1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include <linux/unicode.h> 44 #include "swap.h" 45 46 static struct vfsmount *shm_mnt __ro_after_init; 47 48 #ifdef CONFIG_SHMEM 49 /* 50 * This virtual memory filesystem is heavily based on the ramfs. It 51 * extends ramfs by the ability to use swap and honor resource limits 52 * which makes it a completely usable filesystem. 53 */ 54 55 #include <linux/xattr.h> 56 #include <linux/exportfs.h> 57 #include <linux/posix_acl.h> 58 #include <linux/posix_acl_xattr.h> 59 #include <linux/mman.h> 60 #include <linux/string.h> 61 #include <linux/slab.h> 62 #include <linux/backing-dev.h> 63 #include <linux/writeback.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/leafops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 #include <linux/quotaops.h> 83 #include <linux/rcupdate_wait.h> 84 85 #include <linux/uaccess.h> 86 87 #include "internal.h" 88 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Pretend that one inode + its dentry occupy this much memory */ 95 #define BOGO_INODE_SIZE 1024 96 97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 98 #define SHORT_SYMLINK_LEN 128 99 100 /* 101 * shmem_fallocate communicates with shmem_fault or shmem_writeout via 102 * inode->i_private (with i_rwsem making sure that it has only one user at 103 * a time): we would prefer not to enlarge the shmem inode just for that. 104 */ 105 struct shmem_falloc { 106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 107 pgoff_t start; /* start of range currently being fallocated */ 108 pgoff_t next; /* the next page offset to be fallocated */ 109 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 110 pgoff_t nr_unswapped; /* how often writeout refused to swap out */ 111 }; 112 113 struct shmem_options { 114 unsigned long long blocks; 115 unsigned long long inodes; 116 struct mempolicy *mpol; 117 kuid_t uid; 118 kgid_t gid; 119 umode_t mode; 120 bool full_inums; 121 int huge; 122 int seen; 123 bool noswap; 124 unsigned short quota_types; 125 struct shmem_quota_limits qlimits; 126 #if IS_ENABLED(CONFIG_UNICODE) 127 struct unicode_map *encoding; 128 bool strict_encoding; 129 #endif 130 #define SHMEM_SEEN_BLOCKS 1 131 #define SHMEM_SEEN_INODES 2 132 #define SHMEM_SEEN_HUGE 4 133 #define SHMEM_SEEN_INUMS 8 134 #define SHMEM_SEEN_QUOTA 16 135 }; 136 137 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 138 static unsigned long huge_shmem_orders_always __read_mostly; 139 static unsigned long huge_shmem_orders_madvise __read_mostly; 140 static unsigned long huge_shmem_orders_inherit __read_mostly; 141 static unsigned long huge_shmem_orders_within_size __read_mostly; 142 static bool shmem_orders_configured __initdata; 143 #endif 144 145 #ifdef CONFIG_TMPFS 146 static unsigned long shmem_default_max_blocks(void) 147 { 148 return totalram_pages() / 2; 149 } 150 151 static unsigned long shmem_default_max_inodes(void) 152 { 153 unsigned long nr_pages = totalram_pages(); 154 155 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 156 ULONG_MAX / BOGO_INODE_SIZE); 157 } 158 #endif 159 160 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 161 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 162 struct vm_area_struct *vma, vm_fault_t *fault_type); 163 164 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 165 { 166 return sb->s_fs_info; 167 } 168 169 /* 170 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 171 * for shared memory and for shared anonymous (/dev/zero) mappings 172 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 173 * consistent with the pre-accounting of private mappings ... 174 */ 175 static inline int shmem_acct_size(unsigned long flags, loff_t size) 176 { 177 return (flags & SHMEM_F_NORESERVE) ? 178 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 179 } 180 181 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 182 { 183 if (!(flags & SHMEM_F_NORESERVE)) 184 vm_unacct_memory(VM_ACCT(size)); 185 } 186 187 static inline int shmem_reacct_size(unsigned long flags, 188 loff_t oldsize, loff_t newsize) 189 { 190 if (!(flags & SHMEM_F_NORESERVE)) { 191 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 192 return security_vm_enough_memory_mm(current->mm, 193 VM_ACCT(newsize) - VM_ACCT(oldsize)); 194 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 195 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 196 } 197 return 0; 198 } 199 200 /* 201 * ... whereas tmpfs objects are accounted incrementally as 202 * pages are allocated, in order to allow large sparse files. 203 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 204 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 205 */ 206 static inline int shmem_acct_blocks(unsigned long flags, long pages) 207 { 208 if (!(flags & SHMEM_F_NORESERVE)) 209 return 0; 210 211 return security_vm_enough_memory_mm(current->mm, 212 pages * VM_ACCT(PAGE_SIZE)); 213 } 214 215 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 216 { 217 if (flags & SHMEM_F_NORESERVE) 218 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 219 } 220 221 int shmem_inode_acct_blocks(struct inode *inode, long pages) 222 { 223 struct shmem_inode_info *info = SHMEM_I(inode); 224 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 225 int err = -ENOSPC; 226 227 if (shmem_acct_blocks(info->flags, pages)) 228 return err; 229 230 might_sleep(); /* when quotas */ 231 if (sbinfo->max_blocks) { 232 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 233 sbinfo->max_blocks, pages)) 234 goto unacct; 235 236 err = dquot_alloc_block_nodirty(inode, pages); 237 if (err) { 238 percpu_counter_sub(&sbinfo->used_blocks, pages); 239 goto unacct; 240 } 241 } else { 242 err = dquot_alloc_block_nodirty(inode, pages); 243 if (err) 244 goto unacct; 245 } 246 247 return 0; 248 249 unacct: 250 shmem_unacct_blocks(info->flags, pages); 251 return err; 252 } 253 254 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 255 { 256 struct shmem_inode_info *info = SHMEM_I(inode); 257 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 258 259 might_sleep(); /* when quotas */ 260 dquot_free_block_nodirty(inode, pages); 261 262 if (sbinfo->max_blocks) 263 percpu_counter_sub(&sbinfo->used_blocks, pages); 264 shmem_unacct_blocks(info->flags, pages); 265 } 266 267 static const struct super_operations shmem_ops; 268 static const struct address_space_operations shmem_aops; 269 static const struct file_operations shmem_file_operations; 270 static const struct inode_operations shmem_inode_operations; 271 static const struct inode_operations shmem_dir_inode_operations; 272 static const struct inode_operations shmem_special_inode_operations; 273 static const struct vm_operations_struct shmem_vm_ops; 274 static const struct vm_operations_struct shmem_anon_vm_ops; 275 static struct file_system_type shmem_fs_type; 276 277 bool shmem_mapping(const struct address_space *mapping) 278 { 279 return mapping->a_ops == &shmem_aops; 280 } 281 EXPORT_SYMBOL_GPL(shmem_mapping); 282 283 bool vma_is_anon_shmem(const struct vm_area_struct *vma) 284 { 285 return vma->vm_ops == &shmem_anon_vm_ops; 286 } 287 288 bool vma_is_shmem(const struct vm_area_struct *vma) 289 { 290 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 291 } 292 293 static LIST_HEAD(shmem_swaplist); 294 static DEFINE_SPINLOCK(shmem_swaplist_lock); 295 296 #ifdef CONFIG_TMPFS_QUOTA 297 298 static int shmem_enable_quotas(struct super_block *sb, 299 unsigned short quota_types) 300 { 301 int type, err = 0; 302 303 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 304 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 305 if (!(quota_types & (1 << type))) 306 continue; 307 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 308 DQUOT_USAGE_ENABLED | 309 DQUOT_LIMITS_ENABLED); 310 if (err) 311 goto out_err; 312 } 313 return 0; 314 315 out_err: 316 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 317 type, err); 318 for (type--; type >= 0; type--) 319 dquot_quota_off(sb, type); 320 return err; 321 } 322 323 static void shmem_disable_quotas(struct super_block *sb) 324 { 325 int type; 326 327 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 328 dquot_quota_off(sb, type); 329 } 330 331 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 332 { 333 return SHMEM_I(inode)->i_dquot; 334 } 335 #endif /* CONFIG_TMPFS_QUOTA */ 336 337 /* 338 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 339 * produces a novel ino for the newly allocated inode. 340 * 341 * It may also be called when making a hard link to permit the space needed by 342 * each dentry. However, in that case, no new inode number is needed since that 343 * internally draws from another pool of inode numbers (currently global 344 * get_next_ino()). This case is indicated by passing NULL as inop. 345 */ 346 #define SHMEM_INO_BATCH 1024 347 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 348 { 349 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 350 ino_t ino; 351 352 if (!(sb->s_flags & SB_KERNMOUNT)) { 353 raw_spin_lock(&sbinfo->stat_lock); 354 if (sbinfo->max_inodes) { 355 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 356 raw_spin_unlock(&sbinfo->stat_lock); 357 return -ENOSPC; 358 } 359 sbinfo->free_ispace -= BOGO_INODE_SIZE; 360 } 361 if (inop) { 362 ino = sbinfo->next_ino++; 363 if (unlikely(is_zero_ino(ino))) 364 ino = sbinfo->next_ino++; 365 if (unlikely(!sbinfo->full_inums && 366 ino > UINT_MAX)) { 367 /* 368 * Emulate get_next_ino uint wraparound for 369 * compatibility 370 */ 371 if (IS_ENABLED(CONFIG_64BIT)) 372 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 373 __func__, MINOR(sb->s_dev)); 374 sbinfo->next_ino = 1; 375 ino = sbinfo->next_ino++; 376 } 377 *inop = ino; 378 } 379 raw_spin_unlock(&sbinfo->stat_lock); 380 } else if (inop) { 381 /* 382 * __shmem_file_setup, one of our callers, is lock-free: it 383 * doesn't hold stat_lock in shmem_reserve_inode since 384 * max_inodes is always 0, and is called from potentially 385 * unknown contexts. As such, use a per-cpu batched allocator 386 * which doesn't require the per-sb stat_lock unless we are at 387 * the batch boundary. 388 * 389 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 390 * shmem mounts are not exposed to userspace, so we don't need 391 * to worry about things like glibc compatibility. 392 */ 393 ino_t *next_ino; 394 395 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 396 ino = *next_ino; 397 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 398 raw_spin_lock(&sbinfo->stat_lock); 399 ino = sbinfo->next_ino; 400 sbinfo->next_ino += SHMEM_INO_BATCH; 401 raw_spin_unlock(&sbinfo->stat_lock); 402 if (unlikely(is_zero_ino(ino))) 403 ino++; 404 } 405 *inop = ino; 406 *next_ino = ++ino; 407 put_cpu(); 408 } 409 410 return 0; 411 } 412 413 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 414 { 415 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 416 if (sbinfo->max_inodes) { 417 raw_spin_lock(&sbinfo->stat_lock); 418 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 419 raw_spin_unlock(&sbinfo->stat_lock); 420 } 421 } 422 423 /** 424 * shmem_recalc_inode - recalculate the block usage of an inode 425 * @inode: inode to recalc 426 * @alloced: the change in number of pages allocated to inode 427 * @swapped: the change in number of pages swapped from inode 428 * 429 * We have to calculate the free blocks since the mm can drop 430 * undirtied hole pages behind our back. 431 * 432 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 433 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 434 * 435 * Return: true if swapped was incremented from 0, for shmem_writeout(). 436 */ 437 bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 438 { 439 struct shmem_inode_info *info = SHMEM_I(inode); 440 bool first_swapped = false; 441 long freed; 442 443 spin_lock(&info->lock); 444 info->alloced += alloced; 445 info->swapped += swapped; 446 freed = info->alloced - info->swapped - 447 READ_ONCE(inode->i_mapping->nrpages); 448 /* 449 * Special case: whereas normally shmem_recalc_inode() is called 450 * after i_mapping->nrpages has already been adjusted (up or down), 451 * shmem_writeout() has to raise swapped before nrpages is lowered - 452 * to stop a racing shmem_recalc_inode() from thinking that a page has 453 * been freed. Compensate here, to avoid the need for a followup call. 454 */ 455 if (swapped > 0) { 456 if (info->swapped == swapped) 457 first_swapped = true; 458 freed += swapped; 459 } 460 if (freed > 0) 461 info->alloced -= freed; 462 spin_unlock(&info->lock); 463 464 /* The quota case may block */ 465 if (freed > 0) 466 shmem_inode_unacct_blocks(inode, freed); 467 return first_swapped; 468 } 469 470 bool shmem_charge(struct inode *inode, long pages) 471 { 472 struct address_space *mapping = inode->i_mapping; 473 474 if (shmem_inode_acct_blocks(inode, pages)) 475 return false; 476 477 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 478 xa_lock_irq(&mapping->i_pages); 479 mapping->nrpages += pages; 480 xa_unlock_irq(&mapping->i_pages); 481 482 shmem_recalc_inode(inode, pages, 0); 483 return true; 484 } 485 486 void shmem_uncharge(struct inode *inode, long pages) 487 { 488 /* pages argument is currently unused: keep it to help debugging */ 489 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 490 491 shmem_recalc_inode(inode, 0, 0); 492 } 493 494 /* 495 * Replace item expected in xarray by a new item, while holding xa_lock. 496 */ 497 static int shmem_replace_entry(struct address_space *mapping, 498 pgoff_t index, void *expected, void *replacement) 499 { 500 XA_STATE(xas, &mapping->i_pages, index); 501 void *item; 502 503 VM_BUG_ON(!expected); 504 VM_BUG_ON(!replacement); 505 item = xas_load(&xas); 506 if (item != expected) 507 return -ENOENT; 508 xas_store(&xas, replacement); 509 return 0; 510 } 511 512 /* 513 * Sometimes, before we decide whether to proceed or to fail, we must check 514 * that an entry was not already brought back or split by a racing thread. 515 * 516 * Checking folio is not enough: by the time a swapcache folio is locked, it 517 * might be reused, and again be swapcache, using the same swap as before. 518 * Returns the swap entry's order if it still presents, else returns -1. 519 */ 520 static int shmem_confirm_swap(struct address_space *mapping, pgoff_t index, 521 swp_entry_t swap) 522 { 523 XA_STATE(xas, &mapping->i_pages, index); 524 int ret = -1; 525 void *entry; 526 527 rcu_read_lock(); 528 do { 529 entry = xas_load(&xas); 530 if (entry == swp_to_radix_entry(swap)) 531 ret = xas_get_order(&xas); 532 } while (xas_retry(&xas, entry)); 533 rcu_read_unlock(); 534 return ret; 535 } 536 537 /* 538 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 539 * 540 * SHMEM_HUGE_NEVER: 541 * disables huge pages for the mount; 542 * SHMEM_HUGE_ALWAYS: 543 * enables huge pages for the mount; 544 * SHMEM_HUGE_WITHIN_SIZE: 545 * only allocate huge pages if the page will be fully within i_size, 546 * also respect madvise() hints; 547 * SHMEM_HUGE_ADVISE: 548 * only allocate huge pages if requested with madvise(); 549 */ 550 551 #define SHMEM_HUGE_NEVER 0 552 #define SHMEM_HUGE_ALWAYS 1 553 #define SHMEM_HUGE_WITHIN_SIZE 2 554 #define SHMEM_HUGE_ADVISE 3 555 556 /* 557 * Special values. 558 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 559 * 560 * SHMEM_HUGE_DENY: 561 * disables huge on shm_mnt and all mounts, for emergency use; 562 * SHMEM_HUGE_FORCE: 563 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 564 * 565 */ 566 #define SHMEM_HUGE_DENY (-1) 567 #define SHMEM_HUGE_FORCE (-2) 568 569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 570 /* ifdef here to avoid bloating shmem.o when not necessary */ 571 572 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_NEVER) 573 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER 574 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ALWAYS) 575 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ALWAYS 576 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_WITHIN_SIZE) 577 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE 578 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ADVISE) 579 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ADVISE 580 #else 581 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER 582 #endif 583 584 static int shmem_huge __read_mostly = SHMEM_HUGE_DEFAULT; 585 586 #undef SHMEM_HUGE_DEFAULT 587 588 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_NEVER) 589 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER 590 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ALWAYS) 591 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ALWAYS 592 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_WITHIN_SIZE) 593 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE 594 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ADVISE) 595 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ADVISE 596 #else 597 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER 598 #endif 599 600 static int tmpfs_huge __read_mostly = TMPFS_HUGE_DEFAULT; 601 602 #undef TMPFS_HUGE_DEFAULT 603 604 static unsigned int shmem_get_orders_within_size(struct inode *inode, 605 unsigned long within_size_orders, pgoff_t index, 606 loff_t write_end) 607 { 608 pgoff_t aligned_index; 609 unsigned long order; 610 loff_t i_size; 611 612 order = highest_order(within_size_orders); 613 while (within_size_orders) { 614 aligned_index = round_up(index + 1, 1 << order); 615 i_size = max(write_end, i_size_read(inode)); 616 i_size = round_up(i_size, PAGE_SIZE); 617 if (i_size >> PAGE_SHIFT >= aligned_index) 618 return within_size_orders; 619 620 order = next_order(&within_size_orders, order); 621 } 622 623 return 0; 624 } 625 626 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 627 loff_t write_end, bool shmem_huge_force, 628 struct vm_area_struct *vma, 629 vm_flags_t vm_flags) 630 { 631 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ? 632 0 : BIT(HPAGE_PMD_ORDER); 633 unsigned long within_size_orders; 634 635 if (!S_ISREG(inode->i_mode)) 636 return 0; 637 if (shmem_huge == SHMEM_HUGE_DENY) 638 return 0; 639 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 640 return maybe_pmd_order; 641 642 /* 643 * The huge order allocation for anon shmem is controlled through 644 * the mTHP interface, so we still use PMD-sized huge order to 645 * check whether global control is enabled. 646 * 647 * For tmpfs with 'huge=always' or 'huge=within_size' mount option, 648 * we will always try PMD-sized order first. If that failed, it will 649 * fall back to small large folios. 650 */ 651 switch (SHMEM_SB(inode->i_sb)->huge) { 652 case SHMEM_HUGE_ALWAYS: 653 return THP_ORDERS_ALL_FILE_DEFAULT; 654 case SHMEM_HUGE_WITHIN_SIZE: 655 within_size_orders = shmem_get_orders_within_size(inode, 656 THP_ORDERS_ALL_FILE_DEFAULT, index, write_end); 657 if (within_size_orders > 0) 658 return within_size_orders; 659 660 fallthrough; 661 case SHMEM_HUGE_ADVISE: 662 if (vm_flags & VM_HUGEPAGE) 663 return THP_ORDERS_ALL_FILE_DEFAULT; 664 fallthrough; 665 default: 666 return 0; 667 } 668 } 669 670 static int shmem_parse_huge(const char *str) 671 { 672 int huge; 673 674 if (!str) 675 return -EINVAL; 676 677 if (!strcmp(str, "never")) 678 huge = SHMEM_HUGE_NEVER; 679 else if (!strcmp(str, "always")) 680 huge = SHMEM_HUGE_ALWAYS; 681 else if (!strcmp(str, "within_size")) 682 huge = SHMEM_HUGE_WITHIN_SIZE; 683 else if (!strcmp(str, "advise")) 684 huge = SHMEM_HUGE_ADVISE; 685 else if (!strcmp(str, "deny")) 686 huge = SHMEM_HUGE_DENY; 687 else if (!strcmp(str, "force")) 688 huge = SHMEM_HUGE_FORCE; 689 else 690 return -EINVAL; 691 692 if (!has_transparent_hugepage() && 693 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 694 return -EINVAL; 695 696 /* Do not override huge allocation policy with non-PMD sized mTHP */ 697 if (huge == SHMEM_HUGE_FORCE && 698 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER)) 699 return -EINVAL; 700 701 return huge; 702 } 703 704 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 705 static const char *shmem_format_huge(int huge) 706 { 707 switch (huge) { 708 case SHMEM_HUGE_NEVER: 709 return "never"; 710 case SHMEM_HUGE_ALWAYS: 711 return "always"; 712 case SHMEM_HUGE_WITHIN_SIZE: 713 return "within_size"; 714 case SHMEM_HUGE_ADVISE: 715 return "advise"; 716 case SHMEM_HUGE_DENY: 717 return "deny"; 718 case SHMEM_HUGE_FORCE: 719 return "force"; 720 default: 721 VM_BUG_ON(1); 722 return "bad_val"; 723 } 724 } 725 #endif 726 727 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 728 struct shrink_control *sc, unsigned long nr_to_free) 729 { 730 LIST_HEAD(list), *pos, *next; 731 struct inode *inode; 732 struct shmem_inode_info *info; 733 struct folio *folio; 734 unsigned long batch = sc ? sc->nr_to_scan : 128; 735 unsigned long split = 0, freed = 0; 736 737 if (list_empty(&sbinfo->shrinklist)) 738 return SHRINK_STOP; 739 740 spin_lock(&sbinfo->shrinklist_lock); 741 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 742 info = list_entry(pos, struct shmem_inode_info, shrinklist); 743 744 /* pin the inode */ 745 inode = igrab(&info->vfs_inode); 746 747 /* inode is about to be evicted */ 748 if (!inode) { 749 list_del_init(&info->shrinklist); 750 goto next; 751 } 752 753 list_move(&info->shrinklist, &list); 754 next: 755 sbinfo->shrinklist_len--; 756 if (!--batch) 757 break; 758 } 759 spin_unlock(&sbinfo->shrinklist_lock); 760 761 list_for_each_safe(pos, next, &list) { 762 pgoff_t next, end; 763 loff_t i_size; 764 int ret; 765 766 info = list_entry(pos, struct shmem_inode_info, shrinklist); 767 inode = &info->vfs_inode; 768 769 if (nr_to_free && freed >= nr_to_free) 770 goto move_back; 771 772 i_size = i_size_read(inode); 773 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE); 774 if (!folio || xa_is_value(folio)) 775 goto drop; 776 777 /* No large folio at the end of the file: nothing to split */ 778 if (!folio_test_large(folio)) { 779 folio_put(folio); 780 goto drop; 781 } 782 783 /* Check if there is anything to gain from splitting */ 784 next = folio_next_index(folio); 785 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE)); 786 if (end <= folio->index || end >= next) { 787 folio_put(folio); 788 goto drop; 789 } 790 791 /* 792 * Move the inode on the list back to shrinklist if we failed 793 * to lock the page at this time. 794 * 795 * Waiting for the lock may lead to deadlock in the 796 * reclaim path. 797 */ 798 if (!folio_trylock(folio)) { 799 folio_put(folio); 800 goto move_back; 801 } 802 803 ret = split_folio(folio); 804 folio_unlock(folio); 805 folio_put(folio); 806 807 /* If split failed move the inode on the list back to shrinklist */ 808 if (ret) 809 goto move_back; 810 811 freed += next - end; 812 split++; 813 drop: 814 list_del_init(&info->shrinklist); 815 goto put; 816 move_back: 817 /* 818 * Make sure the inode is either on the global list or deleted 819 * from any local list before iput() since it could be deleted 820 * in another thread once we put the inode (then the local list 821 * is corrupted). 822 */ 823 spin_lock(&sbinfo->shrinklist_lock); 824 list_move(&info->shrinklist, &sbinfo->shrinklist); 825 sbinfo->shrinklist_len++; 826 spin_unlock(&sbinfo->shrinklist_lock); 827 put: 828 iput(inode); 829 } 830 831 return split; 832 } 833 834 static long shmem_unused_huge_scan(struct super_block *sb, 835 struct shrink_control *sc) 836 { 837 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 838 839 if (!READ_ONCE(sbinfo->shrinklist_len)) 840 return SHRINK_STOP; 841 842 return shmem_unused_huge_shrink(sbinfo, sc, 0); 843 } 844 845 static long shmem_unused_huge_count(struct super_block *sb, 846 struct shrink_control *sc) 847 { 848 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 849 return READ_ONCE(sbinfo->shrinklist_len); 850 } 851 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 852 853 #define shmem_huge SHMEM_HUGE_DENY 854 855 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 856 struct shrink_control *sc, unsigned long nr_to_free) 857 { 858 return 0; 859 } 860 861 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 862 loff_t write_end, bool shmem_huge_force, 863 struct vm_area_struct *vma, 864 vm_flags_t vm_flags) 865 { 866 return 0; 867 } 868 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 869 870 static void shmem_update_stats(struct folio *folio, int nr_pages) 871 { 872 if (folio_test_pmd_mappable(folio)) 873 lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages); 874 lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages); 875 lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages); 876 } 877 878 /* 879 * Somewhat like filemap_add_folio, but error if expected item has gone. 880 */ 881 int shmem_add_to_page_cache(struct folio *folio, 882 struct address_space *mapping, 883 pgoff_t index, void *expected, gfp_t gfp) 884 { 885 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 886 unsigned long nr = folio_nr_pages(folio); 887 swp_entry_t iter, swap; 888 void *entry; 889 890 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 891 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 892 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 893 894 folio_ref_add(folio, nr); 895 folio->mapping = mapping; 896 folio->index = index; 897 898 gfp &= GFP_RECLAIM_MASK; 899 folio_throttle_swaprate(folio, gfp); 900 swap = radix_to_swp_entry(expected); 901 902 do { 903 iter = swap; 904 xas_lock_irq(&xas); 905 xas_for_each_conflict(&xas, entry) { 906 /* 907 * The range must either be empty, or filled with 908 * expected swap entries. Shmem swap entries are never 909 * partially freed without split of both entry and 910 * folio, so there shouldn't be any holes. 911 */ 912 if (!expected || entry != swp_to_radix_entry(iter)) { 913 xas_set_err(&xas, -EEXIST); 914 goto unlock; 915 } 916 iter.val += 1 << xas_get_order(&xas); 917 } 918 if (expected && iter.val - nr != swap.val) { 919 xas_set_err(&xas, -EEXIST); 920 goto unlock; 921 } 922 xas_store(&xas, folio); 923 if (xas_error(&xas)) 924 goto unlock; 925 shmem_update_stats(folio, nr); 926 mapping->nrpages += nr; 927 unlock: 928 xas_unlock_irq(&xas); 929 } while (xas_nomem(&xas, gfp)); 930 931 if (xas_error(&xas)) { 932 folio->mapping = NULL; 933 folio_ref_sub(folio, nr); 934 return xas_error(&xas); 935 } 936 937 return 0; 938 } 939 940 /* 941 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 942 */ 943 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 944 { 945 struct address_space *mapping = folio->mapping; 946 long nr = folio_nr_pages(folio); 947 int error; 948 949 xa_lock_irq(&mapping->i_pages); 950 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 951 folio->mapping = NULL; 952 mapping->nrpages -= nr; 953 shmem_update_stats(folio, -nr); 954 xa_unlock_irq(&mapping->i_pages); 955 folio_put_refs(folio, nr); 956 BUG_ON(error); 957 } 958 959 /* 960 * Remove swap entry from page cache, free the swap and its page cache. Returns 961 * the number of pages being freed. 0 means entry not found in XArray (0 pages 962 * being freed). 963 */ 964 static long shmem_free_swap(struct address_space *mapping, 965 pgoff_t index, pgoff_t end, void *radswap) 966 { 967 XA_STATE(xas, &mapping->i_pages, index); 968 unsigned int nr_pages = 0; 969 pgoff_t base; 970 void *entry; 971 972 xas_lock_irq(&xas); 973 entry = xas_load(&xas); 974 if (entry == radswap) { 975 nr_pages = 1 << xas_get_order(&xas); 976 base = round_down(xas.xa_index, nr_pages); 977 if (base < index || base + nr_pages - 1 > end) 978 nr_pages = 0; 979 else 980 xas_store(&xas, NULL); 981 } 982 xas_unlock_irq(&xas); 983 984 if (nr_pages) 985 free_swap_and_cache_nr(radix_to_swp_entry(radswap), nr_pages); 986 987 return nr_pages; 988 } 989 990 /* 991 * Determine (in bytes) how many of the shmem object's pages mapped by the 992 * given offsets are swapped out. 993 * 994 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 995 * as long as the inode doesn't go away and racy results are not a problem. 996 */ 997 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 998 pgoff_t start, pgoff_t end) 999 { 1000 XA_STATE(xas, &mapping->i_pages, start); 1001 struct folio *folio; 1002 unsigned long swapped = 0; 1003 unsigned long max = end - 1; 1004 1005 rcu_read_lock(); 1006 xas_for_each(&xas, folio, max) { 1007 if (xas_retry(&xas, folio)) 1008 continue; 1009 if (xa_is_value(folio)) 1010 swapped += 1 << xas_get_order(&xas); 1011 if (xas.xa_index == max) 1012 break; 1013 if (need_resched()) { 1014 xas_pause(&xas); 1015 cond_resched_rcu(); 1016 } 1017 } 1018 rcu_read_unlock(); 1019 1020 return swapped << PAGE_SHIFT; 1021 } 1022 1023 /* 1024 * Determine (in bytes) how many of the shmem object's pages mapped by the 1025 * given vma is swapped out. 1026 * 1027 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 1028 * as long as the inode doesn't go away and racy results are not a problem. 1029 */ 1030 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 1031 { 1032 struct inode *inode = file_inode(vma->vm_file); 1033 struct shmem_inode_info *info = SHMEM_I(inode); 1034 struct address_space *mapping = inode->i_mapping; 1035 unsigned long swapped; 1036 1037 /* Be careful as we don't hold info->lock */ 1038 swapped = READ_ONCE(info->swapped); 1039 1040 /* 1041 * The easier cases are when the shmem object has nothing in swap, or 1042 * the vma maps it whole. Then we can simply use the stats that we 1043 * already track. 1044 */ 1045 if (!swapped) 1046 return 0; 1047 1048 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 1049 return swapped << PAGE_SHIFT; 1050 1051 /* Here comes the more involved part */ 1052 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 1053 vma->vm_pgoff + vma_pages(vma)); 1054 } 1055 1056 /* 1057 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 1058 */ 1059 void shmem_unlock_mapping(struct address_space *mapping) 1060 { 1061 struct folio_batch fbatch; 1062 pgoff_t index = 0; 1063 1064 folio_batch_init(&fbatch); 1065 /* 1066 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 1067 */ 1068 while (!mapping_unevictable(mapping) && 1069 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 1070 check_move_unevictable_folios(&fbatch); 1071 folio_batch_release(&fbatch); 1072 cond_resched(); 1073 } 1074 } 1075 1076 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 1077 { 1078 struct folio *folio; 1079 1080 /* 1081 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 1082 * beyond i_size, and reports fallocated folios as holes. 1083 */ 1084 folio = filemap_get_entry(inode->i_mapping, index); 1085 if (!folio) 1086 return folio; 1087 if (!xa_is_value(folio)) { 1088 folio_lock(folio); 1089 if (folio->mapping == inode->i_mapping) 1090 return folio; 1091 /* The folio has been swapped out */ 1092 folio_unlock(folio); 1093 folio_put(folio); 1094 } 1095 /* 1096 * But read a folio back from swap if any of it is within i_size 1097 * (although in some cases this is just a waste of time). 1098 */ 1099 folio = NULL; 1100 shmem_get_folio(inode, index, 0, &folio, SGP_READ); 1101 return folio; 1102 } 1103 1104 /* 1105 * Remove range of pages and swap entries from page cache, and free them. 1106 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 1107 */ 1108 static void shmem_undo_range(struct inode *inode, loff_t lstart, uoff_t lend, 1109 bool unfalloc) 1110 { 1111 struct address_space *mapping = inode->i_mapping; 1112 struct shmem_inode_info *info = SHMEM_I(inode); 1113 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 1114 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 1115 struct folio_batch fbatch; 1116 pgoff_t indices[PAGEVEC_SIZE]; 1117 struct folio *folio; 1118 bool same_folio; 1119 long nr_swaps_freed = 0; 1120 pgoff_t index; 1121 int i; 1122 1123 if (lend == -1) 1124 end = -1; /* unsigned, so actually very big */ 1125 1126 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1127 info->fallocend = start; 1128 1129 folio_batch_init(&fbatch); 1130 index = start; 1131 while (index < end && find_lock_entries(mapping, &index, end - 1, 1132 &fbatch, indices)) { 1133 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1134 folio = fbatch.folios[i]; 1135 1136 if (xa_is_value(folio)) { 1137 if (unfalloc) 1138 continue; 1139 nr_swaps_freed += shmem_free_swap(mapping, indices[i], 1140 end - 1, folio); 1141 continue; 1142 } 1143 1144 if (!unfalloc || !folio_test_uptodate(folio)) 1145 truncate_inode_folio(mapping, folio); 1146 folio_unlock(folio); 1147 } 1148 folio_batch_remove_exceptionals(&fbatch); 1149 folio_batch_release(&fbatch); 1150 cond_resched(); 1151 } 1152 1153 /* 1154 * When undoing a failed fallocate, we want none of the partial folio 1155 * zeroing and splitting below, but shall want to truncate the whole 1156 * folio when !uptodate indicates that it was added by this fallocate, 1157 * even when [lstart, lend] covers only a part of the folio. 1158 */ 1159 if (unfalloc) 1160 goto whole_folios; 1161 1162 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1163 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1164 if (folio) { 1165 same_folio = lend < folio_next_pos(folio); 1166 folio_mark_dirty(folio); 1167 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1168 start = folio_next_index(folio); 1169 if (same_folio) 1170 end = folio->index; 1171 } 1172 folio_unlock(folio); 1173 folio_put(folio); 1174 folio = NULL; 1175 } 1176 1177 if (!same_folio) 1178 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1179 if (folio) { 1180 folio_mark_dirty(folio); 1181 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1182 end = folio->index; 1183 folio_unlock(folio); 1184 folio_put(folio); 1185 } 1186 1187 whole_folios: 1188 1189 index = start; 1190 while (index < end) { 1191 cond_resched(); 1192 1193 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1194 indices)) { 1195 /* If all gone or hole-punch or unfalloc, we're done */ 1196 if (index == start || end != -1) 1197 break; 1198 /* But if truncating, restart to make sure all gone */ 1199 index = start; 1200 continue; 1201 } 1202 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1203 folio = fbatch.folios[i]; 1204 1205 if (xa_is_value(folio)) { 1206 int order; 1207 long swaps_freed; 1208 1209 if (unfalloc) 1210 continue; 1211 swaps_freed = shmem_free_swap(mapping, indices[i], 1212 end - 1, folio); 1213 if (!swaps_freed) { 1214 /* 1215 * If found a large swap entry cross the end border, 1216 * skip it as the truncate_inode_partial_folio above 1217 * should have at least zerod its content once. 1218 */ 1219 order = shmem_confirm_swap(mapping, indices[i], 1220 radix_to_swp_entry(folio)); 1221 if (order > 0 && indices[i] + (1 << order) > end) 1222 continue; 1223 /* Swap was replaced by page: retry */ 1224 index = indices[i]; 1225 break; 1226 } 1227 nr_swaps_freed += swaps_freed; 1228 continue; 1229 } 1230 1231 folio_lock(folio); 1232 1233 if (!unfalloc || !folio_test_uptodate(folio)) { 1234 if (folio_mapping(folio) != mapping) { 1235 /* Page was replaced by swap: retry */ 1236 folio_unlock(folio); 1237 index = indices[i]; 1238 break; 1239 } 1240 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1241 folio); 1242 1243 if (!folio_test_large(folio)) { 1244 truncate_inode_folio(mapping, folio); 1245 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1246 /* 1247 * If we split a page, reset the loop so 1248 * that we pick up the new sub pages. 1249 * Otherwise the THP was entirely 1250 * dropped or the target range was 1251 * zeroed, so just continue the loop as 1252 * is. 1253 */ 1254 if (!folio_test_large(folio)) { 1255 folio_unlock(folio); 1256 index = start; 1257 break; 1258 } 1259 } 1260 } 1261 folio_unlock(folio); 1262 } 1263 folio_batch_remove_exceptionals(&fbatch); 1264 folio_batch_release(&fbatch); 1265 } 1266 1267 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1268 } 1269 1270 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend) 1271 { 1272 shmem_undo_range(inode, lstart, lend, false); 1273 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1274 inode_inc_iversion(inode); 1275 } 1276 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1277 1278 static int shmem_getattr(struct mnt_idmap *idmap, 1279 const struct path *path, struct kstat *stat, 1280 u32 request_mask, unsigned int query_flags) 1281 { 1282 struct inode *inode = path->dentry->d_inode; 1283 struct shmem_inode_info *info = SHMEM_I(inode); 1284 1285 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1286 shmem_recalc_inode(inode, 0, 0); 1287 1288 if (info->fsflags & FS_APPEND_FL) 1289 stat->attributes |= STATX_ATTR_APPEND; 1290 if (info->fsflags & FS_IMMUTABLE_FL) 1291 stat->attributes |= STATX_ATTR_IMMUTABLE; 1292 if (info->fsflags & FS_NODUMP_FL) 1293 stat->attributes |= STATX_ATTR_NODUMP; 1294 stat->attributes_mask |= (STATX_ATTR_APPEND | 1295 STATX_ATTR_IMMUTABLE | 1296 STATX_ATTR_NODUMP); 1297 generic_fillattr(idmap, request_mask, inode, stat); 1298 1299 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0)) 1300 stat->blksize = HPAGE_PMD_SIZE; 1301 1302 if (request_mask & STATX_BTIME) { 1303 stat->result_mask |= STATX_BTIME; 1304 stat->btime.tv_sec = info->i_crtime.tv_sec; 1305 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1306 } 1307 1308 return 0; 1309 } 1310 1311 static int shmem_setattr(struct mnt_idmap *idmap, 1312 struct dentry *dentry, struct iattr *attr) 1313 { 1314 struct inode *inode = d_inode(dentry); 1315 struct shmem_inode_info *info = SHMEM_I(inode); 1316 int error; 1317 bool update_mtime = false; 1318 bool update_ctime = true; 1319 1320 error = setattr_prepare(idmap, dentry, attr); 1321 if (error) 1322 return error; 1323 1324 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1325 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1326 return -EPERM; 1327 } 1328 } 1329 1330 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1331 loff_t oldsize = inode->i_size; 1332 loff_t newsize = attr->ia_size; 1333 1334 /* protected by i_rwsem */ 1335 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1336 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1337 return -EPERM; 1338 1339 if (newsize != oldsize) { 1340 if (info->flags & SHMEM_F_MAPPING_FROZEN) 1341 return -EPERM; 1342 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1343 oldsize, newsize); 1344 if (error) 1345 return error; 1346 i_size_write(inode, newsize); 1347 update_mtime = true; 1348 } else { 1349 update_ctime = false; 1350 } 1351 if (newsize <= oldsize) { 1352 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1353 if (oldsize > holebegin) 1354 unmap_mapping_range(inode->i_mapping, 1355 holebegin, 0, 1); 1356 if (info->alloced) 1357 shmem_truncate_range(inode, 1358 newsize, (loff_t)-1); 1359 /* unmap again to remove racily COWed private pages */ 1360 if (oldsize > holebegin) 1361 unmap_mapping_range(inode->i_mapping, 1362 holebegin, 0, 1); 1363 } 1364 } 1365 1366 if (is_quota_modification(idmap, inode, attr)) { 1367 error = dquot_initialize(inode); 1368 if (error) 1369 return error; 1370 } 1371 1372 /* Transfer quota accounting */ 1373 if (i_uid_needs_update(idmap, attr, inode) || 1374 i_gid_needs_update(idmap, attr, inode)) { 1375 error = dquot_transfer(idmap, inode, attr); 1376 if (error) 1377 return error; 1378 } 1379 1380 setattr_copy(idmap, inode, attr); 1381 if (attr->ia_valid & ATTR_MODE) 1382 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1383 if (!error && update_ctime) { 1384 inode_set_ctime_current(inode); 1385 if (update_mtime) 1386 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1387 inode_inc_iversion(inode); 1388 } 1389 return error; 1390 } 1391 1392 static void shmem_evict_inode(struct inode *inode) 1393 { 1394 struct shmem_inode_info *info = SHMEM_I(inode); 1395 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1396 size_t freed = 0; 1397 1398 if (shmem_mapping(inode->i_mapping)) { 1399 shmem_unacct_size(info->flags, inode->i_size); 1400 inode->i_size = 0; 1401 mapping_set_exiting(inode->i_mapping); 1402 shmem_truncate_range(inode, 0, (loff_t)-1); 1403 if (!list_empty(&info->shrinklist)) { 1404 spin_lock(&sbinfo->shrinklist_lock); 1405 if (!list_empty(&info->shrinklist)) { 1406 list_del_init(&info->shrinklist); 1407 sbinfo->shrinklist_len--; 1408 } 1409 spin_unlock(&sbinfo->shrinklist_lock); 1410 } 1411 while (!list_empty(&info->swaplist)) { 1412 /* Wait while shmem_unuse() is scanning this inode... */ 1413 wait_var_event(&info->stop_eviction, 1414 !atomic_read(&info->stop_eviction)); 1415 spin_lock(&shmem_swaplist_lock); 1416 /* ...but beware of the race if we peeked too early */ 1417 if (!atomic_read(&info->stop_eviction)) 1418 list_del_init(&info->swaplist); 1419 spin_unlock(&shmem_swaplist_lock); 1420 } 1421 } 1422 1423 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1424 shmem_free_inode(inode->i_sb, freed); 1425 WARN_ON(inode->i_blocks); 1426 clear_inode(inode); 1427 #ifdef CONFIG_TMPFS_QUOTA 1428 dquot_free_inode(inode); 1429 dquot_drop(inode); 1430 #endif 1431 } 1432 1433 static unsigned int shmem_find_swap_entries(struct address_space *mapping, 1434 pgoff_t start, struct folio_batch *fbatch, 1435 pgoff_t *indices, unsigned int type) 1436 { 1437 XA_STATE(xas, &mapping->i_pages, start); 1438 struct folio *folio; 1439 swp_entry_t entry; 1440 1441 rcu_read_lock(); 1442 xas_for_each(&xas, folio, ULONG_MAX) { 1443 if (xas_retry(&xas, folio)) 1444 continue; 1445 1446 if (!xa_is_value(folio)) 1447 continue; 1448 1449 entry = radix_to_swp_entry(folio); 1450 /* 1451 * swapin error entries can be found in the mapping. But they're 1452 * deliberately ignored here as we've done everything we can do. 1453 */ 1454 if (swp_type(entry) != type) 1455 continue; 1456 1457 indices[folio_batch_count(fbatch)] = xas.xa_index; 1458 if (!folio_batch_add(fbatch, folio)) 1459 break; 1460 1461 if (need_resched()) { 1462 xas_pause(&xas); 1463 cond_resched_rcu(); 1464 } 1465 } 1466 rcu_read_unlock(); 1467 1468 return folio_batch_count(fbatch); 1469 } 1470 1471 /* 1472 * Move the swapped pages for an inode to page cache. Returns the count 1473 * of pages swapped in, or the error in case of failure. 1474 */ 1475 static int shmem_unuse_swap_entries(struct inode *inode, 1476 struct folio_batch *fbatch, pgoff_t *indices) 1477 { 1478 int i = 0; 1479 int ret = 0; 1480 int error = 0; 1481 struct address_space *mapping = inode->i_mapping; 1482 1483 for (i = 0; i < folio_batch_count(fbatch); i++) { 1484 struct folio *folio = fbatch->folios[i]; 1485 1486 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1487 mapping_gfp_mask(mapping), NULL, NULL); 1488 if (error == 0) { 1489 folio_unlock(folio); 1490 folio_put(folio); 1491 ret++; 1492 } 1493 if (error == -ENOMEM) 1494 break; 1495 error = 0; 1496 } 1497 return error ? error : ret; 1498 } 1499 1500 /* 1501 * If swap found in inode, free it and move page from swapcache to filecache. 1502 */ 1503 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1504 { 1505 struct address_space *mapping = inode->i_mapping; 1506 pgoff_t start = 0; 1507 struct folio_batch fbatch; 1508 pgoff_t indices[PAGEVEC_SIZE]; 1509 int ret = 0; 1510 1511 do { 1512 folio_batch_init(&fbatch); 1513 if (!shmem_find_swap_entries(mapping, start, &fbatch, 1514 indices, type)) { 1515 ret = 0; 1516 break; 1517 } 1518 1519 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1520 if (ret < 0) 1521 break; 1522 1523 start = indices[folio_batch_count(&fbatch) - 1]; 1524 } while (true); 1525 1526 return ret; 1527 } 1528 1529 /* 1530 * Read all the shared memory data that resides in the swap 1531 * device 'type' back into memory, so the swap device can be 1532 * unused. 1533 */ 1534 int shmem_unuse(unsigned int type) 1535 { 1536 struct shmem_inode_info *info, *next; 1537 int error = 0; 1538 1539 if (list_empty(&shmem_swaplist)) 1540 return 0; 1541 1542 spin_lock(&shmem_swaplist_lock); 1543 start_over: 1544 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1545 if (!info->swapped) { 1546 list_del_init(&info->swaplist); 1547 continue; 1548 } 1549 /* 1550 * Drop the swaplist mutex while searching the inode for swap; 1551 * but before doing so, make sure shmem_evict_inode() will not 1552 * remove placeholder inode from swaplist, nor let it be freed 1553 * (igrab() would protect from unlink, but not from unmount). 1554 */ 1555 atomic_inc(&info->stop_eviction); 1556 spin_unlock(&shmem_swaplist_lock); 1557 1558 error = shmem_unuse_inode(&info->vfs_inode, type); 1559 cond_resched(); 1560 1561 spin_lock(&shmem_swaplist_lock); 1562 if (atomic_dec_and_test(&info->stop_eviction)) 1563 wake_up_var(&info->stop_eviction); 1564 if (error) 1565 break; 1566 if (list_empty(&info->swaplist)) 1567 goto start_over; 1568 next = list_next_entry(info, swaplist); 1569 if (!info->swapped) 1570 list_del_init(&info->swaplist); 1571 } 1572 spin_unlock(&shmem_swaplist_lock); 1573 1574 return error; 1575 } 1576 1577 /** 1578 * shmem_writeout - Write the folio to swap 1579 * @folio: The folio to write 1580 * @plug: swap plug 1581 * @folio_list: list to put back folios on split 1582 * 1583 * Move the folio from the page cache to the swap cache. 1584 */ 1585 int shmem_writeout(struct folio *folio, struct swap_iocb **plug, 1586 struct list_head *folio_list) 1587 { 1588 struct address_space *mapping = folio->mapping; 1589 struct inode *inode = mapping->host; 1590 struct shmem_inode_info *info = SHMEM_I(inode); 1591 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1592 pgoff_t index; 1593 int nr_pages; 1594 bool split = false; 1595 1596 if ((info->flags & SHMEM_F_LOCKED) || sbinfo->noswap) 1597 goto redirty; 1598 1599 if (!total_swap_pages) 1600 goto redirty; 1601 1602 /* 1603 * If CONFIG_THP_SWAP is not enabled, the large folio should be 1604 * split when swapping. 1605 * 1606 * And shrinkage of pages beyond i_size does not split swap, so 1607 * swapout of a large folio crossing i_size needs to split too 1608 * (unless fallocate has been used to preallocate beyond EOF). 1609 */ 1610 if (folio_test_large(folio)) { 1611 index = shmem_fallocend(inode, 1612 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 1613 if ((index > folio->index && index < folio_next_index(folio)) || 1614 !IS_ENABLED(CONFIG_THP_SWAP)) 1615 split = true; 1616 } 1617 1618 if (split) { 1619 try_split: 1620 /* Ensure the subpages are still dirty */ 1621 folio_test_set_dirty(folio); 1622 if (split_folio_to_list(folio, folio_list)) 1623 goto redirty; 1624 folio_clear_dirty(folio); 1625 } 1626 1627 index = folio->index; 1628 nr_pages = folio_nr_pages(folio); 1629 1630 /* 1631 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1632 * value into swapfile.c, the only way we can correctly account for a 1633 * fallocated folio arriving here is now to initialize it and write it. 1634 * 1635 * That's okay for a folio already fallocated earlier, but if we have 1636 * not yet completed the fallocation, then (a) we want to keep track 1637 * of this folio in case we have to undo it, and (b) it may not be a 1638 * good idea to continue anyway, once we're pushing into swap. So 1639 * reactivate the folio, and let shmem_fallocate() quit when too many. 1640 */ 1641 if (!folio_test_uptodate(folio)) { 1642 if (inode->i_private) { 1643 struct shmem_falloc *shmem_falloc; 1644 spin_lock(&inode->i_lock); 1645 shmem_falloc = inode->i_private; 1646 if (shmem_falloc && 1647 !shmem_falloc->waitq && 1648 index >= shmem_falloc->start && 1649 index < shmem_falloc->next) 1650 shmem_falloc->nr_unswapped += nr_pages; 1651 else 1652 shmem_falloc = NULL; 1653 spin_unlock(&inode->i_lock); 1654 if (shmem_falloc) 1655 goto redirty; 1656 } 1657 folio_zero_range(folio, 0, folio_size(folio)); 1658 flush_dcache_folio(folio); 1659 folio_mark_uptodate(folio); 1660 } 1661 1662 if (!folio_alloc_swap(folio)) { 1663 bool first_swapped = shmem_recalc_inode(inode, 0, nr_pages); 1664 int error; 1665 1666 /* 1667 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1668 * if it's not already there. Do it now before the folio is 1669 * removed from page cache, when its pagelock no longer 1670 * protects the inode from eviction. And do it now, after 1671 * we've incremented swapped, because shmem_unuse() will 1672 * prune a !swapped inode from the swaplist. 1673 */ 1674 if (first_swapped) { 1675 spin_lock(&shmem_swaplist_lock); 1676 if (list_empty(&info->swaplist)) 1677 list_add(&info->swaplist, &shmem_swaplist); 1678 spin_unlock(&shmem_swaplist_lock); 1679 } 1680 1681 swap_shmem_alloc(folio->swap, nr_pages); 1682 shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap)); 1683 1684 BUG_ON(folio_mapped(folio)); 1685 error = swap_writeout(folio, plug); 1686 if (error != AOP_WRITEPAGE_ACTIVATE) { 1687 /* folio has been unlocked */ 1688 return error; 1689 } 1690 1691 /* 1692 * The intention here is to avoid holding on to the swap when 1693 * zswap was unable to compress and unable to writeback; but 1694 * it will be appropriate if other reactivate cases are added. 1695 */ 1696 error = shmem_add_to_page_cache(folio, mapping, index, 1697 swp_to_radix_entry(folio->swap), 1698 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 1699 /* Swap entry might be erased by racing shmem_free_swap() */ 1700 if (!error) { 1701 shmem_recalc_inode(inode, 0, -nr_pages); 1702 swap_free_nr(folio->swap, nr_pages); 1703 } 1704 1705 /* 1706 * The swap_cache_del_folio() below could be left for 1707 * shrink_folio_list()'s folio_free_swap() to dispose of; 1708 * but I'm a little nervous about letting this folio out of 1709 * shmem_writeout() in a hybrid half-tmpfs-half-swap state 1710 * e.g. folio_mapping(folio) might give an unexpected answer. 1711 */ 1712 swap_cache_del_folio(folio); 1713 goto redirty; 1714 } 1715 if (nr_pages > 1) 1716 goto try_split; 1717 redirty: 1718 folio_mark_dirty(folio); 1719 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1720 } 1721 EXPORT_SYMBOL_GPL(shmem_writeout); 1722 1723 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1724 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1725 { 1726 char buffer[64]; 1727 1728 if (!mpol || mpol->mode == MPOL_DEFAULT) 1729 return; /* show nothing */ 1730 1731 mpol_to_str(buffer, sizeof(buffer), mpol); 1732 1733 seq_printf(seq, ",mpol=%s", buffer); 1734 } 1735 1736 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1737 { 1738 struct mempolicy *mpol = NULL; 1739 if (sbinfo->mpol) { 1740 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1741 mpol = sbinfo->mpol; 1742 mpol_get(mpol); 1743 raw_spin_unlock(&sbinfo->stat_lock); 1744 } 1745 return mpol; 1746 } 1747 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1748 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1749 { 1750 } 1751 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1752 { 1753 return NULL; 1754 } 1755 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1756 1757 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1758 pgoff_t index, unsigned int order, pgoff_t *ilx); 1759 1760 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1761 struct shmem_inode_info *info, pgoff_t index) 1762 { 1763 struct mempolicy *mpol; 1764 pgoff_t ilx; 1765 struct folio *folio; 1766 1767 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1768 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1769 mpol_cond_put(mpol); 1770 1771 return folio; 1772 } 1773 1774 /* 1775 * Make sure huge_gfp is always more limited than limit_gfp. 1776 * Some of the flags set permissions, while others set limitations. 1777 */ 1778 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1779 { 1780 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1781 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1782 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1783 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1784 1785 /* Allow allocations only from the originally specified zones. */ 1786 result |= zoneflags; 1787 1788 /* 1789 * Minimize the result gfp by taking the union with the deny flags, 1790 * and the intersection of the allow flags. 1791 */ 1792 result |= (limit_gfp & denyflags); 1793 result |= (huge_gfp & limit_gfp) & allowflags; 1794 1795 return result; 1796 } 1797 1798 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1799 bool shmem_hpage_pmd_enabled(void) 1800 { 1801 if (shmem_huge == SHMEM_HUGE_DENY) 1802 return false; 1803 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always)) 1804 return true; 1805 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise)) 1806 return true; 1807 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size)) 1808 return true; 1809 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) && 1810 shmem_huge != SHMEM_HUGE_NEVER) 1811 return true; 1812 1813 return false; 1814 } 1815 1816 unsigned long shmem_allowable_huge_orders(struct inode *inode, 1817 struct vm_area_struct *vma, pgoff_t index, 1818 loff_t write_end, bool shmem_huge_force) 1819 { 1820 unsigned long mask = READ_ONCE(huge_shmem_orders_always); 1821 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size); 1822 vm_flags_t vm_flags = vma ? vma->vm_flags : 0; 1823 unsigned int global_orders; 1824 1825 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags, shmem_huge_force))) 1826 return 0; 1827 1828 global_orders = shmem_huge_global_enabled(inode, index, write_end, 1829 shmem_huge_force, vma, vm_flags); 1830 /* Tmpfs huge pages allocation */ 1831 if (!vma || !vma_is_anon_shmem(vma)) 1832 return global_orders; 1833 1834 /* 1835 * Following the 'deny' semantics of the top level, force the huge 1836 * option off from all mounts. 1837 */ 1838 if (shmem_huge == SHMEM_HUGE_DENY) 1839 return 0; 1840 1841 /* 1842 * Only allow inherit orders if the top-level value is 'force', which 1843 * means non-PMD sized THP can not override 'huge' mount option now. 1844 */ 1845 if (shmem_huge == SHMEM_HUGE_FORCE) 1846 return READ_ONCE(huge_shmem_orders_inherit); 1847 1848 /* Allow mTHP that will be fully within i_size. */ 1849 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0); 1850 1851 if (vm_flags & VM_HUGEPAGE) 1852 mask |= READ_ONCE(huge_shmem_orders_madvise); 1853 1854 if (global_orders > 0) 1855 mask |= READ_ONCE(huge_shmem_orders_inherit); 1856 1857 return THP_ORDERS_ALL_FILE_DEFAULT & mask; 1858 } 1859 1860 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1861 struct address_space *mapping, pgoff_t index, 1862 unsigned long orders) 1863 { 1864 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1865 pgoff_t aligned_index; 1866 unsigned long pages; 1867 int order; 1868 1869 if (vma) { 1870 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 1871 if (!orders) 1872 return 0; 1873 } 1874 1875 /* Find the highest order that can add into the page cache */ 1876 order = highest_order(orders); 1877 while (orders) { 1878 pages = 1UL << order; 1879 aligned_index = round_down(index, pages); 1880 /* 1881 * Check for conflict before waiting on a huge allocation. 1882 * Conflict might be that a huge page has just been allocated 1883 * and added to page cache by a racing thread, or that there 1884 * is already at least one small page in the huge extent. 1885 * Be careful to retry when appropriate, but not forever! 1886 * Elsewhere -EEXIST would be the right code, but not here. 1887 */ 1888 if (!xa_find(&mapping->i_pages, &aligned_index, 1889 aligned_index + pages - 1, XA_PRESENT)) 1890 break; 1891 order = next_order(&orders, order); 1892 } 1893 1894 return orders; 1895 } 1896 #else 1897 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1898 struct address_space *mapping, pgoff_t index, 1899 unsigned long orders) 1900 { 1901 return 0; 1902 } 1903 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1904 1905 static struct folio *shmem_alloc_folio(gfp_t gfp, int order, 1906 struct shmem_inode_info *info, pgoff_t index) 1907 { 1908 struct mempolicy *mpol; 1909 pgoff_t ilx; 1910 struct folio *folio; 1911 1912 mpol = shmem_get_pgoff_policy(info, index, order, &ilx); 1913 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id()); 1914 mpol_cond_put(mpol); 1915 1916 return folio; 1917 } 1918 1919 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf, 1920 gfp_t gfp, struct inode *inode, pgoff_t index, 1921 struct mm_struct *fault_mm, unsigned long orders) 1922 { 1923 struct address_space *mapping = inode->i_mapping; 1924 struct shmem_inode_info *info = SHMEM_I(inode); 1925 unsigned long suitable_orders = 0; 1926 struct folio *folio = NULL; 1927 pgoff_t aligned_index; 1928 long pages; 1929 int error, order; 1930 1931 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1932 orders = 0; 1933 1934 if (orders > 0) { 1935 suitable_orders = shmem_suitable_orders(inode, vmf, 1936 mapping, index, orders); 1937 1938 order = highest_order(suitable_orders); 1939 while (suitable_orders) { 1940 pages = 1UL << order; 1941 aligned_index = round_down(index, pages); 1942 folio = shmem_alloc_folio(gfp, order, info, aligned_index); 1943 if (folio) { 1944 index = aligned_index; 1945 goto allocated; 1946 } 1947 1948 if (pages == HPAGE_PMD_NR) 1949 count_vm_event(THP_FILE_FALLBACK); 1950 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK); 1951 order = next_order(&suitable_orders, order); 1952 } 1953 } else { 1954 pages = 1; 1955 folio = shmem_alloc_folio(gfp, 0, info, index); 1956 } 1957 if (!folio) 1958 return ERR_PTR(-ENOMEM); 1959 1960 allocated: 1961 __folio_set_locked(folio); 1962 __folio_set_swapbacked(folio); 1963 1964 gfp &= GFP_RECLAIM_MASK; 1965 error = mem_cgroup_charge(folio, fault_mm, gfp); 1966 if (error) { 1967 if (xa_find(&mapping->i_pages, &index, 1968 index + pages - 1, XA_PRESENT)) { 1969 error = -EEXIST; 1970 } else if (pages > 1) { 1971 if (pages == HPAGE_PMD_NR) { 1972 count_vm_event(THP_FILE_FALLBACK); 1973 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1974 } 1975 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK); 1976 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE); 1977 } 1978 goto unlock; 1979 } 1980 1981 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1982 if (error) 1983 goto unlock; 1984 1985 error = shmem_inode_acct_blocks(inode, pages); 1986 if (error) { 1987 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1988 long freed; 1989 /* 1990 * Try to reclaim some space by splitting a few 1991 * large folios beyond i_size on the filesystem. 1992 */ 1993 shmem_unused_huge_shrink(sbinfo, NULL, pages); 1994 /* 1995 * And do a shmem_recalc_inode() to account for freed pages: 1996 * except our folio is there in cache, so not quite balanced. 1997 */ 1998 spin_lock(&info->lock); 1999 freed = pages + info->alloced - info->swapped - 2000 READ_ONCE(mapping->nrpages); 2001 if (freed > 0) 2002 info->alloced -= freed; 2003 spin_unlock(&info->lock); 2004 if (freed > 0) 2005 shmem_inode_unacct_blocks(inode, freed); 2006 error = shmem_inode_acct_blocks(inode, pages); 2007 if (error) { 2008 filemap_remove_folio(folio); 2009 goto unlock; 2010 } 2011 } 2012 2013 shmem_recalc_inode(inode, pages, 0); 2014 folio_add_lru(folio); 2015 return folio; 2016 2017 unlock: 2018 folio_unlock(folio); 2019 folio_put(folio); 2020 return ERR_PTR(error); 2021 } 2022 2023 static struct folio *shmem_swap_alloc_folio(struct inode *inode, 2024 struct vm_area_struct *vma, pgoff_t index, 2025 swp_entry_t entry, int order, gfp_t gfp) 2026 { 2027 struct shmem_inode_info *info = SHMEM_I(inode); 2028 int nr_pages = 1 << order; 2029 struct folio *new; 2030 gfp_t alloc_gfp; 2031 void *shadow; 2032 2033 /* 2034 * We have arrived here because our zones are constrained, so don't 2035 * limit chance of success with further cpuset and node constraints. 2036 */ 2037 gfp &= ~GFP_CONSTRAINT_MASK; 2038 alloc_gfp = gfp; 2039 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 2040 if (WARN_ON_ONCE(order)) 2041 return ERR_PTR(-EINVAL); 2042 } else if (order) { 2043 /* 2044 * If uffd is active for the vma, we need per-page fault 2045 * fidelity to maintain the uffd semantics, then fallback 2046 * to swapin order-0 folio, as well as for zswap case. 2047 * Any existing sub folio in the swap cache also blocks 2048 * mTHP swapin. 2049 */ 2050 if ((vma && unlikely(userfaultfd_armed(vma))) || 2051 !zswap_never_enabled() || 2052 non_swapcache_batch(entry, nr_pages) != nr_pages) 2053 goto fallback; 2054 2055 alloc_gfp = limit_gfp_mask(vma_thp_gfp_mask(vma), gfp); 2056 } 2057 retry: 2058 new = shmem_alloc_folio(alloc_gfp, order, info, index); 2059 if (!new) { 2060 new = ERR_PTR(-ENOMEM); 2061 goto fallback; 2062 } 2063 2064 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL, 2065 alloc_gfp, entry)) { 2066 folio_put(new); 2067 new = ERR_PTR(-ENOMEM); 2068 goto fallback; 2069 } 2070 2071 /* 2072 * Prevent parallel swapin from proceeding with the swap cache flag. 2073 * 2074 * Of course there is another possible concurrent scenario as well, 2075 * that is to say, the swap cache flag of a large folio has already 2076 * been set by swapcache_prepare(), while another thread may have 2077 * already split the large swap entry stored in the shmem mapping. 2078 * In this case, shmem_add_to_page_cache() will help identify the 2079 * concurrent swapin and return -EEXIST. 2080 */ 2081 if (swapcache_prepare(entry, nr_pages)) { 2082 folio_put(new); 2083 new = ERR_PTR(-EEXIST); 2084 /* Try smaller folio to avoid cache conflict */ 2085 goto fallback; 2086 } 2087 2088 __folio_set_locked(new); 2089 __folio_set_swapbacked(new); 2090 new->swap = entry; 2091 2092 memcg1_swapin(entry, nr_pages); 2093 shadow = swap_cache_get_shadow(entry); 2094 if (shadow) 2095 workingset_refault(new, shadow); 2096 folio_add_lru(new); 2097 swap_read_folio(new, NULL); 2098 return new; 2099 fallback: 2100 /* Order 0 swapin failed, nothing to fallback to, abort */ 2101 if (!order) 2102 return new; 2103 entry.val += index - round_down(index, nr_pages); 2104 alloc_gfp = gfp; 2105 nr_pages = 1; 2106 order = 0; 2107 goto retry; 2108 } 2109 2110 /* 2111 * When a page is moved from swapcache to shmem filecache (either by the 2112 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 2113 * shmem_unuse_inode()), it may have been read in earlier from swap, in 2114 * ignorance of the mapping it belongs to. If that mapping has special 2115 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 2116 * we may need to copy to a suitable page before moving to filecache. 2117 * 2118 * In a future release, this may well be extended to respect cpuset and 2119 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 2120 * but for now it is a simple matter of zone. 2121 */ 2122 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 2123 { 2124 return folio_zonenum(folio) > gfp_zone(gfp); 2125 } 2126 2127 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 2128 struct shmem_inode_info *info, pgoff_t index, 2129 struct vm_area_struct *vma) 2130 { 2131 struct swap_cluster_info *ci; 2132 struct folio *new, *old = *foliop; 2133 swp_entry_t entry = old->swap; 2134 int nr_pages = folio_nr_pages(old); 2135 int error = 0; 2136 2137 /* 2138 * We have arrived here because our zones are constrained, so don't 2139 * limit chance of success by further cpuset and node constraints. 2140 */ 2141 gfp &= ~GFP_CONSTRAINT_MASK; 2142 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2143 if (nr_pages > 1) { 2144 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 2145 2146 gfp = limit_gfp_mask(huge_gfp, gfp); 2147 } 2148 #endif 2149 2150 new = shmem_alloc_folio(gfp, folio_order(old), info, index); 2151 if (!new) 2152 return -ENOMEM; 2153 2154 folio_ref_add(new, nr_pages); 2155 folio_copy(new, old); 2156 flush_dcache_folio(new); 2157 2158 __folio_set_locked(new); 2159 __folio_set_swapbacked(new); 2160 folio_mark_uptodate(new); 2161 new->swap = entry; 2162 folio_set_swapcache(new); 2163 2164 ci = swap_cluster_get_and_lock_irq(old); 2165 __swap_cache_replace_folio(ci, old, new); 2166 mem_cgroup_replace_folio(old, new); 2167 shmem_update_stats(new, nr_pages); 2168 shmem_update_stats(old, -nr_pages); 2169 swap_cluster_unlock_irq(ci); 2170 2171 folio_add_lru(new); 2172 *foliop = new; 2173 2174 folio_clear_swapcache(old); 2175 old->private = NULL; 2176 2177 folio_unlock(old); 2178 /* 2179 * The old folio are removed from swap cache, drop the 'nr_pages' 2180 * reference, as well as one temporary reference getting from swap 2181 * cache. 2182 */ 2183 folio_put_refs(old, nr_pages + 1); 2184 return error; 2185 } 2186 2187 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 2188 struct folio *folio, swp_entry_t swap, 2189 bool skip_swapcache) 2190 { 2191 struct address_space *mapping = inode->i_mapping; 2192 swp_entry_t swapin_error; 2193 void *old; 2194 int nr_pages; 2195 2196 swapin_error = make_poisoned_swp_entry(); 2197 old = xa_cmpxchg_irq(&mapping->i_pages, index, 2198 swp_to_radix_entry(swap), 2199 swp_to_radix_entry(swapin_error), 0); 2200 if (old != swp_to_radix_entry(swap)) 2201 return; 2202 2203 nr_pages = folio_nr_pages(folio); 2204 folio_wait_writeback(folio); 2205 if (!skip_swapcache) 2206 swap_cache_del_folio(folio); 2207 /* 2208 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 2209 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 2210 * in shmem_evict_inode(). 2211 */ 2212 shmem_recalc_inode(inode, -nr_pages, -nr_pages); 2213 swap_free_nr(swap, nr_pages); 2214 } 2215 2216 static int shmem_split_large_entry(struct inode *inode, pgoff_t index, 2217 swp_entry_t swap, gfp_t gfp) 2218 { 2219 struct address_space *mapping = inode->i_mapping; 2220 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0); 2221 int split_order = 0; 2222 int i; 2223 2224 /* Convert user data gfp flags to xarray node gfp flags */ 2225 gfp &= GFP_RECLAIM_MASK; 2226 2227 for (;;) { 2228 void *old = NULL; 2229 int cur_order; 2230 pgoff_t swap_index; 2231 2232 xas_lock_irq(&xas); 2233 old = xas_load(&xas); 2234 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) { 2235 xas_set_err(&xas, -EEXIST); 2236 goto unlock; 2237 } 2238 2239 cur_order = xas_get_order(&xas); 2240 if (!cur_order) 2241 goto unlock; 2242 2243 /* Try to split large swap entry in pagecache */ 2244 swap_index = round_down(index, 1 << cur_order); 2245 split_order = xas_try_split_min_order(cur_order); 2246 2247 while (cur_order > 0) { 2248 pgoff_t aligned_index = 2249 round_down(index, 1 << cur_order); 2250 pgoff_t swap_offset = aligned_index - swap_index; 2251 2252 xas_set_order(&xas, index, split_order); 2253 xas_try_split(&xas, old, cur_order); 2254 if (xas_error(&xas)) 2255 goto unlock; 2256 2257 /* 2258 * Re-set the swap entry after splitting, and the swap 2259 * offset of the original large entry must be continuous. 2260 */ 2261 for (i = 0; i < 1 << cur_order; 2262 i += (1 << split_order)) { 2263 swp_entry_t tmp; 2264 2265 tmp = swp_entry(swp_type(swap), 2266 swp_offset(swap) + swap_offset + 2267 i); 2268 __xa_store(&mapping->i_pages, aligned_index + i, 2269 swp_to_radix_entry(tmp), 0); 2270 } 2271 cur_order = split_order; 2272 split_order = xas_try_split_min_order(split_order); 2273 } 2274 2275 unlock: 2276 xas_unlock_irq(&xas); 2277 2278 if (!xas_nomem(&xas, gfp)) 2279 break; 2280 } 2281 2282 if (xas_error(&xas)) 2283 return xas_error(&xas); 2284 2285 return 0; 2286 } 2287 2288 /* 2289 * Swap in the folio pointed to by *foliop. 2290 * Caller has to make sure that *foliop contains a valid swapped folio. 2291 * Returns 0 and the folio in foliop if success. On failure, returns the 2292 * error code and NULL in *foliop. 2293 */ 2294 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 2295 struct folio **foliop, enum sgp_type sgp, 2296 gfp_t gfp, struct vm_area_struct *vma, 2297 vm_fault_t *fault_type) 2298 { 2299 struct address_space *mapping = inode->i_mapping; 2300 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL; 2301 struct shmem_inode_info *info = SHMEM_I(inode); 2302 swp_entry_t swap; 2303 softleaf_t index_entry; 2304 struct swap_info_struct *si; 2305 struct folio *folio = NULL; 2306 bool skip_swapcache = false; 2307 int error, nr_pages, order; 2308 pgoff_t offset; 2309 2310 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 2311 index_entry = radix_to_swp_entry(*foliop); 2312 swap = index_entry; 2313 *foliop = NULL; 2314 2315 if (softleaf_is_poison_marker(index_entry)) 2316 return -EIO; 2317 2318 si = get_swap_device(index_entry); 2319 order = shmem_confirm_swap(mapping, index, index_entry); 2320 if (unlikely(!si)) { 2321 if (order < 0) 2322 return -EEXIST; 2323 else 2324 return -EINVAL; 2325 } 2326 if (unlikely(order < 0)) { 2327 put_swap_device(si); 2328 return -EEXIST; 2329 } 2330 2331 /* index may point to the middle of a large entry, get the sub entry */ 2332 if (order) { 2333 offset = index - round_down(index, 1 << order); 2334 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2335 } 2336 2337 /* Look it up and read it in.. */ 2338 folio = swap_cache_get_folio(swap); 2339 if (!folio) { 2340 if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) { 2341 /* Direct swapin skipping swap cache & readahead */ 2342 folio = shmem_swap_alloc_folio(inode, vma, index, 2343 index_entry, order, gfp); 2344 if (IS_ERR(folio)) { 2345 error = PTR_ERR(folio); 2346 folio = NULL; 2347 goto failed; 2348 } 2349 skip_swapcache = true; 2350 } else { 2351 /* Cached swapin only supports order 0 folio */ 2352 folio = shmem_swapin_cluster(swap, gfp, info, index); 2353 if (!folio) { 2354 error = -ENOMEM; 2355 goto failed; 2356 } 2357 } 2358 if (fault_type) { 2359 *fault_type |= VM_FAULT_MAJOR; 2360 count_vm_event(PGMAJFAULT); 2361 count_memcg_event_mm(fault_mm, PGMAJFAULT); 2362 } 2363 } else { 2364 swap_update_readahead(folio, NULL, 0); 2365 } 2366 2367 if (order > folio_order(folio)) { 2368 /* 2369 * Swapin may get smaller folios due to various reasons: 2370 * It may fallback to order 0 due to memory pressure or race, 2371 * swap readahead may swap in order 0 folios into swapcache 2372 * asynchronously, while the shmem mapping can still stores 2373 * large swap entries. In such cases, we should split the 2374 * large swap entry to prevent possible data corruption. 2375 */ 2376 error = shmem_split_large_entry(inode, index, index_entry, gfp); 2377 if (error) 2378 goto failed_nolock; 2379 } 2380 2381 /* 2382 * If the folio is large, round down swap and index by folio size. 2383 * No matter what race occurs, the swap layer ensures we either get 2384 * a valid folio that has its swap entry aligned by size, or a 2385 * temporarily invalid one which we'll abort very soon and retry. 2386 * 2387 * shmem_add_to_page_cache ensures the whole range contains expected 2388 * entries and prevents any corruption, so any race split is fine 2389 * too, it will succeed as long as the entries are still there. 2390 */ 2391 nr_pages = folio_nr_pages(folio); 2392 if (nr_pages > 1) { 2393 swap.val = round_down(swap.val, nr_pages); 2394 index = round_down(index, nr_pages); 2395 } 2396 2397 /* 2398 * We have to do this with the folio locked to prevent races. 2399 * The shmem_confirm_swap below only checks if the first swap 2400 * entry matches the folio, that's enough to ensure the folio 2401 * is not used outside of shmem, as shmem swap entries 2402 * and swap cache folios are never partially freed. 2403 */ 2404 folio_lock(folio); 2405 if ((!skip_swapcache && !folio_test_swapcache(folio)) || 2406 shmem_confirm_swap(mapping, index, swap) < 0 || 2407 folio->swap.val != swap.val) { 2408 error = -EEXIST; 2409 goto unlock; 2410 } 2411 if (!folio_test_uptodate(folio)) { 2412 error = -EIO; 2413 goto failed; 2414 } 2415 folio_wait_writeback(folio); 2416 2417 /* 2418 * Some architectures may have to restore extra metadata to the 2419 * folio after reading from swap. 2420 */ 2421 arch_swap_restore(folio_swap(swap, folio), folio); 2422 2423 if (shmem_should_replace_folio(folio, gfp)) { 2424 error = shmem_replace_folio(&folio, gfp, info, index, vma); 2425 if (error) 2426 goto failed; 2427 } 2428 2429 error = shmem_add_to_page_cache(folio, mapping, index, 2430 swp_to_radix_entry(swap), gfp); 2431 if (error) 2432 goto failed; 2433 2434 shmem_recalc_inode(inode, 0, -nr_pages); 2435 2436 if (sgp == SGP_WRITE) 2437 folio_mark_accessed(folio); 2438 2439 if (skip_swapcache) { 2440 folio->swap.val = 0; 2441 swapcache_clear(si, swap, nr_pages); 2442 } else { 2443 swap_cache_del_folio(folio); 2444 } 2445 folio_mark_dirty(folio); 2446 swap_free_nr(swap, nr_pages); 2447 put_swap_device(si); 2448 2449 *foliop = folio; 2450 return 0; 2451 failed: 2452 if (shmem_confirm_swap(mapping, index, swap) < 0) 2453 error = -EEXIST; 2454 if (error == -EIO) 2455 shmem_set_folio_swapin_error(inode, index, folio, swap, 2456 skip_swapcache); 2457 unlock: 2458 if (folio) 2459 folio_unlock(folio); 2460 failed_nolock: 2461 if (skip_swapcache) 2462 swapcache_clear(si, folio->swap, folio_nr_pages(folio)); 2463 if (folio) 2464 folio_put(folio); 2465 put_swap_device(si); 2466 2467 return error; 2468 } 2469 2470 /* 2471 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 2472 * 2473 * If we allocate a new one we do not mark it dirty. That's up to the 2474 * vm. If we swap it in we mark it dirty since we also free the swap 2475 * entry since a page cannot live in both the swap and page cache. 2476 * 2477 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 2478 */ 2479 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 2480 loff_t write_end, struct folio **foliop, enum sgp_type sgp, 2481 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type) 2482 { 2483 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 2484 struct mm_struct *fault_mm; 2485 struct folio *folio; 2486 int error; 2487 bool alloced; 2488 unsigned long orders = 0; 2489 2490 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 2491 return -EINVAL; 2492 2493 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 2494 return -EFBIG; 2495 repeat: 2496 if (sgp <= SGP_CACHE && 2497 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 2498 return -EINVAL; 2499 2500 alloced = false; 2501 fault_mm = vma ? vma->vm_mm : NULL; 2502 2503 folio = filemap_get_entry(inode->i_mapping, index); 2504 if (folio && vma && userfaultfd_minor(vma)) { 2505 if (!xa_is_value(folio)) 2506 folio_put(folio); 2507 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 2508 return 0; 2509 } 2510 2511 if (xa_is_value(folio)) { 2512 error = shmem_swapin_folio(inode, index, &folio, 2513 sgp, gfp, vma, fault_type); 2514 if (error == -EEXIST) 2515 goto repeat; 2516 2517 *foliop = folio; 2518 return error; 2519 } 2520 2521 if (folio) { 2522 folio_lock(folio); 2523 2524 /* Has the folio been truncated or swapped out? */ 2525 if (unlikely(folio->mapping != inode->i_mapping)) { 2526 folio_unlock(folio); 2527 folio_put(folio); 2528 goto repeat; 2529 } 2530 if (sgp == SGP_WRITE) 2531 folio_mark_accessed(folio); 2532 if (folio_test_uptodate(folio)) 2533 goto out; 2534 /* fallocated folio */ 2535 if (sgp != SGP_READ) 2536 goto clear; 2537 folio_unlock(folio); 2538 folio_put(folio); 2539 } 2540 2541 /* 2542 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2543 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2544 */ 2545 *foliop = NULL; 2546 if (sgp == SGP_READ) 2547 return 0; 2548 if (sgp == SGP_NOALLOC) 2549 return -ENOENT; 2550 2551 /* 2552 * Fast cache lookup and swap lookup did not find it: allocate. 2553 */ 2554 2555 if (vma && userfaultfd_missing(vma)) { 2556 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2557 return 0; 2558 } 2559 2560 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */ 2561 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false); 2562 if (orders > 0) { 2563 gfp_t huge_gfp; 2564 2565 huge_gfp = vma_thp_gfp_mask(vma); 2566 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2567 folio = shmem_alloc_and_add_folio(vmf, huge_gfp, 2568 inode, index, fault_mm, orders); 2569 if (!IS_ERR(folio)) { 2570 if (folio_test_pmd_mappable(folio)) 2571 count_vm_event(THP_FILE_ALLOC); 2572 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC); 2573 goto alloced; 2574 } 2575 if (PTR_ERR(folio) == -EEXIST) 2576 goto repeat; 2577 } 2578 2579 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0); 2580 if (IS_ERR(folio)) { 2581 error = PTR_ERR(folio); 2582 if (error == -EEXIST) 2583 goto repeat; 2584 folio = NULL; 2585 goto unlock; 2586 } 2587 2588 alloced: 2589 alloced = true; 2590 if (folio_test_large(folio) && 2591 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2592 folio_next_index(folio)) { 2593 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2594 struct shmem_inode_info *info = SHMEM_I(inode); 2595 /* 2596 * Part of the large folio is beyond i_size: subject 2597 * to shrink under memory pressure. 2598 */ 2599 spin_lock(&sbinfo->shrinklist_lock); 2600 /* 2601 * _careful to defend against unlocked access to 2602 * ->shrink_list in shmem_unused_huge_shrink() 2603 */ 2604 if (list_empty_careful(&info->shrinklist)) { 2605 list_add_tail(&info->shrinklist, 2606 &sbinfo->shrinklist); 2607 sbinfo->shrinklist_len++; 2608 } 2609 spin_unlock(&sbinfo->shrinklist_lock); 2610 } 2611 2612 if (sgp == SGP_WRITE) 2613 folio_set_referenced(folio); 2614 /* 2615 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2616 */ 2617 if (sgp == SGP_FALLOC) 2618 sgp = SGP_WRITE; 2619 clear: 2620 /* 2621 * Let SGP_WRITE caller clear ends if write does not fill folio; 2622 * but SGP_FALLOC on a folio fallocated earlier must initialize 2623 * it now, lest undo on failure cancel our earlier guarantee. 2624 */ 2625 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2626 long i, n = folio_nr_pages(folio); 2627 2628 for (i = 0; i < n; i++) 2629 clear_highpage(folio_page(folio, i)); 2630 flush_dcache_folio(folio); 2631 folio_mark_uptodate(folio); 2632 } 2633 2634 /* Perhaps the file has been truncated since we checked */ 2635 if (sgp <= SGP_CACHE && 2636 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2637 error = -EINVAL; 2638 goto unlock; 2639 } 2640 out: 2641 *foliop = folio; 2642 return 0; 2643 2644 /* 2645 * Error recovery. 2646 */ 2647 unlock: 2648 if (alloced) 2649 filemap_remove_folio(folio); 2650 shmem_recalc_inode(inode, 0, 0); 2651 if (folio) { 2652 folio_unlock(folio); 2653 folio_put(folio); 2654 } 2655 return error; 2656 } 2657 2658 /** 2659 * shmem_get_folio - find, and lock a shmem folio. 2660 * @inode: inode to search 2661 * @index: the page index. 2662 * @write_end: end of a write, could extend inode size 2663 * @foliop: pointer to the folio if found 2664 * @sgp: SGP_* flags to control behavior 2665 * 2666 * Looks up the page cache entry at @inode & @index. If a folio is 2667 * present, it is returned locked with an increased refcount. 2668 * 2669 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2670 * before unlocking the folio to ensure that the folio is not reclaimed. 2671 * There is no need to reserve space before calling folio_mark_dirty(). 2672 * 2673 * When no folio is found, the behavior depends on @sgp: 2674 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2675 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2676 * - for all other flags a new folio is allocated, inserted into the 2677 * page cache and returned locked in @foliop. 2678 * 2679 * Context: May sleep. 2680 * Return: 0 if successful, else a negative error code. 2681 */ 2682 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end, 2683 struct folio **foliop, enum sgp_type sgp) 2684 { 2685 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp, 2686 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2687 } 2688 EXPORT_SYMBOL_GPL(shmem_get_folio); 2689 2690 /* 2691 * This is like autoremove_wake_function, but it removes the wait queue 2692 * entry unconditionally - even if something else had already woken the 2693 * target. 2694 */ 2695 static int synchronous_wake_function(wait_queue_entry_t *wait, 2696 unsigned int mode, int sync, void *key) 2697 { 2698 int ret = default_wake_function(wait, mode, sync, key); 2699 list_del_init(&wait->entry); 2700 return ret; 2701 } 2702 2703 /* 2704 * Trinity finds that probing a hole which tmpfs is punching can 2705 * prevent the hole-punch from ever completing: which in turn 2706 * locks writers out with its hold on i_rwsem. So refrain from 2707 * faulting pages into the hole while it's being punched. Although 2708 * shmem_undo_range() does remove the additions, it may be unable to 2709 * keep up, as each new page needs its own unmap_mapping_range() call, 2710 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2711 * 2712 * It does not matter if we sometimes reach this check just before the 2713 * hole-punch begins, so that one fault then races with the punch: 2714 * we just need to make racing faults a rare case. 2715 * 2716 * The implementation below would be much simpler if we just used a 2717 * standard mutex or completion: but we cannot take i_rwsem in fault, 2718 * and bloating every shmem inode for this unlikely case would be sad. 2719 */ 2720 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2721 { 2722 struct shmem_falloc *shmem_falloc; 2723 struct file *fpin = NULL; 2724 vm_fault_t ret = 0; 2725 2726 spin_lock(&inode->i_lock); 2727 shmem_falloc = inode->i_private; 2728 if (shmem_falloc && 2729 shmem_falloc->waitq && 2730 vmf->pgoff >= shmem_falloc->start && 2731 vmf->pgoff < shmem_falloc->next) { 2732 wait_queue_head_t *shmem_falloc_waitq; 2733 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2734 2735 ret = VM_FAULT_NOPAGE; 2736 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2737 shmem_falloc_waitq = shmem_falloc->waitq; 2738 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2739 TASK_UNINTERRUPTIBLE); 2740 spin_unlock(&inode->i_lock); 2741 schedule(); 2742 2743 /* 2744 * shmem_falloc_waitq points into the shmem_fallocate() 2745 * stack of the hole-punching task: shmem_falloc_waitq 2746 * is usually invalid by the time we reach here, but 2747 * finish_wait() does not dereference it in that case; 2748 * though i_lock needed lest racing with wake_up_all(). 2749 */ 2750 spin_lock(&inode->i_lock); 2751 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2752 } 2753 spin_unlock(&inode->i_lock); 2754 if (fpin) { 2755 fput(fpin); 2756 ret = VM_FAULT_RETRY; 2757 } 2758 return ret; 2759 } 2760 2761 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2762 { 2763 struct inode *inode = file_inode(vmf->vma->vm_file); 2764 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2765 struct folio *folio = NULL; 2766 vm_fault_t ret = 0; 2767 int err; 2768 2769 /* 2770 * Trinity finds that probing a hole which tmpfs is punching can 2771 * prevent the hole-punch from ever completing: noted in i_private. 2772 */ 2773 if (unlikely(inode->i_private)) { 2774 ret = shmem_falloc_wait(vmf, inode); 2775 if (ret) 2776 return ret; 2777 } 2778 2779 WARN_ON_ONCE(vmf->page != NULL); 2780 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE, 2781 gfp, vmf, &ret); 2782 if (err) 2783 return vmf_error(err); 2784 if (folio) { 2785 vmf->page = folio_file_page(folio, vmf->pgoff); 2786 ret |= VM_FAULT_LOCKED; 2787 } 2788 return ret; 2789 } 2790 2791 unsigned long shmem_get_unmapped_area(struct file *file, 2792 unsigned long uaddr, unsigned long len, 2793 unsigned long pgoff, unsigned long flags) 2794 { 2795 unsigned long addr; 2796 unsigned long offset; 2797 unsigned long inflated_len; 2798 unsigned long inflated_addr; 2799 unsigned long inflated_offset; 2800 unsigned long hpage_size; 2801 2802 if (len > TASK_SIZE) 2803 return -ENOMEM; 2804 2805 addr = mm_get_unmapped_area(file, uaddr, len, pgoff, flags); 2806 2807 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2808 return addr; 2809 if (IS_ERR_VALUE(addr)) 2810 return addr; 2811 if (addr & ~PAGE_MASK) 2812 return addr; 2813 if (addr > TASK_SIZE - len) 2814 return addr; 2815 2816 if (shmem_huge == SHMEM_HUGE_DENY) 2817 return addr; 2818 if (flags & MAP_FIXED) 2819 return addr; 2820 /* 2821 * Our priority is to support MAP_SHARED mapped hugely; 2822 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2823 * But if caller specified an address hint and we allocated area there 2824 * successfully, respect that as before. 2825 */ 2826 if (uaddr == addr) 2827 return addr; 2828 2829 hpage_size = HPAGE_PMD_SIZE; 2830 if (shmem_huge != SHMEM_HUGE_FORCE) { 2831 struct super_block *sb; 2832 unsigned long __maybe_unused hpage_orders; 2833 int order = 0; 2834 2835 if (file) { 2836 VM_BUG_ON(file->f_op != &shmem_file_operations); 2837 sb = file_inode(file)->i_sb; 2838 } else { 2839 /* 2840 * Called directly from mm/mmap.c, or drivers/char/mem.c 2841 * for "/dev/zero", to create a shared anonymous object. 2842 */ 2843 if (IS_ERR(shm_mnt)) 2844 return addr; 2845 sb = shm_mnt->mnt_sb; 2846 2847 /* 2848 * Find the highest mTHP order used for anonymous shmem to 2849 * provide a suitable alignment address. 2850 */ 2851 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2852 hpage_orders = READ_ONCE(huge_shmem_orders_always); 2853 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size); 2854 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise); 2855 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 2856 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit); 2857 2858 if (hpage_orders > 0) { 2859 order = highest_order(hpage_orders); 2860 hpage_size = PAGE_SIZE << order; 2861 } 2862 #endif 2863 } 2864 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order) 2865 return addr; 2866 } 2867 2868 if (len < hpage_size) 2869 return addr; 2870 2871 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1); 2872 if (offset && offset + len < 2 * hpage_size) 2873 return addr; 2874 if ((addr & (hpage_size - 1)) == offset) 2875 return addr; 2876 2877 inflated_len = len + hpage_size - PAGE_SIZE; 2878 if (inflated_len > TASK_SIZE) 2879 return addr; 2880 if (inflated_len < len) 2881 return addr; 2882 2883 inflated_addr = mm_get_unmapped_area(NULL, uaddr, inflated_len, 0, flags); 2884 if (IS_ERR_VALUE(inflated_addr)) 2885 return addr; 2886 if (inflated_addr & ~PAGE_MASK) 2887 return addr; 2888 2889 inflated_offset = inflated_addr & (hpage_size - 1); 2890 inflated_addr += offset - inflated_offset; 2891 if (inflated_offset > offset) 2892 inflated_addr += hpage_size; 2893 2894 if (inflated_addr > TASK_SIZE - len) 2895 return addr; 2896 return inflated_addr; 2897 } 2898 2899 #ifdef CONFIG_NUMA 2900 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2901 { 2902 struct inode *inode = file_inode(vma->vm_file); 2903 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2904 } 2905 2906 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2907 unsigned long addr, pgoff_t *ilx) 2908 { 2909 struct inode *inode = file_inode(vma->vm_file); 2910 pgoff_t index; 2911 2912 /* 2913 * Bias interleave by inode number to distribute better across nodes; 2914 * but this interface is independent of which page order is used, so 2915 * supplies only that bias, letting caller apply the offset (adjusted 2916 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2917 */ 2918 *ilx = inode->i_ino; 2919 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2920 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2921 } 2922 2923 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2924 pgoff_t index, unsigned int order, pgoff_t *ilx) 2925 { 2926 struct mempolicy *mpol; 2927 2928 /* Bias interleave by inode number to distribute better across nodes */ 2929 *ilx = info->vfs_inode.i_ino + (index >> order); 2930 2931 mpol = mpol_shared_policy_lookup(&info->policy, index); 2932 return mpol ? mpol : get_task_policy(current); 2933 } 2934 #else 2935 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2936 pgoff_t index, unsigned int order, pgoff_t *ilx) 2937 { 2938 *ilx = 0; 2939 return NULL; 2940 } 2941 #endif /* CONFIG_NUMA */ 2942 2943 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2944 { 2945 struct inode *inode = file_inode(file); 2946 struct shmem_inode_info *info = SHMEM_I(inode); 2947 int retval = -ENOMEM; 2948 2949 /* 2950 * What serializes the accesses to info->flags? 2951 * ipc_lock_object() when called from shmctl_do_lock(), 2952 * no serialization needed when called from shm_destroy(). 2953 */ 2954 if (lock && !(info->flags & SHMEM_F_LOCKED)) { 2955 if (!user_shm_lock(inode->i_size, ucounts)) 2956 goto out_nomem; 2957 info->flags |= SHMEM_F_LOCKED; 2958 mapping_set_unevictable(file->f_mapping); 2959 } 2960 if (!lock && (info->flags & SHMEM_F_LOCKED) && ucounts) { 2961 user_shm_unlock(inode->i_size, ucounts); 2962 info->flags &= ~SHMEM_F_LOCKED; 2963 mapping_clear_unevictable(file->f_mapping); 2964 } 2965 retval = 0; 2966 2967 out_nomem: 2968 return retval; 2969 } 2970 2971 static int shmem_mmap_prepare(struct vm_area_desc *desc) 2972 { 2973 struct file *file = desc->file; 2974 struct inode *inode = file_inode(file); 2975 2976 file_accessed(file); 2977 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2978 if (inode->i_nlink) 2979 desc->vm_ops = &shmem_vm_ops; 2980 else 2981 desc->vm_ops = &shmem_anon_vm_ops; 2982 return 0; 2983 } 2984 2985 static int shmem_file_open(struct inode *inode, struct file *file) 2986 { 2987 file->f_mode |= FMODE_CAN_ODIRECT; 2988 return generic_file_open(inode, file); 2989 } 2990 2991 #ifdef CONFIG_TMPFS_XATTR 2992 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2993 2994 #if IS_ENABLED(CONFIG_UNICODE) 2995 /* 2996 * shmem_inode_casefold_flags - Deal with casefold file attribute flag 2997 * 2998 * The casefold file attribute needs some special checks. I can just be added to 2999 * an empty dir, and can't be removed from a non-empty dir. 3000 */ 3001 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 3002 struct dentry *dentry, unsigned int *i_flags) 3003 { 3004 unsigned int old = inode->i_flags; 3005 struct super_block *sb = inode->i_sb; 3006 3007 if (fsflags & FS_CASEFOLD_FL) { 3008 if (!(old & S_CASEFOLD)) { 3009 if (!sb->s_encoding) 3010 return -EOPNOTSUPP; 3011 3012 if (!S_ISDIR(inode->i_mode)) 3013 return -ENOTDIR; 3014 3015 if (dentry && !simple_empty(dentry)) 3016 return -ENOTEMPTY; 3017 } 3018 3019 *i_flags = *i_flags | S_CASEFOLD; 3020 } else if (old & S_CASEFOLD) { 3021 if (dentry && !simple_empty(dentry)) 3022 return -ENOTEMPTY; 3023 } 3024 3025 return 0; 3026 } 3027 #else 3028 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 3029 struct dentry *dentry, unsigned int *i_flags) 3030 { 3031 if (fsflags & FS_CASEFOLD_FL) 3032 return -EOPNOTSUPP; 3033 3034 return 0; 3035 } 3036 #endif 3037 3038 /* 3039 * chattr's fsflags are unrelated to extended attributes, 3040 * but tmpfs has chosen to enable them under the same config option. 3041 */ 3042 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3043 { 3044 unsigned int i_flags = 0; 3045 int ret; 3046 3047 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags); 3048 if (ret) 3049 return ret; 3050 3051 if (fsflags & FS_NOATIME_FL) 3052 i_flags |= S_NOATIME; 3053 if (fsflags & FS_APPEND_FL) 3054 i_flags |= S_APPEND; 3055 if (fsflags & FS_IMMUTABLE_FL) 3056 i_flags |= S_IMMUTABLE; 3057 /* 3058 * But FS_NODUMP_FL does not require any action in i_flags. 3059 */ 3060 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD); 3061 3062 return 0; 3063 } 3064 #else 3065 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3066 { 3067 } 3068 #define shmem_initxattrs NULL 3069 #endif 3070 3071 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 3072 { 3073 return &SHMEM_I(inode)->dir_offsets; 3074 } 3075 3076 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 3077 struct super_block *sb, 3078 struct inode *dir, umode_t mode, 3079 dev_t dev, unsigned long flags) 3080 { 3081 struct inode *inode; 3082 struct shmem_inode_info *info; 3083 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3084 ino_t ino; 3085 int err; 3086 3087 err = shmem_reserve_inode(sb, &ino); 3088 if (err) 3089 return ERR_PTR(err); 3090 3091 inode = new_inode(sb); 3092 if (!inode) { 3093 shmem_free_inode(sb, 0); 3094 return ERR_PTR(-ENOSPC); 3095 } 3096 3097 inode->i_ino = ino; 3098 inode_init_owner(idmap, inode, dir, mode); 3099 inode->i_blocks = 0; 3100 simple_inode_init_ts(inode); 3101 inode->i_generation = get_random_u32(); 3102 info = SHMEM_I(inode); 3103 memset(info, 0, (char *)inode - (char *)info); 3104 spin_lock_init(&info->lock); 3105 atomic_set(&info->stop_eviction, 0); 3106 info->seals = F_SEAL_SEAL; 3107 info->flags = (flags & VM_NORESERVE) ? SHMEM_F_NORESERVE : 0; 3108 info->i_crtime = inode_get_mtime(inode); 3109 info->fsflags = (dir == NULL) ? 0 : 3110 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 3111 if (info->fsflags) 3112 shmem_set_inode_flags(inode, info->fsflags, NULL); 3113 INIT_LIST_HEAD(&info->shrinklist); 3114 INIT_LIST_HEAD(&info->swaplist); 3115 simple_xattrs_init(&info->xattrs); 3116 cache_no_acl(inode); 3117 if (sbinfo->noswap) 3118 mapping_set_unevictable(inode->i_mapping); 3119 3120 /* Don't consider 'deny' for emergencies and 'force' for testing */ 3121 if (sbinfo->huge) 3122 mapping_set_large_folios(inode->i_mapping); 3123 3124 switch (mode & S_IFMT) { 3125 default: 3126 inode->i_op = &shmem_special_inode_operations; 3127 init_special_inode(inode, mode, dev); 3128 break; 3129 case S_IFREG: 3130 inode->i_mapping->a_ops = &shmem_aops; 3131 inode->i_op = &shmem_inode_operations; 3132 inode->i_fop = &shmem_file_operations; 3133 mpol_shared_policy_init(&info->policy, 3134 shmem_get_sbmpol(sbinfo)); 3135 break; 3136 case S_IFDIR: 3137 inc_nlink(inode); 3138 /* Some things misbehave if size == 0 on a directory */ 3139 inode->i_size = 2 * BOGO_DIRENT_SIZE; 3140 inode->i_op = &shmem_dir_inode_operations; 3141 inode->i_fop = &simple_offset_dir_operations; 3142 simple_offset_init(shmem_get_offset_ctx(inode)); 3143 break; 3144 case S_IFLNK: 3145 /* 3146 * Must not load anything in the rbtree, 3147 * mpol_free_shared_policy will not be called. 3148 */ 3149 mpol_shared_policy_init(&info->policy, NULL); 3150 break; 3151 } 3152 3153 lockdep_annotate_inode_mutex_key(inode); 3154 return inode; 3155 } 3156 3157 #ifdef CONFIG_TMPFS_QUOTA 3158 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3159 struct super_block *sb, struct inode *dir, 3160 umode_t mode, dev_t dev, unsigned long flags) 3161 { 3162 int err; 3163 struct inode *inode; 3164 3165 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3166 if (IS_ERR(inode)) 3167 return inode; 3168 3169 err = dquot_initialize(inode); 3170 if (err) 3171 goto errout; 3172 3173 err = dquot_alloc_inode(inode); 3174 if (err) { 3175 dquot_drop(inode); 3176 goto errout; 3177 } 3178 return inode; 3179 3180 errout: 3181 inode->i_flags |= S_NOQUOTA; 3182 iput(inode); 3183 return ERR_PTR(err); 3184 } 3185 #else 3186 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3187 struct super_block *sb, struct inode *dir, 3188 umode_t mode, dev_t dev, unsigned long flags) 3189 { 3190 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3191 } 3192 #endif /* CONFIG_TMPFS_QUOTA */ 3193 3194 #ifdef CONFIG_USERFAULTFD 3195 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 3196 struct vm_area_struct *dst_vma, 3197 unsigned long dst_addr, 3198 unsigned long src_addr, 3199 uffd_flags_t flags, 3200 struct folio **foliop) 3201 { 3202 struct inode *inode = file_inode(dst_vma->vm_file); 3203 struct shmem_inode_info *info = SHMEM_I(inode); 3204 struct address_space *mapping = inode->i_mapping; 3205 gfp_t gfp = mapping_gfp_mask(mapping); 3206 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 3207 void *page_kaddr; 3208 struct folio *folio; 3209 int ret; 3210 pgoff_t max_off; 3211 3212 if (shmem_inode_acct_blocks(inode, 1)) { 3213 /* 3214 * We may have got a page, returned -ENOENT triggering a retry, 3215 * and now we find ourselves with -ENOMEM. Release the page, to 3216 * avoid a BUG_ON in our caller. 3217 */ 3218 if (unlikely(*foliop)) { 3219 folio_put(*foliop); 3220 *foliop = NULL; 3221 } 3222 return -ENOMEM; 3223 } 3224 3225 if (!*foliop) { 3226 ret = -ENOMEM; 3227 folio = shmem_alloc_folio(gfp, 0, info, pgoff); 3228 if (!folio) 3229 goto out_unacct_blocks; 3230 3231 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 3232 page_kaddr = kmap_local_folio(folio, 0); 3233 /* 3234 * The read mmap_lock is held here. Despite the 3235 * mmap_lock being read recursive a deadlock is still 3236 * possible if a writer has taken a lock. For example: 3237 * 3238 * process A thread 1 takes read lock on own mmap_lock 3239 * process A thread 2 calls mmap, blocks taking write lock 3240 * process B thread 1 takes page fault, read lock on own mmap lock 3241 * process B thread 2 calls mmap, blocks taking write lock 3242 * process A thread 1 blocks taking read lock on process B 3243 * process B thread 1 blocks taking read lock on process A 3244 * 3245 * Disable page faults to prevent potential deadlock 3246 * and retry the copy outside the mmap_lock. 3247 */ 3248 pagefault_disable(); 3249 ret = copy_from_user(page_kaddr, 3250 (const void __user *)src_addr, 3251 PAGE_SIZE); 3252 pagefault_enable(); 3253 kunmap_local(page_kaddr); 3254 3255 /* fallback to copy_from_user outside mmap_lock */ 3256 if (unlikely(ret)) { 3257 *foliop = folio; 3258 ret = -ENOENT; 3259 /* don't free the page */ 3260 goto out_unacct_blocks; 3261 } 3262 3263 flush_dcache_folio(folio); 3264 } else { /* ZEROPAGE */ 3265 clear_user_highpage(&folio->page, dst_addr); 3266 } 3267 } else { 3268 folio = *foliop; 3269 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 3270 *foliop = NULL; 3271 } 3272 3273 VM_BUG_ON(folio_test_locked(folio)); 3274 VM_BUG_ON(folio_test_swapbacked(folio)); 3275 __folio_set_locked(folio); 3276 __folio_set_swapbacked(folio); 3277 __folio_mark_uptodate(folio); 3278 3279 ret = -EFAULT; 3280 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3281 if (unlikely(pgoff >= max_off)) 3282 goto out_release; 3283 3284 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 3285 if (ret) 3286 goto out_release; 3287 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 3288 if (ret) 3289 goto out_release; 3290 3291 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 3292 &folio->page, true, flags); 3293 if (ret) 3294 goto out_delete_from_cache; 3295 3296 shmem_recalc_inode(inode, 1, 0); 3297 folio_unlock(folio); 3298 return 0; 3299 out_delete_from_cache: 3300 filemap_remove_folio(folio); 3301 out_release: 3302 folio_unlock(folio); 3303 folio_put(folio); 3304 out_unacct_blocks: 3305 shmem_inode_unacct_blocks(inode, 1); 3306 return ret; 3307 } 3308 #endif /* CONFIG_USERFAULTFD */ 3309 3310 #ifdef CONFIG_TMPFS 3311 static const struct inode_operations shmem_symlink_inode_operations; 3312 static const struct inode_operations shmem_short_symlink_operations; 3313 3314 static int 3315 shmem_write_begin(const struct kiocb *iocb, struct address_space *mapping, 3316 loff_t pos, unsigned len, 3317 struct folio **foliop, void **fsdata) 3318 { 3319 struct inode *inode = mapping->host; 3320 struct shmem_inode_info *info = SHMEM_I(inode); 3321 pgoff_t index = pos >> PAGE_SHIFT; 3322 struct folio *folio; 3323 int ret = 0; 3324 3325 /* i_rwsem is held by caller */ 3326 if (unlikely(info->seals & (F_SEAL_GROW | 3327 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 3328 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 3329 return -EPERM; 3330 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 3331 return -EPERM; 3332 } 3333 3334 if (unlikely((info->flags & SHMEM_F_MAPPING_FROZEN) && 3335 pos + len > inode->i_size)) 3336 return -EPERM; 3337 3338 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE); 3339 if (ret) 3340 return ret; 3341 3342 if (folio_contain_hwpoisoned_page(folio)) { 3343 folio_unlock(folio); 3344 folio_put(folio); 3345 return -EIO; 3346 } 3347 3348 *foliop = folio; 3349 return 0; 3350 } 3351 3352 static int 3353 shmem_write_end(const struct kiocb *iocb, struct address_space *mapping, 3354 loff_t pos, unsigned len, unsigned copied, 3355 struct folio *folio, void *fsdata) 3356 { 3357 struct inode *inode = mapping->host; 3358 3359 if (pos + copied > inode->i_size) 3360 i_size_write(inode, pos + copied); 3361 3362 if (!folio_test_uptodate(folio)) { 3363 if (copied < folio_size(folio)) { 3364 size_t from = offset_in_folio(folio, pos); 3365 folio_zero_segments(folio, 0, from, 3366 from + copied, folio_size(folio)); 3367 } 3368 folio_mark_uptodate(folio); 3369 } 3370 folio_mark_dirty(folio); 3371 folio_unlock(folio); 3372 folio_put(folio); 3373 3374 return copied; 3375 } 3376 3377 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3378 { 3379 struct file *file = iocb->ki_filp; 3380 struct inode *inode = file_inode(file); 3381 struct address_space *mapping = inode->i_mapping; 3382 pgoff_t index; 3383 unsigned long offset; 3384 int error = 0; 3385 ssize_t retval = 0; 3386 3387 for (;;) { 3388 struct folio *folio = NULL; 3389 struct page *page = NULL; 3390 unsigned long nr, ret; 3391 loff_t end_offset, i_size = i_size_read(inode); 3392 bool fallback_page_copy = false; 3393 size_t fsize; 3394 3395 if (unlikely(iocb->ki_pos >= i_size)) 3396 break; 3397 3398 index = iocb->ki_pos >> PAGE_SHIFT; 3399 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3400 if (error) { 3401 if (error == -EINVAL) 3402 error = 0; 3403 break; 3404 } 3405 if (folio) { 3406 folio_unlock(folio); 3407 3408 page = folio_file_page(folio, index); 3409 if (PageHWPoison(page)) { 3410 folio_put(folio); 3411 error = -EIO; 3412 break; 3413 } 3414 3415 if (folio_test_large(folio) && 3416 folio_test_has_hwpoisoned(folio)) 3417 fallback_page_copy = true; 3418 } 3419 3420 /* 3421 * We must evaluate after, since reads (unlike writes) 3422 * are called without i_rwsem protection against truncate 3423 */ 3424 i_size = i_size_read(inode); 3425 if (unlikely(iocb->ki_pos >= i_size)) { 3426 if (folio) 3427 folio_put(folio); 3428 break; 3429 } 3430 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count); 3431 if (folio && likely(!fallback_page_copy)) 3432 fsize = folio_size(folio); 3433 else 3434 fsize = PAGE_SIZE; 3435 offset = iocb->ki_pos & (fsize - 1); 3436 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset); 3437 3438 if (folio) { 3439 /* 3440 * If users can be writing to this page using arbitrary 3441 * virtual addresses, take care about potential aliasing 3442 * before reading the page on the kernel side. 3443 */ 3444 if (mapping_writably_mapped(mapping)) { 3445 if (likely(!fallback_page_copy)) 3446 flush_dcache_folio(folio); 3447 else 3448 flush_dcache_page(page); 3449 } 3450 3451 /* 3452 * Mark the folio accessed if we read the beginning. 3453 */ 3454 if (!offset) 3455 folio_mark_accessed(folio); 3456 /* 3457 * Ok, we have the page, and it's up-to-date, so 3458 * now we can copy it to user space... 3459 */ 3460 if (likely(!fallback_page_copy)) 3461 ret = copy_folio_to_iter(folio, offset, nr, to); 3462 else 3463 ret = copy_page_to_iter(page, offset, nr, to); 3464 folio_put(folio); 3465 } else if (user_backed_iter(to)) { 3466 /* 3467 * Copy to user tends to be so well optimized, but 3468 * clear_user() not so much, that it is noticeably 3469 * faster to copy the zero page instead of clearing. 3470 */ 3471 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 3472 } else { 3473 /* 3474 * But submitting the same page twice in a row to 3475 * splice() - or others? - can result in confusion: 3476 * so don't attempt that optimization on pipes etc. 3477 */ 3478 ret = iov_iter_zero(nr, to); 3479 } 3480 3481 retval += ret; 3482 iocb->ki_pos += ret; 3483 3484 if (!iov_iter_count(to)) 3485 break; 3486 if (ret < nr) { 3487 error = -EFAULT; 3488 break; 3489 } 3490 cond_resched(); 3491 } 3492 3493 file_accessed(file); 3494 return retval ? retval : error; 3495 } 3496 3497 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3498 { 3499 struct file *file = iocb->ki_filp; 3500 struct inode *inode = file->f_mapping->host; 3501 ssize_t ret; 3502 3503 inode_lock(inode); 3504 ret = generic_write_checks(iocb, from); 3505 if (ret <= 0) 3506 goto unlock; 3507 ret = file_remove_privs(file); 3508 if (ret) 3509 goto unlock; 3510 ret = file_update_time(file); 3511 if (ret) 3512 goto unlock; 3513 ret = generic_perform_write(iocb, from); 3514 unlock: 3515 inode_unlock(inode); 3516 return ret; 3517 } 3518 3519 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 3520 struct pipe_buffer *buf) 3521 { 3522 return true; 3523 } 3524 3525 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 3526 struct pipe_buffer *buf) 3527 { 3528 } 3529 3530 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 3531 struct pipe_buffer *buf) 3532 { 3533 return false; 3534 } 3535 3536 static const struct pipe_buf_operations zero_pipe_buf_ops = { 3537 .release = zero_pipe_buf_release, 3538 .try_steal = zero_pipe_buf_try_steal, 3539 .get = zero_pipe_buf_get, 3540 }; 3541 3542 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 3543 loff_t fpos, size_t size) 3544 { 3545 size_t offset = fpos & ~PAGE_MASK; 3546 3547 size = min_t(size_t, size, PAGE_SIZE - offset); 3548 3549 if (!pipe_is_full(pipe)) { 3550 struct pipe_buffer *buf = pipe_head_buf(pipe); 3551 3552 *buf = (struct pipe_buffer) { 3553 .ops = &zero_pipe_buf_ops, 3554 .page = ZERO_PAGE(0), 3555 .offset = offset, 3556 .len = size, 3557 }; 3558 pipe->head++; 3559 } 3560 3561 return size; 3562 } 3563 3564 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 3565 struct pipe_inode_info *pipe, 3566 size_t len, unsigned int flags) 3567 { 3568 struct inode *inode = file_inode(in); 3569 struct address_space *mapping = inode->i_mapping; 3570 struct folio *folio = NULL; 3571 size_t total_spliced = 0, used, npages, n, part; 3572 loff_t isize; 3573 int error = 0; 3574 3575 /* Work out how much data we can actually add into the pipe */ 3576 used = pipe_buf_usage(pipe); 3577 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3578 len = min_t(size_t, len, npages * PAGE_SIZE); 3579 3580 do { 3581 bool fallback_page_splice = false; 3582 struct page *page = NULL; 3583 pgoff_t index; 3584 size_t size; 3585 3586 if (*ppos >= i_size_read(inode)) 3587 break; 3588 3589 index = *ppos >> PAGE_SHIFT; 3590 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3591 if (error) { 3592 if (error == -EINVAL) 3593 error = 0; 3594 break; 3595 } 3596 if (folio) { 3597 folio_unlock(folio); 3598 3599 page = folio_file_page(folio, index); 3600 if (PageHWPoison(page)) { 3601 error = -EIO; 3602 break; 3603 } 3604 3605 if (folio_test_large(folio) && 3606 folio_test_has_hwpoisoned(folio)) 3607 fallback_page_splice = true; 3608 } 3609 3610 /* 3611 * i_size must be checked after we know the pages are Uptodate. 3612 * 3613 * Checking i_size after the check allows us to calculate 3614 * the correct value for "nr", which means the zero-filled 3615 * part of the page is not copied back to userspace (unless 3616 * another truncate extends the file - this is desired though). 3617 */ 3618 isize = i_size_read(inode); 3619 if (unlikely(*ppos >= isize)) 3620 break; 3621 /* 3622 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned 3623 * pages. 3624 */ 3625 size = len; 3626 if (unlikely(fallback_page_splice)) { 3627 size_t offset = *ppos & ~PAGE_MASK; 3628 3629 size = umin(size, PAGE_SIZE - offset); 3630 } 3631 part = min_t(loff_t, isize - *ppos, size); 3632 3633 if (folio) { 3634 /* 3635 * If users can be writing to this page using arbitrary 3636 * virtual addresses, take care about potential aliasing 3637 * before reading the page on the kernel side. 3638 */ 3639 if (mapping_writably_mapped(mapping)) { 3640 if (likely(!fallback_page_splice)) 3641 flush_dcache_folio(folio); 3642 else 3643 flush_dcache_page(page); 3644 } 3645 folio_mark_accessed(folio); 3646 /* 3647 * Ok, we have the page, and it's up-to-date, so we can 3648 * now splice it into the pipe. 3649 */ 3650 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3651 folio_put(folio); 3652 folio = NULL; 3653 } else { 3654 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3655 } 3656 3657 if (!n) 3658 break; 3659 len -= n; 3660 total_spliced += n; 3661 *ppos += n; 3662 in->f_ra.prev_pos = *ppos; 3663 if (pipe_is_full(pipe)) 3664 break; 3665 3666 cond_resched(); 3667 } while (len); 3668 3669 if (folio) 3670 folio_put(folio); 3671 3672 file_accessed(in); 3673 return total_spliced ? total_spliced : error; 3674 } 3675 3676 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3677 { 3678 struct address_space *mapping = file->f_mapping; 3679 struct inode *inode = mapping->host; 3680 3681 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3682 return generic_file_llseek_size(file, offset, whence, 3683 MAX_LFS_FILESIZE, i_size_read(inode)); 3684 if (offset < 0) 3685 return -ENXIO; 3686 3687 inode_lock(inode); 3688 /* We're holding i_rwsem so we can access i_size directly */ 3689 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3690 if (offset >= 0) 3691 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3692 inode_unlock(inode); 3693 return offset; 3694 } 3695 3696 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3697 loff_t len) 3698 { 3699 struct inode *inode = file_inode(file); 3700 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3701 struct shmem_inode_info *info = SHMEM_I(inode); 3702 struct shmem_falloc shmem_falloc; 3703 pgoff_t start, index, end, undo_fallocend; 3704 int error; 3705 3706 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3707 return -EOPNOTSUPP; 3708 3709 inode_lock(inode); 3710 3711 if (info->flags & SHMEM_F_MAPPING_FROZEN) { 3712 error = -EPERM; 3713 goto out; 3714 } 3715 3716 if (mode & FALLOC_FL_PUNCH_HOLE) { 3717 struct address_space *mapping = file->f_mapping; 3718 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3719 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3720 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3721 3722 /* protected by i_rwsem */ 3723 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3724 error = -EPERM; 3725 goto out; 3726 } 3727 3728 shmem_falloc.waitq = &shmem_falloc_waitq; 3729 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3730 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3731 spin_lock(&inode->i_lock); 3732 inode->i_private = &shmem_falloc; 3733 spin_unlock(&inode->i_lock); 3734 3735 if ((u64)unmap_end > (u64)unmap_start) 3736 unmap_mapping_range(mapping, unmap_start, 3737 1 + unmap_end - unmap_start, 0); 3738 shmem_truncate_range(inode, offset, offset + len - 1); 3739 /* No need to unmap again: hole-punching leaves COWed pages */ 3740 3741 spin_lock(&inode->i_lock); 3742 inode->i_private = NULL; 3743 wake_up_all(&shmem_falloc_waitq); 3744 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3745 spin_unlock(&inode->i_lock); 3746 error = 0; 3747 goto out; 3748 } 3749 3750 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3751 error = inode_newsize_ok(inode, offset + len); 3752 if (error) 3753 goto out; 3754 3755 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3756 error = -EPERM; 3757 goto out; 3758 } 3759 3760 start = offset >> PAGE_SHIFT; 3761 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3762 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3763 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3764 error = -ENOSPC; 3765 goto out; 3766 } 3767 3768 shmem_falloc.waitq = NULL; 3769 shmem_falloc.start = start; 3770 shmem_falloc.next = start; 3771 shmem_falloc.nr_falloced = 0; 3772 shmem_falloc.nr_unswapped = 0; 3773 spin_lock(&inode->i_lock); 3774 inode->i_private = &shmem_falloc; 3775 spin_unlock(&inode->i_lock); 3776 3777 /* 3778 * info->fallocend is only relevant when huge pages might be 3779 * involved: to prevent split_huge_page() freeing fallocated 3780 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3781 */ 3782 undo_fallocend = info->fallocend; 3783 if (info->fallocend < end) 3784 info->fallocend = end; 3785 3786 for (index = start; index < end; ) { 3787 struct folio *folio; 3788 3789 /* 3790 * Check for fatal signal so that we abort early in OOM 3791 * situations. We don't want to abort in case of non-fatal 3792 * signals as large fallocate can take noticeable time and 3793 * e.g. periodic timers may result in fallocate constantly 3794 * restarting. 3795 */ 3796 if (fatal_signal_pending(current)) 3797 error = -EINTR; 3798 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3799 error = -ENOMEM; 3800 else 3801 error = shmem_get_folio(inode, index, offset + len, 3802 &folio, SGP_FALLOC); 3803 if (error) { 3804 info->fallocend = undo_fallocend; 3805 /* Remove the !uptodate folios we added */ 3806 if (index > start) { 3807 shmem_undo_range(inode, 3808 (loff_t)start << PAGE_SHIFT, 3809 ((loff_t)index << PAGE_SHIFT) - 1, true); 3810 } 3811 goto undone; 3812 } 3813 3814 /* 3815 * Here is a more important optimization than it appears: 3816 * a second SGP_FALLOC on the same large folio will clear it, 3817 * making it uptodate and un-undoable if we fail later. 3818 */ 3819 index = folio_next_index(folio); 3820 /* Beware 32-bit wraparound */ 3821 if (!index) 3822 index--; 3823 3824 /* 3825 * Inform shmem_writeout() how far we have reached. 3826 * No need for lock or barrier: we have the page lock. 3827 */ 3828 if (!folio_test_uptodate(folio)) 3829 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3830 shmem_falloc.next = index; 3831 3832 /* 3833 * If !uptodate, leave it that way so that freeable folios 3834 * can be recognized if we need to rollback on error later. 3835 * But mark it dirty so that memory pressure will swap rather 3836 * than free the folios we are allocating (and SGP_CACHE folios 3837 * might still be clean: we now need to mark those dirty too). 3838 */ 3839 folio_mark_dirty(folio); 3840 folio_unlock(folio); 3841 folio_put(folio); 3842 cond_resched(); 3843 } 3844 3845 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3846 i_size_write(inode, offset + len); 3847 undone: 3848 spin_lock(&inode->i_lock); 3849 inode->i_private = NULL; 3850 spin_unlock(&inode->i_lock); 3851 out: 3852 if (!error) 3853 file_modified(file); 3854 inode_unlock(inode); 3855 return error; 3856 } 3857 3858 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3859 { 3860 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3861 3862 buf->f_type = TMPFS_MAGIC; 3863 buf->f_bsize = PAGE_SIZE; 3864 buf->f_namelen = NAME_MAX; 3865 if (sbinfo->max_blocks) { 3866 buf->f_blocks = sbinfo->max_blocks; 3867 buf->f_bavail = 3868 buf->f_bfree = sbinfo->max_blocks - 3869 percpu_counter_sum(&sbinfo->used_blocks); 3870 } 3871 if (sbinfo->max_inodes) { 3872 buf->f_files = sbinfo->max_inodes; 3873 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3874 } 3875 /* else leave those fields 0 like simple_statfs */ 3876 3877 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3878 3879 return 0; 3880 } 3881 3882 /* 3883 * File creation. Allocate an inode, and we're done.. 3884 */ 3885 static int 3886 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3887 struct dentry *dentry, umode_t mode, dev_t dev) 3888 { 3889 struct inode *inode; 3890 int error; 3891 3892 if (!generic_ci_validate_strict_name(dir, &dentry->d_name)) 3893 return -EINVAL; 3894 3895 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3896 if (IS_ERR(inode)) 3897 return PTR_ERR(inode); 3898 3899 error = simple_acl_create(dir, inode); 3900 if (error) 3901 goto out_iput; 3902 error = security_inode_init_security(inode, dir, &dentry->d_name, 3903 shmem_initxattrs, NULL); 3904 if (error && error != -EOPNOTSUPP) 3905 goto out_iput; 3906 3907 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3908 if (error) 3909 goto out_iput; 3910 3911 dir->i_size += BOGO_DIRENT_SIZE; 3912 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3913 inode_inc_iversion(dir); 3914 3915 d_make_persistent(dentry, inode); 3916 return error; 3917 3918 out_iput: 3919 iput(inode); 3920 return error; 3921 } 3922 3923 static int 3924 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3925 struct file *file, umode_t mode) 3926 { 3927 struct inode *inode; 3928 int error; 3929 3930 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3931 if (IS_ERR(inode)) { 3932 error = PTR_ERR(inode); 3933 goto err_out; 3934 } 3935 error = security_inode_init_security(inode, dir, NULL, 3936 shmem_initxattrs, NULL); 3937 if (error && error != -EOPNOTSUPP) 3938 goto out_iput; 3939 error = simple_acl_create(dir, inode); 3940 if (error) 3941 goto out_iput; 3942 d_tmpfile(file, inode); 3943 3944 err_out: 3945 return finish_open_simple(file, error); 3946 out_iput: 3947 iput(inode); 3948 return error; 3949 } 3950 3951 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3952 struct dentry *dentry, umode_t mode) 3953 { 3954 int error; 3955 3956 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3957 if (error) 3958 return ERR_PTR(error); 3959 inc_nlink(dir); 3960 return NULL; 3961 } 3962 3963 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3964 struct dentry *dentry, umode_t mode, bool excl) 3965 { 3966 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3967 } 3968 3969 /* 3970 * Link a file.. 3971 */ 3972 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3973 struct dentry *dentry) 3974 { 3975 struct inode *inode = d_inode(old_dentry); 3976 int ret; 3977 3978 /* 3979 * No ordinary (disk based) filesystem counts links as inodes; 3980 * but each new link needs a new dentry, pinning lowmem, and 3981 * tmpfs dentries cannot be pruned until they are unlinked. 3982 * But if an O_TMPFILE file is linked into the tmpfs, the 3983 * first link must skip that, to get the accounting right. 3984 */ 3985 if (inode->i_nlink) { 3986 ret = shmem_reserve_inode(inode->i_sb, NULL); 3987 if (ret) 3988 return ret; 3989 } 3990 3991 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3992 if (ret) { 3993 if (inode->i_nlink) 3994 shmem_free_inode(inode->i_sb, 0); 3995 return ret; 3996 } 3997 3998 dir->i_size += BOGO_DIRENT_SIZE; 3999 inode_inc_iversion(dir); 4000 return simple_link(old_dentry, dir, dentry); 4001 } 4002 4003 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 4004 { 4005 struct inode *inode = d_inode(dentry); 4006 4007 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 4008 shmem_free_inode(inode->i_sb, 0); 4009 4010 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 4011 4012 dir->i_size -= BOGO_DIRENT_SIZE; 4013 inode_inc_iversion(dir); 4014 simple_unlink(dir, dentry); 4015 4016 /* 4017 * For now, VFS can't deal with case-insensitive negative dentries, so 4018 * we invalidate them 4019 */ 4020 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 4021 d_invalidate(dentry); 4022 4023 return 0; 4024 } 4025 4026 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 4027 { 4028 if (!simple_empty(dentry)) 4029 return -ENOTEMPTY; 4030 4031 drop_nlink(d_inode(dentry)); 4032 drop_nlink(dir); 4033 return shmem_unlink(dir, dentry); 4034 } 4035 4036 static int shmem_whiteout(struct mnt_idmap *idmap, 4037 struct inode *old_dir, struct dentry *old_dentry) 4038 { 4039 struct dentry *whiteout; 4040 int error; 4041 4042 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 4043 if (!whiteout) 4044 return -ENOMEM; 4045 error = shmem_mknod(idmap, old_dir, whiteout, 4046 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4047 dput(whiteout); 4048 return error; 4049 } 4050 4051 /* 4052 * The VFS layer already does all the dentry stuff for rename, 4053 * we just have to decrement the usage count for the target if 4054 * it exists so that the VFS layer correctly free's it when it 4055 * gets overwritten. 4056 */ 4057 static int shmem_rename2(struct mnt_idmap *idmap, 4058 struct inode *old_dir, struct dentry *old_dentry, 4059 struct inode *new_dir, struct dentry *new_dentry, 4060 unsigned int flags) 4061 { 4062 struct inode *inode = d_inode(old_dentry); 4063 int they_are_dirs = S_ISDIR(inode->i_mode); 4064 bool had_offset = false; 4065 int error; 4066 4067 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4068 return -EINVAL; 4069 4070 if (flags & RENAME_EXCHANGE) 4071 return simple_offset_rename_exchange(old_dir, old_dentry, 4072 new_dir, new_dentry); 4073 4074 if (!simple_empty(new_dentry)) 4075 return -ENOTEMPTY; 4076 4077 error = simple_offset_add(shmem_get_offset_ctx(new_dir), new_dentry); 4078 if (error == -EBUSY) 4079 had_offset = true; 4080 else if (unlikely(error)) 4081 return error; 4082 4083 if (flags & RENAME_WHITEOUT) { 4084 error = shmem_whiteout(idmap, old_dir, old_dentry); 4085 if (error) { 4086 if (!had_offset) 4087 simple_offset_remove(shmem_get_offset_ctx(new_dir), 4088 new_dentry); 4089 return error; 4090 } 4091 } 4092 4093 simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 4094 if (d_really_is_positive(new_dentry)) { 4095 (void) shmem_unlink(new_dir, new_dentry); 4096 if (they_are_dirs) { 4097 drop_nlink(d_inode(new_dentry)); 4098 drop_nlink(old_dir); 4099 } 4100 } else if (they_are_dirs) { 4101 drop_nlink(old_dir); 4102 inc_nlink(new_dir); 4103 } 4104 4105 old_dir->i_size -= BOGO_DIRENT_SIZE; 4106 new_dir->i_size += BOGO_DIRENT_SIZE; 4107 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 4108 inode_inc_iversion(old_dir); 4109 inode_inc_iversion(new_dir); 4110 return 0; 4111 } 4112 4113 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 4114 struct dentry *dentry, const char *symname) 4115 { 4116 int error; 4117 int len; 4118 struct inode *inode; 4119 struct folio *folio; 4120 char *link; 4121 4122 len = strlen(symname) + 1; 4123 if (len > PAGE_SIZE) 4124 return -ENAMETOOLONG; 4125 4126 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 4127 VM_NORESERVE); 4128 if (IS_ERR(inode)) 4129 return PTR_ERR(inode); 4130 4131 error = security_inode_init_security(inode, dir, &dentry->d_name, 4132 shmem_initxattrs, NULL); 4133 if (error && error != -EOPNOTSUPP) 4134 goto out_iput; 4135 4136 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 4137 if (error) 4138 goto out_iput; 4139 4140 inode->i_size = len-1; 4141 if (len <= SHORT_SYMLINK_LEN) { 4142 link = kmemdup(symname, len, GFP_KERNEL); 4143 if (!link) { 4144 error = -ENOMEM; 4145 goto out_remove_offset; 4146 } 4147 inode->i_op = &shmem_short_symlink_operations; 4148 inode_set_cached_link(inode, link, len - 1); 4149 } else { 4150 inode_nohighmem(inode); 4151 inode->i_mapping->a_ops = &shmem_aops; 4152 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE); 4153 if (error) 4154 goto out_remove_offset; 4155 inode->i_op = &shmem_symlink_inode_operations; 4156 memcpy(folio_address(folio), symname, len); 4157 folio_mark_uptodate(folio); 4158 folio_mark_dirty(folio); 4159 folio_unlock(folio); 4160 folio_put(folio); 4161 } 4162 dir->i_size += BOGO_DIRENT_SIZE; 4163 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 4164 inode_inc_iversion(dir); 4165 d_make_persistent(dentry, inode); 4166 return 0; 4167 4168 out_remove_offset: 4169 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 4170 out_iput: 4171 iput(inode); 4172 return error; 4173 } 4174 4175 static void shmem_put_link(void *arg) 4176 { 4177 folio_mark_accessed(arg); 4178 folio_put(arg); 4179 } 4180 4181 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 4182 struct delayed_call *done) 4183 { 4184 struct folio *folio = NULL; 4185 int error; 4186 4187 if (!dentry) { 4188 folio = filemap_get_folio(inode->i_mapping, 0); 4189 if (IS_ERR(folio)) 4190 return ERR_PTR(-ECHILD); 4191 if (PageHWPoison(folio_page(folio, 0)) || 4192 !folio_test_uptodate(folio)) { 4193 folio_put(folio); 4194 return ERR_PTR(-ECHILD); 4195 } 4196 } else { 4197 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ); 4198 if (error) 4199 return ERR_PTR(error); 4200 if (!folio) 4201 return ERR_PTR(-ECHILD); 4202 if (PageHWPoison(folio_page(folio, 0))) { 4203 folio_unlock(folio); 4204 folio_put(folio); 4205 return ERR_PTR(-ECHILD); 4206 } 4207 folio_unlock(folio); 4208 } 4209 set_delayed_call(done, shmem_put_link, folio); 4210 return folio_address(folio); 4211 } 4212 4213 #ifdef CONFIG_TMPFS_XATTR 4214 4215 static int shmem_fileattr_get(struct dentry *dentry, struct file_kattr *fa) 4216 { 4217 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4218 4219 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 4220 4221 return 0; 4222 } 4223 4224 static int shmem_fileattr_set(struct mnt_idmap *idmap, 4225 struct dentry *dentry, struct file_kattr *fa) 4226 { 4227 struct inode *inode = d_inode(dentry); 4228 struct shmem_inode_info *info = SHMEM_I(inode); 4229 int ret, flags; 4230 4231 if (fileattr_has_fsx(fa)) 4232 return -EOPNOTSUPP; 4233 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 4234 return -EOPNOTSUPP; 4235 4236 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 4237 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 4238 4239 ret = shmem_set_inode_flags(inode, flags, dentry); 4240 4241 if (ret) 4242 return ret; 4243 4244 info->fsflags = flags; 4245 4246 inode_set_ctime_current(inode); 4247 inode_inc_iversion(inode); 4248 return 0; 4249 } 4250 4251 /* 4252 * Superblocks without xattr inode operations may get some security.* xattr 4253 * support from the LSM "for free". As soon as we have any other xattrs 4254 * like ACLs, we also need to implement the security.* handlers at 4255 * filesystem level, though. 4256 */ 4257 4258 /* 4259 * Callback for security_inode_init_security() for acquiring xattrs. 4260 */ 4261 static int shmem_initxattrs(struct inode *inode, 4262 const struct xattr *xattr_array, void *fs_info) 4263 { 4264 struct shmem_inode_info *info = SHMEM_I(inode); 4265 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4266 const struct xattr *xattr; 4267 struct simple_xattr *new_xattr; 4268 size_t ispace = 0; 4269 size_t len; 4270 4271 if (sbinfo->max_inodes) { 4272 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4273 ispace += simple_xattr_space(xattr->name, 4274 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 4275 } 4276 if (ispace) { 4277 raw_spin_lock(&sbinfo->stat_lock); 4278 if (sbinfo->free_ispace < ispace) 4279 ispace = 0; 4280 else 4281 sbinfo->free_ispace -= ispace; 4282 raw_spin_unlock(&sbinfo->stat_lock); 4283 if (!ispace) 4284 return -ENOSPC; 4285 } 4286 } 4287 4288 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4289 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 4290 if (!new_xattr) 4291 break; 4292 4293 len = strlen(xattr->name) + 1; 4294 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 4295 GFP_KERNEL_ACCOUNT); 4296 if (!new_xattr->name) { 4297 kvfree(new_xattr); 4298 break; 4299 } 4300 4301 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 4302 XATTR_SECURITY_PREFIX_LEN); 4303 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 4304 xattr->name, len); 4305 4306 simple_xattr_add(&info->xattrs, new_xattr); 4307 } 4308 4309 if (xattr->name != NULL) { 4310 if (ispace) { 4311 raw_spin_lock(&sbinfo->stat_lock); 4312 sbinfo->free_ispace += ispace; 4313 raw_spin_unlock(&sbinfo->stat_lock); 4314 } 4315 simple_xattrs_free(&info->xattrs, NULL); 4316 return -ENOMEM; 4317 } 4318 4319 return 0; 4320 } 4321 4322 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 4323 struct dentry *unused, struct inode *inode, 4324 const char *name, void *buffer, size_t size) 4325 { 4326 struct shmem_inode_info *info = SHMEM_I(inode); 4327 4328 name = xattr_full_name(handler, name); 4329 return simple_xattr_get(&info->xattrs, name, buffer, size); 4330 } 4331 4332 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 4333 struct mnt_idmap *idmap, 4334 struct dentry *unused, struct inode *inode, 4335 const char *name, const void *value, 4336 size_t size, int flags) 4337 { 4338 struct shmem_inode_info *info = SHMEM_I(inode); 4339 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4340 struct simple_xattr *old_xattr; 4341 size_t ispace = 0; 4342 4343 name = xattr_full_name(handler, name); 4344 if (value && sbinfo->max_inodes) { 4345 ispace = simple_xattr_space(name, size); 4346 raw_spin_lock(&sbinfo->stat_lock); 4347 if (sbinfo->free_ispace < ispace) 4348 ispace = 0; 4349 else 4350 sbinfo->free_ispace -= ispace; 4351 raw_spin_unlock(&sbinfo->stat_lock); 4352 if (!ispace) 4353 return -ENOSPC; 4354 } 4355 4356 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 4357 if (!IS_ERR(old_xattr)) { 4358 ispace = 0; 4359 if (old_xattr && sbinfo->max_inodes) 4360 ispace = simple_xattr_space(old_xattr->name, 4361 old_xattr->size); 4362 simple_xattr_free(old_xattr); 4363 old_xattr = NULL; 4364 inode_set_ctime_current(inode); 4365 inode_inc_iversion(inode); 4366 } 4367 if (ispace) { 4368 raw_spin_lock(&sbinfo->stat_lock); 4369 sbinfo->free_ispace += ispace; 4370 raw_spin_unlock(&sbinfo->stat_lock); 4371 } 4372 return PTR_ERR(old_xattr); 4373 } 4374 4375 static const struct xattr_handler shmem_security_xattr_handler = { 4376 .prefix = XATTR_SECURITY_PREFIX, 4377 .get = shmem_xattr_handler_get, 4378 .set = shmem_xattr_handler_set, 4379 }; 4380 4381 static const struct xattr_handler shmem_trusted_xattr_handler = { 4382 .prefix = XATTR_TRUSTED_PREFIX, 4383 .get = shmem_xattr_handler_get, 4384 .set = shmem_xattr_handler_set, 4385 }; 4386 4387 static const struct xattr_handler shmem_user_xattr_handler = { 4388 .prefix = XATTR_USER_PREFIX, 4389 .get = shmem_xattr_handler_get, 4390 .set = shmem_xattr_handler_set, 4391 }; 4392 4393 static const struct xattr_handler * const shmem_xattr_handlers[] = { 4394 &shmem_security_xattr_handler, 4395 &shmem_trusted_xattr_handler, 4396 &shmem_user_xattr_handler, 4397 NULL 4398 }; 4399 4400 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 4401 { 4402 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4403 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 4404 } 4405 #endif /* CONFIG_TMPFS_XATTR */ 4406 4407 static const struct inode_operations shmem_short_symlink_operations = { 4408 .getattr = shmem_getattr, 4409 .setattr = shmem_setattr, 4410 .get_link = simple_get_link, 4411 #ifdef CONFIG_TMPFS_XATTR 4412 .listxattr = shmem_listxattr, 4413 #endif 4414 }; 4415 4416 static const struct inode_operations shmem_symlink_inode_operations = { 4417 .getattr = shmem_getattr, 4418 .setattr = shmem_setattr, 4419 .get_link = shmem_get_link, 4420 #ifdef CONFIG_TMPFS_XATTR 4421 .listxattr = shmem_listxattr, 4422 #endif 4423 }; 4424 4425 static struct dentry *shmem_get_parent(struct dentry *child) 4426 { 4427 return ERR_PTR(-ESTALE); 4428 } 4429 4430 static int shmem_match(struct inode *ino, void *vfh) 4431 { 4432 __u32 *fh = vfh; 4433 __u64 inum = fh[2]; 4434 inum = (inum << 32) | fh[1]; 4435 return ino->i_ino == inum && fh[0] == ino->i_generation; 4436 } 4437 4438 /* Find any alias of inode, but prefer a hashed alias */ 4439 static struct dentry *shmem_find_alias(struct inode *inode) 4440 { 4441 struct dentry *alias = d_find_alias(inode); 4442 4443 return alias ?: d_find_any_alias(inode); 4444 } 4445 4446 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 4447 struct fid *fid, int fh_len, int fh_type) 4448 { 4449 struct inode *inode; 4450 struct dentry *dentry = NULL; 4451 u64 inum; 4452 4453 if (fh_len < 3) 4454 return NULL; 4455 4456 inum = fid->raw[2]; 4457 inum = (inum << 32) | fid->raw[1]; 4458 4459 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 4460 shmem_match, fid->raw); 4461 if (inode) { 4462 dentry = shmem_find_alias(inode); 4463 iput(inode); 4464 } 4465 4466 return dentry; 4467 } 4468 4469 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 4470 struct inode *parent) 4471 { 4472 if (*len < 3) { 4473 *len = 3; 4474 return FILEID_INVALID; 4475 } 4476 4477 if (inode_unhashed(inode)) { 4478 /* Unfortunately insert_inode_hash is not idempotent, 4479 * so as we hash inodes here rather than at creation 4480 * time, we need a lock to ensure we only try 4481 * to do it once 4482 */ 4483 static DEFINE_SPINLOCK(lock); 4484 spin_lock(&lock); 4485 if (inode_unhashed(inode)) 4486 __insert_inode_hash(inode, 4487 inode->i_ino + inode->i_generation); 4488 spin_unlock(&lock); 4489 } 4490 4491 fh[0] = inode->i_generation; 4492 fh[1] = inode->i_ino; 4493 fh[2] = ((__u64)inode->i_ino) >> 32; 4494 4495 *len = 3; 4496 return 1; 4497 } 4498 4499 static const struct export_operations shmem_export_ops = { 4500 .get_parent = shmem_get_parent, 4501 .encode_fh = shmem_encode_fh, 4502 .fh_to_dentry = shmem_fh_to_dentry, 4503 }; 4504 4505 enum shmem_param { 4506 Opt_gid, 4507 Opt_huge, 4508 Opt_mode, 4509 Opt_mpol, 4510 Opt_nr_blocks, 4511 Opt_nr_inodes, 4512 Opt_size, 4513 Opt_uid, 4514 Opt_inode32, 4515 Opt_inode64, 4516 Opt_noswap, 4517 Opt_quota, 4518 Opt_usrquota, 4519 Opt_grpquota, 4520 Opt_usrquota_block_hardlimit, 4521 Opt_usrquota_inode_hardlimit, 4522 Opt_grpquota_block_hardlimit, 4523 Opt_grpquota_inode_hardlimit, 4524 Opt_casefold_version, 4525 Opt_casefold, 4526 Opt_strict_encoding, 4527 }; 4528 4529 static const struct constant_table shmem_param_enums_huge[] = { 4530 {"never", SHMEM_HUGE_NEVER }, 4531 {"always", SHMEM_HUGE_ALWAYS }, 4532 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 4533 {"advise", SHMEM_HUGE_ADVISE }, 4534 {} 4535 }; 4536 4537 const struct fs_parameter_spec shmem_fs_parameters[] = { 4538 fsparam_gid ("gid", Opt_gid), 4539 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 4540 fsparam_u32oct("mode", Opt_mode), 4541 fsparam_string("mpol", Opt_mpol), 4542 fsparam_string("nr_blocks", Opt_nr_blocks), 4543 fsparam_string("nr_inodes", Opt_nr_inodes), 4544 fsparam_string("size", Opt_size), 4545 fsparam_uid ("uid", Opt_uid), 4546 fsparam_flag ("inode32", Opt_inode32), 4547 fsparam_flag ("inode64", Opt_inode64), 4548 fsparam_flag ("noswap", Opt_noswap), 4549 #ifdef CONFIG_TMPFS_QUOTA 4550 fsparam_flag ("quota", Opt_quota), 4551 fsparam_flag ("usrquota", Opt_usrquota), 4552 fsparam_flag ("grpquota", Opt_grpquota), 4553 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 4554 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 4555 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 4556 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 4557 #endif 4558 fsparam_string("casefold", Opt_casefold_version), 4559 fsparam_flag ("casefold", Opt_casefold), 4560 fsparam_flag ("strict_encoding", Opt_strict_encoding), 4561 {} 4562 }; 4563 4564 #if IS_ENABLED(CONFIG_UNICODE) 4565 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4566 bool latest_version) 4567 { 4568 struct shmem_options *ctx = fc->fs_private; 4569 int version = UTF8_LATEST; 4570 struct unicode_map *encoding; 4571 char *version_str = param->string + 5; 4572 4573 if (!latest_version) { 4574 if (strncmp(param->string, "utf8-", 5)) 4575 return invalfc(fc, "Only UTF-8 encodings are supported " 4576 "in the format: utf8-<version number>"); 4577 4578 version = utf8_parse_version(version_str); 4579 if (version < 0) 4580 return invalfc(fc, "Invalid UTF-8 version: %s", version_str); 4581 } 4582 4583 encoding = utf8_load(version); 4584 4585 if (IS_ERR(encoding)) { 4586 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n", 4587 unicode_major(version), unicode_minor(version), 4588 unicode_rev(version)); 4589 } 4590 4591 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n", 4592 unicode_major(version), unicode_minor(version), unicode_rev(version)); 4593 4594 ctx->encoding = encoding; 4595 4596 return 0; 4597 } 4598 #else 4599 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4600 bool latest_version) 4601 { 4602 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4603 } 4604 #endif 4605 4606 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 4607 { 4608 struct shmem_options *ctx = fc->fs_private; 4609 struct fs_parse_result result; 4610 unsigned long long size; 4611 char *rest; 4612 int opt; 4613 kuid_t kuid; 4614 kgid_t kgid; 4615 4616 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 4617 if (opt < 0) 4618 return opt; 4619 4620 switch (opt) { 4621 case Opt_size: 4622 size = memparse(param->string, &rest); 4623 if (*rest == '%') { 4624 size <<= PAGE_SHIFT; 4625 size *= totalram_pages(); 4626 do_div(size, 100); 4627 rest++; 4628 } 4629 if (*rest) 4630 goto bad_value; 4631 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 4632 ctx->seen |= SHMEM_SEEN_BLOCKS; 4633 break; 4634 case Opt_nr_blocks: 4635 ctx->blocks = memparse(param->string, &rest); 4636 if (*rest || ctx->blocks > LONG_MAX) 4637 goto bad_value; 4638 ctx->seen |= SHMEM_SEEN_BLOCKS; 4639 break; 4640 case Opt_nr_inodes: 4641 ctx->inodes = memparse(param->string, &rest); 4642 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 4643 goto bad_value; 4644 ctx->seen |= SHMEM_SEEN_INODES; 4645 break; 4646 case Opt_mode: 4647 ctx->mode = result.uint_32 & 07777; 4648 break; 4649 case Opt_uid: 4650 kuid = result.uid; 4651 4652 /* 4653 * The requested uid must be representable in the 4654 * filesystem's idmapping. 4655 */ 4656 if (!kuid_has_mapping(fc->user_ns, kuid)) 4657 goto bad_value; 4658 4659 ctx->uid = kuid; 4660 break; 4661 case Opt_gid: 4662 kgid = result.gid; 4663 4664 /* 4665 * The requested gid must be representable in the 4666 * filesystem's idmapping. 4667 */ 4668 if (!kgid_has_mapping(fc->user_ns, kgid)) 4669 goto bad_value; 4670 4671 ctx->gid = kgid; 4672 break; 4673 case Opt_huge: 4674 ctx->huge = result.uint_32; 4675 if (ctx->huge != SHMEM_HUGE_NEVER && 4676 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4677 has_transparent_hugepage())) 4678 goto unsupported_parameter; 4679 ctx->seen |= SHMEM_SEEN_HUGE; 4680 break; 4681 case Opt_mpol: 4682 if (IS_ENABLED(CONFIG_NUMA)) { 4683 mpol_put(ctx->mpol); 4684 ctx->mpol = NULL; 4685 if (mpol_parse_str(param->string, &ctx->mpol)) 4686 goto bad_value; 4687 break; 4688 } 4689 goto unsupported_parameter; 4690 case Opt_inode32: 4691 ctx->full_inums = false; 4692 ctx->seen |= SHMEM_SEEN_INUMS; 4693 break; 4694 case Opt_inode64: 4695 if (sizeof(ino_t) < 8) { 4696 return invalfc(fc, 4697 "Cannot use inode64 with <64bit inums in kernel\n"); 4698 } 4699 ctx->full_inums = true; 4700 ctx->seen |= SHMEM_SEEN_INUMS; 4701 break; 4702 case Opt_noswap: 4703 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4704 return invalfc(fc, 4705 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4706 } 4707 ctx->noswap = true; 4708 break; 4709 case Opt_quota: 4710 if (fc->user_ns != &init_user_ns) 4711 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4712 ctx->seen |= SHMEM_SEEN_QUOTA; 4713 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4714 break; 4715 case Opt_usrquota: 4716 if (fc->user_ns != &init_user_ns) 4717 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4718 ctx->seen |= SHMEM_SEEN_QUOTA; 4719 ctx->quota_types |= QTYPE_MASK_USR; 4720 break; 4721 case Opt_grpquota: 4722 if (fc->user_ns != &init_user_ns) 4723 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4724 ctx->seen |= SHMEM_SEEN_QUOTA; 4725 ctx->quota_types |= QTYPE_MASK_GRP; 4726 break; 4727 case Opt_usrquota_block_hardlimit: 4728 size = memparse(param->string, &rest); 4729 if (*rest || !size) 4730 goto bad_value; 4731 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4732 return invalfc(fc, 4733 "User quota block hardlimit too large."); 4734 ctx->qlimits.usrquota_bhardlimit = size; 4735 break; 4736 case Opt_grpquota_block_hardlimit: 4737 size = memparse(param->string, &rest); 4738 if (*rest || !size) 4739 goto bad_value; 4740 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4741 return invalfc(fc, 4742 "Group quota block hardlimit too large."); 4743 ctx->qlimits.grpquota_bhardlimit = size; 4744 break; 4745 case Opt_usrquota_inode_hardlimit: 4746 size = memparse(param->string, &rest); 4747 if (*rest || !size) 4748 goto bad_value; 4749 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4750 return invalfc(fc, 4751 "User quota inode hardlimit too large."); 4752 ctx->qlimits.usrquota_ihardlimit = size; 4753 break; 4754 case Opt_grpquota_inode_hardlimit: 4755 size = memparse(param->string, &rest); 4756 if (*rest || !size) 4757 goto bad_value; 4758 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4759 return invalfc(fc, 4760 "Group quota inode hardlimit too large."); 4761 ctx->qlimits.grpquota_ihardlimit = size; 4762 break; 4763 case Opt_casefold_version: 4764 return shmem_parse_opt_casefold(fc, param, false); 4765 case Opt_casefold: 4766 return shmem_parse_opt_casefold(fc, param, true); 4767 case Opt_strict_encoding: 4768 #if IS_ENABLED(CONFIG_UNICODE) 4769 ctx->strict_encoding = true; 4770 break; 4771 #else 4772 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4773 #endif 4774 } 4775 return 0; 4776 4777 unsupported_parameter: 4778 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4779 bad_value: 4780 return invalfc(fc, "Bad value for '%s'", param->key); 4781 } 4782 4783 static char *shmem_next_opt(char **s) 4784 { 4785 char *sbegin = *s; 4786 char *p; 4787 4788 if (sbegin == NULL) 4789 return NULL; 4790 4791 /* 4792 * NUL-terminate this option: unfortunately, 4793 * mount options form a comma-separated list, 4794 * but mpol's nodelist may also contain commas. 4795 */ 4796 for (;;) { 4797 p = strchr(*s, ','); 4798 if (p == NULL) 4799 break; 4800 *s = p + 1; 4801 if (!isdigit(*(p+1))) { 4802 *p = '\0'; 4803 return sbegin; 4804 } 4805 } 4806 4807 *s = NULL; 4808 return sbegin; 4809 } 4810 4811 static int shmem_parse_monolithic(struct fs_context *fc, void *data) 4812 { 4813 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt); 4814 } 4815 4816 /* 4817 * Reconfigure a shmem filesystem. 4818 */ 4819 static int shmem_reconfigure(struct fs_context *fc) 4820 { 4821 struct shmem_options *ctx = fc->fs_private; 4822 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4823 unsigned long used_isp; 4824 struct mempolicy *mpol = NULL; 4825 const char *err; 4826 4827 raw_spin_lock(&sbinfo->stat_lock); 4828 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4829 4830 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4831 if (!sbinfo->max_blocks) { 4832 err = "Cannot retroactively limit size"; 4833 goto out; 4834 } 4835 if (percpu_counter_compare(&sbinfo->used_blocks, 4836 ctx->blocks) > 0) { 4837 err = "Too small a size for current use"; 4838 goto out; 4839 } 4840 } 4841 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4842 if (!sbinfo->max_inodes) { 4843 err = "Cannot retroactively limit inodes"; 4844 goto out; 4845 } 4846 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4847 err = "Too few inodes for current use"; 4848 goto out; 4849 } 4850 } 4851 4852 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4853 sbinfo->next_ino > UINT_MAX) { 4854 err = "Current inum too high to switch to 32-bit inums"; 4855 goto out; 4856 } 4857 4858 /* 4859 * "noswap" doesn't use fsparam_flag_no, i.e. there's no "swap" 4860 * counterpart for (re-)enabling swap. 4861 */ 4862 if (ctx->noswap && !sbinfo->noswap) { 4863 err = "Cannot disable swap on remount"; 4864 goto out; 4865 } 4866 4867 if (ctx->seen & SHMEM_SEEN_QUOTA && 4868 !sb_any_quota_loaded(fc->root->d_sb)) { 4869 err = "Cannot enable quota on remount"; 4870 goto out; 4871 } 4872 4873 #ifdef CONFIG_TMPFS_QUOTA 4874 #define CHANGED_LIMIT(name) \ 4875 (ctx->qlimits.name## hardlimit && \ 4876 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4877 4878 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4879 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4880 err = "Cannot change global quota limit on remount"; 4881 goto out; 4882 } 4883 #endif /* CONFIG_TMPFS_QUOTA */ 4884 4885 if (ctx->seen & SHMEM_SEEN_HUGE) 4886 sbinfo->huge = ctx->huge; 4887 if (ctx->seen & SHMEM_SEEN_INUMS) 4888 sbinfo->full_inums = ctx->full_inums; 4889 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4890 sbinfo->max_blocks = ctx->blocks; 4891 if (ctx->seen & SHMEM_SEEN_INODES) { 4892 sbinfo->max_inodes = ctx->inodes; 4893 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4894 } 4895 4896 /* 4897 * Preserve previous mempolicy unless mpol remount option was specified. 4898 */ 4899 if (ctx->mpol) { 4900 mpol = sbinfo->mpol; 4901 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4902 ctx->mpol = NULL; 4903 } 4904 4905 if (ctx->noswap) 4906 sbinfo->noswap = true; 4907 4908 raw_spin_unlock(&sbinfo->stat_lock); 4909 mpol_put(mpol); 4910 return 0; 4911 out: 4912 raw_spin_unlock(&sbinfo->stat_lock); 4913 return invalfc(fc, "%s", err); 4914 } 4915 4916 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4917 { 4918 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4919 struct mempolicy *mpol; 4920 4921 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4922 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4923 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4924 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4925 if (sbinfo->mode != (0777 | S_ISVTX)) 4926 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4927 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4928 seq_printf(seq, ",uid=%u", 4929 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4930 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4931 seq_printf(seq, ",gid=%u", 4932 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4933 4934 /* 4935 * Showing inode{64,32} might be useful even if it's the system default, 4936 * since then people don't have to resort to checking both here and 4937 * /proc/config.gz to confirm 64-bit inums were successfully applied 4938 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4939 * 4940 * We hide it when inode64 isn't the default and we are using 32-bit 4941 * inodes, since that probably just means the feature isn't even under 4942 * consideration. 4943 * 4944 * As such: 4945 * 4946 * +-----------------+-----------------+ 4947 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4948 * +------------------+-----------------+-----------------+ 4949 * | full_inums=true | show | show | 4950 * | full_inums=false | show | hide | 4951 * +------------------+-----------------+-----------------+ 4952 * 4953 */ 4954 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4955 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4956 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4957 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4958 if (sbinfo->huge) 4959 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4960 #endif 4961 mpol = shmem_get_sbmpol(sbinfo); 4962 shmem_show_mpol(seq, mpol); 4963 mpol_put(mpol); 4964 if (sbinfo->noswap) 4965 seq_printf(seq, ",noswap"); 4966 #ifdef CONFIG_TMPFS_QUOTA 4967 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4968 seq_printf(seq, ",usrquota"); 4969 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4970 seq_printf(seq, ",grpquota"); 4971 if (sbinfo->qlimits.usrquota_bhardlimit) 4972 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4973 sbinfo->qlimits.usrquota_bhardlimit); 4974 if (sbinfo->qlimits.grpquota_bhardlimit) 4975 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4976 sbinfo->qlimits.grpquota_bhardlimit); 4977 if (sbinfo->qlimits.usrquota_ihardlimit) 4978 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4979 sbinfo->qlimits.usrquota_ihardlimit); 4980 if (sbinfo->qlimits.grpquota_ihardlimit) 4981 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4982 sbinfo->qlimits.grpquota_ihardlimit); 4983 #endif 4984 return 0; 4985 } 4986 4987 #endif /* CONFIG_TMPFS */ 4988 4989 static void shmem_put_super(struct super_block *sb) 4990 { 4991 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4992 4993 #if IS_ENABLED(CONFIG_UNICODE) 4994 if (sb->s_encoding) 4995 utf8_unload(sb->s_encoding); 4996 #endif 4997 4998 #ifdef CONFIG_TMPFS_QUOTA 4999 shmem_disable_quotas(sb); 5000 #endif 5001 free_percpu(sbinfo->ino_batch); 5002 percpu_counter_destroy(&sbinfo->used_blocks); 5003 mpol_put(sbinfo->mpol); 5004 kfree(sbinfo); 5005 sb->s_fs_info = NULL; 5006 } 5007 5008 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS) 5009 static const struct dentry_operations shmem_ci_dentry_ops = { 5010 .d_hash = generic_ci_d_hash, 5011 .d_compare = generic_ci_d_compare, 5012 }; 5013 #endif 5014 5015 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 5016 { 5017 struct shmem_options *ctx = fc->fs_private; 5018 struct inode *inode; 5019 struct shmem_sb_info *sbinfo; 5020 int error = -ENOMEM; 5021 5022 /* Round up to L1_CACHE_BYTES to resist false sharing */ 5023 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 5024 L1_CACHE_BYTES), GFP_KERNEL); 5025 if (!sbinfo) 5026 return error; 5027 5028 sb->s_fs_info = sbinfo; 5029 5030 #ifdef CONFIG_TMPFS 5031 /* 5032 * Per default we only allow half of the physical ram per 5033 * tmpfs instance, limiting inodes to one per page of lowmem; 5034 * but the internal instance is left unlimited. 5035 */ 5036 if (!(sb->s_flags & SB_KERNMOUNT)) { 5037 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 5038 ctx->blocks = shmem_default_max_blocks(); 5039 if (!(ctx->seen & SHMEM_SEEN_INODES)) 5040 ctx->inodes = shmem_default_max_inodes(); 5041 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 5042 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 5043 sbinfo->noswap = ctx->noswap; 5044 } else { 5045 sb->s_flags |= SB_NOUSER; 5046 } 5047 sb->s_export_op = &shmem_export_ops; 5048 sb->s_flags |= SB_NOSEC; 5049 5050 #if IS_ENABLED(CONFIG_UNICODE) 5051 if (!ctx->encoding && ctx->strict_encoding) { 5052 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n"); 5053 error = -EINVAL; 5054 goto failed; 5055 } 5056 5057 if (ctx->encoding) { 5058 sb->s_encoding = ctx->encoding; 5059 set_default_d_op(sb, &shmem_ci_dentry_ops); 5060 if (ctx->strict_encoding) 5061 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL; 5062 } 5063 #endif 5064 5065 #else 5066 sb->s_flags |= SB_NOUSER; 5067 #endif /* CONFIG_TMPFS */ 5068 sb->s_d_flags |= DCACHE_DONTCACHE; 5069 sbinfo->max_blocks = ctx->blocks; 5070 sbinfo->max_inodes = ctx->inodes; 5071 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 5072 if (sb->s_flags & SB_KERNMOUNT) { 5073 sbinfo->ino_batch = alloc_percpu(ino_t); 5074 if (!sbinfo->ino_batch) 5075 goto failed; 5076 } 5077 sbinfo->uid = ctx->uid; 5078 sbinfo->gid = ctx->gid; 5079 sbinfo->full_inums = ctx->full_inums; 5080 sbinfo->mode = ctx->mode; 5081 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5082 if (ctx->seen & SHMEM_SEEN_HUGE) 5083 sbinfo->huge = ctx->huge; 5084 else 5085 sbinfo->huge = tmpfs_huge; 5086 #endif 5087 sbinfo->mpol = ctx->mpol; 5088 ctx->mpol = NULL; 5089 5090 raw_spin_lock_init(&sbinfo->stat_lock); 5091 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 5092 goto failed; 5093 spin_lock_init(&sbinfo->shrinklist_lock); 5094 INIT_LIST_HEAD(&sbinfo->shrinklist); 5095 5096 sb->s_maxbytes = MAX_LFS_FILESIZE; 5097 sb->s_blocksize = PAGE_SIZE; 5098 sb->s_blocksize_bits = PAGE_SHIFT; 5099 sb->s_magic = TMPFS_MAGIC; 5100 sb->s_op = &shmem_ops; 5101 sb->s_time_gran = 1; 5102 #ifdef CONFIG_TMPFS_XATTR 5103 sb->s_xattr = shmem_xattr_handlers; 5104 #endif 5105 #ifdef CONFIG_TMPFS_POSIX_ACL 5106 sb->s_flags |= SB_POSIXACL; 5107 #endif 5108 uuid_t uuid; 5109 uuid_gen(&uuid); 5110 super_set_uuid(sb, uuid.b, sizeof(uuid)); 5111 5112 #ifdef CONFIG_TMPFS_QUOTA 5113 if (ctx->seen & SHMEM_SEEN_QUOTA) { 5114 sb->dq_op = &shmem_quota_operations; 5115 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5116 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 5117 5118 /* Copy the default limits from ctx into sbinfo */ 5119 memcpy(&sbinfo->qlimits, &ctx->qlimits, 5120 sizeof(struct shmem_quota_limits)); 5121 5122 if (shmem_enable_quotas(sb, ctx->quota_types)) 5123 goto failed; 5124 } 5125 #endif /* CONFIG_TMPFS_QUOTA */ 5126 5127 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 5128 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 5129 if (IS_ERR(inode)) { 5130 error = PTR_ERR(inode); 5131 goto failed; 5132 } 5133 inode->i_uid = sbinfo->uid; 5134 inode->i_gid = sbinfo->gid; 5135 sb->s_root = d_make_root(inode); 5136 if (!sb->s_root) 5137 goto failed; 5138 return 0; 5139 5140 failed: 5141 shmem_put_super(sb); 5142 return error; 5143 } 5144 5145 static int shmem_get_tree(struct fs_context *fc) 5146 { 5147 return get_tree_nodev(fc, shmem_fill_super); 5148 } 5149 5150 static void shmem_free_fc(struct fs_context *fc) 5151 { 5152 struct shmem_options *ctx = fc->fs_private; 5153 5154 if (ctx) { 5155 mpol_put(ctx->mpol); 5156 kfree(ctx); 5157 } 5158 } 5159 5160 static const struct fs_context_operations shmem_fs_context_ops = { 5161 .free = shmem_free_fc, 5162 .get_tree = shmem_get_tree, 5163 #ifdef CONFIG_TMPFS 5164 .parse_monolithic = shmem_parse_monolithic, 5165 .parse_param = shmem_parse_one, 5166 .reconfigure = shmem_reconfigure, 5167 #endif 5168 }; 5169 5170 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 5171 5172 static struct inode *shmem_alloc_inode(struct super_block *sb) 5173 { 5174 struct shmem_inode_info *info; 5175 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 5176 if (!info) 5177 return NULL; 5178 return &info->vfs_inode; 5179 } 5180 5181 static void shmem_free_in_core_inode(struct inode *inode) 5182 { 5183 if (S_ISLNK(inode->i_mode)) 5184 kfree(inode->i_link); 5185 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 5186 } 5187 5188 static void shmem_destroy_inode(struct inode *inode) 5189 { 5190 if (S_ISREG(inode->i_mode)) 5191 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 5192 if (S_ISDIR(inode->i_mode)) 5193 simple_offset_destroy(shmem_get_offset_ctx(inode)); 5194 } 5195 5196 static void shmem_init_inode(void *foo) 5197 { 5198 struct shmem_inode_info *info = foo; 5199 inode_init_once(&info->vfs_inode); 5200 } 5201 5202 static void __init shmem_init_inodecache(void) 5203 { 5204 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 5205 sizeof(struct shmem_inode_info), 5206 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 5207 } 5208 5209 static void __init shmem_destroy_inodecache(void) 5210 { 5211 kmem_cache_destroy(shmem_inode_cachep); 5212 } 5213 5214 /* Keep the page in page cache instead of truncating it */ 5215 static int shmem_error_remove_folio(struct address_space *mapping, 5216 struct folio *folio) 5217 { 5218 return 0; 5219 } 5220 5221 static const struct address_space_operations shmem_aops = { 5222 .dirty_folio = noop_dirty_folio, 5223 #ifdef CONFIG_TMPFS 5224 .write_begin = shmem_write_begin, 5225 .write_end = shmem_write_end, 5226 #endif 5227 #ifdef CONFIG_MIGRATION 5228 .migrate_folio = migrate_folio, 5229 #endif 5230 .error_remove_folio = shmem_error_remove_folio, 5231 }; 5232 5233 static const struct file_operations shmem_file_operations = { 5234 .mmap_prepare = shmem_mmap_prepare, 5235 .open = shmem_file_open, 5236 .get_unmapped_area = shmem_get_unmapped_area, 5237 #ifdef CONFIG_TMPFS 5238 .llseek = shmem_file_llseek, 5239 .read_iter = shmem_file_read_iter, 5240 .write_iter = shmem_file_write_iter, 5241 .fsync = noop_fsync, 5242 .splice_read = shmem_file_splice_read, 5243 .splice_write = iter_file_splice_write, 5244 .fallocate = shmem_fallocate, 5245 #endif 5246 }; 5247 5248 static const struct inode_operations shmem_inode_operations = { 5249 .getattr = shmem_getattr, 5250 .setattr = shmem_setattr, 5251 #ifdef CONFIG_TMPFS_XATTR 5252 .listxattr = shmem_listxattr, 5253 .set_acl = simple_set_acl, 5254 .fileattr_get = shmem_fileattr_get, 5255 .fileattr_set = shmem_fileattr_set, 5256 #endif 5257 }; 5258 5259 static const struct inode_operations shmem_dir_inode_operations = { 5260 #ifdef CONFIG_TMPFS 5261 .getattr = shmem_getattr, 5262 .create = shmem_create, 5263 .lookup = simple_lookup, 5264 .link = shmem_link, 5265 .unlink = shmem_unlink, 5266 .symlink = shmem_symlink, 5267 .mkdir = shmem_mkdir, 5268 .rmdir = shmem_rmdir, 5269 .mknod = shmem_mknod, 5270 .rename = shmem_rename2, 5271 .tmpfile = shmem_tmpfile, 5272 .get_offset_ctx = shmem_get_offset_ctx, 5273 #endif 5274 #ifdef CONFIG_TMPFS_XATTR 5275 .listxattr = shmem_listxattr, 5276 .fileattr_get = shmem_fileattr_get, 5277 .fileattr_set = shmem_fileattr_set, 5278 #endif 5279 #ifdef CONFIG_TMPFS_POSIX_ACL 5280 .setattr = shmem_setattr, 5281 .set_acl = simple_set_acl, 5282 #endif 5283 }; 5284 5285 static const struct inode_operations shmem_special_inode_operations = { 5286 .getattr = shmem_getattr, 5287 #ifdef CONFIG_TMPFS_XATTR 5288 .listxattr = shmem_listxattr, 5289 #endif 5290 #ifdef CONFIG_TMPFS_POSIX_ACL 5291 .setattr = shmem_setattr, 5292 .set_acl = simple_set_acl, 5293 #endif 5294 }; 5295 5296 static const struct super_operations shmem_ops = { 5297 .alloc_inode = shmem_alloc_inode, 5298 .free_inode = shmem_free_in_core_inode, 5299 .destroy_inode = shmem_destroy_inode, 5300 #ifdef CONFIG_TMPFS 5301 .statfs = shmem_statfs, 5302 .show_options = shmem_show_options, 5303 #endif 5304 #ifdef CONFIG_TMPFS_QUOTA 5305 .get_dquots = shmem_get_dquots, 5306 #endif 5307 .evict_inode = shmem_evict_inode, 5308 .drop_inode = inode_just_drop, 5309 .put_super = shmem_put_super, 5310 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5311 .nr_cached_objects = shmem_unused_huge_count, 5312 .free_cached_objects = shmem_unused_huge_scan, 5313 #endif 5314 }; 5315 5316 static const struct vm_operations_struct shmem_vm_ops = { 5317 .fault = shmem_fault, 5318 .map_pages = filemap_map_pages, 5319 #ifdef CONFIG_NUMA 5320 .set_policy = shmem_set_policy, 5321 .get_policy = shmem_get_policy, 5322 #endif 5323 }; 5324 5325 static const struct vm_operations_struct shmem_anon_vm_ops = { 5326 .fault = shmem_fault, 5327 .map_pages = filemap_map_pages, 5328 #ifdef CONFIG_NUMA 5329 .set_policy = shmem_set_policy, 5330 .get_policy = shmem_get_policy, 5331 #endif 5332 }; 5333 5334 int shmem_init_fs_context(struct fs_context *fc) 5335 { 5336 struct shmem_options *ctx; 5337 5338 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 5339 if (!ctx) 5340 return -ENOMEM; 5341 5342 ctx->mode = 0777 | S_ISVTX; 5343 ctx->uid = current_fsuid(); 5344 ctx->gid = current_fsgid(); 5345 5346 #if IS_ENABLED(CONFIG_UNICODE) 5347 ctx->encoding = NULL; 5348 #endif 5349 5350 fc->fs_private = ctx; 5351 fc->ops = &shmem_fs_context_ops; 5352 #ifdef CONFIG_TMPFS 5353 fc->sb_flags |= SB_I_VERSION; 5354 #endif 5355 return 0; 5356 } 5357 5358 static struct file_system_type shmem_fs_type = { 5359 .owner = THIS_MODULE, 5360 .name = "tmpfs", 5361 .init_fs_context = shmem_init_fs_context, 5362 #ifdef CONFIG_TMPFS 5363 .parameters = shmem_fs_parameters, 5364 #endif 5365 .kill_sb = kill_anon_super, 5366 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME, 5367 }; 5368 5369 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5370 5371 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \ 5372 { \ 5373 .attr = { .name = __stringify(_name), .mode = _mode }, \ 5374 .show = _show, \ 5375 .store = _store, \ 5376 } 5377 5378 #define TMPFS_ATTR_W(_name, _store) \ 5379 static struct kobj_attribute tmpfs_attr_##_name = \ 5380 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store) 5381 5382 #define TMPFS_ATTR_RW(_name, _show, _store) \ 5383 static struct kobj_attribute tmpfs_attr_##_name = \ 5384 __INIT_KOBJ_ATTR(_name, 0644, _show, _store) 5385 5386 #define TMPFS_ATTR_RO(_name, _show) \ 5387 static struct kobj_attribute tmpfs_attr_##_name = \ 5388 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL) 5389 5390 #if IS_ENABLED(CONFIG_UNICODE) 5391 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a, 5392 char *buf) 5393 { 5394 return sysfs_emit(buf, "supported\n"); 5395 } 5396 TMPFS_ATTR_RO(casefold, casefold_show); 5397 #endif 5398 5399 static struct attribute *tmpfs_attributes[] = { 5400 #if IS_ENABLED(CONFIG_UNICODE) 5401 &tmpfs_attr_casefold.attr, 5402 #endif 5403 NULL 5404 }; 5405 5406 static const struct attribute_group tmpfs_attribute_group = { 5407 .attrs = tmpfs_attributes, 5408 .name = "features" 5409 }; 5410 5411 static struct kobject *tmpfs_kobj; 5412 5413 static int __init tmpfs_sysfs_init(void) 5414 { 5415 int ret; 5416 5417 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj); 5418 if (!tmpfs_kobj) 5419 return -ENOMEM; 5420 5421 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group); 5422 if (ret) 5423 kobject_put(tmpfs_kobj); 5424 5425 return ret; 5426 } 5427 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */ 5428 5429 void __init shmem_init(void) 5430 { 5431 int error; 5432 5433 shmem_init_inodecache(); 5434 5435 #ifdef CONFIG_TMPFS_QUOTA 5436 register_quota_format(&shmem_quota_format); 5437 #endif 5438 5439 error = register_filesystem(&shmem_fs_type); 5440 if (error) { 5441 pr_err("Could not register tmpfs\n"); 5442 goto out2; 5443 } 5444 5445 shm_mnt = kern_mount(&shmem_fs_type); 5446 if (IS_ERR(shm_mnt)) { 5447 error = PTR_ERR(shm_mnt); 5448 pr_err("Could not kern_mount tmpfs\n"); 5449 goto out1; 5450 } 5451 5452 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5453 error = tmpfs_sysfs_init(); 5454 if (error) { 5455 pr_err("Could not init tmpfs sysfs\n"); 5456 goto out1; 5457 } 5458 #endif 5459 5460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5461 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 5462 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5463 else 5464 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 5465 5466 /* 5467 * Default to setting PMD-sized THP to inherit the global setting and 5468 * disable all other multi-size THPs. 5469 */ 5470 if (!shmem_orders_configured) 5471 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER); 5472 #endif 5473 return; 5474 5475 out1: 5476 unregister_filesystem(&shmem_fs_type); 5477 out2: 5478 #ifdef CONFIG_TMPFS_QUOTA 5479 unregister_quota_format(&shmem_quota_format); 5480 #endif 5481 shmem_destroy_inodecache(); 5482 shm_mnt = ERR_PTR(error); 5483 } 5484 5485 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 5486 static ssize_t shmem_enabled_show(struct kobject *kobj, 5487 struct kobj_attribute *attr, char *buf) 5488 { 5489 static const int values[] = { 5490 SHMEM_HUGE_ALWAYS, 5491 SHMEM_HUGE_WITHIN_SIZE, 5492 SHMEM_HUGE_ADVISE, 5493 SHMEM_HUGE_NEVER, 5494 SHMEM_HUGE_DENY, 5495 SHMEM_HUGE_FORCE, 5496 }; 5497 int len = 0; 5498 int i; 5499 5500 for (i = 0; i < ARRAY_SIZE(values); i++) { 5501 len += sysfs_emit_at(buf, len, 5502 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 5503 i ? " " : "", shmem_format_huge(values[i])); 5504 } 5505 len += sysfs_emit_at(buf, len, "\n"); 5506 5507 return len; 5508 } 5509 5510 static ssize_t shmem_enabled_store(struct kobject *kobj, 5511 struct kobj_attribute *attr, const char *buf, size_t count) 5512 { 5513 char tmp[16]; 5514 int huge, err; 5515 5516 if (count + 1 > sizeof(tmp)) 5517 return -EINVAL; 5518 memcpy(tmp, buf, count); 5519 tmp[count] = '\0'; 5520 if (count && tmp[count - 1] == '\n') 5521 tmp[count - 1] = '\0'; 5522 5523 huge = shmem_parse_huge(tmp); 5524 if (huge == -EINVAL) 5525 return huge; 5526 5527 shmem_huge = huge; 5528 if (shmem_huge > SHMEM_HUGE_DENY) 5529 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5530 5531 err = start_stop_khugepaged(); 5532 return err ? err : count; 5533 } 5534 5535 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 5536 static DEFINE_SPINLOCK(huge_shmem_orders_lock); 5537 5538 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj, 5539 struct kobj_attribute *attr, char *buf) 5540 { 5541 int order = to_thpsize(kobj)->order; 5542 const char *output; 5543 5544 if (test_bit(order, &huge_shmem_orders_always)) 5545 output = "[always] inherit within_size advise never"; 5546 else if (test_bit(order, &huge_shmem_orders_inherit)) 5547 output = "always [inherit] within_size advise never"; 5548 else if (test_bit(order, &huge_shmem_orders_within_size)) 5549 output = "always inherit [within_size] advise never"; 5550 else if (test_bit(order, &huge_shmem_orders_madvise)) 5551 output = "always inherit within_size [advise] never"; 5552 else 5553 output = "always inherit within_size advise [never]"; 5554 5555 return sysfs_emit(buf, "%s\n", output); 5556 } 5557 5558 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj, 5559 struct kobj_attribute *attr, 5560 const char *buf, size_t count) 5561 { 5562 int order = to_thpsize(kobj)->order; 5563 ssize_t ret = count; 5564 5565 if (sysfs_streq(buf, "always")) { 5566 spin_lock(&huge_shmem_orders_lock); 5567 clear_bit(order, &huge_shmem_orders_inherit); 5568 clear_bit(order, &huge_shmem_orders_madvise); 5569 clear_bit(order, &huge_shmem_orders_within_size); 5570 set_bit(order, &huge_shmem_orders_always); 5571 spin_unlock(&huge_shmem_orders_lock); 5572 } else if (sysfs_streq(buf, "inherit")) { 5573 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5574 if (shmem_huge == SHMEM_HUGE_FORCE && 5575 order != HPAGE_PMD_ORDER) 5576 return -EINVAL; 5577 5578 spin_lock(&huge_shmem_orders_lock); 5579 clear_bit(order, &huge_shmem_orders_always); 5580 clear_bit(order, &huge_shmem_orders_madvise); 5581 clear_bit(order, &huge_shmem_orders_within_size); 5582 set_bit(order, &huge_shmem_orders_inherit); 5583 spin_unlock(&huge_shmem_orders_lock); 5584 } else if (sysfs_streq(buf, "within_size")) { 5585 spin_lock(&huge_shmem_orders_lock); 5586 clear_bit(order, &huge_shmem_orders_always); 5587 clear_bit(order, &huge_shmem_orders_inherit); 5588 clear_bit(order, &huge_shmem_orders_madvise); 5589 set_bit(order, &huge_shmem_orders_within_size); 5590 spin_unlock(&huge_shmem_orders_lock); 5591 } else if (sysfs_streq(buf, "advise")) { 5592 spin_lock(&huge_shmem_orders_lock); 5593 clear_bit(order, &huge_shmem_orders_always); 5594 clear_bit(order, &huge_shmem_orders_inherit); 5595 clear_bit(order, &huge_shmem_orders_within_size); 5596 set_bit(order, &huge_shmem_orders_madvise); 5597 spin_unlock(&huge_shmem_orders_lock); 5598 } else if (sysfs_streq(buf, "never")) { 5599 spin_lock(&huge_shmem_orders_lock); 5600 clear_bit(order, &huge_shmem_orders_always); 5601 clear_bit(order, &huge_shmem_orders_inherit); 5602 clear_bit(order, &huge_shmem_orders_within_size); 5603 clear_bit(order, &huge_shmem_orders_madvise); 5604 spin_unlock(&huge_shmem_orders_lock); 5605 } else { 5606 ret = -EINVAL; 5607 } 5608 5609 if (ret > 0) { 5610 int err = start_stop_khugepaged(); 5611 5612 if (err) 5613 ret = err; 5614 } 5615 return ret; 5616 } 5617 5618 struct kobj_attribute thpsize_shmem_enabled_attr = 5619 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store); 5620 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 5621 5622 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 5623 5624 static int __init setup_transparent_hugepage_shmem(char *str) 5625 { 5626 int huge; 5627 5628 huge = shmem_parse_huge(str); 5629 if (huge == -EINVAL) { 5630 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n"); 5631 return huge; 5632 } 5633 5634 shmem_huge = huge; 5635 return 1; 5636 } 5637 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem); 5638 5639 static int __init setup_transparent_hugepage_tmpfs(char *str) 5640 { 5641 int huge; 5642 5643 huge = shmem_parse_huge(str); 5644 if (huge < 0) { 5645 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n"); 5646 return huge; 5647 } 5648 5649 tmpfs_huge = huge; 5650 return 1; 5651 } 5652 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs); 5653 5654 static char str_dup[PAGE_SIZE] __initdata; 5655 static int __init setup_thp_shmem(char *str) 5656 { 5657 char *token, *range, *policy, *subtoken; 5658 unsigned long always, inherit, madvise, within_size; 5659 char *start_size, *end_size; 5660 int start, end, nr; 5661 char *p; 5662 5663 if (!str || strlen(str) + 1 > PAGE_SIZE) 5664 goto err; 5665 strscpy(str_dup, str); 5666 5667 always = huge_shmem_orders_always; 5668 inherit = huge_shmem_orders_inherit; 5669 madvise = huge_shmem_orders_madvise; 5670 within_size = huge_shmem_orders_within_size; 5671 p = str_dup; 5672 while ((token = strsep(&p, ";")) != NULL) { 5673 range = strsep(&token, ":"); 5674 policy = token; 5675 5676 if (!policy) 5677 goto err; 5678 5679 while ((subtoken = strsep(&range, ",")) != NULL) { 5680 if (strchr(subtoken, '-')) { 5681 start_size = strsep(&subtoken, "-"); 5682 end_size = subtoken; 5683 5684 start = get_order_from_str(start_size, 5685 THP_ORDERS_ALL_FILE_DEFAULT); 5686 end = get_order_from_str(end_size, 5687 THP_ORDERS_ALL_FILE_DEFAULT); 5688 } else { 5689 start_size = end_size = subtoken; 5690 start = end = get_order_from_str(subtoken, 5691 THP_ORDERS_ALL_FILE_DEFAULT); 5692 } 5693 5694 if (start < 0) { 5695 pr_err("invalid size %s in thp_shmem boot parameter\n", 5696 start_size); 5697 goto err; 5698 } 5699 5700 if (end < 0) { 5701 pr_err("invalid size %s in thp_shmem boot parameter\n", 5702 end_size); 5703 goto err; 5704 } 5705 5706 if (start > end) 5707 goto err; 5708 5709 nr = end - start + 1; 5710 if (!strcmp(policy, "always")) { 5711 bitmap_set(&always, start, nr); 5712 bitmap_clear(&inherit, start, nr); 5713 bitmap_clear(&madvise, start, nr); 5714 bitmap_clear(&within_size, start, nr); 5715 } else if (!strcmp(policy, "advise")) { 5716 bitmap_set(&madvise, start, nr); 5717 bitmap_clear(&inherit, start, nr); 5718 bitmap_clear(&always, start, nr); 5719 bitmap_clear(&within_size, start, nr); 5720 } else if (!strcmp(policy, "inherit")) { 5721 bitmap_set(&inherit, start, nr); 5722 bitmap_clear(&madvise, start, nr); 5723 bitmap_clear(&always, start, nr); 5724 bitmap_clear(&within_size, start, nr); 5725 } else if (!strcmp(policy, "within_size")) { 5726 bitmap_set(&within_size, start, nr); 5727 bitmap_clear(&inherit, start, nr); 5728 bitmap_clear(&madvise, start, nr); 5729 bitmap_clear(&always, start, nr); 5730 } else if (!strcmp(policy, "never")) { 5731 bitmap_clear(&inherit, start, nr); 5732 bitmap_clear(&madvise, start, nr); 5733 bitmap_clear(&always, start, nr); 5734 bitmap_clear(&within_size, start, nr); 5735 } else { 5736 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy); 5737 goto err; 5738 } 5739 } 5740 } 5741 5742 huge_shmem_orders_always = always; 5743 huge_shmem_orders_madvise = madvise; 5744 huge_shmem_orders_inherit = inherit; 5745 huge_shmem_orders_within_size = within_size; 5746 shmem_orders_configured = true; 5747 return 1; 5748 5749 err: 5750 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str); 5751 return 0; 5752 } 5753 __setup("thp_shmem=", setup_thp_shmem); 5754 5755 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5756 5757 #else /* !CONFIG_SHMEM */ 5758 5759 /* 5760 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 5761 * 5762 * This is intended for small system where the benefits of the full 5763 * shmem code (swap-backed and resource-limited) are outweighed by 5764 * their complexity. On systems without swap this code should be 5765 * effectively equivalent, but much lighter weight. 5766 */ 5767 5768 static struct file_system_type shmem_fs_type = { 5769 .name = "tmpfs", 5770 .init_fs_context = ramfs_init_fs_context, 5771 .parameters = ramfs_fs_parameters, 5772 .kill_sb = ramfs_kill_sb, 5773 .fs_flags = FS_USERNS_MOUNT, 5774 }; 5775 5776 void __init shmem_init(void) 5777 { 5778 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 5779 5780 shm_mnt = kern_mount(&shmem_fs_type); 5781 BUG_ON(IS_ERR(shm_mnt)); 5782 } 5783 5784 int shmem_unuse(unsigned int type) 5785 { 5786 return 0; 5787 } 5788 5789 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 5790 { 5791 return 0; 5792 } 5793 5794 void shmem_unlock_mapping(struct address_space *mapping) 5795 { 5796 } 5797 5798 #ifdef CONFIG_MMU 5799 unsigned long shmem_get_unmapped_area(struct file *file, 5800 unsigned long addr, unsigned long len, 5801 unsigned long pgoff, unsigned long flags) 5802 { 5803 return mm_get_unmapped_area(file, addr, len, pgoff, flags); 5804 } 5805 #endif 5806 5807 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend) 5808 { 5809 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 5810 } 5811 EXPORT_SYMBOL_GPL(shmem_truncate_range); 5812 5813 #define shmem_vm_ops generic_file_vm_ops 5814 #define shmem_anon_vm_ops generic_file_vm_ops 5815 #define shmem_file_operations ramfs_file_operations 5816 5817 static inline int shmem_acct_size(unsigned long flags, loff_t size) 5818 { 5819 return 0; 5820 } 5821 5822 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 5823 { 5824 } 5825 5826 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 5827 struct super_block *sb, struct inode *dir, 5828 umode_t mode, dev_t dev, unsigned long flags) 5829 { 5830 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 5831 return inode ? inode : ERR_PTR(-ENOSPC); 5832 } 5833 5834 #endif /* CONFIG_SHMEM */ 5835 5836 /* common code */ 5837 5838 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 5839 loff_t size, unsigned long vm_flags, 5840 unsigned int i_flags) 5841 { 5842 unsigned long flags = (vm_flags & VM_NORESERVE) ? SHMEM_F_NORESERVE : 0; 5843 struct inode *inode; 5844 struct file *res; 5845 5846 if (IS_ERR(mnt)) 5847 return ERR_CAST(mnt); 5848 5849 if (size < 0 || size > MAX_LFS_FILESIZE) 5850 return ERR_PTR(-EINVAL); 5851 5852 if (is_idmapped_mnt(mnt)) 5853 return ERR_PTR(-EINVAL); 5854 5855 if (shmem_acct_size(flags, size)) 5856 return ERR_PTR(-ENOMEM); 5857 5858 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 5859 S_IFREG | S_IRWXUGO, 0, vm_flags); 5860 if (IS_ERR(inode)) { 5861 shmem_unacct_size(flags, size); 5862 return ERR_CAST(inode); 5863 } 5864 inode->i_flags |= i_flags; 5865 inode->i_size = size; 5866 clear_nlink(inode); /* It is unlinked */ 5867 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 5868 if (!IS_ERR(res)) 5869 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 5870 &shmem_file_operations); 5871 if (IS_ERR(res)) 5872 iput(inode); 5873 return res; 5874 } 5875 5876 /** 5877 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 5878 * kernel internal. There will be NO LSM permission checks against the 5879 * underlying inode. So users of this interface must do LSM checks at a 5880 * higher layer. The users are the big_key and shm implementations. LSM 5881 * checks are provided at the key or shm level rather than the inode. 5882 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5883 * @size: size to be set for the file 5884 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5885 */ 5886 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 5887 { 5888 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 5889 } 5890 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 5891 5892 /** 5893 * shmem_file_setup - get an unlinked file living in tmpfs 5894 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5895 * @size: size to be set for the file 5896 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5897 */ 5898 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 5899 { 5900 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 5901 } 5902 EXPORT_SYMBOL_GPL(shmem_file_setup); 5903 5904 /** 5905 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 5906 * @mnt: the tmpfs mount where the file will be created 5907 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5908 * @size: size to be set for the file 5909 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5910 */ 5911 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 5912 loff_t size, unsigned long flags) 5913 { 5914 return __shmem_file_setup(mnt, name, size, flags, 0); 5915 } 5916 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 5917 5918 static struct file *__shmem_zero_setup(unsigned long start, unsigned long end, vm_flags_t vm_flags) 5919 { 5920 loff_t size = end - start; 5921 5922 /* 5923 * Cloning a new file under mmap_lock leads to a lock ordering conflict 5924 * between XFS directory reading and selinux: since this file is only 5925 * accessible to the user through its mapping, use S_PRIVATE flag to 5926 * bypass file security, in the same way as shmem_kernel_file_setup(). 5927 */ 5928 return shmem_kernel_file_setup("dev/zero", size, vm_flags); 5929 } 5930 5931 /** 5932 * shmem_zero_setup - setup a shared anonymous mapping 5933 * @vma: the vma to be mmapped is prepared by do_mmap 5934 * Returns: 0 on success, or error 5935 */ 5936 int shmem_zero_setup(struct vm_area_struct *vma) 5937 { 5938 struct file *file = __shmem_zero_setup(vma->vm_start, vma->vm_end, vma->vm_flags); 5939 5940 if (IS_ERR(file)) 5941 return PTR_ERR(file); 5942 5943 if (vma->vm_file) 5944 fput(vma->vm_file); 5945 vma->vm_file = file; 5946 vma->vm_ops = &shmem_anon_vm_ops; 5947 5948 return 0; 5949 } 5950 5951 /** 5952 * shmem_zero_setup_desc - same as shmem_zero_setup, but determined by VMA 5953 * descriptor for convenience. 5954 * @desc: Describes VMA 5955 * Returns: 0 on success, or error 5956 */ 5957 int shmem_zero_setup_desc(struct vm_area_desc *desc) 5958 { 5959 struct file *file = __shmem_zero_setup(desc->start, desc->end, desc->vm_flags); 5960 5961 if (IS_ERR(file)) 5962 return PTR_ERR(file); 5963 5964 desc->vm_file = file; 5965 desc->vm_ops = &shmem_anon_vm_ops; 5966 5967 return 0; 5968 } 5969 5970 /** 5971 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 5972 * @mapping: the folio's address_space 5973 * @index: the folio index 5974 * @gfp: the page allocator flags to use if allocating 5975 * 5976 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 5977 * with any new page allocations done using the specified allocation flags. 5978 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 5979 * suit tmpfs, since it may have pages in swapcache, and needs to find those 5980 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 5981 * 5982 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 5983 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 5984 */ 5985 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 5986 pgoff_t index, gfp_t gfp) 5987 { 5988 #ifdef CONFIG_SHMEM 5989 struct inode *inode = mapping->host; 5990 struct folio *folio; 5991 int error; 5992 5993 error = shmem_get_folio_gfp(inode, index, i_size_read(inode), 5994 &folio, SGP_CACHE, gfp, NULL, NULL); 5995 if (error) 5996 return ERR_PTR(error); 5997 5998 folio_unlock(folio); 5999 return folio; 6000 #else 6001 /* 6002 * The tiny !SHMEM case uses ramfs without swap 6003 */ 6004 return mapping_read_folio_gfp(mapping, index, gfp); 6005 #endif 6006 } 6007 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 6008 6009 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 6010 pgoff_t index, gfp_t gfp) 6011 { 6012 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 6013 struct page *page; 6014 6015 if (IS_ERR(folio)) 6016 return &folio->page; 6017 6018 page = folio_file_page(folio, index); 6019 if (PageHWPoison(page)) { 6020 folio_put(folio); 6021 return ERR_PTR(-EIO); 6022 } 6023 6024 return page; 6025 } 6026 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 6027