1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/export.h> 33 #include <linux/swap.h> 34 #include <linux/uio.h> 35 36 static struct vfsmount *shm_mnt; 37 38 #ifdef CONFIG_SHMEM 39 /* 40 * This virtual memory filesystem is heavily based on the ramfs. It 41 * extends ramfs by the ability to use swap and honor resource limits 42 * which makes it a completely usable filesystem. 43 */ 44 45 #include <linux/xattr.h> 46 #include <linux/exportfs.h> 47 #include <linux/posix_acl.h> 48 #include <linux/posix_acl_xattr.h> 49 #include <linux/mman.h> 50 #include <linux/string.h> 51 #include <linux/slab.h> 52 #include <linux/backing-dev.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/writeback.h> 55 #include <linux/blkdev.h> 56 #include <linux/pagevec.h> 57 #include <linux/percpu_counter.h> 58 #include <linux/falloc.h> 59 #include <linux/splice.h> 60 #include <linux/security.h> 61 #include <linux/swapops.h> 62 #include <linux/mempolicy.h> 63 #include <linux/namei.h> 64 #include <linux/ctype.h> 65 #include <linux/migrate.h> 66 #include <linux/highmem.h> 67 #include <linux/seq_file.h> 68 #include <linux/magic.h> 69 #include <linux/syscalls.h> 70 #include <linux/fcntl.h> 71 #include <uapi/linux/memfd.h> 72 73 #include <asm/uaccess.h> 74 #include <asm/pgtable.h> 75 76 #include "internal.h" 77 78 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 79 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 80 81 /* Pretend that each entry is of this size in directory's i_size */ 82 #define BOGO_DIRENT_SIZE 20 83 84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 85 #define SHORT_SYMLINK_LEN 128 86 87 /* 88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 89 * inode->i_private (with i_mutex making sure that it has only one user at 90 * a time): we would prefer not to enlarge the shmem inode just for that. 91 */ 92 struct shmem_falloc { 93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 94 pgoff_t start; /* start of range currently being fallocated */ 95 pgoff_t next; /* the next page offset to be fallocated */ 96 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 98 }; 99 100 /* Flag allocation requirements to shmem_getpage */ 101 enum sgp_type { 102 SGP_READ, /* don't exceed i_size, don't allocate page */ 103 SGP_CACHE, /* don't exceed i_size, may allocate page */ 104 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 105 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */ 106 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */ 107 }; 108 109 #ifdef CONFIG_TMPFS 110 static unsigned long shmem_default_max_blocks(void) 111 { 112 return totalram_pages / 2; 113 } 114 115 static unsigned long shmem_default_max_inodes(void) 116 { 117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 118 } 119 #endif 120 121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 122 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 123 struct shmem_inode_info *info, pgoff_t index); 124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 125 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type); 126 127 static inline int shmem_getpage(struct inode *inode, pgoff_t index, 128 struct page **pagep, enum sgp_type sgp, int *fault_type) 129 { 130 return shmem_getpage_gfp(inode, index, pagep, sgp, 131 mapping_gfp_mask(inode->i_mapping), fault_type); 132 } 133 134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 135 { 136 return sb->s_fs_info; 137 } 138 139 /* 140 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 141 * for shared memory and for shared anonymous (/dev/zero) mappings 142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 143 * consistent with the pre-accounting of private mappings ... 144 */ 145 static inline int shmem_acct_size(unsigned long flags, loff_t size) 146 { 147 return (flags & VM_NORESERVE) ? 148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 149 } 150 151 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 152 { 153 if (!(flags & VM_NORESERVE)) 154 vm_unacct_memory(VM_ACCT(size)); 155 } 156 157 static inline int shmem_reacct_size(unsigned long flags, 158 loff_t oldsize, loff_t newsize) 159 { 160 if (!(flags & VM_NORESERVE)) { 161 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 162 return security_vm_enough_memory_mm(current->mm, 163 VM_ACCT(newsize) - VM_ACCT(oldsize)); 164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 166 } 167 return 0; 168 } 169 170 /* 171 * ... whereas tmpfs objects are accounted incrementally as 172 * pages are allocated, in order to allow huge sparse files. 173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 175 */ 176 static inline int shmem_acct_block(unsigned long flags) 177 { 178 return (flags & VM_NORESERVE) ? 179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0; 180 } 181 182 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 183 { 184 if (flags & VM_NORESERVE) 185 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 186 } 187 188 static const struct super_operations shmem_ops; 189 static const struct address_space_operations shmem_aops; 190 static const struct file_operations shmem_file_operations; 191 static const struct inode_operations shmem_inode_operations; 192 static const struct inode_operations shmem_dir_inode_operations; 193 static const struct inode_operations shmem_special_inode_operations; 194 static const struct vm_operations_struct shmem_vm_ops; 195 196 static LIST_HEAD(shmem_swaplist); 197 static DEFINE_MUTEX(shmem_swaplist_mutex); 198 199 static int shmem_reserve_inode(struct super_block *sb) 200 { 201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 202 if (sbinfo->max_inodes) { 203 spin_lock(&sbinfo->stat_lock); 204 if (!sbinfo->free_inodes) { 205 spin_unlock(&sbinfo->stat_lock); 206 return -ENOSPC; 207 } 208 sbinfo->free_inodes--; 209 spin_unlock(&sbinfo->stat_lock); 210 } 211 return 0; 212 } 213 214 static void shmem_free_inode(struct super_block *sb) 215 { 216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 217 if (sbinfo->max_inodes) { 218 spin_lock(&sbinfo->stat_lock); 219 sbinfo->free_inodes++; 220 spin_unlock(&sbinfo->stat_lock); 221 } 222 } 223 224 /** 225 * shmem_recalc_inode - recalculate the block usage of an inode 226 * @inode: inode to recalc 227 * 228 * We have to calculate the free blocks since the mm can drop 229 * undirtied hole pages behind our back. 230 * 231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 233 * 234 * It has to be called with the spinlock held. 235 */ 236 static void shmem_recalc_inode(struct inode *inode) 237 { 238 struct shmem_inode_info *info = SHMEM_I(inode); 239 long freed; 240 241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 242 if (freed > 0) { 243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 244 if (sbinfo->max_blocks) 245 percpu_counter_add(&sbinfo->used_blocks, -freed); 246 info->alloced -= freed; 247 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 248 shmem_unacct_blocks(info->flags, freed); 249 } 250 } 251 252 /* 253 * Replace item expected in radix tree by a new item, while holding tree lock. 254 */ 255 static int shmem_radix_tree_replace(struct address_space *mapping, 256 pgoff_t index, void *expected, void *replacement) 257 { 258 void **pslot; 259 void *item; 260 261 VM_BUG_ON(!expected); 262 VM_BUG_ON(!replacement); 263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 264 if (!pslot) 265 return -ENOENT; 266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock); 267 if (item != expected) 268 return -ENOENT; 269 radix_tree_replace_slot(pslot, replacement); 270 return 0; 271 } 272 273 /* 274 * Sometimes, before we decide whether to proceed or to fail, we must check 275 * that an entry was not already brought back from swap by a racing thread. 276 * 277 * Checking page is not enough: by the time a SwapCache page is locked, it 278 * might be reused, and again be SwapCache, using the same swap as before. 279 */ 280 static bool shmem_confirm_swap(struct address_space *mapping, 281 pgoff_t index, swp_entry_t swap) 282 { 283 void *item; 284 285 rcu_read_lock(); 286 item = radix_tree_lookup(&mapping->page_tree, index); 287 rcu_read_unlock(); 288 return item == swp_to_radix_entry(swap); 289 } 290 291 /* 292 * Like add_to_page_cache_locked, but error if expected item has gone. 293 */ 294 static int shmem_add_to_page_cache(struct page *page, 295 struct address_space *mapping, 296 pgoff_t index, void *expected) 297 { 298 int error; 299 300 VM_BUG_ON_PAGE(!PageLocked(page), page); 301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 302 303 page_cache_get(page); 304 page->mapping = mapping; 305 page->index = index; 306 307 spin_lock_irq(&mapping->tree_lock); 308 if (!expected) 309 error = radix_tree_insert(&mapping->page_tree, index, page); 310 else 311 error = shmem_radix_tree_replace(mapping, index, expected, 312 page); 313 if (!error) { 314 mapping->nrpages++; 315 __inc_zone_page_state(page, NR_FILE_PAGES); 316 __inc_zone_page_state(page, NR_SHMEM); 317 spin_unlock_irq(&mapping->tree_lock); 318 } else { 319 page->mapping = NULL; 320 spin_unlock_irq(&mapping->tree_lock); 321 page_cache_release(page); 322 } 323 return error; 324 } 325 326 /* 327 * Like delete_from_page_cache, but substitutes swap for page. 328 */ 329 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 330 { 331 struct address_space *mapping = page->mapping; 332 int error; 333 334 spin_lock_irq(&mapping->tree_lock); 335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 336 page->mapping = NULL; 337 mapping->nrpages--; 338 __dec_zone_page_state(page, NR_FILE_PAGES); 339 __dec_zone_page_state(page, NR_SHMEM); 340 spin_unlock_irq(&mapping->tree_lock); 341 page_cache_release(page); 342 BUG_ON(error); 343 } 344 345 /* 346 * Remove swap entry from radix tree, free the swap and its page cache. 347 */ 348 static int shmem_free_swap(struct address_space *mapping, 349 pgoff_t index, void *radswap) 350 { 351 void *old; 352 353 spin_lock_irq(&mapping->tree_lock); 354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 355 spin_unlock_irq(&mapping->tree_lock); 356 if (old != radswap) 357 return -ENOENT; 358 free_swap_and_cache(radix_to_swp_entry(radswap)); 359 return 0; 360 } 361 362 /* 363 * Determine (in bytes) how many of the shmem object's pages mapped by the 364 * given offsets are swapped out. 365 * 366 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 367 * as long as the inode doesn't go away and racy results are not a problem. 368 */ 369 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 370 pgoff_t start, pgoff_t end) 371 { 372 struct radix_tree_iter iter; 373 void **slot; 374 struct page *page; 375 unsigned long swapped = 0; 376 377 rcu_read_lock(); 378 379 restart: 380 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 381 if (iter.index >= end) 382 break; 383 384 page = radix_tree_deref_slot(slot); 385 386 /* 387 * This should only be possible to happen at index 0, so we 388 * don't need to reset the counter, nor do we risk infinite 389 * restarts. 390 */ 391 if (radix_tree_deref_retry(page)) 392 goto restart; 393 394 if (radix_tree_exceptional_entry(page)) 395 swapped++; 396 397 if (need_resched()) { 398 cond_resched_rcu(); 399 start = iter.index + 1; 400 goto restart; 401 } 402 } 403 404 rcu_read_unlock(); 405 406 return swapped << PAGE_SHIFT; 407 } 408 409 /* 410 * Determine (in bytes) how many of the shmem object's pages mapped by the 411 * given vma is swapped out. 412 * 413 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 414 * as long as the inode doesn't go away and racy results are not a problem. 415 */ 416 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 417 { 418 struct inode *inode = file_inode(vma->vm_file); 419 struct shmem_inode_info *info = SHMEM_I(inode); 420 struct address_space *mapping = inode->i_mapping; 421 unsigned long swapped; 422 423 /* Be careful as we don't hold info->lock */ 424 swapped = READ_ONCE(info->swapped); 425 426 /* 427 * The easier cases are when the shmem object has nothing in swap, or 428 * the vma maps it whole. Then we can simply use the stats that we 429 * already track. 430 */ 431 if (!swapped) 432 return 0; 433 434 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 435 return swapped << PAGE_SHIFT; 436 437 /* Here comes the more involved part */ 438 return shmem_partial_swap_usage(mapping, 439 linear_page_index(vma, vma->vm_start), 440 linear_page_index(vma, vma->vm_end)); 441 } 442 443 /* 444 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 445 */ 446 void shmem_unlock_mapping(struct address_space *mapping) 447 { 448 struct pagevec pvec; 449 pgoff_t indices[PAGEVEC_SIZE]; 450 pgoff_t index = 0; 451 452 pagevec_init(&pvec, 0); 453 /* 454 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 455 */ 456 while (!mapping_unevictable(mapping)) { 457 /* 458 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 459 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 460 */ 461 pvec.nr = find_get_entries(mapping, index, 462 PAGEVEC_SIZE, pvec.pages, indices); 463 if (!pvec.nr) 464 break; 465 index = indices[pvec.nr - 1] + 1; 466 pagevec_remove_exceptionals(&pvec); 467 check_move_unevictable_pages(pvec.pages, pvec.nr); 468 pagevec_release(&pvec); 469 cond_resched(); 470 } 471 } 472 473 /* 474 * Remove range of pages and swap entries from radix tree, and free them. 475 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 476 */ 477 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 478 bool unfalloc) 479 { 480 struct address_space *mapping = inode->i_mapping; 481 struct shmem_inode_info *info = SHMEM_I(inode); 482 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 483 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT; 484 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1); 485 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 486 struct pagevec pvec; 487 pgoff_t indices[PAGEVEC_SIZE]; 488 long nr_swaps_freed = 0; 489 pgoff_t index; 490 int i; 491 492 if (lend == -1) 493 end = -1; /* unsigned, so actually very big */ 494 495 pagevec_init(&pvec, 0); 496 index = start; 497 while (index < end) { 498 pvec.nr = find_get_entries(mapping, index, 499 min(end - index, (pgoff_t)PAGEVEC_SIZE), 500 pvec.pages, indices); 501 if (!pvec.nr) 502 break; 503 for (i = 0; i < pagevec_count(&pvec); i++) { 504 struct page *page = pvec.pages[i]; 505 506 index = indices[i]; 507 if (index >= end) 508 break; 509 510 if (radix_tree_exceptional_entry(page)) { 511 if (unfalloc) 512 continue; 513 nr_swaps_freed += !shmem_free_swap(mapping, 514 index, page); 515 continue; 516 } 517 518 if (!trylock_page(page)) 519 continue; 520 if (!unfalloc || !PageUptodate(page)) { 521 if (page->mapping == mapping) { 522 VM_BUG_ON_PAGE(PageWriteback(page), page); 523 truncate_inode_page(mapping, page); 524 } 525 } 526 unlock_page(page); 527 } 528 pagevec_remove_exceptionals(&pvec); 529 pagevec_release(&pvec); 530 cond_resched(); 531 index++; 532 } 533 534 if (partial_start) { 535 struct page *page = NULL; 536 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL); 537 if (page) { 538 unsigned int top = PAGE_CACHE_SIZE; 539 if (start > end) { 540 top = partial_end; 541 partial_end = 0; 542 } 543 zero_user_segment(page, partial_start, top); 544 set_page_dirty(page); 545 unlock_page(page); 546 page_cache_release(page); 547 } 548 } 549 if (partial_end) { 550 struct page *page = NULL; 551 shmem_getpage(inode, end, &page, SGP_READ, NULL); 552 if (page) { 553 zero_user_segment(page, 0, partial_end); 554 set_page_dirty(page); 555 unlock_page(page); 556 page_cache_release(page); 557 } 558 } 559 if (start >= end) 560 return; 561 562 index = start; 563 while (index < end) { 564 cond_resched(); 565 566 pvec.nr = find_get_entries(mapping, index, 567 min(end - index, (pgoff_t)PAGEVEC_SIZE), 568 pvec.pages, indices); 569 if (!pvec.nr) { 570 /* If all gone or hole-punch or unfalloc, we're done */ 571 if (index == start || end != -1) 572 break; 573 /* But if truncating, restart to make sure all gone */ 574 index = start; 575 continue; 576 } 577 for (i = 0; i < pagevec_count(&pvec); i++) { 578 struct page *page = pvec.pages[i]; 579 580 index = indices[i]; 581 if (index >= end) 582 break; 583 584 if (radix_tree_exceptional_entry(page)) { 585 if (unfalloc) 586 continue; 587 if (shmem_free_swap(mapping, index, page)) { 588 /* Swap was replaced by page: retry */ 589 index--; 590 break; 591 } 592 nr_swaps_freed++; 593 continue; 594 } 595 596 lock_page(page); 597 if (!unfalloc || !PageUptodate(page)) { 598 if (page->mapping == mapping) { 599 VM_BUG_ON_PAGE(PageWriteback(page), page); 600 truncate_inode_page(mapping, page); 601 } else { 602 /* Page was replaced by swap: retry */ 603 unlock_page(page); 604 index--; 605 break; 606 } 607 } 608 unlock_page(page); 609 } 610 pagevec_remove_exceptionals(&pvec); 611 pagevec_release(&pvec); 612 index++; 613 } 614 615 spin_lock(&info->lock); 616 info->swapped -= nr_swaps_freed; 617 shmem_recalc_inode(inode); 618 spin_unlock(&info->lock); 619 } 620 621 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 622 { 623 shmem_undo_range(inode, lstart, lend, false); 624 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 625 } 626 EXPORT_SYMBOL_GPL(shmem_truncate_range); 627 628 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry, 629 struct kstat *stat) 630 { 631 struct inode *inode = dentry->d_inode; 632 struct shmem_inode_info *info = SHMEM_I(inode); 633 634 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 635 spin_lock(&info->lock); 636 shmem_recalc_inode(inode); 637 spin_unlock(&info->lock); 638 } 639 generic_fillattr(inode, stat); 640 return 0; 641 } 642 643 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 644 { 645 struct inode *inode = d_inode(dentry); 646 struct shmem_inode_info *info = SHMEM_I(inode); 647 int error; 648 649 error = inode_change_ok(inode, attr); 650 if (error) 651 return error; 652 653 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 654 loff_t oldsize = inode->i_size; 655 loff_t newsize = attr->ia_size; 656 657 /* protected by i_mutex */ 658 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 659 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 660 return -EPERM; 661 662 if (newsize != oldsize) { 663 error = shmem_reacct_size(SHMEM_I(inode)->flags, 664 oldsize, newsize); 665 if (error) 666 return error; 667 i_size_write(inode, newsize); 668 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 669 } 670 if (newsize <= oldsize) { 671 loff_t holebegin = round_up(newsize, PAGE_SIZE); 672 if (oldsize > holebegin) 673 unmap_mapping_range(inode->i_mapping, 674 holebegin, 0, 1); 675 if (info->alloced) 676 shmem_truncate_range(inode, 677 newsize, (loff_t)-1); 678 /* unmap again to remove racily COWed private pages */ 679 if (oldsize > holebegin) 680 unmap_mapping_range(inode->i_mapping, 681 holebegin, 0, 1); 682 } 683 } 684 685 setattr_copy(inode, attr); 686 if (attr->ia_valid & ATTR_MODE) 687 error = posix_acl_chmod(inode, inode->i_mode); 688 return error; 689 } 690 691 static void shmem_evict_inode(struct inode *inode) 692 { 693 struct shmem_inode_info *info = SHMEM_I(inode); 694 695 if (inode->i_mapping->a_ops == &shmem_aops) { 696 shmem_unacct_size(info->flags, inode->i_size); 697 inode->i_size = 0; 698 shmem_truncate_range(inode, 0, (loff_t)-1); 699 if (!list_empty(&info->swaplist)) { 700 mutex_lock(&shmem_swaplist_mutex); 701 list_del_init(&info->swaplist); 702 mutex_unlock(&shmem_swaplist_mutex); 703 } 704 } 705 706 simple_xattrs_free(&info->xattrs); 707 WARN_ON(inode->i_blocks); 708 shmem_free_inode(inode->i_sb); 709 clear_inode(inode); 710 } 711 712 /* 713 * If swap found in inode, free it and move page from swapcache to filecache. 714 */ 715 static int shmem_unuse_inode(struct shmem_inode_info *info, 716 swp_entry_t swap, struct page **pagep) 717 { 718 struct address_space *mapping = info->vfs_inode.i_mapping; 719 void *radswap; 720 pgoff_t index; 721 gfp_t gfp; 722 int error = 0; 723 724 radswap = swp_to_radix_entry(swap); 725 index = radix_tree_locate_item(&mapping->page_tree, radswap); 726 if (index == -1) 727 return -EAGAIN; /* tell shmem_unuse we found nothing */ 728 729 /* 730 * Move _head_ to start search for next from here. 731 * But be careful: shmem_evict_inode checks list_empty without taking 732 * mutex, and there's an instant in list_move_tail when info->swaplist 733 * would appear empty, if it were the only one on shmem_swaplist. 734 */ 735 if (shmem_swaplist.next != &info->swaplist) 736 list_move_tail(&shmem_swaplist, &info->swaplist); 737 738 gfp = mapping_gfp_mask(mapping); 739 if (shmem_should_replace_page(*pagep, gfp)) { 740 mutex_unlock(&shmem_swaplist_mutex); 741 error = shmem_replace_page(pagep, gfp, info, index); 742 mutex_lock(&shmem_swaplist_mutex); 743 /* 744 * We needed to drop mutex to make that restrictive page 745 * allocation, but the inode might have been freed while we 746 * dropped it: although a racing shmem_evict_inode() cannot 747 * complete without emptying the radix_tree, our page lock 748 * on this swapcache page is not enough to prevent that - 749 * free_swap_and_cache() of our swap entry will only 750 * trylock_page(), removing swap from radix_tree whatever. 751 * 752 * We must not proceed to shmem_add_to_page_cache() if the 753 * inode has been freed, but of course we cannot rely on 754 * inode or mapping or info to check that. However, we can 755 * safely check if our swap entry is still in use (and here 756 * it can't have got reused for another page): if it's still 757 * in use, then the inode cannot have been freed yet, and we 758 * can safely proceed (if it's no longer in use, that tells 759 * nothing about the inode, but we don't need to unuse swap). 760 */ 761 if (!page_swapcount(*pagep)) 762 error = -ENOENT; 763 } 764 765 /* 766 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 767 * but also to hold up shmem_evict_inode(): so inode cannot be freed 768 * beneath us (pagelock doesn't help until the page is in pagecache). 769 */ 770 if (!error) 771 error = shmem_add_to_page_cache(*pagep, mapping, index, 772 radswap); 773 if (error != -ENOMEM) { 774 /* 775 * Truncation and eviction use free_swap_and_cache(), which 776 * only does trylock page: if we raced, best clean up here. 777 */ 778 delete_from_swap_cache(*pagep); 779 set_page_dirty(*pagep); 780 if (!error) { 781 spin_lock(&info->lock); 782 info->swapped--; 783 spin_unlock(&info->lock); 784 swap_free(swap); 785 } 786 } 787 return error; 788 } 789 790 /* 791 * Search through swapped inodes to find and replace swap by page. 792 */ 793 int shmem_unuse(swp_entry_t swap, struct page *page) 794 { 795 struct list_head *this, *next; 796 struct shmem_inode_info *info; 797 struct mem_cgroup *memcg; 798 int error = 0; 799 800 /* 801 * There's a faint possibility that swap page was replaced before 802 * caller locked it: caller will come back later with the right page. 803 */ 804 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 805 goto out; 806 807 /* 808 * Charge page using GFP_KERNEL while we can wait, before taking 809 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 810 * Charged back to the user (not to caller) when swap account is used. 811 */ 812 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg, 813 false); 814 if (error) 815 goto out; 816 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 817 error = -EAGAIN; 818 819 mutex_lock(&shmem_swaplist_mutex); 820 list_for_each_safe(this, next, &shmem_swaplist) { 821 info = list_entry(this, struct shmem_inode_info, swaplist); 822 if (info->swapped) 823 error = shmem_unuse_inode(info, swap, &page); 824 else 825 list_del_init(&info->swaplist); 826 cond_resched(); 827 if (error != -EAGAIN) 828 break; 829 /* found nothing in this: move on to search the next */ 830 } 831 mutex_unlock(&shmem_swaplist_mutex); 832 833 if (error) { 834 if (error != -ENOMEM) 835 error = 0; 836 mem_cgroup_cancel_charge(page, memcg, false); 837 } else 838 mem_cgroup_commit_charge(page, memcg, true, false); 839 out: 840 unlock_page(page); 841 page_cache_release(page); 842 return error; 843 } 844 845 /* 846 * Move the page from the page cache to the swap cache. 847 */ 848 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 849 { 850 struct shmem_inode_info *info; 851 struct address_space *mapping; 852 struct inode *inode; 853 swp_entry_t swap; 854 pgoff_t index; 855 856 BUG_ON(!PageLocked(page)); 857 mapping = page->mapping; 858 index = page->index; 859 inode = mapping->host; 860 info = SHMEM_I(inode); 861 if (info->flags & VM_LOCKED) 862 goto redirty; 863 if (!total_swap_pages) 864 goto redirty; 865 866 /* 867 * Our capabilities prevent regular writeback or sync from ever calling 868 * shmem_writepage; but a stacking filesystem might use ->writepage of 869 * its underlying filesystem, in which case tmpfs should write out to 870 * swap only in response to memory pressure, and not for the writeback 871 * threads or sync. 872 */ 873 if (!wbc->for_reclaim) { 874 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 875 goto redirty; 876 } 877 878 /* 879 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 880 * value into swapfile.c, the only way we can correctly account for a 881 * fallocated page arriving here is now to initialize it and write it. 882 * 883 * That's okay for a page already fallocated earlier, but if we have 884 * not yet completed the fallocation, then (a) we want to keep track 885 * of this page in case we have to undo it, and (b) it may not be a 886 * good idea to continue anyway, once we're pushing into swap. So 887 * reactivate the page, and let shmem_fallocate() quit when too many. 888 */ 889 if (!PageUptodate(page)) { 890 if (inode->i_private) { 891 struct shmem_falloc *shmem_falloc; 892 spin_lock(&inode->i_lock); 893 shmem_falloc = inode->i_private; 894 if (shmem_falloc && 895 !shmem_falloc->waitq && 896 index >= shmem_falloc->start && 897 index < shmem_falloc->next) 898 shmem_falloc->nr_unswapped++; 899 else 900 shmem_falloc = NULL; 901 spin_unlock(&inode->i_lock); 902 if (shmem_falloc) 903 goto redirty; 904 } 905 clear_highpage(page); 906 flush_dcache_page(page); 907 SetPageUptodate(page); 908 } 909 910 swap = get_swap_page(); 911 if (!swap.val) 912 goto redirty; 913 914 if (mem_cgroup_try_charge_swap(page, swap)) 915 goto free_swap; 916 917 /* 918 * Add inode to shmem_unuse()'s list of swapped-out inodes, 919 * if it's not already there. Do it now before the page is 920 * moved to swap cache, when its pagelock no longer protects 921 * the inode from eviction. But don't unlock the mutex until 922 * we've incremented swapped, because shmem_unuse_inode() will 923 * prune a !swapped inode from the swaplist under this mutex. 924 */ 925 mutex_lock(&shmem_swaplist_mutex); 926 if (list_empty(&info->swaplist)) 927 list_add_tail(&info->swaplist, &shmem_swaplist); 928 929 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 930 spin_lock(&info->lock); 931 shmem_recalc_inode(inode); 932 info->swapped++; 933 spin_unlock(&info->lock); 934 935 swap_shmem_alloc(swap); 936 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 937 938 mutex_unlock(&shmem_swaplist_mutex); 939 BUG_ON(page_mapped(page)); 940 swap_writepage(page, wbc); 941 return 0; 942 } 943 944 mutex_unlock(&shmem_swaplist_mutex); 945 free_swap: 946 swapcache_free(swap); 947 redirty: 948 set_page_dirty(page); 949 if (wbc->for_reclaim) 950 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 951 unlock_page(page); 952 return 0; 953 } 954 955 #ifdef CONFIG_NUMA 956 #ifdef CONFIG_TMPFS 957 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 958 { 959 char buffer[64]; 960 961 if (!mpol || mpol->mode == MPOL_DEFAULT) 962 return; /* show nothing */ 963 964 mpol_to_str(buffer, sizeof(buffer), mpol); 965 966 seq_printf(seq, ",mpol=%s", buffer); 967 } 968 969 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 970 { 971 struct mempolicy *mpol = NULL; 972 if (sbinfo->mpol) { 973 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 974 mpol = sbinfo->mpol; 975 mpol_get(mpol); 976 spin_unlock(&sbinfo->stat_lock); 977 } 978 return mpol; 979 } 980 #endif /* CONFIG_TMPFS */ 981 982 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 983 struct shmem_inode_info *info, pgoff_t index) 984 { 985 struct vm_area_struct pvma; 986 struct page *page; 987 988 /* Create a pseudo vma that just contains the policy */ 989 pvma.vm_start = 0; 990 /* Bias interleave by inode number to distribute better across nodes */ 991 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 992 pvma.vm_ops = NULL; 993 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 994 995 page = swapin_readahead(swap, gfp, &pvma, 0); 996 997 /* Drop reference taken by mpol_shared_policy_lookup() */ 998 mpol_cond_put(pvma.vm_policy); 999 1000 return page; 1001 } 1002 1003 static struct page *shmem_alloc_page(gfp_t gfp, 1004 struct shmem_inode_info *info, pgoff_t index) 1005 { 1006 struct vm_area_struct pvma; 1007 struct page *page; 1008 1009 /* Create a pseudo vma that just contains the policy */ 1010 pvma.vm_start = 0; 1011 /* Bias interleave by inode number to distribute better across nodes */ 1012 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 1013 pvma.vm_ops = NULL; 1014 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1015 1016 page = alloc_page_vma(gfp, &pvma, 0); 1017 1018 /* Drop reference taken by mpol_shared_policy_lookup() */ 1019 mpol_cond_put(pvma.vm_policy); 1020 1021 return page; 1022 } 1023 #else /* !CONFIG_NUMA */ 1024 #ifdef CONFIG_TMPFS 1025 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1026 { 1027 } 1028 #endif /* CONFIG_TMPFS */ 1029 1030 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1031 struct shmem_inode_info *info, pgoff_t index) 1032 { 1033 return swapin_readahead(swap, gfp, NULL, 0); 1034 } 1035 1036 static inline struct page *shmem_alloc_page(gfp_t gfp, 1037 struct shmem_inode_info *info, pgoff_t index) 1038 { 1039 return alloc_page(gfp); 1040 } 1041 #endif /* CONFIG_NUMA */ 1042 1043 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 1044 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1045 { 1046 return NULL; 1047 } 1048 #endif 1049 1050 /* 1051 * When a page is moved from swapcache to shmem filecache (either by the 1052 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1053 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1054 * ignorance of the mapping it belongs to. If that mapping has special 1055 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1056 * we may need to copy to a suitable page before moving to filecache. 1057 * 1058 * In a future release, this may well be extended to respect cpuset and 1059 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1060 * but for now it is a simple matter of zone. 1061 */ 1062 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1063 { 1064 return page_zonenum(page) > gfp_zone(gfp); 1065 } 1066 1067 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1068 struct shmem_inode_info *info, pgoff_t index) 1069 { 1070 struct page *oldpage, *newpage; 1071 struct address_space *swap_mapping; 1072 pgoff_t swap_index; 1073 int error; 1074 1075 oldpage = *pagep; 1076 swap_index = page_private(oldpage); 1077 swap_mapping = page_mapping(oldpage); 1078 1079 /* 1080 * We have arrived here because our zones are constrained, so don't 1081 * limit chance of success by further cpuset and node constraints. 1082 */ 1083 gfp &= ~GFP_CONSTRAINT_MASK; 1084 newpage = shmem_alloc_page(gfp, info, index); 1085 if (!newpage) 1086 return -ENOMEM; 1087 1088 page_cache_get(newpage); 1089 copy_highpage(newpage, oldpage); 1090 flush_dcache_page(newpage); 1091 1092 __SetPageLocked(newpage); 1093 SetPageUptodate(newpage); 1094 SetPageSwapBacked(newpage); 1095 set_page_private(newpage, swap_index); 1096 SetPageSwapCache(newpage); 1097 1098 /* 1099 * Our caller will very soon move newpage out of swapcache, but it's 1100 * a nice clean interface for us to replace oldpage by newpage there. 1101 */ 1102 spin_lock_irq(&swap_mapping->tree_lock); 1103 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1104 newpage); 1105 if (!error) { 1106 __inc_zone_page_state(newpage, NR_FILE_PAGES); 1107 __dec_zone_page_state(oldpage, NR_FILE_PAGES); 1108 } 1109 spin_unlock_irq(&swap_mapping->tree_lock); 1110 1111 if (unlikely(error)) { 1112 /* 1113 * Is this possible? I think not, now that our callers check 1114 * both PageSwapCache and page_private after getting page lock; 1115 * but be defensive. Reverse old to newpage for clear and free. 1116 */ 1117 oldpage = newpage; 1118 } else { 1119 mem_cgroup_replace_page(oldpage, newpage); 1120 lru_cache_add_anon(newpage); 1121 *pagep = newpage; 1122 } 1123 1124 ClearPageSwapCache(oldpage); 1125 set_page_private(oldpage, 0); 1126 1127 unlock_page(oldpage); 1128 page_cache_release(oldpage); 1129 page_cache_release(oldpage); 1130 return error; 1131 } 1132 1133 /* 1134 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1135 * 1136 * If we allocate a new one we do not mark it dirty. That's up to the 1137 * vm. If we swap it in we mark it dirty since we also free the swap 1138 * entry since a page cannot live in both the swap and page cache 1139 */ 1140 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1141 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type) 1142 { 1143 struct address_space *mapping = inode->i_mapping; 1144 struct shmem_inode_info *info; 1145 struct shmem_sb_info *sbinfo; 1146 struct mem_cgroup *memcg; 1147 struct page *page; 1148 swp_entry_t swap; 1149 int error; 1150 int once = 0; 1151 int alloced = 0; 1152 1153 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT)) 1154 return -EFBIG; 1155 repeat: 1156 swap.val = 0; 1157 page = find_lock_entry(mapping, index); 1158 if (radix_tree_exceptional_entry(page)) { 1159 swap = radix_to_swp_entry(page); 1160 page = NULL; 1161 } 1162 1163 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1164 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1165 error = -EINVAL; 1166 goto unlock; 1167 } 1168 1169 if (page && sgp == SGP_WRITE) 1170 mark_page_accessed(page); 1171 1172 /* fallocated page? */ 1173 if (page && !PageUptodate(page)) { 1174 if (sgp != SGP_READ) 1175 goto clear; 1176 unlock_page(page); 1177 page_cache_release(page); 1178 page = NULL; 1179 } 1180 if (page || (sgp == SGP_READ && !swap.val)) { 1181 *pagep = page; 1182 return 0; 1183 } 1184 1185 /* 1186 * Fast cache lookup did not find it: 1187 * bring it back from swap or allocate. 1188 */ 1189 info = SHMEM_I(inode); 1190 sbinfo = SHMEM_SB(inode->i_sb); 1191 1192 if (swap.val) { 1193 /* Look it up and read it in.. */ 1194 page = lookup_swap_cache(swap); 1195 if (!page) { 1196 /* here we actually do the io */ 1197 if (fault_type) 1198 *fault_type |= VM_FAULT_MAJOR; 1199 page = shmem_swapin(swap, gfp, info, index); 1200 if (!page) { 1201 error = -ENOMEM; 1202 goto failed; 1203 } 1204 } 1205 1206 /* We have to do this with page locked to prevent races */ 1207 lock_page(page); 1208 if (!PageSwapCache(page) || page_private(page) != swap.val || 1209 !shmem_confirm_swap(mapping, index, swap)) { 1210 error = -EEXIST; /* try again */ 1211 goto unlock; 1212 } 1213 if (!PageUptodate(page)) { 1214 error = -EIO; 1215 goto failed; 1216 } 1217 wait_on_page_writeback(page); 1218 1219 if (shmem_should_replace_page(page, gfp)) { 1220 error = shmem_replace_page(&page, gfp, info, index); 1221 if (error) 1222 goto failed; 1223 } 1224 1225 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg, 1226 false); 1227 if (!error) { 1228 error = shmem_add_to_page_cache(page, mapping, index, 1229 swp_to_radix_entry(swap)); 1230 /* 1231 * We already confirmed swap under page lock, and make 1232 * no memory allocation here, so usually no possibility 1233 * of error; but free_swap_and_cache() only trylocks a 1234 * page, so it is just possible that the entry has been 1235 * truncated or holepunched since swap was confirmed. 1236 * shmem_undo_range() will have done some of the 1237 * unaccounting, now delete_from_swap_cache() will do 1238 * the rest. 1239 * Reset swap.val? No, leave it so "failed" goes back to 1240 * "repeat": reading a hole and writing should succeed. 1241 */ 1242 if (error) { 1243 mem_cgroup_cancel_charge(page, memcg, false); 1244 delete_from_swap_cache(page); 1245 } 1246 } 1247 if (error) 1248 goto failed; 1249 1250 mem_cgroup_commit_charge(page, memcg, true, false); 1251 1252 spin_lock(&info->lock); 1253 info->swapped--; 1254 shmem_recalc_inode(inode); 1255 spin_unlock(&info->lock); 1256 1257 if (sgp == SGP_WRITE) 1258 mark_page_accessed(page); 1259 1260 delete_from_swap_cache(page); 1261 set_page_dirty(page); 1262 swap_free(swap); 1263 1264 } else { 1265 if (shmem_acct_block(info->flags)) { 1266 error = -ENOSPC; 1267 goto failed; 1268 } 1269 if (sbinfo->max_blocks) { 1270 if (percpu_counter_compare(&sbinfo->used_blocks, 1271 sbinfo->max_blocks) >= 0) { 1272 error = -ENOSPC; 1273 goto unacct; 1274 } 1275 percpu_counter_inc(&sbinfo->used_blocks); 1276 } 1277 1278 page = shmem_alloc_page(gfp, info, index); 1279 if (!page) { 1280 error = -ENOMEM; 1281 goto decused; 1282 } 1283 1284 __SetPageSwapBacked(page); 1285 __SetPageLocked(page); 1286 if (sgp == SGP_WRITE) 1287 __SetPageReferenced(page); 1288 1289 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg, 1290 false); 1291 if (error) 1292 goto decused; 1293 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 1294 if (!error) { 1295 error = shmem_add_to_page_cache(page, mapping, index, 1296 NULL); 1297 radix_tree_preload_end(); 1298 } 1299 if (error) { 1300 mem_cgroup_cancel_charge(page, memcg, false); 1301 goto decused; 1302 } 1303 mem_cgroup_commit_charge(page, memcg, false, false); 1304 lru_cache_add_anon(page); 1305 1306 spin_lock(&info->lock); 1307 info->alloced++; 1308 inode->i_blocks += BLOCKS_PER_PAGE; 1309 shmem_recalc_inode(inode); 1310 spin_unlock(&info->lock); 1311 alloced = true; 1312 1313 /* 1314 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1315 */ 1316 if (sgp == SGP_FALLOC) 1317 sgp = SGP_WRITE; 1318 clear: 1319 /* 1320 * Let SGP_WRITE caller clear ends if write does not fill page; 1321 * but SGP_FALLOC on a page fallocated earlier must initialize 1322 * it now, lest undo on failure cancel our earlier guarantee. 1323 */ 1324 if (sgp != SGP_WRITE) { 1325 clear_highpage(page); 1326 flush_dcache_page(page); 1327 SetPageUptodate(page); 1328 } 1329 if (sgp == SGP_DIRTY) 1330 set_page_dirty(page); 1331 } 1332 1333 /* Perhaps the file has been truncated since we checked */ 1334 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1335 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1336 if (alloced) { 1337 ClearPageDirty(page); 1338 delete_from_page_cache(page); 1339 spin_lock(&info->lock); 1340 shmem_recalc_inode(inode); 1341 spin_unlock(&info->lock); 1342 } 1343 error = -EINVAL; 1344 goto unlock; 1345 } 1346 *pagep = page; 1347 return 0; 1348 1349 /* 1350 * Error recovery. 1351 */ 1352 decused: 1353 if (sbinfo->max_blocks) 1354 percpu_counter_add(&sbinfo->used_blocks, -1); 1355 unacct: 1356 shmem_unacct_blocks(info->flags, 1); 1357 failed: 1358 if (swap.val && !shmem_confirm_swap(mapping, index, swap)) 1359 error = -EEXIST; 1360 unlock: 1361 if (page) { 1362 unlock_page(page); 1363 page_cache_release(page); 1364 } 1365 if (error == -ENOSPC && !once++) { 1366 info = SHMEM_I(inode); 1367 spin_lock(&info->lock); 1368 shmem_recalc_inode(inode); 1369 spin_unlock(&info->lock); 1370 goto repeat; 1371 } 1372 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1373 goto repeat; 1374 return error; 1375 } 1376 1377 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1378 { 1379 struct inode *inode = file_inode(vma->vm_file); 1380 int error; 1381 int ret = VM_FAULT_LOCKED; 1382 1383 /* 1384 * Trinity finds that probing a hole which tmpfs is punching can 1385 * prevent the hole-punch from ever completing: which in turn 1386 * locks writers out with its hold on i_mutex. So refrain from 1387 * faulting pages into the hole while it's being punched. Although 1388 * shmem_undo_range() does remove the additions, it may be unable to 1389 * keep up, as each new page needs its own unmap_mapping_range() call, 1390 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1391 * 1392 * It does not matter if we sometimes reach this check just before the 1393 * hole-punch begins, so that one fault then races with the punch: 1394 * we just need to make racing faults a rare case. 1395 * 1396 * The implementation below would be much simpler if we just used a 1397 * standard mutex or completion: but we cannot take i_mutex in fault, 1398 * and bloating every shmem inode for this unlikely case would be sad. 1399 */ 1400 if (unlikely(inode->i_private)) { 1401 struct shmem_falloc *shmem_falloc; 1402 1403 spin_lock(&inode->i_lock); 1404 shmem_falloc = inode->i_private; 1405 if (shmem_falloc && 1406 shmem_falloc->waitq && 1407 vmf->pgoff >= shmem_falloc->start && 1408 vmf->pgoff < shmem_falloc->next) { 1409 wait_queue_head_t *shmem_falloc_waitq; 1410 DEFINE_WAIT(shmem_fault_wait); 1411 1412 ret = VM_FAULT_NOPAGE; 1413 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1414 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1415 /* It's polite to up mmap_sem if we can */ 1416 up_read(&vma->vm_mm->mmap_sem); 1417 ret = VM_FAULT_RETRY; 1418 } 1419 1420 shmem_falloc_waitq = shmem_falloc->waitq; 1421 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1422 TASK_UNINTERRUPTIBLE); 1423 spin_unlock(&inode->i_lock); 1424 schedule(); 1425 1426 /* 1427 * shmem_falloc_waitq points into the shmem_fallocate() 1428 * stack of the hole-punching task: shmem_falloc_waitq 1429 * is usually invalid by the time we reach here, but 1430 * finish_wait() does not dereference it in that case; 1431 * though i_lock needed lest racing with wake_up_all(). 1432 */ 1433 spin_lock(&inode->i_lock); 1434 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1435 spin_unlock(&inode->i_lock); 1436 return ret; 1437 } 1438 spin_unlock(&inode->i_lock); 1439 } 1440 1441 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1442 if (error) 1443 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1444 1445 if (ret & VM_FAULT_MAJOR) { 1446 count_vm_event(PGMAJFAULT); 1447 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1448 } 1449 return ret; 1450 } 1451 1452 #ifdef CONFIG_NUMA 1453 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 1454 { 1455 struct inode *inode = file_inode(vma->vm_file); 1456 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 1457 } 1458 1459 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1460 unsigned long addr) 1461 { 1462 struct inode *inode = file_inode(vma->vm_file); 1463 pgoff_t index; 1464 1465 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1466 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 1467 } 1468 #endif 1469 1470 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1471 { 1472 struct inode *inode = file_inode(file); 1473 struct shmem_inode_info *info = SHMEM_I(inode); 1474 int retval = -ENOMEM; 1475 1476 spin_lock(&info->lock); 1477 if (lock && !(info->flags & VM_LOCKED)) { 1478 if (!user_shm_lock(inode->i_size, user)) 1479 goto out_nomem; 1480 info->flags |= VM_LOCKED; 1481 mapping_set_unevictable(file->f_mapping); 1482 } 1483 if (!lock && (info->flags & VM_LOCKED) && user) { 1484 user_shm_unlock(inode->i_size, user); 1485 info->flags &= ~VM_LOCKED; 1486 mapping_clear_unevictable(file->f_mapping); 1487 } 1488 retval = 0; 1489 1490 out_nomem: 1491 spin_unlock(&info->lock); 1492 return retval; 1493 } 1494 1495 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1496 { 1497 file_accessed(file); 1498 vma->vm_ops = &shmem_vm_ops; 1499 return 0; 1500 } 1501 1502 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 1503 umode_t mode, dev_t dev, unsigned long flags) 1504 { 1505 struct inode *inode; 1506 struct shmem_inode_info *info; 1507 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1508 1509 if (shmem_reserve_inode(sb)) 1510 return NULL; 1511 1512 inode = new_inode(sb); 1513 if (inode) { 1514 inode->i_ino = get_next_ino(); 1515 inode_init_owner(inode, dir, mode); 1516 inode->i_blocks = 0; 1517 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1518 inode->i_generation = get_seconds(); 1519 info = SHMEM_I(inode); 1520 memset(info, 0, (char *)inode - (char *)info); 1521 spin_lock_init(&info->lock); 1522 info->seals = F_SEAL_SEAL; 1523 info->flags = flags & VM_NORESERVE; 1524 INIT_LIST_HEAD(&info->swaplist); 1525 simple_xattrs_init(&info->xattrs); 1526 cache_no_acl(inode); 1527 1528 switch (mode & S_IFMT) { 1529 default: 1530 inode->i_op = &shmem_special_inode_operations; 1531 init_special_inode(inode, mode, dev); 1532 break; 1533 case S_IFREG: 1534 inode->i_mapping->a_ops = &shmem_aops; 1535 inode->i_op = &shmem_inode_operations; 1536 inode->i_fop = &shmem_file_operations; 1537 mpol_shared_policy_init(&info->policy, 1538 shmem_get_sbmpol(sbinfo)); 1539 break; 1540 case S_IFDIR: 1541 inc_nlink(inode); 1542 /* Some things misbehave if size == 0 on a directory */ 1543 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1544 inode->i_op = &shmem_dir_inode_operations; 1545 inode->i_fop = &simple_dir_operations; 1546 break; 1547 case S_IFLNK: 1548 /* 1549 * Must not load anything in the rbtree, 1550 * mpol_free_shared_policy will not be called. 1551 */ 1552 mpol_shared_policy_init(&info->policy, NULL); 1553 break; 1554 } 1555 } else 1556 shmem_free_inode(sb); 1557 return inode; 1558 } 1559 1560 bool shmem_mapping(struct address_space *mapping) 1561 { 1562 if (!mapping->host) 1563 return false; 1564 1565 return mapping->host->i_sb->s_op == &shmem_ops; 1566 } 1567 1568 #ifdef CONFIG_TMPFS 1569 static const struct inode_operations shmem_symlink_inode_operations; 1570 static const struct inode_operations shmem_short_symlink_operations; 1571 1572 #ifdef CONFIG_TMPFS_XATTR 1573 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 1574 #else 1575 #define shmem_initxattrs NULL 1576 #endif 1577 1578 static int 1579 shmem_write_begin(struct file *file, struct address_space *mapping, 1580 loff_t pos, unsigned len, unsigned flags, 1581 struct page **pagep, void **fsdata) 1582 { 1583 struct inode *inode = mapping->host; 1584 struct shmem_inode_info *info = SHMEM_I(inode); 1585 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1586 1587 /* i_mutex is held by caller */ 1588 if (unlikely(info->seals)) { 1589 if (info->seals & F_SEAL_WRITE) 1590 return -EPERM; 1591 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 1592 return -EPERM; 1593 } 1594 1595 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1596 } 1597 1598 static int 1599 shmem_write_end(struct file *file, struct address_space *mapping, 1600 loff_t pos, unsigned len, unsigned copied, 1601 struct page *page, void *fsdata) 1602 { 1603 struct inode *inode = mapping->host; 1604 1605 if (pos + copied > inode->i_size) 1606 i_size_write(inode, pos + copied); 1607 1608 if (!PageUptodate(page)) { 1609 if (copied < PAGE_CACHE_SIZE) { 1610 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1611 zero_user_segments(page, 0, from, 1612 from + copied, PAGE_CACHE_SIZE); 1613 } 1614 SetPageUptodate(page); 1615 } 1616 set_page_dirty(page); 1617 unlock_page(page); 1618 page_cache_release(page); 1619 1620 return copied; 1621 } 1622 1623 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1624 { 1625 struct file *file = iocb->ki_filp; 1626 struct inode *inode = file_inode(file); 1627 struct address_space *mapping = inode->i_mapping; 1628 pgoff_t index; 1629 unsigned long offset; 1630 enum sgp_type sgp = SGP_READ; 1631 int error = 0; 1632 ssize_t retval = 0; 1633 loff_t *ppos = &iocb->ki_pos; 1634 1635 /* 1636 * Might this read be for a stacking filesystem? Then when reading 1637 * holes of a sparse file, we actually need to allocate those pages, 1638 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1639 */ 1640 if (!iter_is_iovec(to)) 1641 sgp = SGP_DIRTY; 1642 1643 index = *ppos >> PAGE_CACHE_SHIFT; 1644 offset = *ppos & ~PAGE_CACHE_MASK; 1645 1646 for (;;) { 1647 struct page *page = NULL; 1648 pgoff_t end_index; 1649 unsigned long nr, ret; 1650 loff_t i_size = i_size_read(inode); 1651 1652 end_index = i_size >> PAGE_CACHE_SHIFT; 1653 if (index > end_index) 1654 break; 1655 if (index == end_index) { 1656 nr = i_size & ~PAGE_CACHE_MASK; 1657 if (nr <= offset) 1658 break; 1659 } 1660 1661 error = shmem_getpage(inode, index, &page, sgp, NULL); 1662 if (error) { 1663 if (error == -EINVAL) 1664 error = 0; 1665 break; 1666 } 1667 if (page) 1668 unlock_page(page); 1669 1670 /* 1671 * We must evaluate after, since reads (unlike writes) 1672 * are called without i_mutex protection against truncate 1673 */ 1674 nr = PAGE_CACHE_SIZE; 1675 i_size = i_size_read(inode); 1676 end_index = i_size >> PAGE_CACHE_SHIFT; 1677 if (index == end_index) { 1678 nr = i_size & ~PAGE_CACHE_MASK; 1679 if (nr <= offset) { 1680 if (page) 1681 page_cache_release(page); 1682 break; 1683 } 1684 } 1685 nr -= offset; 1686 1687 if (page) { 1688 /* 1689 * If users can be writing to this page using arbitrary 1690 * virtual addresses, take care about potential aliasing 1691 * before reading the page on the kernel side. 1692 */ 1693 if (mapping_writably_mapped(mapping)) 1694 flush_dcache_page(page); 1695 /* 1696 * Mark the page accessed if we read the beginning. 1697 */ 1698 if (!offset) 1699 mark_page_accessed(page); 1700 } else { 1701 page = ZERO_PAGE(0); 1702 page_cache_get(page); 1703 } 1704 1705 /* 1706 * Ok, we have the page, and it's up-to-date, so 1707 * now we can copy it to user space... 1708 */ 1709 ret = copy_page_to_iter(page, offset, nr, to); 1710 retval += ret; 1711 offset += ret; 1712 index += offset >> PAGE_CACHE_SHIFT; 1713 offset &= ~PAGE_CACHE_MASK; 1714 1715 page_cache_release(page); 1716 if (!iov_iter_count(to)) 1717 break; 1718 if (ret < nr) { 1719 error = -EFAULT; 1720 break; 1721 } 1722 cond_resched(); 1723 } 1724 1725 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1726 file_accessed(file); 1727 return retval ? retval : error; 1728 } 1729 1730 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 1731 struct pipe_inode_info *pipe, size_t len, 1732 unsigned int flags) 1733 { 1734 struct address_space *mapping = in->f_mapping; 1735 struct inode *inode = mapping->host; 1736 unsigned int loff, nr_pages, req_pages; 1737 struct page *pages[PIPE_DEF_BUFFERS]; 1738 struct partial_page partial[PIPE_DEF_BUFFERS]; 1739 struct page *page; 1740 pgoff_t index, end_index; 1741 loff_t isize, left; 1742 int error, page_nr; 1743 struct splice_pipe_desc spd = { 1744 .pages = pages, 1745 .partial = partial, 1746 .nr_pages_max = PIPE_DEF_BUFFERS, 1747 .flags = flags, 1748 .ops = &page_cache_pipe_buf_ops, 1749 .spd_release = spd_release_page, 1750 }; 1751 1752 isize = i_size_read(inode); 1753 if (unlikely(*ppos >= isize)) 1754 return 0; 1755 1756 left = isize - *ppos; 1757 if (unlikely(left < len)) 1758 len = left; 1759 1760 if (splice_grow_spd(pipe, &spd)) 1761 return -ENOMEM; 1762 1763 index = *ppos >> PAGE_CACHE_SHIFT; 1764 loff = *ppos & ~PAGE_CACHE_MASK; 1765 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1766 nr_pages = min(req_pages, spd.nr_pages_max); 1767 1768 spd.nr_pages = find_get_pages_contig(mapping, index, 1769 nr_pages, spd.pages); 1770 index += spd.nr_pages; 1771 error = 0; 1772 1773 while (spd.nr_pages < nr_pages) { 1774 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL); 1775 if (error) 1776 break; 1777 unlock_page(page); 1778 spd.pages[spd.nr_pages++] = page; 1779 index++; 1780 } 1781 1782 index = *ppos >> PAGE_CACHE_SHIFT; 1783 nr_pages = spd.nr_pages; 1784 spd.nr_pages = 0; 1785 1786 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 1787 unsigned int this_len; 1788 1789 if (!len) 1790 break; 1791 1792 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 1793 page = spd.pages[page_nr]; 1794 1795 if (!PageUptodate(page) || page->mapping != mapping) { 1796 error = shmem_getpage(inode, index, &page, 1797 SGP_CACHE, NULL); 1798 if (error) 1799 break; 1800 unlock_page(page); 1801 page_cache_release(spd.pages[page_nr]); 1802 spd.pages[page_nr] = page; 1803 } 1804 1805 isize = i_size_read(inode); 1806 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1807 if (unlikely(!isize || index > end_index)) 1808 break; 1809 1810 if (end_index == index) { 1811 unsigned int plen; 1812 1813 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1814 if (plen <= loff) 1815 break; 1816 1817 this_len = min(this_len, plen - loff); 1818 len = this_len; 1819 } 1820 1821 spd.partial[page_nr].offset = loff; 1822 spd.partial[page_nr].len = this_len; 1823 len -= this_len; 1824 loff = 0; 1825 spd.nr_pages++; 1826 index++; 1827 } 1828 1829 while (page_nr < nr_pages) 1830 page_cache_release(spd.pages[page_nr++]); 1831 1832 if (spd.nr_pages) 1833 error = splice_to_pipe(pipe, &spd); 1834 1835 splice_shrink_spd(&spd); 1836 1837 if (error > 0) { 1838 *ppos += error; 1839 file_accessed(in); 1840 } 1841 return error; 1842 } 1843 1844 /* 1845 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 1846 */ 1847 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 1848 pgoff_t index, pgoff_t end, int whence) 1849 { 1850 struct page *page; 1851 struct pagevec pvec; 1852 pgoff_t indices[PAGEVEC_SIZE]; 1853 bool done = false; 1854 int i; 1855 1856 pagevec_init(&pvec, 0); 1857 pvec.nr = 1; /* start small: we may be there already */ 1858 while (!done) { 1859 pvec.nr = find_get_entries(mapping, index, 1860 pvec.nr, pvec.pages, indices); 1861 if (!pvec.nr) { 1862 if (whence == SEEK_DATA) 1863 index = end; 1864 break; 1865 } 1866 for (i = 0; i < pvec.nr; i++, index++) { 1867 if (index < indices[i]) { 1868 if (whence == SEEK_HOLE) { 1869 done = true; 1870 break; 1871 } 1872 index = indices[i]; 1873 } 1874 page = pvec.pages[i]; 1875 if (page && !radix_tree_exceptional_entry(page)) { 1876 if (!PageUptodate(page)) 1877 page = NULL; 1878 } 1879 if (index >= end || 1880 (page && whence == SEEK_DATA) || 1881 (!page && whence == SEEK_HOLE)) { 1882 done = true; 1883 break; 1884 } 1885 } 1886 pagevec_remove_exceptionals(&pvec); 1887 pagevec_release(&pvec); 1888 pvec.nr = PAGEVEC_SIZE; 1889 cond_resched(); 1890 } 1891 return index; 1892 } 1893 1894 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 1895 { 1896 struct address_space *mapping = file->f_mapping; 1897 struct inode *inode = mapping->host; 1898 pgoff_t start, end; 1899 loff_t new_offset; 1900 1901 if (whence != SEEK_DATA && whence != SEEK_HOLE) 1902 return generic_file_llseek_size(file, offset, whence, 1903 MAX_LFS_FILESIZE, i_size_read(inode)); 1904 inode_lock(inode); 1905 /* We're holding i_mutex so we can access i_size directly */ 1906 1907 if (offset < 0) 1908 offset = -EINVAL; 1909 else if (offset >= inode->i_size) 1910 offset = -ENXIO; 1911 else { 1912 start = offset >> PAGE_CACHE_SHIFT; 1913 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1914 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 1915 new_offset <<= PAGE_CACHE_SHIFT; 1916 if (new_offset > offset) { 1917 if (new_offset < inode->i_size) 1918 offset = new_offset; 1919 else if (whence == SEEK_DATA) 1920 offset = -ENXIO; 1921 else 1922 offset = inode->i_size; 1923 } 1924 } 1925 1926 if (offset >= 0) 1927 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 1928 inode_unlock(inode); 1929 return offset; 1930 } 1931 1932 /* 1933 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, 1934 * so reuse a tag which we firmly believe is never set or cleared on shmem. 1935 */ 1936 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE 1937 #define LAST_SCAN 4 /* about 150ms max */ 1938 1939 static void shmem_tag_pins(struct address_space *mapping) 1940 { 1941 struct radix_tree_iter iter; 1942 void **slot; 1943 pgoff_t start; 1944 struct page *page; 1945 1946 lru_add_drain(); 1947 start = 0; 1948 rcu_read_lock(); 1949 1950 restart: 1951 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1952 page = radix_tree_deref_slot(slot); 1953 if (!page || radix_tree_exception(page)) { 1954 if (radix_tree_deref_retry(page)) 1955 goto restart; 1956 } else if (page_count(page) - page_mapcount(page) > 1) { 1957 spin_lock_irq(&mapping->tree_lock); 1958 radix_tree_tag_set(&mapping->page_tree, iter.index, 1959 SHMEM_TAG_PINNED); 1960 spin_unlock_irq(&mapping->tree_lock); 1961 } 1962 1963 if (need_resched()) { 1964 cond_resched_rcu(); 1965 start = iter.index + 1; 1966 goto restart; 1967 } 1968 } 1969 rcu_read_unlock(); 1970 } 1971 1972 /* 1973 * Setting SEAL_WRITE requires us to verify there's no pending writer. However, 1974 * via get_user_pages(), drivers might have some pending I/O without any active 1975 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages 1976 * and see whether it has an elevated ref-count. If so, we tag them and wait for 1977 * them to be dropped. 1978 * The caller must guarantee that no new user will acquire writable references 1979 * to those pages to avoid races. 1980 */ 1981 static int shmem_wait_for_pins(struct address_space *mapping) 1982 { 1983 struct radix_tree_iter iter; 1984 void **slot; 1985 pgoff_t start; 1986 struct page *page; 1987 int error, scan; 1988 1989 shmem_tag_pins(mapping); 1990 1991 error = 0; 1992 for (scan = 0; scan <= LAST_SCAN; scan++) { 1993 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) 1994 break; 1995 1996 if (!scan) 1997 lru_add_drain_all(); 1998 else if (schedule_timeout_killable((HZ << scan) / 200)) 1999 scan = LAST_SCAN; 2000 2001 start = 0; 2002 rcu_read_lock(); 2003 restart: 2004 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 2005 start, SHMEM_TAG_PINNED) { 2006 2007 page = radix_tree_deref_slot(slot); 2008 if (radix_tree_exception(page)) { 2009 if (radix_tree_deref_retry(page)) 2010 goto restart; 2011 2012 page = NULL; 2013 } 2014 2015 if (page && 2016 page_count(page) - page_mapcount(page) != 1) { 2017 if (scan < LAST_SCAN) 2018 goto continue_resched; 2019 2020 /* 2021 * On the last scan, we clean up all those tags 2022 * we inserted; but make a note that we still 2023 * found pages pinned. 2024 */ 2025 error = -EBUSY; 2026 } 2027 2028 spin_lock_irq(&mapping->tree_lock); 2029 radix_tree_tag_clear(&mapping->page_tree, 2030 iter.index, SHMEM_TAG_PINNED); 2031 spin_unlock_irq(&mapping->tree_lock); 2032 continue_resched: 2033 if (need_resched()) { 2034 cond_resched_rcu(); 2035 start = iter.index + 1; 2036 goto restart; 2037 } 2038 } 2039 rcu_read_unlock(); 2040 } 2041 2042 return error; 2043 } 2044 2045 #define F_ALL_SEALS (F_SEAL_SEAL | \ 2046 F_SEAL_SHRINK | \ 2047 F_SEAL_GROW | \ 2048 F_SEAL_WRITE) 2049 2050 int shmem_add_seals(struct file *file, unsigned int seals) 2051 { 2052 struct inode *inode = file_inode(file); 2053 struct shmem_inode_info *info = SHMEM_I(inode); 2054 int error; 2055 2056 /* 2057 * SEALING 2058 * Sealing allows multiple parties to share a shmem-file but restrict 2059 * access to a specific subset of file operations. Seals can only be 2060 * added, but never removed. This way, mutually untrusted parties can 2061 * share common memory regions with a well-defined policy. A malicious 2062 * peer can thus never perform unwanted operations on a shared object. 2063 * 2064 * Seals are only supported on special shmem-files and always affect 2065 * the whole underlying inode. Once a seal is set, it may prevent some 2066 * kinds of access to the file. Currently, the following seals are 2067 * defined: 2068 * SEAL_SEAL: Prevent further seals from being set on this file 2069 * SEAL_SHRINK: Prevent the file from shrinking 2070 * SEAL_GROW: Prevent the file from growing 2071 * SEAL_WRITE: Prevent write access to the file 2072 * 2073 * As we don't require any trust relationship between two parties, we 2074 * must prevent seals from being removed. Therefore, sealing a file 2075 * only adds a given set of seals to the file, it never touches 2076 * existing seals. Furthermore, the "setting seals"-operation can be 2077 * sealed itself, which basically prevents any further seal from being 2078 * added. 2079 * 2080 * Semantics of sealing are only defined on volatile files. Only 2081 * anonymous shmem files support sealing. More importantly, seals are 2082 * never written to disk. Therefore, there's no plan to support it on 2083 * other file types. 2084 */ 2085 2086 if (file->f_op != &shmem_file_operations) 2087 return -EINVAL; 2088 if (!(file->f_mode & FMODE_WRITE)) 2089 return -EPERM; 2090 if (seals & ~(unsigned int)F_ALL_SEALS) 2091 return -EINVAL; 2092 2093 inode_lock(inode); 2094 2095 if (info->seals & F_SEAL_SEAL) { 2096 error = -EPERM; 2097 goto unlock; 2098 } 2099 2100 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) { 2101 error = mapping_deny_writable(file->f_mapping); 2102 if (error) 2103 goto unlock; 2104 2105 error = shmem_wait_for_pins(file->f_mapping); 2106 if (error) { 2107 mapping_allow_writable(file->f_mapping); 2108 goto unlock; 2109 } 2110 } 2111 2112 info->seals |= seals; 2113 error = 0; 2114 2115 unlock: 2116 inode_unlock(inode); 2117 return error; 2118 } 2119 EXPORT_SYMBOL_GPL(shmem_add_seals); 2120 2121 int shmem_get_seals(struct file *file) 2122 { 2123 if (file->f_op != &shmem_file_operations) 2124 return -EINVAL; 2125 2126 return SHMEM_I(file_inode(file))->seals; 2127 } 2128 EXPORT_SYMBOL_GPL(shmem_get_seals); 2129 2130 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2131 { 2132 long error; 2133 2134 switch (cmd) { 2135 case F_ADD_SEALS: 2136 /* disallow upper 32bit */ 2137 if (arg > UINT_MAX) 2138 return -EINVAL; 2139 2140 error = shmem_add_seals(file, arg); 2141 break; 2142 case F_GET_SEALS: 2143 error = shmem_get_seals(file); 2144 break; 2145 default: 2146 error = -EINVAL; 2147 break; 2148 } 2149 2150 return error; 2151 } 2152 2153 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2154 loff_t len) 2155 { 2156 struct inode *inode = file_inode(file); 2157 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2158 struct shmem_inode_info *info = SHMEM_I(inode); 2159 struct shmem_falloc shmem_falloc; 2160 pgoff_t start, index, end; 2161 int error; 2162 2163 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2164 return -EOPNOTSUPP; 2165 2166 inode_lock(inode); 2167 2168 if (mode & FALLOC_FL_PUNCH_HOLE) { 2169 struct address_space *mapping = file->f_mapping; 2170 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2171 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2172 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2173 2174 /* protected by i_mutex */ 2175 if (info->seals & F_SEAL_WRITE) { 2176 error = -EPERM; 2177 goto out; 2178 } 2179 2180 shmem_falloc.waitq = &shmem_falloc_waitq; 2181 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2182 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2183 spin_lock(&inode->i_lock); 2184 inode->i_private = &shmem_falloc; 2185 spin_unlock(&inode->i_lock); 2186 2187 if ((u64)unmap_end > (u64)unmap_start) 2188 unmap_mapping_range(mapping, unmap_start, 2189 1 + unmap_end - unmap_start, 0); 2190 shmem_truncate_range(inode, offset, offset + len - 1); 2191 /* No need to unmap again: hole-punching leaves COWed pages */ 2192 2193 spin_lock(&inode->i_lock); 2194 inode->i_private = NULL; 2195 wake_up_all(&shmem_falloc_waitq); 2196 spin_unlock(&inode->i_lock); 2197 error = 0; 2198 goto out; 2199 } 2200 2201 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2202 error = inode_newsize_ok(inode, offset + len); 2203 if (error) 2204 goto out; 2205 2206 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2207 error = -EPERM; 2208 goto out; 2209 } 2210 2211 start = offset >> PAGE_CACHE_SHIFT; 2212 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 2213 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2214 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2215 error = -ENOSPC; 2216 goto out; 2217 } 2218 2219 shmem_falloc.waitq = NULL; 2220 shmem_falloc.start = start; 2221 shmem_falloc.next = start; 2222 shmem_falloc.nr_falloced = 0; 2223 shmem_falloc.nr_unswapped = 0; 2224 spin_lock(&inode->i_lock); 2225 inode->i_private = &shmem_falloc; 2226 spin_unlock(&inode->i_lock); 2227 2228 for (index = start; index < end; index++) { 2229 struct page *page; 2230 2231 /* 2232 * Good, the fallocate(2) manpage permits EINTR: we may have 2233 * been interrupted because we are using up too much memory. 2234 */ 2235 if (signal_pending(current)) 2236 error = -EINTR; 2237 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2238 error = -ENOMEM; 2239 else 2240 error = shmem_getpage(inode, index, &page, SGP_FALLOC, 2241 NULL); 2242 if (error) { 2243 /* Remove the !PageUptodate pages we added */ 2244 shmem_undo_range(inode, 2245 (loff_t)start << PAGE_CACHE_SHIFT, 2246 (loff_t)index << PAGE_CACHE_SHIFT, true); 2247 goto undone; 2248 } 2249 2250 /* 2251 * Inform shmem_writepage() how far we have reached. 2252 * No need for lock or barrier: we have the page lock. 2253 */ 2254 shmem_falloc.next++; 2255 if (!PageUptodate(page)) 2256 shmem_falloc.nr_falloced++; 2257 2258 /* 2259 * If !PageUptodate, leave it that way so that freeable pages 2260 * can be recognized if we need to rollback on error later. 2261 * But set_page_dirty so that memory pressure will swap rather 2262 * than free the pages we are allocating (and SGP_CACHE pages 2263 * might still be clean: we now need to mark those dirty too). 2264 */ 2265 set_page_dirty(page); 2266 unlock_page(page); 2267 page_cache_release(page); 2268 cond_resched(); 2269 } 2270 2271 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2272 i_size_write(inode, offset + len); 2273 inode->i_ctime = CURRENT_TIME; 2274 undone: 2275 spin_lock(&inode->i_lock); 2276 inode->i_private = NULL; 2277 spin_unlock(&inode->i_lock); 2278 out: 2279 inode_unlock(inode); 2280 return error; 2281 } 2282 2283 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2284 { 2285 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2286 2287 buf->f_type = TMPFS_MAGIC; 2288 buf->f_bsize = PAGE_CACHE_SIZE; 2289 buf->f_namelen = NAME_MAX; 2290 if (sbinfo->max_blocks) { 2291 buf->f_blocks = sbinfo->max_blocks; 2292 buf->f_bavail = 2293 buf->f_bfree = sbinfo->max_blocks - 2294 percpu_counter_sum(&sbinfo->used_blocks); 2295 } 2296 if (sbinfo->max_inodes) { 2297 buf->f_files = sbinfo->max_inodes; 2298 buf->f_ffree = sbinfo->free_inodes; 2299 } 2300 /* else leave those fields 0 like simple_statfs */ 2301 return 0; 2302 } 2303 2304 /* 2305 * File creation. Allocate an inode, and we're done.. 2306 */ 2307 static int 2308 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2309 { 2310 struct inode *inode; 2311 int error = -ENOSPC; 2312 2313 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2314 if (inode) { 2315 error = simple_acl_create(dir, inode); 2316 if (error) 2317 goto out_iput; 2318 error = security_inode_init_security(inode, dir, 2319 &dentry->d_name, 2320 shmem_initxattrs, NULL); 2321 if (error && error != -EOPNOTSUPP) 2322 goto out_iput; 2323 2324 error = 0; 2325 dir->i_size += BOGO_DIRENT_SIZE; 2326 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2327 d_instantiate(dentry, inode); 2328 dget(dentry); /* Extra count - pin the dentry in core */ 2329 } 2330 return error; 2331 out_iput: 2332 iput(inode); 2333 return error; 2334 } 2335 2336 static int 2337 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2338 { 2339 struct inode *inode; 2340 int error = -ENOSPC; 2341 2342 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2343 if (inode) { 2344 error = security_inode_init_security(inode, dir, 2345 NULL, 2346 shmem_initxattrs, NULL); 2347 if (error && error != -EOPNOTSUPP) 2348 goto out_iput; 2349 error = simple_acl_create(dir, inode); 2350 if (error) 2351 goto out_iput; 2352 d_tmpfile(dentry, inode); 2353 } 2354 return error; 2355 out_iput: 2356 iput(inode); 2357 return error; 2358 } 2359 2360 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2361 { 2362 int error; 2363 2364 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2365 return error; 2366 inc_nlink(dir); 2367 return 0; 2368 } 2369 2370 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2371 bool excl) 2372 { 2373 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2374 } 2375 2376 /* 2377 * Link a file.. 2378 */ 2379 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2380 { 2381 struct inode *inode = d_inode(old_dentry); 2382 int ret; 2383 2384 /* 2385 * No ordinary (disk based) filesystem counts links as inodes; 2386 * but each new link needs a new dentry, pinning lowmem, and 2387 * tmpfs dentries cannot be pruned until they are unlinked. 2388 */ 2389 ret = shmem_reserve_inode(inode->i_sb); 2390 if (ret) 2391 goto out; 2392 2393 dir->i_size += BOGO_DIRENT_SIZE; 2394 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2395 inc_nlink(inode); 2396 ihold(inode); /* New dentry reference */ 2397 dget(dentry); /* Extra pinning count for the created dentry */ 2398 d_instantiate(dentry, inode); 2399 out: 2400 return ret; 2401 } 2402 2403 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2404 { 2405 struct inode *inode = d_inode(dentry); 2406 2407 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2408 shmem_free_inode(inode->i_sb); 2409 2410 dir->i_size -= BOGO_DIRENT_SIZE; 2411 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2412 drop_nlink(inode); 2413 dput(dentry); /* Undo the count from "create" - this does all the work */ 2414 return 0; 2415 } 2416 2417 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2418 { 2419 if (!simple_empty(dentry)) 2420 return -ENOTEMPTY; 2421 2422 drop_nlink(d_inode(dentry)); 2423 drop_nlink(dir); 2424 return shmem_unlink(dir, dentry); 2425 } 2426 2427 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2428 { 2429 bool old_is_dir = d_is_dir(old_dentry); 2430 bool new_is_dir = d_is_dir(new_dentry); 2431 2432 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2433 if (old_is_dir) { 2434 drop_nlink(old_dir); 2435 inc_nlink(new_dir); 2436 } else { 2437 drop_nlink(new_dir); 2438 inc_nlink(old_dir); 2439 } 2440 } 2441 old_dir->i_ctime = old_dir->i_mtime = 2442 new_dir->i_ctime = new_dir->i_mtime = 2443 d_inode(old_dentry)->i_ctime = 2444 d_inode(new_dentry)->i_ctime = CURRENT_TIME; 2445 2446 return 0; 2447 } 2448 2449 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 2450 { 2451 struct dentry *whiteout; 2452 int error; 2453 2454 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2455 if (!whiteout) 2456 return -ENOMEM; 2457 2458 error = shmem_mknod(old_dir, whiteout, 2459 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2460 dput(whiteout); 2461 if (error) 2462 return error; 2463 2464 /* 2465 * Cheat and hash the whiteout while the old dentry is still in 2466 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2467 * 2468 * d_lookup() will consistently find one of them at this point, 2469 * not sure which one, but that isn't even important. 2470 */ 2471 d_rehash(whiteout); 2472 return 0; 2473 } 2474 2475 /* 2476 * The VFS layer already does all the dentry stuff for rename, 2477 * we just have to decrement the usage count for the target if 2478 * it exists so that the VFS layer correctly free's it when it 2479 * gets overwritten. 2480 */ 2481 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 2482 { 2483 struct inode *inode = d_inode(old_dentry); 2484 int they_are_dirs = S_ISDIR(inode->i_mode); 2485 2486 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 2487 return -EINVAL; 2488 2489 if (flags & RENAME_EXCHANGE) 2490 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 2491 2492 if (!simple_empty(new_dentry)) 2493 return -ENOTEMPTY; 2494 2495 if (flags & RENAME_WHITEOUT) { 2496 int error; 2497 2498 error = shmem_whiteout(old_dir, old_dentry); 2499 if (error) 2500 return error; 2501 } 2502 2503 if (d_really_is_positive(new_dentry)) { 2504 (void) shmem_unlink(new_dir, new_dentry); 2505 if (they_are_dirs) { 2506 drop_nlink(d_inode(new_dentry)); 2507 drop_nlink(old_dir); 2508 } 2509 } else if (they_are_dirs) { 2510 drop_nlink(old_dir); 2511 inc_nlink(new_dir); 2512 } 2513 2514 old_dir->i_size -= BOGO_DIRENT_SIZE; 2515 new_dir->i_size += BOGO_DIRENT_SIZE; 2516 old_dir->i_ctime = old_dir->i_mtime = 2517 new_dir->i_ctime = new_dir->i_mtime = 2518 inode->i_ctime = CURRENT_TIME; 2519 return 0; 2520 } 2521 2522 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2523 { 2524 int error; 2525 int len; 2526 struct inode *inode; 2527 struct page *page; 2528 struct shmem_inode_info *info; 2529 2530 len = strlen(symname) + 1; 2531 if (len > PAGE_CACHE_SIZE) 2532 return -ENAMETOOLONG; 2533 2534 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 2535 if (!inode) 2536 return -ENOSPC; 2537 2538 error = security_inode_init_security(inode, dir, &dentry->d_name, 2539 shmem_initxattrs, NULL); 2540 if (error) { 2541 if (error != -EOPNOTSUPP) { 2542 iput(inode); 2543 return error; 2544 } 2545 error = 0; 2546 } 2547 2548 info = SHMEM_I(inode); 2549 inode->i_size = len-1; 2550 if (len <= SHORT_SYMLINK_LEN) { 2551 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 2552 if (!inode->i_link) { 2553 iput(inode); 2554 return -ENOMEM; 2555 } 2556 inode->i_op = &shmem_short_symlink_operations; 2557 } else { 2558 inode_nohighmem(inode); 2559 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 2560 if (error) { 2561 iput(inode); 2562 return error; 2563 } 2564 inode->i_mapping->a_ops = &shmem_aops; 2565 inode->i_op = &shmem_symlink_inode_operations; 2566 memcpy(page_address(page), symname, len); 2567 SetPageUptodate(page); 2568 set_page_dirty(page); 2569 unlock_page(page); 2570 page_cache_release(page); 2571 } 2572 dir->i_size += BOGO_DIRENT_SIZE; 2573 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2574 d_instantiate(dentry, inode); 2575 dget(dentry); 2576 return 0; 2577 } 2578 2579 static void shmem_put_link(void *arg) 2580 { 2581 mark_page_accessed(arg); 2582 put_page(arg); 2583 } 2584 2585 static const char *shmem_get_link(struct dentry *dentry, 2586 struct inode *inode, 2587 struct delayed_call *done) 2588 { 2589 struct page *page = NULL; 2590 int error; 2591 if (!dentry) { 2592 page = find_get_page(inode->i_mapping, 0); 2593 if (!page) 2594 return ERR_PTR(-ECHILD); 2595 if (!PageUptodate(page)) { 2596 put_page(page); 2597 return ERR_PTR(-ECHILD); 2598 } 2599 } else { 2600 error = shmem_getpage(inode, 0, &page, SGP_READ, NULL); 2601 if (error) 2602 return ERR_PTR(error); 2603 unlock_page(page); 2604 } 2605 set_delayed_call(done, shmem_put_link, page); 2606 return page_address(page); 2607 } 2608 2609 #ifdef CONFIG_TMPFS_XATTR 2610 /* 2611 * Superblocks without xattr inode operations may get some security.* xattr 2612 * support from the LSM "for free". As soon as we have any other xattrs 2613 * like ACLs, we also need to implement the security.* handlers at 2614 * filesystem level, though. 2615 */ 2616 2617 /* 2618 * Callback for security_inode_init_security() for acquiring xattrs. 2619 */ 2620 static int shmem_initxattrs(struct inode *inode, 2621 const struct xattr *xattr_array, 2622 void *fs_info) 2623 { 2624 struct shmem_inode_info *info = SHMEM_I(inode); 2625 const struct xattr *xattr; 2626 struct simple_xattr *new_xattr; 2627 size_t len; 2628 2629 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 2630 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 2631 if (!new_xattr) 2632 return -ENOMEM; 2633 2634 len = strlen(xattr->name) + 1; 2635 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 2636 GFP_KERNEL); 2637 if (!new_xattr->name) { 2638 kfree(new_xattr); 2639 return -ENOMEM; 2640 } 2641 2642 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 2643 XATTR_SECURITY_PREFIX_LEN); 2644 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 2645 xattr->name, len); 2646 2647 simple_xattr_list_add(&info->xattrs, new_xattr); 2648 } 2649 2650 return 0; 2651 } 2652 2653 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 2654 struct dentry *dentry, const char *name, 2655 void *buffer, size_t size) 2656 { 2657 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2658 2659 name = xattr_full_name(handler, name); 2660 return simple_xattr_get(&info->xattrs, name, buffer, size); 2661 } 2662 2663 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 2664 struct dentry *dentry, const char *name, 2665 const void *value, size_t size, int flags) 2666 { 2667 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2668 2669 name = xattr_full_name(handler, name); 2670 return simple_xattr_set(&info->xattrs, name, value, size, flags); 2671 } 2672 2673 static const struct xattr_handler shmem_security_xattr_handler = { 2674 .prefix = XATTR_SECURITY_PREFIX, 2675 .get = shmem_xattr_handler_get, 2676 .set = shmem_xattr_handler_set, 2677 }; 2678 2679 static const struct xattr_handler shmem_trusted_xattr_handler = { 2680 .prefix = XATTR_TRUSTED_PREFIX, 2681 .get = shmem_xattr_handler_get, 2682 .set = shmem_xattr_handler_set, 2683 }; 2684 2685 static const struct xattr_handler *shmem_xattr_handlers[] = { 2686 #ifdef CONFIG_TMPFS_POSIX_ACL 2687 &posix_acl_access_xattr_handler, 2688 &posix_acl_default_xattr_handler, 2689 #endif 2690 &shmem_security_xattr_handler, 2691 &shmem_trusted_xattr_handler, 2692 NULL 2693 }; 2694 2695 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 2696 { 2697 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2698 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 2699 } 2700 #endif /* CONFIG_TMPFS_XATTR */ 2701 2702 static const struct inode_operations shmem_short_symlink_operations = { 2703 .readlink = generic_readlink, 2704 .get_link = simple_get_link, 2705 #ifdef CONFIG_TMPFS_XATTR 2706 .setxattr = generic_setxattr, 2707 .getxattr = generic_getxattr, 2708 .listxattr = shmem_listxattr, 2709 .removexattr = generic_removexattr, 2710 #endif 2711 }; 2712 2713 static const struct inode_operations shmem_symlink_inode_operations = { 2714 .readlink = generic_readlink, 2715 .get_link = shmem_get_link, 2716 #ifdef CONFIG_TMPFS_XATTR 2717 .setxattr = generic_setxattr, 2718 .getxattr = generic_getxattr, 2719 .listxattr = shmem_listxattr, 2720 .removexattr = generic_removexattr, 2721 #endif 2722 }; 2723 2724 static struct dentry *shmem_get_parent(struct dentry *child) 2725 { 2726 return ERR_PTR(-ESTALE); 2727 } 2728 2729 static int shmem_match(struct inode *ino, void *vfh) 2730 { 2731 __u32 *fh = vfh; 2732 __u64 inum = fh[2]; 2733 inum = (inum << 32) | fh[1]; 2734 return ino->i_ino == inum && fh[0] == ino->i_generation; 2735 } 2736 2737 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2738 struct fid *fid, int fh_len, int fh_type) 2739 { 2740 struct inode *inode; 2741 struct dentry *dentry = NULL; 2742 u64 inum; 2743 2744 if (fh_len < 3) 2745 return NULL; 2746 2747 inum = fid->raw[2]; 2748 inum = (inum << 32) | fid->raw[1]; 2749 2750 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2751 shmem_match, fid->raw); 2752 if (inode) { 2753 dentry = d_find_alias(inode); 2754 iput(inode); 2755 } 2756 2757 return dentry; 2758 } 2759 2760 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 2761 struct inode *parent) 2762 { 2763 if (*len < 3) { 2764 *len = 3; 2765 return FILEID_INVALID; 2766 } 2767 2768 if (inode_unhashed(inode)) { 2769 /* Unfortunately insert_inode_hash is not idempotent, 2770 * so as we hash inodes here rather than at creation 2771 * time, we need a lock to ensure we only try 2772 * to do it once 2773 */ 2774 static DEFINE_SPINLOCK(lock); 2775 spin_lock(&lock); 2776 if (inode_unhashed(inode)) 2777 __insert_inode_hash(inode, 2778 inode->i_ino + inode->i_generation); 2779 spin_unlock(&lock); 2780 } 2781 2782 fh[0] = inode->i_generation; 2783 fh[1] = inode->i_ino; 2784 fh[2] = ((__u64)inode->i_ino) >> 32; 2785 2786 *len = 3; 2787 return 1; 2788 } 2789 2790 static const struct export_operations shmem_export_ops = { 2791 .get_parent = shmem_get_parent, 2792 .encode_fh = shmem_encode_fh, 2793 .fh_to_dentry = shmem_fh_to_dentry, 2794 }; 2795 2796 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2797 bool remount) 2798 { 2799 char *this_char, *value, *rest; 2800 struct mempolicy *mpol = NULL; 2801 uid_t uid; 2802 gid_t gid; 2803 2804 while (options != NULL) { 2805 this_char = options; 2806 for (;;) { 2807 /* 2808 * NUL-terminate this option: unfortunately, 2809 * mount options form a comma-separated list, 2810 * but mpol's nodelist may also contain commas. 2811 */ 2812 options = strchr(options, ','); 2813 if (options == NULL) 2814 break; 2815 options++; 2816 if (!isdigit(*options)) { 2817 options[-1] = '\0'; 2818 break; 2819 } 2820 } 2821 if (!*this_char) 2822 continue; 2823 if ((value = strchr(this_char,'=')) != NULL) { 2824 *value++ = 0; 2825 } else { 2826 printk(KERN_ERR 2827 "tmpfs: No value for mount option '%s'\n", 2828 this_char); 2829 goto error; 2830 } 2831 2832 if (!strcmp(this_char,"size")) { 2833 unsigned long long size; 2834 size = memparse(value,&rest); 2835 if (*rest == '%') { 2836 size <<= PAGE_SHIFT; 2837 size *= totalram_pages; 2838 do_div(size, 100); 2839 rest++; 2840 } 2841 if (*rest) 2842 goto bad_val; 2843 sbinfo->max_blocks = 2844 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2845 } else if (!strcmp(this_char,"nr_blocks")) { 2846 sbinfo->max_blocks = memparse(value, &rest); 2847 if (*rest) 2848 goto bad_val; 2849 } else if (!strcmp(this_char,"nr_inodes")) { 2850 sbinfo->max_inodes = memparse(value, &rest); 2851 if (*rest) 2852 goto bad_val; 2853 } else if (!strcmp(this_char,"mode")) { 2854 if (remount) 2855 continue; 2856 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2857 if (*rest) 2858 goto bad_val; 2859 } else if (!strcmp(this_char,"uid")) { 2860 if (remount) 2861 continue; 2862 uid = simple_strtoul(value, &rest, 0); 2863 if (*rest) 2864 goto bad_val; 2865 sbinfo->uid = make_kuid(current_user_ns(), uid); 2866 if (!uid_valid(sbinfo->uid)) 2867 goto bad_val; 2868 } else if (!strcmp(this_char,"gid")) { 2869 if (remount) 2870 continue; 2871 gid = simple_strtoul(value, &rest, 0); 2872 if (*rest) 2873 goto bad_val; 2874 sbinfo->gid = make_kgid(current_user_ns(), gid); 2875 if (!gid_valid(sbinfo->gid)) 2876 goto bad_val; 2877 } else if (!strcmp(this_char,"mpol")) { 2878 mpol_put(mpol); 2879 mpol = NULL; 2880 if (mpol_parse_str(value, &mpol)) 2881 goto bad_val; 2882 } else { 2883 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2884 this_char); 2885 goto error; 2886 } 2887 } 2888 sbinfo->mpol = mpol; 2889 return 0; 2890 2891 bad_val: 2892 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2893 value, this_char); 2894 error: 2895 mpol_put(mpol); 2896 return 1; 2897 2898 } 2899 2900 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2901 { 2902 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2903 struct shmem_sb_info config = *sbinfo; 2904 unsigned long inodes; 2905 int error = -EINVAL; 2906 2907 config.mpol = NULL; 2908 if (shmem_parse_options(data, &config, true)) 2909 return error; 2910 2911 spin_lock(&sbinfo->stat_lock); 2912 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2913 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 2914 goto out; 2915 if (config.max_inodes < inodes) 2916 goto out; 2917 /* 2918 * Those tests disallow limited->unlimited while any are in use; 2919 * but we must separately disallow unlimited->limited, because 2920 * in that case we have no record of how much is already in use. 2921 */ 2922 if (config.max_blocks && !sbinfo->max_blocks) 2923 goto out; 2924 if (config.max_inodes && !sbinfo->max_inodes) 2925 goto out; 2926 2927 error = 0; 2928 sbinfo->max_blocks = config.max_blocks; 2929 sbinfo->max_inodes = config.max_inodes; 2930 sbinfo->free_inodes = config.max_inodes - inodes; 2931 2932 /* 2933 * Preserve previous mempolicy unless mpol remount option was specified. 2934 */ 2935 if (config.mpol) { 2936 mpol_put(sbinfo->mpol); 2937 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2938 } 2939 out: 2940 spin_unlock(&sbinfo->stat_lock); 2941 return error; 2942 } 2943 2944 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 2945 { 2946 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 2947 2948 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2949 seq_printf(seq, ",size=%luk", 2950 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2951 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2952 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2953 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2954 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 2955 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 2956 seq_printf(seq, ",uid=%u", 2957 from_kuid_munged(&init_user_ns, sbinfo->uid)); 2958 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 2959 seq_printf(seq, ",gid=%u", 2960 from_kgid_munged(&init_user_ns, sbinfo->gid)); 2961 shmem_show_mpol(seq, sbinfo->mpol); 2962 return 0; 2963 } 2964 2965 #define MFD_NAME_PREFIX "memfd:" 2966 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) 2967 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) 2968 2969 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING) 2970 2971 SYSCALL_DEFINE2(memfd_create, 2972 const char __user *, uname, 2973 unsigned int, flags) 2974 { 2975 struct shmem_inode_info *info; 2976 struct file *file; 2977 int fd, error; 2978 char *name; 2979 long len; 2980 2981 if (flags & ~(unsigned int)MFD_ALL_FLAGS) 2982 return -EINVAL; 2983 2984 /* length includes terminating zero */ 2985 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); 2986 if (len <= 0) 2987 return -EFAULT; 2988 if (len > MFD_NAME_MAX_LEN + 1) 2989 return -EINVAL; 2990 2991 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY); 2992 if (!name) 2993 return -ENOMEM; 2994 2995 strcpy(name, MFD_NAME_PREFIX); 2996 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { 2997 error = -EFAULT; 2998 goto err_name; 2999 } 3000 3001 /* terminating-zero may have changed after strnlen_user() returned */ 3002 if (name[len + MFD_NAME_PREFIX_LEN - 1]) { 3003 error = -EFAULT; 3004 goto err_name; 3005 } 3006 3007 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); 3008 if (fd < 0) { 3009 error = fd; 3010 goto err_name; 3011 } 3012 3013 file = shmem_file_setup(name, 0, VM_NORESERVE); 3014 if (IS_ERR(file)) { 3015 error = PTR_ERR(file); 3016 goto err_fd; 3017 } 3018 info = SHMEM_I(file_inode(file)); 3019 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; 3020 file->f_flags |= O_RDWR | O_LARGEFILE; 3021 if (flags & MFD_ALLOW_SEALING) 3022 info->seals &= ~F_SEAL_SEAL; 3023 3024 fd_install(fd, file); 3025 kfree(name); 3026 return fd; 3027 3028 err_fd: 3029 put_unused_fd(fd); 3030 err_name: 3031 kfree(name); 3032 return error; 3033 } 3034 3035 #endif /* CONFIG_TMPFS */ 3036 3037 static void shmem_put_super(struct super_block *sb) 3038 { 3039 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3040 3041 percpu_counter_destroy(&sbinfo->used_blocks); 3042 mpol_put(sbinfo->mpol); 3043 kfree(sbinfo); 3044 sb->s_fs_info = NULL; 3045 } 3046 3047 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3048 { 3049 struct inode *inode; 3050 struct shmem_sb_info *sbinfo; 3051 int err = -ENOMEM; 3052 3053 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3054 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3055 L1_CACHE_BYTES), GFP_KERNEL); 3056 if (!sbinfo) 3057 return -ENOMEM; 3058 3059 sbinfo->mode = S_IRWXUGO | S_ISVTX; 3060 sbinfo->uid = current_fsuid(); 3061 sbinfo->gid = current_fsgid(); 3062 sb->s_fs_info = sbinfo; 3063 3064 #ifdef CONFIG_TMPFS 3065 /* 3066 * Per default we only allow half of the physical ram per 3067 * tmpfs instance, limiting inodes to one per page of lowmem; 3068 * but the internal instance is left unlimited. 3069 */ 3070 if (!(sb->s_flags & MS_KERNMOUNT)) { 3071 sbinfo->max_blocks = shmem_default_max_blocks(); 3072 sbinfo->max_inodes = shmem_default_max_inodes(); 3073 if (shmem_parse_options(data, sbinfo, false)) { 3074 err = -EINVAL; 3075 goto failed; 3076 } 3077 } else { 3078 sb->s_flags |= MS_NOUSER; 3079 } 3080 sb->s_export_op = &shmem_export_ops; 3081 sb->s_flags |= MS_NOSEC; 3082 #else 3083 sb->s_flags |= MS_NOUSER; 3084 #endif 3085 3086 spin_lock_init(&sbinfo->stat_lock); 3087 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3088 goto failed; 3089 sbinfo->free_inodes = sbinfo->max_inodes; 3090 3091 sb->s_maxbytes = MAX_LFS_FILESIZE; 3092 sb->s_blocksize = PAGE_CACHE_SIZE; 3093 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 3094 sb->s_magic = TMPFS_MAGIC; 3095 sb->s_op = &shmem_ops; 3096 sb->s_time_gran = 1; 3097 #ifdef CONFIG_TMPFS_XATTR 3098 sb->s_xattr = shmem_xattr_handlers; 3099 #endif 3100 #ifdef CONFIG_TMPFS_POSIX_ACL 3101 sb->s_flags |= MS_POSIXACL; 3102 #endif 3103 3104 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3105 if (!inode) 3106 goto failed; 3107 inode->i_uid = sbinfo->uid; 3108 inode->i_gid = sbinfo->gid; 3109 sb->s_root = d_make_root(inode); 3110 if (!sb->s_root) 3111 goto failed; 3112 return 0; 3113 3114 failed: 3115 shmem_put_super(sb); 3116 return err; 3117 } 3118 3119 static struct kmem_cache *shmem_inode_cachep; 3120 3121 static struct inode *shmem_alloc_inode(struct super_block *sb) 3122 { 3123 struct shmem_inode_info *info; 3124 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3125 if (!info) 3126 return NULL; 3127 return &info->vfs_inode; 3128 } 3129 3130 static void shmem_destroy_callback(struct rcu_head *head) 3131 { 3132 struct inode *inode = container_of(head, struct inode, i_rcu); 3133 kfree(inode->i_link); 3134 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3135 } 3136 3137 static void shmem_destroy_inode(struct inode *inode) 3138 { 3139 if (S_ISREG(inode->i_mode)) 3140 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3141 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3142 } 3143 3144 static void shmem_init_inode(void *foo) 3145 { 3146 struct shmem_inode_info *info = foo; 3147 inode_init_once(&info->vfs_inode); 3148 } 3149 3150 static int shmem_init_inodecache(void) 3151 { 3152 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3153 sizeof(struct shmem_inode_info), 3154 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3155 return 0; 3156 } 3157 3158 static void shmem_destroy_inodecache(void) 3159 { 3160 kmem_cache_destroy(shmem_inode_cachep); 3161 } 3162 3163 static const struct address_space_operations shmem_aops = { 3164 .writepage = shmem_writepage, 3165 .set_page_dirty = __set_page_dirty_no_writeback, 3166 #ifdef CONFIG_TMPFS 3167 .write_begin = shmem_write_begin, 3168 .write_end = shmem_write_end, 3169 #endif 3170 #ifdef CONFIG_MIGRATION 3171 .migratepage = migrate_page, 3172 #endif 3173 .error_remove_page = generic_error_remove_page, 3174 }; 3175 3176 static const struct file_operations shmem_file_operations = { 3177 .mmap = shmem_mmap, 3178 #ifdef CONFIG_TMPFS 3179 .llseek = shmem_file_llseek, 3180 .read_iter = shmem_file_read_iter, 3181 .write_iter = generic_file_write_iter, 3182 .fsync = noop_fsync, 3183 .splice_read = shmem_file_splice_read, 3184 .splice_write = iter_file_splice_write, 3185 .fallocate = shmem_fallocate, 3186 #endif 3187 }; 3188 3189 static const struct inode_operations shmem_inode_operations = { 3190 .getattr = shmem_getattr, 3191 .setattr = shmem_setattr, 3192 #ifdef CONFIG_TMPFS_XATTR 3193 .setxattr = generic_setxattr, 3194 .getxattr = generic_getxattr, 3195 .listxattr = shmem_listxattr, 3196 .removexattr = generic_removexattr, 3197 .set_acl = simple_set_acl, 3198 #endif 3199 }; 3200 3201 static const struct inode_operations shmem_dir_inode_operations = { 3202 #ifdef CONFIG_TMPFS 3203 .create = shmem_create, 3204 .lookup = simple_lookup, 3205 .link = shmem_link, 3206 .unlink = shmem_unlink, 3207 .symlink = shmem_symlink, 3208 .mkdir = shmem_mkdir, 3209 .rmdir = shmem_rmdir, 3210 .mknod = shmem_mknod, 3211 .rename2 = shmem_rename2, 3212 .tmpfile = shmem_tmpfile, 3213 #endif 3214 #ifdef CONFIG_TMPFS_XATTR 3215 .setxattr = generic_setxattr, 3216 .getxattr = generic_getxattr, 3217 .listxattr = shmem_listxattr, 3218 .removexattr = generic_removexattr, 3219 #endif 3220 #ifdef CONFIG_TMPFS_POSIX_ACL 3221 .setattr = shmem_setattr, 3222 .set_acl = simple_set_acl, 3223 #endif 3224 }; 3225 3226 static const struct inode_operations shmem_special_inode_operations = { 3227 #ifdef CONFIG_TMPFS_XATTR 3228 .setxattr = generic_setxattr, 3229 .getxattr = generic_getxattr, 3230 .listxattr = shmem_listxattr, 3231 .removexattr = generic_removexattr, 3232 #endif 3233 #ifdef CONFIG_TMPFS_POSIX_ACL 3234 .setattr = shmem_setattr, 3235 .set_acl = simple_set_acl, 3236 #endif 3237 }; 3238 3239 static const struct super_operations shmem_ops = { 3240 .alloc_inode = shmem_alloc_inode, 3241 .destroy_inode = shmem_destroy_inode, 3242 #ifdef CONFIG_TMPFS 3243 .statfs = shmem_statfs, 3244 .remount_fs = shmem_remount_fs, 3245 .show_options = shmem_show_options, 3246 #endif 3247 .evict_inode = shmem_evict_inode, 3248 .drop_inode = generic_delete_inode, 3249 .put_super = shmem_put_super, 3250 }; 3251 3252 static const struct vm_operations_struct shmem_vm_ops = { 3253 .fault = shmem_fault, 3254 .map_pages = filemap_map_pages, 3255 #ifdef CONFIG_NUMA 3256 .set_policy = shmem_set_policy, 3257 .get_policy = shmem_get_policy, 3258 #endif 3259 }; 3260 3261 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3262 int flags, const char *dev_name, void *data) 3263 { 3264 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3265 } 3266 3267 static struct file_system_type shmem_fs_type = { 3268 .owner = THIS_MODULE, 3269 .name = "tmpfs", 3270 .mount = shmem_mount, 3271 .kill_sb = kill_litter_super, 3272 .fs_flags = FS_USERNS_MOUNT, 3273 }; 3274 3275 int __init shmem_init(void) 3276 { 3277 int error; 3278 3279 /* If rootfs called this, don't re-init */ 3280 if (shmem_inode_cachep) 3281 return 0; 3282 3283 error = shmem_init_inodecache(); 3284 if (error) 3285 goto out3; 3286 3287 error = register_filesystem(&shmem_fs_type); 3288 if (error) { 3289 printk(KERN_ERR "Could not register tmpfs\n"); 3290 goto out2; 3291 } 3292 3293 shm_mnt = kern_mount(&shmem_fs_type); 3294 if (IS_ERR(shm_mnt)) { 3295 error = PTR_ERR(shm_mnt); 3296 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 3297 goto out1; 3298 } 3299 return 0; 3300 3301 out1: 3302 unregister_filesystem(&shmem_fs_type); 3303 out2: 3304 shmem_destroy_inodecache(); 3305 out3: 3306 shm_mnt = ERR_PTR(error); 3307 return error; 3308 } 3309 3310 #else /* !CONFIG_SHMEM */ 3311 3312 /* 3313 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3314 * 3315 * This is intended for small system where the benefits of the full 3316 * shmem code (swap-backed and resource-limited) are outweighed by 3317 * their complexity. On systems without swap this code should be 3318 * effectively equivalent, but much lighter weight. 3319 */ 3320 3321 static struct file_system_type shmem_fs_type = { 3322 .name = "tmpfs", 3323 .mount = ramfs_mount, 3324 .kill_sb = kill_litter_super, 3325 .fs_flags = FS_USERNS_MOUNT, 3326 }; 3327 3328 int __init shmem_init(void) 3329 { 3330 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3331 3332 shm_mnt = kern_mount(&shmem_fs_type); 3333 BUG_ON(IS_ERR(shm_mnt)); 3334 3335 return 0; 3336 } 3337 3338 int shmem_unuse(swp_entry_t swap, struct page *page) 3339 { 3340 return 0; 3341 } 3342 3343 int shmem_lock(struct file *file, int lock, struct user_struct *user) 3344 { 3345 return 0; 3346 } 3347 3348 void shmem_unlock_mapping(struct address_space *mapping) 3349 { 3350 } 3351 3352 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 3353 { 3354 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 3355 } 3356 EXPORT_SYMBOL_GPL(shmem_truncate_range); 3357 3358 #define shmem_vm_ops generic_file_vm_ops 3359 #define shmem_file_operations ramfs_file_operations 3360 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 3361 #define shmem_acct_size(flags, size) 0 3362 #define shmem_unacct_size(flags, size) do {} while (0) 3363 3364 #endif /* CONFIG_SHMEM */ 3365 3366 /* common code */ 3367 3368 static struct dentry_operations anon_ops = { 3369 .d_dname = simple_dname 3370 }; 3371 3372 static struct file *__shmem_file_setup(const char *name, loff_t size, 3373 unsigned long flags, unsigned int i_flags) 3374 { 3375 struct file *res; 3376 struct inode *inode; 3377 struct path path; 3378 struct super_block *sb; 3379 struct qstr this; 3380 3381 if (IS_ERR(shm_mnt)) 3382 return ERR_CAST(shm_mnt); 3383 3384 if (size < 0 || size > MAX_LFS_FILESIZE) 3385 return ERR_PTR(-EINVAL); 3386 3387 if (shmem_acct_size(flags, size)) 3388 return ERR_PTR(-ENOMEM); 3389 3390 res = ERR_PTR(-ENOMEM); 3391 this.name = name; 3392 this.len = strlen(name); 3393 this.hash = 0; /* will go */ 3394 sb = shm_mnt->mnt_sb; 3395 path.mnt = mntget(shm_mnt); 3396 path.dentry = d_alloc_pseudo(sb, &this); 3397 if (!path.dentry) 3398 goto put_memory; 3399 d_set_d_op(path.dentry, &anon_ops); 3400 3401 res = ERR_PTR(-ENOSPC); 3402 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 3403 if (!inode) 3404 goto put_memory; 3405 3406 inode->i_flags |= i_flags; 3407 d_instantiate(path.dentry, inode); 3408 inode->i_size = size; 3409 clear_nlink(inode); /* It is unlinked */ 3410 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 3411 if (IS_ERR(res)) 3412 goto put_path; 3413 3414 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 3415 &shmem_file_operations); 3416 if (IS_ERR(res)) 3417 goto put_path; 3418 3419 return res; 3420 3421 put_memory: 3422 shmem_unacct_size(flags, size); 3423 put_path: 3424 path_put(&path); 3425 return res; 3426 } 3427 3428 /** 3429 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 3430 * kernel internal. There will be NO LSM permission checks against the 3431 * underlying inode. So users of this interface must do LSM checks at a 3432 * higher layer. The users are the big_key and shm implementations. LSM 3433 * checks are provided at the key or shm level rather than the inode. 3434 * @name: name for dentry (to be seen in /proc/<pid>/maps 3435 * @size: size to be set for the file 3436 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3437 */ 3438 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 3439 { 3440 return __shmem_file_setup(name, size, flags, S_PRIVATE); 3441 } 3442 3443 /** 3444 * shmem_file_setup - get an unlinked file living in tmpfs 3445 * @name: name for dentry (to be seen in /proc/<pid>/maps 3446 * @size: size to be set for the file 3447 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3448 */ 3449 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 3450 { 3451 return __shmem_file_setup(name, size, flags, 0); 3452 } 3453 EXPORT_SYMBOL_GPL(shmem_file_setup); 3454 3455 /** 3456 * shmem_zero_setup - setup a shared anonymous mapping 3457 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 3458 */ 3459 int shmem_zero_setup(struct vm_area_struct *vma) 3460 { 3461 struct file *file; 3462 loff_t size = vma->vm_end - vma->vm_start; 3463 3464 /* 3465 * Cloning a new file under mmap_sem leads to a lock ordering conflict 3466 * between XFS directory reading and selinux: since this file is only 3467 * accessible to the user through its mapping, use S_PRIVATE flag to 3468 * bypass file security, in the same way as shmem_kernel_file_setup(). 3469 */ 3470 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE); 3471 if (IS_ERR(file)) 3472 return PTR_ERR(file); 3473 3474 if (vma->vm_file) 3475 fput(vma->vm_file); 3476 vma->vm_file = file; 3477 vma->vm_ops = &shmem_vm_ops; 3478 return 0; 3479 } 3480 3481 /** 3482 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 3483 * @mapping: the page's address_space 3484 * @index: the page index 3485 * @gfp: the page allocator flags to use if allocating 3486 * 3487 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 3488 * with any new page allocations done using the specified allocation flags. 3489 * But read_cache_page_gfp() uses the ->readpage() method: which does not 3490 * suit tmpfs, since it may have pages in swapcache, and needs to find those 3491 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 3492 * 3493 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 3494 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 3495 */ 3496 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 3497 pgoff_t index, gfp_t gfp) 3498 { 3499 #ifdef CONFIG_SHMEM 3500 struct inode *inode = mapping->host; 3501 struct page *page; 3502 int error; 3503 3504 BUG_ON(mapping->a_ops != &shmem_aops); 3505 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL); 3506 if (error) 3507 page = ERR_PTR(error); 3508 else 3509 unlock_page(page); 3510 return page; 3511 #else 3512 /* 3513 * The tiny !SHMEM case uses ramfs without swap 3514 */ 3515 return read_cache_page_gfp(mapping, index, gfp); 3516 #endif 3517 } 3518 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 3519