xref: /linux/mm/shmem.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 
36 static struct vfsmount *shm_mnt;
37 
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44 
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72 
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75 
76 #include "internal.h"
77 
78 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
79 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
80 
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83 
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86 
87 /*
88  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89  * inode->i_private (with i_mutex making sure that it has only one user at
90  * a time): we would prefer not to enlarge the shmem inode just for that.
91  */
92 struct shmem_falloc {
93 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94 	pgoff_t start;		/* start of range currently being fallocated */
95 	pgoff_t next;		/* the next page offset to be fallocated */
96 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
97 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
98 };
99 
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102 	SGP_READ,	/* don't exceed i_size, don't allocate page */
103 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
104 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
105 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
106 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
107 };
108 
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112 	return totalram_pages / 2;
113 }
114 
115 static unsigned long shmem_default_max_inodes(void)
116 {
117 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120 
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 				struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126 
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128 	struct page **pagep, enum sgp_type sgp, int *fault_type)
129 {
130 	return shmem_getpage_gfp(inode, index, pagep, sgp,
131 			mapping_gfp_mask(inode->i_mapping), fault_type);
132 }
133 
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136 	return sb->s_fs_info;
137 }
138 
139 /*
140  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141  * for shared memory and for shared anonymous (/dev/zero) mappings
142  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143  * consistent with the pre-accounting of private mappings ...
144  */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147 	return (flags & VM_NORESERVE) ?
148 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150 
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153 	if (!(flags & VM_NORESERVE))
154 		vm_unacct_memory(VM_ACCT(size));
155 }
156 
157 static inline int shmem_reacct_size(unsigned long flags,
158 		loff_t oldsize, loff_t newsize)
159 {
160 	if (!(flags & VM_NORESERVE)) {
161 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 			return security_vm_enough_memory_mm(current->mm,
163 					VM_ACCT(newsize) - VM_ACCT(oldsize));
164 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 	}
167 	return 0;
168 }
169 
170 /*
171  * ... whereas tmpfs objects are accounted incrementally as
172  * pages are allocated, in order to allow huge sparse files.
173  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175  */
176 static inline int shmem_acct_block(unsigned long flags)
177 {
178 	return (flags & VM_NORESERVE) ?
179 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
180 }
181 
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 {
184 	if (flags & VM_NORESERVE)
185 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
186 }
187 
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
195 
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198 
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 	if (sbinfo->max_inodes) {
203 		spin_lock(&sbinfo->stat_lock);
204 		if (!sbinfo->free_inodes) {
205 			spin_unlock(&sbinfo->stat_lock);
206 			return -ENOSPC;
207 		}
208 		sbinfo->free_inodes--;
209 		spin_unlock(&sbinfo->stat_lock);
210 	}
211 	return 0;
212 }
213 
214 static void shmem_free_inode(struct super_block *sb)
215 {
216 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 	if (sbinfo->max_inodes) {
218 		spin_lock(&sbinfo->stat_lock);
219 		sbinfo->free_inodes++;
220 		spin_unlock(&sbinfo->stat_lock);
221 	}
222 }
223 
224 /**
225  * shmem_recalc_inode - recalculate the block usage of an inode
226  * @inode: inode to recalc
227  *
228  * We have to calculate the free blocks since the mm can drop
229  * undirtied hole pages behind our back.
230  *
231  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
232  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233  *
234  * It has to be called with the spinlock held.
235  */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238 	struct shmem_inode_info *info = SHMEM_I(inode);
239 	long freed;
240 
241 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 	if (freed > 0) {
243 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 		if (sbinfo->max_blocks)
245 			percpu_counter_add(&sbinfo->used_blocks, -freed);
246 		info->alloced -= freed;
247 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248 		shmem_unacct_blocks(info->flags, freed);
249 	}
250 }
251 
252 /*
253  * Replace item expected in radix tree by a new item, while holding tree lock.
254  */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256 			pgoff_t index, void *expected, void *replacement)
257 {
258 	void **pslot;
259 	void *item;
260 
261 	VM_BUG_ON(!expected);
262 	VM_BUG_ON(!replacement);
263 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264 	if (!pslot)
265 		return -ENOENT;
266 	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267 	if (item != expected)
268 		return -ENOENT;
269 	radix_tree_replace_slot(pslot, replacement);
270 	return 0;
271 }
272 
273 /*
274  * Sometimes, before we decide whether to proceed or to fail, we must check
275  * that an entry was not already brought back from swap by a racing thread.
276  *
277  * Checking page is not enough: by the time a SwapCache page is locked, it
278  * might be reused, and again be SwapCache, using the same swap as before.
279  */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281 			       pgoff_t index, swp_entry_t swap)
282 {
283 	void *item;
284 
285 	rcu_read_lock();
286 	item = radix_tree_lookup(&mapping->page_tree, index);
287 	rcu_read_unlock();
288 	return item == swp_to_radix_entry(swap);
289 }
290 
291 /*
292  * Like add_to_page_cache_locked, but error if expected item has gone.
293  */
294 static int shmem_add_to_page_cache(struct page *page,
295 				   struct address_space *mapping,
296 				   pgoff_t index, void *expected)
297 {
298 	int error;
299 
300 	VM_BUG_ON_PAGE(!PageLocked(page), page);
301 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302 
303 	page_cache_get(page);
304 	page->mapping = mapping;
305 	page->index = index;
306 
307 	spin_lock_irq(&mapping->tree_lock);
308 	if (!expected)
309 		error = radix_tree_insert(&mapping->page_tree, index, page);
310 	else
311 		error = shmem_radix_tree_replace(mapping, index, expected,
312 								 page);
313 	if (!error) {
314 		mapping->nrpages++;
315 		__inc_zone_page_state(page, NR_FILE_PAGES);
316 		__inc_zone_page_state(page, NR_SHMEM);
317 		spin_unlock_irq(&mapping->tree_lock);
318 	} else {
319 		page->mapping = NULL;
320 		spin_unlock_irq(&mapping->tree_lock);
321 		page_cache_release(page);
322 	}
323 	return error;
324 }
325 
326 /*
327  * Like delete_from_page_cache, but substitutes swap for page.
328  */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331 	struct address_space *mapping = page->mapping;
332 	int error;
333 
334 	spin_lock_irq(&mapping->tree_lock);
335 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 	page->mapping = NULL;
337 	mapping->nrpages--;
338 	__dec_zone_page_state(page, NR_FILE_PAGES);
339 	__dec_zone_page_state(page, NR_SHMEM);
340 	spin_unlock_irq(&mapping->tree_lock);
341 	page_cache_release(page);
342 	BUG_ON(error);
343 }
344 
345 /*
346  * Remove swap entry from radix tree, free the swap and its page cache.
347  */
348 static int shmem_free_swap(struct address_space *mapping,
349 			   pgoff_t index, void *radswap)
350 {
351 	void *old;
352 
353 	spin_lock_irq(&mapping->tree_lock);
354 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355 	spin_unlock_irq(&mapping->tree_lock);
356 	if (old != radswap)
357 		return -ENOENT;
358 	free_swap_and_cache(radix_to_swp_entry(radswap));
359 	return 0;
360 }
361 
362 /*
363  * Determine (in bytes) how many of the shmem object's pages mapped by the
364  * given offsets are swapped out.
365  *
366  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
367  * as long as the inode doesn't go away and racy results are not a problem.
368  */
369 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
370 						pgoff_t start, pgoff_t end)
371 {
372 	struct radix_tree_iter iter;
373 	void **slot;
374 	struct page *page;
375 	unsigned long swapped = 0;
376 
377 	rcu_read_lock();
378 
379 restart:
380 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
381 		if (iter.index >= end)
382 			break;
383 
384 		page = radix_tree_deref_slot(slot);
385 
386 		/*
387 		 * This should only be possible to happen at index 0, so we
388 		 * don't need to reset the counter, nor do we risk infinite
389 		 * restarts.
390 		 */
391 		if (radix_tree_deref_retry(page))
392 			goto restart;
393 
394 		if (radix_tree_exceptional_entry(page))
395 			swapped++;
396 
397 		if (need_resched()) {
398 			cond_resched_rcu();
399 			start = iter.index + 1;
400 			goto restart;
401 		}
402 	}
403 
404 	rcu_read_unlock();
405 
406 	return swapped << PAGE_SHIFT;
407 }
408 
409 /*
410  * Determine (in bytes) how many of the shmem object's pages mapped by the
411  * given vma is swapped out.
412  *
413  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
414  * as long as the inode doesn't go away and racy results are not a problem.
415  */
416 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
417 {
418 	struct inode *inode = file_inode(vma->vm_file);
419 	struct shmem_inode_info *info = SHMEM_I(inode);
420 	struct address_space *mapping = inode->i_mapping;
421 	unsigned long swapped;
422 
423 	/* Be careful as we don't hold info->lock */
424 	swapped = READ_ONCE(info->swapped);
425 
426 	/*
427 	 * The easier cases are when the shmem object has nothing in swap, or
428 	 * the vma maps it whole. Then we can simply use the stats that we
429 	 * already track.
430 	 */
431 	if (!swapped)
432 		return 0;
433 
434 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
435 		return swapped << PAGE_SHIFT;
436 
437 	/* Here comes the more involved part */
438 	return shmem_partial_swap_usage(mapping,
439 			linear_page_index(vma, vma->vm_start),
440 			linear_page_index(vma, vma->vm_end));
441 }
442 
443 /*
444  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
445  */
446 void shmem_unlock_mapping(struct address_space *mapping)
447 {
448 	struct pagevec pvec;
449 	pgoff_t indices[PAGEVEC_SIZE];
450 	pgoff_t index = 0;
451 
452 	pagevec_init(&pvec, 0);
453 	/*
454 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
455 	 */
456 	while (!mapping_unevictable(mapping)) {
457 		/*
458 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
459 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
460 		 */
461 		pvec.nr = find_get_entries(mapping, index,
462 					   PAGEVEC_SIZE, pvec.pages, indices);
463 		if (!pvec.nr)
464 			break;
465 		index = indices[pvec.nr - 1] + 1;
466 		pagevec_remove_exceptionals(&pvec);
467 		check_move_unevictable_pages(pvec.pages, pvec.nr);
468 		pagevec_release(&pvec);
469 		cond_resched();
470 	}
471 }
472 
473 /*
474  * Remove range of pages and swap entries from radix tree, and free them.
475  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
476  */
477 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
478 								 bool unfalloc)
479 {
480 	struct address_space *mapping = inode->i_mapping;
481 	struct shmem_inode_info *info = SHMEM_I(inode);
482 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
483 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
484 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
485 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
486 	struct pagevec pvec;
487 	pgoff_t indices[PAGEVEC_SIZE];
488 	long nr_swaps_freed = 0;
489 	pgoff_t index;
490 	int i;
491 
492 	if (lend == -1)
493 		end = -1;	/* unsigned, so actually very big */
494 
495 	pagevec_init(&pvec, 0);
496 	index = start;
497 	while (index < end) {
498 		pvec.nr = find_get_entries(mapping, index,
499 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
500 			pvec.pages, indices);
501 		if (!pvec.nr)
502 			break;
503 		for (i = 0; i < pagevec_count(&pvec); i++) {
504 			struct page *page = pvec.pages[i];
505 
506 			index = indices[i];
507 			if (index >= end)
508 				break;
509 
510 			if (radix_tree_exceptional_entry(page)) {
511 				if (unfalloc)
512 					continue;
513 				nr_swaps_freed += !shmem_free_swap(mapping,
514 								index, page);
515 				continue;
516 			}
517 
518 			if (!trylock_page(page))
519 				continue;
520 			if (!unfalloc || !PageUptodate(page)) {
521 				if (page->mapping == mapping) {
522 					VM_BUG_ON_PAGE(PageWriteback(page), page);
523 					truncate_inode_page(mapping, page);
524 				}
525 			}
526 			unlock_page(page);
527 		}
528 		pagevec_remove_exceptionals(&pvec);
529 		pagevec_release(&pvec);
530 		cond_resched();
531 		index++;
532 	}
533 
534 	if (partial_start) {
535 		struct page *page = NULL;
536 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
537 		if (page) {
538 			unsigned int top = PAGE_CACHE_SIZE;
539 			if (start > end) {
540 				top = partial_end;
541 				partial_end = 0;
542 			}
543 			zero_user_segment(page, partial_start, top);
544 			set_page_dirty(page);
545 			unlock_page(page);
546 			page_cache_release(page);
547 		}
548 	}
549 	if (partial_end) {
550 		struct page *page = NULL;
551 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
552 		if (page) {
553 			zero_user_segment(page, 0, partial_end);
554 			set_page_dirty(page);
555 			unlock_page(page);
556 			page_cache_release(page);
557 		}
558 	}
559 	if (start >= end)
560 		return;
561 
562 	index = start;
563 	while (index < end) {
564 		cond_resched();
565 
566 		pvec.nr = find_get_entries(mapping, index,
567 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
568 				pvec.pages, indices);
569 		if (!pvec.nr) {
570 			/* If all gone or hole-punch or unfalloc, we're done */
571 			if (index == start || end != -1)
572 				break;
573 			/* But if truncating, restart to make sure all gone */
574 			index = start;
575 			continue;
576 		}
577 		for (i = 0; i < pagevec_count(&pvec); i++) {
578 			struct page *page = pvec.pages[i];
579 
580 			index = indices[i];
581 			if (index >= end)
582 				break;
583 
584 			if (radix_tree_exceptional_entry(page)) {
585 				if (unfalloc)
586 					continue;
587 				if (shmem_free_swap(mapping, index, page)) {
588 					/* Swap was replaced by page: retry */
589 					index--;
590 					break;
591 				}
592 				nr_swaps_freed++;
593 				continue;
594 			}
595 
596 			lock_page(page);
597 			if (!unfalloc || !PageUptodate(page)) {
598 				if (page->mapping == mapping) {
599 					VM_BUG_ON_PAGE(PageWriteback(page), page);
600 					truncate_inode_page(mapping, page);
601 				} else {
602 					/* Page was replaced by swap: retry */
603 					unlock_page(page);
604 					index--;
605 					break;
606 				}
607 			}
608 			unlock_page(page);
609 		}
610 		pagevec_remove_exceptionals(&pvec);
611 		pagevec_release(&pvec);
612 		index++;
613 	}
614 
615 	spin_lock(&info->lock);
616 	info->swapped -= nr_swaps_freed;
617 	shmem_recalc_inode(inode);
618 	spin_unlock(&info->lock);
619 }
620 
621 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
622 {
623 	shmem_undo_range(inode, lstart, lend, false);
624 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
625 }
626 EXPORT_SYMBOL_GPL(shmem_truncate_range);
627 
628 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
629 			 struct kstat *stat)
630 {
631 	struct inode *inode = dentry->d_inode;
632 	struct shmem_inode_info *info = SHMEM_I(inode);
633 
634 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
635 		spin_lock(&info->lock);
636 		shmem_recalc_inode(inode);
637 		spin_unlock(&info->lock);
638 	}
639 	generic_fillattr(inode, stat);
640 	return 0;
641 }
642 
643 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
644 {
645 	struct inode *inode = d_inode(dentry);
646 	struct shmem_inode_info *info = SHMEM_I(inode);
647 	int error;
648 
649 	error = inode_change_ok(inode, attr);
650 	if (error)
651 		return error;
652 
653 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
654 		loff_t oldsize = inode->i_size;
655 		loff_t newsize = attr->ia_size;
656 
657 		/* protected by i_mutex */
658 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
659 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
660 			return -EPERM;
661 
662 		if (newsize != oldsize) {
663 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
664 					oldsize, newsize);
665 			if (error)
666 				return error;
667 			i_size_write(inode, newsize);
668 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
669 		}
670 		if (newsize <= oldsize) {
671 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
672 			if (oldsize > holebegin)
673 				unmap_mapping_range(inode->i_mapping,
674 							holebegin, 0, 1);
675 			if (info->alloced)
676 				shmem_truncate_range(inode,
677 							newsize, (loff_t)-1);
678 			/* unmap again to remove racily COWed private pages */
679 			if (oldsize > holebegin)
680 				unmap_mapping_range(inode->i_mapping,
681 							holebegin, 0, 1);
682 		}
683 	}
684 
685 	setattr_copy(inode, attr);
686 	if (attr->ia_valid & ATTR_MODE)
687 		error = posix_acl_chmod(inode, inode->i_mode);
688 	return error;
689 }
690 
691 static void shmem_evict_inode(struct inode *inode)
692 {
693 	struct shmem_inode_info *info = SHMEM_I(inode);
694 
695 	if (inode->i_mapping->a_ops == &shmem_aops) {
696 		shmem_unacct_size(info->flags, inode->i_size);
697 		inode->i_size = 0;
698 		shmem_truncate_range(inode, 0, (loff_t)-1);
699 		if (!list_empty(&info->swaplist)) {
700 			mutex_lock(&shmem_swaplist_mutex);
701 			list_del_init(&info->swaplist);
702 			mutex_unlock(&shmem_swaplist_mutex);
703 		}
704 	}
705 
706 	simple_xattrs_free(&info->xattrs);
707 	WARN_ON(inode->i_blocks);
708 	shmem_free_inode(inode->i_sb);
709 	clear_inode(inode);
710 }
711 
712 /*
713  * If swap found in inode, free it and move page from swapcache to filecache.
714  */
715 static int shmem_unuse_inode(struct shmem_inode_info *info,
716 			     swp_entry_t swap, struct page **pagep)
717 {
718 	struct address_space *mapping = info->vfs_inode.i_mapping;
719 	void *radswap;
720 	pgoff_t index;
721 	gfp_t gfp;
722 	int error = 0;
723 
724 	radswap = swp_to_radix_entry(swap);
725 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
726 	if (index == -1)
727 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
728 
729 	/*
730 	 * Move _head_ to start search for next from here.
731 	 * But be careful: shmem_evict_inode checks list_empty without taking
732 	 * mutex, and there's an instant in list_move_tail when info->swaplist
733 	 * would appear empty, if it were the only one on shmem_swaplist.
734 	 */
735 	if (shmem_swaplist.next != &info->swaplist)
736 		list_move_tail(&shmem_swaplist, &info->swaplist);
737 
738 	gfp = mapping_gfp_mask(mapping);
739 	if (shmem_should_replace_page(*pagep, gfp)) {
740 		mutex_unlock(&shmem_swaplist_mutex);
741 		error = shmem_replace_page(pagep, gfp, info, index);
742 		mutex_lock(&shmem_swaplist_mutex);
743 		/*
744 		 * We needed to drop mutex to make that restrictive page
745 		 * allocation, but the inode might have been freed while we
746 		 * dropped it: although a racing shmem_evict_inode() cannot
747 		 * complete without emptying the radix_tree, our page lock
748 		 * on this swapcache page is not enough to prevent that -
749 		 * free_swap_and_cache() of our swap entry will only
750 		 * trylock_page(), removing swap from radix_tree whatever.
751 		 *
752 		 * We must not proceed to shmem_add_to_page_cache() if the
753 		 * inode has been freed, but of course we cannot rely on
754 		 * inode or mapping or info to check that.  However, we can
755 		 * safely check if our swap entry is still in use (and here
756 		 * it can't have got reused for another page): if it's still
757 		 * in use, then the inode cannot have been freed yet, and we
758 		 * can safely proceed (if it's no longer in use, that tells
759 		 * nothing about the inode, but we don't need to unuse swap).
760 		 */
761 		if (!page_swapcount(*pagep))
762 			error = -ENOENT;
763 	}
764 
765 	/*
766 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
767 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
768 	 * beneath us (pagelock doesn't help until the page is in pagecache).
769 	 */
770 	if (!error)
771 		error = shmem_add_to_page_cache(*pagep, mapping, index,
772 						radswap);
773 	if (error != -ENOMEM) {
774 		/*
775 		 * Truncation and eviction use free_swap_and_cache(), which
776 		 * only does trylock page: if we raced, best clean up here.
777 		 */
778 		delete_from_swap_cache(*pagep);
779 		set_page_dirty(*pagep);
780 		if (!error) {
781 			spin_lock(&info->lock);
782 			info->swapped--;
783 			spin_unlock(&info->lock);
784 			swap_free(swap);
785 		}
786 	}
787 	return error;
788 }
789 
790 /*
791  * Search through swapped inodes to find and replace swap by page.
792  */
793 int shmem_unuse(swp_entry_t swap, struct page *page)
794 {
795 	struct list_head *this, *next;
796 	struct shmem_inode_info *info;
797 	struct mem_cgroup *memcg;
798 	int error = 0;
799 
800 	/*
801 	 * There's a faint possibility that swap page was replaced before
802 	 * caller locked it: caller will come back later with the right page.
803 	 */
804 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
805 		goto out;
806 
807 	/*
808 	 * Charge page using GFP_KERNEL while we can wait, before taking
809 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
810 	 * Charged back to the user (not to caller) when swap account is used.
811 	 */
812 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
813 			false);
814 	if (error)
815 		goto out;
816 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
817 	error = -EAGAIN;
818 
819 	mutex_lock(&shmem_swaplist_mutex);
820 	list_for_each_safe(this, next, &shmem_swaplist) {
821 		info = list_entry(this, struct shmem_inode_info, swaplist);
822 		if (info->swapped)
823 			error = shmem_unuse_inode(info, swap, &page);
824 		else
825 			list_del_init(&info->swaplist);
826 		cond_resched();
827 		if (error != -EAGAIN)
828 			break;
829 		/* found nothing in this: move on to search the next */
830 	}
831 	mutex_unlock(&shmem_swaplist_mutex);
832 
833 	if (error) {
834 		if (error != -ENOMEM)
835 			error = 0;
836 		mem_cgroup_cancel_charge(page, memcg, false);
837 	} else
838 		mem_cgroup_commit_charge(page, memcg, true, false);
839 out:
840 	unlock_page(page);
841 	page_cache_release(page);
842 	return error;
843 }
844 
845 /*
846  * Move the page from the page cache to the swap cache.
847  */
848 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
849 {
850 	struct shmem_inode_info *info;
851 	struct address_space *mapping;
852 	struct inode *inode;
853 	swp_entry_t swap;
854 	pgoff_t index;
855 
856 	BUG_ON(!PageLocked(page));
857 	mapping = page->mapping;
858 	index = page->index;
859 	inode = mapping->host;
860 	info = SHMEM_I(inode);
861 	if (info->flags & VM_LOCKED)
862 		goto redirty;
863 	if (!total_swap_pages)
864 		goto redirty;
865 
866 	/*
867 	 * Our capabilities prevent regular writeback or sync from ever calling
868 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
869 	 * its underlying filesystem, in which case tmpfs should write out to
870 	 * swap only in response to memory pressure, and not for the writeback
871 	 * threads or sync.
872 	 */
873 	if (!wbc->for_reclaim) {
874 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
875 		goto redirty;
876 	}
877 
878 	/*
879 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
880 	 * value into swapfile.c, the only way we can correctly account for a
881 	 * fallocated page arriving here is now to initialize it and write it.
882 	 *
883 	 * That's okay for a page already fallocated earlier, but if we have
884 	 * not yet completed the fallocation, then (a) we want to keep track
885 	 * of this page in case we have to undo it, and (b) it may not be a
886 	 * good idea to continue anyway, once we're pushing into swap.  So
887 	 * reactivate the page, and let shmem_fallocate() quit when too many.
888 	 */
889 	if (!PageUptodate(page)) {
890 		if (inode->i_private) {
891 			struct shmem_falloc *shmem_falloc;
892 			spin_lock(&inode->i_lock);
893 			shmem_falloc = inode->i_private;
894 			if (shmem_falloc &&
895 			    !shmem_falloc->waitq &&
896 			    index >= shmem_falloc->start &&
897 			    index < shmem_falloc->next)
898 				shmem_falloc->nr_unswapped++;
899 			else
900 				shmem_falloc = NULL;
901 			spin_unlock(&inode->i_lock);
902 			if (shmem_falloc)
903 				goto redirty;
904 		}
905 		clear_highpage(page);
906 		flush_dcache_page(page);
907 		SetPageUptodate(page);
908 	}
909 
910 	swap = get_swap_page();
911 	if (!swap.val)
912 		goto redirty;
913 
914 	if (mem_cgroup_try_charge_swap(page, swap))
915 		goto free_swap;
916 
917 	/*
918 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
919 	 * if it's not already there.  Do it now before the page is
920 	 * moved to swap cache, when its pagelock no longer protects
921 	 * the inode from eviction.  But don't unlock the mutex until
922 	 * we've incremented swapped, because shmem_unuse_inode() will
923 	 * prune a !swapped inode from the swaplist under this mutex.
924 	 */
925 	mutex_lock(&shmem_swaplist_mutex);
926 	if (list_empty(&info->swaplist))
927 		list_add_tail(&info->swaplist, &shmem_swaplist);
928 
929 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
930 		spin_lock(&info->lock);
931 		shmem_recalc_inode(inode);
932 		info->swapped++;
933 		spin_unlock(&info->lock);
934 
935 		swap_shmem_alloc(swap);
936 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
937 
938 		mutex_unlock(&shmem_swaplist_mutex);
939 		BUG_ON(page_mapped(page));
940 		swap_writepage(page, wbc);
941 		return 0;
942 	}
943 
944 	mutex_unlock(&shmem_swaplist_mutex);
945 free_swap:
946 	swapcache_free(swap);
947 redirty:
948 	set_page_dirty(page);
949 	if (wbc->for_reclaim)
950 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
951 	unlock_page(page);
952 	return 0;
953 }
954 
955 #ifdef CONFIG_NUMA
956 #ifdef CONFIG_TMPFS
957 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
958 {
959 	char buffer[64];
960 
961 	if (!mpol || mpol->mode == MPOL_DEFAULT)
962 		return;		/* show nothing */
963 
964 	mpol_to_str(buffer, sizeof(buffer), mpol);
965 
966 	seq_printf(seq, ",mpol=%s", buffer);
967 }
968 
969 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
970 {
971 	struct mempolicy *mpol = NULL;
972 	if (sbinfo->mpol) {
973 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
974 		mpol = sbinfo->mpol;
975 		mpol_get(mpol);
976 		spin_unlock(&sbinfo->stat_lock);
977 	}
978 	return mpol;
979 }
980 #endif /* CONFIG_TMPFS */
981 
982 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
983 			struct shmem_inode_info *info, pgoff_t index)
984 {
985 	struct vm_area_struct pvma;
986 	struct page *page;
987 
988 	/* Create a pseudo vma that just contains the policy */
989 	pvma.vm_start = 0;
990 	/* Bias interleave by inode number to distribute better across nodes */
991 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
992 	pvma.vm_ops = NULL;
993 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
994 
995 	page = swapin_readahead(swap, gfp, &pvma, 0);
996 
997 	/* Drop reference taken by mpol_shared_policy_lookup() */
998 	mpol_cond_put(pvma.vm_policy);
999 
1000 	return page;
1001 }
1002 
1003 static struct page *shmem_alloc_page(gfp_t gfp,
1004 			struct shmem_inode_info *info, pgoff_t index)
1005 {
1006 	struct vm_area_struct pvma;
1007 	struct page *page;
1008 
1009 	/* Create a pseudo vma that just contains the policy */
1010 	pvma.vm_start = 0;
1011 	/* Bias interleave by inode number to distribute better across nodes */
1012 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1013 	pvma.vm_ops = NULL;
1014 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1015 
1016 	page = alloc_page_vma(gfp, &pvma, 0);
1017 
1018 	/* Drop reference taken by mpol_shared_policy_lookup() */
1019 	mpol_cond_put(pvma.vm_policy);
1020 
1021 	return page;
1022 }
1023 #else /* !CONFIG_NUMA */
1024 #ifdef CONFIG_TMPFS
1025 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1026 {
1027 }
1028 #endif /* CONFIG_TMPFS */
1029 
1030 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1031 			struct shmem_inode_info *info, pgoff_t index)
1032 {
1033 	return swapin_readahead(swap, gfp, NULL, 0);
1034 }
1035 
1036 static inline struct page *shmem_alloc_page(gfp_t gfp,
1037 			struct shmem_inode_info *info, pgoff_t index)
1038 {
1039 	return alloc_page(gfp);
1040 }
1041 #endif /* CONFIG_NUMA */
1042 
1043 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1044 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1045 {
1046 	return NULL;
1047 }
1048 #endif
1049 
1050 /*
1051  * When a page is moved from swapcache to shmem filecache (either by the
1052  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1053  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1054  * ignorance of the mapping it belongs to.  If that mapping has special
1055  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1056  * we may need to copy to a suitable page before moving to filecache.
1057  *
1058  * In a future release, this may well be extended to respect cpuset and
1059  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1060  * but for now it is a simple matter of zone.
1061  */
1062 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1063 {
1064 	return page_zonenum(page) > gfp_zone(gfp);
1065 }
1066 
1067 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1068 				struct shmem_inode_info *info, pgoff_t index)
1069 {
1070 	struct page *oldpage, *newpage;
1071 	struct address_space *swap_mapping;
1072 	pgoff_t swap_index;
1073 	int error;
1074 
1075 	oldpage = *pagep;
1076 	swap_index = page_private(oldpage);
1077 	swap_mapping = page_mapping(oldpage);
1078 
1079 	/*
1080 	 * We have arrived here because our zones are constrained, so don't
1081 	 * limit chance of success by further cpuset and node constraints.
1082 	 */
1083 	gfp &= ~GFP_CONSTRAINT_MASK;
1084 	newpage = shmem_alloc_page(gfp, info, index);
1085 	if (!newpage)
1086 		return -ENOMEM;
1087 
1088 	page_cache_get(newpage);
1089 	copy_highpage(newpage, oldpage);
1090 	flush_dcache_page(newpage);
1091 
1092 	__SetPageLocked(newpage);
1093 	SetPageUptodate(newpage);
1094 	SetPageSwapBacked(newpage);
1095 	set_page_private(newpage, swap_index);
1096 	SetPageSwapCache(newpage);
1097 
1098 	/*
1099 	 * Our caller will very soon move newpage out of swapcache, but it's
1100 	 * a nice clean interface for us to replace oldpage by newpage there.
1101 	 */
1102 	spin_lock_irq(&swap_mapping->tree_lock);
1103 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1104 								   newpage);
1105 	if (!error) {
1106 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1107 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1108 	}
1109 	spin_unlock_irq(&swap_mapping->tree_lock);
1110 
1111 	if (unlikely(error)) {
1112 		/*
1113 		 * Is this possible?  I think not, now that our callers check
1114 		 * both PageSwapCache and page_private after getting page lock;
1115 		 * but be defensive.  Reverse old to newpage for clear and free.
1116 		 */
1117 		oldpage = newpage;
1118 	} else {
1119 		mem_cgroup_replace_page(oldpage, newpage);
1120 		lru_cache_add_anon(newpage);
1121 		*pagep = newpage;
1122 	}
1123 
1124 	ClearPageSwapCache(oldpage);
1125 	set_page_private(oldpage, 0);
1126 
1127 	unlock_page(oldpage);
1128 	page_cache_release(oldpage);
1129 	page_cache_release(oldpage);
1130 	return error;
1131 }
1132 
1133 /*
1134  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1135  *
1136  * If we allocate a new one we do not mark it dirty. That's up to the
1137  * vm. If we swap it in we mark it dirty since we also free the swap
1138  * entry since a page cannot live in both the swap and page cache
1139  */
1140 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1141 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1142 {
1143 	struct address_space *mapping = inode->i_mapping;
1144 	struct shmem_inode_info *info;
1145 	struct shmem_sb_info *sbinfo;
1146 	struct mem_cgroup *memcg;
1147 	struct page *page;
1148 	swp_entry_t swap;
1149 	int error;
1150 	int once = 0;
1151 	int alloced = 0;
1152 
1153 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1154 		return -EFBIG;
1155 repeat:
1156 	swap.val = 0;
1157 	page = find_lock_entry(mapping, index);
1158 	if (radix_tree_exceptional_entry(page)) {
1159 		swap = radix_to_swp_entry(page);
1160 		page = NULL;
1161 	}
1162 
1163 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1164 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1165 		error = -EINVAL;
1166 		goto unlock;
1167 	}
1168 
1169 	if (page && sgp == SGP_WRITE)
1170 		mark_page_accessed(page);
1171 
1172 	/* fallocated page? */
1173 	if (page && !PageUptodate(page)) {
1174 		if (sgp != SGP_READ)
1175 			goto clear;
1176 		unlock_page(page);
1177 		page_cache_release(page);
1178 		page = NULL;
1179 	}
1180 	if (page || (sgp == SGP_READ && !swap.val)) {
1181 		*pagep = page;
1182 		return 0;
1183 	}
1184 
1185 	/*
1186 	 * Fast cache lookup did not find it:
1187 	 * bring it back from swap or allocate.
1188 	 */
1189 	info = SHMEM_I(inode);
1190 	sbinfo = SHMEM_SB(inode->i_sb);
1191 
1192 	if (swap.val) {
1193 		/* Look it up and read it in.. */
1194 		page = lookup_swap_cache(swap);
1195 		if (!page) {
1196 			/* here we actually do the io */
1197 			if (fault_type)
1198 				*fault_type |= VM_FAULT_MAJOR;
1199 			page = shmem_swapin(swap, gfp, info, index);
1200 			if (!page) {
1201 				error = -ENOMEM;
1202 				goto failed;
1203 			}
1204 		}
1205 
1206 		/* We have to do this with page locked to prevent races */
1207 		lock_page(page);
1208 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1209 		    !shmem_confirm_swap(mapping, index, swap)) {
1210 			error = -EEXIST;	/* try again */
1211 			goto unlock;
1212 		}
1213 		if (!PageUptodate(page)) {
1214 			error = -EIO;
1215 			goto failed;
1216 		}
1217 		wait_on_page_writeback(page);
1218 
1219 		if (shmem_should_replace_page(page, gfp)) {
1220 			error = shmem_replace_page(&page, gfp, info, index);
1221 			if (error)
1222 				goto failed;
1223 		}
1224 
1225 		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1226 				false);
1227 		if (!error) {
1228 			error = shmem_add_to_page_cache(page, mapping, index,
1229 						swp_to_radix_entry(swap));
1230 			/*
1231 			 * We already confirmed swap under page lock, and make
1232 			 * no memory allocation here, so usually no possibility
1233 			 * of error; but free_swap_and_cache() only trylocks a
1234 			 * page, so it is just possible that the entry has been
1235 			 * truncated or holepunched since swap was confirmed.
1236 			 * shmem_undo_range() will have done some of the
1237 			 * unaccounting, now delete_from_swap_cache() will do
1238 			 * the rest.
1239 			 * Reset swap.val? No, leave it so "failed" goes back to
1240 			 * "repeat": reading a hole and writing should succeed.
1241 			 */
1242 			if (error) {
1243 				mem_cgroup_cancel_charge(page, memcg, false);
1244 				delete_from_swap_cache(page);
1245 			}
1246 		}
1247 		if (error)
1248 			goto failed;
1249 
1250 		mem_cgroup_commit_charge(page, memcg, true, false);
1251 
1252 		spin_lock(&info->lock);
1253 		info->swapped--;
1254 		shmem_recalc_inode(inode);
1255 		spin_unlock(&info->lock);
1256 
1257 		if (sgp == SGP_WRITE)
1258 			mark_page_accessed(page);
1259 
1260 		delete_from_swap_cache(page);
1261 		set_page_dirty(page);
1262 		swap_free(swap);
1263 
1264 	} else {
1265 		if (shmem_acct_block(info->flags)) {
1266 			error = -ENOSPC;
1267 			goto failed;
1268 		}
1269 		if (sbinfo->max_blocks) {
1270 			if (percpu_counter_compare(&sbinfo->used_blocks,
1271 						sbinfo->max_blocks) >= 0) {
1272 				error = -ENOSPC;
1273 				goto unacct;
1274 			}
1275 			percpu_counter_inc(&sbinfo->used_blocks);
1276 		}
1277 
1278 		page = shmem_alloc_page(gfp, info, index);
1279 		if (!page) {
1280 			error = -ENOMEM;
1281 			goto decused;
1282 		}
1283 
1284 		__SetPageSwapBacked(page);
1285 		__SetPageLocked(page);
1286 		if (sgp == SGP_WRITE)
1287 			__SetPageReferenced(page);
1288 
1289 		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1290 				false);
1291 		if (error)
1292 			goto decused;
1293 		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1294 		if (!error) {
1295 			error = shmem_add_to_page_cache(page, mapping, index,
1296 							NULL);
1297 			radix_tree_preload_end();
1298 		}
1299 		if (error) {
1300 			mem_cgroup_cancel_charge(page, memcg, false);
1301 			goto decused;
1302 		}
1303 		mem_cgroup_commit_charge(page, memcg, false, false);
1304 		lru_cache_add_anon(page);
1305 
1306 		spin_lock(&info->lock);
1307 		info->alloced++;
1308 		inode->i_blocks += BLOCKS_PER_PAGE;
1309 		shmem_recalc_inode(inode);
1310 		spin_unlock(&info->lock);
1311 		alloced = true;
1312 
1313 		/*
1314 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1315 		 */
1316 		if (sgp == SGP_FALLOC)
1317 			sgp = SGP_WRITE;
1318 clear:
1319 		/*
1320 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1321 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1322 		 * it now, lest undo on failure cancel our earlier guarantee.
1323 		 */
1324 		if (sgp != SGP_WRITE) {
1325 			clear_highpage(page);
1326 			flush_dcache_page(page);
1327 			SetPageUptodate(page);
1328 		}
1329 		if (sgp == SGP_DIRTY)
1330 			set_page_dirty(page);
1331 	}
1332 
1333 	/* Perhaps the file has been truncated since we checked */
1334 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1335 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1336 		if (alloced) {
1337 			ClearPageDirty(page);
1338 			delete_from_page_cache(page);
1339 			spin_lock(&info->lock);
1340 			shmem_recalc_inode(inode);
1341 			spin_unlock(&info->lock);
1342 		}
1343 		error = -EINVAL;
1344 		goto unlock;
1345 	}
1346 	*pagep = page;
1347 	return 0;
1348 
1349 	/*
1350 	 * Error recovery.
1351 	 */
1352 decused:
1353 	if (sbinfo->max_blocks)
1354 		percpu_counter_add(&sbinfo->used_blocks, -1);
1355 unacct:
1356 	shmem_unacct_blocks(info->flags, 1);
1357 failed:
1358 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1359 		error = -EEXIST;
1360 unlock:
1361 	if (page) {
1362 		unlock_page(page);
1363 		page_cache_release(page);
1364 	}
1365 	if (error == -ENOSPC && !once++) {
1366 		info = SHMEM_I(inode);
1367 		spin_lock(&info->lock);
1368 		shmem_recalc_inode(inode);
1369 		spin_unlock(&info->lock);
1370 		goto repeat;
1371 	}
1372 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1373 		goto repeat;
1374 	return error;
1375 }
1376 
1377 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1378 {
1379 	struct inode *inode = file_inode(vma->vm_file);
1380 	int error;
1381 	int ret = VM_FAULT_LOCKED;
1382 
1383 	/*
1384 	 * Trinity finds that probing a hole which tmpfs is punching can
1385 	 * prevent the hole-punch from ever completing: which in turn
1386 	 * locks writers out with its hold on i_mutex.  So refrain from
1387 	 * faulting pages into the hole while it's being punched.  Although
1388 	 * shmem_undo_range() does remove the additions, it may be unable to
1389 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1390 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1391 	 *
1392 	 * It does not matter if we sometimes reach this check just before the
1393 	 * hole-punch begins, so that one fault then races with the punch:
1394 	 * we just need to make racing faults a rare case.
1395 	 *
1396 	 * The implementation below would be much simpler if we just used a
1397 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1398 	 * and bloating every shmem inode for this unlikely case would be sad.
1399 	 */
1400 	if (unlikely(inode->i_private)) {
1401 		struct shmem_falloc *shmem_falloc;
1402 
1403 		spin_lock(&inode->i_lock);
1404 		shmem_falloc = inode->i_private;
1405 		if (shmem_falloc &&
1406 		    shmem_falloc->waitq &&
1407 		    vmf->pgoff >= shmem_falloc->start &&
1408 		    vmf->pgoff < shmem_falloc->next) {
1409 			wait_queue_head_t *shmem_falloc_waitq;
1410 			DEFINE_WAIT(shmem_fault_wait);
1411 
1412 			ret = VM_FAULT_NOPAGE;
1413 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1414 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1415 				/* It's polite to up mmap_sem if we can */
1416 				up_read(&vma->vm_mm->mmap_sem);
1417 				ret = VM_FAULT_RETRY;
1418 			}
1419 
1420 			shmem_falloc_waitq = shmem_falloc->waitq;
1421 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1422 					TASK_UNINTERRUPTIBLE);
1423 			spin_unlock(&inode->i_lock);
1424 			schedule();
1425 
1426 			/*
1427 			 * shmem_falloc_waitq points into the shmem_fallocate()
1428 			 * stack of the hole-punching task: shmem_falloc_waitq
1429 			 * is usually invalid by the time we reach here, but
1430 			 * finish_wait() does not dereference it in that case;
1431 			 * though i_lock needed lest racing with wake_up_all().
1432 			 */
1433 			spin_lock(&inode->i_lock);
1434 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1435 			spin_unlock(&inode->i_lock);
1436 			return ret;
1437 		}
1438 		spin_unlock(&inode->i_lock);
1439 	}
1440 
1441 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1442 	if (error)
1443 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1444 
1445 	if (ret & VM_FAULT_MAJOR) {
1446 		count_vm_event(PGMAJFAULT);
1447 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1448 	}
1449 	return ret;
1450 }
1451 
1452 #ifdef CONFIG_NUMA
1453 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1454 {
1455 	struct inode *inode = file_inode(vma->vm_file);
1456 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1457 }
1458 
1459 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1460 					  unsigned long addr)
1461 {
1462 	struct inode *inode = file_inode(vma->vm_file);
1463 	pgoff_t index;
1464 
1465 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1466 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1467 }
1468 #endif
1469 
1470 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1471 {
1472 	struct inode *inode = file_inode(file);
1473 	struct shmem_inode_info *info = SHMEM_I(inode);
1474 	int retval = -ENOMEM;
1475 
1476 	spin_lock(&info->lock);
1477 	if (lock && !(info->flags & VM_LOCKED)) {
1478 		if (!user_shm_lock(inode->i_size, user))
1479 			goto out_nomem;
1480 		info->flags |= VM_LOCKED;
1481 		mapping_set_unevictable(file->f_mapping);
1482 	}
1483 	if (!lock && (info->flags & VM_LOCKED) && user) {
1484 		user_shm_unlock(inode->i_size, user);
1485 		info->flags &= ~VM_LOCKED;
1486 		mapping_clear_unevictable(file->f_mapping);
1487 	}
1488 	retval = 0;
1489 
1490 out_nomem:
1491 	spin_unlock(&info->lock);
1492 	return retval;
1493 }
1494 
1495 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1496 {
1497 	file_accessed(file);
1498 	vma->vm_ops = &shmem_vm_ops;
1499 	return 0;
1500 }
1501 
1502 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1503 				     umode_t mode, dev_t dev, unsigned long flags)
1504 {
1505 	struct inode *inode;
1506 	struct shmem_inode_info *info;
1507 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1508 
1509 	if (shmem_reserve_inode(sb))
1510 		return NULL;
1511 
1512 	inode = new_inode(sb);
1513 	if (inode) {
1514 		inode->i_ino = get_next_ino();
1515 		inode_init_owner(inode, dir, mode);
1516 		inode->i_blocks = 0;
1517 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1518 		inode->i_generation = get_seconds();
1519 		info = SHMEM_I(inode);
1520 		memset(info, 0, (char *)inode - (char *)info);
1521 		spin_lock_init(&info->lock);
1522 		info->seals = F_SEAL_SEAL;
1523 		info->flags = flags & VM_NORESERVE;
1524 		INIT_LIST_HEAD(&info->swaplist);
1525 		simple_xattrs_init(&info->xattrs);
1526 		cache_no_acl(inode);
1527 
1528 		switch (mode & S_IFMT) {
1529 		default:
1530 			inode->i_op = &shmem_special_inode_operations;
1531 			init_special_inode(inode, mode, dev);
1532 			break;
1533 		case S_IFREG:
1534 			inode->i_mapping->a_ops = &shmem_aops;
1535 			inode->i_op = &shmem_inode_operations;
1536 			inode->i_fop = &shmem_file_operations;
1537 			mpol_shared_policy_init(&info->policy,
1538 						 shmem_get_sbmpol(sbinfo));
1539 			break;
1540 		case S_IFDIR:
1541 			inc_nlink(inode);
1542 			/* Some things misbehave if size == 0 on a directory */
1543 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1544 			inode->i_op = &shmem_dir_inode_operations;
1545 			inode->i_fop = &simple_dir_operations;
1546 			break;
1547 		case S_IFLNK:
1548 			/*
1549 			 * Must not load anything in the rbtree,
1550 			 * mpol_free_shared_policy will not be called.
1551 			 */
1552 			mpol_shared_policy_init(&info->policy, NULL);
1553 			break;
1554 		}
1555 	} else
1556 		shmem_free_inode(sb);
1557 	return inode;
1558 }
1559 
1560 bool shmem_mapping(struct address_space *mapping)
1561 {
1562 	if (!mapping->host)
1563 		return false;
1564 
1565 	return mapping->host->i_sb->s_op == &shmem_ops;
1566 }
1567 
1568 #ifdef CONFIG_TMPFS
1569 static const struct inode_operations shmem_symlink_inode_operations;
1570 static const struct inode_operations shmem_short_symlink_operations;
1571 
1572 #ifdef CONFIG_TMPFS_XATTR
1573 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1574 #else
1575 #define shmem_initxattrs NULL
1576 #endif
1577 
1578 static int
1579 shmem_write_begin(struct file *file, struct address_space *mapping,
1580 			loff_t pos, unsigned len, unsigned flags,
1581 			struct page **pagep, void **fsdata)
1582 {
1583 	struct inode *inode = mapping->host;
1584 	struct shmem_inode_info *info = SHMEM_I(inode);
1585 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1586 
1587 	/* i_mutex is held by caller */
1588 	if (unlikely(info->seals)) {
1589 		if (info->seals & F_SEAL_WRITE)
1590 			return -EPERM;
1591 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1592 			return -EPERM;
1593 	}
1594 
1595 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1596 }
1597 
1598 static int
1599 shmem_write_end(struct file *file, struct address_space *mapping,
1600 			loff_t pos, unsigned len, unsigned copied,
1601 			struct page *page, void *fsdata)
1602 {
1603 	struct inode *inode = mapping->host;
1604 
1605 	if (pos + copied > inode->i_size)
1606 		i_size_write(inode, pos + copied);
1607 
1608 	if (!PageUptodate(page)) {
1609 		if (copied < PAGE_CACHE_SIZE) {
1610 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1611 			zero_user_segments(page, 0, from,
1612 					from + copied, PAGE_CACHE_SIZE);
1613 		}
1614 		SetPageUptodate(page);
1615 	}
1616 	set_page_dirty(page);
1617 	unlock_page(page);
1618 	page_cache_release(page);
1619 
1620 	return copied;
1621 }
1622 
1623 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1624 {
1625 	struct file *file = iocb->ki_filp;
1626 	struct inode *inode = file_inode(file);
1627 	struct address_space *mapping = inode->i_mapping;
1628 	pgoff_t index;
1629 	unsigned long offset;
1630 	enum sgp_type sgp = SGP_READ;
1631 	int error = 0;
1632 	ssize_t retval = 0;
1633 	loff_t *ppos = &iocb->ki_pos;
1634 
1635 	/*
1636 	 * Might this read be for a stacking filesystem?  Then when reading
1637 	 * holes of a sparse file, we actually need to allocate those pages,
1638 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1639 	 */
1640 	if (!iter_is_iovec(to))
1641 		sgp = SGP_DIRTY;
1642 
1643 	index = *ppos >> PAGE_CACHE_SHIFT;
1644 	offset = *ppos & ~PAGE_CACHE_MASK;
1645 
1646 	for (;;) {
1647 		struct page *page = NULL;
1648 		pgoff_t end_index;
1649 		unsigned long nr, ret;
1650 		loff_t i_size = i_size_read(inode);
1651 
1652 		end_index = i_size >> PAGE_CACHE_SHIFT;
1653 		if (index > end_index)
1654 			break;
1655 		if (index == end_index) {
1656 			nr = i_size & ~PAGE_CACHE_MASK;
1657 			if (nr <= offset)
1658 				break;
1659 		}
1660 
1661 		error = shmem_getpage(inode, index, &page, sgp, NULL);
1662 		if (error) {
1663 			if (error == -EINVAL)
1664 				error = 0;
1665 			break;
1666 		}
1667 		if (page)
1668 			unlock_page(page);
1669 
1670 		/*
1671 		 * We must evaluate after, since reads (unlike writes)
1672 		 * are called without i_mutex protection against truncate
1673 		 */
1674 		nr = PAGE_CACHE_SIZE;
1675 		i_size = i_size_read(inode);
1676 		end_index = i_size >> PAGE_CACHE_SHIFT;
1677 		if (index == end_index) {
1678 			nr = i_size & ~PAGE_CACHE_MASK;
1679 			if (nr <= offset) {
1680 				if (page)
1681 					page_cache_release(page);
1682 				break;
1683 			}
1684 		}
1685 		nr -= offset;
1686 
1687 		if (page) {
1688 			/*
1689 			 * If users can be writing to this page using arbitrary
1690 			 * virtual addresses, take care about potential aliasing
1691 			 * before reading the page on the kernel side.
1692 			 */
1693 			if (mapping_writably_mapped(mapping))
1694 				flush_dcache_page(page);
1695 			/*
1696 			 * Mark the page accessed if we read the beginning.
1697 			 */
1698 			if (!offset)
1699 				mark_page_accessed(page);
1700 		} else {
1701 			page = ZERO_PAGE(0);
1702 			page_cache_get(page);
1703 		}
1704 
1705 		/*
1706 		 * Ok, we have the page, and it's up-to-date, so
1707 		 * now we can copy it to user space...
1708 		 */
1709 		ret = copy_page_to_iter(page, offset, nr, to);
1710 		retval += ret;
1711 		offset += ret;
1712 		index += offset >> PAGE_CACHE_SHIFT;
1713 		offset &= ~PAGE_CACHE_MASK;
1714 
1715 		page_cache_release(page);
1716 		if (!iov_iter_count(to))
1717 			break;
1718 		if (ret < nr) {
1719 			error = -EFAULT;
1720 			break;
1721 		}
1722 		cond_resched();
1723 	}
1724 
1725 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1726 	file_accessed(file);
1727 	return retval ? retval : error;
1728 }
1729 
1730 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1731 				struct pipe_inode_info *pipe, size_t len,
1732 				unsigned int flags)
1733 {
1734 	struct address_space *mapping = in->f_mapping;
1735 	struct inode *inode = mapping->host;
1736 	unsigned int loff, nr_pages, req_pages;
1737 	struct page *pages[PIPE_DEF_BUFFERS];
1738 	struct partial_page partial[PIPE_DEF_BUFFERS];
1739 	struct page *page;
1740 	pgoff_t index, end_index;
1741 	loff_t isize, left;
1742 	int error, page_nr;
1743 	struct splice_pipe_desc spd = {
1744 		.pages = pages,
1745 		.partial = partial,
1746 		.nr_pages_max = PIPE_DEF_BUFFERS,
1747 		.flags = flags,
1748 		.ops = &page_cache_pipe_buf_ops,
1749 		.spd_release = spd_release_page,
1750 	};
1751 
1752 	isize = i_size_read(inode);
1753 	if (unlikely(*ppos >= isize))
1754 		return 0;
1755 
1756 	left = isize - *ppos;
1757 	if (unlikely(left < len))
1758 		len = left;
1759 
1760 	if (splice_grow_spd(pipe, &spd))
1761 		return -ENOMEM;
1762 
1763 	index = *ppos >> PAGE_CACHE_SHIFT;
1764 	loff = *ppos & ~PAGE_CACHE_MASK;
1765 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1766 	nr_pages = min(req_pages, spd.nr_pages_max);
1767 
1768 	spd.nr_pages = find_get_pages_contig(mapping, index,
1769 						nr_pages, spd.pages);
1770 	index += spd.nr_pages;
1771 	error = 0;
1772 
1773 	while (spd.nr_pages < nr_pages) {
1774 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1775 		if (error)
1776 			break;
1777 		unlock_page(page);
1778 		spd.pages[spd.nr_pages++] = page;
1779 		index++;
1780 	}
1781 
1782 	index = *ppos >> PAGE_CACHE_SHIFT;
1783 	nr_pages = spd.nr_pages;
1784 	spd.nr_pages = 0;
1785 
1786 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1787 		unsigned int this_len;
1788 
1789 		if (!len)
1790 			break;
1791 
1792 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1793 		page = spd.pages[page_nr];
1794 
1795 		if (!PageUptodate(page) || page->mapping != mapping) {
1796 			error = shmem_getpage(inode, index, &page,
1797 							SGP_CACHE, NULL);
1798 			if (error)
1799 				break;
1800 			unlock_page(page);
1801 			page_cache_release(spd.pages[page_nr]);
1802 			spd.pages[page_nr] = page;
1803 		}
1804 
1805 		isize = i_size_read(inode);
1806 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1807 		if (unlikely(!isize || index > end_index))
1808 			break;
1809 
1810 		if (end_index == index) {
1811 			unsigned int plen;
1812 
1813 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1814 			if (plen <= loff)
1815 				break;
1816 
1817 			this_len = min(this_len, plen - loff);
1818 			len = this_len;
1819 		}
1820 
1821 		spd.partial[page_nr].offset = loff;
1822 		spd.partial[page_nr].len = this_len;
1823 		len -= this_len;
1824 		loff = 0;
1825 		spd.nr_pages++;
1826 		index++;
1827 	}
1828 
1829 	while (page_nr < nr_pages)
1830 		page_cache_release(spd.pages[page_nr++]);
1831 
1832 	if (spd.nr_pages)
1833 		error = splice_to_pipe(pipe, &spd);
1834 
1835 	splice_shrink_spd(&spd);
1836 
1837 	if (error > 0) {
1838 		*ppos += error;
1839 		file_accessed(in);
1840 	}
1841 	return error;
1842 }
1843 
1844 /*
1845  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1846  */
1847 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1848 				    pgoff_t index, pgoff_t end, int whence)
1849 {
1850 	struct page *page;
1851 	struct pagevec pvec;
1852 	pgoff_t indices[PAGEVEC_SIZE];
1853 	bool done = false;
1854 	int i;
1855 
1856 	pagevec_init(&pvec, 0);
1857 	pvec.nr = 1;		/* start small: we may be there already */
1858 	while (!done) {
1859 		pvec.nr = find_get_entries(mapping, index,
1860 					pvec.nr, pvec.pages, indices);
1861 		if (!pvec.nr) {
1862 			if (whence == SEEK_DATA)
1863 				index = end;
1864 			break;
1865 		}
1866 		for (i = 0; i < pvec.nr; i++, index++) {
1867 			if (index < indices[i]) {
1868 				if (whence == SEEK_HOLE) {
1869 					done = true;
1870 					break;
1871 				}
1872 				index = indices[i];
1873 			}
1874 			page = pvec.pages[i];
1875 			if (page && !radix_tree_exceptional_entry(page)) {
1876 				if (!PageUptodate(page))
1877 					page = NULL;
1878 			}
1879 			if (index >= end ||
1880 			    (page && whence == SEEK_DATA) ||
1881 			    (!page && whence == SEEK_HOLE)) {
1882 				done = true;
1883 				break;
1884 			}
1885 		}
1886 		pagevec_remove_exceptionals(&pvec);
1887 		pagevec_release(&pvec);
1888 		pvec.nr = PAGEVEC_SIZE;
1889 		cond_resched();
1890 	}
1891 	return index;
1892 }
1893 
1894 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1895 {
1896 	struct address_space *mapping = file->f_mapping;
1897 	struct inode *inode = mapping->host;
1898 	pgoff_t start, end;
1899 	loff_t new_offset;
1900 
1901 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1902 		return generic_file_llseek_size(file, offset, whence,
1903 					MAX_LFS_FILESIZE, i_size_read(inode));
1904 	inode_lock(inode);
1905 	/* We're holding i_mutex so we can access i_size directly */
1906 
1907 	if (offset < 0)
1908 		offset = -EINVAL;
1909 	else if (offset >= inode->i_size)
1910 		offset = -ENXIO;
1911 	else {
1912 		start = offset >> PAGE_CACHE_SHIFT;
1913 		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1914 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1915 		new_offset <<= PAGE_CACHE_SHIFT;
1916 		if (new_offset > offset) {
1917 			if (new_offset < inode->i_size)
1918 				offset = new_offset;
1919 			else if (whence == SEEK_DATA)
1920 				offset = -ENXIO;
1921 			else
1922 				offset = inode->i_size;
1923 		}
1924 	}
1925 
1926 	if (offset >= 0)
1927 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1928 	inode_unlock(inode);
1929 	return offset;
1930 }
1931 
1932 /*
1933  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1934  * so reuse a tag which we firmly believe is never set or cleared on shmem.
1935  */
1936 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1937 #define LAST_SCAN               4       /* about 150ms max */
1938 
1939 static void shmem_tag_pins(struct address_space *mapping)
1940 {
1941 	struct radix_tree_iter iter;
1942 	void **slot;
1943 	pgoff_t start;
1944 	struct page *page;
1945 
1946 	lru_add_drain();
1947 	start = 0;
1948 	rcu_read_lock();
1949 
1950 restart:
1951 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1952 		page = radix_tree_deref_slot(slot);
1953 		if (!page || radix_tree_exception(page)) {
1954 			if (radix_tree_deref_retry(page))
1955 				goto restart;
1956 		} else if (page_count(page) - page_mapcount(page) > 1) {
1957 			spin_lock_irq(&mapping->tree_lock);
1958 			radix_tree_tag_set(&mapping->page_tree, iter.index,
1959 					   SHMEM_TAG_PINNED);
1960 			spin_unlock_irq(&mapping->tree_lock);
1961 		}
1962 
1963 		if (need_resched()) {
1964 			cond_resched_rcu();
1965 			start = iter.index + 1;
1966 			goto restart;
1967 		}
1968 	}
1969 	rcu_read_unlock();
1970 }
1971 
1972 /*
1973  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1974  * via get_user_pages(), drivers might have some pending I/O without any active
1975  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1976  * and see whether it has an elevated ref-count. If so, we tag them and wait for
1977  * them to be dropped.
1978  * The caller must guarantee that no new user will acquire writable references
1979  * to those pages to avoid races.
1980  */
1981 static int shmem_wait_for_pins(struct address_space *mapping)
1982 {
1983 	struct radix_tree_iter iter;
1984 	void **slot;
1985 	pgoff_t start;
1986 	struct page *page;
1987 	int error, scan;
1988 
1989 	shmem_tag_pins(mapping);
1990 
1991 	error = 0;
1992 	for (scan = 0; scan <= LAST_SCAN; scan++) {
1993 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1994 			break;
1995 
1996 		if (!scan)
1997 			lru_add_drain_all();
1998 		else if (schedule_timeout_killable((HZ << scan) / 200))
1999 			scan = LAST_SCAN;
2000 
2001 		start = 0;
2002 		rcu_read_lock();
2003 restart:
2004 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2005 					   start, SHMEM_TAG_PINNED) {
2006 
2007 			page = radix_tree_deref_slot(slot);
2008 			if (radix_tree_exception(page)) {
2009 				if (radix_tree_deref_retry(page))
2010 					goto restart;
2011 
2012 				page = NULL;
2013 			}
2014 
2015 			if (page &&
2016 			    page_count(page) - page_mapcount(page) != 1) {
2017 				if (scan < LAST_SCAN)
2018 					goto continue_resched;
2019 
2020 				/*
2021 				 * On the last scan, we clean up all those tags
2022 				 * we inserted; but make a note that we still
2023 				 * found pages pinned.
2024 				 */
2025 				error = -EBUSY;
2026 			}
2027 
2028 			spin_lock_irq(&mapping->tree_lock);
2029 			radix_tree_tag_clear(&mapping->page_tree,
2030 					     iter.index, SHMEM_TAG_PINNED);
2031 			spin_unlock_irq(&mapping->tree_lock);
2032 continue_resched:
2033 			if (need_resched()) {
2034 				cond_resched_rcu();
2035 				start = iter.index + 1;
2036 				goto restart;
2037 			}
2038 		}
2039 		rcu_read_unlock();
2040 	}
2041 
2042 	return error;
2043 }
2044 
2045 #define F_ALL_SEALS (F_SEAL_SEAL | \
2046 		     F_SEAL_SHRINK | \
2047 		     F_SEAL_GROW | \
2048 		     F_SEAL_WRITE)
2049 
2050 int shmem_add_seals(struct file *file, unsigned int seals)
2051 {
2052 	struct inode *inode = file_inode(file);
2053 	struct shmem_inode_info *info = SHMEM_I(inode);
2054 	int error;
2055 
2056 	/*
2057 	 * SEALING
2058 	 * Sealing allows multiple parties to share a shmem-file but restrict
2059 	 * access to a specific subset of file operations. Seals can only be
2060 	 * added, but never removed. This way, mutually untrusted parties can
2061 	 * share common memory regions with a well-defined policy. A malicious
2062 	 * peer can thus never perform unwanted operations on a shared object.
2063 	 *
2064 	 * Seals are only supported on special shmem-files and always affect
2065 	 * the whole underlying inode. Once a seal is set, it may prevent some
2066 	 * kinds of access to the file. Currently, the following seals are
2067 	 * defined:
2068 	 *   SEAL_SEAL: Prevent further seals from being set on this file
2069 	 *   SEAL_SHRINK: Prevent the file from shrinking
2070 	 *   SEAL_GROW: Prevent the file from growing
2071 	 *   SEAL_WRITE: Prevent write access to the file
2072 	 *
2073 	 * As we don't require any trust relationship between two parties, we
2074 	 * must prevent seals from being removed. Therefore, sealing a file
2075 	 * only adds a given set of seals to the file, it never touches
2076 	 * existing seals. Furthermore, the "setting seals"-operation can be
2077 	 * sealed itself, which basically prevents any further seal from being
2078 	 * added.
2079 	 *
2080 	 * Semantics of sealing are only defined on volatile files. Only
2081 	 * anonymous shmem files support sealing. More importantly, seals are
2082 	 * never written to disk. Therefore, there's no plan to support it on
2083 	 * other file types.
2084 	 */
2085 
2086 	if (file->f_op != &shmem_file_operations)
2087 		return -EINVAL;
2088 	if (!(file->f_mode & FMODE_WRITE))
2089 		return -EPERM;
2090 	if (seals & ~(unsigned int)F_ALL_SEALS)
2091 		return -EINVAL;
2092 
2093 	inode_lock(inode);
2094 
2095 	if (info->seals & F_SEAL_SEAL) {
2096 		error = -EPERM;
2097 		goto unlock;
2098 	}
2099 
2100 	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2101 		error = mapping_deny_writable(file->f_mapping);
2102 		if (error)
2103 			goto unlock;
2104 
2105 		error = shmem_wait_for_pins(file->f_mapping);
2106 		if (error) {
2107 			mapping_allow_writable(file->f_mapping);
2108 			goto unlock;
2109 		}
2110 	}
2111 
2112 	info->seals |= seals;
2113 	error = 0;
2114 
2115 unlock:
2116 	inode_unlock(inode);
2117 	return error;
2118 }
2119 EXPORT_SYMBOL_GPL(shmem_add_seals);
2120 
2121 int shmem_get_seals(struct file *file)
2122 {
2123 	if (file->f_op != &shmem_file_operations)
2124 		return -EINVAL;
2125 
2126 	return SHMEM_I(file_inode(file))->seals;
2127 }
2128 EXPORT_SYMBOL_GPL(shmem_get_seals);
2129 
2130 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2131 {
2132 	long error;
2133 
2134 	switch (cmd) {
2135 	case F_ADD_SEALS:
2136 		/* disallow upper 32bit */
2137 		if (arg > UINT_MAX)
2138 			return -EINVAL;
2139 
2140 		error = shmem_add_seals(file, arg);
2141 		break;
2142 	case F_GET_SEALS:
2143 		error = shmem_get_seals(file);
2144 		break;
2145 	default:
2146 		error = -EINVAL;
2147 		break;
2148 	}
2149 
2150 	return error;
2151 }
2152 
2153 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2154 							 loff_t len)
2155 {
2156 	struct inode *inode = file_inode(file);
2157 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2158 	struct shmem_inode_info *info = SHMEM_I(inode);
2159 	struct shmem_falloc shmem_falloc;
2160 	pgoff_t start, index, end;
2161 	int error;
2162 
2163 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2164 		return -EOPNOTSUPP;
2165 
2166 	inode_lock(inode);
2167 
2168 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2169 		struct address_space *mapping = file->f_mapping;
2170 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2171 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2172 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2173 
2174 		/* protected by i_mutex */
2175 		if (info->seals & F_SEAL_WRITE) {
2176 			error = -EPERM;
2177 			goto out;
2178 		}
2179 
2180 		shmem_falloc.waitq = &shmem_falloc_waitq;
2181 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2182 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2183 		spin_lock(&inode->i_lock);
2184 		inode->i_private = &shmem_falloc;
2185 		spin_unlock(&inode->i_lock);
2186 
2187 		if ((u64)unmap_end > (u64)unmap_start)
2188 			unmap_mapping_range(mapping, unmap_start,
2189 					    1 + unmap_end - unmap_start, 0);
2190 		shmem_truncate_range(inode, offset, offset + len - 1);
2191 		/* No need to unmap again: hole-punching leaves COWed pages */
2192 
2193 		spin_lock(&inode->i_lock);
2194 		inode->i_private = NULL;
2195 		wake_up_all(&shmem_falloc_waitq);
2196 		spin_unlock(&inode->i_lock);
2197 		error = 0;
2198 		goto out;
2199 	}
2200 
2201 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2202 	error = inode_newsize_ok(inode, offset + len);
2203 	if (error)
2204 		goto out;
2205 
2206 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2207 		error = -EPERM;
2208 		goto out;
2209 	}
2210 
2211 	start = offset >> PAGE_CACHE_SHIFT;
2212 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2213 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2214 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2215 		error = -ENOSPC;
2216 		goto out;
2217 	}
2218 
2219 	shmem_falloc.waitq = NULL;
2220 	shmem_falloc.start = start;
2221 	shmem_falloc.next  = start;
2222 	shmem_falloc.nr_falloced = 0;
2223 	shmem_falloc.nr_unswapped = 0;
2224 	spin_lock(&inode->i_lock);
2225 	inode->i_private = &shmem_falloc;
2226 	spin_unlock(&inode->i_lock);
2227 
2228 	for (index = start; index < end; index++) {
2229 		struct page *page;
2230 
2231 		/*
2232 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2233 		 * been interrupted because we are using up too much memory.
2234 		 */
2235 		if (signal_pending(current))
2236 			error = -EINTR;
2237 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2238 			error = -ENOMEM;
2239 		else
2240 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2241 									NULL);
2242 		if (error) {
2243 			/* Remove the !PageUptodate pages we added */
2244 			shmem_undo_range(inode,
2245 				(loff_t)start << PAGE_CACHE_SHIFT,
2246 				(loff_t)index << PAGE_CACHE_SHIFT, true);
2247 			goto undone;
2248 		}
2249 
2250 		/*
2251 		 * Inform shmem_writepage() how far we have reached.
2252 		 * No need for lock or barrier: we have the page lock.
2253 		 */
2254 		shmem_falloc.next++;
2255 		if (!PageUptodate(page))
2256 			shmem_falloc.nr_falloced++;
2257 
2258 		/*
2259 		 * If !PageUptodate, leave it that way so that freeable pages
2260 		 * can be recognized if we need to rollback on error later.
2261 		 * But set_page_dirty so that memory pressure will swap rather
2262 		 * than free the pages we are allocating (and SGP_CACHE pages
2263 		 * might still be clean: we now need to mark those dirty too).
2264 		 */
2265 		set_page_dirty(page);
2266 		unlock_page(page);
2267 		page_cache_release(page);
2268 		cond_resched();
2269 	}
2270 
2271 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2272 		i_size_write(inode, offset + len);
2273 	inode->i_ctime = CURRENT_TIME;
2274 undone:
2275 	spin_lock(&inode->i_lock);
2276 	inode->i_private = NULL;
2277 	spin_unlock(&inode->i_lock);
2278 out:
2279 	inode_unlock(inode);
2280 	return error;
2281 }
2282 
2283 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2284 {
2285 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2286 
2287 	buf->f_type = TMPFS_MAGIC;
2288 	buf->f_bsize = PAGE_CACHE_SIZE;
2289 	buf->f_namelen = NAME_MAX;
2290 	if (sbinfo->max_blocks) {
2291 		buf->f_blocks = sbinfo->max_blocks;
2292 		buf->f_bavail =
2293 		buf->f_bfree  = sbinfo->max_blocks -
2294 				percpu_counter_sum(&sbinfo->used_blocks);
2295 	}
2296 	if (sbinfo->max_inodes) {
2297 		buf->f_files = sbinfo->max_inodes;
2298 		buf->f_ffree = sbinfo->free_inodes;
2299 	}
2300 	/* else leave those fields 0 like simple_statfs */
2301 	return 0;
2302 }
2303 
2304 /*
2305  * File creation. Allocate an inode, and we're done..
2306  */
2307 static int
2308 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2309 {
2310 	struct inode *inode;
2311 	int error = -ENOSPC;
2312 
2313 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2314 	if (inode) {
2315 		error = simple_acl_create(dir, inode);
2316 		if (error)
2317 			goto out_iput;
2318 		error = security_inode_init_security(inode, dir,
2319 						     &dentry->d_name,
2320 						     shmem_initxattrs, NULL);
2321 		if (error && error != -EOPNOTSUPP)
2322 			goto out_iput;
2323 
2324 		error = 0;
2325 		dir->i_size += BOGO_DIRENT_SIZE;
2326 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2327 		d_instantiate(dentry, inode);
2328 		dget(dentry); /* Extra count - pin the dentry in core */
2329 	}
2330 	return error;
2331 out_iput:
2332 	iput(inode);
2333 	return error;
2334 }
2335 
2336 static int
2337 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2338 {
2339 	struct inode *inode;
2340 	int error = -ENOSPC;
2341 
2342 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2343 	if (inode) {
2344 		error = security_inode_init_security(inode, dir,
2345 						     NULL,
2346 						     shmem_initxattrs, NULL);
2347 		if (error && error != -EOPNOTSUPP)
2348 			goto out_iput;
2349 		error = simple_acl_create(dir, inode);
2350 		if (error)
2351 			goto out_iput;
2352 		d_tmpfile(dentry, inode);
2353 	}
2354 	return error;
2355 out_iput:
2356 	iput(inode);
2357 	return error;
2358 }
2359 
2360 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2361 {
2362 	int error;
2363 
2364 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2365 		return error;
2366 	inc_nlink(dir);
2367 	return 0;
2368 }
2369 
2370 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2371 		bool excl)
2372 {
2373 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2374 }
2375 
2376 /*
2377  * Link a file..
2378  */
2379 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2380 {
2381 	struct inode *inode = d_inode(old_dentry);
2382 	int ret;
2383 
2384 	/*
2385 	 * No ordinary (disk based) filesystem counts links as inodes;
2386 	 * but each new link needs a new dentry, pinning lowmem, and
2387 	 * tmpfs dentries cannot be pruned until they are unlinked.
2388 	 */
2389 	ret = shmem_reserve_inode(inode->i_sb);
2390 	if (ret)
2391 		goto out;
2392 
2393 	dir->i_size += BOGO_DIRENT_SIZE;
2394 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2395 	inc_nlink(inode);
2396 	ihold(inode);	/* New dentry reference */
2397 	dget(dentry);		/* Extra pinning count for the created dentry */
2398 	d_instantiate(dentry, inode);
2399 out:
2400 	return ret;
2401 }
2402 
2403 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2404 {
2405 	struct inode *inode = d_inode(dentry);
2406 
2407 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2408 		shmem_free_inode(inode->i_sb);
2409 
2410 	dir->i_size -= BOGO_DIRENT_SIZE;
2411 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2412 	drop_nlink(inode);
2413 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2414 	return 0;
2415 }
2416 
2417 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2418 {
2419 	if (!simple_empty(dentry))
2420 		return -ENOTEMPTY;
2421 
2422 	drop_nlink(d_inode(dentry));
2423 	drop_nlink(dir);
2424 	return shmem_unlink(dir, dentry);
2425 }
2426 
2427 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2428 {
2429 	bool old_is_dir = d_is_dir(old_dentry);
2430 	bool new_is_dir = d_is_dir(new_dentry);
2431 
2432 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2433 		if (old_is_dir) {
2434 			drop_nlink(old_dir);
2435 			inc_nlink(new_dir);
2436 		} else {
2437 			drop_nlink(new_dir);
2438 			inc_nlink(old_dir);
2439 		}
2440 	}
2441 	old_dir->i_ctime = old_dir->i_mtime =
2442 	new_dir->i_ctime = new_dir->i_mtime =
2443 	d_inode(old_dentry)->i_ctime =
2444 	d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2445 
2446 	return 0;
2447 }
2448 
2449 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2450 {
2451 	struct dentry *whiteout;
2452 	int error;
2453 
2454 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2455 	if (!whiteout)
2456 		return -ENOMEM;
2457 
2458 	error = shmem_mknod(old_dir, whiteout,
2459 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2460 	dput(whiteout);
2461 	if (error)
2462 		return error;
2463 
2464 	/*
2465 	 * Cheat and hash the whiteout while the old dentry is still in
2466 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2467 	 *
2468 	 * d_lookup() will consistently find one of them at this point,
2469 	 * not sure which one, but that isn't even important.
2470 	 */
2471 	d_rehash(whiteout);
2472 	return 0;
2473 }
2474 
2475 /*
2476  * The VFS layer already does all the dentry stuff for rename,
2477  * we just have to decrement the usage count for the target if
2478  * it exists so that the VFS layer correctly free's it when it
2479  * gets overwritten.
2480  */
2481 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2482 {
2483 	struct inode *inode = d_inode(old_dentry);
2484 	int they_are_dirs = S_ISDIR(inode->i_mode);
2485 
2486 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2487 		return -EINVAL;
2488 
2489 	if (flags & RENAME_EXCHANGE)
2490 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2491 
2492 	if (!simple_empty(new_dentry))
2493 		return -ENOTEMPTY;
2494 
2495 	if (flags & RENAME_WHITEOUT) {
2496 		int error;
2497 
2498 		error = shmem_whiteout(old_dir, old_dentry);
2499 		if (error)
2500 			return error;
2501 	}
2502 
2503 	if (d_really_is_positive(new_dentry)) {
2504 		(void) shmem_unlink(new_dir, new_dentry);
2505 		if (they_are_dirs) {
2506 			drop_nlink(d_inode(new_dentry));
2507 			drop_nlink(old_dir);
2508 		}
2509 	} else if (they_are_dirs) {
2510 		drop_nlink(old_dir);
2511 		inc_nlink(new_dir);
2512 	}
2513 
2514 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2515 	new_dir->i_size += BOGO_DIRENT_SIZE;
2516 	old_dir->i_ctime = old_dir->i_mtime =
2517 	new_dir->i_ctime = new_dir->i_mtime =
2518 	inode->i_ctime = CURRENT_TIME;
2519 	return 0;
2520 }
2521 
2522 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2523 {
2524 	int error;
2525 	int len;
2526 	struct inode *inode;
2527 	struct page *page;
2528 	struct shmem_inode_info *info;
2529 
2530 	len = strlen(symname) + 1;
2531 	if (len > PAGE_CACHE_SIZE)
2532 		return -ENAMETOOLONG;
2533 
2534 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2535 	if (!inode)
2536 		return -ENOSPC;
2537 
2538 	error = security_inode_init_security(inode, dir, &dentry->d_name,
2539 					     shmem_initxattrs, NULL);
2540 	if (error) {
2541 		if (error != -EOPNOTSUPP) {
2542 			iput(inode);
2543 			return error;
2544 		}
2545 		error = 0;
2546 	}
2547 
2548 	info = SHMEM_I(inode);
2549 	inode->i_size = len-1;
2550 	if (len <= SHORT_SYMLINK_LEN) {
2551 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2552 		if (!inode->i_link) {
2553 			iput(inode);
2554 			return -ENOMEM;
2555 		}
2556 		inode->i_op = &shmem_short_symlink_operations;
2557 	} else {
2558 		inode_nohighmem(inode);
2559 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2560 		if (error) {
2561 			iput(inode);
2562 			return error;
2563 		}
2564 		inode->i_mapping->a_ops = &shmem_aops;
2565 		inode->i_op = &shmem_symlink_inode_operations;
2566 		memcpy(page_address(page), symname, len);
2567 		SetPageUptodate(page);
2568 		set_page_dirty(page);
2569 		unlock_page(page);
2570 		page_cache_release(page);
2571 	}
2572 	dir->i_size += BOGO_DIRENT_SIZE;
2573 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2574 	d_instantiate(dentry, inode);
2575 	dget(dentry);
2576 	return 0;
2577 }
2578 
2579 static void shmem_put_link(void *arg)
2580 {
2581 	mark_page_accessed(arg);
2582 	put_page(arg);
2583 }
2584 
2585 static const char *shmem_get_link(struct dentry *dentry,
2586 				  struct inode *inode,
2587 				  struct delayed_call *done)
2588 {
2589 	struct page *page = NULL;
2590 	int error;
2591 	if (!dentry) {
2592 		page = find_get_page(inode->i_mapping, 0);
2593 		if (!page)
2594 			return ERR_PTR(-ECHILD);
2595 		if (!PageUptodate(page)) {
2596 			put_page(page);
2597 			return ERR_PTR(-ECHILD);
2598 		}
2599 	} else {
2600 		error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2601 		if (error)
2602 			return ERR_PTR(error);
2603 		unlock_page(page);
2604 	}
2605 	set_delayed_call(done, shmem_put_link, page);
2606 	return page_address(page);
2607 }
2608 
2609 #ifdef CONFIG_TMPFS_XATTR
2610 /*
2611  * Superblocks without xattr inode operations may get some security.* xattr
2612  * support from the LSM "for free". As soon as we have any other xattrs
2613  * like ACLs, we also need to implement the security.* handlers at
2614  * filesystem level, though.
2615  */
2616 
2617 /*
2618  * Callback for security_inode_init_security() for acquiring xattrs.
2619  */
2620 static int shmem_initxattrs(struct inode *inode,
2621 			    const struct xattr *xattr_array,
2622 			    void *fs_info)
2623 {
2624 	struct shmem_inode_info *info = SHMEM_I(inode);
2625 	const struct xattr *xattr;
2626 	struct simple_xattr *new_xattr;
2627 	size_t len;
2628 
2629 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2630 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2631 		if (!new_xattr)
2632 			return -ENOMEM;
2633 
2634 		len = strlen(xattr->name) + 1;
2635 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2636 					  GFP_KERNEL);
2637 		if (!new_xattr->name) {
2638 			kfree(new_xattr);
2639 			return -ENOMEM;
2640 		}
2641 
2642 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2643 		       XATTR_SECURITY_PREFIX_LEN);
2644 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2645 		       xattr->name, len);
2646 
2647 		simple_xattr_list_add(&info->xattrs, new_xattr);
2648 	}
2649 
2650 	return 0;
2651 }
2652 
2653 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2654 				   struct dentry *dentry, const char *name,
2655 				   void *buffer, size_t size)
2656 {
2657 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2658 
2659 	name = xattr_full_name(handler, name);
2660 	return simple_xattr_get(&info->xattrs, name, buffer, size);
2661 }
2662 
2663 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2664 				   struct dentry *dentry, const char *name,
2665 				   const void *value, size_t size, int flags)
2666 {
2667 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2668 
2669 	name = xattr_full_name(handler, name);
2670 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2671 }
2672 
2673 static const struct xattr_handler shmem_security_xattr_handler = {
2674 	.prefix = XATTR_SECURITY_PREFIX,
2675 	.get = shmem_xattr_handler_get,
2676 	.set = shmem_xattr_handler_set,
2677 };
2678 
2679 static const struct xattr_handler shmem_trusted_xattr_handler = {
2680 	.prefix = XATTR_TRUSTED_PREFIX,
2681 	.get = shmem_xattr_handler_get,
2682 	.set = shmem_xattr_handler_set,
2683 };
2684 
2685 static const struct xattr_handler *shmem_xattr_handlers[] = {
2686 #ifdef CONFIG_TMPFS_POSIX_ACL
2687 	&posix_acl_access_xattr_handler,
2688 	&posix_acl_default_xattr_handler,
2689 #endif
2690 	&shmem_security_xattr_handler,
2691 	&shmem_trusted_xattr_handler,
2692 	NULL
2693 };
2694 
2695 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2696 {
2697 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2698 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2699 }
2700 #endif /* CONFIG_TMPFS_XATTR */
2701 
2702 static const struct inode_operations shmem_short_symlink_operations = {
2703 	.readlink	= generic_readlink,
2704 	.get_link	= simple_get_link,
2705 #ifdef CONFIG_TMPFS_XATTR
2706 	.setxattr	= generic_setxattr,
2707 	.getxattr	= generic_getxattr,
2708 	.listxattr	= shmem_listxattr,
2709 	.removexattr	= generic_removexattr,
2710 #endif
2711 };
2712 
2713 static const struct inode_operations shmem_symlink_inode_operations = {
2714 	.readlink	= generic_readlink,
2715 	.get_link	= shmem_get_link,
2716 #ifdef CONFIG_TMPFS_XATTR
2717 	.setxattr	= generic_setxattr,
2718 	.getxattr	= generic_getxattr,
2719 	.listxattr	= shmem_listxattr,
2720 	.removexattr	= generic_removexattr,
2721 #endif
2722 };
2723 
2724 static struct dentry *shmem_get_parent(struct dentry *child)
2725 {
2726 	return ERR_PTR(-ESTALE);
2727 }
2728 
2729 static int shmem_match(struct inode *ino, void *vfh)
2730 {
2731 	__u32 *fh = vfh;
2732 	__u64 inum = fh[2];
2733 	inum = (inum << 32) | fh[1];
2734 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2735 }
2736 
2737 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2738 		struct fid *fid, int fh_len, int fh_type)
2739 {
2740 	struct inode *inode;
2741 	struct dentry *dentry = NULL;
2742 	u64 inum;
2743 
2744 	if (fh_len < 3)
2745 		return NULL;
2746 
2747 	inum = fid->raw[2];
2748 	inum = (inum << 32) | fid->raw[1];
2749 
2750 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2751 			shmem_match, fid->raw);
2752 	if (inode) {
2753 		dentry = d_find_alias(inode);
2754 		iput(inode);
2755 	}
2756 
2757 	return dentry;
2758 }
2759 
2760 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2761 				struct inode *parent)
2762 {
2763 	if (*len < 3) {
2764 		*len = 3;
2765 		return FILEID_INVALID;
2766 	}
2767 
2768 	if (inode_unhashed(inode)) {
2769 		/* Unfortunately insert_inode_hash is not idempotent,
2770 		 * so as we hash inodes here rather than at creation
2771 		 * time, we need a lock to ensure we only try
2772 		 * to do it once
2773 		 */
2774 		static DEFINE_SPINLOCK(lock);
2775 		spin_lock(&lock);
2776 		if (inode_unhashed(inode))
2777 			__insert_inode_hash(inode,
2778 					    inode->i_ino + inode->i_generation);
2779 		spin_unlock(&lock);
2780 	}
2781 
2782 	fh[0] = inode->i_generation;
2783 	fh[1] = inode->i_ino;
2784 	fh[2] = ((__u64)inode->i_ino) >> 32;
2785 
2786 	*len = 3;
2787 	return 1;
2788 }
2789 
2790 static const struct export_operations shmem_export_ops = {
2791 	.get_parent     = shmem_get_parent,
2792 	.encode_fh      = shmem_encode_fh,
2793 	.fh_to_dentry	= shmem_fh_to_dentry,
2794 };
2795 
2796 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2797 			       bool remount)
2798 {
2799 	char *this_char, *value, *rest;
2800 	struct mempolicy *mpol = NULL;
2801 	uid_t uid;
2802 	gid_t gid;
2803 
2804 	while (options != NULL) {
2805 		this_char = options;
2806 		for (;;) {
2807 			/*
2808 			 * NUL-terminate this option: unfortunately,
2809 			 * mount options form a comma-separated list,
2810 			 * but mpol's nodelist may also contain commas.
2811 			 */
2812 			options = strchr(options, ',');
2813 			if (options == NULL)
2814 				break;
2815 			options++;
2816 			if (!isdigit(*options)) {
2817 				options[-1] = '\0';
2818 				break;
2819 			}
2820 		}
2821 		if (!*this_char)
2822 			continue;
2823 		if ((value = strchr(this_char,'=')) != NULL) {
2824 			*value++ = 0;
2825 		} else {
2826 			printk(KERN_ERR
2827 			    "tmpfs: No value for mount option '%s'\n",
2828 			    this_char);
2829 			goto error;
2830 		}
2831 
2832 		if (!strcmp(this_char,"size")) {
2833 			unsigned long long size;
2834 			size = memparse(value,&rest);
2835 			if (*rest == '%') {
2836 				size <<= PAGE_SHIFT;
2837 				size *= totalram_pages;
2838 				do_div(size, 100);
2839 				rest++;
2840 			}
2841 			if (*rest)
2842 				goto bad_val;
2843 			sbinfo->max_blocks =
2844 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2845 		} else if (!strcmp(this_char,"nr_blocks")) {
2846 			sbinfo->max_blocks = memparse(value, &rest);
2847 			if (*rest)
2848 				goto bad_val;
2849 		} else if (!strcmp(this_char,"nr_inodes")) {
2850 			sbinfo->max_inodes = memparse(value, &rest);
2851 			if (*rest)
2852 				goto bad_val;
2853 		} else if (!strcmp(this_char,"mode")) {
2854 			if (remount)
2855 				continue;
2856 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2857 			if (*rest)
2858 				goto bad_val;
2859 		} else if (!strcmp(this_char,"uid")) {
2860 			if (remount)
2861 				continue;
2862 			uid = simple_strtoul(value, &rest, 0);
2863 			if (*rest)
2864 				goto bad_val;
2865 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2866 			if (!uid_valid(sbinfo->uid))
2867 				goto bad_val;
2868 		} else if (!strcmp(this_char,"gid")) {
2869 			if (remount)
2870 				continue;
2871 			gid = simple_strtoul(value, &rest, 0);
2872 			if (*rest)
2873 				goto bad_val;
2874 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2875 			if (!gid_valid(sbinfo->gid))
2876 				goto bad_val;
2877 		} else if (!strcmp(this_char,"mpol")) {
2878 			mpol_put(mpol);
2879 			mpol = NULL;
2880 			if (mpol_parse_str(value, &mpol))
2881 				goto bad_val;
2882 		} else {
2883 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2884 			       this_char);
2885 			goto error;
2886 		}
2887 	}
2888 	sbinfo->mpol = mpol;
2889 	return 0;
2890 
2891 bad_val:
2892 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2893 	       value, this_char);
2894 error:
2895 	mpol_put(mpol);
2896 	return 1;
2897 
2898 }
2899 
2900 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2901 {
2902 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2903 	struct shmem_sb_info config = *sbinfo;
2904 	unsigned long inodes;
2905 	int error = -EINVAL;
2906 
2907 	config.mpol = NULL;
2908 	if (shmem_parse_options(data, &config, true))
2909 		return error;
2910 
2911 	spin_lock(&sbinfo->stat_lock);
2912 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2913 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2914 		goto out;
2915 	if (config.max_inodes < inodes)
2916 		goto out;
2917 	/*
2918 	 * Those tests disallow limited->unlimited while any are in use;
2919 	 * but we must separately disallow unlimited->limited, because
2920 	 * in that case we have no record of how much is already in use.
2921 	 */
2922 	if (config.max_blocks && !sbinfo->max_blocks)
2923 		goto out;
2924 	if (config.max_inodes && !sbinfo->max_inodes)
2925 		goto out;
2926 
2927 	error = 0;
2928 	sbinfo->max_blocks  = config.max_blocks;
2929 	sbinfo->max_inodes  = config.max_inodes;
2930 	sbinfo->free_inodes = config.max_inodes - inodes;
2931 
2932 	/*
2933 	 * Preserve previous mempolicy unless mpol remount option was specified.
2934 	 */
2935 	if (config.mpol) {
2936 		mpol_put(sbinfo->mpol);
2937 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2938 	}
2939 out:
2940 	spin_unlock(&sbinfo->stat_lock);
2941 	return error;
2942 }
2943 
2944 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2945 {
2946 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2947 
2948 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2949 		seq_printf(seq, ",size=%luk",
2950 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2951 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2952 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2953 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2954 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2955 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2956 		seq_printf(seq, ",uid=%u",
2957 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2958 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2959 		seq_printf(seq, ",gid=%u",
2960 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2961 	shmem_show_mpol(seq, sbinfo->mpol);
2962 	return 0;
2963 }
2964 
2965 #define MFD_NAME_PREFIX "memfd:"
2966 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2967 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2968 
2969 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2970 
2971 SYSCALL_DEFINE2(memfd_create,
2972 		const char __user *, uname,
2973 		unsigned int, flags)
2974 {
2975 	struct shmem_inode_info *info;
2976 	struct file *file;
2977 	int fd, error;
2978 	char *name;
2979 	long len;
2980 
2981 	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2982 		return -EINVAL;
2983 
2984 	/* length includes terminating zero */
2985 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2986 	if (len <= 0)
2987 		return -EFAULT;
2988 	if (len > MFD_NAME_MAX_LEN + 1)
2989 		return -EINVAL;
2990 
2991 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2992 	if (!name)
2993 		return -ENOMEM;
2994 
2995 	strcpy(name, MFD_NAME_PREFIX);
2996 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2997 		error = -EFAULT;
2998 		goto err_name;
2999 	}
3000 
3001 	/* terminating-zero may have changed after strnlen_user() returned */
3002 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3003 		error = -EFAULT;
3004 		goto err_name;
3005 	}
3006 
3007 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3008 	if (fd < 0) {
3009 		error = fd;
3010 		goto err_name;
3011 	}
3012 
3013 	file = shmem_file_setup(name, 0, VM_NORESERVE);
3014 	if (IS_ERR(file)) {
3015 		error = PTR_ERR(file);
3016 		goto err_fd;
3017 	}
3018 	info = SHMEM_I(file_inode(file));
3019 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3020 	file->f_flags |= O_RDWR | O_LARGEFILE;
3021 	if (flags & MFD_ALLOW_SEALING)
3022 		info->seals &= ~F_SEAL_SEAL;
3023 
3024 	fd_install(fd, file);
3025 	kfree(name);
3026 	return fd;
3027 
3028 err_fd:
3029 	put_unused_fd(fd);
3030 err_name:
3031 	kfree(name);
3032 	return error;
3033 }
3034 
3035 #endif /* CONFIG_TMPFS */
3036 
3037 static void shmem_put_super(struct super_block *sb)
3038 {
3039 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3040 
3041 	percpu_counter_destroy(&sbinfo->used_blocks);
3042 	mpol_put(sbinfo->mpol);
3043 	kfree(sbinfo);
3044 	sb->s_fs_info = NULL;
3045 }
3046 
3047 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3048 {
3049 	struct inode *inode;
3050 	struct shmem_sb_info *sbinfo;
3051 	int err = -ENOMEM;
3052 
3053 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3054 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3055 				L1_CACHE_BYTES), GFP_KERNEL);
3056 	if (!sbinfo)
3057 		return -ENOMEM;
3058 
3059 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3060 	sbinfo->uid = current_fsuid();
3061 	sbinfo->gid = current_fsgid();
3062 	sb->s_fs_info = sbinfo;
3063 
3064 #ifdef CONFIG_TMPFS
3065 	/*
3066 	 * Per default we only allow half of the physical ram per
3067 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3068 	 * but the internal instance is left unlimited.
3069 	 */
3070 	if (!(sb->s_flags & MS_KERNMOUNT)) {
3071 		sbinfo->max_blocks = shmem_default_max_blocks();
3072 		sbinfo->max_inodes = shmem_default_max_inodes();
3073 		if (shmem_parse_options(data, sbinfo, false)) {
3074 			err = -EINVAL;
3075 			goto failed;
3076 		}
3077 	} else {
3078 		sb->s_flags |= MS_NOUSER;
3079 	}
3080 	sb->s_export_op = &shmem_export_ops;
3081 	sb->s_flags |= MS_NOSEC;
3082 #else
3083 	sb->s_flags |= MS_NOUSER;
3084 #endif
3085 
3086 	spin_lock_init(&sbinfo->stat_lock);
3087 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3088 		goto failed;
3089 	sbinfo->free_inodes = sbinfo->max_inodes;
3090 
3091 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3092 	sb->s_blocksize = PAGE_CACHE_SIZE;
3093 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3094 	sb->s_magic = TMPFS_MAGIC;
3095 	sb->s_op = &shmem_ops;
3096 	sb->s_time_gran = 1;
3097 #ifdef CONFIG_TMPFS_XATTR
3098 	sb->s_xattr = shmem_xattr_handlers;
3099 #endif
3100 #ifdef CONFIG_TMPFS_POSIX_ACL
3101 	sb->s_flags |= MS_POSIXACL;
3102 #endif
3103 
3104 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3105 	if (!inode)
3106 		goto failed;
3107 	inode->i_uid = sbinfo->uid;
3108 	inode->i_gid = sbinfo->gid;
3109 	sb->s_root = d_make_root(inode);
3110 	if (!sb->s_root)
3111 		goto failed;
3112 	return 0;
3113 
3114 failed:
3115 	shmem_put_super(sb);
3116 	return err;
3117 }
3118 
3119 static struct kmem_cache *shmem_inode_cachep;
3120 
3121 static struct inode *shmem_alloc_inode(struct super_block *sb)
3122 {
3123 	struct shmem_inode_info *info;
3124 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3125 	if (!info)
3126 		return NULL;
3127 	return &info->vfs_inode;
3128 }
3129 
3130 static void shmem_destroy_callback(struct rcu_head *head)
3131 {
3132 	struct inode *inode = container_of(head, struct inode, i_rcu);
3133 	kfree(inode->i_link);
3134 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3135 }
3136 
3137 static void shmem_destroy_inode(struct inode *inode)
3138 {
3139 	if (S_ISREG(inode->i_mode))
3140 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3141 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3142 }
3143 
3144 static void shmem_init_inode(void *foo)
3145 {
3146 	struct shmem_inode_info *info = foo;
3147 	inode_init_once(&info->vfs_inode);
3148 }
3149 
3150 static int shmem_init_inodecache(void)
3151 {
3152 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3153 				sizeof(struct shmem_inode_info),
3154 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3155 	return 0;
3156 }
3157 
3158 static void shmem_destroy_inodecache(void)
3159 {
3160 	kmem_cache_destroy(shmem_inode_cachep);
3161 }
3162 
3163 static const struct address_space_operations shmem_aops = {
3164 	.writepage	= shmem_writepage,
3165 	.set_page_dirty	= __set_page_dirty_no_writeback,
3166 #ifdef CONFIG_TMPFS
3167 	.write_begin	= shmem_write_begin,
3168 	.write_end	= shmem_write_end,
3169 #endif
3170 #ifdef CONFIG_MIGRATION
3171 	.migratepage	= migrate_page,
3172 #endif
3173 	.error_remove_page = generic_error_remove_page,
3174 };
3175 
3176 static const struct file_operations shmem_file_operations = {
3177 	.mmap		= shmem_mmap,
3178 #ifdef CONFIG_TMPFS
3179 	.llseek		= shmem_file_llseek,
3180 	.read_iter	= shmem_file_read_iter,
3181 	.write_iter	= generic_file_write_iter,
3182 	.fsync		= noop_fsync,
3183 	.splice_read	= shmem_file_splice_read,
3184 	.splice_write	= iter_file_splice_write,
3185 	.fallocate	= shmem_fallocate,
3186 #endif
3187 };
3188 
3189 static const struct inode_operations shmem_inode_operations = {
3190 	.getattr	= shmem_getattr,
3191 	.setattr	= shmem_setattr,
3192 #ifdef CONFIG_TMPFS_XATTR
3193 	.setxattr	= generic_setxattr,
3194 	.getxattr	= generic_getxattr,
3195 	.listxattr	= shmem_listxattr,
3196 	.removexattr	= generic_removexattr,
3197 	.set_acl	= simple_set_acl,
3198 #endif
3199 };
3200 
3201 static const struct inode_operations shmem_dir_inode_operations = {
3202 #ifdef CONFIG_TMPFS
3203 	.create		= shmem_create,
3204 	.lookup		= simple_lookup,
3205 	.link		= shmem_link,
3206 	.unlink		= shmem_unlink,
3207 	.symlink	= shmem_symlink,
3208 	.mkdir		= shmem_mkdir,
3209 	.rmdir		= shmem_rmdir,
3210 	.mknod		= shmem_mknod,
3211 	.rename2	= shmem_rename2,
3212 	.tmpfile	= shmem_tmpfile,
3213 #endif
3214 #ifdef CONFIG_TMPFS_XATTR
3215 	.setxattr	= generic_setxattr,
3216 	.getxattr	= generic_getxattr,
3217 	.listxattr	= shmem_listxattr,
3218 	.removexattr	= generic_removexattr,
3219 #endif
3220 #ifdef CONFIG_TMPFS_POSIX_ACL
3221 	.setattr	= shmem_setattr,
3222 	.set_acl	= simple_set_acl,
3223 #endif
3224 };
3225 
3226 static const struct inode_operations shmem_special_inode_operations = {
3227 #ifdef CONFIG_TMPFS_XATTR
3228 	.setxattr	= generic_setxattr,
3229 	.getxattr	= generic_getxattr,
3230 	.listxattr	= shmem_listxattr,
3231 	.removexattr	= generic_removexattr,
3232 #endif
3233 #ifdef CONFIG_TMPFS_POSIX_ACL
3234 	.setattr	= shmem_setattr,
3235 	.set_acl	= simple_set_acl,
3236 #endif
3237 };
3238 
3239 static const struct super_operations shmem_ops = {
3240 	.alloc_inode	= shmem_alloc_inode,
3241 	.destroy_inode	= shmem_destroy_inode,
3242 #ifdef CONFIG_TMPFS
3243 	.statfs		= shmem_statfs,
3244 	.remount_fs	= shmem_remount_fs,
3245 	.show_options	= shmem_show_options,
3246 #endif
3247 	.evict_inode	= shmem_evict_inode,
3248 	.drop_inode	= generic_delete_inode,
3249 	.put_super	= shmem_put_super,
3250 };
3251 
3252 static const struct vm_operations_struct shmem_vm_ops = {
3253 	.fault		= shmem_fault,
3254 	.map_pages	= filemap_map_pages,
3255 #ifdef CONFIG_NUMA
3256 	.set_policy     = shmem_set_policy,
3257 	.get_policy     = shmem_get_policy,
3258 #endif
3259 };
3260 
3261 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3262 	int flags, const char *dev_name, void *data)
3263 {
3264 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3265 }
3266 
3267 static struct file_system_type shmem_fs_type = {
3268 	.owner		= THIS_MODULE,
3269 	.name		= "tmpfs",
3270 	.mount		= shmem_mount,
3271 	.kill_sb	= kill_litter_super,
3272 	.fs_flags	= FS_USERNS_MOUNT,
3273 };
3274 
3275 int __init shmem_init(void)
3276 {
3277 	int error;
3278 
3279 	/* If rootfs called this, don't re-init */
3280 	if (shmem_inode_cachep)
3281 		return 0;
3282 
3283 	error = shmem_init_inodecache();
3284 	if (error)
3285 		goto out3;
3286 
3287 	error = register_filesystem(&shmem_fs_type);
3288 	if (error) {
3289 		printk(KERN_ERR "Could not register tmpfs\n");
3290 		goto out2;
3291 	}
3292 
3293 	shm_mnt = kern_mount(&shmem_fs_type);
3294 	if (IS_ERR(shm_mnt)) {
3295 		error = PTR_ERR(shm_mnt);
3296 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
3297 		goto out1;
3298 	}
3299 	return 0;
3300 
3301 out1:
3302 	unregister_filesystem(&shmem_fs_type);
3303 out2:
3304 	shmem_destroy_inodecache();
3305 out3:
3306 	shm_mnt = ERR_PTR(error);
3307 	return error;
3308 }
3309 
3310 #else /* !CONFIG_SHMEM */
3311 
3312 /*
3313  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3314  *
3315  * This is intended for small system where the benefits of the full
3316  * shmem code (swap-backed and resource-limited) are outweighed by
3317  * their complexity. On systems without swap this code should be
3318  * effectively equivalent, but much lighter weight.
3319  */
3320 
3321 static struct file_system_type shmem_fs_type = {
3322 	.name		= "tmpfs",
3323 	.mount		= ramfs_mount,
3324 	.kill_sb	= kill_litter_super,
3325 	.fs_flags	= FS_USERNS_MOUNT,
3326 };
3327 
3328 int __init shmem_init(void)
3329 {
3330 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3331 
3332 	shm_mnt = kern_mount(&shmem_fs_type);
3333 	BUG_ON(IS_ERR(shm_mnt));
3334 
3335 	return 0;
3336 }
3337 
3338 int shmem_unuse(swp_entry_t swap, struct page *page)
3339 {
3340 	return 0;
3341 }
3342 
3343 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3344 {
3345 	return 0;
3346 }
3347 
3348 void shmem_unlock_mapping(struct address_space *mapping)
3349 {
3350 }
3351 
3352 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3353 {
3354 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3355 }
3356 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3357 
3358 #define shmem_vm_ops				generic_file_vm_ops
3359 #define shmem_file_operations			ramfs_file_operations
3360 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3361 #define shmem_acct_size(flags, size)		0
3362 #define shmem_unacct_size(flags, size)		do {} while (0)
3363 
3364 #endif /* CONFIG_SHMEM */
3365 
3366 /* common code */
3367 
3368 static struct dentry_operations anon_ops = {
3369 	.d_dname = simple_dname
3370 };
3371 
3372 static struct file *__shmem_file_setup(const char *name, loff_t size,
3373 				       unsigned long flags, unsigned int i_flags)
3374 {
3375 	struct file *res;
3376 	struct inode *inode;
3377 	struct path path;
3378 	struct super_block *sb;
3379 	struct qstr this;
3380 
3381 	if (IS_ERR(shm_mnt))
3382 		return ERR_CAST(shm_mnt);
3383 
3384 	if (size < 0 || size > MAX_LFS_FILESIZE)
3385 		return ERR_PTR(-EINVAL);
3386 
3387 	if (shmem_acct_size(flags, size))
3388 		return ERR_PTR(-ENOMEM);
3389 
3390 	res = ERR_PTR(-ENOMEM);
3391 	this.name = name;
3392 	this.len = strlen(name);
3393 	this.hash = 0; /* will go */
3394 	sb = shm_mnt->mnt_sb;
3395 	path.mnt = mntget(shm_mnt);
3396 	path.dentry = d_alloc_pseudo(sb, &this);
3397 	if (!path.dentry)
3398 		goto put_memory;
3399 	d_set_d_op(path.dentry, &anon_ops);
3400 
3401 	res = ERR_PTR(-ENOSPC);
3402 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3403 	if (!inode)
3404 		goto put_memory;
3405 
3406 	inode->i_flags |= i_flags;
3407 	d_instantiate(path.dentry, inode);
3408 	inode->i_size = size;
3409 	clear_nlink(inode);	/* It is unlinked */
3410 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3411 	if (IS_ERR(res))
3412 		goto put_path;
3413 
3414 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3415 		  &shmem_file_operations);
3416 	if (IS_ERR(res))
3417 		goto put_path;
3418 
3419 	return res;
3420 
3421 put_memory:
3422 	shmem_unacct_size(flags, size);
3423 put_path:
3424 	path_put(&path);
3425 	return res;
3426 }
3427 
3428 /**
3429  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3430  * 	kernel internal.  There will be NO LSM permission checks against the
3431  * 	underlying inode.  So users of this interface must do LSM checks at a
3432  *	higher layer.  The users are the big_key and shm implementations.  LSM
3433  *	checks are provided at the key or shm level rather than the inode.
3434  * @name: name for dentry (to be seen in /proc/<pid>/maps
3435  * @size: size to be set for the file
3436  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3437  */
3438 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3439 {
3440 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
3441 }
3442 
3443 /**
3444  * shmem_file_setup - get an unlinked file living in tmpfs
3445  * @name: name for dentry (to be seen in /proc/<pid>/maps
3446  * @size: size to be set for the file
3447  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3448  */
3449 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3450 {
3451 	return __shmem_file_setup(name, size, flags, 0);
3452 }
3453 EXPORT_SYMBOL_GPL(shmem_file_setup);
3454 
3455 /**
3456  * shmem_zero_setup - setup a shared anonymous mapping
3457  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3458  */
3459 int shmem_zero_setup(struct vm_area_struct *vma)
3460 {
3461 	struct file *file;
3462 	loff_t size = vma->vm_end - vma->vm_start;
3463 
3464 	/*
3465 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3466 	 * between XFS directory reading and selinux: since this file is only
3467 	 * accessible to the user through its mapping, use S_PRIVATE flag to
3468 	 * bypass file security, in the same way as shmem_kernel_file_setup().
3469 	 */
3470 	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3471 	if (IS_ERR(file))
3472 		return PTR_ERR(file);
3473 
3474 	if (vma->vm_file)
3475 		fput(vma->vm_file);
3476 	vma->vm_file = file;
3477 	vma->vm_ops = &shmem_vm_ops;
3478 	return 0;
3479 }
3480 
3481 /**
3482  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3483  * @mapping:	the page's address_space
3484  * @index:	the page index
3485  * @gfp:	the page allocator flags to use if allocating
3486  *
3487  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3488  * with any new page allocations done using the specified allocation flags.
3489  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3490  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3491  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3492  *
3493  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3494  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3495  */
3496 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3497 					 pgoff_t index, gfp_t gfp)
3498 {
3499 #ifdef CONFIG_SHMEM
3500 	struct inode *inode = mapping->host;
3501 	struct page *page;
3502 	int error;
3503 
3504 	BUG_ON(mapping->a_ops != &shmem_aops);
3505 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3506 	if (error)
3507 		page = ERR_PTR(error);
3508 	else
3509 		unlock_page(page);
3510 	return page;
3511 #else
3512 	/*
3513 	 * The tiny !SHMEM case uses ramfs without swap
3514 	 */
3515 	return read_cache_page_gfp(mapping, index, gfp);
3516 #endif
3517 }
3518 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3519