xref: /linux/mm/shmem.c (revision b0148a98ec5151fec82064d95f11eb9efbc628ea)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * This file is released under the GPL.
18  */
19 
20 /*
21  * This virtual memory filesystem is heavily based on the ramfs. It
22  * extends ramfs by the ability to use swap and honor resource limits
23  * which makes it a completely usable filesystem.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/generic_acl.h>
31 #include <linux/mm.h>
32 #include <linux/mman.h>
33 #include <linux/file.h>
34 #include <linux/swap.h>
35 #include <linux/pagemap.h>
36 #include <linux/string.h>
37 #include <linux/slab.h>
38 #include <linux/backing-dev.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/mount.h>
41 #include <linux/writeback.h>
42 #include <linux/vfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/security.h>
45 #include <linux/swapops.h>
46 #include <linux/mempolicy.h>
47 #include <linux/namei.h>
48 #include <linux/ctype.h>
49 #include <linux/migrate.h>
50 #include <linux/highmem.h>
51 #include <linux/backing-dev.h>
52 
53 #include <asm/uaccess.h>
54 #include <asm/div64.h>
55 #include <asm/pgtable.h>
56 
57 /* This magic number is used in glibc for posix shared memory */
58 #define TMPFS_MAGIC	0x01021994
59 
60 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
63 
64 #define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65 #define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
66 
67 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
68 
69 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70 #define SHMEM_PAGEIN	 VM_READ
71 #define SHMEM_TRUNCATE	 VM_WRITE
72 
73 /* Definition to limit shmem_truncate's steps between cond_rescheds */
74 #define LATENCY_LIMIT	 64
75 
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78 
79 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80 enum sgp_type {
81 	SGP_QUICK,	/* don't try more than file page cache lookup */
82 	SGP_READ,	/* don't exceed i_size, don't allocate page */
83 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
84 	SGP_WRITE,	/* may exceed i_size, may allocate page */
85 };
86 
87 static int shmem_getpage(struct inode *inode, unsigned long idx,
88 			 struct page **pagep, enum sgp_type sgp, int *type);
89 
90 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
91 {
92 	/*
93 	 * The above definition of ENTRIES_PER_PAGE, and the use of
94 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
95 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
96 	 */
97 	return alloc_pages(gfp_mask, PAGE_CACHE_SHIFT-PAGE_SHIFT);
98 }
99 
100 static inline void shmem_dir_free(struct page *page)
101 {
102 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
103 }
104 
105 static struct page **shmem_dir_map(struct page *page)
106 {
107 	return (struct page **)kmap_atomic(page, KM_USER0);
108 }
109 
110 static inline void shmem_dir_unmap(struct page **dir)
111 {
112 	kunmap_atomic(dir, KM_USER0);
113 }
114 
115 static swp_entry_t *shmem_swp_map(struct page *page)
116 {
117 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
118 }
119 
120 static inline void shmem_swp_balance_unmap(void)
121 {
122 	/*
123 	 * When passing a pointer to an i_direct entry, to code which
124 	 * also handles indirect entries and so will shmem_swp_unmap,
125 	 * we must arrange for the preempt count to remain in balance.
126 	 * What kmap_atomic of a lowmem page does depends on config
127 	 * and architecture, so pretend to kmap_atomic some lowmem page.
128 	 */
129 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
130 }
131 
132 static inline void shmem_swp_unmap(swp_entry_t *entry)
133 {
134 	kunmap_atomic(entry, KM_USER1);
135 }
136 
137 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
138 {
139 	return sb->s_fs_info;
140 }
141 
142 /*
143  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
144  * for shared memory and for shared anonymous (/dev/zero) mappings
145  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
146  * consistent with the pre-accounting of private mappings ...
147  */
148 static inline int shmem_acct_size(unsigned long flags, loff_t size)
149 {
150 	return (flags & VM_ACCOUNT)?
151 		security_vm_enough_memory(VM_ACCT(size)): 0;
152 }
153 
154 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
155 {
156 	if (flags & VM_ACCOUNT)
157 		vm_unacct_memory(VM_ACCT(size));
158 }
159 
160 /*
161  * ... whereas tmpfs objects are accounted incrementally as
162  * pages are allocated, in order to allow huge sparse files.
163  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
164  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
165  */
166 static inline int shmem_acct_block(unsigned long flags)
167 {
168 	return (flags & VM_ACCOUNT)?
169 		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
170 }
171 
172 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
173 {
174 	if (!(flags & VM_ACCOUNT))
175 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
176 }
177 
178 static struct super_operations shmem_ops;
179 static const struct address_space_operations shmem_aops;
180 static const struct file_operations shmem_file_operations;
181 static struct inode_operations shmem_inode_operations;
182 static struct inode_operations shmem_dir_inode_operations;
183 static struct inode_operations shmem_special_inode_operations;
184 static struct vm_operations_struct shmem_vm_ops;
185 
186 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
187 	.ra_pages	= 0,	/* No readahead */
188 	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
189 	.unplug_io_fn	= default_unplug_io_fn,
190 };
191 
192 static LIST_HEAD(shmem_swaplist);
193 static DEFINE_SPINLOCK(shmem_swaplist_lock);
194 
195 static void shmem_free_blocks(struct inode *inode, long pages)
196 {
197 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
198 	if (sbinfo->max_blocks) {
199 		spin_lock(&sbinfo->stat_lock);
200 		sbinfo->free_blocks += pages;
201 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
202 		spin_unlock(&sbinfo->stat_lock);
203 	}
204 }
205 
206 /*
207  * shmem_recalc_inode - recalculate the size of an inode
208  *
209  * @inode: inode to recalc
210  *
211  * We have to calculate the free blocks since the mm can drop
212  * undirtied hole pages behind our back.
213  *
214  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
215  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
216  *
217  * It has to be called with the spinlock held.
218  */
219 static void shmem_recalc_inode(struct inode *inode)
220 {
221 	struct shmem_inode_info *info = SHMEM_I(inode);
222 	long freed;
223 
224 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
225 	if (freed > 0) {
226 		info->alloced -= freed;
227 		shmem_unacct_blocks(info->flags, freed);
228 		shmem_free_blocks(inode, freed);
229 	}
230 }
231 
232 /*
233  * shmem_swp_entry - find the swap vector position in the info structure
234  *
235  * @info:  info structure for the inode
236  * @index: index of the page to find
237  * @page:  optional page to add to the structure. Has to be preset to
238  *         all zeros
239  *
240  * If there is no space allocated yet it will return NULL when
241  * page is NULL, else it will use the page for the needed block,
242  * setting it to NULL on return to indicate that it has been used.
243  *
244  * The swap vector is organized the following way:
245  *
246  * There are SHMEM_NR_DIRECT entries directly stored in the
247  * shmem_inode_info structure. So small files do not need an addional
248  * allocation.
249  *
250  * For pages with index > SHMEM_NR_DIRECT there is the pointer
251  * i_indirect which points to a page which holds in the first half
252  * doubly indirect blocks, in the second half triple indirect blocks:
253  *
254  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
255  * following layout (for SHMEM_NR_DIRECT == 16):
256  *
257  * i_indirect -> dir --> 16-19
258  * 	      |	     +-> 20-23
259  * 	      |
260  * 	      +-->dir2 --> 24-27
261  * 	      |	       +-> 28-31
262  * 	      |	       +-> 32-35
263  * 	      |	       +-> 36-39
264  * 	      |
265  * 	      +-->dir3 --> 40-43
266  * 	       	       +-> 44-47
267  * 	      	       +-> 48-51
268  * 	      	       +-> 52-55
269  */
270 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
271 {
272 	unsigned long offset;
273 	struct page **dir;
274 	struct page *subdir;
275 
276 	if (index < SHMEM_NR_DIRECT) {
277 		shmem_swp_balance_unmap();
278 		return info->i_direct+index;
279 	}
280 	if (!info->i_indirect) {
281 		if (page) {
282 			info->i_indirect = *page;
283 			*page = NULL;
284 		}
285 		return NULL;			/* need another page */
286 	}
287 
288 	index -= SHMEM_NR_DIRECT;
289 	offset = index % ENTRIES_PER_PAGE;
290 	index /= ENTRIES_PER_PAGE;
291 	dir = shmem_dir_map(info->i_indirect);
292 
293 	if (index >= ENTRIES_PER_PAGE/2) {
294 		index -= ENTRIES_PER_PAGE/2;
295 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
296 		index %= ENTRIES_PER_PAGE;
297 		subdir = *dir;
298 		if (!subdir) {
299 			if (page) {
300 				*dir = *page;
301 				*page = NULL;
302 			}
303 			shmem_dir_unmap(dir);
304 			return NULL;		/* need another page */
305 		}
306 		shmem_dir_unmap(dir);
307 		dir = shmem_dir_map(subdir);
308 	}
309 
310 	dir += index;
311 	subdir = *dir;
312 	if (!subdir) {
313 		if (!page || !(subdir = *page)) {
314 			shmem_dir_unmap(dir);
315 			return NULL;		/* need a page */
316 		}
317 		*dir = subdir;
318 		*page = NULL;
319 	}
320 	shmem_dir_unmap(dir);
321 	return shmem_swp_map(subdir) + offset;
322 }
323 
324 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
325 {
326 	long incdec = value? 1: -1;
327 
328 	entry->val = value;
329 	info->swapped += incdec;
330 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
331 		struct page *page = kmap_atomic_to_page(entry);
332 		set_page_private(page, page_private(page) + incdec);
333 	}
334 }
335 
336 /*
337  * shmem_swp_alloc - get the position of the swap entry for the page.
338  *                   If it does not exist allocate the entry.
339  *
340  * @info:	info structure for the inode
341  * @index:	index of the page to find
342  * @sgp:	check and recheck i_size? skip allocation?
343  */
344 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
345 {
346 	struct inode *inode = &info->vfs_inode;
347 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
348 	struct page *page = NULL;
349 	swp_entry_t *entry;
350 
351 	if (sgp != SGP_WRITE &&
352 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
353 		return ERR_PTR(-EINVAL);
354 
355 	while (!(entry = shmem_swp_entry(info, index, &page))) {
356 		if (sgp == SGP_READ)
357 			return shmem_swp_map(ZERO_PAGE(0));
358 		/*
359 		 * Test free_blocks against 1 not 0, since we have 1 data
360 		 * page (and perhaps indirect index pages) yet to allocate:
361 		 * a waste to allocate index if we cannot allocate data.
362 		 */
363 		if (sbinfo->max_blocks) {
364 			spin_lock(&sbinfo->stat_lock);
365 			if (sbinfo->free_blocks <= 1) {
366 				spin_unlock(&sbinfo->stat_lock);
367 				return ERR_PTR(-ENOSPC);
368 			}
369 			sbinfo->free_blocks--;
370 			inode->i_blocks += BLOCKS_PER_PAGE;
371 			spin_unlock(&sbinfo->stat_lock);
372 		}
373 
374 		spin_unlock(&info->lock);
375 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | __GFP_ZERO);
376 		if (page)
377 			set_page_private(page, 0);
378 		spin_lock(&info->lock);
379 
380 		if (!page) {
381 			shmem_free_blocks(inode, 1);
382 			return ERR_PTR(-ENOMEM);
383 		}
384 		if (sgp != SGP_WRITE &&
385 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
386 			entry = ERR_PTR(-EINVAL);
387 			break;
388 		}
389 		if (info->next_index <= index)
390 			info->next_index = index + 1;
391 	}
392 	if (page) {
393 		/* another task gave its page, or truncated the file */
394 		shmem_free_blocks(inode, 1);
395 		shmem_dir_free(page);
396 	}
397 	if (info->next_index <= index && !IS_ERR(entry))
398 		info->next_index = index + 1;
399 	return entry;
400 }
401 
402 /*
403  * shmem_free_swp - free some swap entries in a directory
404  *
405  * @dir:   pointer to the directory
406  * @edir:  pointer after last entry of the directory
407  */
408 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir)
409 {
410 	swp_entry_t *ptr;
411 	int freed = 0;
412 
413 	for (ptr = dir; ptr < edir; ptr++) {
414 		if (ptr->val) {
415 			free_swap_and_cache(*ptr);
416 			*ptr = (swp_entry_t){0};
417 			freed++;
418 		}
419 	}
420 	return freed;
421 }
422 
423 static int shmem_map_and_free_swp(struct page *subdir,
424 		int offset, int limit, struct page ***dir)
425 {
426 	swp_entry_t *ptr;
427 	int freed = 0;
428 
429 	ptr = shmem_swp_map(subdir);
430 	for (; offset < limit; offset += LATENCY_LIMIT) {
431 		int size = limit - offset;
432 		if (size > LATENCY_LIMIT)
433 			size = LATENCY_LIMIT;
434 		freed += shmem_free_swp(ptr+offset, ptr+offset+size);
435 		if (need_resched()) {
436 			shmem_swp_unmap(ptr);
437 			if (*dir) {
438 				shmem_dir_unmap(*dir);
439 				*dir = NULL;
440 			}
441 			cond_resched();
442 			ptr = shmem_swp_map(subdir);
443 		}
444 	}
445 	shmem_swp_unmap(ptr);
446 	return freed;
447 }
448 
449 static void shmem_free_pages(struct list_head *next)
450 {
451 	struct page *page;
452 	int freed = 0;
453 
454 	do {
455 		page = container_of(next, struct page, lru);
456 		next = next->next;
457 		shmem_dir_free(page);
458 		freed++;
459 		if (freed >= LATENCY_LIMIT) {
460 			cond_resched();
461 			freed = 0;
462 		}
463 	} while (next);
464 }
465 
466 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
467 {
468 	struct shmem_inode_info *info = SHMEM_I(inode);
469 	unsigned long idx;
470 	unsigned long size;
471 	unsigned long limit;
472 	unsigned long stage;
473 	unsigned long diroff;
474 	struct page **dir;
475 	struct page *topdir;
476 	struct page *middir;
477 	struct page *subdir;
478 	swp_entry_t *ptr;
479 	LIST_HEAD(pages_to_free);
480 	long nr_pages_to_free = 0;
481 	long nr_swaps_freed = 0;
482 	int offset;
483 	int freed;
484 	int punch_hole = 0;
485 
486 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
487 	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
488 	if (idx >= info->next_index)
489 		return;
490 
491 	spin_lock(&info->lock);
492 	info->flags |= SHMEM_TRUNCATE;
493 	if (likely(end == (loff_t) -1)) {
494 		limit = info->next_index;
495 		info->next_index = idx;
496 	} else {
497 		limit = (end + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
498 		if (limit > info->next_index)
499 			limit = info->next_index;
500 		punch_hole = 1;
501 	}
502 
503 	topdir = info->i_indirect;
504 	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
505 		info->i_indirect = NULL;
506 		nr_pages_to_free++;
507 		list_add(&topdir->lru, &pages_to_free);
508 	}
509 	spin_unlock(&info->lock);
510 
511 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
512 		ptr = info->i_direct;
513 		size = limit;
514 		if (size > SHMEM_NR_DIRECT)
515 			size = SHMEM_NR_DIRECT;
516 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size);
517 	}
518 
519 	/*
520 	 * If there are no indirect blocks or we are punching a hole
521 	 * below indirect blocks, nothing to be done.
522 	 */
523 	if (!topdir || (punch_hole && (limit <= SHMEM_NR_DIRECT)))
524 		goto done2;
525 
526 	BUG_ON(limit <= SHMEM_NR_DIRECT);
527 	limit -= SHMEM_NR_DIRECT;
528 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
529 	offset = idx % ENTRIES_PER_PAGE;
530 	idx -= offset;
531 
532 	dir = shmem_dir_map(topdir);
533 	stage = ENTRIES_PER_PAGEPAGE/2;
534 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
535 		middir = topdir;
536 		diroff = idx/ENTRIES_PER_PAGE;
537 	} else {
538 		dir += ENTRIES_PER_PAGE/2;
539 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
540 		while (stage <= idx)
541 			stage += ENTRIES_PER_PAGEPAGE;
542 		middir = *dir;
543 		if (*dir) {
544 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
545 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
546 			if (!diroff && !offset) {
547 				*dir = NULL;
548 				nr_pages_to_free++;
549 				list_add(&middir->lru, &pages_to_free);
550 			}
551 			shmem_dir_unmap(dir);
552 			dir = shmem_dir_map(middir);
553 		} else {
554 			diroff = 0;
555 			offset = 0;
556 			idx = stage;
557 		}
558 	}
559 
560 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
561 		if (unlikely(idx == stage)) {
562 			shmem_dir_unmap(dir);
563 			dir = shmem_dir_map(topdir) +
564 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
565 			while (!*dir) {
566 				dir++;
567 				idx += ENTRIES_PER_PAGEPAGE;
568 				if (idx >= limit)
569 					goto done1;
570 			}
571 			stage = idx + ENTRIES_PER_PAGEPAGE;
572 			middir = *dir;
573 			*dir = NULL;
574 			nr_pages_to_free++;
575 			list_add(&middir->lru, &pages_to_free);
576 			shmem_dir_unmap(dir);
577 			cond_resched();
578 			dir = shmem_dir_map(middir);
579 			diroff = 0;
580 		}
581 		subdir = dir[diroff];
582 		if (subdir && page_private(subdir)) {
583 			size = limit - idx;
584 			if (size > ENTRIES_PER_PAGE)
585 				size = ENTRIES_PER_PAGE;
586 			freed = shmem_map_and_free_swp(subdir,
587 						offset, size, &dir);
588 			if (!dir)
589 				dir = shmem_dir_map(middir);
590 			nr_swaps_freed += freed;
591 			if (offset)
592 				spin_lock(&info->lock);
593 			set_page_private(subdir, page_private(subdir) - freed);
594 			if (offset)
595 				spin_unlock(&info->lock);
596 			if (!punch_hole)
597 				BUG_ON(page_private(subdir) > offset);
598 		}
599 		if (offset)
600 			offset = 0;
601 		else if (subdir && !page_private(subdir)) {
602 			dir[diroff] = NULL;
603 			nr_pages_to_free++;
604 			list_add(&subdir->lru, &pages_to_free);
605 		}
606 	}
607 done1:
608 	shmem_dir_unmap(dir);
609 done2:
610 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
611 		/*
612 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
613 		 * may have swizzled a page in from swap since vmtruncate or
614 		 * generic_delete_inode did it, before we lowered next_index.
615 		 * Also, though shmem_getpage checks i_size before adding to
616 		 * cache, no recheck after: so fix the narrow window there too.
617 		 */
618 		truncate_inode_pages_range(inode->i_mapping, start, end);
619 	}
620 
621 	spin_lock(&info->lock);
622 	info->flags &= ~SHMEM_TRUNCATE;
623 	info->swapped -= nr_swaps_freed;
624 	if (nr_pages_to_free)
625 		shmem_free_blocks(inode, nr_pages_to_free);
626 	shmem_recalc_inode(inode);
627 	spin_unlock(&info->lock);
628 
629 	/*
630 	 * Empty swap vector directory pages to be freed?
631 	 */
632 	if (!list_empty(&pages_to_free)) {
633 		pages_to_free.prev->next = NULL;
634 		shmem_free_pages(pages_to_free.next);
635 	}
636 }
637 
638 static void shmem_truncate(struct inode *inode)
639 {
640 	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
641 }
642 
643 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
644 {
645 	struct inode *inode = dentry->d_inode;
646 	struct page *page = NULL;
647 	int error;
648 
649 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
650 		if (attr->ia_size < inode->i_size) {
651 			/*
652 			 * If truncating down to a partial page, then
653 			 * if that page is already allocated, hold it
654 			 * in memory until the truncation is over, so
655 			 * truncate_partial_page cannnot miss it were
656 			 * it assigned to swap.
657 			 */
658 			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
659 				(void) shmem_getpage(inode,
660 					attr->ia_size>>PAGE_CACHE_SHIFT,
661 						&page, SGP_READ, NULL);
662 			}
663 			/*
664 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
665 			 * detect if any pages might have been added to cache
666 			 * after truncate_inode_pages.  But we needn't bother
667 			 * if it's being fully truncated to zero-length: the
668 			 * nrpages check is efficient enough in that case.
669 			 */
670 			if (attr->ia_size) {
671 				struct shmem_inode_info *info = SHMEM_I(inode);
672 				spin_lock(&info->lock);
673 				info->flags &= ~SHMEM_PAGEIN;
674 				spin_unlock(&info->lock);
675 			}
676 		}
677 	}
678 
679 	error = inode_change_ok(inode, attr);
680 	if (!error)
681 		error = inode_setattr(inode, attr);
682 #ifdef CONFIG_TMPFS_POSIX_ACL
683 	if (!error && (attr->ia_valid & ATTR_MODE))
684 		error = generic_acl_chmod(inode, &shmem_acl_ops);
685 #endif
686 	if (page)
687 		page_cache_release(page);
688 	return error;
689 }
690 
691 static void shmem_delete_inode(struct inode *inode)
692 {
693 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
694 	struct shmem_inode_info *info = SHMEM_I(inode);
695 
696 	if (inode->i_op->truncate == shmem_truncate) {
697 		truncate_inode_pages(inode->i_mapping, 0);
698 		shmem_unacct_size(info->flags, inode->i_size);
699 		inode->i_size = 0;
700 		shmem_truncate(inode);
701 		if (!list_empty(&info->swaplist)) {
702 			spin_lock(&shmem_swaplist_lock);
703 			list_del_init(&info->swaplist);
704 			spin_unlock(&shmem_swaplist_lock);
705 		}
706 	}
707 	BUG_ON(inode->i_blocks);
708 	if (sbinfo->max_inodes) {
709 		spin_lock(&sbinfo->stat_lock);
710 		sbinfo->free_inodes++;
711 		spin_unlock(&sbinfo->stat_lock);
712 	}
713 	clear_inode(inode);
714 }
715 
716 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
717 {
718 	swp_entry_t *ptr;
719 
720 	for (ptr = dir; ptr < edir; ptr++) {
721 		if (ptr->val == entry.val)
722 			return ptr - dir;
723 	}
724 	return -1;
725 }
726 
727 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
728 {
729 	struct inode *inode;
730 	unsigned long idx;
731 	unsigned long size;
732 	unsigned long limit;
733 	unsigned long stage;
734 	struct page **dir;
735 	struct page *subdir;
736 	swp_entry_t *ptr;
737 	int offset;
738 
739 	idx = 0;
740 	ptr = info->i_direct;
741 	spin_lock(&info->lock);
742 	limit = info->next_index;
743 	size = limit;
744 	if (size > SHMEM_NR_DIRECT)
745 		size = SHMEM_NR_DIRECT;
746 	offset = shmem_find_swp(entry, ptr, ptr+size);
747 	if (offset >= 0) {
748 		shmem_swp_balance_unmap();
749 		goto found;
750 	}
751 	if (!info->i_indirect)
752 		goto lost2;
753 
754 	dir = shmem_dir_map(info->i_indirect);
755 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
756 
757 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
758 		if (unlikely(idx == stage)) {
759 			shmem_dir_unmap(dir-1);
760 			dir = shmem_dir_map(info->i_indirect) +
761 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
762 			while (!*dir) {
763 				dir++;
764 				idx += ENTRIES_PER_PAGEPAGE;
765 				if (idx >= limit)
766 					goto lost1;
767 			}
768 			stage = idx + ENTRIES_PER_PAGEPAGE;
769 			subdir = *dir;
770 			shmem_dir_unmap(dir);
771 			dir = shmem_dir_map(subdir);
772 		}
773 		subdir = *dir;
774 		if (subdir && page_private(subdir)) {
775 			ptr = shmem_swp_map(subdir);
776 			size = limit - idx;
777 			if (size > ENTRIES_PER_PAGE)
778 				size = ENTRIES_PER_PAGE;
779 			offset = shmem_find_swp(entry, ptr, ptr+size);
780 			if (offset >= 0) {
781 				shmem_dir_unmap(dir);
782 				goto found;
783 			}
784 			shmem_swp_unmap(ptr);
785 		}
786 	}
787 lost1:
788 	shmem_dir_unmap(dir-1);
789 lost2:
790 	spin_unlock(&info->lock);
791 	return 0;
792 found:
793 	idx += offset;
794 	inode = &info->vfs_inode;
795 	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
796 		info->flags |= SHMEM_PAGEIN;
797 		shmem_swp_set(info, ptr + offset, 0);
798 	}
799 	shmem_swp_unmap(ptr);
800 	spin_unlock(&info->lock);
801 	/*
802 	 * Decrement swap count even when the entry is left behind:
803 	 * try_to_unuse will skip over mms, then reincrement count.
804 	 */
805 	swap_free(entry);
806 	return 1;
807 }
808 
809 /*
810  * shmem_unuse() search for an eventually swapped out shmem page.
811  */
812 int shmem_unuse(swp_entry_t entry, struct page *page)
813 {
814 	struct list_head *p, *next;
815 	struct shmem_inode_info *info;
816 	int found = 0;
817 
818 	spin_lock(&shmem_swaplist_lock);
819 	list_for_each_safe(p, next, &shmem_swaplist) {
820 		info = list_entry(p, struct shmem_inode_info, swaplist);
821 		if (!info->swapped)
822 			list_del_init(&info->swaplist);
823 		else if (shmem_unuse_inode(info, entry, page)) {
824 			/* move head to start search for next from here */
825 			list_move_tail(&shmem_swaplist, &info->swaplist);
826 			found = 1;
827 			break;
828 		}
829 	}
830 	spin_unlock(&shmem_swaplist_lock);
831 	return found;
832 }
833 
834 /*
835  * Move the page from the page cache to the swap cache.
836  */
837 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
838 {
839 	struct shmem_inode_info *info;
840 	swp_entry_t *entry, swap;
841 	struct address_space *mapping;
842 	unsigned long index;
843 	struct inode *inode;
844 
845 	BUG_ON(!PageLocked(page));
846 	BUG_ON(page_mapped(page));
847 
848 	mapping = page->mapping;
849 	index = page->index;
850 	inode = mapping->host;
851 	info = SHMEM_I(inode);
852 	if (info->flags & VM_LOCKED)
853 		goto redirty;
854 	swap = get_swap_page();
855 	if (!swap.val)
856 		goto redirty;
857 
858 	spin_lock(&info->lock);
859 	shmem_recalc_inode(inode);
860 	if (index >= info->next_index) {
861 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
862 		goto unlock;
863 	}
864 	entry = shmem_swp_entry(info, index, NULL);
865 	BUG_ON(!entry);
866 	BUG_ON(entry->val);
867 
868 	if (move_to_swap_cache(page, swap) == 0) {
869 		shmem_swp_set(info, entry, swap.val);
870 		shmem_swp_unmap(entry);
871 		spin_unlock(&info->lock);
872 		if (list_empty(&info->swaplist)) {
873 			spin_lock(&shmem_swaplist_lock);
874 			/* move instead of add in case we're racing */
875 			list_move_tail(&info->swaplist, &shmem_swaplist);
876 			spin_unlock(&shmem_swaplist_lock);
877 		}
878 		unlock_page(page);
879 		return 0;
880 	}
881 
882 	shmem_swp_unmap(entry);
883 unlock:
884 	spin_unlock(&info->lock);
885 	swap_free(swap);
886 redirty:
887 	set_page_dirty(page);
888 	return AOP_WRITEPAGE_ACTIVATE;	/* Return with the page locked */
889 }
890 
891 #ifdef CONFIG_NUMA
892 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
893 {
894 	char *nodelist = strchr(value, ':');
895 	int err = 1;
896 
897 	if (nodelist) {
898 		/* NUL-terminate policy string */
899 		*nodelist++ = '\0';
900 		if (nodelist_parse(nodelist, *policy_nodes))
901 			goto out;
902 	}
903 	if (!strcmp(value, "default")) {
904 		*policy = MPOL_DEFAULT;
905 		/* Don't allow a nodelist */
906 		if (!nodelist)
907 			err = 0;
908 	} else if (!strcmp(value, "prefer")) {
909 		*policy = MPOL_PREFERRED;
910 		/* Insist on a nodelist of one node only */
911 		if (nodelist) {
912 			char *rest = nodelist;
913 			while (isdigit(*rest))
914 				rest++;
915 			if (!*rest)
916 				err = 0;
917 		}
918 	} else if (!strcmp(value, "bind")) {
919 		*policy = MPOL_BIND;
920 		/* Insist on a nodelist */
921 		if (nodelist)
922 			err = 0;
923 	} else if (!strcmp(value, "interleave")) {
924 		*policy = MPOL_INTERLEAVE;
925 		/* Default to nodes online if no nodelist */
926 		if (!nodelist)
927 			*policy_nodes = node_online_map;
928 		err = 0;
929 	}
930 out:
931 	/* Restore string for error message */
932 	if (nodelist)
933 		*--nodelist = ':';
934 	return err;
935 }
936 
937 static struct page *shmem_swapin_async(struct shared_policy *p,
938 				       swp_entry_t entry, unsigned long idx)
939 {
940 	struct page *page;
941 	struct vm_area_struct pvma;
942 
943 	/* Create a pseudo vma that just contains the policy */
944 	memset(&pvma, 0, sizeof(struct vm_area_struct));
945 	pvma.vm_end = PAGE_SIZE;
946 	pvma.vm_pgoff = idx;
947 	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
948 	page = read_swap_cache_async(entry, &pvma, 0);
949 	mpol_free(pvma.vm_policy);
950 	return page;
951 }
952 
953 struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
954 			  unsigned long idx)
955 {
956 	struct shared_policy *p = &info->policy;
957 	int i, num;
958 	struct page *page;
959 	unsigned long offset;
960 
961 	num = valid_swaphandles(entry, &offset);
962 	for (i = 0; i < num; offset++, i++) {
963 		page = shmem_swapin_async(p,
964 				swp_entry(swp_type(entry), offset), idx);
965 		if (!page)
966 			break;
967 		page_cache_release(page);
968 	}
969 	lru_add_drain();	/* Push any new pages onto the LRU now */
970 	return shmem_swapin_async(p, entry, idx);
971 }
972 
973 static struct page *
974 shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
975 		 unsigned long idx)
976 {
977 	struct vm_area_struct pvma;
978 	struct page *page;
979 
980 	memset(&pvma, 0, sizeof(struct vm_area_struct));
981 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
982 	pvma.vm_pgoff = idx;
983 	pvma.vm_end = PAGE_SIZE;
984 	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
985 	mpol_free(pvma.vm_policy);
986 	return page;
987 }
988 #else
989 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
990 {
991 	return 1;
992 }
993 
994 static inline struct page *
995 shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
996 {
997 	swapin_readahead(entry, 0, NULL);
998 	return read_swap_cache_async(entry, NULL, 0);
999 }
1000 
1001 static inline struct page *
1002 shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
1003 {
1004 	return alloc_page(gfp | __GFP_ZERO);
1005 }
1006 #endif
1007 
1008 /*
1009  * shmem_getpage - either get the page from swap or allocate a new one
1010  *
1011  * If we allocate a new one we do not mark it dirty. That's up to the
1012  * vm. If we swap it in we mark it dirty since we also free the swap
1013  * entry since a page cannot live in both the swap and page cache
1014  */
1015 static int shmem_getpage(struct inode *inode, unsigned long idx,
1016 			struct page **pagep, enum sgp_type sgp, int *type)
1017 {
1018 	struct address_space *mapping = inode->i_mapping;
1019 	struct shmem_inode_info *info = SHMEM_I(inode);
1020 	struct shmem_sb_info *sbinfo;
1021 	struct page *filepage = *pagep;
1022 	struct page *swappage;
1023 	swp_entry_t *entry;
1024 	swp_entry_t swap;
1025 	int error;
1026 
1027 	if (idx >= SHMEM_MAX_INDEX)
1028 		return -EFBIG;
1029 	/*
1030 	 * Normally, filepage is NULL on entry, and either found
1031 	 * uptodate immediately, or allocated and zeroed, or read
1032 	 * in under swappage, which is then assigned to filepage.
1033 	 * But shmem_prepare_write passes in a locked filepage,
1034 	 * which may be found not uptodate by other callers too,
1035 	 * and may need to be copied from the swappage read in.
1036 	 */
1037 repeat:
1038 	if (!filepage)
1039 		filepage = find_lock_page(mapping, idx);
1040 	if (filepage && PageUptodate(filepage))
1041 		goto done;
1042 	error = 0;
1043 	if (sgp == SGP_QUICK)
1044 		goto failed;
1045 
1046 	spin_lock(&info->lock);
1047 	shmem_recalc_inode(inode);
1048 	entry = shmem_swp_alloc(info, idx, sgp);
1049 	if (IS_ERR(entry)) {
1050 		spin_unlock(&info->lock);
1051 		error = PTR_ERR(entry);
1052 		goto failed;
1053 	}
1054 	swap = *entry;
1055 
1056 	if (swap.val) {
1057 		/* Look it up and read it in.. */
1058 		swappage = lookup_swap_cache(swap);
1059 		if (!swappage) {
1060 			shmem_swp_unmap(entry);
1061 			/* here we actually do the io */
1062 			if (type && *type == VM_FAULT_MINOR) {
1063 				__count_vm_event(PGMAJFAULT);
1064 				*type = VM_FAULT_MAJOR;
1065 			}
1066 			spin_unlock(&info->lock);
1067 			swappage = shmem_swapin(info, swap, idx);
1068 			if (!swappage) {
1069 				spin_lock(&info->lock);
1070 				entry = shmem_swp_alloc(info, idx, sgp);
1071 				if (IS_ERR(entry))
1072 					error = PTR_ERR(entry);
1073 				else {
1074 					if (entry->val == swap.val)
1075 						error = -ENOMEM;
1076 					shmem_swp_unmap(entry);
1077 				}
1078 				spin_unlock(&info->lock);
1079 				if (error)
1080 					goto failed;
1081 				goto repeat;
1082 			}
1083 			wait_on_page_locked(swappage);
1084 			page_cache_release(swappage);
1085 			goto repeat;
1086 		}
1087 
1088 		/* We have to do this with page locked to prevent races */
1089 		if (TestSetPageLocked(swappage)) {
1090 			shmem_swp_unmap(entry);
1091 			spin_unlock(&info->lock);
1092 			wait_on_page_locked(swappage);
1093 			page_cache_release(swappage);
1094 			goto repeat;
1095 		}
1096 		if (PageWriteback(swappage)) {
1097 			shmem_swp_unmap(entry);
1098 			spin_unlock(&info->lock);
1099 			wait_on_page_writeback(swappage);
1100 			unlock_page(swappage);
1101 			page_cache_release(swappage);
1102 			goto repeat;
1103 		}
1104 		if (!PageUptodate(swappage)) {
1105 			shmem_swp_unmap(entry);
1106 			spin_unlock(&info->lock);
1107 			unlock_page(swappage);
1108 			page_cache_release(swappage);
1109 			error = -EIO;
1110 			goto failed;
1111 		}
1112 
1113 		if (filepage) {
1114 			shmem_swp_set(info, entry, 0);
1115 			shmem_swp_unmap(entry);
1116 			delete_from_swap_cache(swappage);
1117 			spin_unlock(&info->lock);
1118 			copy_highpage(filepage, swappage);
1119 			unlock_page(swappage);
1120 			page_cache_release(swappage);
1121 			flush_dcache_page(filepage);
1122 			SetPageUptodate(filepage);
1123 			set_page_dirty(filepage);
1124 			swap_free(swap);
1125 		} else if (!(error = move_from_swap_cache(
1126 				swappage, idx, mapping))) {
1127 			info->flags |= SHMEM_PAGEIN;
1128 			shmem_swp_set(info, entry, 0);
1129 			shmem_swp_unmap(entry);
1130 			spin_unlock(&info->lock);
1131 			filepage = swappage;
1132 			swap_free(swap);
1133 		} else {
1134 			shmem_swp_unmap(entry);
1135 			spin_unlock(&info->lock);
1136 			unlock_page(swappage);
1137 			page_cache_release(swappage);
1138 			if (error == -ENOMEM) {
1139 				/* let kswapd refresh zone for GFP_ATOMICs */
1140 				congestion_wait(WRITE, HZ/50);
1141 			}
1142 			goto repeat;
1143 		}
1144 	} else if (sgp == SGP_READ && !filepage) {
1145 		shmem_swp_unmap(entry);
1146 		filepage = find_get_page(mapping, idx);
1147 		if (filepage &&
1148 		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1149 			spin_unlock(&info->lock);
1150 			wait_on_page_locked(filepage);
1151 			page_cache_release(filepage);
1152 			filepage = NULL;
1153 			goto repeat;
1154 		}
1155 		spin_unlock(&info->lock);
1156 	} else {
1157 		shmem_swp_unmap(entry);
1158 		sbinfo = SHMEM_SB(inode->i_sb);
1159 		if (sbinfo->max_blocks) {
1160 			spin_lock(&sbinfo->stat_lock);
1161 			if (sbinfo->free_blocks == 0 ||
1162 			    shmem_acct_block(info->flags)) {
1163 				spin_unlock(&sbinfo->stat_lock);
1164 				spin_unlock(&info->lock);
1165 				error = -ENOSPC;
1166 				goto failed;
1167 			}
1168 			sbinfo->free_blocks--;
1169 			inode->i_blocks += BLOCKS_PER_PAGE;
1170 			spin_unlock(&sbinfo->stat_lock);
1171 		} else if (shmem_acct_block(info->flags)) {
1172 			spin_unlock(&info->lock);
1173 			error = -ENOSPC;
1174 			goto failed;
1175 		}
1176 
1177 		if (!filepage) {
1178 			spin_unlock(&info->lock);
1179 			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1180 						    info,
1181 						    idx);
1182 			if (!filepage) {
1183 				shmem_unacct_blocks(info->flags, 1);
1184 				shmem_free_blocks(inode, 1);
1185 				error = -ENOMEM;
1186 				goto failed;
1187 			}
1188 
1189 			spin_lock(&info->lock);
1190 			entry = shmem_swp_alloc(info, idx, sgp);
1191 			if (IS_ERR(entry))
1192 				error = PTR_ERR(entry);
1193 			else {
1194 				swap = *entry;
1195 				shmem_swp_unmap(entry);
1196 			}
1197 			if (error || swap.val || 0 != add_to_page_cache_lru(
1198 					filepage, mapping, idx, GFP_ATOMIC)) {
1199 				spin_unlock(&info->lock);
1200 				page_cache_release(filepage);
1201 				shmem_unacct_blocks(info->flags, 1);
1202 				shmem_free_blocks(inode, 1);
1203 				filepage = NULL;
1204 				if (error)
1205 					goto failed;
1206 				goto repeat;
1207 			}
1208 			info->flags |= SHMEM_PAGEIN;
1209 		}
1210 
1211 		info->alloced++;
1212 		spin_unlock(&info->lock);
1213 		flush_dcache_page(filepage);
1214 		SetPageUptodate(filepage);
1215 	}
1216 done:
1217 	if (*pagep != filepage) {
1218 		unlock_page(filepage);
1219 		*pagep = filepage;
1220 	}
1221 	return 0;
1222 
1223 failed:
1224 	if (*pagep != filepage) {
1225 		unlock_page(filepage);
1226 		page_cache_release(filepage);
1227 	}
1228 	return error;
1229 }
1230 
1231 struct page *shmem_nopage(struct vm_area_struct *vma, unsigned long address, int *type)
1232 {
1233 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1234 	struct page *page = NULL;
1235 	unsigned long idx;
1236 	int error;
1237 
1238 	idx = (address - vma->vm_start) >> PAGE_SHIFT;
1239 	idx += vma->vm_pgoff;
1240 	idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
1241 	if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1242 		return NOPAGE_SIGBUS;
1243 
1244 	error = shmem_getpage(inode, idx, &page, SGP_CACHE, type);
1245 	if (error)
1246 		return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
1247 
1248 	mark_page_accessed(page);
1249 	return page;
1250 }
1251 
1252 static int shmem_populate(struct vm_area_struct *vma,
1253 	unsigned long addr, unsigned long len,
1254 	pgprot_t prot, unsigned long pgoff, int nonblock)
1255 {
1256 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1257 	struct mm_struct *mm = vma->vm_mm;
1258 	enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE;
1259 	unsigned long size;
1260 
1261 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1262 	if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size)
1263 		return -EINVAL;
1264 
1265 	while ((long) len > 0) {
1266 		struct page *page = NULL;
1267 		int err;
1268 		/*
1269 		 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1270 		 */
1271 		err = shmem_getpage(inode, pgoff, &page, sgp, NULL);
1272 		if (err)
1273 			return err;
1274 		/* Page may still be null, but only if nonblock was set. */
1275 		if (page) {
1276 			mark_page_accessed(page);
1277 			err = install_page(mm, vma, addr, page, prot);
1278 			if (err) {
1279 				page_cache_release(page);
1280 				return err;
1281 			}
1282 		} else if (vma->vm_flags & VM_NONLINEAR) {
1283 			/* No page was found just because we can't read it in
1284 			 * now (being here implies nonblock != 0), but the page
1285 			 * may exist, so set the PTE to fault it in later. */
1286     			err = install_file_pte(mm, vma, addr, pgoff, prot);
1287 			if (err)
1288 	    			return err;
1289 		}
1290 
1291 		len -= PAGE_SIZE;
1292 		addr += PAGE_SIZE;
1293 		pgoff++;
1294 	}
1295 	return 0;
1296 }
1297 
1298 #ifdef CONFIG_NUMA
1299 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1300 {
1301 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1302 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1303 }
1304 
1305 struct mempolicy *
1306 shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1307 {
1308 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1309 	unsigned long idx;
1310 
1311 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1312 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1313 }
1314 #endif
1315 
1316 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1317 {
1318 	struct inode *inode = file->f_path.dentry->d_inode;
1319 	struct shmem_inode_info *info = SHMEM_I(inode);
1320 	int retval = -ENOMEM;
1321 
1322 	spin_lock(&info->lock);
1323 	if (lock && !(info->flags & VM_LOCKED)) {
1324 		if (!user_shm_lock(inode->i_size, user))
1325 			goto out_nomem;
1326 		info->flags |= VM_LOCKED;
1327 	}
1328 	if (!lock && (info->flags & VM_LOCKED) && user) {
1329 		user_shm_unlock(inode->i_size, user);
1330 		info->flags &= ~VM_LOCKED;
1331 	}
1332 	retval = 0;
1333 out_nomem:
1334 	spin_unlock(&info->lock);
1335 	return retval;
1336 }
1337 
1338 int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1339 {
1340 	file_accessed(file);
1341 	vma->vm_ops = &shmem_vm_ops;
1342 	return 0;
1343 }
1344 
1345 static struct inode *
1346 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1347 {
1348 	struct inode *inode;
1349 	struct shmem_inode_info *info;
1350 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1351 
1352 	if (sbinfo->max_inodes) {
1353 		spin_lock(&sbinfo->stat_lock);
1354 		if (!sbinfo->free_inodes) {
1355 			spin_unlock(&sbinfo->stat_lock);
1356 			return NULL;
1357 		}
1358 		sbinfo->free_inodes--;
1359 		spin_unlock(&sbinfo->stat_lock);
1360 	}
1361 
1362 	inode = new_inode(sb);
1363 	if (inode) {
1364 		inode->i_mode = mode;
1365 		inode->i_uid = current->fsuid;
1366 		inode->i_gid = current->fsgid;
1367 		inode->i_blocks = 0;
1368 		inode->i_mapping->a_ops = &shmem_aops;
1369 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1370 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1371 		inode->i_generation = get_seconds();
1372 		info = SHMEM_I(inode);
1373 		memset(info, 0, (char *)inode - (char *)info);
1374 		spin_lock_init(&info->lock);
1375 		INIT_LIST_HEAD(&info->swaplist);
1376 
1377 		switch (mode & S_IFMT) {
1378 		default:
1379 			inode->i_op = &shmem_special_inode_operations;
1380 			init_special_inode(inode, mode, dev);
1381 			break;
1382 		case S_IFREG:
1383 			inode->i_op = &shmem_inode_operations;
1384 			inode->i_fop = &shmem_file_operations;
1385 			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1386 							&sbinfo->policy_nodes);
1387 			break;
1388 		case S_IFDIR:
1389 			inc_nlink(inode);
1390 			/* Some things misbehave if size == 0 on a directory */
1391 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1392 			inode->i_op = &shmem_dir_inode_operations;
1393 			inode->i_fop = &simple_dir_operations;
1394 			break;
1395 		case S_IFLNK:
1396 			/*
1397 			 * Must not load anything in the rbtree,
1398 			 * mpol_free_shared_policy will not be called.
1399 			 */
1400 			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1401 						NULL);
1402 			break;
1403 		}
1404 	} else if (sbinfo->max_inodes) {
1405 		spin_lock(&sbinfo->stat_lock);
1406 		sbinfo->free_inodes++;
1407 		spin_unlock(&sbinfo->stat_lock);
1408 	}
1409 	return inode;
1410 }
1411 
1412 #ifdef CONFIG_TMPFS
1413 static struct inode_operations shmem_symlink_inode_operations;
1414 static struct inode_operations shmem_symlink_inline_operations;
1415 
1416 /*
1417  * Normally tmpfs makes no use of shmem_prepare_write, but it
1418  * lets a tmpfs file be used read-write below the loop driver.
1419  */
1420 static int
1421 shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1422 {
1423 	struct inode *inode = page->mapping->host;
1424 	return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1425 }
1426 
1427 static ssize_t
1428 shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1429 {
1430 	struct inode	*inode = file->f_path.dentry->d_inode;
1431 	loff_t		pos;
1432 	unsigned long	written;
1433 	ssize_t		err;
1434 
1435 	if ((ssize_t) count < 0)
1436 		return -EINVAL;
1437 
1438 	if (!access_ok(VERIFY_READ, buf, count))
1439 		return -EFAULT;
1440 
1441 	mutex_lock(&inode->i_mutex);
1442 
1443 	pos = *ppos;
1444 	written = 0;
1445 
1446 	err = generic_write_checks(file, &pos, &count, 0);
1447 	if (err || !count)
1448 		goto out;
1449 
1450 	err = remove_suid(file->f_path.dentry);
1451 	if (err)
1452 		goto out;
1453 
1454 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1455 
1456 	do {
1457 		struct page *page = NULL;
1458 		unsigned long bytes, index, offset;
1459 		char *kaddr;
1460 		int left;
1461 
1462 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1463 		index = pos >> PAGE_CACHE_SHIFT;
1464 		bytes = PAGE_CACHE_SIZE - offset;
1465 		if (bytes > count)
1466 			bytes = count;
1467 
1468 		/*
1469 		 * We don't hold page lock across copy from user -
1470 		 * what would it guard against? - so no deadlock here.
1471 		 * But it still may be a good idea to prefault below.
1472 		 */
1473 
1474 		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1475 		if (err)
1476 			break;
1477 
1478 		left = bytes;
1479 		if (PageHighMem(page)) {
1480 			volatile unsigned char dummy;
1481 			__get_user(dummy, buf);
1482 			__get_user(dummy, buf + bytes - 1);
1483 
1484 			kaddr = kmap_atomic(page, KM_USER0);
1485 			left = __copy_from_user_inatomic(kaddr + offset,
1486 							buf, bytes);
1487 			kunmap_atomic(kaddr, KM_USER0);
1488 		}
1489 		if (left) {
1490 			kaddr = kmap(page);
1491 			left = __copy_from_user(kaddr + offset, buf, bytes);
1492 			kunmap(page);
1493 		}
1494 
1495 		written += bytes;
1496 		count -= bytes;
1497 		pos += bytes;
1498 		buf += bytes;
1499 		if (pos > inode->i_size)
1500 			i_size_write(inode, pos);
1501 
1502 		flush_dcache_page(page);
1503 		set_page_dirty(page);
1504 		mark_page_accessed(page);
1505 		page_cache_release(page);
1506 
1507 		if (left) {
1508 			pos -= left;
1509 			written -= left;
1510 			err = -EFAULT;
1511 			break;
1512 		}
1513 
1514 		/*
1515 		 * Our dirty pages are not counted in nr_dirty,
1516 		 * and we do not attempt to balance dirty pages.
1517 		 */
1518 
1519 		cond_resched();
1520 	} while (count);
1521 
1522 	*ppos = pos;
1523 	if (written)
1524 		err = written;
1525 out:
1526 	mutex_unlock(&inode->i_mutex);
1527 	return err;
1528 }
1529 
1530 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1531 {
1532 	struct inode *inode = filp->f_path.dentry->d_inode;
1533 	struct address_space *mapping = inode->i_mapping;
1534 	unsigned long index, offset;
1535 
1536 	index = *ppos >> PAGE_CACHE_SHIFT;
1537 	offset = *ppos & ~PAGE_CACHE_MASK;
1538 
1539 	for (;;) {
1540 		struct page *page = NULL;
1541 		unsigned long end_index, nr, ret;
1542 		loff_t i_size = i_size_read(inode);
1543 
1544 		end_index = i_size >> PAGE_CACHE_SHIFT;
1545 		if (index > end_index)
1546 			break;
1547 		if (index == end_index) {
1548 			nr = i_size & ~PAGE_CACHE_MASK;
1549 			if (nr <= offset)
1550 				break;
1551 		}
1552 
1553 		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1554 		if (desc->error) {
1555 			if (desc->error == -EINVAL)
1556 				desc->error = 0;
1557 			break;
1558 		}
1559 
1560 		/*
1561 		 * We must evaluate after, since reads (unlike writes)
1562 		 * are called without i_mutex protection against truncate
1563 		 */
1564 		nr = PAGE_CACHE_SIZE;
1565 		i_size = i_size_read(inode);
1566 		end_index = i_size >> PAGE_CACHE_SHIFT;
1567 		if (index == end_index) {
1568 			nr = i_size & ~PAGE_CACHE_MASK;
1569 			if (nr <= offset) {
1570 				if (page)
1571 					page_cache_release(page);
1572 				break;
1573 			}
1574 		}
1575 		nr -= offset;
1576 
1577 		if (page) {
1578 			/*
1579 			 * If users can be writing to this page using arbitrary
1580 			 * virtual addresses, take care about potential aliasing
1581 			 * before reading the page on the kernel side.
1582 			 */
1583 			if (mapping_writably_mapped(mapping))
1584 				flush_dcache_page(page);
1585 			/*
1586 			 * Mark the page accessed if we read the beginning.
1587 			 */
1588 			if (!offset)
1589 				mark_page_accessed(page);
1590 		} else {
1591 			page = ZERO_PAGE(0);
1592 			page_cache_get(page);
1593 		}
1594 
1595 		/*
1596 		 * Ok, we have the page, and it's up-to-date, so
1597 		 * now we can copy it to user space...
1598 		 *
1599 		 * The actor routine returns how many bytes were actually used..
1600 		 * NOTE! This may not be the same as how much of a user buffer
1601 		 * we filled up (we may be padding etc), so we can only update
1602 		 * "pos" here (the actor routine has to update the user buffer
1603 		 * pointers and the remaining count).
1604 		 */
1605 		ret = actor(desc, page, offset, nr);
1606 		offset += ret;
1607 		index += offset >> PAGE_CACHE_SHIFT;
1608 		offset &= ~PAGE_CACHE_MASK;
1609 
1610 		page_cache_release(page);
1611 		if (ret != nr || !desc->count)
1612 			break;
1613 
1614 		cond_resched();
1615 	}
1616 
1617 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1618 	file_accessed(filp);
1619 }
1620 
1621 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1622 {
1623 	read_descriptor_t desc;
1624 
1625 	if ((ssize_t) count < 0)
1626 		return -EINVAL;
1627 	if (!access_ok(VERIFY_WRITE, buf, count))
1628 		return -EFAULT;
1629 	if (!count)
1630 		return 0;
1631 
1632 	desc.written = 0;
1633 	desc.count = count;
1634 	desc.arg.buf = buf;
1635 	desc.error = 0;
1636 
1637 	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1638 	if (desc.written)
1639 		return desc.written;
1640 	return desc.error;
1641 }
1642 
1643 static ssize_t shmem_file_sendfile(struct file *in_file, loff_t *ppos,
1644 			 size_t count, read_actor_t actor, void *target)
1645 {
1646 	read_descriptor_t desc;
1647 
1648 	if (!count)
1649 		return 0;
1650 
1651 	desc.written = 0;
1652 	desc.count = count;
1653 	desc.arg.data = target;
1654 	desc.error = 0;
1655 
1656 	do_shmem_file_read(in_file, ppos, &desc, actor);
1657 	if (desc.written)
1658 		return desc.written;
1659 	return desc.error;
1660 }
1661 
1662 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1663 {
1664 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1665 
1666 	buf->f_type = TMPFS_MAGIC;
1667 	buf->f_bsize = PAGE_CACHE_SIZE;
1668 	buf->f_namelen = NAME_MAX;
1669 	spin_lock(&sbinfo->stat_lock);
1670 	if (sbinfo->max_blocks) {
1671 		buf->f_blocks = sbinfo->max_blocks;
1672 		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1673 	}
1674 	if (sbinfo->max_inodes) {
1675 		buf->f_files = sbinfo->max_inodes;
1676 		buf->f_ffree = sbinfo->free_inodes;
1677 	}
1678 	/* else leave those fields 0 like simple_statfs */
1679 	spin_unlock(&sbinfo->stat_lock);
1680 	return 0;
1681 }
1682 
1683 /*
1684  * File creation. Allocate an inode, and we're done..
1685  */
1686 static int
1687 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1688 {
1689 	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1690 	int error = -ENOSPC;
1691 
1692 	if (inode) {
1693 		error = security_inode_init_security(inode, dir, NULL, NULL,
1694 						     NULL);
1695 		if (error) {
1696 			if (error != -EOPNOTSUPP) {
1697 				iput(inode);
1698 				return error;
1699 			}
1700 		}
1701 		error = shmem_acl_init(inode, dir);
1702 		if (error) {
1703 			iput(inode);
1704 			return error;
1705 		}
1706 		if (dir->i_mode & S_ISGID) {
1707 			inode->i_gid = dir->i_gid;
1708 			if (S_ISDIR(mode))
1709 				inode->i_mode |= S_ISGID;
1710 		}
1711 		dir->i_size += BOGO_DIRENT_SIZE;
1712 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1713 		d_instantiate(dentry, inode);
1714 		dget(dentry); /* Extra count - pin the dentry in core */
1715 	}
1716 	return error;
1717 }
1718 
1719 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1720 {
1721 	int error;
1722 
1723 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1724 		return error;
1725 	inc_nlink(dir);
1726 	return 0;
1727 }
1728 
1729 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1730 		struct nameidata *nd)
1731 {
1732 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1733 }
1734 
1735 /*
1736  * Link a file..
1737  */
1738 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1739 {
1740 	struct inode *inode = old_dentry->d_inode;
1741 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1742 
1743 	/*
1744 	 * No ordinary (disk based) filesystem counts links as inodes;
1745 	 * but each new link needs a new dentry, pinning lowmem, and
1746 	 * tmpfs dentries cannot be pruned until they are unlinked.
1747 	 */
1748 	if (sbinfo->max_inodes) {
1749 		spin_lock(&sbinfo->stat_lock);
1750 		if (!sbinfo->free_inodes) {
1751 			spin_unlock(&sbinfo->stat_lock);
1752 			return -ENOSPC;
1753 		}
1754 		sbinfo->free_inodes--;
1755 		spin_unlock(&sbinfo->stat_lock);
1756 	}
1757 
1758 	dir->i_size += BOGO_DIRENT_SIZE;
1759 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1760 	inc_nlink(inode);
1761 	atomic_inc(&inode->i_count);	/* New dentry reference */
1762 	dget(dentry);		/* Extra pinning count for the created dentry */
1763 	d_instantiate(dentry, inode);
1764 	return 0;
1765 }
1766 
1767 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1768 {
1769 	struct inode *inode = dentry->d_inode;
1770 
1771 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1772 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1773 		if (sbinfo->max_inodes) {
1774 			spin_lock(&sbinfo->stat_lock);
1775 			sbinfo->free_inodes++;
1776 			spin_unlock(&sbinfo->stat_lock);
1777 		}
1778 	}
1779 
1780 	dir->i_size -= BOGO_DIRENT_SIZE;
1781 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1782 	drop_nlink(inode);
1783 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1784 	return 0;
1785 }
1786 
1787 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1788 {
1789 	if (!simple_empty(dentry))
1790 		return -ENOTEMPTY;
1791 
1792 	drop_nlink(dentry->d_inode);
1793 	drop_nlink(dir);
1794 	return shmem_unlink(dir, dentry);
1795 }
1796 
1797 /*
1798  * The VFS layer already does all the dentry stuff for rename,
1799  * we just have to decrement the usage count for the target if
1800  * it exists so that the VFS layer correctly free's it when it
1801  * gets overwritten.
1802  */
1803 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1804 {
1805 	struct inode *inode = old_dentry->d_inode;
1806 	int they_are_dirs = S_ISDIR(inode->i_mode);
1807 
1808 	if (!simple_empty(new_dentry))
1809 		return -ENOTEMPTY;
1810 
1811 	if (new_dentry->d_inode) {
1812 		(void) shmem_unlink(new_dir, new_dentry);
1813 		if (they_are_dirs)
1814 			drop_nlink(old_dir);
1815 	} else if (they_are_dirs) {
1816 		drop_nlink(old_dir);
1817 		inc_nlink(new_dir);
1818 	}
1819 
1820 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1821 	new_dir->i_size += BOGO_DIRENT_SIZE;
1822 	old_dir->i_ctime = old_dir->i_mtime =
1823 	new_dir->i_ctime = new_dir->i_mtime =
1824 	inode->i_ctime = CURRENT_TIME;
1825 	return 0;
1826 }
1827 
1828 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1829 {
1830 	int error;
1831 	int len;
1832 	struct inode *inode;
1833 	struct page *page = NULL;
1834 	char *kaddr;
1835 	struct shmem_inode_info *info;
1836 
1837 	len = strlen(symname) + 1;
1838 	if (len > PAGE_CACHE_SIZE)
1839 		return -ENAMETOOLONG;
1840 
1841 	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1842 	if (!inode)
1843 		return -ENOSPC;
1844 
1845 	error = security_inode_init_security(inode, dir, NULL, NULL,
1846 					     NULL);
1847 	if (error) {
1848 		if (error != -EOPNOTSUPP) {
1849 			iput(inode);
1850 			return error;
1851 		}
1852 		error = 0;
1853 	}
1854 
1855 	info = SHMEM_I(inode);
1856 	inode->i_size = len-1;
1857 	if (len <= (char *)inode - (char *)info) {
1858 		/* do it inline */
1859 		memcpy(info, symname, len);
1860 		inode->i_op = &shmem_symlink_inline_operations;
1861 	} else {
1862 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1863 		if (error) {
1864 			iput(inode);
1865 			return error;
1866 		}
1867 		inode->i_op = &shmem_symlink_inode_operations;
1868 		kaddr = kmap_atomic(page, KM_USER0);
1869 		memcpy(kaddr, symname, len);
1870 		kunmap_atomic(kaddr, KM_USER0);
1871 		set_page_dirty(page);
1872 		page_cache_release(page);
1873 	}
1874 	if (dir->i_mode & S_ISGID)
1875 		inode->i_gid = dir->i_gid;
1876 	dir->i_size += BOGO_DIRENT_SIZE;
1877 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1878 	d_instantiate(dentry, inode);
1879 	dget(dentry);
1880 	return 0;
1881 }
1882 
1883 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1884 {
1885 	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1886 	return NULL;
1887 }
1888 
1889 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1890 {
1891 	struct page *page = NULL;
1892 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1893 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1894 	return page;
1895 }
1896 
1897 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1898 {
1899 	if (!IS_ERR(nd_get_link(nd))) {
1900 		struct page *page = cookie;
1901 		kunmap(page);
1902 		mark_page_accessed(page);
1903 		page_cache_release(page);
1904 	}
1905 }
1906 
1907 static struct inode_operations shmem_symlink_inline_operations = {
1908 	.readlink	= generic_readlink,
1909 	.follow_link	= shmem_follow_link_inline,
1910 };
1911 
1912 static struct inode_operations shmem_symlink_inode_operations = {
1913 	.truncate	= shmem_truncate,
1914 	.readlink	= generic_readlink,
1915 	.follow_link	= shmem_follow_link,
1916 	.put_link	= shmem_put_link,
1917 };
1918 
1919 #ifdef CONFIG_TMPFS_POSIX_ACL
1920 /**
1921  * Superblocks without xattr inode operations will get security.* xattr
1922  * support from the VFS "for free". As soon as we have any other xattrs
1923  * like ACLs, we also need to implement the security.* handlers at
1924  * filesystem level, though.
1925  */
1926 
1927 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1928 					size_t list_len, const char *name,
1929 					size_t name_len)
1930 {
1931 	return security_inode_listsecurity(inode, list, list_len);
1932 }
1933 
1934 static int shmem_xattr_security_get(struct inode *inode, const char *name,
1935 				    void *buffer, size_t size)
1936 {
1937 	if (strcmp(name, "") == 0)
1938 		return -EINVAL;
1939 	return security_inode_getsecurity(inode, name, buffer, size,
1940 					  -EOPNOTSUPP);
1941 }
1942 
1943 static int shmem_xattr_security_set(struct inode *inode, const char *name,
1944 				    const void *value, size_t size, int flags)
1945 {
1946 	if (strcmp(name, "") == 0)
1947 		return -EINVAL;
1948 	return security_inode_setsecurity(inode, name, value, size, flags);
1949 }
1950 
1951 static struct xattr_handler shmem_xattr_security_handler = {
1952 	.prefix = XATTR_SECURITY_PREFIX,
1953 	.list   = shmem_xattr_security_list,
1954 	.get    = shmem_xattr_security_get,
1955 	.set    = shmem_xattr_security_set,
1956 };
1957 
1958 static struct xattr_handler *shmem_xattr_handlers[] = {
1959 	&shmem_xattr_acl_access_handler,
1960 	&shmem_xattr_acl_default_handler,
1961 	&shmem_xattr_security_handler,
1962 	NULL
1963 };
1964 #endif
1965 
1966 static struct dentry *shmem_get_parent(struct dentry *child)
1967 {
1968 	return ERR_PTR(-ESTALE);
1969 }
1970 
1971 static int shmem_match(struct inode *ino, void *vfh)
1972 {
1973 	__u32 *fh = vfh;
1974 	__u64 inum = fh[2];
1975 	inum = (inum << 32) | fh[1];
1976 	return ino->i_ino == inum && fh[0] == ino->i_generation;
1977 }
1978 
1979 static struct dentry *shmem_get_dentry(struct super_block *sb, void *vfh)
1980 {
1981 	struct dentry *de = NULL;
1982 	struct inode *inode;
1983 	__u32 *fh = vfh;
1984 	__u64 inum = fh[2];
1985 	inum = (inum << 32) | fh[1];
1986 
1987 	inode = ilookup5(sb, (unsigned long)(inum+fh[0]), shmem_match, vfh);
1988 	if (inode) {
1989 		de = d_find_alias(inode);
1990 		iput(inode);
1991 	}
1992 
1993 	return de? de: ERR_PTR(-ESTALE);
1994 }
1995 
1996 static struct dentry *shmem_decode_fh(struct super_block *sb, __u32 *fh,
1997 		int len, int type,
1998 		int (*acceptable)(void *context, struct dentry *de),
1999 		void *context)
2000 {
2001 	if (len < 3)
2002 		return ERR_PTR(-ESTALE);
2003 
2004 	return sb->s_export_op->find_exported_dentry(sb, fh, NULL, acceptable,
2005 							context);
2006 }
2007 
2008 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2009 				int connectable)
2010 {
2011 	struct inode *inode = dentry->d_inode;
2012 
2013 	if (*len < 3)
2014 		return 255;
2015 
2016 	if (hlist_unhashed(&inode->i_hash)) {
2017 		/* Unfortunately insert_inode_hash is not idempotent,
2018 		 * so as we hash inodes here rather than at creation
2019 		 * time, we need a lock to ensure we only try
2020 		 * to do it once
2021 		 */
2022 		static DEFINE_SPINLOCK(lock);
2023 		spin_lock(&lock);
2024 		if (hlist_unhashed(&inode->i_hash))
2025 			__insert_inode_hash(inode,
2026 					    inode->i_ino + inode->i_generation);
2027 		spin_unlock(&lock);
2028 	}
2029 
2030 	fh[0] = inode->i_generation;
2031 	fh[1] = inode->i_ino;
2032 	fh[2] = ((__u64)inode->i_ino) >> 32;
2033 
2034 	*len = 3;
2035 	return 1;
2036 }
2037 
2038 static struct export_operations shmem_export_ops = {
2039 	.get_parent     = shmem_get_parent,
2040 	.get_dentry     = shmem_get_dentry,
2041 	.encode_fh      = shmem_encode_fh,
2042 	.decode_fh      = shmem_decode_fh,
2043 };
2044 
2045 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2046 	gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2047 	int *policy, nodemask_t *policy_nodes)
2048 {
2049 	char *this_char, *value, *rest;
2050 
2051 	while (options != NULL) {
2052 		this_char = options;
2053 		for (;;) {
2054 			/*
2055 			 * NUL-terminate this option: unfortunately,
2056 			 * mount options form a comma-separated list,
2057 			 * but mpol's nodelist may also contain commas.
2058 			 */
2059 			options = strchr(options, ',');
2060 			if (options == NULL)
2061 				break;
2062 			options++;
2063 			if (!isdigit(*options)) {
2064 				options[-1] = '\0';
2065 				break;
2066 			}
2067 		}
2068 		if (!*this_char)
2069 			continue;
2070 		if ((value = strchr(this_char,'=')) != NULL) {
2071 			*value++ = 0;
2072 		} else {
2073 			printk(KERN_ERR
2074 			    "tmpfs: No value for mount option '%s'\n",
2075 			    this_char);
2076 			return 1;
2077 		}
2078 
2079 		if (!strcmp(this_char,"size")) {
2080 			unsigned long long size;
2081 			size = memparse(value,&rest);
2082 			if (*rest == '%') {
2083 				size <<= PAGE_SHIFT;
2084 				size *= totalram_pages;
2085 				do_div(size, 100);
2086 				rest++;
2087 			}
2088 			if (*rest)
2089 				goto bad_val;
2090 			*blocks = size >> PAGE_CACHE_SHIFT;
2091 		} else if (!strcmp(this_char,"nr_blocks")) {
2092 			*blocks = memparse(value,&rest);
2093 			if (*rest)
2094 				goto bad_val;
2095 		} else if (!strcmp(this_char,"nr_inodes")) {
2096 			*inodes = memparse(value,&rest);
2097 			if (*rest)
2098 				goto bad_val;
2099 		} else if (!strcmp(this_char,"mode")) {
2100 			if (!mode)
2101 				continue;
2102 			*mode = simple_strtoul(value,&rest,8);
2103 			if (*rest)
2104 				goto bad_val;
2105 		} else if (!strcmp(this_char,"uid")) {
2106 			if (!uid)
2107 				continue;
2108 			*uid = simple_strtoul(value,&rest,0);
2109 			if (*rest)
2110 				goto bad_val;
2111 		} else if (!strcmp(this_char,"gid")) {
2112 			if (!gid)
2113 				continue;
2114 			*gid = simple_strtoul(value,&rest,0);
2115 			if (*rest)
2116 				goto bad_val;
2117 		} else if (!strcmp(this_char,"mpol")) {
2118 			if (shmem_parse_mpol(value,policy,policy_nodes))
2119 				goto bad_val;
2120 		} else {
2121 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2122 			       this_char);
2123 			return 1;
2124 		}
2125 	}
2126 	return 0;
2127 
2128 bad_val:
2129 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2130 	       value, this_char);
2131 	return 1;
2132 
2133 }
2134 
2135 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2136 {
2137 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2138 	unsigned long max_blocks = sbinfo->max_blocks;
2139 	unsigned long max_inodes = sbinfo->max_inodes;
2140 	int policy = sbinfo->policy;
2141 	nodemask_t policy_nodes = sbinfo->policy_nodes;
2142 	unsigned long blocks;
2143 	unsigned long inodes;
2144 	int error = -EINVAL;
2145 
2146 	if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2147 				&max_inodes, &policy, &policy_nodes))
2148 		return error;
2149 
2150 	spin_lock(&sbinfo->stat_lock);
2151 	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2152 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2153 	if (max_blocks < blocks)
2154 		goto out;
2155 	if (max_inodes < inodes)
2156 		goto out;
2157 	/*
2158 	 * Those tests also disallow limited->unlimited while any are in
2159 	 * use, so i_blocks will always be zero when max_blocks is zero;
2160 	 * but we must separately disallow unlimited->limited, because
2161 	 * in that case we have no record of how much is already in use.
2162 	 */
2163 	if (max_blocks && !sbinfo->max_blocks)
2164 		goto out;
2165 	if (max_inodes && !sbinfo->max_inodes)
2166 		goto out;
2167 
2168 	error = 0;
2169 	sbinfo->max_blocks  = max_blocks;
2170 	sbinfo->free_blocks = max_blocks - blocks;
2171 	sbinfo->max_inodes  = max_inodes;
2172 	sbinfo->free_inodes = max_inodes - inodes;
2173 	sbinfo->policy = policy;
2174 	sbinfo->policy_nodes = policy_nodes;
2175 out:
2176 	spin_unlock(&sbinfo->stat_lock);
2177 	return error;
2178 }
2179 #endif
2180 
2181 static void shmem_put_super(struct super_block *sb)
2182 {
2183 	kfree(sb->s_fs_info);
2184 	sb->s_fs_info = NULL;
2185 }
2186 
2187 static int shmem_fill_super(struct super_block *sb,
2188 			    void *data, int silent)
2189 {
2190 	struct inode *inode;
2191 	struct dentry *root;
2192 	int mode   = S_IRWXUGO | S_ISVTX;
2193 	uid_t uid = current->fsuid;
2194 	gid_t gid = current->fsgid;
2195 	int err = -ENOMEM;
2196 	struct shmem_sb_info *sbinfo;
2197 	unsigned long blocks = 0;
2198 	unsigned long inodes = 0;
2199 	int policy = MPOL_DEFAULT;
2200 	nodemask_t policy_nodes = node_online_map;
2201 
2202 #ifdef CONFIG_TMPFS
2203 	/*
2204 	 * Per default we only allow half of the physical ram per
2205 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2206 	 * but the internal instance is left unlimited.
2207 	 */
2208 	if (!(sb->s_flags & MS_NOUSER)) {
2209 		blocks = totalram_pages / 2;
2210 		inodes = totalram_pages - totalhigh_pages;
2211 		if (inodes > blocks)
2212 			inodes = blocks;
2213 		if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2214 					&inodes, &policy, &policy_nodes))
2215 			return -EINVAL;
2216 	}
2217 	sb->s_export_op = &shmem_export_ops;
2218 #else
2219 	sb->s_flags |= MS_NOUSER;
2220 #endif
2221 
2222 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2223 	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2224 				L1_CACHE_BYTES), GFP_KERNEL);
2225 	if (!sbinfo)
2226 		return -ENOMEM;
2227 
2228 	spin_lock_init(&sbinfo->stat_lock);
2229 	sbinfo->max_blocks = blocks;
2230 	sbinfo->free_blocks = blocks;
2231 	sbinfo->max_inodes = inodes;
2232 	sbinfo->free_inodes = inodes;
2233 	sbinfo->policy = policy;
2234 	sbinfo->policy_nodes = policy_nodes;
2235 
2236 	sb->s_fs_info = sbinfo;
2237 	sb->s_maxbytes = SHMEM_MAX_BYTES;
2238 	sb->s_blocksize = PAGE_CACHE_SIZE;
2239 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2240 	sb->s_magic = TMPFS_MAGIC;
2241 	sb->s_op = &shmem_ops;
2242 	sb->s_time_gran = 1;
2243 #ifdef CONFIG_TMPFS_POSIX_ACL
2244 	sb->s_xattr = shmem_xattr_handlers;
2245 	sb->s_flags |= MS_POSIXACL;
2246 #endif
2247 
2248 	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2249 	if (!inode)
2250 		goto failed;
2251 	inode->i_uid = uid;
2252 	inode->i_gid = gid;
2253 	root = d_alloc_root(inode);
2254 	if (!root)
2255 		goto failed_iput;
2256 	sb->s_root = root;
2257 	return 0;
2258 
2259 failed_iput:
2260 	iput(inode);
2261 failed:
2262 	shmem_put_super(sb);
2263 	return err;
2264 }
2265 
2266 static struct kmem_cache *shmem_inode_cachep;
2267 
2268 static struct inode *shmem_alloc_inode(struct super_block *sb)
2269 {
2270 	struct shmem_inode_info *p;
2271 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2272 	if (!p)
2273 		return NULL;
2274 	return &p->vfs_inode;
2275 }
2276 
2277 static void shmem_destroy_inode(struct inode *inode)
2278 {
2279 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2280 		/* only struct inode is valid if it's an inline symlink */
2281 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2282 	}
2283 	shmem_acl_destroy_inode(inode);
2284 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2285 }
2286 
2287 static void init_once(void *foo, struct kmem_cache *cachep,
2288 		      unsigned long flags)
2289 {
2290 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2291 
2292 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2293 	    SLAB_CTOR_CONSTRUCTOR) {
2294 		inode_init_once(&p->vfs_inode);
2295 #ifdef CONFIG_TMPFS_POSIX_ACL
2296 		p->i_acl = NULL;
2297 		p->i_default_acl = NULL;
2298 #endif
2299 	}
2300 }
2301 
2302 static int init_inodecache(void)
2303 {
2304 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2305 				sizeof(struct shmem_inode_info),
2306 				0, 0, init_once, NULL);
2307 	if (shmem_inode_cachep == NULL)
2308 		return -ENOMEM;
2309 	return 0;
2310 }
2311 
2312 static void destroy_inodecache(void)
2313 {
2314 	kmem_cache_destroy(shmem_inode_cachep);
2315 }
2316 
2317 static const struct address_space_operations shmem_aops = {
2318 	.writepage	= shmem_writepage,
2319 	.set_page_dirty	= __set_page_dirty_nobuffers,
2320 #ifdef CONFIG_TMPFS
2321 	.prepare_write	= shmem_prepare_write,
2322 	.commit_write	= simple_commit_write,
2323 #endif
2324 	.migratepage	= migrate_page,
2325 };
2326 
2327 static const struct file_operations shmem_file_operations = {
2328 	.mmap		= shmem_mmap,
2329 #ifdef CONFIG_TMPFS
2330 	.llseek		= generic_file_llseek,
2331 	.read		= shmem_file_read,
2332 	.write		= shmem_file_write,
2333 	.fsync		= simple_sync_file,
2334 	.sendfile	= shmem_file_sendfile,
2335 #endif
2336 };
2337 
2338 static struct inode_operations shmem_inode_operations = {
2339 	.truncate	= shmem_truncate,
2340 	.setattr	= shmem_notify_change,
2341 	.truncate_range	= shmem_truncate_range,
2342 #ifdef CONFIG_TMPFS_POSIX_ACL
2343 	.setxattr	= generic_setxattr,
2344 	.getxattr	= generic_getxattr,
2345 	.listxattr	= generic_listxattr,
2346 	.removexattr	= generic_removexattr,
2347 	.permission	= shmem_permission,
2348 #endif
2349 
2350 };
2351 
2352 static struct inode_operations shmem_dir_inode_operations = {
2353 #ifdef CONFIG_TMPFS
2354 	.create		= shmem_create,
2355 	.lookup		= simple_lookup,
2356 	.link		= shmem_link,
2357 	.unlink		= shmem_unlink,
2358 	.symlink	= shmem_symlink,
2359 	.mkdir		= shmem_mkdir,
2360 	.rmdir		= shmem_rmdir,
2361 	.mknod		= shmem_mknod,
2362 	.rename		= shmem_rename,
2363 #endif
2364 #ifdef CONFIG_TMPFS_POSIX_ACL
2365 	.setattr	= shmem_notify_change,
2366 	.setxattr	= generic_setxattr,
2367 	.getxattr	= generic_getxattr,
2368 	.listxattr	= generic_listxattr,
2369 	.removexattr	= generic_removexattr,
2370 	.permission	= shmem_permission,
2371 #endif
2372 };
2373 
2374 static struct inode_operations shmem_special_inode_operations = {
2375 #ifdef CONFIG_TMPFS_POSIX_ACL
2376 	.setattr	= shmem_notify_change,
2377 	.setxattr	= generic_setxattr,
2378 	.getxattr	= generic_getxattr,
2379 	.listxattr	= generic_listxattr,
2380 	.removexattr	= generic_removexattr,
2381 	.permission	= shmem_permission,
2382 #endif
2383 };
2384 
2385 static struct super_operations shmem_ops = {
2386 	.alloc_inode	= shmem_alloc_inode,
2387 	.destroy_inode	= shmem_destroy_inode,
2388 #ifdef CONFIG_TMPFS
2389 	.statfs		= shmem_statfs,
2390 	.remount_fs	= shmem_remount_fs,
2391 #endif
2392 	.delete_inode	= shmem_delete_inode,
2393 	.drop_inode	= generic_delete_inode,
2394 	.put_super	= shmem_put_super,
2395 };
2396 
2397 static struct vm_operations_struct shmem_vm_ops = {
2398 	.nopage		= shmem_nopage,
2399 	.populate	= shmem_populate,
2400 #ifdef CONFIG_NUMA
2401 	.set_policy     = shmem_set_policy,
2402 	.get_policy     = shmem_get_policy,
2403 #endif
2404 };
2405 
2406 
2407 static int shmem_get_sb(struct file_system_type *fs_type,
2408 	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2409 {
2410 	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2411 }
2412 
2413 static struct file_system_type tmpfs_fs_type = {
2414 	.owner		= THIS_MODULE,
2415 	.name		= "tmpfs",
2416 	.get_sb		= shmem_get_sb,
2417 	.kill_sb	= kill_litter_super,
2418 };
2419 static struct vfsmount *shm_mnt;
2420 
2421 static int __init init_tmpfs(void)
2422 {
2423 	int error;
2424 
2425 	error = init_inodecache();
2426 	if (error)
2427 		goto out3;
2428 
2429 	error = register_filesystem(&tmpfs_fs_type);
2430 	if (error) {
2431 		printk(KERN_ERR "Could not register tmpfs\n");
2432 		goto out2;
2433 	}
2434 
2435 	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2436 				tmpfs_fs_type.name, NULL);
2437 	if (IS_ERR(shm_mnt)) {
2438 		error = PTR_ERR(shm_mnt);
2439 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2440 		goto out1;
2441 	}
2442 	return 0;
2443 
2444 out1:
2445 	unregister_filesystem(&tmpfs_fs_type);
2446 out2:
2447 	destroy_inodecache();
2448 out3:
2449 	shm_mnt = ERR_PTR(error);
2450 	return error;
2451 }
2452 module_init(init_tmpfs)
2453 
2454 /*
2455  * shmem_file_setup - get an unlinked file living in tmpfs
2456  *
2457  * @name: name for dentry (to be seen in /proc/<pid>/maps
2458  * @size: size to be set for the file
2459  *
2460  */
2461 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2462 {
2463 	int error;
2464 	struct file *file;
2465 	struct inode *inode;
2466 	struct dentry *dentry, *root;
2467 	struct qstr this;
2468 
2469 	if (IS_ERR(shm_mnt))
2470 		return (void *)shm_mnt;
2471 
2472 	if (size < 0 || size > SHMEM_MAX_BYTES)
2473 		return ERR_PTR(-EINVAL);
2474 
2475 	if (shmem_acct_size(flags, size))
2476 		return ERR_PTR(-ENOMEM);
2477 
2478 	error = -ENOMEM;
2479 	this.name = name;
2480 	this.len = strlen(name);
2481 	this.hash = 0; /* will go */
2482 	root = shm_mnt->mnt_root;
2483 	dentry = d_alloc(root, &this);
2484 	if (!dentry)
2485 		goto put_memory;
2486 
2487 	error = -ENFILE;
2488 	file = get_empty_filp();
2489 	if (!file)
2490 		goto put_dentry;
2491 
2492 	error = -ENOSPC;
2493 	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2494 	if (!inode)
2495 		goto close_file;
2496 
2497 	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2498 	d_instantiate(dentry, inode);
2499 	inode->i_size = size;
2500 	inode->i_nlink = 0;	/* It is unlinked */
2501 	file->f_path.mnt = mntget(shm_mnt);
2502 	file->f_path.dentry = dentry;
2503 	file->f_mapping = inode->i_mapping;
2504 	file->f_op = &shmem_file_operations;
2505 	file->f_mode = FMODE_WRITE | FMODE_READ;
2506 	return file;
2507 
2508 close_file:
2509 	put_filp(file);
2510 put_dentry:
2511 	dput(dentry);
2512 put_memory:
2513 	shmem_unacct_size(flags, size);
2514 	return ERR_PTR(error);
2515 }
2516 
2517 /*
2518  * shmem_zero_setup - setup a shared anonymous mapping
2519  *
2520  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2521  */
2522 int shmem_zero_setup(struct vm_area_struct *vma)
2523 {
2524 	struct file *file;
2525 	loff_t size = vma->vm_end - vma->vm_start;
2526 
2527 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2528 	if (IS_ERR(file))
2529 		return PTR_ERR(file);
2530 
2531 	if (vma->vm_file)
2532 		fput(vma->vm_file);
2533 	vma->vm_file = file;
2534 	vma->vm_ops = &shmem_vm_ops;
2535 	return 0;
2536 }
2537