xref: /linux/mm/shmem.c (revision b246a9d2671f4f6cfab3f98199568e0b3028f6e5)
1  /*
2   * Resizable virtual memory filesystem for Linux.
3   *
4   * Copyright (C) 2000 Linus Torvalds.
5   *		 2000 Transmeta Corp.
6   *		 2000-2001 Christoph Rohland
7   *		 2000-2001 SAP AG
8   *		 2002 Red Hat Inc.
9   * Copyright (C) 2002-2011 Hugh Dickins.
10   * Copyright (C) 2011 Google Inc.
11   * Copyright (C) 2002-2005 VERITAS Software Corporation.
12   * Copyright (C) 2004 Andi Kleen, SuSE Labs
13   *
14   * Extended attribute support for tmpfs:
15   * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16   * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17   *
18   * tiny-shmem:
19   * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20   *
21   * This file is released under the GPL.
22   */
23  
24  #include <linux/fs.h>
25  #include <linux/init.h>
26  #include <linux/vfs.h>
27  #include <linux/mount.h>
28  #include <linux/ramfs.h>
29  #include <linux/pagemap.h>
30  #include <linux/file.h>
31  #include <linux/mm.h>
32  #include <linux/export.h>
33  #include <linux/swap.h>
34  #include <linux/uio.h>
35  #include <linux/khugepaged.h>
36  
37  static struct vfsmount *shm_mnt;
38  
39  #ifdef CONFIG_SHMEM
40  /*
41   * This virtual memory filesystem is heavily based on the ramfs. It
42   * extends ramfs by the ability to use swap and honor resource limits
43   * which makes it a completely usable filesystem.
44   */
45  
46  #include <linux/xattr.h>
47  #include <linux/exportfs.h>
48  #include <linux/posix_acl.h>
49  #include <linux/posix_acl_xattr.h>
50  #include <linux/mman.h>
51  #include <linux/string.h>
52  #include <linux/slab.h>
53  #include <linux/backing-dev.h>
54  #include <linux/shmem_fs.h>
55  #include <linux/writeback.h>
56  #include <linux/blkdev.h>
57  #include <linux/pagevec.h>
58  #include <linux/percpu_counter.h>
59  #include <linux/falloc.h>
60  #include <linux/splice.h>
61  #include <linux/security.h>
62  #include <linux/swapops.h>
63  #include <linux/mempolicy.h>
64  #include <linux/namei.h>
65  #include <linux/ctype.h>
66  #include <linux/migrate.h>
67  #include <linux/highmem.h>
68  #include <linux/seq_file.h>
69  #include <linux/magic.h>
70  #include <linux/syscalls.h>
71  #include <linux/fcntl.h>
72  #include <uapi/linux/memfd.h>
73  
74  #include <linux/uaccess.h>
75  #include <asm/pgtable.h>
76  
77  #include "internal.h"
78  
79  #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
80  #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
81  
82  /* Pretend that each entry is of this size in directory's i_size */
83  #define BOGO_DIRENT_SIZE 20
84  
85  /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86  #define SHORT_SYMLINK_LEN 128
87  
88  /*
89   * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90   * inode->i_private (with i_mutex making sure that it has only one user at
91   * a time): we would prefer not to enlarge the shmem inode just for that.
92   */
93  struct shmem_falloc {
94  	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
95  	pgoff_t start;		/* start of range currently being fallocated */
96  	pgoff_t next;		/* the next page offset to be fallocated */
97  	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
98  	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
99  };
100  
101  #ifdef CONFIG_TMPFS
102  static unsigned long shmem_default_max_blocks(void)
103  {
104  	return totalram_pages / 2;
105  }
106  
107  static unsigned long shmem_default_max_inodes(void)
108  {
109  	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110  }
111  #endif
112  
113  static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114  static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115  				struct shmem_inode_info *info, pgoff_t index);
116  static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117  		struct page **pagep, enum sgp_type sgp,
118  		gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
119  
120  int shmem_getpage(struct inode *inode, pgoff_t index,
121  		struct page **pagep, enum sgp_type sgp)
122  {
123  	return shmem_getpage_gfp(inode, index, pagep, sgp,
124  		mapping_gfp_mask(inode->i_mapping), NULL, NULL);
125  }
126  
127  static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
128  {
129  	return sb->s_fs_info;
130  }
131  
132  /*
133   * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134   * for shared memory and for shared anonymous (/dev/zero) mappings
135   * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136   * consistent with the pre-accounting of private mappings ...
137   */
138  static inline int shmem_acct_size(unsigned long flags, loff_t size)
139  {
140  	return (flags & VM_NORESERVE) ?
141  		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
142  }
143  
144  static inline void shmem_unacct_size(unsigned long flags, loff_t size)
145  {
146  	if (!(flags & VM_NORESERVE))
147  		vm_unacct_memory(VM_ACCT(size));
148  }
149  
150  static inline int shmem_reacct_size(unsigned long flags,
151  		loff_t oldsize, loff_t newsize)
152  {
153  	if (!(flags & VM_NORESERVE)) {
154  		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155  			return security_vm_enough_memory_mm(current->mm,
156  					VM_ACCT(newsize) - VM_ACCT(oldsize));
157  		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158  			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
159  	}
160  	return 0;
161  }
162  
163  /*
164   * ... whereas tmpfs objects are accounted incrementally as
165   * pages are allocated, in order to allow large sparse files.
166   * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167   * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168   */
169  static inline int shmem_acct_block(unsigned long flags, long pages)
170  {
171  	if (!(flags & VM_NORESERVE))
172  		return 0;
173  
174  	return security_vm_enough_memory_mm(current->mm,
175  			pages * VM_ACCT(PAGE_SIZE));
176  }
177  
178  static inline void shmem_unacct_blocks(unsigned long flags, long pages)
179  {
180  	if (flags & VM_NORESERVE)
181  		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
182  }
183  
184  static const struct super_operations shmem_ops;
185  static const struct address_space_operations shmem_aops;
186  static const struct file_operations shmem_file_operations;
187  static const struct inode_operations shmem_inode_operations;
188  static const struct inode_operations shmem_dir_inode_operations;
189  static const struct inode_operations shmem_special_inode_operations;
190  static const struct vm_operations_struct shmem_vm_ops;
191  static struct file_system_type shmem_fs_type;
192  
193  static LIST_HEAD(shmem_swaplist);
194  static DEFINE_MUTEX(shmem_swaplist_mutex);
195  
196  static int shmem_reserve_inode(struct super_block *sb)
197  {
198  	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
199  	if (sbinfo->max_inodes) {
200  		spin_lock(&sbinfo->stat_lock);
201  		if (!sbinfo->free_inodes) {
202  			spin_unlock(&sbinfo->stat_lock);
203  			return -ENOSPC;
204  		}
205  		sbinfo->free_inodes--;
206  		spin_unlock(&sbinfo->stat_lock);
207  	}
208  	return 0;
209  }
210  
211  static void shmem_free_inode(struct super_block *sb)
212  {
213  	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
214  	if (sbinfo->max_inodes) {
215  		spin_lock(&sbinfo->stat_lock);
216  		sbinfo->free_inodes++;
217  		spin_unlock(&sbinfo->stat_lock);
218  	}
219  }
220  
221  /**
222   * shmem_recalc_inode - recalculate the block usage of an inode
223   * @inode: inode to recalc
224   *
225   * We have to calculate the free blocks since the mm can drop
226   * undirtied hole pages behind our back.
227   *
228   * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
229   * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
230   *
231   * It has to be called with the spinlock held.
232   */
233  static void shmem_recalc_inode(struct inode *inode)
234  {
235  	struct shmem_inode_info *info = SHMEM_I(inode);
236  	long freed;
237  
238  	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
239  	if (freed > 0) {
240  		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241  		if (sbinfo->max_blocks)
242  			percpu_counter_add(&sbinfo->used_blocks, -freed);
243  		info->alloced -= freed;
244  		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
245  		shmem_unacct_blocks(info->flags, freed);
246  	}
247  }
248  
249  bool shmem_charge(struct inode *inode, long pages)
250  {
251  	struct shmem_inode_info *info = SHMEM_I(inode);
252  	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253  	unsigned long flags;
254  
255  	if (shmem_acct_block(info->flags, pages))
256  		return false;
257  	spin_lock_irqsave(&info->lock, flags);
258  	info->alloced += pages;
259  	inode->i_blocks += pages * BLOCKS_PER_PAGE;
260  	shmem_recalc_inode(inode);
261  	spin_unlock_irqrestore(&info->lock, flags);
262  	inode->i_mapping->nrpages += pages;
263  
264  	if (!sbinfo->max_blocks)
265  		return true;
266  	if (percpu_counter_compare(&sbinfo->used_blocks,
267  				sbinfo->max_blocks - pages) > 0) {
268  		inode->i_mapping->nrpages -= pages;
269  		spin_lock_irqsave(&info->lock, flags);
270  		info->alloced -= pages;
271  		shmem_recalc_inode(inode);
272  		spin_unlock_irqrestore(&info->lock, flags);
273  		shmem_unacct_blocks(info->flags, pages);
274  		return false;
275  	}
276  	percpu_counter_add(&sbinfo->used_blocks, pages);
277  	return true;
278  }
279  
280  void shmem_uncharge(struct inode *inode, long pages)
281  {
282  	struct shmem_inode_info *info = SHMEM_I(inode);
283  	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
284  	unsigned long flags;
285  
286  	spin_lock_irqsave(&info->lock, flags);
287  	info->alloced -= pages;
288  	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
289  	shmem_recalc_inode(inode);
290  	spin_unlock_irqrestore(&info->lock, flags);
291  
292  	if (sbinfo->max_blocks)
293  		percpu_counter_sub(&sbinfo->used_blocks, pages);
294  	shmem_unacct_blocks(info->flags, pages);
295  }
296  
297  /*
298   * Replace item expected in radix tree by a new item, while holding tree lock.
299   */
300  static int shmem_radix_tree_replace(struct address_space *mapping,
301  			pgoff_t index, void *expected, void *replacement)
302  {
303  	struct radix_tree_node *node;
304  	void **pslot;
305  	void *item;
306  
307  	VM_BUG_ON(!expected);
308  	VM_BUG_ON(!replacement);
309  	item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
310  	if (!item)
311  		return -ENOENT;
312  	if (item != expected)
313  		return -ENOENT;
314  	__radix_tree_replace(&mapping->page_tree, node, pslot,
315  			     replacement, NULL, NULL);
316  	return 0;
317  }
318  
319  /*
320   * Sometimes, before we decide whether to proceed or to fail, we must check
321   * that an entry was not already brought back from swap by a racing thread.
322   *
323   * Checking page is not enough: by the time a SwapCache page is locked, it
324   * might be reused, and again be SwapCache, using the same swap as before.
325   */
326  static bool shmem_confirm_swap(struct address_space *mapping,
327  			       pgoff_t index, swp_entry_t swap)
328  {
329  	void *item;
330  
331  	rcu_read_lock();
332  	item = radix_tree_lookup(&mapping->page_tree, index);
333  	rcu_read_unlock();
334  	return item == swp_to_radix_entry(swap);
335  }
336  
337  /*
338   * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
339   *
340   * SHMEM_HUGE_NEVER:
341   *	disables huge pages for the mount;
342   * SHMEM_HUGE_ALWAYS:
343   *	enables huge pages for the mount;
344   * SHMEM_HUGE_WITHIN_SIZE:
345   *	only allocate huge pages if the page will be fully within i_size,
346   *	also respect fadvise()/madvise() hints;
347   * SHMEM_HUGE_ADVISE:
348   *	only allocate huge pages if requested with fadvise()/madvise();
349   */
350  
351  #define SHMEM_HUGE_NEVER	0
352  #define SHMEM_HUGE_ALWAYS	1
353  #define SHMEM_HUGE_WITHIN_SIZE	2
354  #define SHMEM_HUGE_ADVISE	3
355  
356  /*
357   * Special values.
358   * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
359   *
360   * SHMEM_HUGE_DENY:
361   *	disables huge on shm_mnt and all mounts, for emergency use;
362   * SHMEM_HUGE_FORCE:
363   *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
364   *
365   */
366  #define SHMEM_HUGE_DENY		(-1)
367  #define SHMEM_HUGE_FORCE	(-2)
368  
369  #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
370  /* ifdef here to avoid bloating shmem.o when not necessary */
371  
372  int shmem_huge __read_mostly;
373  
374  #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
375  static int shmem_parse_huge(const char *str)
376  {
377  	if (!strcmp(str, "never"))
378  		return SHMEM_HUGE_NEVER;
379  	if (!strcmp(str, "always"))
380  		return SHMEM_HUGE_ALWAYS;
381  	if (!strcmp(str, "within_size"))
382  		return SHMEM_HUGE_WITHIN_SIZE;
383  	if (!strcmp(str, "advise"))
384  		return SHMEM_HUGE_ADVISE;
385  	if (!strcmp(str, "deny"))
386  		return SHMEM_HUGE_DENY;
387  	if (!strcmp(str, "force"))
388  		return SHMEM_HUGE_FORCE;
389  	return -EINVAL;
390  }
391  
392  static const char *shmem_format_huge(int huge)
393  {
394  	switch (huge) {
395  	case SHMEM_HUGE_NEVER:
396  		return "never";
397  	case SHMEM_HUGE_ALWAYS:
398  		return "always";
399  	case SHMEM_HUGE_WITHIN_SIZE:
400  		return "within_size";
401  	case SHMEM_HUGE_ADVISE:
402  		return "advise";
403  	case SHMEM_HUGE_DENY:
404  		return "deny";
405  	case SHMEM_HUGE_FORCE:
406  		return "force";
407  	default:
408  		VM_BUG_ON(1);
409  		return "bad_val";
410  	}
411  }
412  #endif
413  
414  static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
415  		struct shrink_control *sc, unsigned long nr_to_split)
416  {
417  	LIST_HEAD(list), *pos, *next;
418  	struct inode *inode;
419  	struct shmem_inode_info *info;
420  	struct page *page;
421  	unsigned long batch = sc ? sc->nr_to_scan : 128;
422  	int removed = 0, split = 0;
423  
424  	if (list_empty(&sbinfo->shrinklist))
425  		return SHRINK_STOP;
426  
427  	spin_lock(&sbinfo->shrinklist_lock);
428  	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
429  		info = list_entry(pos, struct shmem_inode_info, shrinklist);
430  
431  		/* pin the inode */
432  		inode = igrab(&info->vfs_inode);
433  
434  		/* inode is about to be evicted */
435  		if (!inode) {
436  			list_del_init(&info->shrinklist);
437  			removed++;
438  			goto next;
439  		}
440  
441  		/* Check if there's anything to gain */
442  		if (round_up(inode->i_size, PAGE_SIZE) ==
443  				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
444  			list_del_init(&info->shrinklist);
445  			removed++;
446  			iput(inode);
447  			goto next;
448  		}
449  
450  		list_move(&info->shrinklist, &list);
451  next:
452  		if (!--batch)
453  			break;
454  	}
455  	spin_unlock(&sbinfo->shrinklist_lock);
456  
457  	list_for_each_safe(pos, next, &list) {
458  		int ret;
459  
460  		info = list_entry(pos, struct shmem_inode_info, shrinklist);
461  		inode = &info->vfs_inode;
462  
463  		if (nr_to_split && split >= nr_to_split) {
464  			iput(inode);
465  			continue;
466  		}
467  
468  		page = find_lock_page(inode->i_mapping,
469  				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
470  		if (!page)
471  			goto drop;
472  
473  		if (!PageTransHuge(page)) {
474  			unlock_page(page);
475  			put_page(page);
476  			goto drop;
477  		}
478  
479  		ret = split_huge_page(page);
480  		unlock_page(page);
481  		put_page(page);
482  
483  		if (ret) {
484  			/* split failed: leave it on the list */
485  			iput(inode);
486  			continue;
487  		}
488  
489  		split++;
490  drop:
491  		list_del_init(&info->shrinklist);
492  		removed++;
493  		iput(inode);
494  	}
495  
496  	spin_lock(&sbinfo->shrinklist_lock);
497  	list_splice_tail(&list, &sbinfo->shrinklist);
498  	sbinfo->shrinklist_len -= removed;
499  	spin_unlock(&sbinfo->shrinklist_lock);
500  
501  	return split;
502  }
503  
504  static long shmem_unused_huge_scan(struct super_block *sb,
505  		struct shrink_control *sc)
506  {
507  	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
508  
509  	if (!READ_ONCE(sbinfo->shrinklist_len))
510  		return SHRINK_STOP;
511  
512  	return shmem_unused_huge_shrink(sbinfo, sc, 0);
513  }
514  
515  static long shmem_unused_huge_count(struct super_block *sb,
516  		struct shrink_control *sc)
517  {
518  	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
519  	return READ_ONCE(sbinfo->shrinklist_len);
520  }
521  #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
522  
523  #define shmem_huge SHMEM_HUGE_DENY
524  
525  static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
526  		struct shrink_control *sc, unsigned long nr_to_split)
527  {
528  	return 0;
529  }
530  #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
531  
532  /*
533   * Like add_to_page_cache_locked, but error if expected item has gone.
534   */
535  static int shmem_add_to_page_cache(struct page *page,
536  				   struct address_space *mapping,
537  				   pgoff_t index, void *expected)
538  {
539  	int error, nr = hpage_nr_pages(page);
540  
541  	VM_BUG_ON_PAGE(PageTail(page), page);
542  	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
543  	VM_BUG_ON_PAGE(!PageLocked(page), page);
544  	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
545  	VM_BUG_ON(expected && PageTransHuge(page));
546  
547  	page_ref_add(page, nr);
548  	page->mapping = mapping;
549  	page->index = index;
550  
551  	spin_lock_irq(&mapping->tree_lock);
552  	if (PageTransHuge(page)) {
553  		void __rcu **results;
554  		pgoff_t idx;
555  		int i;
556  
557  		error = 0;
558  		if (radix_tree_gang_lookup_slot(&mapping->page_tree,
559  					&results, &idx, index, 1) &&
560  				idx < index + HPAGE_PMD_NR) {
561  			error = -EEXIST;
562  		}
563  
564  		if (!error) {
565  			for (i = 0; i < HPAGE_PMD_NR; i++) {
566  				error = radix_tree_insert(&mapping->page_tree,
567  						index + i, page + i);
568  				VM_BUG_ON(error);
569  			}
570  			count_vm_event(THP_FILE_ALLOC);
571  		}
572  	} else if (!expected) {
573  		error = radix_tree_insert(&mapping->page_tree, index, page);
574  	} else {
575  		error = shmem_radix_tree_replace(mapping, index, expected,
576  								 page);
577  	}
578  
579  	if (!error) {
580  		mapping->nrpages += nr;
581  		if (PageTransHuge(page))
582  			__inc_node_page_state(page, NR_SHMEM_THPS);
583  		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
584  		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
585  		spin_unlock_irq(&mapping->tree_lock);
586  	} else {
587  		page->mapping = NULL;
588  		spin_unlock_irq(&mapping->tree_lock);
589  		page_ref_sub(page, nr);
590  	}
591  	return error;
592  }
593  
594  /*
595   * Like delete_from_page_cache, but substitutes swap for page.
596   */
597  static void shmem_delete_from_page_cache(struct page *page, void *radswap)
598  {
599  	struct address_space *mapping = page->mapping;
600  	int error;
601  
602  	VM_BUG_ON_PAGE(PageCompound(page), page);
603  
604  	spin_lock_irq(&mapping->tree_lock);
605  	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
606  	page->mapping = NULL;
607  	mapping->nrpages--;
608  	__dec_node_page_state(page, NR_FILE_PAGES);
609  	__dec_node_page_state(page, NR_SHMEM);
610  	spin_unlock_irq(&mapping->tree_lock);
611  	put_page(page);
612  	BUG_ON(error);
613  }
614  
615  /*
616   * Remove swap entry from radix tree, free the swap and its page cache.
617   */
618  static int shmem_free_swap(struct address_space *mapping,
619  			   pgoff_t index, void *radswap)
620  {
621  	void *old;
622  
623  	spin_lock_irq(&mapping->tree_lock);
624  	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
625  	spin_unlock_irq(&mapping->tree_lock);
626  	if (old != radswap)
627  		return -ENOENT;
628  	free_swap_and_cache(radix_to_swp_entry(radswap));
629  	return 0;
630  }
631  
632  /*
633   * Determine (in bytes) how many of the shmem object's pages mapped by the
634   * given offsets are swapped out.
635   *
636   * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
637   * as long as the inode doesn't go away and racy results are not a problem.
638   */
639  unsigned long shmem_partial_swap_usage(struct address_space *mapping,
640  						pgoff_t start, pgoff_t end)
641  {
642  	struct radix_tree_iter iter;
643  	void **slot;
644  	struct page *page;
645  	unsigned long swapped = 0;
646  
647  	rcu_read_lock();
648  
649  	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
650  		if (iter.index >= end)
651  			break;
652  
653  		page = radix_tree_deref_slot(slot);
654  
655  		if (radix_tree_deref_retry(page)) {
656  			slot = radix_tree_iter_retry(&iter);
657  			continue;
658  		}
659  
660  		if (radix_tree_exceptional_entry(page))
661  			swapped++;
662  
663  		if (need_resched()) {
664  			slot = radix_tree_iter_resume(slot, &iter);
665  			cond_resched_rcu();
666  		}
667  	}
668  
669  	rcu_read_unlock();
670  
671  	return swapped << PAGE_SHIFT;
672  }
673  
674  /*
675   * Determine (in bytes) how many of the shmem object's pages mapped by the
676   * given vma is swapped out.
677   *
678   * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
679   * as long as the inode doesn't go away and racy results are not a problem.
680   */
681  unsigned long shmem_swap_usage(struct vm_area_struct *vma)
682  {
683  	struct inode *inode = file_inode(vma->vm_file);
684  	struct shmem_inode_info *info = SHMEM_I(inode);
685  	struct address_space *mapping = inode->i_mapping;
686  	unsigned long swapped;
687  
688  	/* Be careful as we don't hold info->lock */
689  	swapped = READ_ONCE(info->swapped);
690  
691  	/*
692  	 * The easier cases are when the shmem object has nothing in swap, or
693  	 * the vma maps it whole. Then we can simply use the stats that we
694  	 * already track.
695  	 */
696  	if (!swapped)
697  		return 0;
698  
699  	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
700  		return swapped << PAGE_SHIFT;
701  
702  	/* Here comes the more involved part */
703  	return shmem_partial_swap_usage(mapping,
704  			linear_page_index(vma, vma->vm_start),
705  			linear_page_index(vma, vma->vm_end));
706  }
707  
708  /*
709   * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
710   */
711  void shmem_unlock_mapping(struct address_space *mapping)
712  {
713  	struct pagevec pvec;
714  	pgoff_t indices[PAGEVEC_SIZE];
715  	pgoff_t index = 0;
716  
717  	pagevec_init(&pvec, 0);
718  	/*
719  	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
720  	 */
721  	while (!mapping_unevictable(mapping)) {
722  		/*
723  		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
724  		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
725  		 */
726  		pvec.nr = find_get_entries(mapping, index,
727  					   PAGEVEC_SIZE, pvec.pages, indices);
728  		if (!pvec.nr)
729  			break;
730  		index = indices[pvec.nr - 1] + 1;
731  		pagevec_remove_exceptionals(&pvec);
732  		check_move_unevictable_pages(pvec.pages, pvec.nr);
733  		pagevec_release(&pvec);
734  		cond_resched();
735  	}
736  }
737  
738  /*
739   * Remove range of pages and swap entries from radix tree, and free them.
740   * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
741   */
742  static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
743  								 bool unfalloc)
744  {
745  	struct address_space *mapping = inode->i_mapping;
746  	struct shmem_inode_info *info = SHMEM_I(inode);
747  	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
748  	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
749  	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
750  	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
751  	struct pagevec pvec;
752  	pgoff_t indices[PAGEVEC_SIZE];
753  	long nr_swaps_freed = 0;
754  	pgoff_t index;
755  	int i;
756  
757  	if (lend == -1)
758  		end = -1;	/* unsigned, so actually very big */
759  
760  	pagevec_init(&pvec, 0);
761  	index = start;
762  	while (index < end) {
763  		pvec.nr = find_get_entries(mapping, index,
764  			min(end - index, (pgoff_t)PAGEVEC_SIZE),
765  			pvec.pages, indices);
766  		if (!pvec.nr)
767  			break;
768  		for (i = 0; i < pagevec_count(&pvec); i++) {
769  			struct page *page = pvec.pages[i];
770  
771  			index = indices[i];
772  			if (index >= end)
773  				break;
774  
775  			if (radix_tree_exceptional_entry(page)) {
776  				if (unfalloc)
777  					continue;
778  				nr_swaps_freed += !shmem_free_swap(mapping,
779  								index, page);
780  				continue;
781  			}
782  
783  			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
784  
785  			if (!trylock_page(page))
786  				continue;
787  
788  			if (PageTransTail(page)) {
789  				/* Middle of THP: zero out the page */
790  				clear_highpage(page);
791  				unlock_page(page);
792  				continue;
793  			} else if (PageTransHuge(page)) {
794  				if (index == round_down(end, HPAGE_PMD_NR)) {
795  					/*
796  					 * Range ends in the middle of THP:
797  					 * zero out the page
798  					 */
799  					clear_highpage(page);
800  					unlock_page(page);
801  					continue;
802  				}
803  				index += HPAGE_PMD_NR - 1;
804  				i += HPAGE_PMD_NR - 1;
805  			}
806  
807  			if (!unfalloc || !PageUptodate(page)) {
808  				VM_BUG_ON_PAGE(PageTail(page), page);
809  				if (page_mapping(page) == mapping) {
810  					VM_BUG_ON_PAGE(PageWriteback(page), page);
811  					truncate_inode_page(mapping, page);
812  				}
813  			}
814  			unlock_page(page);
815  		}
816  		pagevec_remove_exceptionals(&pvec);
817  		pagevec_release(&pvec);
818  		cond_resched();
819  		index++;
820  	}
821  
822  	if (partial_start) {
823  		struct page *page = NULL;
824  		shmem_getpage(inode, start - 1, &page, SGP_READ);
825  		if (page) {
826  			unsigned int top = PAGE_SIZE;
827  			if (start > end) {
828  				top = partial_end;
829  				partial_end = 0;
830  			}
831  			zero_user_segment(page, partial_start, top);
832  			set_page_dirty(page);
833  			unlock_page(page);
834  			put_page(page);
835  		}
836  	}
837  	if (partial_end) {
838  		struct page *page = NULL;
839  		shmem_getpage(inode, end, &page, SGP_READ);
840  		if (page) {
841  			zero_user_segment(page, 0, partial_end);
842  			set_page_dirty(page);
843  			unlock_page(page);
844  			put_page(page);
845  		}
846  	}
847  	if (start >= end)
848  		return;
849  
850  	index = start;
851  	while (index < end) {
852  		cond_resched();
853  
854  		pvec.nr = find_get_entries(mapping, index,
855  				min(end - index, (pgoff_t)PAGEVEC_SIZE),
856  				pvec.pages, indices);
857  		if (!pvec.nr) {
858  			/* If all gone or hole-punch or unfalloc, we're done */
859  			if (index == start || end != -1)
860  				break;
861  			/* But if truncating, restart to make sure all gone */
862  			index = start;
863  			continue;
864  		}
865  		for (i = 0; i < pagevec_count(&pvec); i++) {
866  			struct page *page = pvec.pages[i];
867  
868  			index = indices[i];
869  			if (index >= end)
870  				break;
871  
872  			if (radix_tree_exceptional_entry(page)) {
873  				if (unfalloc)
874  					continue;
875  				if (shmem_free_swap(mapping, index, page)) {
876  					/* Swap was replaced by page: retry */
877  					index--;
878  					break;
879  				}
880  				nr_swaps_freed++;
881  				continue;
882  			}
883  
884  			lock_page(page);
885  
886  			if (PageTransTail(page)) {
887  				/* Middle of THP: zero out the page */
888  				clear_highpage(page);
889  				unlock_page(page);
890  				/*
891  				 * Partial thp truncate due 'start' in middle
892  				 * of THP: don't need to look on these pages
893  				 * again on !pvec.nr restart.
894  				 */
895  				if (index != round_down(end, HPAGE_PMD_NR))
896  					start++;
897  				continue;
898  			} else if (PageTransHuge(page)) {
899  				if (index == round_down(end, HPAGE_PMD_NR)) {
900  					/*
901  					 * Range ends in the middle of THP:
902  					 * zero out the page
903  					 */
904  					clear_highpage(page);
905  					unlock_page(page);
906  					continue;
907  				}
908  				index += HPAGE_PMD_NR - 1;
909  				i += HPAGE_PMD_NR - 1;
910  			}
911  
912  			if (!unfalloc || !PageUptodate(page)) {
913  				VM_BUG_ON_PAGE(PageTail(page), page);
914  				if (page_mapping(page) == mapping) {
915  					VM_BUG_ON_PAGE(PageWriteback(page), page);
916  					truncate_inode_page(mapping, page);
917  				} else {
918  					/* Page was replaced by swap: retry */
919  					unlock_page(page);
920  					index--;
921  					break;
922  				}
923  			}
924  			unlock_page(page);
925  		}
926  		pagevec_remove_exceptionals(&pvec);
927  		pagevec_release(&pvec);
928  		index++;
929  	}
930  
931  	spin_lock_irq(&info->lock);
932  	info->swapped -= nr_swaps_freed;
933  	shmem_recalc_inode(inode);
934  	spin_unlock_irq(&info->lock);
935  }
936  
937  void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
938  {
939  	shmem_undo_range(inode, lstart, lend, false);
940  	inode->i_ctime = inode->i_mtime = current_time(inode);
941  }
942  EXPORT_SYMBOL_GPL(shmem_truncate_range);
943  
944  static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
945  			 struct kstat *stat)
946  {
947  	struct inode *inode = dentry->d_inode;
948  	struct shmem_inode_info *info = SHMEM_I(inode);
949  
950  	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
951  		spin_lock_irq(&info->lock);
952  		shmem_recalc_inode(inode);
953  		spin_unlock_irq(&info->lock);
954  	}
955  	generic_fillattr(inode, stat);
956  	return 0;
957  }
958  
959  static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
960  {
961  	struct inode *inode = d_inode(dentry);
962  	struct shmem_inode_info *info = SHMEM_I(inode);
963  	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
964  	int error;
965  
966  	error = setattr_prepare(dentry, attr);
967  	if (error)
968  		return error;
969  
970  	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
971  		loff_t oldsize = inode->i_size;
972  		loff_t newsize = attr->ia_size;
973  
974  		/* protected by i_mutex */
975  		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
976  		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
977  			return -EPERM;
978  
979  		if (newsize != oldsize) {
980  			error = shmem_reacct_size(SHMEM_I(inode)->flags,
981  					oldsize, newsize);
982  			if (error)
983  				return error;
984  			i_size_write(inode, newsize);
985  			inode->i_ctime = inode->i_mtime = current_time(inode);
986  		}
987  		if (newsize <= oldsize) {
988  			loff_t holebegin = round_up(newsize, PAGE_SIZE);
989  			if (oldsize > holebegin)
990  				unmap_mapping_range(inode->i_mapping,
991  							holebegin, 0, 1);
992  			if (info->alloced)
993  				shmem_truncate_range(inode,
994  							newsize, (loff_t)-1);
995  			/* unmap again to remove racily COWed private pages */
996  			if (oldsize > holebegin)
997  				unmap_mapping_range(inode->i_mapping,
998  							holebegin, 0, 1);
999  
1000  			/*
1001  			 * Part of the huge page can be beyond i_size: subject
1002  			 * to shrink under memory pressure.
1003  			 */
1004  			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1005  				spin_lock(&sbinfo->shrinklist_lock);
1006  				if (list_empty(&info->shrinklist)) {
1007  					list_add_tail(&info->shrinklist,
1008  							&sbinfo->shrinklist);
1009  					sbinfo->shrinklist_len++;
1010  				}
1011  				spin_unlock(&sbinfo->shrinklist_lock);
1012  			}
1013  		}
1014  	}
1015  
1016  	setattr_copy(inode, attr);
1017  	if (attr->ia_valid & ATTR_MODE)
1018  		error = posix_acl_chmod(inode, inode->i_mode);
1019  	return error;
1020  }
1021  
1022  static void shmem_evict_inode(struct inode *inode)
1023  {
1024  	struct shmem_inode_info *info = SHMEM_I(inode);
1025  	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1026  
1027  	if (inode->i_mapping->a_ops == &shmem_aops) {
1028  		shmem_unacct_size(info->flags, inode->i_size);
1029  		inode->i_size = 0;
1030  		shmem_truncate_range(inode, 0, (loff_t)-1);
1031  		if (!list_empty(&info->shrinklist)) {
1032  			spin_lock(&sbinfo->shrinklist_lock);
1033  			if (!list_empty(&info->shrinklist)) {
1034  				list_del_init(&info->shrinklist);
1035  				sbinfo->shrinklist_len--;
1036  			}
1037  			spin_unlock(&sbinfo->shrinklist_lock);
1038  		}
1039  		if (!list_empty(&info->swaplist)) {
1040  			mutex_lock(&shmem_swaplist_mutex);
1041  			list_del_init(&info->swaplist);
1042  			mutex_unlock(&shmem_swaplist_mutex);
1043  		}
1044  	}
1045  
1046  	simple_xattrs_free(&info->xattrs);
1047  	WARN_ON(inode->i_blocks);
1048  	shmem_free_inode(inode->i_sb);
1049  	clear_inode(inode);
1050  }
1051  
1052  static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1053  {
1054  	struct radix_tree_iter iter;
1055  	void **slot;
1056  	unsigned long found = -1;
1057  	unsigned int checked = 0;
1058  
1059  	rcu_read_lock();
1060  	radix_tree_for_each_slot(slot, root, &iter, 0) {
1061  		if (*slot == item) {
1062  			found = iter.index;
1063  			break;
1064  		}
1065  		checked++;
1066  		if ((checked % 4096) != 0)
1067  			continue;
1068  		slot = radix_tree_iter_resume(slot, &iter);
1069  		cond_resched_rcu();
1070  	}
1071  
1072  	rcu_read_unlock();
1073  	return found;
1074  }
1075  
1076  /*
1077   * If swap found in inode, free it and move page from swapcache to filecache.
1078   */
1079  static int shmem_unuse_inode(struct shmem_inode_info *info,
1080  			     swp_entry_t swap, struct page **pagep)
1081  {
1082  	struct address_space *mapping = info->vfs_inode.i_mapping;
1083  	void *radswap;
1084  	pgoff_t index;
1085  	gfp_t gfp;
1086  	int error = 0;
1087  
1088  	radswap = swp_to_radix_entry(swap);
1089  	index = find_swap_entry(&mapping->page_tree, radswap);
1090  	if (index == -1)
1091  		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1092  
1093  	/*
1094  	 * Move _head_ to start search for next from here.
1095  	 * But be careful: shmem_evict_inode checks list_empty without taking
1096  	 * mutex, and there's an instant in list_move_tail when info->swaplist
1097  	 * would appear empty, if it were the only one on shmem_swaplist.
1098  	 */
1099  	if (shmem_swaplist.next != &info->swaplist)
1100  		list_move_tail(&shmem_swaplist, &info->swaplist);
1101  
1102  	gfp = mapping_gfp_mask(mapping);
1103  	if (shmem_should_replace_page(*pagep, gfp)) {
1104  		mutex_unlock(&shmem_swaplist_mutex);
1105  		error = shmem_replace_page(pagep, gfp, info, index);
1106  		mutex_lock(&shmem_swaplist_mutex);
1107  		/*
1108  		 * We needed to drop mutex to make that restrictive page
1109  		 * allocation, but the inode might have been freed while we
1110  		 * dropped it: although a racing shmem_evict_inode() cannot
1111  		 * complete without emptying the radix_tree, our page lock
1112  		 * on this swapcache page is not enough to prevent that -
1113  		 * free_swap_and_cache() of our swap entry will only
1114  		 * trylock_page(), removing swap from radix_tree whatever.
1115  		 *
1116  		 * We must not proceed to shmem_add_to_page_cache() if the
1117  		 * inode has been freed, but of course we cannot rely on
1118  		 * inode or mapping or info to check that.  However, we can
1119  		 * safely check if our swap entry is still in use (and here
1120  		 * it can't have got reused for another page): if it's still
1121  		 * in use, then the inode cannot have been freed yet, and we
1122  		 * can safely proceed (if it's no longer in use, that tells
1123  		 * nothing about the inode, but we don't need to unuse swap).
1124  		 */
1125  		if (!page_swapcount(*pagep))
1126  			error = -ENOENT;
1127  	}
1128  
1129  	/*
1130  	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1131  	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1132  	 * beneath us (pagelock doesn't help until the page is in pagecache).
1133  	 */
1134  	if (!error)
1135  		error = shmem_add_to_page_cache(*pagep, mapping, index,
1136  						radswap);
1137  	if (error != -ENOMEM) {
1138  		/*
1139  		 * Truncation and eviction use free_swap_and_cache(), which
1140  		 * only does trylock page: if we raced, best clean up here.
1141  		 */
1142  		delete_from_swap_cache(*pagep);
1143  		set_page_dirty(*pagep);
1144  		if (!error) {
1145  			spin_lock_irq(&info->lock);
1146  			info->swapped--;
1147  			spin_unlock_irq(&info->lock);
1148  			swap_free(swap);
1149  		}
1150  	}
1151  	return error;
1152  }
1153  
1154  /*
1155   * Search through swapped inodes to find and replace swap by page.
1156   */
1157  int shmem_unuse(swp_entry_t swap, struct page *page)
1158  {
1159  	struct list_head *this, *next;
1160  	struct shmem_inode_info *info;
1161  	struct mem_cgroup *memcg;
1162  	int error = 0;
1163  
1164  	/*
1165  	 * There's a faint possibility that swap page was replaced before
1166  	 * caller locked it: caller will come back later with the right page.
1167  	 */
1168  	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1169  		goto out;
1170  
1171  	/*
1172  	 * Charge page using GFP_KERNEL while we can wait, before taking
1173  	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1174  	 * Charged back to the user (not to caller) when swap account is used.
1175  	 */
1176  	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1177  			false);
1178  	if (error)
1179  		goto out;
1180  	/* No radix_tree_preload: swap entry keeps a place for page in tree */
1181  	error = -EAGAIN;
1182  
1183  	mutex_lock(&shmem_swaplist_mutex);
1184  	list_for_each_safe(this, next, &shmem_swaplist) {
1185  		info = list_entry(this, struct shmem_inode_info, swaplist);
1186  		if (info->swapped)
1187  			error = shmem_unuse_inode(info, swap, &page);
1188  		else
1189  			list_del_init(&info->swaplist);
1190  		cond_resched();
1191  		if (error != -EAGAIN)
1192  			break;
1193  		/* found nothing in this: move on to search the next */
1194  	}
1195  	mutex_unlock(&shmem_swaplist_mutex);
1196  
1197  	if (error) {
1198  		if (error != -ENOMEM)
1199  			error = 0;
1200  		mem_cgroup_cancel_charge(page, memcg, false);
1201  	} else
1202  		mem_cgroup_commit_charge(page, memcg, true, false);
1203  out:
1204  	unlock_page(page);
1205  	put_page(page);
1206  	return error;
1207  }
1208  
1209  /*
1210   * Move the page from the page cache to the swap cache.
1211   */
1212  static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1213  {
1214  	struct shmem_inode_info *info;
1215  	struct address_space *mapping;
1216  	struct inode *inode;
1217  	swp_entry_t swap;
1218  	pgoff_t index;
1219  
1220  	VM_BUG_ON_PAGE(PageCompound(page), page);
1221  	BUG_ON(!PageLocked(page));
1222  	mapping = page->mapping;
1223  	index = page->index;
1224  	inode = mapping->host;
1225  	info = SHMEM_I(inode);
1226  	if (info->flags & VM_LOCKED)
1227  		goto redirty;
1228  	if (!total_swap_pages)
1229  		goto redirty;
1230  
1231  	/*
1232  	 * Our capabilities prevent regular writeback or sync from ever calling
1233  	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1234  	 * its underlying filesystem, in which case tmpfs should write out to
1235  	 * swap only in response to memory pressure, and not for the writeback
1236  	 * threads or sync.
1237  	 */
1238  	if (!wbc->for_reclaim) {
1239  		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1240  		goto redirty;
1241  	}
1242  
1243  	/*
1244  	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1245  	 * value into swapfile.c, the only way we can correctly account for a
1246  	 * fallocated page arriving here is now to initialize it and write it.
1247  	 *
1248  	 * That's okay for a page already fallocated earlier, but if we have
1249  	 * not yet completed the fallocation, then (a) we want to keep track
1250  	 * of this page in case we have to undo it, and (b) it may not be a
1251  	 * good idea to continue anyway, once we're pushing into swap.  So
1252  	 * reactivate the page, and let shmem_fallocate() quit when too many.
1253  	 */
1254  	if (!PageUptodate(page)) {
1255  		if (inode->i_private) {
1256  			struct shmem_falloc *shmem_falloc;
1257  			spin_lock(&inode->i_lock);
1258  			shmem_falloc = inode->i_private;
1259  			if (shmem_falloc &&
1260  			    !shmem_falloc->waitq &&
1261  			    index >= shmem_falloc->start &&
1262  			    index < shmem_falloc->next)
1263  				shmem_falloc->nr_unswapped++;
1264  			else
1265  				shmem_falloc = NULL;
1266  			spin_unlock(&inode->i_lock);
1267  			if (shmem_falloc)
1268  				goto redirty;
1269  		}
1270  		clear_highpage(page);
1271  		flush_dcache_page(page);
1272  		SetPageUptodate(page);
1273  	}
1274  
1275  	swap = get_swap_page();
1276  	if (!swap.val)
1277  		goto redirty;
1278  
1279  	if (mem_cgroup_try_charge_swap(page, swap))
1280  		goto free_swap;
1281  
1282  	/*
1283  	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1284  	 * if it's not already there.  Do it now before the page is
1285  	 * moved to swap cache, when its pagelock no longer protects
1286  	 * the inode from eviction.  But don't unlock the mutex until
1287  	 * we've incremented swapped, because shmem_unuse_inode() will
1288  	 * prune a !swapped inode from the swaplist under this mutex.
1289  	 */
1290  	mutex_lock(&shmem_swaplist_mutex);
1291  	if (list_empty(&info->swaplist))
1292  		list_add_tail(&info->swaplist, &shmem_swaplist);
1293  
1294  	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1295  		spin_lock_irq(&info->lock);
1296  		shmem_recalc_inode(inode);
1297  		info->swapped++;
1298  		spin_unlock_irq(&info->lock);
1299  
1300  		swap_shmem_alloc(swap);
1301  		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1302  
1303  		mutex_unlock(&shmem_swaplist_mutex);
1304  		BUG_ON(page_mapped(page));
1305  		swap_writepage(page, wbc);
1306  		return 0;
1307  	}
1308  
1309  	mutex_unlock(&shmem_swaplist_mutex);
1310  free_swap:
1311  	swapcache_free(swap);
1312  redirty:
1313  	set_page_dirty(page);
1314  	if (wbc->for_reclaim)
1315  		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1316  	unlock_page(page);
1317  	return 0;
1318  }
1319  
1320  #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1321  static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1322  {
1323  	char buffer[64];
1324  
1325  	if (!mpol || mpol->mode == MPOL_DEFAULT)
1326  		return;		/* show nothing */
1327  
1328  	mpol_to_str(buffer, sizeof(buffer), mpol);
1329  
1330  	seq_printf(seq, ",mpol=%s", buffer);
1331  }
1332  
1333  static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1334  {
1335  	struct mempolicy *mpol = NULL;
1336  	if (sbinfo->mpol) {
1337  		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1338  		mpol = sbinfo->mpol;
1339  		mpol_get(mpol);
1340  		spin_unlock(&sbinfo->stat_lock);
1341  	}
1342  	return mpol;
1343  }
1344  #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1345  static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1346  {
1347  }
1348  static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1349  {
1350  	return NULL;
1351  }
1352  #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1353  #ifndef CONFIG_NUMA
1354  #define vm_policy vm_private_data
1355  #endif
1356  
1357  static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1358  		struct shmem_inode_info *info, pgoff_t index)
1359  {
1360  	/* Create a pseudo vma that just contains the policy */
1361  	vma->vm_start = 0;
1362  	/* Bias interleave by inode number to distribute better across nodes */
1363  	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1364  	vma->vm_ops = NULL;
1365  	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1366  }
1367  
1368  static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1369  {
1370  	/* Drop reference taken by mpol_shared_policy_lookup() */
1371  	mpol_cond_put(vma->vm_policy);
1372  }
1373  
1374  static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1375  			struct shmem_inode_info *info, pgoff_t index)
1376  {
1377  	struct vm_area_struct pvma;
1378  	struct page *page;
1379  
1380  	shmem_pseudo_vma_init(&pvma, info, index);
1381  	page = swapin_readahead(swap, gfp, &pvma, 0);
1382  	shmem_pseudo_vma_destroy(&pvma);
1383  
1384  	return page;
1385  }
1386  
1387  static struct page *shmem_alloc_hugepage(gfp_t gfp,
1388  		struct shmem_inode_info *info, pgoff_t index)
1389  {
1390  	struct vm_area_struct pvma;
1391  	struct inode *inode = &info->vfs_inode;
1392  	struct address_space *mapping = inode->i_mapping;
1393  	pgoff_t idx, hindex;
1394  	void __rcu **results;
1395  	struct page *page;
1396  
1397  	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1398  		return NULL;
1399  
1400  	hindex = round_down(index, HPAGE_PMD_NR);
1401  	rcu_read_lock();
1402  	if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1403  				hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1404  		rcu_read_unlock();
1405  		return NULL;
1406  	}
1407  	rcu_read_unlock();
1408  
1409  	shmem_pseudo_vma_init(&pvma, info, hindex);
1410  	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1411  			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1412  	shmem_pseudo_vma_destroy(&pvma);
1413  	if (page)
1414  		prep_transhuge_page(page);
1415  	return page;
1416  }
1417  
1418  static struct page *shmem_alloc_page(gfp_t gfp,
1419  			struct shmem_inode_info *info, pgoff_t index)
1420  {
1421  	struct vm_area_struct pvma;
1422  	struct page *page;
1423  
1424  	shmem_pseudo_vma_init(&pvma, info, index);
1425  	page = alloc_page_vma(gfp, &pvma, 0);
1426  	shmem_pseudo_vma_destroy(&pvma);
1427  
1428  	return page;
1429  }
1430  
1431  static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1432  		struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1433  		pgoff_t index, bool huge)
1434  {
1435  	struct page *page;
1436  	int nr;
1437  	int err = -ENOSPC;
1438  
1439  	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1440  		huge = false;
1441  	nr = huge ? HPAGE_PMD_NR : 1;
1442  
1443  	if (shmem_acct_block(info->flags, nr))
1444  		goto failed;
1445  	if (sbinfo->max_blocks) {
1446  		if (percpu_counter_compare(&sbinfo->used_blocks,
1447  					sbinfo->max_blocks - nr) > 0)
1448  			goto unacct;
1449  		percpu_counter_add(&sbinfo->used_blocks, nr);
1450  	}
1451  
1452  	if (huge)
1453  		page = shmem_alloc_hugepage(gfp, info, index);
1454  	else
1455  		page = shmem_alloc_page(gfp, info, index);
1456  	if (page) {
1457  		__SetPageLocked(page);
1458  		__SetPageSwapBacked(page);
1459  		return page;
1460  	}
1461  
1462  	err = -ENOMEM;
1463  	if (sbinfo->max_blocks)
1464  		percpu_counter_add(&sbinfo->used_blocks, -nr);
1465  unacct:
1466  	shmem_unacct_blocks(info->flags, nr);
1467  failed:
1468  	return ERR_PTR(err);
1469  }
1470  
1471  /*
1472   * When a page is moved from swapcache to shmem filecache (either by the
1473   * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1474   * shmem_unuse_inode()), it may have been read in earlier from swap, in
1475   * ignorance of the mapping it belongs to.  If that mapping has special
1476   * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1477   * we may need to copy to a suitable page before moving to filecache.
1478   *
1479   * In a future release, this may well be extended to respect cpuset and
1480   * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1481   * but for now it is a simple matter of zone.
1482   */
1483  static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1484  {
1485  	return page_zonenum(page) > gfp_zone(gfp);
1486  }
1487  
1488  static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1489  				struct shmem_inode_info *info, pgoff_t index)
1490  {
1491  	struct page *oldpage, *newpage;
1492  	struct address_space *swap_mapping;
1493  	pgoff_t swap_index;
1494  	int error;
1495  
1496  	oldpage = *pagep;
1497  	swap_index = page_private(oldpage);
1498  	swap_mapping = page_mapping(oldpage);
1499  
1500  	/*
1501  	 * We have arrived here because our zones are constrained, so don't
1502  	 * limit chance of success by further cpuset and node constraints.
1503  	 */
1504  	gfp &= ~GFP_CONSTRAINT_MASK;
1505  	newpage = shmem_alloc_page(gfp, info, index);
1506  	if (!newpage)
1507  		return -ENOMEM;
1508  
1509  	get_page(newpage);
1510  	copy_highpage(newpage, oldpage);
1511  	flush_dcache_page(newpage);
1512  
1513  	__SetPageLocked(newpage);
1514  	__SetPageSwapBacked(newpage);
1515  	SetPageUptodate(newpage);
1516  	set_page_private(newpage, swap_index);
1517  	SetPageSwapCache(newpage);
1518  
1519  	/*
1520  	 * Our caller will very soon move newpage out of swapcache, but it's
1521  	 * a nice clean interface for us to replace oldpage by newpage there.
1522  	 */
1523  	spin_lock_irq(&swap_mapping->tree_lock);
1524  	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1525  								   newpage);
1526  	if (!error) {
1527  		__inc_node_page_state(newpage, NR_FILE_PAGES);
1528  		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1529  	}
1530  	spin_unlock_irq(&swap_mapping->tree_lock);
1531  
1532  	if (unlikely(error)) {
1533  		/*
1534  		 * Is this possible?  I think not, now that our callers check
1535  		 * both PageSwapCache and page_private after getting page lock;
1536  		 * but be defensive.  Reverse old to newpage for clear and free.
1537  		 */
1538  		oldpage = newpage;
1539  	} else {
1540  		mem_cgroup_migrate(oldpage, newpage);
1541  		lru_cache_add_anon(newpage);
1542  		*pagep = newpage;
1543  	}
1544  
1545  	ClearPageSwapCache(oldpage);
1546  	set_page_private(oldpage, 0);
1547  
1548  	unlock_page(oldpage);
1549  	put_page(oldpage);
1550  	put_page(oldpage);
1551  	return error;
1552  }
1553  
1554  /*
1555   * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1556   *
1557   * If we allocate a new one we do not mark it dirty. That's up to the
1558   * vm. If we swap it in we mark it dirty since we also free the swap
1559   * entry since a page cannot live in both the swap and page cache.
1560   *
1561   * fault_mm and fault_type are only supplied by shmem_fault:
1562   * otherwise they are NULL.
1563   */
1564  static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1565  	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1566  	struct mm_struct *fault_mm, int *fault_type)
1567  {
1568  	struct address_space *mapping = inode->i_mapping;
1569  	struct shmem_inode_info *info = SHMEM_I(inode);
1570  	struct shmem_sb_info *sbinfo;
1571  	struct mm_struct *charge_mm;
1572  	struct mem_cgroup *memcg;
1573  	struct page *page;
1574  	swp_entry_t swap;
1575  	enum sgp_type sgp_huge = sgp;
1576  	pgoff_t hindex = index;
1577  	int error;
1578  	int once = 0;
1579  	int alloced = 0;
1580  
1581  	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1582  		return -EFBIG;
1583  	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1584  		sgp = SGP_CACHE;
1585  repeat:
1586  	swap.val = 0;
1587  	page = find_lock_entry(mapping, index);
1588  	if (radix_tree_exceptional_entry(page)) {
1589  		swap = radix_to_swp_entry(page);
1590  		page = NULL;
1591  	}
1592  
1593  	if (sgp <= SGP_CACHE &&
1594  	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1595  		error = -EINVAL;
1596  		goto unlock;
1597  	}
1598  
1599  	if (page && sgp == SGP_WRITE)
1600  		mark_page_accessed(page);
1601  
1602  	/* fallocated page? */
1603  	if (page && !PageUptodate(page)) {
1604  		if (sgp != SGP_READ)
1605  			goto clear;
1606  		unlock_page(page);
1607  		put_page(page);
1608  		page = NULL;
1609  	}
1610  	if (page || (sgp == SGP_READ && !swap.val)) {
1611  		*pagep = page;
1612  		return 0;
1613  	}
1614  
1615  	/*
1616  	 * Fast cache lookup did not find it:
1617  	 * bring it back from swap or allocate.
1618  	 */
1619  	sbinfo = SHMEM_SB(inode->i_sb);
1620  	charge_mm = fault_mm ? : current->mm;
1621  
1622  	if (swap.val) {
1623  		/* Look it up and read it in.. */
1624  		page = lookup_swap_cache(swap);
1625  		if (!page) {
1626  			/* Or update major stats only when swapin succeeds?? */
1627  			if (fault_type) {
1628  				*fault_type |= VM_FAULT_MAJOR;
1629  				count_vm_event(PGMAJFAULT);
1630  				mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1631  			}
1632  			/* Here we actually start the io */
1633  			page = shmem_swapin(swap, gfp, info, index);
1634  			if (!page) {
1635  				error = -ENOMEM;
1636  				goto failed;
1637  			}
1638  		}
1639  
1640  		/* We have to do this with page locked to prevent races */
1641  		lock_page(page);
1642  		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1643  		    !shmem_confirm_swap(mapping, index, swap)) {
1644  			error = -EEXIST;	/* try again */
1645  			goto unlock;
1646  		}
1647  		if (!PageUptodate(page)) {
1648  			error = -EIO;
1649  			goto failed;
1650  		}
1651  		wait_on_page_writeback(page);
1652  
1653  		if (shmem_should_replace_page(page, gfp)) {
1654  			error = shmem_replace_page(&page, gfp, info, index);
1655  			if (error)
1656  				goto failed;
1657  		}
1658  
1659  		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1660  				false);
1661  		if (!error) {
1662  			error = shmem_add_to_page_cache(page, mapping, index,
1663  						swp_to_radix_entry(swap));
1664  			/*
1665  			 * We already confirmed swap under page lock, and make
1666  			 * no memory allocation here, so usually no possibility
1667  			 * of error; but free_swap_and_cache() only trylocks a
1668  			 * page, so it is just possible that the entry has been
1669  			 * truncated or holepunched since swap was confirmed.
1670  			 * shmem_undo_range() will have done some of the
1671  			 * unaccounting, now delete_from_swap_cache() will do
1672  			 * the rest.
1673  			 * Reset swap.val? No, leave it so "failed" goes back to
1674  			 * "repeat": reading a hole and writing should succeed.
1675  			 */
1676  			if (error) {
1677  				mem_cgroup_cancel_charge(page, memcg, false);
1678  				delete_from_swap_cache(page);
1679  			}
1680  		}
1681  		if (error)
1682  			goto failed;
1683  
1684  		mem_cgroup_commit_charge(page, memcg, true, false);
1685  
1686  		spin_lock_irq(&info->lock);
1687  		info->swapped--;
1688  		shmem_recalc_inode(inode);
1689  		spin_unlock_irq(&info->lock);
1690  
1691  		if (sgp == SGP_WRITE)
1692  			mark_page_accessed(page);
1693  
1694  		delete_from_swap_cache(page);
1695  		set_page_dirty(page);
1696  		swap_free(swap);
1697  
1698  	} else {
1699  		/* shmem_symlink() */
1700  		if (mapping->a_ops != &shmem_aops)
1701  			goto alloc_nohuge;
1702  		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1703  			goto alloc_nohuge;
1704  		if (shmem_huge == SHMEM_HUGE_FORCE)
1705  			goto alloc_huge;
1706  		switch (sbinfo->huge) {
1707  			loff_t i_size;
1708  			pgoff_t off;
1709  		case SHMEM_HUGE_NEVER:
1710  			goto alloc_nohuge;
1711  		case SHMEM_HUGE_WITHIN_SIZE:
1712  			off = round_up(index, HPAGE_PMD_NR);
1713  			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1714  			if (i_size >= HPAGE_PMD_SIZE &&
1715  					i_size >> PAGE_SHIFT >= off)
1716  				goto alloc_huge;
1717  			/* fallthrough */
1718  		case SHMEM_HUGE_ADVISE:
1719  			if (sgp_huge == SGP_HUGE)
1720  				goto alloc_huge;
1721  			/* TODO: implement fadvise() hints */
1722  			goto alloc_nohuge;
1723  		}
1724  
1725  alloc_huge:
1726  		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1727  				index, true);
1728  		if (IS_ERR(page)) {
1729  alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1730  					index, false);
1731  		}
1732  		if (IS_ERR(page)) {
1733  			int retry = 5;
1734  			error = PTR_ERR(page);
1735  			page = NULL;
1736  			if (error != -ENOSPC)
1737  				goto failed;
1738  			/*
1739  			 * Try to reclaim some spece by splitting a huge page
1740  			 * beyond i_size on the filesystem.
1741  			 */
1742  			while (retry--) {
1743  				int ret;
1744  				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1745  				if (ret == SHRINK_STOP)
1746  					break;
1747  				if (ret)
1748  					goto alloc_nohuge;
1749  			}
1750  			goto failed;
1751  		}
1752  
1753  		if (PageTransHuge(page))
1754  			hindex = round_down(index, HPAGE_PMD_NR);
1755  		else
1756  			hindex = index;
1757  
1758  		if (sgp == SGP_WRITE)
1759  			__SetPageReferenced(page);
1760  
1761  		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1762  				PageTransHuge(page));
1763  		if (error)
1764  			goto unacct;
1765  		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1766  				compound_order(page));
1767  		if (!error) {
1768  			error = shmem_add_to_page_cache(page, mapping, hindex,
1769  							NULL);
1770  			radix_tree_preload_end();
1771  		}
1772  		if (error) {
1773  			mem_cgroup_cancel_charge(page, memcg,
1774  					PageTransHuge(page));
1775  			goto unacct;
1776  		}
1777  		mem_cgroup_commit_charge(page, memcg, false,
1778  				PageTransHuge(page));
1779  		lru_cache_add_anon(page);
1780  
1781  		spin_lock_irq(&info->lock);
1782  		info->alloced += 1 << compound_order(page);
1783  		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1784  		shmem_recalc_inode(inode);
1785  		spin_unlock_irq(&info->lock);
1786  		alloced = true;
1787  
1788  		if (PageTransHuge(page) &&
1789  				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1790  				hindex + HPAGE_PMD_NR - 1) {
1791  			/*
1792  			 * Part of the huge page is beyond i_size: subject
1793  			 * to shrink under memory pressure.
1794  			 */
1795  			spin_lock(&sbinfo->shrinklist_lock);
1796  			if (list_empty(&info->shrinklist)) {
1797  				list_add_tail(&info->shrinklist,
1798  						&sbinfo->shrinklist);
1799  				sbinfo->shrinklist_len++;
1800  			}
1801  			spin_unlock(&sbinfo->shrinklist_lock);
1802  		}
1803  
1804  		/*
1805  		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1806  		 */
1807  		if (sgp == SGP_FALLOC)
1808  			sgp = SGP_WRITE;
1809  clear:
1810  		/*
1811  		 * Let SGP_WRITE caller clear ends if write does not fill page;
1812  		 * but SGP_FALLOC on a page fallocated earlier must initialize
1813  		 * it now, lest undo on failure cancel our earlier guarantee.
1814  		 */
1815  		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1816  			struct page *head = compound_head(page);
1817  			int i;
1818  
1819  			for (i = 0; i < (1 << compound_order(head)); i++) {
1820  				clear_highpage(head + i);
1821  				flush_dcache_page(head + i);
1822  			}
1823  			SetPageUptodate(head);
1824  		}
1825  	}
1826  
1827  	/* Perhaps the file has been truncated since we checked */
1828  	if (sgp <= SGP_CACHE &&
1829  	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1830  		if (alloced) {
1831  			ClearPageDirty(page);
1832  			delete_from_page_cache(page);
1833  			spin_lock_irq(&info->lock);
1834  			shmem_recalc_inode(inode);
1835  			spin_unlock_irq(&info->lock);
1836  		}
1837  		error = -EINVAL;
1838  		goto unlock;
1839  	}
1840  	*pagep = page + index - hindex;
1841  	return 0;
1842  
1843  	/*
1844  	 * Error recovery.
1845  	 */
1846  unacct:
1847  	if (sbinfo->max_blocks)
1848  		percpu_counter_sub(&sbinfo->used_blocks,
1849  				1 << compound_order(page));
1850  	shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1851  
1852  	if (PageTransHuge(page)) {
1853  		unlock_page(page);
1854  		put_page(page);
1855  		goto alloc_nohuge;
1856  	}
1857  failed:
1858  	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1859  		error = -EEXIST;
1860  unlock:
1861  	if (page) {
1862  		unlock_page(page);
1863  		put_page(page);
1864  	}
1865  	if (error == -ENOSPC && !once++) {
1866  		spin_lock_irq(&info->lock);
1867  		shmem_recalc_inode(inode);
1868  		spin_unlock_irq(&info->lock);
1869  		goto repeat;
1870  	}
1871  	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1872  		goto repeat;
1873  	return error;
1874  }
1875  
1876  /*
1877   * This is like autoremove_wake_function, but it removes the wait queue
1878   * entry unconditionally - even if something else had already woken the
1879   * target.
1880   */
1881  static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1882  {
1883  	int ret = default_wake_function(wait, mode, sync, key);
1884  	list_del_init(&wait->task_list);
1885  	return ret;
1886  }
1887  
1888  static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1889  {
1890  	struct inode *inode = file_inode(vma->vm_file);
1891  	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1892  	enum sgp_type sgp;
1893  	int error;
1894  	int ret = VM_FAULT_LOCKED;
1895  
1896  	/*
1897  	 * Trinity finds that probing a hole which tmpfs is punching can
1898  	 * prevent the hole-punch from ever completing: which in turn
1899  	 * locks writers out with its hold on i_mutex.  So refrain from
1900  	 * faulting pages into the hole while it's being punched.  Although
1901  	 * shmem_undo_range() does remove the additions, it may be unable to
1902  	 * keep up, as each new page needs its own unmap_mapping_range() call,
1903  	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1904  	 *
1905  	 * It does not matter if we sometimes reach this check just before the
1906  	 * hole-punch begins, so that one fault then races with the punch:
1907  	 * we just need to make racing faults a rare case.
1908  	 *
1909  	 * The implementation below would be much simpler if we just used a
1910  	 * standard mutex or completion: but we cannot take i_mutex in fault,
1911  	 * and bloating every shmem inode for this unlikely case would be sad.
1912  	 */
1913  	if (unlikely(inode->i_private)) {
1914  		struct shmem_falloc *shmem_falloc;
1915  
1916  		spin_lock(&inode->i_lock);
1917  		shmem_falloc = inode->i_private;
1918  		if (shmem_falloc &&
1919  		    shmem_falloc->waitq &&
1920  		    vmf->pgoff >= shmem_falloc->start &&
1921  		    vmf->pgoff < shmem_falloc->next) {
1922  			wait_queue_head_t *shmem_falloc_waitq;
1923  			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1924  
1925  			ret = VM_FAULT_NOPAGE;
1926  			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1927  			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1928  				/* It's polite to up mmap_sem if we can */
1929  				up_read(&vma->vm_mm->mmap_sem);
1930  				ret = VM_FAULT_RETRY;
1931  			}
1932  
1933  			shmem_falloc_waitq = shmem_falloc->waitq;
1934  			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1935  					TASK_UNINTERRUPTIBLE);
1936  			spin_unlock(&inode->i_lock);
1937  			schedule();
1938  
1939  			/*
1940  			 * shmem_falloc_waitq points into the shmem_fallocate()
1941  			 * stack of the hole-punching task: shmem_falloc_waitq
1942  			 * is usually invalid by the time we reach here, but
1943  			 * finish_wait() does not dereference it in that case;
1944  			 * though i_lock needed lest racing with wake_up_all().
1945  			 */
1946  			spin_lock(&inode->i_lock);
1947  			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1948  			spin_unlock(&inode->i_lock);
1949  			return ret;
1950  		}
1951  		spin_unlock(&inode->i_lock);
1952  	}
1953  
1954  	sgp = SGP_CACHE;
1955  	if (vma->vm_flags & VM_HUGEPAGE)
1956  		sgp = SGP_HUGE;
1957  	else if (vma->vm_flags & VM_NOHUGEPAGE)
1958  		sgp = SGP_NOHUGE;
1959  
1960  	error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1961  				  gfp, vma->vm_mm, &ret);
1962  	if (error)
1963  		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1964  	return ret;
1965  }
1966  
1967  unsigned long shmem_get_unmapped_area(struct file *file,
1968  				      unsigned long uaddr, unsigned long len,
1969  				      unsigned long pgoff, unsigned long flags)
1970  {
1971  	unsigned long (*get_area)(struct file *,
1972  		unsigned long, unsigned long, unsigned long, unsigned long);
1973  	unsigned long addr;
1974  	unsigned long offset;
1975  	unsigned long inflated_len;
1976  	unsigned long inflated_addr;
1977  	unsigned long inflated_offset;
1978  
1979  	if (len > TASK_SIZE)
1980  		return -ENOMEM;
1981  
1982  	get_area = current->mm->get_unmapped_area;
1983  	addr = get_area(file, uaddr, len, pgoff, flags);
1984  
1985  	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1986  		return addr;
1987  	if (IS_ERR_VALUE(addr))
1988  		return addr;
1989  	if (addr & ~PAGE_MASK)
1990  		return addr;
1991  	if (addr > TASK_SIZE - len)
1992  		return addr;
1993  
1994  	if (shmem_huge == SHMEM_HUGE_DENY)
1995  		return addr;
1996  	if (len < HPAGE_PMD_SIZE)
1997  		return addr;
1998  	if (flags & MAP_FIXED)
1999  		return addr;
2000  	/*
2001  	 * Our priority is to support MAP_SHARED mapped hugely;
2002  	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2003  	 * But if caller specified an address hint, respect that as before.
2004  	 */
2005  	if (uaddr)
2006  		return addr;
2007  
2008  	if (shmem_huge != SHMEM_HUGE_FORCE) {
2009  		struct super_block *sb;
2010  
2011  		if (file) {
2012  			VM_BUG_ON(file->f_op != &shmem_file_operations);
2013  			sb = file_inode(file)->i_sb;
2014  		} else {
2015  			/*
2016  			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2017  			 * for "/dev/zero", to create a shared anonymous object.
2018  			 */
2019  			if (IS_ERR(shm_mnt))
2020  				return addr;
2021  			sb = shm_mnt->mnt_sb;
2022  		}
2023  		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2024  			return addr;
2025  	}
2026  
2027  	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2028  	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2029  		return addr;
2030  	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2031  		return addr;
2032  
2033  	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2034  	if (inflated_len > TASK_SIZE)
2035  		return addr;
2036  	if (inflated_len < len)
2037  		return addr;
2038  
2039  	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2040  	if (IS_ERR_VALUE(inflated_addr))
2041  		return addr;
2042  	if (inflated_addr & ~PAGE_MASK)
2043  		return addr;
2044  
2045  	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2046  	inflated_addr += offset - inflated_offset;
2047  	if (inflated_offset > offset)
2048  		inflated_addr += HPAGE_PMD_SIZE;
2049  
2050  	if (inflated_addr > TASK_SIZE - len)
2051  		return addr;
2052  	return inflated_addr;
2053  }
2054  
2055  #ifdef CONFIG_NUMA
2056  static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2057  {
2058  	struct inode *inode = file_inode(vma->vm_file);
2059  	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2060  }
2061  
2062  static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2063  					  unsigned long addr)
2064  {
2065  	struct inode *inode = file_inode(vma->vm_file);
2066  	pgoff_t index;
2067  
2068  	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2069  	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2070  }
2071  #endif
2072  
2073  int shmem_lock(struct file *file, int lock, struct user_struct *user)
2074  {
2075  	struct inode *inode = file_inode(file);
2076  	struct shmem_inode_info *info = SHMEM_I(inode);
2077  	int retval = -ENOMEM;
2078  
2079  	spin_lock_irq(&info->lock);
2080  	if (lock && !(info->flags & VM_LOCKED)) {
2081  		if (!user_shm_lock(inode->i_size, user))
2082  			goto out_nomem;
2083  		info->flags |= VM_LOCKED;
2084  		mapping_set_unevictable(file->f_mapping);
2085  	}
2086  	if (!lock && (info->flags & VM_LOCKED) && user) {
2087  		user_shm_unlock(inode->i_size, user);
2088  		info->flags &= ~VM_LOCKED;
2089  		mapping_clear_unevictable(file->f_mapping);
2090  	}
2091  	retval = 0;
2092  
2093  out_nomem:
2094  	spin_unlock_irq(&info->lock);
2095  	return retval;
2096  }
2097  
2098  static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2099  {
2100  	file_accessed(file);
2101  	vma->vm_ops = &shmem_vm_ops;
2102  	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2103  			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2104  			(vma->vm_end & HPAGE_PMD_MASK)) {
2105  		khugepaged_enter(vma, vma->vm_flags);
2106  	}
2107  	return 0;
2108  }
2109  
2110  static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2111  				     umode_t mode, dev_t dev, unsigned long flags)
2112  {
2113  	struct inode *inode;
2114  	struct shmem_inode_info *info;
2115  	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2116  
2117  	if (shmem_reserve_inode(sb))
2118  		return NULL;
2119  
2120  	inode = new_inode(sb);
2121  	if (inode) {
2122  		inode->i_ino = get_next_ino();
2123  		inode_init_owner(inode, dir, mode);
2124  		inode->i_blocks = 0;
2125  		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2126  		inode->i_generation = get_seconds();
2127  		info = SHMEM_I(inode);
2128  		memset(info, 0, (char *)inode - (char *)info);
2129  		spin_lock_init(&info->lock);
2130  		info->seals = F_SEAL_SEAL;
2131  		info->flags = flags & VM_NORESERVE;
2132  		INIT_LIST_HEAD(&info->shrinklist);
2133  		INIT_LIST_HEAD(&info->swaplist);
2134  		simple_xattrs_init(&info->xattrs);
2135  		cache_no_acl(inode);
2136  
2137  		switch (mode & S_IFMT) {
2138  		default:
2139  			inode->i_op = &shmem_special_inode_operations;
2140  			init_special_inode(inode, mode, dev);
2141  			break;
2142  		case S_IFREG:
2143  			inode->i_mapping->a_ops = &shmem_aops;
2144  			inode->i_op = &shmem_inode_operations;
2145  			inode->i_fop = &shmem_file_operations;
2146  			mpol_shared_policy_init(&info->policy,
2147  						 shmem_get_sbmpol(sbinfo));
2148  			break;
2149  		case S_IFDIR:
2150  			inc_nlink(inode);
2151  			/* Some things misbehave if size == 0 on a directory */
2152  			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2153  			inode->i_op = &shmem_dir_inode_operations;
2154  			inode->i_fop = &simple_dir_operations;
2155  			break;
2156  		case S_IFLNK:
2157  			/*
2158  			 * Must not load anything in the rbtree,
2159  			 * mpol_free_shared_policy will not be called.
2160  			 */
2161  			mpol_shared_policy_init(&info->policy, NULL);
2162  			break;
2163  		}
2164  	} else
2165  		shmem_free_inode(sb);
2166  	return inode;
2167  }
2168  
2169  bool shmem_mapping(struct address_space *mapping)
2170  {
2171  	if (!mapping->host)
2172  		return false;
2173  
2174  	return mapping->host->i_sb->s_op == &shmem_ops;
2175  }
2176  
2177  #ifdef CONFIG_TMPFS
2178  static const struct inode_operations shmem_symlink_inode_operations;
2179  static const struct inode_operations shmem_short_symlink_operations;
2180  
2181  #ifdef CONFIG_TMPFS_XATTR
2182  static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2183  #else
2184  #define shmem_initxattrs NULL
2185  #endif
2186  
2187  static int
2188  shmem_write_begin(struct file *file, struct address_space *mapping,
2189  			loff_t pos, unsigned len, unsigned flags,
2190  			struct page **pagep, void **fsdata)
2191  {
2192  	struct inode *inode = mapping->host;
2193  	struct shmem_inode_info *info = SHMEM_I(inode);
2194  	pgoff_t index = pos >> PAGE_SHIFT;
2195  
2196  	/* i_mutex is held by caller */
2197  	if (unlikely(info->seals)) {
2198  		if (info->seals & F_SEAL_WRITE)
2199  			return -EPERM;
2200  		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2201  			return -EPERM;
2202  	}
2203  
2204  	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2205  }
2206  
2207  static int
2208  shmem_write_end(struct file *file, struct address_space *mapping,
2209  			loff_t pos, unsigned len, unsigned copied,
2210  			struct page *page, void *fsdata)
2211  {
2212  	struct inode *inode = mapping->host;
2213  
2214  	if (pos + copied > inode->i_size)
2215  		i_size_write(inode, pos + copied);
2216  
2217  	if (!PageUptodate(page)) {
2218  		struct page *head = compound_head(page);
2219  		if (PageTransCompound(page)) {
2220  			int i;
2221  
2222  			for (i = 0; i < HPAGE_PMD_NR; i++) {
2223  				if (head + i == page)
2224  					continue;
2225  				clear_highpage(head + i);
2226  				flush_dcache_page(head + i);
2227  			}
2228  		}
2229  		if (copied < PAGE_SIZE) {
2230  			unsigned from = pos & (PAGE_SIZE - 1);
2231  			zero_user_segments(page, 0, from,
2232  					from + copied, PAGE_SIZE);
2233  		}
2234  		SetPageUptodate(head);
2235  	}
2236  	set_page_dirty(page);
2237  	unlock_page(page);
2238  	put_page(page);
2239  
2240  	return copied;
2241  }
2242  
2243  static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2244  {
2245  	struct file *file = iocb->ki_filp;
2246  	struct inode *inode = file_inode(file);
2247  	struct address_space *mapping = inode->i_mapping;
2248  	pgoff_t index;
2249  	unsigned long offset;
2250  	enum sgp_type sgp = SGP_READ;
2251  	int error = 0;
2252  	ssize_t retval = 0;
2253  	loff_t *ppos = &iocb->ki_pos;
2254  
2255  	/*
2256  	 * Might this read be for a stacking filesystem?  Then when reading
2257  	 * holes of a sparse file, we actually need to allocate those pages,
2258  	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2259  	 */
2260  	if (!iter_is_iovec(to))
2261  		sgp = SGP_CACHE;
2262  
2263  	index = *ppos >> PAGE_SHIFT;
2264  	offset = *ppos & ~PAGE_MASK;
2265  
2266  	for (;;) {
2267  		struct page *page = NULL;
2268  		pgoff_t end_index;
2269  		unsigned long nr, ret;
2270  		loff_t i_size = i_size_read(inode);
2271  
2272  		end_index = i_size >> PAGE_SHIFT;
2273  		if (index > end_index)
2274  			break;
2275  		if (index == end_index) {
2276  			nr = i_size & ~PAGE_MASK;
2277  			if (nr <= offset)
2278  				break;
2279  		}
2280  
2281  		error = shmem_getpage(inode, index, &page, sgp);
2282  		if (error) {
2283  			if (error == -EINVAL)
2284  				error = 0;
2285  			break;
2286  		}
2287  		if (page) {
2288  			if (sgp == SGP_CACHE)
2289  				set_page_dirty(page);
2290  			unlock_page(page);
2291  		}
2292  
2293  		/*
2294  		 * We must evaluate after, since reads (unlike writes)
2295  		 * are called without i_mutex protection against truncate
2296  		 */
2297  		nr = PAGE_SIZE;
2298  		i_size = i_size_read(inode);
2299  		end_index = i_size >> PAGE_SHIFT;
2300  		if (index == end_index) {
2301  			nr = i_size & ~PAGE_MASK;
2302  			if (nr <= offset) {
2303  				if (page)
2304  					put_page(page);
2305  				break;
2306  			}
2307  		}
2308  		nr -= offset;
2309  
2310  		if (page) {
2311  			/*
2312  			 * If users can be writing to this page using arbitrary
2313  			 * virtual addresses, take care about potential aliasing
2314  			 * before reading the page on the kernel side.
2315  			 */
2316  			if (mapping_writably_mapped(mapping))
2317  				flush_dcache_page(page);
2318  			/*
2319  			 * Mark the page accessed if we read the beginning.
2320  			 */
2321  			if (!offset)
2322  				mark_page_accessed(page);
2323  		} else {
2324  			page = ZERO_PAGE(0);
2325  			get_page(page);
2326  		}
2327  
2328  		/*
2329  		 * Ok, we have the page, and it's up-to-date, so
2330  		 * now we can copy it to user space...
2331  		 */
2332  		ret = copy_page_to_iter(page, offset, nr, to);
2333  		retval += ret;
2334  		offset += ret;
2335  		index += offset >> PAGE_SHIFT;
2336  		offset &= ~PAGE_MASK;
2337  
2338  		put_page(page);
2339  		if (!iov_iter_count(to))
2340  			break;
2341  		if (ret < nr) {
2342  			error = -EFAULT;
2343  			break;
2344  		}
2345  		cond_resched();
2346  	}
2347  
2348  	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2349  	file_accessed(file);
2350  	return retval ? retval : error;
2351  }
2352  
2353  /*
2354   * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2355   */
2356  static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2357  				    pgoff_t index, pgoff_t end, int whence)
2358  {
2359  	struct page *page;
2360  	struct pagevec pvec;
2361  	pgoff_t indices[PAGEVEC_SIZE];
2362  	bool done = false;
2363  	int i;
2364  
2365  	pagevec_init(&pvec, 0);
2366  	pvec.nr = 1;		/* start small: we may be there already */
2367  	while (!done) {
2368  		pvec.nr = find_get_entries(mapping, index,
2369  					pvec.nr, pvec.pages, indices);
2370  		if (!pvec.nr) {
2371  			if (whence == SEEK_DATA)
2372  				index = end;
2373  			break;
2374  		}
2375  		for (i = 0; i < pvec.nr; i++, index++) {
2376  			if (index < indices[i]) {
2377  				if (whence == SEEK_HOLE) {
2378  					done = true;
2379  					break;
2380  				}
2381  				index = indices[i];
2382  			}
2383  			page = pvec.pages[i];
2384  			if (page && !radix_tree_exceptional_entry(page)) {
2385  				if (!PageUptodate(page))
2386  					page = NULL;
2387  			}
2388  			if (index >= end ||
2389  			    (page && whence == SEEK_DATA) ||
2390  			    (!page && whence == SEEK_HOLE)) {
2391  				done = true;
2392  				break;
2393  			}
2394  		}
2395  		pagevec_remove_exceptionals(&pvec);
2396  		pagevec_release(&pvec);
2397  		pvec.nr = PAGEVEC_SIZE;
2398  		cond_resched();
2399  	}
2400  	return index;
2401  }
2402  
2403  static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2404  {
2405  	struct address_space *mapping = file->f_mapping;
2406  	struct inode *inode = mapping->host;
2407  	pgoff_t start, end;
2408  	loff_t new_offset;
2409  
2410  	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2411  		return generic_file_llseek_size(file, offset, whence,
2412  					MAX_LFS_FILESIZE, i_size_read(inode));
2413  	inode_lock(inode);
2414  	/* We're holding i_mutex so we can access i_size directly */
2415  
2416  	if (offset < 0)
2417  		offset = -EINVAL;
2418  	else if (offset >= inode->i_size)
2419  		offset = -ENXIO;
2420  	else {
2421  		start = offset >> PAGE_SHIFT;
2422  		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2423  		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2424  		new_offset <<= PAGE_SHIFT;
2425  		if (new_offset > offset) {
2426  			if (new_offset < inode->i_size)
2427  				offset = new_offset;
2428  			else if (whence == SEEK_DATA)
2429  				offset = -ENXIO;
2430  			else
2431  				offset = inode->i_size;
2432  		}
2433  	}
2434  
2435  	if (offset >= 0)
2436  		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2437  	inode_unlock(inode);
2438  	return offset;
2439  }
2440  
2441  /*
2442   * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2443   * so reuse a tag which we firmly believe is never set or cleared on shmem.
2444   */
2445  #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2446  #define LAST_SCAN               4       /* about 150ms max */
2447  
2448  static void shmem_tag_pins(struct address_space *mapping)
2449  {
2450  	struct radix_tree_iter iter;
2451  	void **slot;
2452  	pgoff_t start;
2453  	struct page *page;
2454  
2455  	lru_add_drain();
2456  	start = 0;
2457  	rcu_read_lock();
2458  
2459  	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2460  		page = radix_tree_deref_slot(slot);
2461  		if (!page || radix_tree_exception(page)) {
2462  			if (radix_tree_deref_retry(page)) {
2463  				slot = radix_tree_iter_retry(&iter);
2464  				continue;
2465  			}
2466  		} else if (page_count(page) - page_mapcount(page) > 1) {
2467  			spin_lock_irq(&mapping->tree_lock);
2468  			radix_tree_tag_set(&mapping->page_tree, iter.index,
2469  					   SHMEM_TAG_PINNED);
2470  			spin_unlock_irq(&mapping->tree_lock);
2471  		}
2472  
2473  		if (need_resched()) {
2474  			slot = radix_tree_iter_resume(slot, &iter);
2475  			cond_resched_rcu();
2476  		}
2477  	}
2478  	rcu_read_unlock();
2479  }
2480  
2481  /*
2482   * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2483   * via get_user_pages(), drivers might have some pending I/O without any active
2484   * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2485   * and see whether it has an elevated ref-count. If so, we tag them and wait for
2486   * them to be dropped.
2487   * The caller must guarantee that no new user will acquire writable references
2488   * to those pages to avoid races.
2489   */
2490  static int shmem_wait_for_pins(struct address_space *mapping)
2491  {
2492  	struct radix_tree_iter iter;
2493  	void **slot;
2494  	pgoff_t start;
2495  	struct page *page;
2496  	int error, scan;
2497  
2498  	shmem_tag_pins(mapping);
2499  
2500  	error = 0;
2501  	for (scan = 0; scan <= LAST_SCAN; scan++) {
2502  		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2503  			break;
2504  
2505  		if (!scan)
2506  			lru_add_drain_all();
2507  		else if (schedule_timeout_killable((HZ << scan) / 200))
2508  			scan = LAST_SCAN;
2509  
2510  		start = 0;
2511  		rcu_read_lock();
2512  		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2513  					   start, SHMEM_TAG_PINNED) {
2514  
2515  			page = radix_tree_deref_slot(slot);
2516  			if (radix_tree_exception(page)) {
2517  				if (radix_tree_deref_retry(page)) {
2518  					slot = radix_tree_iter_retry(&iter);
2519  					continue;
2520  				}
2521  
2522  				page = NULL;
2523  			}
2524  
2525  			if (page &&
2526  			    page_count(page) - page_mapcount(page) != 1) {
2527  				if (scan < LAST_SCAN)
2528  					goto continue_resched;
2529  
2530  				/*
2531  				 * On the last scan, we clean up all those tags
2532  				 * we inserted; but make a note that we still
2533  				 * found pages pinned.
2534  				 */
2535  				error = -EBUSY;
2536  			}
2537  
2538  			spin_lock_irq(&mapping->tree_lock);
2539  			radix_tree_tag_clear(&mapping->page_tree,
2540  					     iter.index, SHMEM_TAG_PINNED);
2541  			spin_unlock_irq(&mapping->tree_lock);
2542  continue_resched:
2543  			if (need_resched()) {
2544  				slot = radix_tree_iter_resume(slot, &iter);
2545  				cond_resched_rcu();
2546  			}
2547  		}
2548  		rcu_read_unlock();
2549  	}
2550  
2551  	return error;
2552  }
2553  
2554  #define F_ALL_SEALS (F_SEAL_SEAL | \
2555  		     F_SEAL_SHRINK | \
2556  		     F_SEAL_GROW | \
2557  		     F_SEAL_WRITE)
2558  
2559  int shmem_add_seals(struct file *file, unsigned int seals)
2560  {
2561  	struct inode *inode = file_inode(file);
2562  	struct shmem_inode_info *info = SHMEM_I(inode);
2563  	int error;
2564  
2565  	/*
2566  	 * SEALING
2567  	 * Sealing allows multiple parties to share a shmem-file but restrict
2568  	 * access to a specific subset of file operations. Seals can only be
2569  	 * added, but never removed. This way, mutually untrusted parties can
2570  	 * share common memory regions with a well-defined policy. A malicious
2571  	 * peer can thus never perform unwanted operations on a shared object.
2572  	 *
2573  	 * Seals are only supported on special shmem-files and always affect
2574  	 * the whole underlying inode. Once a seal is set, it may prevent some
2575  	 * kinds of access to the file. Currently, the following seals are
2576  	 * defined:
2577  	 *   SEAL_SEAL: Prevent further seals from being set on this file
2578  	 *   SEAL_SHRINK: Prevent the file from shrinking
2579  	 *   SEAL_GROW: Prevent the file from growing
2580  	 *   SEAL_WRITE: Prevent write access to the file
2581  	 *
2582  	 * As we don't require any trust relationship between two parties, we
2583  	 * must prevent seals from being removed. Therefore, sealing a file
2584  	 * only adds a given set of seals to the file, it never touches
2585  	 * existing seals. Furthermore, the "setting seals"-operation can be
2586  	 * sealed itself, which basically prevents any further seal from being
2587  	 * added.
2588  	 *
2589  	 * Semantics of sealing are only defined on volatile files. Only
2590  	 * anonymous shmem files support sealing. More importantly, seals are
2591  	 * never written to disk. Therefore, there's no plan to support it on
2592  	 * other file types.
2593  	 */
2594  
2595  	if (file->f_op != &shmem_file_operations)
2596  		return -EINVAL;
2597  	if (!(file->f_mode & FMODE_WRITE))
2598  		return -EPERM;
2599  	if (seals & ~(unsigned int)F_ALL_SEALS)
2600  		return -EINVAL;
2601  
2602  	inode_lock(inode);
2603  
2604  	if (info->seals & F_SEAL_SEAL) {
2605  		error = -EPERM;
2606  		goto unlock;
2607  	}
2608  
2609  	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2610  		error = mapping_deny_writable(file->f_mapping);
2611  		if (error)
2612  			goto unlock;
2613  
2614  		error = shmem_wait_for_pins(file->f_mapping);
2615  		if (error) {
2616  			mapping_allow_writable(file->f_mapping);
2617  			goto unlock;
2618  		}
2619  	}
2620  
2621  	info->seals |= seals;
2622  	error = 0;
2623  
2624  unlock:
2625  	inode_unlock(inode);
2626  	return error;
2627  }
2628  EXPORT_SYMBOL_GPL(shmem_add_seals);
2629  
2630  int shmem_get_seals(struct file *file)
2631  {
2632  	if (file->f_op != &shmem_file_operations)
2633  		return -EINVAL;
2634  
2635  	return SHMEM_I(file_inode(file))->seals;
2636  }
2637  EXPORT_SYMBOL_GPL(shmem_get_seals);
2638  
2639  long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2640  {
2641  	long error;
2642  
2643  	switch (cmd) {
2644  	case F_ADD_SEALS:
2645  		/* disallow upper 32bit */
2646  		if (arg > UINT_MAX)
2647  			return -EINVAL;
2648  
2649  		error = shmem_add_seals(file, arg);
2650  		break;
2651  	case F_GET_SEALS:
2652  		error = shmem_get_seals(file);
2653  		break;
2654  	default:
2655  		error = -EINVAL;
2656  		break;
2657  	}
2658  
2659  	return error;
2660  }
2661  
2662  static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2663  							 loff_t len)
2664  {
2665  	struct inode *inode = file_inode(file);
2666  	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2667  	struct shmem_inode_info *info = SHMEM_I(inode);
2668  	struct shmem_falloc shmem_falloc;
2669  	pgoff_t start, index, end;
2670  	int error;
2671  
2672  	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2673  		return -EOPNOTSUPP;
2674  
2675  	inode_lock(inode);
2676  
2677  	if (mode & FALLOC_FL_PUNCH_HOLE) {
2678  		struct address_space *mapping = file->f_mapping;
2679  		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2680  		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2681  		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2682  
2683  		/* protected by i_mutex */
2684  		if (info->seals & F_SEAL_WRITE) {
2685  			error = -EPERM;
2686  			goto out;
2687  		}
2688  
2689  		shmem_falloc.waitq = &shmem_falloc_waitq;
2690  		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2691  		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2692  		spin_lock(&inode->i_lock);
2693  		inode->i_private = &shmem_falloc;
2694  		spin_unlock(&inode->i_lock);
2695  
2696  		if ((u64)unmap_end > (u64)unmap_start)
2697  			unmap_mapping_range(mapping, unmap_start,
2698  					    1 + unmap_end - unmap_start, 0);
2699  		shmem_truncate_range(inode, offset, offset + len - 1);
2700  		/* No need to unmap again: hole-punching leaves COWed pages */
2701  
2702  		spin_lock(&inode->i_lock);
2703  		inode->i_private = NULL;
2704  		wake_up_all(&shmem_falloc_waitq);
2705  		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
2706  		spin_unlock(&inode->i_lock);
2707  		error = 0;
2708  		goto out;
2709  	}
2710  
2711  	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2712  	error = inode_newsize_ok(inode, offset + len);
2713  	if (error)
2714  		goto out;
2715  
2716  	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2717  		error = -EPERM;
2718  		goto out;
2719  	}
2720  
2721  	start = offset >> PAGE_SHIFT;
2722  	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2723  	/* Try to avoid a swapstorm if len is impossible to satisfy */
2724  	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2725  		error = -ENOSPC;
2726  		goto out;
2727  	}
2728  
2729  	shmem_falloc.waitq = NULL;
2730  	shmem_falloc.start = start;
2731  	shmem_falloc.next  = start;
2732  	shmem_falloc.nr_falloced = 0;
2733  	shmem_falloc.nr_unswapped = 0;
2734  	spin_lock(&inode->i_lock);
2735  	inode->i_private = &shmem_falloc;
2736  	spin_unlock(&inode->i_lock);
2737  
2738  	for (index = start; index < end; index++) {
2739  		struct page *page;
2740  
2741  		/*
2742  		 * Good, the fallocate(2) manpage permits EINTR: we may have
2743  		 * been interrupted because we are using up too much memory.
2744  		 */
2745  		if (signal_pending(current))
2746  			error = -EINTR;
2747  		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2748  			error = -ENOMEM;
2749  		else
2750  			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2751  		if (error) {
2752  			/* Remove the !PageUptodate pages we added */
2753  			if (index > start) {
2754  				shmem_undo_range(inode,
2755  				    (loff_t)start << PAGE_SHIFT,
2756  				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2757  			}
2758  			goto undone;
2759  		}
2760  
2761  		/*
2762  		 * Inform shmem_writepage() how far we have reached.
2763  		 * No need for lock or barrier: we have the page lock.
2764  		 */
2765  		shmem_falloc.next++;
2766  		if (!PageUptodate(page))
2767  			shmem_falloc.nr_falloced++;
2768  
2769  		/*
2770  		 * If !PageUptodate, leave it that way so that freeable pages
2771  		 * can be recognized if we need to rollback on error later.
2772  		 * But set_page_dirty so that memory pressure will swap rather
2773  		 * than free the pages we are allocating (and SGP_CACHE pages
2774  		 * might still be clean: we now need to mark those dirty too).
2775  		 */
2776  		set_page_dirty(page);
2777  		unlock_page(page);
2778  		put_page(page);
2779  		cond_resched();
2780  	}
2781  
2782  	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2783  		i_size_write(inode, offset + len);
2784  	inode->i_ctime = current_time(inode);
2785  undone:
2786  	spin_lock(&inode->i_lock);
2787  	inode->i_private = NULL;
2788  	spin_unlock(&inode->i_lock);
2789  out:
2790  	inode_unlock(inode);
2791  	return error;
2792  }
2793  
2794  static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2795  {
2796  	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2797  
2798  	buf->f_type = TMPFS_MAGIC;
2799  	buf->f_bsize = PAGE_SIZE;
2800  	buf->f_namelen = NAME_MAX;
2801  	if (sbinfo->max_blocks) {
2802  		buf->f_blocks = sbinfo->max_blocks;
2803  		buf->f_bavail =
2804  		buf->f_bfree  = sbinfo->max_blocks -
2805  				percpu_counter_sum(&sbinfo->used_blocks);
2806  	}
2807  	if (sbinfo->max_inodes) {
2808  		buf->f_files = sbinfo->max_inodes;
2809  		buf->f_ffree = sbinfo->free_inodes;
2810  	}
2811  	/* else leave those fields 0 like simple_statfs */
2812  	return 0;
2813  }
2814  
2815  /*
2816   * File creation. Allocate an inode, and we're done..
2817   */
2818  static int
2819  shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2820  {
2821  	struct inode *inode;
2822  	int error = -ENOSPC;
2823  
2824  	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2825  	if (inode) {
2826  		error = simple_acl_create(dir, inode);
2827  		if (error)
2828  			goto out_iput;
2829  		error = security_inode_init_security(inode, dir,
2830  						     &dentry->d_name,
2831  						     shmem_initxattrs, NULL);
2832  		if (error && error != -EOPNOTSUPP)
2833  			goto out_iput;
2834  
2835  		error = 0;
2836  		dir->i_size += BOGO_DIRENT_SIZE;
2837  		dir->i_ctime = dir->i_mtime = current_time(dir);
2838  		d_instantiate(dentry, inode);
2839  		dget(dentry); /* Extra count - pin the dentry in core */
2840  	}
2841  	return error;
2842  out_iput:
2843  	iput(inode);
2844  	return error;
2845  }
2846  
2847  static int
2848  shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2849  {
2850  	struct inode *inode;
2851  	int error = -ENOSPC;
2852  
2853  	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2854  	if (inode) {
2855  		error = security_inode_init_security(inode, dir,
2856  						     NULL,
2857  						     shmem_initxattrs, NULL);
2858  		if (error && error != -EOPNOTSUPP)
2859  			goto out_iput;
2860  		error = simple_acl_create(dir, inode);
2861  		if (error)
2862  			goto out_iput;
2863  		d_tmpfile(dentry, inode);
2864  	}
2865  	return error;
2866  out_iput:
2867  	iput(inode);
2868  	return error;
2869  }
2870  
2871  static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2872  {
2873  	int error;
2874  
2875  	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2876  		return error;
2877  	inc_nlink(dir);
2878  	return 0;
2879  }
2880  
2881  static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2882  		bool excl)
2883  {
2884  	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2885  }
2886  
2887  /*
2888   * Link a file..
2889   */
2890  static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2891  {
2892  	struct inode *inode = d_inode(old_dentry);
2893  	int ret;
2894  
2895  	/*
2896  	 * No ordinary (disk based) filesystem counts links as inodes;
2897  	 * but each new link needs a new dentry, pinning lowmem, and
2898  	 * tmpfs dentries cannot be pruned until they are unlinked.
2899  	 */
2900  	ret = shmem_reserve_inode(inode->i_sb);
2901  	if (ret)
2902  		goto out;
2903  
2904  	dir->i_size += BOGO_DIRENT_SIZE;
2905  	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2906  	inc_nlink(inode);
2907  	ihold(inode);	/* New dentry reference */
2908  	dget(dentry);		/* Extra pinning count for the created dentry */
2909  	d_instantiate(dentry, inode);
2910  out:
2911  	return ret;
2912  }
2913  
2914  static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2915  {
2916  	struct inode *inode = d_inode(dentry);
2917  
2918  	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2919  		shmem_free_inode(inode->i_sb);
2920  
2921  	dir->i_size -= BOGO_DIRENT_SIZE;
2922  	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2923  	drop_nlink(inode);
2924  	dput(dentry);	/* Undo the count from "create" - this does all the work */
2925  	return 0;
2926  }
2927  
2928  static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2929  {
2930  	if (!simple_empty(dentry))
2931  		return -ENOTEMPTY;
2932  
2933  	drop_nlink(d_inode(dentry));
2934  	drop_nlink(dir);
2935  	return shmem_unlink(dir, dentry);
2936  }
2937  
2938  static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2939  {
2940  	bool old_is_dir = d_is_dir(old_dentry);
2941  	bool new_is_dir = d_is_dir(new_dentry);
2942  
2943  	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2944  		if (old_is_dir) {
2945  			drop_nlink(old_dir);
2946  			inc_nlink(new_dir);
2947  		} else {
2948  			drop_nlink(new_dir);
2949  			inc_nlink(old_dir);
2950  		}
2951  	}
2952  	old_dir->i_ctime = old_dir->i_mtime =
2953  	new_dir->i_ctime = new_dir->i_mtime =
2954  	d_inode(old_dentry)->i_ctime =
2955  	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2956  
2957  	return 0;
2958  }
2959  
2960  static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2961  {
2962  	struct dentry *whiteout;
2963  	int error;
2964  
2965  	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2966  	if (!whiteout)
2967  		return -ENOMEM;
2968  
2969  	error = shmem_mknod(old_dir, whiteout,
2970  			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2971  	dput(whiteout);
2972  	if (error)
2973  		return error;
2974  
2975  	/*
2976  	 * Cheat and hash the whiteout while the old dentry is still in
2977  	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2978  	 *
2979  	 * d_lookup() will consistently find one of them at this point,
2980  	 * not sure which one, but that isn't even important.
2981  	 */
2982  	d_rehash(whiteout);
2983  	return 0;
2984  }
2985  
2986  /*
2987   * The VFS layer already does all the dentry stuff for rename,
2988   * we just have to decrement the usage count for the target if
2989   * it exists so that the VFS layer correctly free's it when it
2990   * gets overwritten.
2991   */
2992  static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2993  {
2994  	struct inode *inode = d_inode(old_dentry);
2995  	int they_are_dirs = S_ISDIR(inode->i_mode);
2996  
2997  	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2998  		return -EINVAL;
2999  
3000  	if (flags & RENAME_EXCHANGE)
3001  		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3002  
3003  	if (!simple_empty(new_dentry))
3004  		return -ENOTEMPTY;
3005  
3006  	if (flags & RENAME_WHITEOUT) {
3007  		int error;
3008  
3009  		error = shmem_whiteout(old_dir, old_dentry);
3010  		if (error)
3011  			return error;
3012  	}
3013  
3014  	if (d_really_is_positive(new_dentry)) {
3015  		(void) shmem_unlink(new_dir, new_dentry);
3016  		if (they_are_dirs) {
3017  			drop_nlink(d_inode(new_dentry));
3018  			drop_nlink(old_dir);
3019  		}
3020  	} else if (they_are_dirs) {
3021  		drop_nlink(old_dir);
3022  		inc_nlink(new_dir);
3023  	}
3024  
3025  	old_dir->i_size -= BOGO_DIRENT_SIZE;
3026  	new_dir->i_size += BOGO_DIRENT_SIZE;
3027  	old_dir->i_ctime = old_dir->i_mtime =
3028  	new_dir->i_ctime = new_dir->i_mtime =
3029  	inode->i_ctime = current_time(old_dir);
3030  	return 0;
3031  }
3032  
3033  static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3034  {
3035  	int error;
3036  	int len;
3037  	struct inode *inode;
3038  	struct page *page;
3039  	struct shmem_inode_info *info;
3040  
3041  	len = strlen(symname) + 1;
3042  	if (len > PAGE_SIZE)
3043  		return -ENAMETOOLONG;
3044  
3045  	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3046  	if (!inode)
3047  		return -ENOSPC;
3048  
3049  	error = security_inode_init_security(inode, dir, &dentry->d_name,
3050  					     shmem_initxattrs, NULL);
3051  	if (error) {
3052  		if (error != -EOPNOTSUPP) {
3053  			iput(inode);
3054  			return error;
3055  		}
3056  		error = 0;
3057  	}
3058  
3059  	info = SHMEM_I(inode);
3060  	inode->i_size = len-1;
3061  	if (len <= SHORT_SYMLINK_LEN) {
3062  		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3063  		if (!inode->i_link) {
3064  			iput(inode);
3065  			return -ENOMEM;
3066  		}
3067  		inode->i_op = &shmem_short_symlink_operations;
3068  	} else {
3069  		inode_nohighmem(inode);
3070  		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3071  		if (error) {
3072  			iput(inode);
3073  			return error;
3074  		}
3075  		inode->i_mapping->a_ops = &shmem_aops;
3076  		inode->i_op = &shmem_symlink_inode_operations;
3077  		memcpy(page_address(page), symname, len);
3078  		SetPageUptodate(page);
3079  		set_page_dirty(page);
3080  		unlock_page(page);
3081  		put_page(page);
3082  	}
3083  	dir->i_size += BOGO_DIRENT_SIZE;
3084  	dir->i_ctime = dir->i_mtime = current_time(dir);
3085  	d_instantiate(dentry, inode);
3086  	dget(dentry);
3087  	return 0;
3088  }
3089  
3090  static void shmem_put_link(void *arg)
3091  {
3092  	mark_page_accessed(arg);
3093  	put_page(arg);
3094  }
3095  
3096  static const char *shmem_get_link(struct dentry *dentry,
3097  				  struct inode *inode,
3098  				  struct delayed_call *done)
3099  {
3100  	struct page *page = NULL;
3101  	int error;
3102  	if (!dentry) {
3103  		page = find_get_page(inode->i_mapping, 0);
3104  		if (!page)
3105  			return ERR_PTR(-ECHILD);
3106  		if (!PageUptodate(page)) {
3107  			put_page(page);
3108  			return ERR_PTR(-ECHILD);
3109  		}
3110  	} else {
3111  		error = shmem_getpage(inode, 0, &page, SGP_READ);
3112  		if (error)
3113  			return ERR_PTR(error);
3114  		unlock_page(page);
3115  	}
3116  	set_delayed_call(done, shmem_put_link, page);
3117  	return page_address(page);
3118  }
3119  
3120  #ifdef CONFIG_TMPFS_XATTR
3121  /*
3122   * Superblocks without xattr inode operations may get some security.* xattr
3123   * support from the LSM "for free". As soon as we have any other xattrs
3124   * like ACLs, we also need to implement the security.* handlers at
3125   * filesystem level, though.
3126   */
3127  
3128  /*
3129   * Callback for security_inode_init_security() for acquiring xattrs.
3130   */
3131  static int shmem_initxattrs(struct inode *inode,
3132  			    const struct xattr *xattr_array,
3133  			    void *fs_info)
3134  {
3135  	struct shmem_inode_info *info = SHMEM_I(inode);
3136  	const struct xattr *xattr;
3137  	struct simple_xattr *new_xattr;
3138  	size_t len;
3139  
3140  	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3141  		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3142  		if (!new_xattr)
3143  			return -ENOMEM;
3144  
3145  		len = strlen(xattr->name) + 1;
3146  		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3147  					  GFP_KERNEL);
3148  		if (!new_xattr->name) {
3149  			kfree(new_xattr);
3150  			return -ENOMEM;
3151  		}
3152  
3153  		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3154  		       XATTR_SECURITY_PREFIX_LEN);
3155  		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3156  		       xattr->name, len);
3157  
3158  		simple_xattr_list_add(&info->xattrs, new_xattr);
3159  	}
3160  
3161  	return 0;
3162  }
3163  
3164  static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3165  				   struct dentry *unused, struct inode *inode,
3166  				   const char *name, void *buffer, size_t size)
3167  {
3168  	struct shmem_inode_info *info = SHMEM_I(inode);
3169  
3170  	name = xattr_full_name(handler, name);
3171  	return simple_xattr_get(&info->xattrs, name, buffer, size);
3172  }
3173  
3174  static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3175  				   struct dentry *unused, struct inode *inode,
3176  				   const char *name, const void *value,
3177  				   size_t size, int flags)
3178  {
3179  	struct shmem_inode_info *info = SHMEM_I(inode);
3180  
3181  	name = xattr_full_name(handler, name);
3182  	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3183  }
3184  
3185  static const struct xattr_handler shmem_security_xattr_handler = {
3186  	.prefix = XATTR_SECURITY_PREFIX,
3187  	.get = shmem_xattr_handler_get,
3188  	.set = shmem_xattr_handler_set,
3189  };
3190  
3191  static const struct xattr_handler shmem_trusted_xattr_handler = {
3192  	.prefix = XATTR_TRUSTED_PREFIX,
3193  	.get = shmem_xattr_handler_get,
3194  	.set = shmem_xattr_handler_set,
3195  };
3196  
3197  static const struct xattr_handler *shmem_xattr_handlers[] = {
3198  #ifdef CONFIG_TMPFS_POSIX_ACL
3199  	&posix_acl_access_xattr_handler,
3200  	&posix_acl_default_xattr_handler,
3201  #endif
3202  	&shmem_security_xattr_handler,
3203  	&shmem_trusted_xattr_handler,
3204  	NULL
3205  };
3206  
3207  static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3208  {
3209  	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3210  	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3211  }
3212  #endif /* CONFIG_TMPFS_XATTR */
3213  
3214  static const struct inode_operations shmem_short_symlink_operations = {
3215  	.get_link	= simple_get_link,
3216  #ifdef CONFIG_TMPFS_XATTR
3217  	.listxattr	= shmem_listxattr,
3218  #endif
3219  };
3220  
3221  static const struct inode_operations shmem_symlink_inode_operations = {
3222  	.get_link	= shmem_get_link,
3223  #ifdef CONFIG_TMPFS_XATTR
3224  	.listxattr	= shmem_listxattr,
3225  #endif
3226  };
3227  
3228  static struct dentry *shmem_get_parent(struct dentry *child)
3229  {
3230  	return ERR_PTR(-ESTALE);
3231  }
3232  
3233  static int shmem_match(struct inode *ino, void *vfh)
3234  {
3235  	__u32 *fh = vfh;
3236  	__u64 inum = fh[2];
3237  	inum = (inum << 32) | fh[1];
3238  	return ino->i_ino == inum && fh[0] == ino->i_generation;
3239  }
3240  
3241  static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3242  		struct fid *fid, int fh_len, int fh_type)
3243  {
3244  	struct inode *inode;
3245  	struct dentry *dentry = NULL;
3246  	u64 inum;
3247  
3248  	if (fh_len < 3)
3249  		return NULL;
3250  
3251  	inum = fid->raw[2];
3252  	inum = (inum << 32) | fid->raw[1];
3253  
3254  	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3255  			shmem_match, fid->raw);
3256  	if (inode) {
3257  		dentry = d_find_alias(inode);
3258  		iput(inode);
3259  	}
3260  
3261  	return dentry;
3262  }
3263  
3264  static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3265  				struct inode *parent)
3266  {
3267  	if (*len < 3) {
3268  		*len = 3;
3269  		return FILEID_INVALID;
3270  	}
3271  
3272  	if (inode_unhashed(inode)) {
3273  		/* Unfortunately insert_inode_hash is not idempotent,
3274  		 * so as we hash inodes here rather than at creation
3275  		 * time, we need a lock to ensure we only try
3276  		 * to do it once
3277  		 */
3278  		static DEFINE_SPINLOCK(lock);
3279  		spin_lock(&lock);
3280  		if (inode_unhashed(inode))
3281  			__insert_inode_hash(inode,
3282  					    inode->i_ino + inode->i_generation);
3283  		spin_unlock(&lock);
3284  	}
3285  
3286  	fh[0] = inode->i_generation;
3287  	fh[1] = inode->i_ino;
3288  	fh[2] = ((__u64)inode->i_ino) >> 32;
3289  
3290  	*len = 3;
3291  	return 1;
3292  }
3293  
3294  static const struct export_operations shmem_export_ops = {
3295  	.get_parent     = shmem_get_parent,
3296  	.encode_fh      = shmem_encode_fh,
3297  	.fh_to_dentry	= shmem_fh_to_dentry,
3298  };
3299  
3300  static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3301  			       bool remount)
3302  {
3303  	char *this_char, *value, *rest;
3304  	struct mempolicy *mpol = NULL;
3305  	uid_t uid;
3306  	gid_t gid;
3307  
3308  	while (options != NULL) {
3309  		this_char = options;
3310  		for (;;) {
3311  			/*
3312  			 * NUL-terminate this option: unfortunately,
3313  			 * mount options form a comma-separated list,
3314  			 * but mpol's nodelist may also contain commas.
3315  			 */
3316  			options = strchr(options, ',');
3317  			if (options == NULL)
3318  				break;
3319  			options++;
3320  			if (!isdigit(*options)) {
3321  				options[-1] = '\0';
3322  				break;
3323  			}
3324  		}
3325  		if (!*this_char)
3326  			continue;
3327  		if ((value = strchr(this_char,'=')) != NULL) {
3328  			*value++ = 0;
3329  		} else {
3330  			pr_err("tmpfs: No value for mount option '%s'\n",
3331  			       this_char);
3332  			goto error;
3333  		}
3334  
3335  		if (!strcmp(this_char,"size")) {
3336  			unsigned long long size;
3337  			size = memparse(value,&rest);
3338  			if (*rest == '%') {
3339  				size <<= PAGE_SHIFT;
3340  				size *= totalram_pages;
3341  				do_div(size, 100);
3342  				rest++;
3343  			}
3344  			if (*rest)
3345  				goto bad_val;
3346  			sbinfo->max_blocks =
3347  				DIV_ROUND_UP(size, PAGE_SIZE);
3348  		} else if (!strcmp(this_char,"nr_blocks")) {
3349  			sbinfo->max_blocks = memparse(value, &rest);
3350  			if (*rest)
3351  				goto bad_val;
3352  		} else if (!strcmp(this_char,"nr_inodes")) {
3353  			sbinfo->max_inodes = memparse(value, &rest);
3354  			if (*rest)
3355  				goto bad_val;
3356  		} else if (!strcmp(this_char,"mode")) {
3357  			if (remount)
3358  				continue;
3359  			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3360  			if (*rest)
3361  				goto bad_val;
3362  		} else if (!strcmp(this_char,"uid")) {
3363  			if (remount)
3364  				continue;
3365  			uid = simple_strtoul(value, &rest, 0);
3366  			if (*rest)
3367  				goto bad_val;
3368  			sbinfo->uid = make_kuid(current_user_ns(), uid);
3369  			if (!uid_valid(sbinfo->uid))
3370  				goto bad_val;
3371  		} else if (!strcmp(this_char,"gid")) {
3372  			if (remount)
3373  				continue;
3374  			gid = simple_strtoul(value, &rest, 0);
3375  			if (*rest)
3376  				goto bad_val;
3377  			sbinfo->gid = make_kgid(current_user_ns(), gid);
3378  			if (!gid_valid(sbinfo->gid))
3379  				goto bad_val;
3380  #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3381  		} else if (!strcmp(this_char, "huge")) {
3382  			int huge;
3383  			huge = shmem_parse_huge(value);
3384  			if (huge < 0)
3385  				goto bad_val;
3386  			if (!has_transparent_hugepage() &&
3387  					huge != SHMEM_HUGE_NEVER)
3388  				goto bad_val;
3389  			sbinfo->huge = huge;
3390  #endif
3391  #ifdef CONFIG_NUMA
3392  		} else if (!strcmp(this_char,"mpol")) {
3393  			mpol_put(mpol);
3394  			mpol = NULL;
3395  			if (mpol_parse_str(value, &mpol))
3396  				goto bad_val;
3397  #endif
3398  		} else {
3399  			pr_err("tmpfs: Bad mount option %s\n", this_char);
3400  			goto error;
3401  		}
3402  	}
3403  	sbinfo->mpol = mpol;
3404  	return 0;
3405  
3406  bad_val:
3407  	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3408  	       value, this_char);
3409  error:
3410  	mpol_put(mpol);
3411  	return 1;
3412  
3413  }
3414  
3415  static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3416  {
3417  	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3418  	struct shmem_sb_info config = *sbinfo;
3419  	unsigned long inodes;
3420  	int error = -EINVAL;
3421  
3422  	config.mpol = NULL;
3423  	if (shmem_parse_options(data, &config, true))
3424  		return error;
3425  
3426  	spin_lock(&sbinfo->stat_lock);
3427  	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3428  	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3429  		goto out;
3430  	if (config.max_inodes < inodes)
3431  		goto out;
3432  	/*
3433  	 * Those tests disallow limited->unlimited while any are in use;
3434  	 * but we must separately disallow unlimited->limited, because
3435  	 * in that case we have no record of how much is already in use.
3436  	 */
3437  	if (config.max_blocks && !sbinfo->max_blocks)
3438  		goto out;
3439  	if (config.max_inodes && !sbinfo->max_inodes)
3440  		goto out;
3441  
3442  	error = 0;
3443  	sbinfo->huge = config.huge;
3444  	sbinfo->max_blocks  = config.max_blocks;
3445  	sbinfo->max_inodes  = config.max_inodes;
3446  	sbinfo->free_inodes = config.max_inodes - inodes;
3447  
3448  	/*
3449  	 * Preserve previous mempolicy unless mpol remount option was specified.
3450  	 */
3451  	if (config.mpol) {
3452  		mpol_put(sbinfo->mpol);
3453  		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3454  	}
3455  out:
3456  	spin_unlock(&sbinfo->stat_lock);
3457  	return error;
3458  }
3459  
3460  static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3461  {
3462  	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3463  
3464  	if (sbinfo->max_blocks != shmem_default_max_blocks())
3465  		seq_printf(seq, ",size=%luk",
3466  			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3467  	if (sbinfo->max_inodes != shmem_default_max_inodes())
3468  		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3469  	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3470  		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3471  	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3472  		seq_printf(seq, ",uid=%u",
3473  				from_kuid_munged(&init_user_ns, sbinfo->uid));
3474  	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3475  		seq_printf(seq, ",gid=%u",
3476  				from_kgid_munged(&init_user_ns, sbinfo->gid));
3477  #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3478  	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3479  	if (sbinfo->huge)
3480  		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3481  #endif
3482  	shmem_show_mpol(seq, sbinfo->mpol);
3483  	return 0;
3484  }
3485  
3486  #define MFD_NAME_PREFIX "memfd:"
3487  #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3488  #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3489  
3490  #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3491  
3492  SYSCALL_DEFINE2(memfd_create,
3493  		const char __user *, uname,
3494  		unsigned int, flags)
3495  {
3496  	struct shmem_inode_info *info;
3497  	struct file *file;
3498  	int fd, error;
3499  	char *name;
3500  	long len;
3501  
3502  	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3503  		return -EINVAL;
3504  
3505  	/* length includes terminating zero */
3506  	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3507  	if (len <= 0)
3508  		return -EFAULT;
3509  	if (len > MFD_NAME_MAX_LEN + 1)
3510  		return -EINVAL;
3511  
3512  	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3513  	if (!name)
3514  		return -ENOMEM;
3515  
3516  	strcpy(name, MFD_NAME_PREFIX);
3517  	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3518  		error = -EFAULT;
3519  		goto err_name;
3520  	}
3521  
3522  	/* terminating-zero may have changed after strnlen_user() returned */
3523  	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3524  		error = -EFAULT;
3525  		goto err_name;
3526  	}
3527  
3528  	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3529  	if (fd < 0) {
3530  		error = fd;
3531  		goto err_name;
3532  	}
3533  
3534  	file = shmem_file_setup(name, 0, VM_NORESERVE);
3535  	if (IS_ERR(file)) {
3536  		error = PTR_ERR(file);
3537  		goto err_fd;
3538  	}
3539  	info = SHMEM_I(file_inode(file));
3540  	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3541  	file->f_flags |= O_RDWR | O_LARGEFILE;
3542  	if (flags & MFD_ALLOW_SEALING)
3543  		info->seals &= ~F_SEAL_SEAL;
3544  
3545  	fd_install(fd, file);
3546  	kfree(name);
3547  	return fd;
3548  
3549  err_fd:
3550  	put_unused_fd(fd);
3551  err_name:
3552  	kfree(name);
3553  	return error;
3554  }
3555  
3556  #endif /* CONFIG_TMPFS */
3557  
3558  static void shmem_put_super(struct super_block *sb)
3559  {
3560  	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3561  
3562  	percpu_counter_destroy(&sbinfo->used_blocks);
3563  	mpol_put(sbinfo->mpol);
3564  	kfree(sbinfo);
3565  	sb->s_fs_info = NULL;
3566  }
3567  
3568  int shmem_fill_super(struct super_block *sb, void *data, int silent)
3569  {
3570  	struct inode *inode;
3571  	struct shmem_sb_info *sbinfo;
3572  	int err = -ENOMEM;
3573  
3574  	/* Round up to L1_CACHE_BYTES to resist false sharing */
3575  	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3576  				L1_CACHE_BYTES), GFP_KERNEL);
3577  	if (!sbinfo)
3578  		return -ENOMEM;
3579  
3580  	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3581  	sbinfo->uid = current_fsuid();
3582  	sbinfo->gid = current_fsgid();
3583  	sb->s_fs_info = sbinfo;
3584  
3585  #ifdef CONFIG_TMPFS
3586  	/*
3587  	 * Per default we only allow half of the physical ram per
3588  	 * tmpfs instance, limiting inodes to one per page of lowmem;
3589  	 * but the internal instance is left unlimited.
3590  	 */
3591  	if (!(sb->s_flags & MS_KERNMOUNT)) {
3592  		sbinfo->max_blocks = shmem_default_max_blocks();
3593  		sbinfo->max_inodes = shmem_default_max_inodes();
3594  		if (shmem_parse_options(data, sbinfo, false)) {
3595  			err = -EINVAL;
3596  			goto failed;
3597  		}
3598  	} else {
3599  		sb->s_flags |= MS_NOUSER;
3600  	}
3601  	sb->s_export_op = &shmem_export_ops;
3602  	sb->s_flags |= MS_NOSEC;
3603  #else
3604  	sb->s_flags |= MS_NOUSER;
3605  #endif
3606  
3607  	spin_lock_init(&sbinfo->stat_lock);
3608  	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3609  		goto failed;
3610  	sbinfo->free_inodes = sbinfo->max_inodes;
3611  	spin_lock_init(&sbinfo->shrinklist_lock);
3612  	INIT_LIST_HEAD(&sbinfo->shrinklist);
3613  
3614  	sb->s_maxbytes = MAX_LFS_FILESIZE;
3615  	sb->s_blocksize = PAGE_SIZE;
3616  	sb->s_blocksize_bits = PAGE_SHIFT;
3617  	sb->s_magic = TMPFS_MAGIC;
3618  	sb->s_op = &shmem_ops;
3619  	sb->s_time_gran = 1;
3620  #ifdef CONFIG_TMPFS_XATTR
3621  	sb->s_xattr = shmem_xattr_handlers;
3622  #endif
3623  #ifdef CONFIG_TMPFS_POSIX_ACL
3624  	sb->s_flags |= MS_POSIXACL;
3625  #endif
3626  
3627  	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3628  	if (!inode)
3629  		goto failed;
3630  	inode->i_uid = sbinfo->uid;
3631  	inode->i_gid = sbinfo->gid;
3632  	sb->s_root = d_make_root(inode);
3633  	if (!sb->s_root)
3634  		goto failed;
3635  	return 0;
3636  
3637  failed:
3638  	shmem_put_super(sb);
3639  	return err;
3640  }
3641  
3642  static struct kmem_cache *shmem_inode_cachep;
3643  
3644  static struct inode *shmem_alloc_inode(struct super_block *sb)
3645  {
3646  	struct shmem_inode_info *info;
3647  	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3648  	if (!info)
3649  		return NULL;
3650  	return &info->vfs_inode;
3651  }
3652  
3653  static void shmem_destroy_callback(struct rcu_head *head)
3654  {
3655  	struct inode *inode = container_of(head, struct inode, i_rcu);
3656  	if (S_ISLNK(inode->i_mode))
3657  		kfree(inode->i_link);
3658  	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3659  }
3660  
3661  static void shmem_destroy_inode(struct inode *inode)
3662  {
3663  	if (S_ISREG(inode->i_mode))
3664  		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3665  	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3666  }
3667  
3668  static void shmem_init_inode(void *foo)
3669  {
3670  	struct shmem_inode_info *info = foo;
3671  	inode_init_once(&info->vfs_inode);
3672  }
3673  
3674  static int shmem_init_inodecache(void)
3675  {
3676  	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3677  				sizeof(struct shmem_inode_info),
3678  				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3679  	return 0;
3680  }
3681  
3682  static void shmem_destroy_inodecache(void)
3683  {
3684  	kmem_cache_destroy(shmem_inode_cachep);
3685  }
3686  
3687  static const struct address_space_operations shmem_aops = {
3688  	.writepage	= shmem_writepage,
3689  	.set_page_dirty	= __set_page_dirty_no_writeback,
3690  #ifdef CONFIG_TMPFS
3691  	.write_begin	= shmem_write_begin,
3692  	.write_end	= shmem_write_end,
3693  #endif
3694  #ifdef CONFIG_MIGRATION
3695  	.migratepage	= migrate_page,
3696  #endif
3697  	.error_remove_page = generic_error_remove_page,
3698  };
3699  
3700  static const struct file_operations shmem_file_operations = {
3701  	.mmap		= shmem_mmap,
3702  	.get_unmapped_area = shmem_get_unmapped_area,
3703  #ifdef CONFIG_TMPFS
3704  	.llseek		= shmem_file_llseek,
3705  	.read_iter	= shmem_file_read_iter,
3706  	.write_iter	= generic_file_write_iter,
3707  	.fsync		= noop_fsync,
3708  	.splice_read	= generic_file_splice_read,
3709  	.splice_write	= iter_file_splice_write,
3710  	.fallocate	= shmem_fallocate,
3711  #endif
3712  };
3713  
3714  static const struct inode_operations shmem_inode_operations = {
3715  	.getattr	= shmem_getattr,
3716  	.setattr	= shmem_setattr,
3717  #ifdef CONFIG_TMPFS_XATTR
3718  	.listxattr	= shmem_listxattr,
3719  	.set_acl	= simple_set_acl,
3720  #endif
3721  };
3722  
3723  static const struct inode_operations shmem_dir_inode_operations = {
3724  #ifdef CONFIG_TMPFS
3725  	.create		= shmem_create,
3726  	.lookup		= simple_lookup,
3727  	.link		= shmem_link,
3728  	.unlink		= shmem_unlink,
3729  	.symlink	= shmem_symlink,
3730  	.mkdir		= shmem_mkdir,
3731  	.rmdir		= shmem_rmdir,
3732  	.mknod		= shmem_mknod,
3733  	.rename		= shmem_rename2,
3734  	.tmpfile	= shmem_tmpfile,
3735  #endif
3736  #ifdef CONFIG_TMPFS_XATTR
3737  	.listxattr	= shmem_listxattr,
3738  #endif
3739  #ifdef CONFIG_TMPFS_POSIX_ACL
3740  	.setattr	= shmem_setattr,
3741  	.set_acl	= simple_set_acl,
3742  #endif
3743  };
3744  
3745  static const struct inode_operations shmem_special_inode_operations = {
3746  #ifdef CONFIG_TMPFS_XATTR
3747  	.listxattr	= shmem_listxattr,
3748  #endif
3749  #ifdef CONFIG_TMPFS_POSIX_ACL
3750  	.setattr	= shmem_setattr,
3751  	.set_acl	= simple_set_acl,
3752  #endif
3753  };
3754  
3755  static const struct super_operations shmem_ops = {
3756  	.alloc_inode	= shmem_alloc_inode,
3757  	.destroy_inode	= shmem_destroy_inode,
3758  #ifdef CONFIG_TMPFS
3759  	.statfs		= shmem_statfs,
3760  	.remount_fs	= shmem_remount_fs,
3761  	.show_options	= shmem_show_options,
3762  #endif
3763  	.evict_inode	= shmem_evict_inode,
3764  	.drop_inode	= generic_delete_inode,
3765  	.put_super	= shmem_put_super,
3766  #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3767  	.nr_cached_objects	= shmem_unused_huge_count,
3768  	.free_cached_objects	= shmem_unused_huge_scan,
3769  #endif
3770  };
3771  
3772  static const struct vm_operations_struct shmem_vm_ops = {
3773  	.fault		= shmem_fault,
3774  	.map_pages	= filemap_map_pages,
3775  #ifdef CONFIG_NUMA
3776  	.set_policy     = shmem_set_policy,
3777  	.get_policy     = shmem_get_policy,
3778  #endif
3779  };
3780  
3781  static struct dentry *shmem_mount(struct file_system_type *fs_type,
3782  	int flags, const char *dev_name, void *data)
3783  {
3784  	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3785  }
3786  
3787  static struct file_system_type shmem_fs_type = {
3788  	.owner		= THIS_MODULE,
3789  	.name		= "tmpfs",
3790  	.mount		= shmem_mount,
3791  	.kill_sb	= kill_litter_super,
3792  	.fs_flags	= FS_USERNS_MOUNT,
3793  };
3794  
3795  int __init shmem_init(void)
3796  {
3797  	int error;
3798  
3799  	/* If rootfs called this, don't re-init */
3800  	if (shmem_inode_cachep)
3801  		return 0;
3802  
3803  	error = shmem_init_inodecache();
3804  	if (error)
3805  		goto out3;
3806  
3807  	error = register_filesystem(&shmem_fs_type);
3808  	if (error) {
3809  		pr_err("Could not register tmpfs\n");
3810  		goto out2;
3811  	}
3812  
3813  	shm_mnt = kern_mount(&shmem_fs_type);
3814  	if (IS_ERR(shm_mnt)) {
3815  		error = PTR_ERR(shm_mnt);
3816  		pr_err("Could not kern_mount tmpfs\n");
3817  		goto out1;
3818  	}
3819  
3820  #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3821  	if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3822  		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3823  	else
3824  		shmem_huge = 0; /* just in case it was patched */
3825  #endif
3826  	return 0;
3827  
3828  out1:
3829  	unregister_filesystem(&shmem_fs_type);
3830  out2:
3831  	shmem_destroy_inodecache();
3832  out3:
3833  	shm_mnt = ERR_PTR(error);
3834  	return error;
3835  }
3836  
3837  #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3838  static ssize_t shmem_enabled_show(struct kobject *kobj,
3839  		struct kobj_attribute *attr, char *buf)
3840  {
3841  	int values[] = {
3842  		SHMEM_HUGE_ALWAYS,
3843  		SHMEM_HUGE_WITHIN_SIZE,
3844  		SHMEM_HUGE_ADVISE,
3845  		SHMEM_HUGE_NEVER,
3846  		SHMEM_HUGE_DENY,
3847  		SHMEM_HUGE_FORCE,
3848  	};
3849  	int i, count;
3850  
3851  	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3852  		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3853  
3854  		count += sprintf(buf + count, fmt,
3855  				shmem_format_huge(values[i]));
3856  	}
3857  	buf[count - 1] = '\n';
3858  	return count;
3859  }
3860  
3861  static ssize_t shmem_enabled_store(struct kobject *kobj,
3862  		struct kobj_attribute *attr, const char *buf, size_t count)
3863  {
3864  	char tmp[16];
3865  	int huge;
3866  
3867  	if (count + 1 > sizeof(tmp))
3868  		return -EINVAL;
3869  	memcpy(tmp, buf, count);
3870  	tmp[count] = '\0';
3871  	if (count && tmp[count - 1] == '\n')
3872  		tmp[count - 1] = '\0';
3873  
3874  	huge = shmem_parse_huge(tmp);
3875  	if (huge == -EINVAL)
3876  		return -EINVAL;
3877  	if (!has_transparent_hugepage() &&
3878  			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3879  		return -EINVAL;
3880  
3881  	shmem_huge = huge;
3882  	if (shmem_huge < SHMEM_HUGE_DENY)
3883  		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3884  	return count;
3885  }
3886  
3887  struct kobj_attribute shmem_enabled_attr =
3888  	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3889  #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3890  
3891  #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3892  bool shmem_huge_enabled(struct vm_area_struct *vma)
3893  {
3894  	struct inode *inode = file_inode(vma->vm_file);
3895  	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3896  	loff_t i_size;
3897  	pgoff_t off;
3898  
3899  	if (shmem_huge == SHMEM_HUGE_FORCE)
3900  		return true;
3901  	if (shmem_huge == SHMEM_HUGE_DENY)
3902  		return false;
3903  	switch (sbinfo->huge) {
3904  		case SHMEM_HUGE_NEVER:
3905  			return false;
3906  		case SHMEM_HUGE_ALWAYS:
3907  			return true;
3908  		case SHMEM_HUGE_WITHIN_SIZE:
3909  			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3910  			i_size = round_up(i_size_read(inode), PAGE_SIZE);
3911  			if (i_size >= HPAGE_PMD_SIZE &&
3912  					i_size >> PAGE_SHIFT >= off)
3913  				return true;
3914  		case SHMEM_HUGE_ADVISE:
3915  			/* TODO: implement fadvise() hints */
3916  			return (vma->vm_flags & VM_HUGEPAGE);
3917  		default:
3918  			VM_BUG_ON(1);
3919  			return false;
3920  	}
3921  }
3922  #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3923  
3924  #else /* !CONFIG_SHMEM */
3925  
3926  /*
3927   * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3928   *
3929   * This is intended for small system where the benefits of the full
3930   * shmem code (swap-backed and resource-limited) are outweighed by
3931   * their complexity. On systems without swap this code should be
3932   * effectively equivalent, but much lighter weight.
3933   */
3934  
3935  static struct file_system_type shmem_fs_type = {
3936  	.name		= "tmpfs",
3937  	.mount		= ramfs_mount,
3938  	.kill_sb	= kill_litter_super,
3939  	.fs_flags	= FS_USERNS_MOUNT,
3940  };
3941  
3942  int __init shmem_init(void)
3943  {
3944  	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3945  
3946  	shm_mnt = kern_mount(&shmem_fs_type);
3947  	BUG_ON(IS_ERR(shm_mnt));
3948  
3949  	return 0;
3950  }
3951  
3952  int shmem_unuse(swp_entry_t swap, struct page *page)
3953  {
3954  	return 0;
3955  }
3956  
3957  int shmem_lock(struct file *file, int lock, struct user_struct *user)
3958  {
3959  	return 0;
3960  }
3961  
3962  void shmem_unlock_mapping(struct address_space *mapping)
3963  {
3964  }
3965  
3966  #ifdef CONFIG_MMU
3967  unsigned long shmem_get_unmapped_area(struct file *file,
3968  				      unsigned long addr, unsigned long len,
3969  				      unsigned long pgoff, unsigned long flags)
3970  {
3971  	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3972  }
3973  #endif
3974  
3975  void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3976  {
3977  	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3978  }
3979  EXPORT_SYMBOL_GPL(shmem_truncate_range);
3980  
3981  #define shmem_vm_ops				generic_file_vm_ops
3982  #define shmem_file_operations			ramfs_file_operations
3983  #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3984  #define shmem_acct_size(flags, size)		0
3985  #define shmem_unacct_size(flags, size)		do {} while (0)
3986  
3987  #endif /* CONFIG_SHMEM */
3988  
3989  /* common code */
3990  
3991  static const struct dentry_operations anon_ops = {
3992  	.d_dname = simple_dname
3993  };
3994  
3995  static struct file *__shmem_file_setup(const char *name, loff_t size,
3996  				       unsigned long flags, unsigned int i_flags)
3997  {
3998  	struct file *res;
3999  	struct inode *inode;
4000  	struct path path;
4001  	struct super_block *sb;
4002  	struct qstr this;
4003  
4004  	if (IS_ERR(shm_mnt))
4005  		return ERR_CAST(shm_mnt);
4006  
4007  	if (size < 0 || size > MAX_LFS_FILESIZE)
4008  		return ERR_PTR(-EINVAL);
4009  
4010  	if (shmem_acct_size(flags, size))
4011  		return ERR_PTR(-ENOMEM);
4012  
4013  	res = ERR_PTR(-ENOMEM);
4014  	this.name = name;
4015  	this.len = strlen(name);
4016  	this.hash = 0; /* will go */
4017  	sb = shm_mnt->mnt_sb;
4018  	path.mnt = mntget(shm_mnt);
4019  	path.dentry = d_alloc_pseudo(sb, &this);
4020  	if (!path.dentry)
4021  		goto put_memory;
4022  	d_set_d_op(path.dentry, &anon_ops);
4023  
4024  	res = ERR_PTR(-ENOSPC);
4025  	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4026  	if (!inode)
4027  		goto put_memory;
4028  
4029  	inode->i_flags |= i_flags;
4030  	d_instantiate(path.dentry, inode);
4031  	inode->i_size = size;
4032  	clear_nlink(inode);	/* It is unlinked */
4033  	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4034  	if (IS_ERR(res))
4035  		goto put_path;
4036  
4037  	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4038  		  &shmem_file_operations);
4039  	if (IS_ERR(res))
4040  		goto put_path;
4041  
4042  	return res;
4043  
4044  put_memory:
4045  	shmem_unacct_size(flags, size);
4046  put_path:
4047  	path_put(&path);
4048  	return res;
4049  }
4050  
4051  /**
4052   * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4053   * 	kernel internal.  There will be NO LSM permission checks against the
4054   * 	underlying inode.  So users of this interface must do LSM checks at a
4055   *	higher layer.  The users are the big_key and shm implementations.  LSM
4056   *	checks are provided at the key or shm level rather than the inode.
4057   * @name: name for dentry (to be seen in /proc/<pid>/maps
4058   * @size: size to be set for the file
4059   * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4060   */
4061  struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4062  {
4063  	return __shmem_file_setup(name, size, flags, S_PRIVATE);
4064  }
4065  
4066  /**
4067   * shmem_file_setup - get an unlinked file living in tmpfs
4068   * @name: name for dentry (to be seen in /proc/<pid>/maps
4069   * @size: size to be set for the file
4070   * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4071   */
4072  struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4073  {
4074  	return __shmem_file_setup(name, size, flags, 0);
4075  }
4076  EXPORT_SYMBOL_GPL(shmem_file_setup);
4077  
4078  /**
4079   * shmem_zero_setup - setup a shared anonymous mapping
4080   * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4081   */
4082  int shmem_zero_setup(struct vm_area_struct *vma)
4083  {
4084  	struct file *file;
4085  	loff_t size = vma->vm_end - vma->vm_start;
4086  
4087  	/*
4088  	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4089  	 * between XFS directory reading and selinux: since this file is only
4090  	 * accessible to the user through its mapping, use S_PRIVATE flag to
4091  	 * bypass file security, in the same way as shmem_kernel_file_setup().
4092  	 */
4093  	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4094  	if (IS_ERR(file))
4095  		return PTR_ERR(file);
4096  
4097  	if (vma->vm_file)
4098  		fput(vma->vm_file);
4099  	vma->vm_file = file;
4100  	vma->vm_ops = &shmem_vm_ops;
4101  
4102  	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4103  			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4104  			(vma->vm_end & HPAGE_PMD_MASK)) {
4105  		khugepaged_enter(vma, vma->vm_flags);
4106  	}
4107  
4108  	return 0;
4109  }
4110  
4111  /**
4112   * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4113   * @mapping:	the page's address_space
4114   * @index:	the page index
4115   * @gfp:	the page allocator flags to use if allocating
4116   *
4117   * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4118   * with any new page allocations done using the specified allocation flags.
4119   * But read_cache_page_gfp() uses the ->readpage() method: which does not
4120   * suit tmpfs, since it may have pages in swapcache, and needs to find those
4121   * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4122   *
4123   * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4124   * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4125   */
4126  struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4127  					 pgoff_t index, gfp_t gfp)
4128  {
4129  #ifdef CONFIG_SHMEM
4130  	struct inode *inode = mapping->host;
4131  	struct page *page;
4132  	int error;
4133  
4134  	BUG_ON(mapping->a_ops != &shmem_aops);
4135  	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4136  				  gfp, NULL, NULL);
4137  	if (error)
4138  		page = ERR_PTR(error);
4139  	else
4140  		unlock_page(page);
4141  	return page;
4142  #else
4143  	/*
4144  	 * The tiny !SHMEM case uses ramfs without swap
4145  	 */
4146  	return read_cache_page_gfp(mapping, index, gfp);
4147  #endif
4148  }
4149  EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4150