xref: /linux/mm/shmem.c (revision b3b77c8caef1750ebeea1054e39e358550ea9f55)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * tiny-shmem:
18  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19  *
20  * This file is released under the GPL.
21  */
22 
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/swap.h>
32 
33 static struct vfsmount *shm_mnt;
34 
35 #ifdef CONFIG_SHMEM
36 /*
37  * This virtual memory filesystem is heavily based on the ramfs. It
38  * extends ramfs by the ability to use swap and honor resource limits
39  * which makes it a completely usable filesystem.
40  */
41 
42 #include <linux/xattr.h>
43 #include <linux/exportfs.h>
44 #include <linux/posix_acl.h>
45 #include <linux/generic_acl.h>
46 #include <linux/mman.h>
47 #include <linux/string.h>
48 #include <linux/slab.h>
49 #include <linux/backing-dev.h>
50 #include <linux/shmem_fs.h>
51 #include <linux/writeback.h>
52 #include <linux/blkdev.h>
53 #include <linux/security.h>
54 #include <linux/swapops.h>
55 #include <linux/mempolicy.h>
56 #include <linux/namei.h>
57 #include <linux/ctype.h>
58 #include <linux/migrate.h>
59 #include <linux/highmem.h>
60 #include <linux/seq_file.h>
61 #include <linux/magic.h>
62 
63 #include <asm/uaccess.h>
64 #include <asm/div64.h>
65 #include <asm/pgtable.h>
66 
67 /*
68  * The maximum size of a shmem/tmpfs file is limited by the maximum size of
69  * its triple-indirect swap vector - see illustration at shmem_swp_entry().
70  *
71  * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
72  * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
73  * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
74  * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
75  *
76  * We use / and * instead of shifts in the definitions below, so that the swap
77  * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
78  */
79 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
80 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
81 
82 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
83 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
84 
85 #define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
86 #define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
87 
88 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
92 #define SHMEM_PAGEIN	 VM_READ
93 #define SHMEM_TRUNCATE	 VM_WRITE
94 
95 /* Definition to limit shmem_truncate's steps between cond_rescheds */
96 #define LATENCY_LIMIT	 64
97 
98 /* Pretend that each entry is of this size in directory's i_size */
99 #define BOGO_DIRENT_SIZE 20
100 
101 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
102 enum sgp_type {
103 	SGP_READ,	/* don't exceed i_size, don't allocate page */
104 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
105 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
106 	SGP_WRITE,	/* may exceed i_size, may allocate page */
107 };
108 
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112 	return totalram_pages / 2;
113 }
114 
115 static unsigned long shmem_default_max_inodes(void)
116 {
117 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120 
121 static int shmem_getpage(struct inode *inode, unsigned long idx,
122 			 struct page **pagep, enum sgp_type sgp, int *type);
123 
124 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
125 {
126 	/*
127 	 * The above definition of ENTRIES_PER_PAGE, and the use of
128 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
129 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
130 	 *
131 	 * Mobility flags are masked out as swap vectors cannot move
132 	 */
133 	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
134 				PAGE_CACHE_SHIFT-PAGE_SHIFT);
135 }
136 
137 static inline void shmem_dir_free(struct page *page)
138 {
139 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
140 }
141 
142 static struct page **shmem_dir_map(struct page *page)
143 {
144 	return (struct page **)kmap_atomic(page, KM_USER0);
145 }
146 
147 static inline void shmem_dir_unmap(struct page **dir)
148 {
149 	kunmap_atomic(dir, KM_USER0);
150 }
151 
152 static swp_entry_t *shmem_swp_map(struct page *page)
153 {
154 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
155 }
156 
157 static inline void shmem_swp_balance_unmap(void)
158 {
159 	/*
160 	 * When passing a pointer to an i_direct entry, to code which
161 	 * also handles indirect entries and so will shmem_swp_unmap,
162 	 * we must arrange for the preempt count to remain in balance.
163 	 * What kmap_atomic of a lowmem page does depends on config
164 	 * and architecture, so pretend to kmap_atomic some lowmem page.
165 	 */
166 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
167 }
168 
169 static inline void shmem_swp_unmap(swp_entry_t *entry)
170 {
171 	kunmap_atomic(entry, KM_USER1);
172 }
173 
174 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
175 {
176 	return sb->s_fs_info;
177 }
178 
179 /*
180  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
181  * for shared memory and for shared anonymous (/dev/zero) mappings
182  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
183  * consistent with the pre-accounting of private mappings ...
184  */
185 static inline int shmem_acct_size(unsigned long flags, loff_t size)
186 {
187 	return (flags & VM_NORESERVE) ?
188 		0 : security_vm_enough_memory_kern(VM_ACCT(size));
189 }
190 
191 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
192 {
193 	if (!(flags & VM_NORESERVE))
194 		vm_unacct_memory(VM_ACCT(size));
195 }
196 
197 /*
198  * ... whereas tmpfs objects are accounted incrementally as
199  * pages are allocated, in order to allow huge sparse files.
200  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
201  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
202  */
203 static inline int shmem_acct_block(unsigned long flags)
204 {
205 	return (flags & VM_NORESERVE) ?
206 		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
207 }
208 
209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210 {
211 	if (flags & VM_NORESERVE)
212 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
213 }
214 
215 static const struct super_operations shmem_ops;
216 static const struct address_space_operations shmem_aops;
217 static const struct file_operations shmem_file_operations;
218 static const struct inode_operations shmem_inode_operations;
219 static const struct inode_operations shmem_dir_inode_operations;
220 static const struct inode_operations shmem_special_inode_operations;
221 static const struct vm_operations_struct shmem_vm_ops;
222 
223 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
224 	.ra_pages	= 0,	/* No readahead */
225 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
226 	.unplug_io_fn	= default_unplug_io_fn,
227 };
228 
229 static LIST_HEAD(shmem_swaplist);
230 static DEFINE_MUTEX(shmem_swaplist_mutex);
231 
232 static void shmem_free_blocks(struct inode *inode, long pages)
233 {
234 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 	if (sbinfo->max_blocks) {
236 		spin_lock(&sbinfo->stat_lock);
237 		sbinfo->free_blocks += pages;
238 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
239 		spin_unlock(&sbinfo->stat_lock);
240 	}
241 }
242 
243 static int shmem_reserve_inode(struct super_block *sb)
244 {
245 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
246 	if (sbinfo->max_inodes) {
247 		spin_lock(&sbinfo->stat_lock);
248 		if (!sbinfo->free_inodes) {
249 			spin_unlock(&sbinfo->stat_lock);
250 			return -ENOSPC;
251 		}
252 		sbinfo->free_inodes--;
253 		spin_unlock(&sbinfo->stat_lock);
254 	}
255 	return 0;
256 }
257 
258 static void shmem_free_inode(struct super_block *sb)
259 {
260 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
261 	if (sbinfo->max_inodes) {
262 		spin_lock(&sbinfo->stat_lock);
263 		sbinfo->free_inodes++;
264 		spin_unlock(&sbinfo->stat_lock);
265 	}
266 }
267 
268 /**
269  * shmem_recalc_inode - recalculate the size of an inode
270  * @inode: inode to recalc
271  *
272  * We have to calculate the free blocks since the mm can drop
273  * undirtied hole pages behind our back.
274  *
275  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
276  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
277  *
278  * It has to be called with the spinlock held.
279  */
280 static void shmem_recalc_inode(struct inode *inode)
281 {
282 	struct shmem_inode_info *info = SHMEM_I(inode);
283 	long freed;
284 
285 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
286 	if (freed > 0) {
287 		info->alloced -= freed;
288 		shmem_unacct_blocks(info->flags, freed);
289 		shmem_free_blocks(inode, freed);
290 	}
291 }
292 
293 /**
294  * shmem_swp_entry - find the swap vector position in the info structure
295  * @info:  info structure for the inode
296  * @index: index of the page to find
297  * @page:  optional page to add to the structure. Has to be preset to
298  *         all zeros
299  *
300  * If there is no space allocated yet it will return NULL when
301  * page is NULL, else it will use the page for the needed block,
302  * setting it to NULL on return to indicate that it has been used.
303  *
304  * The swap vector is organized the following way:
305  *
306  * There are SHMEM_NR_DIRECT entries directly stored in the
307  * shmem_inode_info structure. So small files do not need an addional
308  * allocation.
309  *
310  * For pages with index > SHMEM_NR_DIRECT there is the pointer
311  * i_indirect which points to a page which holds in the first half
312  * doubly indirect blocks, in the second half triple indirect blocks:
313  *
314  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
315  * following layout (for SHMEM_NR_DIRECT == 16):
316  *
317  * i_indirect -> dir --> 16-19
318  * 	      |	     +-> 20-23
319  * 	      |
320  * 	      +-->dir2 --> 24-27
321  * 	      |	       +-> 28-31
322  * 	      |	       +-> 32-35
323  * 	      |	       +-> 36-39
324  * 	      |
325  * 	      +-->dir3 --> 40-43
326  * 	       	       +-> 44-47
327  * 	      	       +-> 48-51
328  * 	      	       +-> 52-55
329  */
330 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
331 {
332 	unsigned long offset;
333 	struct page **dir;
334 	struct page *subdir;
335 
336 	if (index < SHMEM_NR_DIRECT) {
337 		shmem_swp_balance_unmap();
338 		return info->i_direct+index;
339 	}
340 	if (!info->i_indirect) {
341 		if (page) {
342 			info->i_indirect = *page;
343 			*page = NULL;
344 		}
345 		return NULL;			/* need another page */
346 	}
347 
348 	index -= SHMEM_NR_DIRECT;
349 	offset = index % ENTRIES_PER_PAGE;
350 	index /= ENTRIES_PER_PAGE;
351 	dir = shmem_dir_map(info->i_indirect);
352 
353 	if (index >= ENTRIES_PER_PAGE/2) {
354 		index -= ENTRIES_PER_PAGE/2;
355 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
356 		index %= ENTRIES_PER_PAGE;
357 		subdir = *dir;
358 		if (!subdir) {
359 			if (page) {
360 				*dir = *page;
361 				*page = NULL;
362 			}
363 			shmem_dir_unmap(dir);
364 			return NULL;		/* need another page */
365 		}
366 		shmem_dir_unmap(dir);
367 		dir = shmem_dir_map(subdir);
368 	}
369 
370 	dir += index;
371 	subdir = *dir;
372 	if (!subdir) {
373 		if (!page || !(subdir = *page)) {
374 			shmem_dir_unmap(dir);
375 			return NULL;		/* need a page */
376 		}
377 		*dir = subdir;
378 		*page = NULL;
379 	}
380 	shmem_dir_unmap(dir);
381 	return shmem_swp_map(subdir) + offset;
382 }
383 
384 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
385 {
386 	long incdec = value? 1: -1;
387 
388 	entry->val = value;
389 	info->swapped += incdec;
390 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
391 		struct page *page = kmap_atomic_to_page(entry);
392 		set_page_private(page, page_private(page) + incdec);
393 	}
394 }
395 
396 /**
397  * shmem_swp_alloc - get the position of the swap entry for the page.
398  * @info:	info structure for the inode
399  * @index:	index of the page to find
400  * @sgp:	check and recheck i_size? skip allocation?
401  *
402  * If the entry does not exist, allocate it.
403  */
404 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
405 {
406 	struct inode *inode = &info->vfs_inode;
407 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
408 	struct page *page = NULL;
409 	swp_entry_t *entry;
410 
411 	if (sgp != SGP_WRITE &&
412 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
413 		return ERR_PTR(-EINVAL);
414 
415 	while (!(entry = shmem_swp_entry(info, index, &page))) {
416 		if (sgp == SGP_READ)
417 			return shmem_swp_map(ZERO_PAGE(0));
418 		/*
419 		 * Test free_blocks against 1 not 0, since we have 1 data
420 		 * page (and perhaps indirect index pages) yet to allocate:
421 		 * a waste to allocate index if we cannot allocate data.
422 		 */
423 		if (sbinfo->max_blocks) {
424 			spin_lock(&sbinfo->stat_lock);
425 			if (sbinfo->free_blocks <= 1) {
426 				spin_unlock(&sbinfo->stat_lock);
427 				return ERR_PTR(-ENOSPC);
428 			}
429 			sbinfo->free_blocks--;
430 			inode->i_blocks += BLOCKS_PER_PAGE;
431 			spin_unlock(&sbinfo->stat_lock);
432 		}
433 
434 		spin_unlock(&info->lock);
435 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
436 		spin_lock(&info->lock);
437 
438 		if (!page) {
439 			shmem_free_blocks(inode, 1);
440 			return ERR_PTR(-ENOMEM);
441 		}
442 		if (sgp != SGP_WRITE &&
443 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
444 			entry = ERR_PTR(-EINVAL);
445 			break;
446 		}
447 		if (info->next_index <= index)
448 			info->next_index = index + 1;
449 	}
450 	if (page) {
451 		/* another task gave its page, or truncated the file */
452 		shmem_free_blocks(inode, 1);
453 		shmem_dir_free(page);
454 	}
455 	if (info->next_index <= index && !IS_ERR(entry))
456 		info->next_index = index + 1;
457 	return entry;
458 }
459 
460 /**
461  * shmem_free_swp - free some swap entries in a directory
462  * @dir:        pointer to the directory
463  * @edir:       pointer after last entry of the directory
464  * @punch_lock: pointer to spinlock when needed for the holepunch case
465  */
466 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
467 						spinlock_t *punch_lock)
468 {
469 	spinlock_t *punch_unlock = NULL;
470 	swp_entry_t *ptr;
471 	int freed = 0;
472 
473 	for (ptr = dir; ptr < edir; ptr++) {
474 		if (ptr->val) {
475 			if (unlikely(punch_lock)) {
476 				punch_unlock = punch_lock;
477 				punch_lock = NULL;
478 				spin_lock(punch_unlock);
479 				if (!ptr->val)
480 					continue;
481 			}
482 			free_swap_and_cache(*ptr);
483 			*ptr = (swp_entry_t){0};
484 			freed++;
485 		}
486 	}
487 	if (punch_unlock)
488 		spin_unlock(punch_unlock);
489 	return freed;
490 }
491 
492 static int shmem_map_and_free_swp(struct page *subdir, int offset,
493 		int limit, struct page ***dir, spinlock_t *punch_lock)
494 {
495 	swp_entry_t *ptr;
496 	int freed = 0;
497 
498 	ptr = shmem_swp_map(subdir);
499 	for (; offset < limit; offset += LATENCY_LIMIT) {
500 		int size = limit - offset;
501 		if (size > LATENCY_LIMIT)
502 			size = LATENCY_LIMIT;
503 		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
504 							punch_lock);
505 		if (need_resched()) {
506 			shmem_swp_unmap(ptr);
507 			if (*dir) {
508 				shmem_dir_unmap(*dir);
509 				*dir = NULL;
510 			}
511 			cond_resched();
512 			ptr = shmem_swp_map(subdir);
513 		}
514 	}
515 	shmem_swp_unmap(ptr);
516 	return freed;
517 }
518 
519 static void shmem_free_pages(struct list_head *next)
520 {
521 	struct page *page;
522 	int freed = 0;
523 
524 	do {
525 		page = container_of(next, struct page, lru);
526 		next = next->next;
527 		shmem_dir_free(page);
528 		freed++;
529 		if (freed >= LATENCY_LIMIT) {
530 			cond_resched();
531 			freed = 0;
532 		}
533 	} while (next);
534 }
535 
536 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
537 {
538 	struct shmem_inode_info *info = SHMEM_I(inode);
539 	unsigned long idx;
540 	unsigned long size;
541 	unsigned long limit;
542 	unsigned long stage;
543 	unsigned long diroff;
544 	struct page **dir;
545 	struct page *topdir;
546 	struct page *middir;
547 	struct page *subdir;
548 	swp_entry_t *ptr;
549 	LIST_HEAD(pages_to_free);
550 	long nr_pages_to_free = 0;
551 	long nr_swaps_freed = 0;
552 	int offset;
553 	int freed;
554 	int punch_hole;
555 	spinlock_t *needs_lock;
556 	spinlock_t *punch_lock;
557 	unsigned long upper_limit;
558 
559 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
560 	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
561 	if (idx >= info->next_index)
562 		return;
563 
564 	spin_lock(&info->lock);
565 	info->flags |= SHMEM_TRUNCATE;
566 	if (likely(end == (loff_t) -1)) {
567 		limit = info->next_index;
568 		upper_limit = SHMEM_MAX_INDEX;
569 		info->next_index = idx;
570 		needs_lock = NULL;
571 		punch_hole = 0;
572 	} else {
573 		if (end + 1 >= inode->i_size) {	/* we may free a little more */
574 			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
575 							PAGE_CACHE_SHIFT;
576 			upper_limit = SHMEM_MAX_INDEX;
577 		} else {
578 			limit = (end + 1) >> PAGE_CACHE_SHIFT;
579 			upper_limit = limit;
580 		}
581 		needs_lock = &info->lock;
582 		punch_hole = 1;
583 	}
584 
585 	topdir = info->i_indirect;
586 	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
587 		info->i_indirect = NULL;
588 		nr_pages_to_free++;
589 		list_add(&topdir->lru, &pages_to_free);
590 	}
591 	spin_unlock(&info->lock);
592 
593 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
594 		ptr = info->i_direct;
595 		size = limit;
596 		if (size > SHMEM_NR_DIRECT)
597 			size = SHMEM_NR_DIRECT;
598 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
599 	}
600 
601 	/*
602 	 * If there are no indirect blocks or we are punching a hole
603 	 * below indirect blocks, nothing to be done.
604 	 */
605 	if (!topdir || limit <= SHMEM_NR_DIRECT)
606 		goto done2;
607 
608 	/*
609 	 * The truncation case has already dropped info->lock, and we're safe
610 	 * because i_size and next_index have already been lowered, preventing
611 	 * access beyond.  But in the punch_hole case, we still need to take
612 	 * the lock when updating the swap directory, because there might be
613 	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
614 	 * shmem_writepage.  However, whenever we find we can remove a whole
615 	 * directory page (not at the misaligned start or end of the range),
616 	 * we first NULLify its pointer in the level above, and then have no
617 	 * need to take the lock when updating its contents: needs_lock and
618 	 * punch_lock (either pointing to info->lock or NULL) manage this.
619 	 */
620 
621 	upper_limit -= SHMEM_NR_DIRECT;
622 	limit -= SHMEM_NR_DIRECT;
623 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
624 	offset = idx % ENTRIES_PER_PAGE;
625 	idx -= offset;
626 
627 	dir = shmem_dir_map(topdir);
628 	stage = ENTRIES_PER_PAGEPAGE/2;
629 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
630 		middir = topdir;
631 		diroff = idx/ENTRIES_PER_PAGE;
632 	} else {
633 		dir += ENTRIES_PER_PAGE/2;
634 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
635 		while (stage <= idx)
636 			stage += ENTRIES_PER_PAGEPAGE;
637 		middir = *dir;
638 		if (*dir) {
639 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
640 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
641 			if (!diroff && !offset && upper_limit >= stage) {
642 				if (needs_lock) {
643 					spin_lock(needs_lock);
644 					*dir = NULL;
645 					spin_unlock(needs_lock);
646 					needs_lock = NULL;
647 				} else
648 					*dir = NULL;
649 				nr_pages_to_free++;
650 				list_add(&middir->lru, &pages_to_free);
651 			}
652 			shmem_dir_unmap(dir);
653 			dir = shmem_dir_map(middir);
654 		} else {
655 			diroff = 0;
656 			offset = 0;
657 			idx = stage;
658 		}
659 	}
660 
661 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
662 		if (unlikely(idx == stage)) {
663 			shmem_dir_unmap(dir);
664 			dir = shmem_dir_map(topdir) +
665 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
666 			while (!*dir) {
667 				dir++;
668 				idx += ENTRIES_PER_PAGEPAGE;
669 				if (idx >= limit)
670 					goto done1;
671 			}
672 			stage = idx + ENTRIES_PER_PAGEPAGE;
673 			middir = *dir;
674 			if (punch_hole)
675 				needs_lock = &info->lock;
676 			if (upper_limit >= stage) {
677 				if (needs_lock) {
678 					spin_lock(needs_lock);
679 					*dir = NULL;
680 					spin_unlock(needs_lock);
681 					needs_lock = NULL;
682 				} else
683 					*dir = NULL;
684 				nr_pages_to_free++;
685 				list_add(&middir->lru, &pages_to_free);
686 			}
687 			shmem_dir_unmap(dir);
688 			cond_resched();
689 			dir = shmem_dir_map(middir);
690 			diroff = 0;
691 		}
692 		punch_lock = needs_lock;
693 		subdir = dir[diroff];
694 		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
695 			if (needs_lock) {
696 				spin_lock(needs_lock);
697 				dir[diroff] = NULL;
698 				spin_unlock(needs_lock);
699 				punch_lock = NULL;
700 			} else
701 				dir[diroff] = NULL;
702 			nr_pages_to_free++;
703 			list_add(&subdir->lru, &pages_to_free);
704 		}
705 		if (subdir && page_private(subdir) /* has swap entries */) {
706 			size = limit - idx;
707 			if (size > ENTRIES_PER_PAGE)
708 				size = ENTRIES_PER_PAGE;
709 			freed = shmem_map_and_free_swp(subdir,
710 					offset, size, &dir, punch_lock);
711 			if (!dir)
712 				dir = shmem_dir_map(middir);
713 			nr_swaps_freed += freed;
714 			if (offset || punch_lock) {
715 				spin_lock(&info->lock);
716 				set_page_private(subdir,
717 					page_private(subdir) - freed);
718 				spin_unlock(&info->lock);
719 			} else
720 				BUG_ON(page_private(subdir) != freed);
721 		}
722 		offset = 0;
723 	}
724 done1:
725 	shmem_dir_unmap(dir);
726 done2:
727 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
728 		/*
729 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
730 		 * may have swizzled a page in from swap since vmtruncate or
731 		 * generic_delete_inode did it, before we lowered next_index.
732 		 * Also, though shmem_getpage checks i_size before adding to
733 		 * cache, no recheck after: so fix the narrow window there too.
734 		 *
735 		 * Recalling truncate_inode_pages_range and unmap_mapping_range
736 		 * every time for punch_hole (which never got a chance to clear
737 		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
738 		 * yet hardly ever necessary: try to optimize them out later.
739 		 */
740 		truncate_inode_pages_range(inode->i_mapping, start, end);
741 		if (punch_hole)
742 			unmap_mapping_range(inode->i_mapping, start,
743 							end - start, 1);
744 	}
745 
746 	spin_lock(&info->lock);
747 	info->flags &= ~SHMEM_TRUNCATE;
748 	info->swapped -= nr_swaps_freed;
749 	if (nr_pages_to_free)
750 		shmem_free_blocks(inode, nr_pages_to_free);
751 	shmem_recalc_inode(inode);
752 	spin_unlock(&info->lock);
753 
754 	/*
755 	 * Empty swap vector directory pages to be freed?
756 	 */
757 	if (!list_empty(&pages_to_free)) {
758 		pages_to_free.prev->next = NULL;
759 		shmem_free_pages(pages_to_free.next);
760 	}
761 }
762 
763 static void shmem_truncate(struct inode *inode)
764 {
765 	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
766 }
767 
768 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
769 {
770 	struct inode *inode = dentry->d_inode;
771 	struct page *page = NULL;
772 	int error;
773 
774 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
775 		if (attr->ia_size < inode->i_size) {
776 			/*
777 			 * If truncating down to a partial page, then
778 			 * if that page is already allocated, hold it
779 			 * in memory until the truncation is over, so
780 			 * truncate_partial_page cannnot miss it were
781 			 * it assigned to swap.
782 			 */
783 			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
784 				(void) shmem_getpage(inode,
785 					attr->ia_size>>PAGE_CACHE_SHIFT,
786 						&page, SGP_READ, NULL);
787 				if (page)
788 					unlock_page(page);
789 			}
790 			/*
791 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
792 			 * detect if any pages might have been added to cache
793 			 * after truncate_inode_pages.  But we needn't bother
794 			 * if it's being fully truncated to zero-length: the
795 			 * nrpages check is efficient enough in that case.
796 			 */
797 			if (attr->ia_size) {
798 				struct shmem_inode_info *info = SHMEM_I(inode);
799 				spin_lock(&info->lock);
800 				info->flags &= ~SHMEM_PAGEIN;
801 				spin_unlock(&info->lock);
802 			}
803 		}
804 	}
805 
806 	error = inode_change_ok(inode, attr);
807 	if (!error)
808 		error = inode_setattr(inode, attr);
809 #ifdef CONFIG_TMPFS_POSIX_ACL
810 	if (!error && (attr->ia_valid & ATTR_MODE))
811 		error = generic_acl_chmod(inode);
812 #endif
813 	if (page)
814 		page_cache_release(page);
815 	return error;
816 }
817 
818 static void shmem_delete_inode(struct inode *inode)
819 {
820 	struct shmem_inode_info *info = SHMEM_I(inode);
821 
822 	if (inode->i_op->truncate == shmem_truncate) {
823 		truncate_inode_pages(inode->i_mapping, 0);
824 		shmem_unacct_size(info->flags, inode->i_size);
825 		inode->i_size = 0;
826 		shmem_truncate(inode);
827 		if (!list_empty(&info->swaplist)) {
828 			mutex_lock(&shmem_swaplist_mutex);
829 			list_del_init(&info->swaplist);
830 			mutex_unlock(&shmem_swaplist_mutex);
831 		}
832 	}
833 	BUG_ON(inode->i_blocks);
834 	shmem_free_inode(inode->i_sb);
835 	clear_inode(inode);
836 }
837 
838 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
839 {
840 	swp_entry_t *ptr;
841 
842 	for (ptr = dir; ptr < edir; ptr++) {
843 		if (ptr->val == entry.val)
844 			return ptr - dir;
845 	}
846 	return -1;
847 }
848 
849 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
850 {
851 	struct inode *inode;
852 	unsigned long idx;
853 	unsigned long size;
854 	unsigned long limit;
855 	unsigned long stage;
856 	struct page **dir;
857 	struct page *subdir;
858 	swp_entry_t *ptr;
859 	int offset;
860 	int error;
861 
862 	idx = 0;
863 	ptr = info->i_direct;
864 	spin_lock(&info->lock);
865 	if (!info->swapped) {
866 		list_del_init(&info->swaplist);
867 		goto lost2;
868 	}
869 	limit = info->next_index;
870 	size = limit;
871 	if (size > SHMEM_NR_DIRECT)
872 		size = SHMEM_NR_DIRECT;
873 	offset = shmem_find_swp(entry, ptr, ptr+size);
874 	if (offset >= 0)
875 		goto found;
876 	if (!info->i_indirect)
877 		goto lost2;
878 
879 	dir = shmem_dir_map(info->i_indirect);
880 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
881 
882 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
883 		if (unlikely(idx == stage)) {
884 			shmem_dir_unmap(dir-1);
885 			if (cond_resched_lock(&info->lock)) {
886 				/* check it has not been truncated */
887 				if (limit > info->next_index) {
888 					limit = info->next_index;
889 					if (idx >= limit)
890 						goto lost2;
891 				}
892 			}
893 			dir = shmem_dir_map(info->i_indirect) +
894 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
895 			while (!*dir) {
896 				dir++;
897 				idx += ENTRIES_PER_PAGEPAGE;
898 				if (idx >= limit)
899 					goto lost1;
900 			}
901 			stage = idx + ENTRIES_PER_PAGEPAGE;
902 			subdir = *dir;
903 			shmem_dir_unmap(dir);
904 			dir = shmem_dir_map(subdir);
905 		}
906 		subdir = *dir;
907 		if (subdir && page_private(subdir)) {
908 			ptr = shmem_swp_map(subdir);
909 			size = limit - idx;
910 			if (size > ENTRIES_PER_PAGE)
911 				size = ENTRIES_PER_PAGE;
912 			offset = shmem_find_swp(entry, ptr, ptr+size);
913 			shmem_swp_unmap(ptr);
914 			if (offset >= 0) {
915 				shmem_dir_unmap(dir);
916 				goto found;
917 			}
918 		}
919 	}
920 lost1:
921 	shmem_dir_unmap(dir-1);
922 lost2:
923 	spin_unlock(&info->lock);
924 	return 0;
925 found:
926 	idx += offset;
927 	inode = igrab(&info->vfs_inode);
928 	spin_unlock(&info->lock);
929 
930 	/*
931 	 * Move _head_ to start search for next from here.
932 	 * But be careful: shmem_delete_inode checks list_empty without taking
933 	 * mutex, and there's an instant in list_move_tail when info->swaplist
934 	 * would appear empty, if it were the only one on shmem_swaplist.  We
935 	 * could avoid doing it if inode NULL; or use this minor optimization.
936 	 */
937 	if (shmem_swaplist.next != &info->swaplist)
938 		list_move_tail(&shmem_swaplist, &info->swaplist);
939 	mutex_unlock(&shmem_swaplist_mutex);
940 
941 	error = 1;
942 	if (!inode)
943 		goto out;
944 	/*
945 	 * Charge page using GFP_KERNEL while we can wait.
946 	 * Charged back to the user(not to caller) when swap account is used.
947 	 * add_to_page_cache() will be called with GFP_NOWAIT.
948 	 */
949 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
950 	if (error)
951 		goto out;
952 	error = radix_tree_preload(GFP_KERNEL);
953 	if (error) {
954 		mem_cgroup_uncharge_cache_page(page);
955 		goto out;
956 	}
957 	error = 1;
958 
959 	spin_lock(&info->lock);
960 	ptr = shmem_swp_entry(info, idx, NULL);
961 	if (ptr && ptr->val == entry.val) {
962 		error = add_to_page_cache_locked(page, inode->i_mapping,
963 						idx, GFP_NOWAIT);
964 		/* does mem_cgroup_uncharge_cache_page on error */
965 	} else	/* we must compensate for our precharge above */
966 		mem_cgroup_uncharge_cache_page(page);
967 
968 	if (error == -EEXIST) {
969 		struct page *filepage = find_get_page(inode->i_mapping, idx);
970 		error = 1;
971 		if (filepage) {
972 			/*
973 			 * There might be a more uptodate page coming down
974 			 * from a stacked writepage: forget our swappage if so.
975 			 */
976 			if (PageUptodate(filepage))
977 				error = 0;
978 			page_cache_release(filepage);
979 		}
980 	}
981 	if (!error) {
982 		delete_from_swap_cache(page);
983 		set_page_dirty(page);
984 		info->flags |= SHMEM_PAGEIN;
985 		shmem_swp_set(info, ptr, 0);
986 		swap_free(entry);
987 		error = 1;	/* not an error, but entry was found */
988 	}
989 	if (ptr)
990 		shmem_swp_unmap(ptr);
991 	spin_unlock(&info->lock);
992 	radix_tree_preload_end();
993 out:
994 	unlock_page(page);
995 	page_cache_release(page);
996 	iput(inode);		/* allows for NULL */
997 	return error;
998 }
999 
1000 /*
1001  * shmem_unuse() search for an eventually swapped out shmem page.
1002  */
1003 int shmem_unuse(swp_entry_t entry, struct page *page)
1004 {
1005 	struct list_head *p, *next;
1006 	struct shmem_inode_info *info;
1007 	int found = 0;
1008 
1009 	mutex_lock(&shmem_swaplist_mutex);
1010 	list_for_each_safe(p, next, &shmem_swaplist) {
1011 		info = list_entry(p, struct shmem_inode_info, swaplist);
1012 		found = shmem_unuse_inode(info, entry, page);
1013 		cond_resched();
1014 		if (found)
1015 			goto out;
1016 	}
1017 	mutex_unlock(&shmem_swaplist_mutex);
1018 	/*
1019 	 * Can some race bring us here?  We've been holding page lock,
1020 	 * so I think not; but would rather try again later than BUG()
1021 	 */
1022 	unlock_page(page);
1023 	page_cache_release(page);
1024 out:
1025 	return (found < 0) ? found : 0;
1026 }
1027 
1028 /*
1029  * Move the page from the page cache to the swap cache.
1030  */
1031 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1032 {
1033 	struct shmem_inode_info *info;
1034 	swp_entry_t *entry, swap;
1035 	struct address_space *mapping;
1036 	unsigned long index;
1037 	struct inode *inode;
1038 
1039 	BUG_ON(!PageLocked(page));
1040 	mapping = page->mapping;
1041 	index = page->index;
1042 	inode = mapping->host;
1043 	info = SHMEM_I(inode);
1044 	if (info->flags & VM_LOCKED)
1045 		goto redirty;
1046 	if (!total_swap_pages)
1047 		goto redirty;
1048 
1049 	/*
1050 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1051 	 * sync from ever calling shmem_writepage; but a stacking filesystem
1052 	 * may use the ->writepage of its underlying filesystem, in which case
1053 	 * tmpfs should write out to swap only in response to memory pressure,
1054 	 * and not for the writeback threads or sync.  However, in those cases,
1055 	 * we do still want to check if there's a redundant swappage to be
1056 	 * discarded.
1057 	 */
1058 	if (wbc->for_reclaim)
1059 		swap = get_swap_page();
1060 	else
1061 		swap.val = 0;
1062 
1063 	spin_lock(&info->lock);
1064 	if (index >= info->next_index) {
1065 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1066 		goto unlock;
1067 	}
1068 	entry = shmem_swp_entry(info, index, NULL);
1069 	if (entry->val) {
1070 		/*
1071 		 * The more uptodate page coming down from a stacked
1072 		 * writepage should replace our old swappage.
1073 		 */
1074 		free_swap_and_cache(*entry);
1075 		shmem_swp_set(info, entry, 0);
1076 	}
1077 	shmem_recalc_inode(inode);
1078 
1079 	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1080 		remove_from_page_cache(page);
1081 		shmem_swp_set(info, entry, swap.val);
1082 		shmem_swp_unmap(entry);
1083 		if (list_empty(&info->swaplist))
1084 			inode = igrab(inode);
1085 		else
1086 			inode = NULL;
1087 		spin_unlock(&info->lock);
1088 		swap_shmem_alloc(swap);
1089 		BUG_ON(page_mapped(page));
1090 		page_cache_release(page);	/* pagecache ref */
1091 		swap_writepage(page, wbc);
1092 		if (inode) {
1093 			mutex_lock(&shmem_swaplist_mutex);
1094 			/* move instead of add in case we're racing */
1095 			list_move_tail(&info->swaplist, &shmem_swaplist);
1096 			mutex_unlock(&shmem_swaplist_mutex);
1097 			iput(inode);
1098 		}
1099 		return 0;
1100 	}
1101 
1102 	shmem_swp_unmap(entry);
1103 unlock:
1104 	spin_unlock(&info->lock);
1105 	/*
1106 	 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1107 	 * clear SWAP_HAS_CACHE flag.
1108 	 */
1109 	swapcache_free(swap, NULL);
1110 redirty:
1111 	set_page_dirty(page);
1112 	if (wbc->for_reclaim)
1113 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1114 	unlock_page(page);
1115 	return 0;
1116 }
1117 
1118 #ifdef CONFIG_NUMA
1119 #ifdef CONFIG_TMPFS
1120 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1121 {
1122 	char buffer[64];
1123 
1124 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1125 		return;		/* show nothing */
1126 
1127 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1128 
1129 	seq_printf(seq, ",mpol=%s", buffer);
1130 }
1131 
1132 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1133 {
1134 	struct mempolicy *mpol = NULL;
1135 	if (sbinfo->mpol) {
1136 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1137 		mpol = sbinfo->mpol;
1138 		mpol_get(mpol);
1139 		spin_unlock(&sbinfo->stat_lock);
1140 	}
1141 	return mpol;
1142 }
1143 #endif /* CONFIG_TMPFS */
1144 
1145 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1146 			struct shmem_inode_info *info, unsigned long idx)
1147 {
1148 	struct mempolicy mpol, *spol;
1149 	struct vm_area_struct pvma;
1150 	struct page *page;
1151 
1152 	spol = mpol_cond_copy(&mpol,
1153 				mpol_shared_policy_lookup(&info->policy, idx));
1154 
1155 	/* Create a pseudo vma that just contains the policy */
1156 	pvma.vm_start = 0;
1157 	pvma.vm_pgoff = idx;
1158 	pvma.vm_ops = NULL;
1159 	pvma.vm_policy = spol;
1160 	page = swapin_readahead(entry, gfp, &pvma, 0);
1161 	return page;
1162 }
1163 
1164 static struct page *shmem_alloc_page(gfp_t gfp,
1165 			struct shmem_inode_info *info, unsigned long idx)
1166 {
1167 	struct vm_area_struct pvma;
1168 
1169 	/* Create a pseudo vma that just contains the policy */
1170 	pvma.vm_start = 0;
1171 	pvma.vm_pgoff = idx;
1172 	pvma.vm_ops = NULL;
1173 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1174 
1175 	/*
1176 	 * alloc_page_vma() will drop the shared policy reference
1177 	 */
1178 	return alloc_page_vma(gfp, &pvma, 0);
1179 }
1180 #else /* !CONFIG_NUMA */
1181 #ifdef CONFIG_TMPFS
1182 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1183 {
1184 }
1185 #endif /* CONFIG_TMPFS */
1186 
1187 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1188 			struct shmem_inode_info *info, unsigned long idx)
1189 {
1190 	return swapin_readahead(entry, gfp, NULL, 0);
1191 }
1192 
1193 static inline struct page *shmem_alloc_page(gfp_t gfp,
1194 			struct shmem_inode_info *info, unsigned long idx)
1195 {
1196 	return alloc_page(gfp);
1197 }
1198 #endif /* CONFIG_NUMA */
1199 
1200 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1201 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1202 {
1203 	return NULL;
1204 }
1205 #endif
1206 
1207 /*
1208  * shmem_getpage - either get the page from swap or allocate a new one
1209  *
1210  * If we allocate a new one we do not mark it dirty. That's up to the
1211  * vm. If we swap it in we mark it dirty since we also free the swap
1212  * entry since a page cannot live in both the swap and page cache
1213  */
1214 static int shmem_getpage(struct inode *inode, unsigned long idx,
1215 			struct page **pagep, enum sgp_type sgp, int *type)
1216 {
1217 	struct address_space *mapping = inode->i_mapping;
1218 	struct shmem_inode_info *info = SHMEM_I(inode);
1219 	struct shmem_sb_info *sbinfo;
1220 	struct page *filepage = *pagep;
1221 	struct page *swappage;
1222 	swp_entry_t *entry;
1223 	swp_entry_t swap;
1224 	gfp_t gfp;
1225 	int error;
1226 
1227 	if (idx >= SHMEM_MAX_INDEX)
1228 		return -EFBIG;
1229 
1230 	if (type)
1231 		*type = 0;
1232 
1233 	/*
1234 	 * Normally, filepage is NULL on entry, and either found
1235 	 * uptodate immediately, or allocated and zeroed, or read
1236 	 * in under swappage, which is then assigned to filepage.
1237 	 * But shmem_readpage (required for splice) passes in a locked
1238 	 * filepage, which may be found not uptodate by other callers
1239 	 * too, and may need to be copied from the swappage read in.
1240 	 */
1241 repeat:
1242 	if (!filepage)
1243 		filepage = find_lock_page(mapping, idx);
1244 	if (filepage && PageUptodate(filepage))
1245 		goto done;
1246 	error = 0;
1247 	gfp = mapping_gfp_mask(mapping);
1248 	if (!filepage) {
1249 		/*
1250 		 * Try to preload while we can wait, to not make a habit of
1251 		 * draining atomic reserves; but don't latch on to this cpu.
1252 		 */
1253 		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1254 		if (error)
1255 			goto failed;
1256 		radix_tree_preload_end();
1257 	}
1258 
1259 	spin_lock(&info->lock);
1260 	shmem_recalc_inode(inode);
1261 	entry = shmem_swp_alloc(info, idx, sgp);
1262 	if (IS_ERR(entry)) {
1263 		spin_unlock(&info->lock);
1264 		error = PTR_ERR(entry);
1265 		goto failed;
1266 	}
1267 	swap = *entry;
1268 
1269 	if (swap.val) {
1270 		/* Look it up and read it in.. */
1271 		swappage = lookup_swap_cache(swap);
1272 		if (!swappage) {
1273 			shmem_swp_unmap(entry);
1274 			/* here we actually do the io */
1275 			if (type && !(*type & VM_FAULT_MAJOR)) {
1276 				__count_vm_event(PGMAJFAULT);
1277 				*type |= VM_FAULT_MAJOR;
1278 			}
1279 			spin_unlock(&info->lock);
1280 			swappage = shmem_swapin(swap, gfp, info, idx);
1281 			if (!swappage) {
1282 				spin_lock(&info->lock);
1283 				entry = shmem_swp_alloc(info, idx, sgp);
1284 				if (IS_ERR(entry))
1285 					error = PTR_ERR(entry);
1286 				else {
1287 					if (entry->val == swap.val)
1288 						error = -ENOMEM;
1289 					shmem_swp_unmap(entry);
1290 				}
1291 				spin_unlock(&info->lock);
1292 				if (error)
1293 					goto failed;
1294 				goto repeat;
1295 			}
1296 			wait_on_page_locked(swappage);
1297 			page_cache_release(swappage);
1298 			goto repeat;
1299 		}
1300 
1301 		/* We have to do this with page locked to prevent races */
1302 		if (!trylock_page(swappage)) {
1303 			shmem_swp_unmap(entry);
1304 			spin_unlock(&info->lock);
1305 			wait_on_page_locked(swappage);
1306 			page_cache_release(swappage);
1307 			goto repeat;
1308 		}
1309 		if (PageWriteback(swappage)) {
1310 			shmem_swp_unmap(entry);
1311 			spin_unlock(&info->lock);
1312 			wait_on_page_writeback(swappage);
1313 			unlock_page(swappage);
1314 			page_cache_release(swappage);
1315 			goto repeat;
1316 		}
1317 		if (!PageUptodate(swappage)) {
1318 			shmem_swp_unmap(entry);
1319 			spin_unlock(&info->lock);
1320 			unlock_page(swappage);
1321 			page_cache_release(swappage);
1322 			error = -EIO;
1323 			goto failed;
1324 		}
1325 
1326 		if (filepage) {
1327 			shmem_swp_set(info, entry, 0);
1328 			shmem_swp_unmap(entry);
1329 			delete_from_swap_cache(swappage);
1330 			spin_unlock(&info->lock);
1331 			copy_highpage(filepage, swappage);
1332 			unlock_page(swappage);
1333 			page_cache_release(swappage);
1334 			flush_dcache_page(filepage);
1335 			SetPageUptodate(filepage);
1336 			set_page_dirty(filepage);
1337 			swap_free(swap);
1338 		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1339 					idx, GFP_NOWAIT))) {
1340 			info->flags |= SHMEM_PAGEIN;
1341 			shmem_swp_set(info, entry, 0);
1342 			shmem_swp_unmap(entry);
1343 			delete_from_swap_cache(swappage);
1344 			spin_unlock(&info->lock);
1345 			filepage = swappage;
1346 			set_page_dirty(filepage);
1347 			swap_free(swap);
1348 		} else {
1349 			shmem_swp_unmap(entry);
1350 			spin_unlock(&info->lock);
1351 			if (error == -ENOMEM) {
1352 				/*
1353 				 * reclaim from proper memory cgroup and
1354 				 * call memcg's OOM if needed.
1355 				 */
1356 				error = mem_cgroup_shmem_charge_fallback(
1357 								swappage,
1358 								current->mm,
1359 								gfp);
1360 				if (error) {
1361 					unlock_page(swappage);
1362 					page_cache_release(swappage);
1363 					goto failed;
1364 				}
1365 			}
1366 			unlock_page(swappage);
1367 			page_cache_release(swappage);
1368 			goto repeat;
1369 		}
1370 	} else if (sgp == SGP_READ && !filepage) {
1371 		shmem_swp_unmap(entry);
1372 		filepage = find_get_page(mapping, idx);
1373 		if (filepage &&
1374 		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1375 			spin_unlock(&info->lock);
1376 			wait_on_page_locked(filepage);
1377 			page_cache_release(filepage);
1378 			filepage = NULL;
1379 			goto repeat;
1380 		}
1381 		spin_unlock(&info->lock);
1382 	} else {
1383 		shmem_swp_unmap(entry);
1384 		sbinfo = SHMEM_SB(inode->i_sb);
1385 		if (sbinfo->max_blocks) {
1386 			spin_lock(&sbinfo->stat_lock);
1387 			if (sbinfo->free_blocks == 0 ||
1388 			    shmem_acct_block(info->flags)) {
1389 				spin_unlock(&sbinfo->stat_lock);
1390 				spin_unlock(&info->lock);
1391 				error = -ENOSPC;
1392 				goto failed;
1393 			}
1394 			sbinfo->free_blocks--;
1395 			inode->i_blocks += BLOCKS_PER_PAGE;
1396 			spin_unlock(&sbinfo->stat_lock);
1397 		} else if (shmem_acct_block(info->flags)) {
1398 			spin_unlock(&info->lock);
1399 			error = -ENOSPC;
1400 			goto failed;
1401 		}
1402 
1403 		if (!filepage) {
1404 			int ret;
1405 
1406 			spin_unlock(&info->lock);
1407 			filepage = shmem_alloc_page(gfp, info, idx);
1408 			if (!filepage) {
1409 				shmem_unacct_blocks(info->flags, 1);
1410 				shmem_free_blocks(inode, 1);
1411 				error = -ENOMEM;
1412 				goto failed;
1413 			}
1414 			SetPageSwapBacked(filepage);
1415 
1416 			/* Precharge page while we can wait, compensate after */
1417 			error = mem_cgroup_cache_charge(filepage, current->mm,
1418 					GFP_KERNEL);
1419 			if (error) {
1420 				page_cache_release(filepage);
1421 				shmem_unacct_blocks(info->flags, 1);
1422 				shmem_free_blocks(inode, 1);
1423 				filepage = NULL;
1424 				goto failed;
1425 			}
1426 
1427 			spin_lock(&info->lock);
1428 			entry = shmem_swp_alloc(info, idx, sgp);
1429 			if (IS_ERR(entry))
1430 				error = PTR_ERR(entry);
1431 			else {
1432 				swap = *entry;
1433 				shmem_swp_unmap(entry);
1434 			}
1435 			ret = error || swap.val;
1436 			if (ret)
1437 				mem_cgroup_uncharge_cache_page(filepage);
1438 			else
1439 				ret = add_to_page_cache_lru(filepage, mapping,
1440 						idx, GFP_NOWAIT);
1441 			/*
1442 			 * At add_to_page_cache_lru() failure, uncharge will
1443 			 * be done automatically.
1444 			 */
1445 			if (ret) {
1446 				spin_unlock(&info->lock);
1447 				page_cache_release(filepage);
1448 				shmem_unacct_blocks(info->flags, 1);
1449 				shmem_free_blocks(inode, 1);
1450 				filepage = NULL;
1451 				if (error)
1452 					goto failed;
1453 				goto repeat;
1454 			}
1455 			info->flags |= SHMEM_PAGEIN;
1456 		}
1457 
1458 		info->alloced++;
1459 		spin_unlock(&info->lock);
1460 		clear_highpage(filepage);
1461 		flush_dcache_page(filepage);
1462 		SetPageUptodate(filepage);
1463 		if (sgp == SGP_DIRTY)
1464 			set_page_dirty(filepage);
1465 	}
1466 done:
1467 	*pagep = filepage;
1468 	return 0;
1469 
1470 failed:
1471 	if (*pagep != filepage) {
1472 		unlock_page(filepage);
1473 		page_cache_release(filepage);
1474 	}
1475 	return error;
1476 }
1477 
1478 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1479 {
1480 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1481 	int error;
1482 	int ret;
1483 
1484 	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1485 		return VM_FAULT_SIGBUS;
1486 
1487 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1488 	if (error)
1489 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1490 
1491 	return ret | VM_FAULT_LOCKED;
1492 }
1493 
1494 #ifdef CONFIG_NUMA
1495 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1496 {
1497 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1498 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1499 }
1500 
1501 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1502 					  unsigned long addr)
1503 {
1504 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1505 	unsigned long idx;
1506 
1507 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1508 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1509 }
1510 #endif
1511 
1512 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1513 {
1514 	struct inode *inode = file->f_path.dentry->d_inode;
1515 	struct shmem_inode_info *info = SHMEM_I(inode);
1516 	int retval = -ENOMEM;
1517 
1518 	spin_lock(&info->lock);
1519 	if (lock && !(info->flags & VM_LOCKED)) {
1520 		if (!user_shm_lock(inode->i_size, user))
1521 			goto out_nomem;
1522 		info->flags |= VM_LOCKED;
1523 		mapping_set_unevictable(file->f_mapping);
1524 	}
1525 	if (!lock && (info->flags & VM_LOCKED) && user) {
1526 		user_shm_unlock(inode->i_size, user);
1527 		info->flags &= ~VM_LOCKED;
1528 		mapping_clear_unevictable(file->f_mapping);
1529 		scan_mapping_unevictable_pages(file->f_mapping);
1530 	}
1531 	retval = 0;
1532 
1533 out_nomem:
1534 	spin_unlock(&info->lock);
1535 	return retval;
1536 }
1537 
1538 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1539 {
1540 	file_accessed(file);
1541 	vma->vm_ops = &shmem_vm_ops;
1542 	vma->vm_flags |= VM_CAN_NONLINEAR;
1543 	return 0;
1544 }
1545 
1546 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1547 				     int mode, dev_t dev, unsigned long flags)
1548 {
1549 	struct inode *inode;
1550 	struct shmem_inode_info *info;
1551 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1552 
1553 	if (shmem_reserve_inode(sb))
1554 		return NULL;
1555 
1556 	inode = new_inode(sb);
1557 	if (inode) {
1558 		inode_init_owner(inode, dir, mode);
1559 		inode->i_blocks = 0;
1560 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1561 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1562 		inode->i_generation = get_seconds();
1563 		info = SHMEM_I(inode);
1564 		memset(info, 0, (char *)inode - (char *)info);
1565 		spin_lock_init(&info->lock);
1566 		info->flags = flags & VM_NORESERVE;
1567 		INIT_LIST_HEAD(&info->swaplist);
1568 		cache_no_acl(inode);
1569 
1570 		switch (mode & S_IFMT) {
1571 		default:
1572 			inode->i_op = &shmem_special_inode_operations;
1573 			init_special_inode(inode, mode, dev);
1574 			break;
1575 		case S_IFREG:
1576 			inode->i_mapping->a_ops = &shmem_aops;
1577 			inode->i_op = &shmem_inode_operations;
1578 			inode->i_fop = &shmem_file_operations;
1579 			mpol_shared_policy_init(&info->policy,
1580 						 shmem_get_sbmpol(sbinfo));
1581 			break;
1582 		case S_IFDIR:
1583 			inc_nlink(inode);
1584 			/* Some things misbehave if size == 0 on a directory */
1585 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1586 			inode->i_op = &shmem_dir_inode_operations;
1587 			inode->i_fop = &simple_dir_operations;
1588 			break;
1589 		case S_IFLNK:
1590 			/*
1591 			 * Must not load anything in the rbtree,
1592 			 * mpol_free_shared_policy will not be called.
1593 			 */
1594 			mpol_shared_policy_init(&info->policy, NULL);
1595 			break;
1596 		}
1597 	} else
1598 		shmem_free_inode(sb);
1599 	return inode;
1600 }
1601 
1602 #ifdef CONFIG_TMPFS
1603 static const struct inode_operations shmem_symlink_inode_operations;
1604 static const struct inode_operations shmem_symlink_inline_operations;
1605 
1606 /*
1607  * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1608  * but providing them allows a tmpfs file to be used for splice, sendfile, and
1609  * below the loop driver, in the generic fashion that many filesystems support.
1610  */
1611 static int shmem_readpage(struct file *file, struct page *page)
1612 {
1613 	struct inode *inode = page->mapping->host;
1614 	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1615 	unlock_page(page);
1616 	return error;
1617 }
1618 
1619 static int
1620 shmem_write_begin(struct file *file, struct address_space *mapping,
1621 			loff_t pos, unsigned len, unsigned flags,
1622 			struct page **pagep, void **fsdata)
1623 {
1624 	struct inode *inode = mapping->host;
1625 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1626 	*pagep = NULL;
1627 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1628 }
1629 
1630 static int
1631 shmem_write_end(struct file *file, struct address_space *mapping,
1632 			loff_t pos, unsigned len, unsigned copied,
1633 			struct page *page, void *fsdata)
1634 {
1635 	struct inode *inode = mapping->host;
1636 
1637 	if (pos + copied > inode->i_size)
1638 		i_size_write(inode, pos + copied);
1639 
1640 	set_page_dirty(page);
1641 	unlock_page(page);
1642 	page_cache_release(page);
1643 
1644 	return copied;
1645 }
1646 
1647 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1648 {
1649 	struct inode *inode = filp->f_path.dentry->d_inode;
1650 	struct address_space *mapping = inode->i_mapping;
1651 	unsigned long index, offset;
1652 	enum sgp_type sgp = SGP_READ;
1653 
1654 	/*
1655 	 * Might this read be for a stacking filesystem?  Then when reading
1656 	 * holes of a sparse file, we actually need to allocate those pages,
1657 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1658 	 */
1659 	if (segment_eq(get_fs(), KERNEL_DS))
1660 		sgp = SGP_DIRTY;
1661 
1662 	index = *ppos >> PAGE_CACHE_SHIFT;
1663 	offset = *ppos & ~PAGE_CACHE_MASK;
1664 
1665 	for (;;) {
1666 		struct page *page = NULL;
1667 		unsigned long end_index, nr, ret;
1668 		loff_t i_size = i_size_read(inode);
1669 
1670 		end_index = i_size >> PAGE_CACHE_SHIFT;
1671 		if (index > end_index)
1672 			break;
1673 		if (index == end_index) {
1674 			nr = i_size & ~PAGE_CACHE_MASK;
1675 			if (nr <= offset)
1676 				break;
1677 		}
1678 
1679 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1680 		if (desc->error) {
1681 			if (desc->error == -EINVAL)
1682 				desc->error = 0;
1683 			break;
1684 		}
1685 		if (page)
1686 			unlock_page(page);
1687 
1688 		/*
1689 		 * We must evaluate after, since reads (unlike writes)
1690 		 * are called without i_mutex protection against truncate
1691 		 */
1692 		nr = PAGE_CACHE_SIZE;
1693 		i_size = i_size_read(inode);
1694 		end_index = i_size >> PAGE_CACHE_SHIFT;
1695 		if (index == end_index) {
1696 			nr = i_size & ~PAGE_CACHE_MASK;
1697 			if (nr <= offset) {
1698 				if (page)
1699 					page_cache_release(page);
1700 				break;
1701 			}
1702 		}
1703 		nr -= offset;
1704 
1705 		if (page) {
1706 			/*
1707 			 * If users can be writing to this page using arbitrary
1708 			 * virtual addresses, take care about potential aliasing
1709 			 * before reading the page on the kernel side.
1710 			 */
1711 			if (mapping_writably_mapped(mapping))
1712 				flush_dcache_page(page);
1713 			/*
1714 			 * Mark the page accessed if we read the beginning.
1715 			 */
1716 			if (!offset)
1717 				mark_page_accessed(page);
1718 		} else {
1719 			page = ZERO_PAGE(0);
1720 			page_cache_get(page);
1721 		}
1722 
1723 		/*
1724 		 * Ok, we have the page, and it's up-to-date, so
1725 		 * now we can copy it to user space...
1726 		 *
1727 		 * The actor routine returns how many bytes were actually used..
1728 		 * NOTE! This may not be the same as how much of a user buffer
1729 		 * we filled up (we may be padding etc), so we can only update
1730 		 * "pos" here (the actor routine has to update the user buffer
1731 		 * pointers and the remaining count).
1732 		 */
1733 		ret = actor(desc, page, offset, nr);
1734 		offset += ret;
1735 		index += offset >> PAGE_CACHE_SHIFT;
1736 		offset &= ~PAGE_CACHE_MASK;
1737 
1738 		page_cache_release(page);
1739 		if (ret != nr || !desc->count)
1740 			break;
1741 
1742 		cond_resched();
1743 	}
1744 
1745 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1746 	file_accessed(filp);
1747 }
1748 
1749 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1750 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1751 {
1752 	struct file *filp = iocb->ki_filp;
1753 	ssize_t retval;
1754 	unsigned long seg;
1755 	size_t count;
1756 	loff_t *ppos = &iocb->ki_pos;
1757 
1758 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1759 	if (retval)
1760 		return retval;
1761 
1762 	for (seg = 0; seg < nr_segs; seg++) {
1763 		read_descriptor_t desc;
1764 
1765 		desc.written = 0;
1766 		desc.arg.buf = iov[seg].iov_base;
1767 		desc.count = iov[seg].iov_len;
1768 		if (desc.count == 0)
1769 			continue;
1770 		desc.error = 0;
1771 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1772 		retval += desc.written;
1773 		if (desc.error) {
1774 			retval = retval ?: desc.error;
1775 			break;
1776 		}
1777 		if (desc.count > 0)
1778 			break;
1779 	}
1780 	return retval;
1781 }
1782 
1783 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1784 {
1785 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1786 
1787 	buf->f_type = TMPFS_MAGIC;
1788 	buf->f_bsize = PAGE_CACHE_SIZE;
1789 	buf->f_namelen = NAME_MAX;
1790 	spin_lock(&sbinfo->stat_lock);
1791 	if (sbinfo->max_blocks) {
1792 		buf->f_blocks = sbinfo->max_blocks;
1793 		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1794 	}
1795 	if (sbinfo->max_inodes) {
1796 		buf->f_files = sbinfo->max_inodes;
1797 		buf->f_ffree = sbinfo->free_inodes;
1798 	}
1799 	/* else leave those fields 0 like simple_statfs */
1800 	spin_unlock(&sbinfo->stat_lock);
1801 	return 0;
1802 }
1803 
1804 /*
1805  * File creation. Allocate an inode, and we're done..
1806  */
1807 static int
1808 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1809 {
1810 	struct inode *inode;
1811 	int error = -ENOSPC;
1812 
1813 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1814 	if (inode) {
1815 		error = security_inode_init_security(inode, dir, NULL, NULL,
1816 						     NULL);
1817 		if (error) {
1818 			if (error != -EOPNOTSUPP) {
1819 				iput(inode);
1820 				return error;
1821 			}
1822 		}
1823 #ifdef CONFIG_TMPFS_POSIX_ACL
1824 		error = generic_acl_init(inode, dir);
1825 		if (error) {
1826 			iput(inode);
1827 			return error;
1828 		}
1829 #else
1830 		error = 0;
1831 #endif
1832 		dir->i_size += BOGO_DIRENT_SIZE;
1833 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1834 		d_instantiate(dentry, inode);
1835 		dget(dentry); /* Extra count - pin the dentry in core */
1836 	}
1837 	return error;
1838 }
1839 
1840 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1841 {
1842 	int error;
1843 
1844 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1845 		return error;
1846 	inc_nlink(dir);
1847 	return 0;
1848 }
1849 
1850 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1851 		struct nameidata *nd)
1852 {
1853 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1854 }
1855 
1856 /*
1857  * Link a file..
1858  */
1859 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1860 {
1861 	struct inode *inode = old_dentry->d_inode;
1862 	int ret;
1863 
1864 	/*
1865 	 * No ordinary (disk based) filesystem counts links as inodes;
1866 	 * but each new link needs a new dentry, pinning lowmem, and
1867 	 * tmpfs dentries cannot be pruned until they are unlinked.
1868 	 */
1869 	ret = shmem_reserve_inode(inode->i_sb);
1870 	if (ret)
1871 		goto out;
1872 
1873 	dir->i_size += BOGO_DIRENT_SIZE;
1874 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1875 	inc_nlink(inode);
1876 	atomic_inc(&inode->i_count);	/* New dentry reference */
1877 	dget(dentry);		/* Extra pinning count for the created dentry */
1878 	d_instantiate(dentry, inode);
1879 out:
1880 	return ret;
1881 }
1882 
1883 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1884 {
1885 	struct inode *inode = dentry->d_inode;
1886 
1887 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1888 		shmem_free_inode(inode->i_sb);
1889 
1890 	dir->i_size -= BOGO_DIRENT_SIZE;
1891 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1892 	drop_nlink(inode);
1893 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1894 	return 0;
1895 }
1896 
1897 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1898 {
1899 	if (!simple_empty(dentry))
1900 		return -ENOTEMPTY;
1901 
1902 	drop_nlink(dentry->d_inode);
1903 	drop_nlink(dir);
1904 	return shmem_unlink(dir, dentry);
1905 }
1906 
1907 /*
1908  * The VFS layer already does all the dentry stuff for rename,
1909  * we just have to decrement the usage count for the target if
1910  * it exists so that the VFS layer correctly free's it when it
1911  * gets overwritten.
1912  */
1913 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1914 {
1915 	struct inode *inode = old_dentry->d_inode;
1916 	int they_are_dirs = S_ISDIR(inode->i_mode);
1917 
1918 	if (!simple_empty(new_dentry))
1919 		return -ENOTEMPTY;
1920 
1921 	if (new_dentry->d_inode) {
1922 		(void) shmem_unlink(new_dir, new_dentry);
1923 		if (they_are_dirs)
1924 			drop_nlink(old_dir);
1925 	} else if (they_are_dirs) {
1926 		drop_nlink(old_dir);
1927 		inc_nlink(new_dir);
1928 	}
1929 
1930 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1931 	new_dir->i_size += BOGO_DIRENT_SIZE;
1932 	old_dir->i_ctime = old_dir->i_mtime =
1933 	new_dir->i_ctime = new_dir->i_mtime =
1934 	inode->i_ctime = CURRENT_TIME;
1935 	return 0;
1936 }
1937 
1938 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1939 {
1940 	int error;
1941 	int len;
1942 	struct inode *inode;
1943 	struct page *page = NULL;
1944 	char *kaddr;
1945 	struct shmem_inode_info *info;
1946 
1947 	len = strlen(symname) + 1;
1948 	if (len > PAGE_CACHE_SIZE)
1949 		return -ENAMETOOLONG;
1950 
1951 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1952 	if (!inode)
1953 		return -ENOSPC;
1954 
1955 	error = security_inode_init_security(inode, dir, NULL, NULL,
1956 					     NULL);
1957 	if (error) {
1958 		if (error != -EOPNOTSUPP) {
1959 			iput(inode);
1960 			return error;
1961 		}
1962 		error = 0;
1963 	}
1964 
1965 	info = SHMEM_I(inode);
1966 	inode->i_size = len-1;
1967 	if (len <= (char *)inode - (char *)info) {
1968 		/* do it inline */
1969 		memcpy(info, symname, len);
1970 		inode->i_op = &shmem_symlink_inline_operations;
1971 	} else {
1972 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1973 		if (error) {
1974 			iput(inode);
1975 			return error;
1976 		}
1977 		inode->i_mapping->a_ops = &shmem_aops;
1978 		inode->i_op = &shmem_symlink_inode_operations;
1979 		kaddr = kmap_atomic(page, KM_USER0);
1980 		memcpy(kaddr, symname, len);
1981 		kunmap_atomic(kaddr, KM_USER0);
1982 		set_page_dirty(page);
1983 		unlock_page(page);
1984 		page_cache_release(page);
1985 	}
1986 	dir->i_size += BOGO_DIRENT_SIZE;
1987 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1988 	d_instantiate(dentry, inode);
1989 	dget(dentry);
1990 	return 0;
1991 }
1992 
1993 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1994 {
1995 	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1996 	return NULL;
1997 }
1998 
1999 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2000 {
2001 	struct page *page = NULL;
2002 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2003 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2004 	if (page)
2005 		unlock_page(page);
2006 	return page;
2007 }
2008 
2009 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2010 {
2011 	if (!IS_ERR(nd_get_link(nd))) {
2012 		struct page *page = cookie;
2013 		kunmap(page);
2014 		mark_page_accessed(page);
2015 		page_cache_release(page);
2016 	}
2017 }
2018 
2019 static const struct inode_operations shmem_symlink_inline_operations = {
2020 	.readlink	= generic_readlink,
2021 	.follow_link	= shmem_follow_link_inline,
2022 };
2023 
2024 static const struct inode_operations shmem_symlink_inode_operations = {
2025 	.truncate	= shmem_truncate,
2026 	.readlink	= generic_readlink,
2027 	.follow_link	= shmem_follow_link,
2028 	.put_link	= shmem_put_link,
2029 };
2030 
2031 #ifdef CONFIG_TMPFS_POSIX_ACL
2032 /*
2033  * Superblocks without xattr inode operations will get security.* xattr
2034  * support from the VFS "for free". As soon as we have any other xattrs
2035  * like ACLs, we also need to implement the security.* handlers at
2036  * filesystem level, though.
2037  */
2038 
2039 static size_t shmem_xattr_security_list(struct dentry *dentry, char *list,
2040 					size_t list_len, const char *name,
2041 					size_t name_len, int handler_flags)
2042 {
2043 	return security_inode_listsecurity(dentry->d_inode, list, list_len);
2044 }
2045 
2046 static int shmem_xattr_security_get(struct dentry *dentry, const char *name,
2047 		void *buffer, size_t size, int handler_flags)
2048 {
2049 	if (strcmp(name, "") == 0)
2050 		return -EINVAL;
2051 	return xattr_getsecurity(dentry->d_inode, name, buffer, size);
2052 }
2053 
2054 static int shmem_xattr_security_set(struct dentry *dentry, const char *name,
2055 		const void *value, size_t size, int flags, int handler_flags)
2056 {
2057 	if (strcmp(name, "") == 0)
2058 		return -EINVAL;
2059 	return security_inode_setsecurity(dentry->d_inode, name, value,
2060 					  size, flags);
2061 }
2062 
2063 static const struct xattr_handler shmem_xattr_security_handler = {
2064 	.prefix = XATTR_SECURITY_PREFIX,
2065 	.list   = shmem_xattr_security_list,
2066 	.get    = shmem_xattr_security_get,
2067 	.set    = shmem_xattr_security_set,
2068 };
2069 
2070 static const struct xattr_handler *shmem_xattr_handlers[] = {
2071 	&generic_acl_access_handler,
2072 	&generic_acl_default_handler,
2073 	&shmem_xattr_security_handler,
2074 	NULL
2075 };
2076 #endif
2077 
2078 static struct dentry *shmem_get_parent(struct dentry *child)
2079 {
2080 	return ERR_PTR(-ESTALE);
2081 }
2082 
2083 static int shmem_match(struct inode *ino, void *vfh)
2084 {
2085 	__u32 *fh = vfh;
2086 	__u64 inum = fh[2];
2087 	inum = (inum << 32) | fh[1];
2088 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2089 }
2090 
2091 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2092 		struct fid *fid, int fh_len, int fh_type)
2093 {
2094 	struct inode *inode;
2095 	struct dentry *dentry = NULL;
2096 	u64 inum = fid->raw[2];
2097 	inum = (inum << 32) | fid->raw[1];
2098 
2099 	if (fh_len < 3)
2100 		return NULL;
2101 
2102 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2103 			shmem_match, fid->raw);
2104 	if (inode) {
2105 		dentry = d_find_alias(inode);
2106 		iput(inode);
2107 	}
2108 
2109 	return dentry;
2110 }
2111 
2112 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2113 				int connectable)
2114 {
2115 	struct inode *inode = dentry->d_inode;
2116 
2117 	if (*len < 3)
2118 		return 255;
2119 
2120 	if (hlist_unhashed(&inode->i_hash)) {
2121 		/* Unfortunately insert_inode_hash is not idempotent,
2122 		 * so as we hash inodes here rather than at creation
2123 		 * time, we need a lock to ensure we only try
2124 		 * to do it once
2125 		 */
2126 		static DEFINE_SPINLOCK(lock);
2127 		spin_lock(&lock);
2128 		if (hlist_unhashed(&inode->i_hash))
2129 			__insert_inode_hash(inode,
2130 					    inode->i_ino + inode->i_generation);
2131 		spin_unlock(&lock);
2132 	}
2133 
2134 	fh[0] = inode->i_generation;
2135 	fh[1] = inode->i_ino;
2136 	fh[2] = ((__u64)inode->i_ino) >> 32;
2137 
2138 	*len = 3;
2139 	return 1;
2140 }
2141 
2142 static const struct export_operations shmem_export_ops = {
2143 	.get_parent     = shmem_get_parent,
2144 	.encode_fh      = shmem_encode_fh,
2145 	.fh_to_dentry	= shmem_fh_to_dentry,
2146 };
2147 
2148 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2149 			       bool remount)
2150 {
2151 	char *this_char, *value, *rest;
2152 
2153 	while (options != NULL) {
2154 		this_char = options;
2155 		for (;;) {
2156 			/*
2157 			 * NUL-terminate this option: unfortunately,
2158 			 * mount options form a comma-separated list,
2159 			 * but mpol's nodelist may also contain commas.
2160 			 */
2161 			options = strchr(options, ',');
2162 			if (options == NULL)
2163 				break;
2164 			options++;
2165 			if (!isdigit(*options)) {
2166 				options[-1] = '\0';
2167 				break;
2168 			}
2169 		}
2170 		if (!*this_char)
2171 			continue;
2172 		if ((value = strchr(this_char,'=')) != NULL) {
2173 			*value++ = 0;
2174 		} else {
2175 			printk(KERN_ERR
2176 			    "tmpfs: No value for mount option '%s'\n",
2177 			    this_char);
2178 			return 1;
2179 		}
2180 
2181 		if (!strcmp(this_char,"size")) {
2182 			unsigned long long size;
2183 			size = memparse(value,&rest);
2184 			if (*rest == '%') {
2185 				size <<= PAGE_SHIFT;
2186 				size *= totalram_pages;
2187 				do_div(size, 100);
2188 				rest++;
2189 			}
2190 			if (*rest)
2191 				goto bad_val;
2192 			sbinfo->max_blocks =
2193 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2194 		} else if (!strcmp(this_char,"nr_blocks")) {
2195 			sbinfo->max_blocks = memparse(value, &rest);
2196 			if (*rest)
2197 				goto bad_val;
2198 		} else if (!strcmp(this_char,"nr_inodes")) {
2199 			sbinfo->max_inodes = memparse(value, &rest);
2200 			if (*rest)
2201 				goto bad_val;
2202 		} else if (!strcmp(this_char,"mode")) {
2203 			if (remount)
2204 				continue;
2205 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2206 			if (*rest)
2207 				goto bad_val;
2208 		} else if (!strcmp(this_char,"uid")) {
2209 			if (remount)
2210 				continue;
2211 			sbinfo->uid = simple_strtoul(value, &rest, 0);
2212 			if (*rest)
2213 				goto bad_val;
2214 		} else if (!strcmp(this_char,"gid")) {
2215 			if (remount)
2216 				continue;
2217 			sbinfo->gid = simple_strtoul(value, &rest, 0);
2218 			if (*rest)
2219 				goto bad_val;
2220 		} else if (!strcmp(this_char,"mpol")) {
2221 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2222 				goto bad_val;
2223 		} else {
2224 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2225 			       this_char);
2226 			return 1;
2227 		}
2228 	}
2229 	return 0;
2230 
2231 bad_val:
2232 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2233 	       value, this_char);
2234 	return 1;
2235 
2236 }
2237 
2238 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2239 {
2240 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2241 	struct shmem_sb_info config = *sbinfo;
2242 	unsigned long blocks;
2243 	unsigned long inodes;
2244 	int error = -EINVAL;
2245 
2246 	if (shmem_parse_options(data, &config, true))
2247 		return error;
2248 
2249 	spin_lock(&sbinfo->stat_lock);
2250 	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2251 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2252 	if (config.max_blocks < blocks)
2253 		goto out;
2254 	if (config.max_inodes < inodes)
2255 		goto out;
2256 	/*
2257 	 * Those tests also disallow limited->unlimited while any are in
2258 	 * use, so i_blocks will always be zero when max_blocks is zero;
2259 	 * but we must separately disallow unlimited->limited, because
2260 	 * in that case we have no record of how much is already in use.
2261 	 */
2262 	if (config.max_blocks && !sbinfo->max_blocks)
2263 		goto out;
2264 	if (config.max_inodes && !sbinfo->max_inodes)
2265 		goto out;
2266 
2267 	error = 0;
2268 	sbinfo->max_blocks  = config.max_blocks;
2269 	sbinfo->free_blocks = config.max_blocks - blocks;
2270 	sbinfo->max_inodes  = config.max_inodes;
2271 	sbinfo->free_inodes = config.max_inodes - inodes;
2272 
2273 	mpol_put(sbinfo->mpol);
2274 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2275 out:
2276 	spin_unlock(&sbinfo->stat_lock);
2277 	return error;
2278 }
2279 
2280 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2281 {
2282 	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2283 
2284 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2285 		seq_printf(seq, ",size=%luk",
2286 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2287 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2288 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2289 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2290 		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2291 	if (sbinfo->uid != 0)
2292 		seq_printf(seq, ",uid=%u", sbinfo->uid);
2293 	if (sbinfo->gid != 0)
2294 		seq_printf(seq, ",gid=%u", sbinfo->gid);
2295 	shmem_show_mpol(seq, sbinfo->mpol);
2296 	return 0;
2297 }
2298 #endif /* CONFIG_TMPFS */
2299 
2300 static void shmem_put_super(struct super_block *sb)
2301 {
2302 	kfree(sb->s_fs_info);
2303 	sb->s_fs_info = NULL;
2304 }
2305 
2306 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2307 {
2308 	struct inode *inode;
2309 	struct dentry *root;
2310 	struct shmem_sb_info *sbinfo;
2311 	int err = -ENOMEM;
2312 
2313 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2314 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2315 				L1_CACHE_BYTES), GFP_KERNEL);
2316 	if (!sbinfo)
2317 		return -ENOMEM;
2318 
2319 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2320 	sbinfo->uid = current_fsuid();
2321 	sbinfo->gid = current_fsgid();
2322 	sb->s_fs_info = sbinfo;
2323 
2324 #ifdef CONFIG_TMPFS
2325 	/*
2326 	 * Per default we only allow half of the physical ram per
2327 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2328 	 * but the internal instance is left unlimited.
2329 	 */
2330 	if (!(sb->s_flags & MS_NOUSER)) {
2331 		sbinfo->max_blocks = shmem_default_max_blocks();
2332 		sbinfo->max_inodes = shmem_default_max_inodes();
2333 		if (shmem_parse_options(data, sbinfo, false)) {
2334 			err = -EINVAL;
2335 			goto failed;
2336 		}
2337 	}
2338 	sb->s_export_op = &shmem_export_ops;
2339 #else
2340 	sb->s_flags |= MS_NOUSER;
2341 #endif
2342 
2343 	spin_lock_init(&sbinfo->stat_lock);
2344 	sbinfo->free_blocks = sbinfo->max_blocks;
2345 	sbinfo->free_inodes = sbinfo->max_inodes;
2346 
2347 	sb->s_maxbytes = SHMEM_MAX_BYTES;
2348 	sb->s_blocksize = PAGE_CACHE_SIZE;
2349 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2350 	sb->s_magic = TMPFS_MAGIC;
2351 	sb->s_op = &shmem_ops;
2352 	sb->s_time_gran = 1;
2353 #ifdef CONFIG_TMPFS_POSIX_ACL
2354 	sb->s_xattr = shmem_xattr_handlers;
2355 	sb->s_flags |= MS_POSIXACL;
2356 #endif
2357 
2358 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2359 	if (!inode)
2360 		goto failed;
2361 	inode->i_uid = sbinfo->uid;
2362 	inode->i_gid = sbinfo->gid;
2363 	root = d_alloc_root(inode);
2364 	if (!root)
2365 		goto failed_iput;
2366 	sb->s_root = root;
2367 	return 0;
2368 
2369 failed_iput:
2370 	iput(inode);
2371 failed:
2372 	shmem_put_super(sb);
2373 	return err;
2374 }
2375 
2376 static struct kmem_cache *shmem_inode_cachep;
2377 
2378 static struct inode *shmem_alloc_inode(struct super_block *sb)
2379 {
2380 	struct shmem_inode_info *p;
2381 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2382 	if (!p)
2383 		return NULL;
2384 	return &p->vfs_inode;
2385 }
2386 
2387 static void shmem_destroy_inode(struct inode *inode)
2388 {
2389 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2390 		/* only struct inode is valid if it's an inline symlink */
2391 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2392 	}
2393 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2394 }
2395 
2396 static void init_once(void *foo)
2397 {
2398 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2399 
2400 	inode_init_once(&p->vfs_inode);
2401 }
2402 
2403 static int init_inodecache(void)
2404 {
2405 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2406 				sizeof(struct shmem_inode_info),
2407 				0, SLAB_PANIC, init_once);
2408 	return 0;
2409 }
2410 
2411 static void destroy_inodecache(void)
2412 {
2413 	kmem_cache_destroy(shmem_inode_cachep);
2414 }
2415 
2416 static const struct address_space_operations shmem_aops = {
2417 	.writepage	= shmem_writepage,
2418 	.set_page_dirty	= __set_page_dirty_no_writeback,
2419 #ifdef CONFIG_TMPFS
2420 	.readpage	= shmem_readpage,
2421 	.write_begin	= shmem_write_begin,
2422 	.write_end	= shmem_write_end,
2423 #endif
2424 	.migratepage	= migrate_page,
2425 	.error_remove_page = generic_error_remove_page,
2426 };
2427 
2428 static const struct file_operations shmem_file_operations = {
2429 	.mmap		= shmem_mmap,
2430 #ifdef CONFIG_TMPFS
2431 	.llseek		= generic_file_llseek,
2432 	.read		= do_sync_read,
2433 	.write		= do_sync_write,
2434 	.aio_read	= shmem_file_aio_read,
2435 	.aio_write	= generic_file_aio_write,
2436 	.fsync		= simple_sync_file,
2437 	.splice_read	= generic_file_splice_read,
2438 	.splice_write	= generic_file_splice_write,
2439 #endif
2440 };
2441 
2442 static const struct inode_operations shmem_inode_operations = {
2443 	.truncate	= shmem_truncate,
2444 	.setattr	= shmem_notify_change,
2445 	.truncate_range	= shmem_truncate_range,
2446 #ifdef CONFIG_TMPFS_POSIX_ACL
2447 	.setxattr	= generic_setxattr,
2448 	.getxattr	= generic_getxattr,
2449 	.listxattr	= generic_listxattr,
2450 	.removexattr	= generic_removexattr,
2451 	.check_acl	= generic_check_acl,
2452 #endif
2453 
2454 };
2455 
2456 static const struct inode_operations shmem_dir_inode_operations = {
2457 #ifdef CONFIG_TMPFS
2458 	.create		= shmem_create,
2459 	.lookup		= simple_lookup,
2460 	.link		= shmem_link,
2461 	.unlink		= shmem_unlink,
2462 	.symlink	= shmem_symlink,
2463 	.mkdir		= shmem_mkdir,
2464 	.rmdir		= shmem_rmdir,
2465 	.mknod		= shmem_mknod,
2466 	.rename		= shmem_rename,
2467 #endif
2468 #ifdef CONFIG_TMPFS_POSIX_ACL
2469 	.setattr	= shmem_notify_change,
2470 	.setxattr	= generic_setxattr,
2471 	.getxattr	= generic_getxattr,
2472 	.listxattr	= generic_listxattr,
2473 	.removexattr	= generic_removexattr,
2474 	.check_acl	= generic_check_acl,
2475 #endif
2476 };
2477 
2478 static const struct inode_operations shmem_special_inode_operations = {
2479 #ifdef CONFIG_TMPFS_POSIX_ACL
2480 	.setattr	= shmem_notify_change,
2481 	.setxattr	= generic_setxattr,
2482 	.getxattr	= generic_getxattr,
2483 	.listxattr	= generic_listxattr,
2484 	.removexattr	= generic_removexattr,
2485 	.check_acl	= generic_check_acl,
2486 #endif
2487 };
2488 
2489 static const struct super_operations shmem_ops = {
2490 	.alloc_inode	= shmem_alloc_inode,
2491 	.destroy_inode	= shmem_destroy_inode,
2492 #ifdef CONFIG_TMPFS
2493 	.statfs		= shmem_statfs,
2494 	.remount_fs	= shmem_remount_fs,
2495 	.show_options	= shmem_show_options,
2496 #endif
2497 	.delete_inode	= shmem_delete_inode,
2498 	.drop_inode	= generic_delete_inode,
2499 	.put_super	= shmem_put_super,
2500 };
2501 
2502 static const struct vm_operations_struct shmem_vm_ops = {
2503 	.fault		= shmem_fault,
2504 #ifdef CONFIG_NUMA
2505 	.set_policy     = shmem_set_policy,
2506 	.get_policy     = shmem_get_policy,
2507 #endif
2508 };
2509 
2510 
2511 static int shmem_get_sb(struct file_system_type *fs_type,
2512 	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2513 {
2514 	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2515 }
2516 
2517 static struct file_system_type tmpfs_fs_type = {
2518 	.owner		= THIS_MODULE,
2519 	.name		= "tmpfs",
2520 	.get_sb		= shmem_get_sb,
2521 	.kill_sb	= kill_litter_super,
2522 };
2523 
2524 int __init init_tmpfs(void)
2525 {
2526 	int error;
2527 
2528 	error = bdi_init(&shmem_backing_dev_info);
2529 	if (error)
2530 		goto out4;
2531 
2532 	error = init_inodecache();
2533 	if (error)
2534 		goto out3;
2535 
2536 	error = register_filesystem(&tmpfs_fs_type);
2537 	if (error) {
2538 		printk(KERN_ERR "Could not register tmpfs\n");
2539 		goto out2;
2540 	}
2541 
2542 	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2543 				tmpfs_fs_type.name, NULL);
2544 	if (IS_ERR(shm_mnt)) {
2545 		error = PTR_ERR(shm_mnt);
2546 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2547 		goto out1;
2548 	}
2549 	return 0;
2550 
2551 out1:
2552 	unregister_filesystem(&tmpfs_fs_type);
2553 out2:
2554 	destroy_inodecache();
2555 out3:
2556 	bdi_destroy(&shmem_backing_dev_info);
2557 out4:
2558 	shm_mnt = ERR_PTR(error);
2559 	return error;
2560 }
2561 
2562 #else /* !CONFIG_SHMEM */
2563 
2564 /*
2565  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2566  *
2567  * This is intended for small system where the benefits of the full
2568  * shmem code (swap-backed and resource-limited) are outweighed by
2569  * their complexity. On systems without swap this code should be
2570  * effectively equivalent, but much lighter weight.
2571  */
2572 
2573 #include <linux/ramfs.h>
2574 
2575 static struct file_system_type tmpfs_fs_type = {
2576 	.name		= "tmpfs",
2577 	.get_sb		= ramfs_get_sb,
2578 	.kill_sb	= kill_litter_super,
2579 };
2580 
2581 int __init init_tmpfs(void)
2582 {
2583 	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2584 
2585 	shm_mnt = kern_mount(&tmpfs_fs_type);
2586 	BUG_ON(IS_ERR(shm_mnt));
2587 
2588 	return 0;
2589 }
2590 
2591 int shmem_unuse(swp_entry_t entry, struct page *page)
2592 {
2593 	return 0;
2594 }
2595 
2596 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2597 {
2598 	return 0;
2599 }
2600 
2601 #define shmem_vm_ops				generic_file_vm_ops
2602 #define shmem_file_operations			ramfs_file_operations
2603 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2604 #define shmem_acct_size(flags, size)		0
2605 #define shmem_unacct_size(flags, size)		do {} while (0)
2606 #define SHMEM_MAX_BYTES				MAX_LFS_FILESIZE
2607 
2608 #endif /* CONFIG_SHMEM */
2609 
2610 /* common code */
2611 
2612 /**
2613  * shmem_file_setup - get an unlinked file living in tmpfs
2614  * @name: name for dentry (to be seen in /proc/<pid>/maps
2615  * @size: size to be set for the file
2616  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2617  */
2618 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2619 {
2620 	int error;
2621 	struct file *file;
2622 	struct inode *inode;
2623 	struct path path;
2624 	struct dentry *root;
2625 	struct qstr this;
2626 
2627 	if (IS_ERR(shm_mnt))
2628 		return (void *)shm_mnt;
2629 
2630 	if (size < 0 || size > SHMEM_MAX_BYTES)
2631 		return ERR_PTR(-EINVAL);
2632 
2633 	if (shmem_acct_size(flags, size))
2634 		return ERR_PTR(-ENOMEM);
2635 
2636 	error = -ENOMEM;
2637 	this.name = name;
2638 	this.len = strlen(name);
2639 	this.hash = 0; /* will go */
2640 	root = shm_mnt->mnt_root;
2641 	path.dentry = d_alloc(root, &this);
2642 	if (!path.dentry)
2643 		goto put_memory;
2644 	path.mnt = mntget(shm_mnt);
2645 
2646 	error = -ENOSPC;
2647 	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2648 	if (!inode)
2649 		goto put_dentry;
2650 
2651 	d_instantiate(path.dentry, inode);
2652 	inode->i_size = size;
2653 	inode->i_nlink = 0;	/* It is unlinked */
2654 #ifndef CONFIG_MMU
2655 	error = ramfs_nommu_expand_for_mapping(inode, size);
2656 	if (error)
2657 		goto put_dentry;
2658 #endif
2659 
2660 	error = -ENFILE;
2661 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2662 		  &shmem_file_operations);
2663 	if (!file)
2664 		goto put_dentry;
2665 
2666 	return file;
2667 
2668 put_dentry:
2669 	path_put(&path);
2670 put_memory:
2671 	shmem_unacct_size(flags, size);
2672 	return ERR_PTR(error);
2673 }
2674 EXPORT_SYMBOL_GPL(shmem_file_setup);
2675 
2676 /**
2677  * shmem_zero_setup - setup a shared anonymous mapping
2678  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2679  */
2680 int shmem_zero_setup(struct vm_area_struct *vma)
2681 {
2682 	struct file *file;
2683 	loff_t size = vma->vm_end - vma->vm_start;
2684 
2685 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2686 	if (IS_ERR(file))
2687 		return PTR_ERR(file);
2688 
2689 	if (vma->vm_file)
2690 		fput(vma->vm_file);
2691 	vma->vm_file = file;
2692 	vma->vm_ops = &shmem_vm_ops;
2693 	return 0;
2694 }
2695