_objects	= shmem_unused_huge_scan,
4765 #endif
4766 };
4767 
4768 static const struct vm_operations_struct shmem_vm_ops = {
4769 	.fault		= shmem_fault,
4770 	.map_pages	= filemap_map_pages,
4771 #ifdef CONFIG_NUMA
4772 	.set_policy     = shmem_set_policy,
4773 	.get_policy     = shmem_get_policy,
4774 #endif
4775 };
4776 
4777 static const struct vm_operations_struct shmem_anon_vm_ops = {
4778 	.fault		= shmem_fault,
4779 	.map_pages	= filemap_map_pages,
4780 #ifdef CONFIG_NUMA
4781 	.set_policy     = shmem_set_policy,
4782 	.get_policy     = shmem_get_policy,
4783 #endif
4784 };
4785 
4786 int shmem_init_fs_context(struct fs_context *fc)
4787 {
4788 	struct shmem_options *ctx;
4789 
4790 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4791 	if (!ctx)
4792 		return -ENOMEM;
4793 
4794 	ctx->mode = 0777 | S_ISVTX;
4795 	ctx->uid = current_fsuid();
4796 	ctx->gid = current_fsgid();
4797 
4798 	fc->fs_private = ctx;
4799 	fc->ops = &shmem_fs_context_ops;
4800 	return 0;
4801 }
4802 
4803 static struct file_system_type shmem_fs_type = {
4804 	.owner		= THIS_MODULE,
4805 	.name		= "tmpfs",
4806 	.init_fs_context = shmem_init_fs_context,
4807 #ifdef CONFIG_TMPFS
4808 	.parameters	= shmem_fs_parameters,
4809 #endif
4810 	.kill_sb	= kill_litter_super,
4811 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4812 };
4813 
4814 void __init shmem_init(void)
4815 {
4816 	int error;
4817 
4818 	shmem_init_inodecache();
4819 
4820 #ifdef CONFIG_TMPFS_QUOTA
4821 	error = register_quota_format(&shmem_quota_format);
4822 	if (error < 0) {
4823 		pr_err("Could not register quota format\n");
4824 		goto out3;
4825 	}
4826 #endif
4827 
4828 	error = register_filesystem(&shmem_fs_type);
4829 	if (error) {
4830 		pr_err("Could not register tmpfs\n");
4831 		goto out2;
4832 	}
4833 
4834 	shm_mnt = kern_mount(&shmem_fs_type);
4835 	if (IS_ERR(shm_mnt)) {
4836 		error = PTR_ERR(shm_mnt);
4837 		pr_err("Could not kern_mount tmpfs\n");
4838 		goto out1;
4839 	}
4840 
4841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4842 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4843 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4844 	else
4845 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4846 
4847 	/*
4848 	 * Default to setting PMD-sized THP to inherit the global setting and
4849 	 * disable all other multi-size THPs.
4850 	 */
4851 	huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
4852 #endif
4853 	return;
4854 
4855 out1:
4856 	unregister_filesystem(&shmem_fs_type);
4857 out2:
4858 #ifdef CONFIG_TMPFS_QUOTA
4859 	unregister_quota_format(&shmem_quota_format);
4860 out3:
4861 #endif
4862 	shmem_destroy_inodecache();
4863 	shm_mnt = ERR_PTR(error);
4864 }
4865 
4866 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4867 static ssize_t shmem_enabled_show(struct kobject *kobj,
4868 				  struct kobj_attribute *attr, char *buf)
4869 {
4870 	static const int values[] = {
4871 		SHMEM_HUGE_ALWAYS,
4872 		SHMEM_HUGE_WITHIN_SIZE,
4873 		SHMEM_HUGE_ADVISE,
4874 		SHMEM_HUGE_NEVER,
4875 		SHMEM_HUGE_DENY,
4876 		SHMEM_HUGE_FORCE,
4877 	};
4878 	int len = 0;
4879 	int i;
4880 
4881 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4882 		len += sysfs_emit_at(buf, len,
4883 				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4884 				i ? " " : "", shmem_format_huge(values[i]));
4885 	}
4886 	len += sysfs_emit_at(buf, len, "\n");
4887 
4888 	return len;
4889 }
4890 
4891 static ssize_t shmem_enabled_store(struct kobject *kobj,
4892 		struct kobj_attribute *attr, const char *buf, size_t count)
4893 {
4894 	char tmp[16];
4895 	int huge;
4896 
4897 	if (count + 1 > sizeof(tmp))
4898 		return -EINVAL;
4899 	memcpy(tmp, buf, count);
4900 	tmp[count] = '\0';
4901 	if (count && tmp[count - 1] == '\n')
4902 		tmp[count - 1] = '\0';
4903 
4904 	huge = shmem_parse_huge(tmp);
4905 	if (huge == -EINVAL)
4906 		return -EINVAL;
4907 	if (!has_transparent_hugepage() &&
4908 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4909 		return -EINVAL;
4910 
4911 	/* Do not override huge allocation policy with non-PMD sized mTHP */
4912 	if (huge == SHMEM_HUGE_FORCE &&
4913 	    huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
4914 		return -EINVAL;
4915 
4916 	shmem_huge = huge;
4917 	if (shmem_huge > SHMEM_HUGE_DENY)
4918 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4919 	return count;
4920 }
4921 
4922 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4923 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
4924 
4925 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
4926 					  struct kobj_attribute *attr, char *buf)
4927 {
4928 	int order = to_thpsize(kobj)->order;
4929 	const char *output;
4930 
4931 	if (test_bit(order, &huge_shmem_orders_always))
4932 		output = "[always] inherit within_size advise never";
4933 	else if (test_bit(order, &huge_shmem_orders_inherit))
4934 		output = "always [inherit] within_size advise never";
4935 	else if (test_bit(order, &huge_shmem_orders_within_size))
4936 		output = "always inherit [within_size] advise never";
4937 	else if (test_bit(order, &huge_shmem_orders_madvise))
4938 		output = "always inherit within_size [advise] never";
4939 	else
4940 		output = "always inherit within_size advise [never]";
4941 
4942 	return sysfs_emit(buf, "%s\n", output);
4943 }
4944 
4945 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
4946 					   struct kobj_attribute *attr,
4947 					   const char *buf, size_t count)
4948 {
4949 	int order = to_thpsize(kobj)->order;
4950 	ssize_t ret = count;
4951 
4952 	if (sysfs_streq(buf, "always")) {
4953 		spin_lock(&huge_shmem_orders_lock);
4954 		clear_bit(order, &huge_shmem_orders_inherit);
4955 		clear_bit(order, &huge_shmem_orders_madvise);
4956 		clear_bit(order, &huge_shmem_orders_within_size);
4957 		set_bit(order, &huge_shmem_orders_always);
4958 		spin_unlock(&huge_shmem_orders_lock);
4959 	} else if (sysfs_streq(buf, "inherit")) {
4960 		/* Do not override huge allocation policy with non-PMD sized mTHP */
4961 		if (shmem_huge == SHMEM_HUGE_FORCE &&
4962 		    order != HPAGE_PMD_ORDER)
4963 			return -EINVAL;
4964 
4965 		spin_lock(&huge_shmem_orders_lock);
4966 		clear_bit(order, &huge_shmem_orders_always);
4967 		clear_bit(order, &huge_shmem_orders_madvise);
4968 		clear_bit(order, &huge_shmem_orders_within_size);
4969 		set_bit(order, &huge_shmem_orders_inherit);
4970 		spin_unlock(&huge_shmem_orders_lock);
4971 	} else if (sysfs_streq(buf, "within_size")) {
4972 		spin_lock(&huge_shmem_orders_lock);
4973 		clear_bit(order, &huge_shmem_orders_always);
4974 		clear_bit(order, &huge_shmem_orders_inherit);
4975 		clear_bit(order, &huge_shmem_orders_madvise);
4976 		set_bit(order, &huge_shmem_orders_within_size);
4977 		spin_unlock(&huge_shmem_orders_lock);
4978 	} else if (sysfs_streq(buf, "advise")) {
4979 		spin_lock(&huge_shmem_orders_lock);
4980 		clear_bit(order, &huge_shmem_orders_always);
4981 		clear_bit(order, &huge_shmem_orders_inherit);
4982 		clear_bit(order, &huge_shmem_orders_within_size);
4983 		set_bit(order, &huge_shmem_orders_madvise);
4984 		spin_unlock(&huge_shmem_orders_lock);
4985 	} else if (sysfs_streq(buf, "never")) {
4986 		spin_lock(&huge_shmem_orders_lock);
4987 		clear_bit(order, &huge_shmem_orders_always);
4988 		clear_bit(order, &huge_shmem_orders_inherit);
4989 		clear_bit(order, &huge_shmem_orders_within_size);
4990 		clear_bit(order, &huge_shmem_orders_madvise);
4991 		spin_unlock(&huge_shmem_orders_lock);
4992 	} else {
4993 		ret = -EINVAL;
4994 	}
4995 
4996 	return ret;
4997 }
4998 
4999 struct kobj_attribute thpsize_shmem_enabled_attr =
5000 	__ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5001 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5002 
5003 #else /* !CONFIG_SHMEM */
5004 
5005 /*
5006  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5007  *
5008  * This is intended for small system where the benefits of the full
5009  * shmem code (swap-backed and resource-limited) are outweighed by
5010  * their complexity. On systems without swap this code should be
5011  * effectively equivalent, but much lighter weight.
5012  */
5013 
5014 static struct file_system_type shmem_fs_type = {
5015 	.name		= "tmpfs",
5016 	.init_fs_context = ramfs_init_fs_context,
5017 	.parameters	= ramfs_fs_parameters,
5018 	.kill_sb	= ramfs_kill_sb,
5019 	.fs_flags	= FS_USERNS_MOUNT,
5020 };
5021 
5022 void __init shmem_init(void)
5023 {
5024 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5025 
5026 	shm_mnt = kern_mount(&shmem_fs_type);
5027 	BUG_ON(IS_ERR(shm_mnt));
5028 }
5029 
5030 int shmem_unuse(unsigned int type)
5031 {
5032 	return 0;
5033 }
5034 
5035 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5036 {
5037 	return 0;
5038 }
5039 
5040 void shmem_unlock_mapping(struct address_space *mapping)
5041 {
5042 }
5043 
5044 #ifdef CONFIG_MMU
5045 unsigned long shmem_get_unmapped_area(struct file *file,
5046 				      unsigned long addr, unsigned long len,
5047 				      unsigned long pgoff, unsigned long flags)
5048 {
5049 	return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5050 }
5051 #endif
5052 
5053 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5054 {
5055 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5056 }
5057 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5058 
5059 #define shmem_vm_ops				generic_file_vm_ops
5060 #define shmem_anon_vm_ops			generic_file_vm_ops
5061 #define shmem_file_operations			ramfs_file_operations
5062 #define shmem_acct_size(flags, size)		0
5063 #define shmem_unacct_size(flags, size)		do {} while (0)
5064 
5065 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5066 				struct super_block *sb, struct inode *dir,
5067 				umode_t mode, dev_t dev, unsigned long flags)
5068 {
5069 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5070 	return inode ? inode : ERR_PTR(-ENOSPC);
5071 }
5072 
5073 #endif /* CONFIG_SHMEM */
5074 
5075 /* common code */
5076 
5077 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5078 			loff_t size, unsigned long flags, unsigned int i_flags)
5079 {
5080 	struct inode *inode;
5081 	struct file *res;
5082 
5083 	if (IS_ERR(mnt))
5084 		return ERR_CAST(mnt);
5085 
5086 	if (size < 0 || size > MAX_LFS_FILESIZE)
5087 		return ERR_PTR(-EINVAL);
5088 
5089 	if (shmem_acct_size(flags, size))
5090 		return ERR_PTR(-ENOMEM);
5091 
5092 	if (is_idmapped_mnt(mnt))
5093 		return ERR_PTR(-EINVAL);
5094 
5095 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5096 				S_IFREG | S_IRWXUGO, 0, flags);
5097 	if (IS_ERR(inode)) {
5098 		shmem_unacct_size(flags, size);
5099 		return ERR_CAST(inode);
5100 	}
5101 	inode->i_flags |= i_flags;
5102 	inode->i_size = size;
5103 	clear_nlink(inode);	/* It is unlinked */
5104 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5105 	if (!IS_ERR(res))
5106 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5107 				&shmem_file_operations);
5108 	if (IS_ERR(res))
5109 		iput(inode);
5110 	return res;
5111 }
5112 
5113 /**
5114  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5115  * 	kernel internal.  There will be NO LSM permission checks against the
5116  * 	underlying inode.  So users of this interface must do LSM checks at a
5117  *	higher layer.  The users are the big_key and shm implementations.  LSM
5118  *	checks are provided at the key or shm level rather than the inode.
5119  * @name: name for dentry (to be seen in /proc/<pid>/maps
5120  * @size: size to be set for the file
5121  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5122  */
5123 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5124 {
5125 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5126 }
5127 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5128 
5129 /**
5130  * shmem_file_setup - get an unlinked file living in tmpfs
5131  * @name: name for dentry (to be seen in /proc/<pid>/maps
5132  * @size: size to be set for the file
5133  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5134  */
5135 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5136 {
5137 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5138 }
5139 EXPORT_SYMBOL_GPL(shmem_file_setup);
5140 
5141 /**
5142  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5143  * @mnt: the tmpfs mount where the file will be created
5144  * @name: name for dentry (to be seen in /proc/<pid>/maps
5145  * @size: size to be set for the file
5146  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5147  */
5148 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5149 				       loff_t size, unsigned long flags)
5150 {
5151 	return __shmem_file_setup(mnt, name, size, flags, 0);
5152 }
5153 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5154 
5155 /**
5156  * shmem_zero_setup - setup a shared anonymous mapping
5157  * @vma: the vma to be mmapped is prepared by do_mmap
5158  */
5159 int shmem_zero_setup(struct vm_area_struct *vma)
5160 {
5161 	struct file *file;
5162 	loff_t size = vma->vm_end - vma->vm_start;
5163 
5164 	/*
5165 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5166 	 * between XFS directory reading and selinux: since this file is only
5167 	 * accessible to the user through its mapping, use S_PRIVATE flag to
5168 	 * bypass file security, in the same way as shmem_kernel_file_setup().
5169 	 */
5170 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5171 	if (IS_ERR(file))
5172 		return PTR_ERR(file);
5173 
5174 	if (vma->vm_file)
5175 		fput(vma->vm_file);
5176 	vma->vm_file = file;
5177 	vma->vm_ops = &shmem_anon_vm_ops;
5178 
5179 	return 0;
5180 }
5181 
5182 /**
5183  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5184  * @mapping:	the folio's address_space
5185  * @index:	the folio index
5186  * @gfp:	the page allocator flags to use if allocating
5187  *
5188  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5189  * with any new page allocations done using the specified allocation flags.
5190  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5191  * suit tmpfs, since it may have pages in swapcache, and needs to find those
5192  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5193  *
5194  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5195  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5196  */
5197 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5198 		pgoff_t index, gfp_t gfp)
5199 {
5200 #ifdef CONFIG_SHMEM
5201 	struct inode *inode = mapping->host;
5202 	struct folio *folio;
5203 	int error;
5204 
5205 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
5206 				    gfp, NULL, NULL);
5207 	if (error)
5208 		return ERR_PTR(error);
5209 
5210 	folio_unlock(folio);
5211 	return folio;
5212 #else
5213 	/*
5214 	 * The tiny !SHMEM case uses ramfs without swap
5215 	 */
5216 	return mapping_read_folio_gfp(mapping, index, gfp);
5217 #endif
5218 }
5219 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5220 
5221 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5222 					 pgoff_t index, gfp_t gfp)
5223 {
5224 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5225 	struct page *page;
5226 
5227 	if (IS_ERR(folio))
5228 		return &folio->page;
5229 
5230 	page = folio_file_page(folio, index);
5231 	if (PageHWPoison(page)) {
5232 		folio_put(folio);
5233 		return ERR_PTR(-EIO);
5234 	}
5235 
5236 	return page;
5237 }
5238 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5239