1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include <linux/unicode.h> 44 #include "swap.h" 45 46 static struct vfsmount *shm_mnt __ro_after_init; 47 48 #ifdef CONFIG_SHMEM 49 /* 50 * This virtual memory filesystem is heavily based on the ramfs. It 51 * extends ramfs by the ability to use swap and honor resource limits 52 * which makes it a completely usable filesystem. 53 */ 54 55 #include <linux/xattr.h> 56 #include <linux/exportfs.h> 57 #include <linux/posix_acl.h> 58 #include <linux/posix_acl_xattr.h> 59 #include <linux/mman.h> 60 #include <linux/string.h> 61 #include <linux/slab.h> 62 #include <linux/backing-dev.h> 63 #include <linux/writeback.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/leafops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 #include <linux/quotaops.h> 83 #include <linux/rcupdate_wait.h> 84 85 #include <linux/uaccess.h> 86 87 #include "internal.h" 88 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Pretend that one inode + its dentry occupy this much memory */ 95 #define BOGO_INODE_SIZE 1024 96 97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 98 #define SHORT_SYMLINK_LEN 128 99 100 /* 101 * shmem_fallocate communicates with shmem_fault or shmem_writeout via 102 * inode->i_private (with i_rwsem making sure that it has only one user at 103 * a time): we would prefer not to enlarge the shmem inode just for that. 104 */ 105 struct shmem_falloc { 106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 107 pgoff_t start; /* start of range currently being fallocated */ 108 pgoff_t next; /* the next page offset to be fallocated */ 109 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 110 pgoff_t nr_unswapped; /* how often writeout refused to swap out */ 111 }; 112 113 struct shmem_options { 114 unsigned long long blocks; 115 unsigned long long inodes; 116 struct mempolicy *mpol; 117 kuid_t uid; 118 kgid_t gid; 119 umode_t mode; 120 bool full_inums; 121 int huge; 122 int seen; 123 bool noswap; 124 unsigned short quota_types; 125 struct shmem_quota_limits qlimits; 126 #if IS_ENABLED(CONFIG_UNICODE) 127 struct unicode_map *encoding; 128 bool strict_encoding; 129 #endif 130 #define SHMEM_SEEN_BLOCKS 1 131 #define SHMEM_SEEN_INODES 2 132 #define SHMEM_SEEN_HUGE 4 133 #define SHMEM_SEEN_INUMS 8 134 #define SHMEM_SEEN_QUOTA 16 135 }; 136 137 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 138 static unsigned long huge_shmem_orders_always __read_mostly; 139 static unsigned long huge_shmem_orders_madvise __read_mostly; 140 static unsigned long huge_shmem_orders_inherit __read_mostly; 141 static unsigned long huge_shmem_orders_within_size __read_mostly; 142 static bool shmem_orders_configured __initdata; 143 #endif 144 145 #ifdef CONFIG_TMPFS 146 static unsigned long shmem_default_max_blocks(void) 147 { 148 return totalram_pages() / 2; 149 } 150 151 static unsigned long shmem_default_max_inodes(void) 152 { 153 unsigned long nr_pages = totalram_pages(); 154 155 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 156 ULONG_MAX / BOGO_INODE_SIZE); 157 } 158 #endif 159 160 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 161 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 162 struct vm_area_struct *vma, vm_fault_t *fault_type); 163 164 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 165 { 166 return sb->s_fs_info; 167 } 168 169 /* 170 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 171 * for shared memory and for shared anonymous (/dev/zero) mappings 172 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 173 * consistent with the pre-accounting of private mappings ... 174 */ 175 static inline int shmem_acct_size(unsigned long flags, loff_t size) 176 { 177 return (flags & VM_NORESERVE) ? 178 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 179 } 180 181 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 182 { 183 if (!(flags & VM_NORESERVE)) 184 vm_unacct_memory(VM_ACCT(size)); 185 } 186 187 static inline int shmem_reacct_size(unsigned long flags, 188 loff_t oldsize, loff_t newsize) 189 { 190 if (!(flags & VM_NORESERVE)) { 191 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 192 return security_vm_enough_memory_mm(current->mm, 193 VM_ACCT(newsize) - VM_ACCT(oldsize)); 194 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 195 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 196 } 197 return 0; 198 } 199 200 /* 201 * ... whereas tmpfs objects are accounted incrementally as 202 * pages are allocated, in order to allow large sparse files. 203 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 204 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 205 */ 206 static inline int shmem_acct_blocks(unsigned long flags, long pages) 207 { 208 if (!(flags & VM_NORESERVE)) 209 return 0; 210 211 return security_vm_enough_memory_mm(current->mm, 212 pages * VM_ACCT(PAGE_SIZE)); 213 } 214 215 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 216 { 217 if (flags & VM_NORESERVE) 218 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 219 } 220 221 static int shmem_inode_acct_blocks(struct inode *inode, long pages) 222 { 223 struct shmem_inode_info *info = SHMEM_I(inode); 224 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 225 int err = -ENOSPC; 226 227 if (shmem_acct_blocks(info->flags, pages)) 228 return err; 229 230 might_sleep(); /* when quotas */ 231 if (sbinfo->max_blocks) { 232 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 233 sbinfo->max_blocks, pages)) 234 goto unacct; 235 236 err = dquot_alloc_block_nodirty(inode, pages); 237 if (err) { 238 percpu_counter_sub(&sbinfo->used_blocks, pages); 239 goto unacct; 240 } 241 } else { 242 err = dquot_alloc_block_nodirty(inode, pages); 243 if (err) 244 goto unacct; 245 } 246 247 return 0; 248 249 unacct: 250 shmem_unacct_blocks(info->flags, pages); 251 return err; 252 } 253 254 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 255 { 256 struct shmem_inode_info *info = SHMEM_I(inode); 257 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 258 259 might_sleep(); /* when quotas */ 260 dquot_free_block_nodirty(inode, pages); 261 262 if (sbinfo->max_blocks) 263 percpu_counter_sub(&sbinfo->used_blocks, pages); 264 shmem_unacct_blocks(info->flags, pages); 265 } 266 267 static const struct super_operations shmem_ops; 268 static const struct address_space_operations shmem_aops; 269 static const struct file_operations shmem_file_operations; 270 static const struct inode_operations shmem_inode_operations; 271 static const struct inode_operations shmem_dir_inode_operations; 272 static const struct inode_operations shmem_special_inode_operations; 273 static const struct vm_operations_struct shmem_vm_ops; 274 static const struct vm_operations_struct shmem_anon_vm_ops; 275 static struct file_system_type shmem_fs_type; 276 277 bool shmem_mapping(const struct address_space *mapping) 278 { 279 return mapping->a_ops == &shmem_aops; 280 } 281 EXPORT_SYMBOL_GPL(shmem_mapping); 282 283 bool vma_is_anon_shmem(const struct vm_area_struct *vma) 284 { 285 return vma->vm_ops == &shmem_anon_vm_ops; 286 } 287 288 bool vma_is_shmem(const struct vm_area_struct *vma) 289 { 290 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 291 } 292 293 static LIST_HEAD(shmem_swaplist); 294 static DEFINE_SPINLOCK(shmem_swaplist_lock); 295 296 #ifdef CONFIG_TMPFS_QUOTA 297 298 static int shmem_enable_quotas(struct super_block *sb, 299 unsigned short quota_types) 300 { 301 int type, err = 0; 302 303 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 304 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 305 if (!(quota_types & (1 << type))) 306 continue; 307 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 308 DQUOT_USAGE_ENABLED | 309 DQUOT_LIMITS_ENABLED); 310 if (err) 311 goto out_err; 312 } 313 return 0; 314 315 out_err: 316 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 317 type, err); 318 for (type--; type >= 0; type--) 319 dquot_quota_off(sb, type); 320 return err; 321 } 322 323 static void shmem_disable_quotas(struct super_block *sb) 324 { 325 int type; 326 327 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 328 dquot_quota_off(sb, type); 329 } 330 331 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 332 { 333 return SHMEM_I(inode)->i_dquot; 334 } 335 #endif /* CONFIG_TMPFS_QUOTA */ 336 337 /* 338 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 339 * produces a novel ino for the newly allocated inode. 340 * 341 * It may also be called when making a hard link to permit the space needed by 342 * each dentry. However, in that case, no new inode number is needed since that 343 * internally draws from another pool of inode numbers (currently global 344 * get_next_ino()). This case is indicated by passing NULL as inop. 345 */ 346 #define SHMEM_INO_BATCH 1024 347 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 348 { 349 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 350 ino_t ino; 351 352 if (!(sb->s_flags & SB_KERNMOUNT)) { 353 raw_spin_lock(&sbinfo->stat_lock); 354 if (sbinfo->max_inodes) { 355 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 356 raw_spin_unlock(&sbinfo->stat_lock); 357 return -ENOSPC; 358 } 359 sbinfo->free_ispace -= BOGO_INODE_SIZE; 360 } 361 if (inop) { 362 ino = sbinfo->next_ino++; 363 if (unlikely(is_zero_ino(ino))) 364 ino = sbinfo->next_ino++; 365 if (unlikely(!sbinfo->full_inums && 366 ino > UINT_MAX)) { 367 /* 368 * Emulate get_next_ino uint wraparound for 369 * compatibility 370 */ 371 if (IS_ENABLED(CONFIG_64BIT)) 372 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 373 __func__, MINOR(sb->s_dev)); 374 sbinfo->next_ino = 1; 375 ino = sbinfo->next_ino++; 376 } 377 *inop = ino; 378 } 379 raw_spin_unlock(&sbinfo->stat_lock); 380 } else if (inop) { 381 /* 382 * __shmem_file_setup, one of our callers, is lock-free: it 383 * doesn't hold stat_lock in shmem_reserve_inode since 384 * max_inodes is always 0, and is called from potentially 385 * unknown contexts. As such, use a per-cpu batched allocator 386 * which doesn't require the per-sb stat_lock unless we are at 387 * the batch boundary. 388 * 389 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 390 * shmem mounts are not exposed to userspace, so we don't need 391 * to worry about things like glibc compatibility. 392 */ 393 ino_t *next_ino; 394 395 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 396 ino = *next_ino; 397 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 398 raw_spin_lock(&sbinfo->stat_lock); 399 ino = sbinfo->next_ino; 400 sbinfo->next_ino += SHMEM_INO_BATCH; 401 raw_spin_unlock(&sbinfo->stat_lock); 402 if (unlikely(is_zero_ino(ino))) 403 ino++; 404 } 405 *inop = ino; 406 *next_ino = ++ino; 407 put_cpu(); 408 } 409 410 return 0; 411 } 412 413 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 414 { 415 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 416 if (sbinfo->max_inodes) { 417 raw_spin_lock(&sbinfo->stat_lock); 418 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 419 raw_spin_unlock(&sbinfo->stat_lock); 420 } 421 } 422 423 /** 424 * shmem_recalc_inode - recalculate the block usage of an inode 425 * @inode: inode to recalc 426 * @alloced: the change in number of pages allocated to inode 427 * @swapped: the change in number of pages swapped from inode 428 * 429 * We have to calculate the free blocks since the mm can drop 430 * undirtied hole pages behind our back. 431 * 432 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 433 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 434 * 435 * Return: true if swapped was incremented from 0, for shmem_writeout(). 436 */ 437 static bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 438 { 439 struct shmem_inode_info *info = SHMEM_I(inode); 440 bool first_swapped = false; 441 long freed; 442 443 spin_lock(&info->lock); 444 info->alloced += alloced; 445 info->swapped += swapped; 446 freed = info->alloced - info->swapped - 447 READ_ONCE(inode->i_mapping->nrpages); 448 /* 449 * Special case: whereas normally shmem_recalc_inode() is called 450 * after i_mapping->nrpages has already been adjusted (up or down), 451 * shmem_writeout() has to raise swapped before nrpages is lowered - 452 * to stop a racing shmem_recalc_inode() from thinking that a page has 453 * been freed. Compensate here, to avoid the need for a followup call. 454 */ 455 if (swapped > 0) { 456 if (info->swapped == swapped) 457 first_swapped = true; 458 freed += swapped; 459 } 460 if (freed > 0) 461 info->alloced -= freed; 462 spin_unlock(&info->lock); 463 464 /* The quota case may block */ 465 if (freed > 0) 466 shmem_inode_unacct_blocks(inode, freed); 467 return first_swapped; 468 } 469 470 bool shmem_charge(struct inode *inode, long pages) 471 { 472 struct address_space *mapping = inode->i_mapping; 473 474 if (shmem_inode_acct_blocks(inode, pages)) 475 return false; 476 477 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 478 xa_lock_irq(&mapping->i_pages); 479 mapping->nrpages += pages; 480 xa_unlock_irq(&mapping->i_pages); 481 482 shmem_recalc_inode(inode, pages, 0); 483 return true; 484 } 485 486 void shmem_uncharge(struct inode *inode, long pages) 487 { 488 /* pages argument is currently unused: keep it to help debugging */ 489 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 490 491 shmem_recalc_inode(inode, 0, 0); 492 } 493 494 /* 495 * Replace item expected in xarray by a new item, while holding xa_lock. 496 */ 497 static int shmem_replace_entry(struct address_space *mapping, 498 pgoff_t index, void *expected, void *replacement) 499 { 500 XA_STATE(xas, &mapping->i_pages, index); 501 void *item; 502 503 VM_BUG_ON(!expected); 504 VM_BUG_ON(!replacement); 505 item = xas_load(&xas); 506 if (item != expected) 507 return -ENOENT; 508 xas_store(&xas, replacement); 509 return 0; 510 } 511 512 /* 513 * Sometimes, before we decide whether to proceed or to fail, we must check 514 * that an entry was not already brought back or split by a racing thread. 515 * 516 * Checking folio is not enough: by the time a swapcache folio is locked, it 517 * might be reused, and again be swapcache, using the same swap as before. 518 * Returns the swap entry's order if it still presents, else returns -1. 519 */ 520 static int shmem_confirm_swap(struct address_space *mapping, pgoff_t index, 521 swp_entry_t swap) 522 { 523 XA_STATE(xas, &mapping->i_pages, index); 524 int ret = -1; 525 void *entry; 526 527 rcu_read_lock(); 528 do { 529 entry = xas_load(&xas); 530 if (entry == swp_to_radix_entry(swap)) 531 ret = xas_get_order(&xas); 532 } while (xas_retry(&xas, entry)); 533 rcu_read_unlock(); 534 return ret; 535 } 536 537 /* 538 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 539 * 540 * SHMEM_HUGE_NEVER: 541 * disables huge pages for the mount; 542 * SHMEM_HUGE_ALWAYS: 543 * enables huge pages for the mount; 544 * SHMEM_HUGE_WITHIN_SIZE: 545 * only allocate huge pages if the page will be fully within i_size, 546 * also respect madvise() hints; 547 * SHMEM_HUGE_ADVISE: 548 * only allocate huge pages if requested with madvise(); 549 */ 550 551 #define SHMEM_HUGE_NEVER 0 552 #define SHMEM_HUGE_ALWAYS 1 553 #define SHMEM_HUGE_WITHIN_SIZE 2 554 #define SHMEM_HUGE_ADVISE 3 555 556 /* 557 * Special values. 558 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 559 * 560 * SHMEM_HUGE_DENY: 561 * disables huge on shm_mnt and all mounts, for emergency use; 562 * SHMEM_HUGE_FORCE: 563 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 564 * 565 */ 566 #define SHMEM_HUGE_DENY (-1) 567 #define SHMEM_HUGE_FORCE (-2) 568 569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 570 /* ifdef here to avoid bloating shmem.o when not necessary */ 571 572 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_NEVER) 573 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER 574 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ALWAYS) 575 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ALWAYS 576 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_WITHIN_SIZE) 577 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE 578 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ADVISE) 579 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ADVISE 580 #else 581 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER 582 #endif 583 584 static int shmem_huge __read_mostly = SHMEM_HUGE_DEFAULT; 585 586 #undef SHMEM_HUGE_DEFAULT 587 588 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_NEVER) 589 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER 590 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ALWAYS) 591 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ALWAYS 592 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_WITHIN_SIZE) 593 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE 594 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ADVISE) 595 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ADVISE 596 #else 597 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER 598 #endif 599 600 static int tmpfs_huge __read_mostly = TMPFS_HUGE_DEFAULT; 601 602 #undef TMPFS_HUGE_DEFAULT 603 604 static unsigned int shmem_get_orders_within_size(struct inode *inode, 605 unsigned long within_size_orders, pgoff_t index, 606 loff_t write_end) 607 { 608 pgoff_t aligned_index; 609 unsigned long order; 610 loff_t i_size; 611 612 order = highest_order(within_size_orders); 613 while (within_size_orders) { 614 aligned_index = round_up(index + 1, 1 << order); 615 i_size = max(write_end, i_size_read(inode)); 616 i_size = round_up(i_size, PAGE_SIZE); 617 if (i_size >> PAGE_SHIFT >= aligned_index) 618 return within_size_orders; 619 620 order = next_order(&within_size_orders, order); 621 } 622 623 return 0; 624 } 625 626 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 627 loff_t write_end, bool shmem_huge_force, 628 struct vm_area_struct *vma, 629 vm_flags_t vm_flags) 630 { 631 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ? 632 0 : BIT(HPAGE_PMD_ORDER); 633 unsigned long within_size_orders; 634 635 if (!S_ISREG(inode->i_mode)) 636 return 0; 637 if (shmem_huge == SHMEM_HUGE_DENY) 638 return 0; 639 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 640 return maybe_pmd_order; 641 642 /* 643 * The huge order allocation for anon shmem is controlled through 644 * the mTHP interface, so we still use PMD-sized huge order to 645 * check whether global control is enabled. 646 * 647 * For tmpfs with 'huge=always' or 'huge=within_size' mount option, 648 * we will always try PMD-sized order first. If that failed, it will 649 * fall back to small large folios. 650 */ 651 switch (SHMEM_SB(inode->i_sb)->huge) { 652 case SHMEM_HUGE_ALWAYS: 653 return THP_ORDERS_ALL_FILE_DEFAULT; 654 case SHMEM_HUGE_WITHIN_SIZE: 655 within_size_orders = shmem_get_orders_within_size(inode, 656 THP_ORDERS_ALL_FILE_DEFAULT, index, write_end); 657 if (within_size_orders > 0) 658 return within_size_orders; 659 660 fallthrough; 661 case SHMEM_HUGE_ADVISE: 662 if (vm_flags & VM_HUGEPAGE) 663 return THP_ORDERS_ALL_FILE_DEFAULT; 664 fallthrough; 665 default: 666 return 0; 667 } 668 } 669 670 static int shmem_parse_huge(const char *str) 671 { 672 int huge; 673 674 if (!str) 675 return -EINVAL; 676 677 if (!strcmp(str, "never")) 678 huge = SHMEM_HUGE_NEVER; 679 else if (!strcmp(str, "always")) 680 huge = SHMEM_HUGE_ALWAYS; 681 else if (!strcmp(str, "within_size")) 682 huge = SHMEM_HUGE_WITHIN_SIZE; 683 else if (!strcmp(str, "advise")) 684 huge = SHMEM_HUGE_ADVISE; 685 else if (!strcmp(str, "deny")) 686 huge = SHMEM_HUGE_DENY; 687 else if (!strcmp(str, "force")) 688 huge = SHMEM_HUGE_FORCE; 689 else 690 return -EINVAL; 691 692 if (!has_transparent_hugepage() && 693 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 694 return -EINVAL; 695 696 /* Do not override huge allocation policy with non-PMD sized mTHP */ 697 if (huge == SHMEM_HUGE_FORCE && 698 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER)) 699 return -EINVAL; 700 701 return huge; 702 } 703 704 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 705 static const char *shmem_format_huge(int huge) 706 { 707 switch (huge) { 708 case SHMEM_HUGE_NEVER: 709 return "never"; 710 case SHMEM_HUGE_ALWAYS: 711 return "always"; 712 case SHMEM_HUGE_WITHIN_SIZE: 713 return "within_size"; 714 case SHMEM_HUGE_ADVISE: 715 return "advise"; 716 case SHMEM_HUGE_DENY: 717 return "deny"; 718 case SHMEM_HUGE_FORCE: 719 return "force"; 720 default: 721 VM_BUG_ON(1); 722 return "bad_val"; 723 } 724 } 725 #endif 726 727 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 728 struct shrink_control *sc, unsigned long nr_to_free) 729 { 730 LIST_HEAD(list), *pos, *next; 731 struct inode *inode; 732 struct shmem_inode_info *info; 733 struct folio *folio; 734 unsigned long batch = sc ? sc->nr_to_scan : 128; 735 unsigned long split = 0, freed = 0; 736 737 if (list_empty(&sbinfo->shrinklist)) 738 return SHRINK_STOP; 739 740 spin_lock(&sbinfo->shrinklist_lock); 741 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 742 info = list_entry(pos, struct shmem_inode_info, shrinklist); 743 744 /* pin the inode */ 745 inode = igrab(&info->vfs_inode); 746 747 /* inode is about to be evicted */ 748 if (!inode) { 749 list_del_init(&info->shrinklist); 750 goto next; 751 } 752 753 list_move(&info->shrinklist, &list); 754 next: 755 sbinfo->shrinklist_len--; 756 if (!--batch) 757 break; 758 } 759 spin_unlock(&sbinfo->shrinklist_lock); 760 761 list_for_each_safe(pos, next, &list) { 762 pgoff_t next, end; 763 loff_t i_size; 764 int ret; 765 766 info = list_entry(pos, struct shmem_inode_info, shrinklist); 767 inode = &info->vfs_inode; 768 769 if (nr_to_free && freed >= nr_to_free) 770 goto move_back; 771 772 i_size = i_size_read(inode); 773 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE); 774 if (!folio || xa_is_value(folio)) 775 goto drop; 776 777 /* No large folio at the end of the file: nothing to split */ 778 if (!folio_test_large(folio)) { 779 folio_put(folio); 780 goto drop; 781 } 782 783 /* Check if there is anything to gain from splitting */ 784 next = folio_next_index(folio); 785 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE)); 786 if (end <= folio->index || end >= next) { 787 folio_put(folio); 788 goto drop; 789 } 790 791 /* 792 * Move the inode on the list back to shrinklist if we failed 793 * to lock the page at this time. 794 * 795 * Waiting for the lock may lead to deadlock in the 796 * reclaim path. 797 */ 798 if (!folio_trylock(folio)) { 799 folio_put(folio); 800 goto move_back; 801 } 802 803 ret = split_folio(folio); 804 folio_unlock(folio); 805 folio_put(folio); 806 807 /* If split failed move the inode on the list back to shrinklist */ 808 if (ret) 809 goto move_back; 810 811 freed += next - end; 812 split++; 813 drop: 814 list_del_init(&info->shrinklist); 815 goto put; 816 move_back: 817 /* 818 * Make sure the inode is either on the global list or deleted 819 * from any local list before iput() since it could be deleted 820 * in another thread once we put the inode (then the local list 821 * is corrupted). 822 */ 823 spin_lock(&sbinfo->shrinklist_lock); 824 list_move(&info->shrinklist, &sbinfo->shrinklist); 825 sbinfo->shrinklist_len++; 826 spin_unlock(&sbinfo->shrinklist_lock); 827 put: 828 iput(inode); 829 } 830 831 return split; 832 } 833 834 static long shmem_unused_huge_scan(struct super_block *sb, 835 struct shrink_control *sc) 836 { 837 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 838 839 if (!READ_ONCE(sbinfo->shrinklist_len)) 840 return SHRINK_STOP; 841 842 return shmem_unused_huge_shrink(sbinfo, sc, 0); 843 } 844 845 static long shmem_unused_huge_count(struct super_block *sb, 846 struct shrink_control *sc) 847 { 848 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 849 return READ_ONCE(sbinfo->shrinklist_len); 850 } 851 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 852 853 #define shmem_huge SHMEM_HUGE_DENY 854 855 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 856 struct shrink_control *sc, unsigned long nr_to_free) 857 { 858 return 0; 859 } 860 861 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 862 loff_t write_end, bool shmem_huge_force, 863 struct vm_area_struct *vma, 864 vm_flags_t vm_flags) 865 { 866 return 0; 867 } 868 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 869 870 static void shmem_update_stats(struct folio *folio, int nr_pages) 871 { 872 if (folio_test_pmd_mappable(folio)) 873 lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages); 874 lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages); 875 lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages); 876 } 877 878 /* 879 * Somewhat like filemap_add_folio, but error if expected item has gone. 880 */ 881 static int shmem_add_to_page_cache(struct folio *folio, 882 struct address_space *mapping, 883 pgoff_t index, void *expected, gfp_t gfp) 884 { 885 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 886 unsigned long nr = folio_nr_pages(folio); 887 swp_entry_t iter, swap; 888 void *entry; 889 890 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 891 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 892 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 893 894 folio_ref_add(folio, nr); 895 folio->mapping = mapping; 896 folio->index = index; 897 898 gfp &= GFP_RECLAIM_MASK; 899 folio_throttle_swaprate(folio, gfp); 900 swap = radix_to_swp_entry(expected); 901 902 do { 903 iter = swap; 904 xas_lock_irq(&xas); 905 xas_for_each_conflict(&xas, entry) { 906 /* 907 * The range must either be empty, or filled with 908 * expected swap entries. Shmem swap entries are never 909 * partially freed without split of both entry and 910 * folio, so there shouldn't be any holes. 911 */ 912 if (!expected || entry != swp_to_radix_entry(iter)) { 913 xas_set_err(&xas, -EEXIST); 914 goto unlock; 915 } 916 iter.val += 1 << xas_get_order(&xas); 917 } 918 if (expected && iter.val - nr != swap.val) { 919 xas_set_err(&xas, -EEXIST); 920 goto unlock; 921 } 922 xas_store(&xas, folio); 923 if (xas_error(&xas)) 924 goto unlock; 925 shmem_update_stats(folio, nr); 926 mapping->nrpages += nr; 927 unlock: 928 xas_unlock_irq(&xas); 929 } while (xas_nomem(&xas, gfp)); 930 931 if (xas_error(&xas)) { 932 folio->mapping = NULL; 933 folio_ref_sub(folio, nr); 934 return xas_error(&xas); 935 } 936 937 return 0; 938 } 939 940 /* 941 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 942 */ 943 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 944 { 945 struct address_space *mapping = folio->mapping; 946 long nr = folio_nr_pages(folio); 947 int error; 948 949 xa_lock_irq(&mapping->i_pages); 950 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 951 folio->mapping = NULL; 952 mapping->nrpages -= nr; 953 shmem_update_stats(folio, -nr); 954 xa_unlock_irq(&mapping->i_pages); 955 folio_put_refs(folio, nr); 956 BUG_ON(error); 957 } 958 959 /* 960 * Remove swap entry from page cache, free the swap and its page cache. Returns 961 * the number of pages being freed. 0 means entry not found in XArray (0 pages 962 * being freed). 963 */ 964 static long shmem_free_swap(struct address_space *mapping, 965 pgoff_t index, void *radswap) 966 { 967 int order = xa_get_order(&mapping->i_pages, index); 968 void *old; 969 970 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 971 if (old != radswap) 972 return 0; 973 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order); 974 975 return 1 << order; 976 } 977 978 /* 979 * Determine (in bytes) how many of the shmem object's pages mapped by the 980 * given offsets are swapped out. 981 * 982 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 983 * as long as the inode doesn't go away and racy results are not a problem. 984 */ 985 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 986 pgoff_t start, pgoff_t end) 987 { 988 XA_STATE(xas, &mapping->i_pages, start); 989 struct folio *folio; 990 unsigned long swapped = 0; 991 unsigned long max = end - 1; 992 993 rcu_read_lock(); 994 xas_for_each(&xas, folio, max) { 995 if (xas_retry(&xas, folio)) 996 continue; 997 if (xa_is_value(folio)) 998 swapped += 1 << xas_get_order(&xas); 999 if (xas.xa_index == max) 1000 break; 1001 if (need_resched()) { 1002 xas_pause(&xas); 1003 cond_resched_rcu(); 1004 } 1005 } 1006 rcu_read_unlock(); 1007 1008 return swapped << PAGE_SHIFT; 1009 } 1010 1011 /* 1012 * Determine (in bytes) how many of the shmem object's pages mapped by the 1013 * given vma is swapped out. 1014 * 1015 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 1016 * as long as the inode doesn't go away and racy results are not a problem. 1017 */ 1018 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 1019 { 1020 struct inode *inode = file_inode(vma->vm_file); 1021 struct shmem_inode_info *info = SHMEM_I(inode); 1022 struct address_space *mapping = inode->i_mapping; 1023 unsigned long swapped; 1024 1025 /* Be careful as we don't hold info->lock */ 1026 swapped = READ_ONCE(info->swapped); 1027 1028 /* 1029 * The easier cases are when the shmem object has nothing in swap, or 1030 * the vma maps it whole. Then we can simply use the stats that we 1031 * already track. 1032 */ 1033 if (!swapped) 1034 return 0; 1035 1036 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 1037 return swapped << PAGE_SHIFT; 1038 1039 /* Here comes the more involved part */ 1040 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 1041 vma->vm_pgoff + vma_pages(vma)); 1042 } 1043 1044 /* 1045 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 1046 */ 1047 void shmem_unlock_mapping(struct address_space *mapping) 1048 { 1049 struct folio_batch fbatch; 1050 pgoff_t index = 0; 1051 1052 folio_batch_init(&fbatch); 1053 /* 1054 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 1055 */ 1056 while (!mapping_unevictable(mapping) && 1057 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 1058 check_move_unevictable_folios(&fbatch); 1059 folio_batch_release(&fbatch); 1060 cond_resched(); 1061 } 1062 } 1063 1064 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 1065 { 1066 struct folio *folio; 1067 1068 /* 1069 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 1070 * beyond i_size, and reports fallocated folios as holes. 1071 */ 1072 folio = filemap_get_entry(inode->i_mapping, index); 1073 if (!folio) 1074 return folio; 1075 if (!xa_is_value(folio)) { 1076 folio_lock(folio); 1077 if (folio->mapping == inode->i_mapping) 1078 return folio; 1079 /* The folio has been swapped out */ 1080 folio_unlock(folio); 1081 folio_put(folio); 1082 } 1083 /* 1084 * But read a folio back from swap if any of it is within i_size 1085 * (although in some cases this is just a waste of time). 1086 */ 1087 folio = NULL; 1088 shmem_get_folio(inode, index, 0, &folio, SGP_READ); 1089 return folio; 1090 } 1091 1092 /* 1093 * Remove range of pages and swap entries from page cache, and free them. 1094 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 1095 */ 1096 static void shmem_undo_range(struct inode *inode, loff_t lstart, uoff_t lend, 1097 bool unfalloc) 1098 { 1099 struct address_space *mapping = inode->i_mapping; 1100 struct shmem_inode_info *info = SHMEM_I(inode); 1101 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 1102 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 1103 struct folio_batch fbatch; 1104 pgoff_t indices[PAGEVEC_SIZE]; 1105 struct folio *folio; 1106 bool same_folio; 1107 long nr_swaps_freed = 0; 1108 pgoff_t index; 1109 int i; 1110 1111 if (lend == -1) 1112 end = -1; /* unsigned, so actually very big */ 1113 1114 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1115 info->fallocend = start; 1116 1117 folio_batch_init(&fbatch); 1118 index = start; 1119 while (index < end && find_lock_entries(mapping, &index, end - 1, 1120 &fbatch, indices)) { 1121 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1122 folio = fbatch.folios[i]; 1123 1124 if (xa_is_value(folio)) { 1125 if (unfalloc) 1126 continue; 1127 nr_swaps_freed += shmem_free_swap(mapping, 1128 indices[i], folio); 1129 continue; 1130 } 1131 1132 if (!unfalloc || !folio_test_uptodate(folio)) 1133 truncate_inode_folio(mapping, folio); 1134 folio_unlock(folio); 1135 } 1136 folio_batch_remove_exceptionals(&fbatch); 1137 folio_batch_release(&fbatch); 1138 cond_resched(); 1139 } 1140 1141 /* 1142 * When undoing a failed fallocate, we want none of the partial folio 1143 * zeroing and splitting below, but shall want to truncate the whole 1144 * folio when !uptodate indicates that it was added by this fallocate, 1145 * even when [lstart, lend] covers only a part of the folio. 1146 */ 1147 if (unfalloc) 1148 goto whole_folios; 1149 1150 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1151 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1152 if (folio) { 1153 same_folio = lend < folio_next_pos(folio); 1154 folio_mark_dirty(folio); 1155 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1156 start = folio_next_index(folio); 1157 if (same_folio) 1158 end = folio->index; 1159 } 1160 folio_unlock(folio); 1161 folio_put(folio); 1162 folio = NULL; 1163 } 1164 1165 if (!same_folio) 1166 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1167 if (folio) { 1168 folio_mark_dirty(folio); 1169 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1170 end = folio->index; 1171 folio_unlock(folio); 1172 folio_put(folio); 1173 } 1174 1175 whole_folios: 1176 1177 index = start; 1178 while (index < end) { 1179 cond_resched(); 1180 1181 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1182 indices)) { 1183 /* If all gone or hole-punch or unfalloc, we're done */ 1184 if (index == start || end != -1) 1185 break; 1186 /* But if truncating, restart to make sure all gone */ 1187 index = start; 1188 continue; 1189 } 1190 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1191 folio = fbatch.folios[i]; 1192 1193 if (xa_is_value(folio)) { 1194 long swaps_freed; 1195 1196 if (unfalloc) 1197 continue; 1198 swaps_freed = shmem_free_swap(mapping, indices[i], folio); 1199 if (!swaps_freed) { 1200 /* Swap was replaced by page: retry */ 1201 index = indices[i]; 1202 break; 1203 } 1204 nr_swaps_freed += swaps_freed; 1205 continue; 1206 } 1207 1208 folio_lock(folio); 1209 1210 if (!unfalloc || !folio_test_uptodate(folio)) { 1211 if (folio_mapping(folio) != mapping) { 1212 /* Page was replaced by swap: retry */ 1213 folio_unlock(folio); 1214 index = indices[i]; 1215 break; 1216 } 1217 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1218 folio); 1219 1220 if (!folio_test_large(folio)) { 1221 truncate_inode_folio(mapping, folio); 1222 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1223 /* 1224 * If we split a page, reset the loop so 1225 * that we pick up the new sub pages. 1226 * Otherwise the THP was entirely 1227 * dropped or the target range was 1228 * zeroed, so just continue the loop as 1229 * is. 1230 */ 1231 if (!folio_test_large(folio)) { 1232 folio_unlock(folio); 1233 index = start; 1234 break; 1235 } 1236 } 1237 } 1238 folio_unlock(folio); 1239 } 1240 folio_batch_remove_exceptionals(&fbatch); 1241 folio_batch_release(&fbatch); 1242 } 1243 1244 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1245 } 1246 1247 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend) 1248 { 1249 shmem_undo_range(inode, lstart, lend, false); 1250 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1251 inode_inc_iversion(inode); 1252 } 1253 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1254 1255 static int shmem_getattr(struct mnt_idmap *idmap, 1256 const struct path *path, struct kstat *stat, 1257 u32 request_mask, unsigned int query_flags) 1258 { 1259 struct inode *inode = path->dentry->d_inode; 1260 struct shmem_inode_info *info = SHMEM_I(inode); 1261 1262 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1263 shmem_recalc_inode(inode, 0, 0); 1264 1265 if (info->fsflags & FS_APPEND_FL) 1266 stat->attributes |= STATX_ATTR_APPEND; 1267 if (info->fsflags & FS_IMMUTABLE_FL) 1268 stat->attributes |= STATX_ATTR_IMMUTABLE; 1269 if (info->fsflags & FS_NODUMP_FL) 1270 stat->attributes |= STATX_ATTR_NODUMP; 1271 stat->attributes_mask |= (STATX_ATTR_APPEND | 1272 STATX_ATTR_IMMUTABLE | 1273 STATX_ATTR_NODUMP); 1274 generic_fillattr(idmap, request_mask, inode, stat); 1275 1276 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0)) 1277 stat->blksize = HPAGE_PMD_SIZE; 1278 1279 if (request_mask & STATX_BTIME) { 1280 stat->result_mask |= STATX_BTIME; 1281 stat->btime.tv_sec = info->i_crtime.tv_sec; 1282 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1283 } 1284 1285 return 0; 1286 } 1287 1288 static int shmem_setattr(struct mnt_idmap *idmap, 1289 struct dentry *dentry, struct iattr *attr) 1290 { 1291 struct inode *inode = d_inode(dentry); 1292 struct shmem_inode_info *info = SHMEM_I(inode); 1293 int error; 1294 bool update_mtime = false; 1295 bool update_ctime = true; 1296 1297 error = setattr_prepare(idmap, dentry, attr); 1298 if (error) 1299 return error; 1300 1301 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1302 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1303 return -EPERM; 1304 } 1305 } 1306 1307 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1308 loff_t oldsize = inode->i_size; 1309 loff_t newsize = attr->ia_size; 1310 1311 /* protected by i_rwsem */ 1312 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1313 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1314 return -EPERM; 1315 1316 if (newsize != oldsize) { 1317 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1318 oldsize, newsize); 1319 if (error) 1320 return error; 1321 i_size_write(inode, newsize); 1322 update_mtime = true; 1323 } else { 1324 update_ctime = false; 1325 } 1326 if (newsize <= oldsize) { 1327 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1328 if (oldsize > holebegin) 1329 unmap_mapping_range(inode->i_mapping, 1330 holebegin, 0, 1); 1331 if (info->alloced) 1332 shmem_truncate_range(inode, 1333 newsize, (loff_t)-1); 1334 /* unmap again to remove racily COWed private pages */ 1335 if (oldsize > holebegin) 1336 unmap_mapping_range(inode->i_mapping, 1337 holebegin, 0, 1); 1338 } 1339 } 1340 1341 if (is_quota_modification(idmap, inode, attr)) { 1342 error = dquot_initialize(inode); 1343 if (error) 1344 return error; 1345 } 1346 1347 /* Transfer quota accounting */ 1348 if (i_uid_needs_update(idmap, attr, inode) || 1349 i_gid_needs_update(idmap, attr, inode)) { 1350 error = dquot_transfer(idmap, inode, attr); 1351 if (error) 1352 return error; 1353 } 1354 1355 setattr_copy(idmap, inode, attr); 1356 if (attr->ia_valid & ATTR_MODE) 1357 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1358 if (!error && update_ctime) { 1359 inode_set_ctime_current(inode); 1360 if (update_mtime) 1361 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1362 inode_inc_iversion(inode); 1363 } 1364 return error; 1365 } 1366 1367 static void shmem_evict_inode(struct inode *inode) 1368 { 1369 struct shmem_inode_info *info = SHMEM_I(inode); 1370 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1371 size_t freed = 0; 1372 1373 if (shmem_mapping(inode->i_mapping)) { 1374 shmem_unacct_size(info->flags, inode->i_size); 1375 inode->i_size = 0; 1376 mapping_set_exiting(inode->i_mapping); 1377 shmem_truncate_range(inode, 0, (loff_t)-1); 1378 if (!list_empty(&info->shrinklist)) { 1379 spin_lock(&sbinfo->shrinklist_lock); 1380 if (!list_empty(&info->shrinklist)) { 1381 list_del_init(&info->shrinklist); 1382 sbinfo->shrinklist_len--; 1383 } 1384 spin_unlock(&sbinfo->shrinklist_lock); 1385 } 1386 while (!list_empty(&info->swaplist)) { 1387 /* Wait while shmem_unuse() is scanning this inode... */ 1388 wait_var_event(&info->stop_eviction, 1389 !atomic_read(&info->stop_eviction)); 1390 spin_lock(&shmem_swaplist_lock); 1391 /* ...but beware of the race if we peeked too early */ 1392 if (!atomic_read(&info->stop_eviction)) 1393 list_del_init(&info->swaplist); 1394 spin_unlock(&shmem_swaplist_lock); 1395 } 1396 } 1397 1398 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1399 shmem_free_inode(inode->i_sb, freed); 1400 WARN_ON(inode->i_blocks); 1401 clear_inode(inode); 1402 #ifdef CONFIG_TMPFS_QUOTA 1403 dquot_free_inode(inode); 1404 dquot_drop(inode); 1405 #endif 1406 } 1407 1408 static unsigned int shmem_find_swap_entries(struct address_space *mapping, 1409 pgoff_t start, struct folio_batch *fbatch, 1410 pgoff_t *indices, unsigned int type) 1411 { 1412 XA_STATE(xas, &mapping->i_pages, start); 1413 struct folio *folio; 1414 swp_entry_t entry; 1415 1416 rcu_read_lock(); 1417 xas_for_each(&xas, folio, ULONG_MAX) { 1418 if (xas_retry(&xas, folio)) 1419 continue; 1420 1421 if (!xa_is_value(folio)) 1422 continue; 1423 1424 entry = radix_to_swp_entry(folio); 1425 /* 1426 * swapin error entries can be found in the mapping. But they're 1427 * deliberately ignored here as we've done everything we can do. 1428 */ 1429 if (swp_type(entry) != type) 1430 continue; 1431 1432 indices[folio_batch_count(fbatch)] = xas.xa_index; 1433 if (!folio_batch_add(fbatch, folio)) 1434 break; 1435 1436 if (need_resched()) { 1437 xas_pause(&xas); 1438 cond_resched_rcu(); 1439 } 1440 } 1441 rcu_read_unlock(); 1442 1443 return folio_batch_count(fbatch); 1444 } 1445 1446 /* 1447 * Move the swapped pages for an inode to page cache. Returns the count 1448 * of pages swapped in, or the error in case of failure. 1449 */ 1450 static int shmem_unuse_swap_entries(struct inode *inode, 1451 struct folio_batch *fbatch, pgoff_t *indices) 1452 { 1453 int i = 0; 1454 int ret = 0; 1455 int error = 0; 1456 struct address_space *mapping = inode->i_mapping; 1457 1458 for (i = 0; i < folio_batch_count(fbatch); i++) { 1459 struct folio *folio = fbatch->folios[i]; 1460 1461 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1462 mapping_gfp_mask(mapping), NULL, NULL); 1463 if (error == 0) { 1464 folio_unlock(folio); 1465 folio_put(folio); 1466 ret++; 1467 } 1468 if (error == -ENOMEM) 1469 break; 1470 error = 0; 1471 } 1472 return error ? error : ret; 1473 } 1474 1475 /* 1476 * If swap found in inode, free it and move page from swapcache to filecache. 1477 */ 1478 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1479 { 1480 struct address_space *mapping = inode->i_mapping; 1481 pgoff_t start = 0; 1482 struct folio_batch fbatch; 1483 pgoff_t indices[PAGEVEC_SIZE]; 1484 int ret = 0; 1485 1486 do { 1487 folio_batch_init(&fbatch); 1488 if (!shmem_find_swap_entries(mapping, start, &fbatch, 1489 indices, type)) { 1490 ret = 0; 1491 break; 1492 } 1493 1494 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1495 if (ret < 0) 1496 break; 1497 1498 start = indices[folio_batch_count(&fbatch) - 1]; 1499 } while (true); 1500 1501 return ret; 1502 } 1503 1504 /* 1505 * Read all the shared memory data that resides in the swap 1506 * device 'type' back into memory, so the swap device can be 1507 * unused. 1508 */ 1509 int shmem_unuse(unsigned int type) 1510 { 1511 struct shmem_inode_info *info, *next; 1512 int error = 0; 1513 1514 if (list_empty(&shmem_swaplist)) 1515 return 0; 1516 1517 spin_lock(&shmem_swaplist_lock); 1518 start_over: 1519 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1520 if (!info->swapped) { 1521 list_del_init(&info->swaplist); 1522 continue; 1523 } 1524 /* 1525 * Drop the swaplist mutex while searching the inode for swap; 1526 * but before doing so, make sure shmem_evict_inode() will not 1527 * remove placeholder inode from swaplist, nor let it be freed 1528 * (igrab() would protect from unlink, but not from unmount). 1529 */ 1530 atomic_inc(&info->stop_eviction); 1531 spin_unlock(&shmem_swaplist_lock); 1532 1533 error = shmem_unuse_inode(&info->vfs_inode, type); 1534 cond_resched(); 1535 1536 spin_lock(&shmem_swaplist_lock); 1537 if (atomic_dec_and_test(&info->stop_eviction)) 1538 wake_up_var(&info->stop_eviction); 1539 if (error) 1540 break; 1541 if (list_empty(&info->swaplist)) 1542 goto start_over; 1543 next = list_next_entry(info, swaplist); 1544 if (!info->swapped) 1545 list_del_init(&info->swaplist); 1546 } 1547 spin_unlock(&shmem_swaplist_lock); 1548 1549 return error; 1550 } 1551 1552 /** 1553 * shmem_writeout - Write the folio to swap 1554 * @folio: The folio to write 1555 * @plug: swap plug 1556 * @folio_list: list to put back folios on split 1557 * 1558 * Move the folio from the page cache to the swap cache. 1559 */ 1560 int shmem_writeout(struct folio *folio, struct swap_iocb **plug, 1561 struct list_head *folio_list) 1562 { 1563 struct address_space *mapping = folio->mapping; 1564 struct inode *inode = mapping->host; 1565 struct shmem_inode_info *info = SHMEM_I(inode); 1566 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1567 pgoff_t index; 1568 int nr_pages; 1569 bool split = false; 1570 1571 if ((info->flags & VM_LOCKED) || sbinfo->noswap) 1572 goto redirty; 1573 1574 if (!total_swap_pages) 1575 goto redirty; 1576 1577 /* 1578 * If CONFIG_THP_SWAP is not enabled, the large folio should be 1579 * split when swapping. 1580 * 1581 * And shrinkage of pages beyond i_size does not split swap, so 1582 * swapout of a large folio crossing i_size needs to split too 1583 * (unless fallocate has been used to preallocate beyond EOF). 1584 */ 1585 if (folio_test_large(folio)) { 1586 index = shmem_fallocend(inode, 1587 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 1588 if ((index > folio->index && index < folio_next_index(folio)) || 1589 !IS_ENABLED(CONFIG_THP_SWAP)) 1590 split = true; 1591 } 1592 1593 if (split) { 1594 try_split: 1595 /* Ensure the subpages are still dirty */ 1596 folio_test_set_dirty(folio); 1597 if (split_folio_to_list(folio, folio_list)) 1598 goto redirty; 1599 folio_clear_dirty(folio); 1600 } 1601 1602 index = folio->index; 1603 nr_pages = folio_nr_pages(folio); 1604 1605 /* 1606 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1607 * value into swapfile.c, the only way we can correctly account for a 1608 * fallocated folio arriving here is now to initialize it and write it. 1609 * 1610 * That's okay for a folio already fallocated earlier, but if we have 1611 * not yet completed the fallocation, then (a) we want to keep track 1612 * of this folio in case we have to undo it, and (b) it may not be a 1613 * good idea to continue anyway, once we're pushing into swap. So 1614 * reactivate the folio, and let shmem_fallocate() quit when too many. 1615 */ 1616 if (!folio_test_uptodate(folio)) { 1617 if (inode->i_private) { 1618 struct shmem_falloc *shmem_falloc; 1619 spin_lock(&inode->i_lock); 1620 shmem_falloc = inode->i_private; 1621 if (shmem_falloc && 1622 !shmem_falloc->waitq && 1623 index >= shmem_falloc->start && 1624 index < shmem_falloc->next) 1625 shmem_falloc->nr_unswapped += nr_pages; 1626 else 1627 shmem_falloc = NULL; 1628 spin_unlock(&inode->i_lock); 1629 if (shmem_falloc) 1630 goto redirty; 1631 } 1632 folio_zero_range(folio, 0, folio_size(folio)); 1633 flush_dcache_folio(folio); 1634 folio_mark_uptodate(folio); 1635 } 1636 1637 if (!folio_alloc_swap(folio)) { 1638 bool first_swapped = shmem_recalc_inode(inode, 0, nr_pages); 1639 int error; 1640 1641 /* 1642 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1643 * if it's not already there. Do it now before the folio is 1644 * removed from page cache, when its pagelock no longer 1645 * protects the inode from eviction. And do it now, after 1646 * we've incremented swapped, because shmem_unuse() will 1647 * prune a !swapped inode from the swaplist. 1648 */ 1649 if (first_swapped) { 1650 spin_lock(&shmem_swaplist_lock); 1651 if (list_empty(&info->swaplist)) 1652 list_add(&info->swaplist, &shmem_swaplist); 1653 spin_unlock(&shmem_swaplist_lock); 1654 } 1655 1656 swap_shmem_alloc(folio->swap, nr_pages); 1657 shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap)); 1658 1659 BUG_ON(folio_mapped(folio)); 1660 error = swap_writeout(folio, plug); 1661 if (error != AOP_WRITEPAGE_ACTIVATE) { 1662 /* folio has been unlocked */ 1663 return error; 1664 } 1665 1666 /* 1667 * The intention here is to avoid holding on to the swap when 1668 * zswap was unable to compress and unable to writeback; but 1669 * it will be appropriate if other reactivate cases are added. 1670 */ 1671 error = shmem_add_to_page_cache(folio, mapping, index, 1672 swp_to_radix_entry(folio->swap), 1673 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 1674 /* Swap entry might be erased by racing shmem_free_swap() */ 1675 if (!error) { 1676 shmem_recalc_inode(inode, 0, -nr_pages); 1677 swap_free_nr(folio->swap, nr_pages); 1678 } 1679 1680 /* 1681 * The swap_cache_del_folio() below could be left for 1682 * shrink_folio_list()'s folio_free_swap() to dispose of; 1683 * but I'm a little nervous about letting this folio out of 1684 * shmem_writeout() in a hybrid half-tmpfs-half-swap state 1685 * e.g. folio_mapping(folio) might give an unexpected answer. 1686 */ 1687 swap_cache_del_folio(folio); 1688 goto redirty; 1689 } 1690 if (nr_pages > 1) 1691 goto try_split; 1692 redirty: 1693 folio_mark_dirty(folio); 1694 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1695 } 1696 EXPORT_SYMBOL_GPL(shmem_writeout); 1697 1698 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1699 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1700 { 1701 char buffer[64]; 1702 1703 if (!mpol || mpol->mode == MPOL_DEFAULT) 1704 return; /* show nothing */ 1705 1706 mpol_to_str(buffer, sizeof(buffer), mpol); 1707 1708 seq_printf(seq, ",mpol=%s", buffer); 1709 } 1710 1711 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1712 { 1713 struct mempolicy *mpol = NULL; 1714 if (sbinfo->mpol) { 1715 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1716 mpol = sbinfo->mpol; 1717 mpol_get(mpol); 1718 raw_spin_unlock(&sbinfo->stat_lock); 1719 } 1720 return mpol; 1721 } 1722 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1723 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1724 { 1725 } 1726 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1727 { 1728 return NULL; 1729 } 1730 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1731 1732 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1733 pgoff_t index, unsigned int order, pgoff_t *ilx); 1734 1735 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1736 struct shmem_inode_info *info, pgoff_t index) 1737 { 1738 struct mempolicy *mpol; 1739 pgoff_t ilx; 1740 struct folio *folio; 1741 1742 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1743 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1744 mpol_cond_put(mpol); 1745 1746 return folio; 1747 } 1748 1749 /* 1750 * Make sure huge_gfp is always more limited than limit_gfp. 1751 * Some of the flags set permissions, while others set limitations. 1752 */ 1753 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1754 { 1755 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1756 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1757 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1758 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1759 1760 /* Allow allocations only from the originally specified zones. */ 1761 result |= zoneflags; 1762 1763 /* 1764 * Minimize the result gfp by taking the union with the deny flags, 1765 * and the intersection of the allow flags. 1766 */ 1767 result |= (limit_gfp & denyflags); 1768 result |= (huge_gfp & limit_gfp) & allowflags; 1769 1770 return result; 1771 } 1772 1773 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1774 bool shmem_hpage_pmd_enabled(void) 1775 { 1776 if (shmem_huge == SHMEM_HUGE_DENY) 1777 return false; 1778 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always)) 1779 return true; 1780 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise)) 1781 return true; 1782 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size)) 1783 return true; 1784 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) && 1785 shmem_huge != SHMEM_HUGE_NEVER) 1786 return true; 1787 1788 return false; 1789 } 1790 1791 unsigned long shmem_allowable_huge_orders(struct inode *inode, 1792 struct vm_area_struct *vma, pgoff_t index, 1793 loff_t write_end, bool shmem_huge_force) 1794 { 1795 unsigned long mask = READ_ONCE(huge_shmem_orders_always); 1796 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size); 1797 vm_flags_t vm_flags = vma ? vma->vm_flags : 0; 1798 unsigned int global_orders; 1799 1800 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags, shmem_huge_force))) 1801 return 0; 1802 1803 global_orders = shmem_huge_global_enabled(inode, index, write_end, 1804 shmem_huge_force, vma, vm_flags); 1805 /* Tmpfs huge pages allocation */ 1806 if (!vma || !vma_is_anon_shmem(vma)) 1807 return global_orders; 1808 1809 /* 1810 * Following the 'deny' semantics of the top level, force the huge 1811 * option off from all mounts. 1812 */ 1813 if (shmem_huge == SHMEM_HUGE_DENY) 1814 return 0; 1815 1816 /* 1817 * Only allow inherit orders if the top-level value is 'force', which 1818 * means non-PMD sized THP can not override 'huge' mount option now. 1819 */ 1820 if (shmem_huge == SHMEM_HUGE_FORCE) 1821 return READ_ONCE(huge_shmem_orders_inherit); 1822 1823 /* Allow mTHP that will be fully within i_size. */ 1824 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0); 1825 1826 if (vm_flags & VM_HUGEPAGE) 1827 mask |= READ_ONCE(huge_shmem_orders_madvise); 1828 1829 if (global_orders > 0) 1830 mask |= READ_ONCE(huge_shmem_orders_inherit); 1831 1832 return THP_ORDERS_ALL_FILE_DEFAULT & mask; 1833 } 1834 1835 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1836 struct address_space *mapping, pgoff_t index, 1837 unsigned long orders) 1838 { 1839 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1840 pgoff_t aligned_index; 1841 unsigned long pages; 1842 int order; 1843 1844 if (vma) { 1845 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 1846 if (!orders) 1847 return 0; 1848 } 1849 1850 /* Find the highest order that can add into the page cache */ 1851 order = highest_order(orders); 1852 while (orders) { 1853 pages = 1UL << order; 1854 aligned_index = round_down(index, pages); 1855 /* 1856 * Check for conflict before waiting on a huge allocation. 1857 * Conflict might be that a huge page has just been allocated 1858 * and added to page cache by a racing thread, or that there 1859 * is already at least one small page in the huge extent. 1860 * Be careful to retry when appropriate, but not forever! 1861 * Elsewhere -EEXIST would be the right code, but not here. 1862 */ 1863 if (!xa_find(&mapping->i_pages, &aligned_index, 1864 aligned_index + pages - 1, XA_PRESENT)) 1865 break; 1866 order = next_order(&orders, order); 1867 } 1868 1869 return orders; 1870 } 1871 #else 1872 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1873 struct address_space *mapping, pgoff_t index, 1874 unsigned long orders) 1875 { 1876 return 0; 1877 } 1878 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1879 1880 static struct folio *shmem_alloc_folio(gfp_t gfp, int order, 1881 struct shmem_inode_info *info, pgoff_t index) 1882 { 1883 struct mempolicy *mpol; 1884 pgoff_t ilx; 1885 struct folio *folio; 1886 1887 mpol = shmem_get_pgoff_policy(info, index, order, &ilx); 1888 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id()); 1889 mpol_cond_put(mpol); 1890 1891 return folio; 1892 } 1893 1894 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf, 1895 gfp_t gfp, struct inode *inode, pgoff_t index, 1896 struct mm_struct *fault_mm, unsigned long orders) 1897 { 1898 struct address_space *mapping = inode->i_mapping; 1899 struct shmem_inode_info *info = SHMEM_I(inode); 1900 unsigned long suitable_orders = 0; 1901 struct folio *folio = NULL; 1902 pgoff_t aligned_index; 1903 long pages; 1904 int error, order; 1905 1906 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1907 orders = 0; 1908 1909 if (orders > 0) { 1910 suitable_orders = shmem_suitable_orders(inode, vmf, 1911 mapping, index, orders); 1912 1913 order = highest_order(suitable_orders); 1914 while (suitable_orders) { 1915 pages = 1UL << order; 1916 aligned_index = round_down(index, pages); 1917 folio = shmem_alloc_folio(gfp, order, info, aligned_index); 1918 if (folio) { 1919 index = aligned_index; 1920 goto allocated; 1921 } 1922 1923 if (pages == HPAGE_PMD_NR) 1924 count_vm_event(THP_FILE_FALLBACK); 1925 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK); 1926 order = next_order(&suitable_orders, order); 1927 } 1928 } else { 1929 pages = 1; 1930 folio = shmem_alloc_folio(gfp, 0, info, index); 1931 } 1932 if (!folio) 1933 return ERR_PTR(-ENOMEM); 1934 1935 allocated: 1936 __folio_set_locked(folio); 1937 __folio_set_swapbacked(folio); 1938 1939 gfp &= GFP_RECLAIM_MASK; 1940 error = mem_cgroup_charge(folio, fault_mm, gfp); 1941 if (error) { 1942 if (xa_find(&mapping->i_pages, &index, 1943 index + pages - 1, XA_PRESENT)) { 1944 error = -EEXIST; 1945 } else if (pages > 1) { 1946 if (pages == HPAGE_PMD_NR) { 1947 count_vm_event(THP_FILE_FALLBACK); 1948 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1949 } 1950 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK); 1951 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE); 1952 } 1953 goto unlock; 1954 } 1955 1956 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1957 if (error) 1958 goto unlock; 1959 1960 error = shmem_inode_acct_blocks(inode, pages); 1961 if (error) { 1962 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1963 long freed; 1964 /* 1965 * Try to reclaim some space by splitting a few 1966 * large folios beyond i_size on the filesystem. 1967 */ 1968 shmem_unused_huge_shrink(sbinfo, NULL, pages); 1969 /* 1970 * And do a shmem_recalc_inode() to account for freed pages: 1971 * except our folio is there in cache, so not quite balanced. 1972 */ 1973 spin_lock(&info->lock); 1974 freed = pages + info->alloced - info->swapped - 1975 READ_ONCE(mapping->nrpages); 1976 if (freed > 0) 1977 info->alloced -= freed; 1978 spin_unlock(&info->lock); 1979 if (freed > 0) 1980 shmem_inode_unacct_blocks(inode, freed); 1981 error = shmem_inode_acct_blocks(inode, pages); 1982 if (error) { 1983 filemap_remove_folio(folio); 1984 goto unlock; 1985 } 1986 } 1987 1988 shmem_recalc_inode(inode, pages, 0); 1989 folio_add_lru(folio); 1990 return folio; 1991 1992 unlock: 1993 folio_unlock(folio); 1994 folio_put(folio); 1995 return ERR_PTR(error); 1996 } 1997 1998 static struct folio *shmem_swap_alloc_folio(struct inode *inode, 1999 struct vm_area_struct *vma, pgoff_t index, 2000 swp_entry_t entry, int order, gfp_t gfp) 2001 { 2002 struct shmem_inode_info *info = SHMEM_I(inode); 2003 int nr_pages = 1 << order; 2004 struct folio *new; 2005 gfp_t alloc_gfp; 2006 void *shadow; 2007 2008 /* 2009 * We have arrived here because our zones are constrained, so don't 2010 * limit chance of success with further cpuset and node constraints. 2011 */ 2012 gfp &= ~GFP_CONSTRAINT_MASK; 2013 alloc_gfp = gfp; 2014 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 2015 if (WARN_ON_ONCE(order)) 2016 return ERR_PTR(-EINVAL); 2017 } else if (order) { 2018 /* 2019 * If uffd is active for the vma, we need per-page fault 2020 * fidelity to maintain the uffd semantics, then fallback 2021 * to swapin order-0 folio, as well as for zswap case. 2022 * Any existing sub folio in the swap cache also blocks 2023 * mTHP swapin. 2024 */ 2025 if ((vma && unlikely(userfaultfd_armed(vma))) || 2026 !zswap_never_enabled() || 2027 non_swapcache_batch(entry, nr_pages) != nr_pages) 2028 goto fallback; 2029 2030 alloc_gfp = limit_gfp_mask(vma_thp_gfp_mask(vma), gfp); 2031 } 2032 retry: 2033 new = shmem_alloc_folio(alloc_gfp, order, info, index); 2034 if (!new) { 2035 new = ERR_PTR(-ENOMEM); 2036 goto fallback; 2037 } 2038 2039 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL, 2040 alloc_gfp, entry)) { 2041 folio_put(new); 2042 new = ERR_PTR(-ENOMEM); 2043 goto fallback; 2044 } 2045 2046 /* 2047 * Prevent parallel swapin from proceeding with the swap cache flag. 2048 * 2049 * Of course there is another possible concurrent scenario as well, 2050 * that is to say, the swap cache flag of a large folio has already 2051 * been set by swapcache_prepare(), while another thread may have 2052 * already split the large swap entry stored in the shmem mapping. 2053 * In this case, shmem_add_to_page_cache() will help identify the 2054 * concurrent swapin and return -EEXIST. 2055 */ 2056 if (swapcache_prepare(entry, nr_pages)) { 2057 folio_put(new); 2058 new = ERR_PTR(-EEXIST); 2059 /* Try smaller folio to avoid cache conflict */ 2060 goto fallback; 2061 } 2062 2063 __folio_set_locked(new); 2064 __folio_set_swapbacked(new); 2065 new->swap = entry; 2066 2067 memcg1_swapin(entry, nr_pages); 2068 shadow = swap_cache_get_shadow(entry); 2069 if (shadow) 2070 workingset_refault(new, shadow); 2071 folio_add_lru(new); 2072 swap_read_folio(new, NULL); 2073 return new; 2074 fallback: 2075 /* Order 0 swapin failed, nothing to fallback to, abort */ 2076 if (!order) 2077 return new; 2078 entry.val += index - round_down(index, nr_pages); 2079 alloc_gfp = gfp; 2080 nr_pages = 1; 2081 order = 0; 2082 goto retry; 2083 } 2084 2085 /* 2086 * When a page is moved from swapcache to shmem filecache (either by the 2087 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 2088 * shmem_unuse_inode()), it may have been read in earlier from swap, in 2089 * ignorance of the mapping it belongs to. If that mapping has special 2090 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 2091 * we may need to copy to a suitable page before moving to filecache. 2092 * 2093 * In a future release, this may well be extended to respect cpuset and 2094 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 2095 * but for now it is a simple matter of zone. 2096 */ 2097 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 2098 { 2099 return folio_zonenum(folio) > gfp_zone(gfp); 2100 } 2101 2102 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 2103 struct shmem_inode_info *info, pgoff_t index, 2104 struct vm_area_struct *vma) 2105 { 2106 struct swap_cluster_info *ci; 2107 struct folio *new, *old = *foliop; 2108 swp_entry_t entry = old->swap; 2109 int nr_pages = folio_nr_pages(old); 2110 int error = 0; 2111 2112 /* 2113 * We have arrived here because our zones are constrained, so don't 2114 * limit chance of success by further cpuset and node constraints. 2115 */ 2116 gfp &= ~GFP_CONSTRAINT_MASK; 2117 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2118 if (nr_pages > 1) { 2119 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 2120 2121 gfp = limit_gfp_mask(huge_gfp, gfp); 2122 } 2123 #endif 2124 2125 new = shmem_alloc_folio(gfp, folio_order(old), info, index); 2126 if (!new) 2127 return -ENOMEM; 2128 2129 folio_ref_add(new, nr_pages); 2130 folio_copy(new, old); 2131 flush_dcache_folio(new); 2132 2133 __folio_set_locked(new); 2134 __folio_set_swapbacked(new); 2135 folio_mark_uptodate(new); 2136 new->swap = entry; 2137 folio_set_swapcache(new); 2138 2139 ci = swap_cluster_get_and_lock_irq(old); 2140 __swap_cache_replace_folio(ci, old, new); 2141 mem_cgroup_replace_folio(old, new); 2142 shmem_update_stats(new, nr_pages); 2143 shmem_update_stats(old, -nr_pages); 2144 swap_cluster_unlock_irq(ci); 2145 2146 folio_add_lru(new); 2147 *foliop = new; 2148 2149 folio_clear_swapcache(old); 2150 old->private = NULL; 2151 2152 folio_unlock(old); 2153 /* 2154 * The old folio are removed from swap cache, drop the 'nr_pages' 2155 * reference, as well as one temporary reference getting from swap 2156 * cache. 2157 */ 2158 folio_put_refs(old, nr_pages + 1); 2159 return error; 2160 } 2161 2162 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 2163 struct folio *folio, swp_entry_t swap, 2164 bool skip_swapcache) 2165 { 2166 struct address_space *mapping = inode->i_mapping; 2167 swp_entry_t swapin_error; 2168 void *old; 2169 int nr_pages; 2170 2171 swapin_error = make_poisoned_swp_entry(); 2172 old = xa_cmpxchg_irq(&mapping->i_pages, index, 2173 swp_to_radix_entry(swap), 2174 swp_to_radix_entry(swapin_error), 0); 2175 if (old != swp_to_radix_entry(swap)) 2176 return; 2177 2178 nr_pages = folio_nr_pages(folio); 2179 folio_wait_writeback(folio); 2180 if (!skip_swapcache) 2181 swap_cache_del_folio(folio); 2182 /* 2183 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 2184 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 2185 * in shmem_evict_inode(). 2186 */ 2187 shmem_recalc_inode(inode, -nr_pages, -nr_pages); 2188 swap_free_nr(swap, nr_pages); 2189 } 2190 2191 static int shmem_split_large_entry(struct inode *inode, pgoff_t index, 2192 swp_entry_t swap, gfp_t gfp) 2193 { 2194 struct address_space *mapping = inode->i_mapping; 2195 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0); 2196 int split_order = 0; 2197 int i; 2198 2199 /* Convert user data gfp flags to xarray node gfp flags */ 2200 gfp &= GFP_RECLAIM_MASK; 2201 2202 for (;;) { 2203 void *old = NULL; 2204 int cur_order; 2205 pgoff_t swap_index; 2206 2207 xas_lock_irq(&xas); 2208 old = xas_load(&xas); 2209 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) { 2210 xas_set_err(&xas, -EEXIST); 2211 goto unlock; 2212 } 2213 2214 cur_order = xas_get_order(&xas); 2215 if (!cur_order) 2216 goto unlock; 2217 2218 /* Try to split large swap entry in pagecache */ 2219 swap_index = round_down(index, 1 << cur_order); 2220 split_order = xas_try_split_min_order(cur_order); 2221 2222 while (cur_order > 0) { 2223 pgoff_t aligned_index = 2224 round_down(index, 1 << cur_order); 2225 pgoff_t swap_offset = aligned_index - swap_index; 2226 2227 xas_set_order(&xas, index, split_order); 2228 xas_try_split(&xas, old, cur_order); 2229 if (xas_error(&xas)) 2230 goto unlock; 2231 2232 /* 2233 * Re-set the swap entry after splitting, and the swap 2234 * offset of the original large entry must be continuous. 2235 */ 2236 for (i = 0; i < 1 << cur_order; 2237 i += (1 << split_order)) { 2238 swp_entry_t tmp; 2239 2240 tmp = swp_entry(swp_type(swap), 2241 swp_offset(swap) + swap_offset + 2242 i); 2243 __xa_store(&mapping->i_pages, aligned_index + i, 2244 swp_to_radix_entry(tmp), 0); 2245 } 2246 cur_order = split_order; 2247 split_order = xas_try_split_min_order(split_order); 2248 } 2249 2250 unlock: 2251 xas_unlock_irq(&xas); 2252 2253 if (!xas_nomem(&xas, gfp)) 2254 break; 2255 } 2256 2257 if (xas_error(&xas)) 2258 return xas_error(&xas); 2259 2260 return 0; 2261 } 2262 2263 /* 2264 * Swap in the folio pointed to by *foliop. 2265 * Caller has to make sure that *foliop contains a valid swapped folio. 2266 * Returns 0 and the folio in foliop if success. On failure, returns the 2267 * error code and NULL in *foliop. 2268 */ 2269 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 2270 struct folio **foliop, enum sgp_type sgp, 2271 gfp_t gfp, struct vm_area_struct *vma, 2272 vm_fault_t *fault_type) 2273 { 2274 struct address_space *mapping = inode->i_mapping; 2275 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL; 2276 struct shmem_inode_info *info = SHMEM_I(inode); 2277 swp_entry_t swap; 2278 softleaf_t index_entry; 2279 struct swap_info_struct *si; 2280 struct folio *folio = NULL; 2281 bool skip_swapcache = false; 2282 int error, nr_pages, order; 2283 pgoff_t offset; 2284 2285 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 2286 index_entry = radix_to_swp_entry(*foliop); 2287 swap = index_entry; 2288 *foliop = NULL; 2289 2290 if (softleaf_is_poison_marker(index_entry)) 2291 return -EIO; 2292 2293 si = get_swap_device(index_entry); 2294 order = shmem_confirm_swap(mapping, index, index_entry); 2295 if (unlikely(!si)) { 2296 if (order < 0) 2297 return -EEXIST; 2298 else 2299 return -EINVAL; 2300 } 2301 if (unlikely(order < 0)) { 2302 put_swap_device(si); 2303 return -EEXIST; 2304 } 2305 2306 /* index may point to the middle of a large entry, get the sub entry */ 2307 if (order) { 2308 offset = index - round_down(index, 1 << order); 2309 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2310 } 2311 2312 /* Look it up and read it in.. */ 2313 folio = swap_cache_get_folio(swap); 2314 if (!folio) { 2315 if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) { 2316 /* Direct swapin skipping swap cache & readahead */ 2317 folio = shmem_swap_alloc_folio(inode, vma, index, 2318 index_entry, order, gfp); 2319 if (IS_ERR(folio)) { 2320 error = PTR_ERR(folio); 2321 folio = NULL; 2322 goto failed; 2323 } 2324 skip_swapcache = true; 2325 } else { 2326 /* Cached swapin only supports order 0 folio */ 2327 folio = shmem_swapin_cluster(swap, gfp, info, index); 2328 if (!folio) { 2329 error = -ENOMEM; 2330 goto failed; 2331 } 2332 } 2333 if (fault_type) { 2334 *fault_type |= VM_FAULT_MAJOR; 2335 count_vm_event(PGMAJFAULT); 2336 count_memcg_event_mm(fault_mm, PGMAJFAULT); 2337 } 2338 } else { 2339 swap_update_readahead(folio, NULL, 0); 2340 } 2341 2342 if (order > folio_order(folio)) { 2343 /* 2344 * Swapin may get smaller folios due to various reasons: 2345 * It may fallback to order 0 due to memory pressure or race, 2346 * swap readahead may swap in order 0 folios into swapcache 2347 * asynchronously, while the shmem mapping can still stores 2348 * large swap entries. In such cases, we should split the 2349 * large swap entry to prevent possible data corruption. 2350 */ 2351 error = shmem_split_large_entry(inode, index, index_entry, gfp); 2352 if (error) 2353 goto failed_nolock; 2354 } 2355 2356 /* 2357 * If the folio is large, round down swap and index by folio size. 2358 * No matter what race occurs, the swap layer ensures we either get 2359 * a valid folio that has its swap entry aligned by size, or a 2360 * temporarily invalid one which we'll abort very soon and retry. 2361 * 2362 * shmem_add_to_page_cache ensures the whole range contains expected 2363 * entries and prevents any corruption, so any race split is fine 2364 * too, it will succeed as long as the entries are still there. 2365 */ 2366 nr_pages = folio_nr_pages(folio); 2367 if (nr_pages > 1) { 2368 swap.val = round_down(swap.val, nr_pages); 2369 index = round_down(index, nr_pages); 2370 } 2371 2372 /* 2373 * We have to do this with the folio locked to prevent races. 2374 * The shmem_confirm_swap below only checks if the first swap 2375 * entry matches the folio, that's enough to ensure the folio 2376 * is not used outside of shmem, as shmem swap entries 2377 * and swap cache folios are never partially freed. 2378 */ 2379 folio_lock(folio); 2380 if ((!skip_swapcache && !folio_test_swapcache(folio)) || 2381 shmem_confirm_swap(mapping, index, swap) < 0 || 2382 folio->swap.val != swap.val) { 2383 error = -EEXIST; 2384 goto unlock; 2385 } 2386 if (!folio_test_uptodate(folio)) { 2387 error = -EIO; 2388 goto failed; 2389 } 2390 folio_wait_writeback(folio); 2391 2392 /* 2393 * Some architectures may have to restore extra metadata to the 2394 * folio after reading from swap. 2395 */ 2396 arch_swap_restore(folio_swap(swap, folio), folio); 2397 2398 if (shmem_should_replace_folio(folio, gfp)) { 2399 error = shmem_replace_folio(&folio, gfp, info, index, vma); 2400 if (error) 2401 goto failed; 2402 } 2403 2404 error = shmem_add_to_page_cache(folio, mapping, index, 2405 swp_to_radix_entry(swap), gfp); 2406 if (error) 2407 goto failed; 2408 2409 shmem_recalc_inode(inode, 0, -nr_pages); 2410 2411 if (sgp == SGP_WRITE) 2412 folio_mark_accessed(folio); 2413 2414 if (skip_swapcache) { 2415 folio->swap.val = 0; 2416 swapcache_clear(si, swap, nr_pages); 2417 } else { 2418 swap_cache_del_folio(folio); 2419 } 2420 folio_mark_dirty(folio); 2421 swap_free_nr(swap, nr_pages); 2422 put_swap_device(si); 2423 2424 *foliop = folio; 2425 return 0; 2426 failed: 2427 if (shmem_confirm_swap(mapping, index, swap) < 0) 2428 error = -EEXIST; 2429 if (error == -EIO) 2430 shmem_set_folio_swapin_error(inode, index, folio, swap, 2431 skip_swapcache); 2432 unlock: 2433 if (folio) 2434 folio_unlock(folio); 2435 failed_nolock: 2436 if (skip_swapcache) 2437 swapcache_clear(si, folio->swap, folio_nr_pages(folio)); 2438 if (folio) 2439 folio_put(folio); 2440 put_swap_device(si); 2441 2442 return error; 2443 } 2444 2445 /* 2446 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 2447 * 2448 * If we allocate a new one we do not mark it dirty. That's up to the 2449 * vm. If we swap it in we mark it dirty since we also free the swap 2450 * entry since a page cannot live in both the swap and page cache. 2451 * 2452 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 2453 */ 2454 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 2455 loff_t write_end, struct folio **foliop, enum sgp_type sgp, 2456 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type) 2457 { 2458 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 2459 struct mm_struct *fault_mm; 2460 struct folio *folio; 2461 int error; 2462 bool alloced; 2463 unsigned long orders = 0; 2464 2465 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 2466 return -EINVAL; 2467 2468 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 2469 return -EFBIG; 2470 repeat: 2471 if (sgp <= SGP_CACHE && 2472 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 2473 return -EINVAL; 2474 2475 alloced = false; 2476 fault_mm = vma ? vma->vm_mm : NULL; 2477 2478 folio = filemap_get_entry(inode->i_mapping, index); 2479 if (folio && vma && userfaultfd_minor(vma)) { 2480 if (!xa_is_value(folio)) 2481 folio_put(folio); 2482 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 2483 return 0; 2484 } 2485 2486 if (xa_is_value(folio)) { 2487 error = shmem_swapin_folio(inode, index, &folio, 2488 sgp, gfp, vma, fault_type); 2489 if (error == -EEXIST) 2490 goto repeat; 2491 2492 *foliop = folio; 2493 return error; 2494 } 2495 2496 if (folio) { 2497 folio_lock(folio); 2498 2499 /* Has the folio been truncated or swapped out? */ 2500 if (unlikely(folio->mapping != inode->i_mapping)) { 2501 folio_unlock(folio); 2502 folio_put(folio); 2503 goto repeat; 2504 } 2505 if (sgp == SGP_WRITE) 2506 folio_mark_accessed(folio); 2507 if (folio_test_uptodate(folio)) 2508 goto out; 2509 /* fallocated folio */ 2510 if (sgp != SGP_READ) 2511 goto clear; 2512 folio_unlock(folio); 2513 folio_put(folio); 2514 } 2515 2516 /* 2517 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2518 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2519 */ 2520 *foliop = NULL; 2521 if (sgp == SGP_READ) 2522 return 0; 2523 if (sgp == SGP_NOALLOC) 2524 return -ENOENT; 2525 2526 /* 2527 * Fast cache lookup and swap lookup did not find it: allocate. 2528 */ 2529 2530 if (vma && userfaultfd_missing(vma)) { 2531 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2532 return 0; 2533 } 2534 2535 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */ 2536 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false); 2537 if (orders > 0) { 2538 gfp_t huge_gfp; 2539 2540 huge_gfp = vma_thp_gfp_mask(vma); 2541 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2542 folio = shmem_alloc_and_add_folio(vmf, huge_gfp, 2543 inode, index, fault_mm, orders); 2544 if (!IS_ERR(folio)) { 2545 if (folio_test_pmd_mappable(folio)) 2546 count_vm_event(THP_FILE_ALLOC); 2547 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC); 2548 goto alloced; 2549 } 2550 if (PTR_ERR(folio) == -EEXIST) 2551 goto repeat; 2552 } 2553 2554 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0); 2555 if (IS_ERR(folio)) { 2556 error = PTR_ERR(folio); 2557 if (error == -EEXIST) 2558 goto repeat; 2559 folio = NULL; 2560 goto unlock; 2561 } 2562 2563 alloced: 2564 alloced = true; 2565 if (folio_test_large(folio) && 2566 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2567 folio_next_index(folio)) { 2568 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2569 struct shmem_inode_info *info = SHMEM_I(inode); 2570 /* 2571 * Part of the large folio is beyond i_size: subject 2572 * to shrink under memory pressure. 2573 */ 2574 spin_lock(&sbinfo->shrinklist_lock); 2575 /* 2576 * _careful to defend against unlocked access to 2577 * ->shrink_list in shmem_unused_huge_shrink() 2578 */ 2579 if (list_empty_careful(&info->shrinklist)) { 2580 list_add_tail(&info->shrinklist, 2581 &sbinfo->shrinklist); 2582 sbinfo->shrinklist_len++; 2583 } 2584 spin_unlock(&sbinfo->shrinklist_lock); 2585 } 2586 2587 if (sgp == SGP_WRITE) 2588 folio_set_referenced(folio); 2589 /* 2590 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2591 */ 2592 if (sgp == SGP_FALLOC) 2593 sgp = SGP_WRITE; 2594 clear: 2595 /* 2596 * Let SGP_WRITE caller clear ends if write does not fill folio; 2597 * but SGP_FALLOC on a folio fallocated earlier must initialize 2598 * it now, lest undo on failure cancel our earlier guarantee. 2599 */ 2600 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2601 long i, n = folio_nr_pages(folio); 2602 2603 for (i = 0; i < n; i++) 2604 clear_highpage(folio_page(folio, i)); 2605 flush_dcache_folio(folio); 2606 folio_mark_uptodate(folio); 2607 } 2608 2609 /* Perhaps the file has been truncated since we checked */ 2610 if (sgp <= SGP_CACHE && 2611 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2612 error = -EINVAL; 2613 goto unlock; 2614 } 2615 out: 2616 *foliop = folio; 2617 return 0; 2618 2619 /* 2620 * Error recovery. 2621 */ 2622 unlock: 2623 if (alloced) 2624 filemap_remove_folio(folio); 2625 shmem_recalc_inode(inode, 0, 0); 2626 if (folio) { 2627 folio_unlock(folio); 2628 folio_put(folio); 2629 } 2630 return error; 2631 } 2632 2633 /** 2634 * shmem_get_folio - find, and lock a shmem folio. 2635 * @inode: inode to search 2636 * @index: the page index. 2637 * @write_end: end of a write, could extend inode size 2638 * @foliop: pointer to the folio if found 2639 * @sgp: SGP_* flags to control behavior 2640 * 2641 * Looks up the page cache entry at @inode & @index. If a folio is 2642 * present, it is returned locked with an increased refcount. 2643 * 2644 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2645 * before unlocking the folio to ensure that the folio is not reclaimed. 2646 * There is no need to reserve space before calling folio_mark_dirty(). 2647 * 2648 * When no folio is found, the behavior depends on @sgp: 2649 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2650 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2651 * - for all other flags a new folio is allocated, inserted into the 2652 * page cache and returned locked in @foliop. 2653 * 2654 * Context: May sleep. 2655 * Return: 0 if successful, else a negative error code. 2656 */ 2657 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end, 2658 struct folio **foliop, enum sgp_type sgp) 2659 { 2660 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp, 2661 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2662 } 2663 EXPORT_SYMBOL_GPL(shmem_get_folio); 2664 2665 /* 2666 * This is like autoremove_wake_function, but it removes the wait queue 2667 * entry unconditionally - even if something else had already woken the 2668 * target. 2669 */ 2670 static int synchronous_wake_function(wait_queue_entry_t *wait, 2671 unsigned int mode, int sync, void *key) 2672 { 2673 int ret = default_wake_function(wait, mode, sync, key); 2674 list_del_init(&wait->entry); 2675 return ret; 2676 } 2677 2678 /* 2679 * Trinity finds that probing a hole which tmpfs is punching can 2680 * prevent the hole-punch from ever completing: which in turn 2681 * locks writers out with its hold on i_rwsem. So refrain from 2682 * faulting pages into the hole while it's being punched. Although 2683 * shmem_undo_range() does remove the additions, it may be unable to 2684 * keep up, as each new page needs its own unmap_mapping_range() call, 2685 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2686 * 2687 * It does not matter if we sometimes reach this check just before the 2688 * hole-punch begins, so that one fault then races with the punch: 2689 * we just need to make racing faults a rare case. 2690 * 2691 * The implementation below would be much simpler if we just used a 2692 * standard mutex or completion: but we cannot take i_rwsem in fault, 2693 * and bloating every shmem inode for this unlikely case would be sad. 2694 */ 2695 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2696 { 2697 struct shmem_falloc *shmem_falloc; 2698 struct file *fpin = NULL; 2699 vm_fault_t ret = 0; 2700 2701 spin_lock(&inode->i_lock); 2702 shmem_falloc = inode->i_private; 2703 if (shmem_falloc && 2704 shmem_falloc->waitq && 2705 vmf->pgoff >= shmem_falloc->start && 2706 vmf->pgoff < shmem_falloc->next) { 2707 wait_queue_head_t *shmem_falloc_waitq; 2708 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2709 2710 ret = VM_FAULT_NOPAGE; 2711 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2712 shmem_falloc_waitq = shmem_falloc->waitq; 2713 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2714 TASK_UNINTERRUPTIBLE); 2715 spin_unlock(&inode->i_lock); 2716 schedule(); 2717 2718 /* 2719 * shmem_falloc_waitq points into the shmem_fallocate() 2720 * stack of the hole-punching task: shmem_falloc_waitq 2721 * is usually invalid by the time we reach here, but 2722 * finish_wait() does not dereference it in that case; 2723 * though i_lock needed lest racing with wake_up_all(). 2724 */ 2725 spin_lock(&inode->i_lock); 2726 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2727 } 2728 spin_unlock(&inode->i_lock); 2729 if (fpin) { 2730 fput(fpin); 2731 ret = VM_FAULT_RETRY; 2732 } 2733 return ret; 2734 } 2735 2736 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2737 { 2738 struct inode *inode = file_inode(vmf->vma->vm_file); 2739 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2740 struct folio *folio = NULL; 2741 vm_fault_t ret = 0; 2742 int err; 2743 2744 /* 2745 * Trinity finds that probing a hole which tmpfs is punching can 2746 * prevent the hole-punch from ever completing: noted in i_private. 2747 */ 2748 if (unlikely(inode->i_private)) { 2749 ret = shmem_falloc_wait(vmf, inode); 2750 if (ret) 2751 return ret; 2752 } 2753 2754 WARN_ON_ONCE(vmf->page != NULL); 2755 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE, 2756 gfp, vmf, &ret); 2757 if (err) 2758 return vmf_error(err); 2759 if (folio) { 2760 vmf->page = folio_file_page(folio, vmf->pgoff); 2761 ret |= VM_FAULT_LOCKED; 2762 } 2763 return ret; 2764 } 2765 2766 unsigned long shmem_get_unmapped_area(struct file *file, 2767 unsigned long uaddr, unsigned long len, 2768 unsigned long pgoff, unsigned long flags) 2769 { 2770 unsigned long addr; 2771 unsigned long offset; 2772 unsigned long inflated_len; 2773 unsigned long inflated_addr; 2774 unsigned long inflated_offset; 2775 unsigned long hpage_size; 2776 2777 if (len > TASK_SIZE) 2778 return -ENOMEM; 2779 2780 addr = mm_get_unmapped_area(file, uaddr, len, pgoff, flags); 2781 2782 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2783 return addr; 2784 if (IS_ERR_VALUE(addr)) 2785 return addr; 2786 if (addr & ~PAGE_MASK) 2787 return addr; 2788 if (addr > TASK_SIZE - len) 2789 return addr; 2790 2791 if (shmem_huge == SHMEM_HUGE_DENY) 2792 return addr; 2793 if (flags & MAP_FIXED) 2794 return addr; 2795 /* 2796 * Our priority is to support MAP_SHARED mapped hugely; 2797 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2798 * But if caller specified an address hint and we allocated area there 2799 * successfully, respect that as before. 2800 */ 2801 if (uaddr == addr) 2802 return addr; 2803 2804 hpage_size = HPAGE_PMD_SIZE; 2805 if (shmem_huge != SHMEM_HUGE_FORCE) { 2806 struct super_block *sb; 2807 unsigned long __maybe_unused hpage_orders; 2808 int order = 0; 2809 2810 if (file) { 2811 VM_BUG_ON(file->f_op != &shmem_file_operations); 2812 sb = file_inode(file)->i_sb; 2813 } else { 2814 /* 2815 * Called directly from mm/mmap.c, or drivers/char/mem.c 2816 * for "/dev/zero", to create a shared anonymous object. 2817 */ 2818 if (IS_ERR(shm_mnt)) 2819 return addr; 2820 sb = shm_mnt->mnt_sb; 2821 2822 /* 2823 * Find the highest mTHP order used for anonymous shmem to 2824 * provide a suitable alignment address. 2825 */ 2826 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2827 hpage_orders = READ_ONCE(huge_shmem_orders_always); 2828 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size); 2829 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise); 2830 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 2831 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit); 2832 2833 if (hpage_orders > 0) { 2834 order = highest_order(hpage_orders); 2835 hpage_size = PAGE_SIZE << order; 2836 } 2837 #endif 2838 } 2839 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order) 2840 return addr; 2841 } 2842 2843 if (len < hpage_size) 2844 return addr; 2845 2846 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1); 2847 if (offset && offset + len < 2 * hpage_size) 2848 return addr; 2849 if ((addr & (hpage_size - 1)) == offset) 2850 return addr; 2851 2852 inflated_len = len + hpage_size - PAGE_SIZE; 2853 if (inflated_len > TASK_SIZE) 2854 return addr; 2855 if (inflated_len < len) 2856 return addr; 2857 2858 inflated_addr = mm_get_unmapped_area(NULL, uaddr, inflated_len, 0, flags); 2859 if (IS_ERR_VALUE(inflated_addr)) 2860 return addr; 2861 if (inflated_addr & ~PAGE_MASK) 2862 return addr; 2863 2864 inflated_offset = inflated_addr & (hpage_size - 1); 2865 inflated_addr += offset - inflated_offset; 2866 if (inflated_offset > offset) 2867 inflated_addr += hpage_size; 2868 2869 if (inflated_addr > TASK_SIZE - len) 2870 return addr; 2871 return inflated_addr; 2872 } 2873 2874 #ifdef CONFIG_NUMA 2875 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2876 { 2877 struct inode *inode = file_inode(vma->vm_file); 2878 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2879 } 2880 2881 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2882 unsigned long addr, pgoff_t *ilx) 2883 { 2884 struct inode *inode = file_inode(vma->vm_file); 2885 pgoff_t index; 2886 2887 /* 2888 * Bias interleave by inode number to distribute better across nodes; 2889 * but this interface is independent of which page order is used, so 2890 * supplies only that bias, letting caller apply the offset (adjusted 2891 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2892 */ 2893 *ilx = inode->i_ino; 2894 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2895 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2896 } 2897 2898 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2899 pgoff_t index, unsigned int order, pgoff_t *ilx) 2900 { 2901 struct mempolicy *mpol; 2902 2903 /* Bias interleave by inode number to distribute better across nodes */ 2904 *ilx = info->vfs_inode.i_ino + (index >> order); 2905 2906 mpol = mpol_shared_policy_lookup(&info->policy, index); 2907 return mpol ? mpol : get_task_policy(current); 2908 } 2909 #else 2910 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2911 pgoff_t index, unsigned int order, pgoff_t *ilx) 2912 { 2913 *ilx = 0; 2914 return NULL; 2915 } 2916 #endif /* CONFIG_NUMA */ 2917 2918 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2919 { 2920 struct inode *inode = file_inode(file); 2921 struct shmem_inode_info *info = SHMEM_I(inode); 2922 int retval = -ENOMEM; 2923 2924 /* 2925 * What serializes the accesses to info->flags? 2926 * ipc_lock_object() when called from shmctl_do_lock(), 2927 * no serialization needed when called from shm_destroy(). 2928 */ 2929 if (lock && !(info->flags & VM_LOCKED)) { 2930 if (!user_shm_lock(inode->i_size, ucounts)) 2931 goto out_nomem; 2932 info->flags |= VM_LOCKED; 2933 mapping_set_unevictable(file->f_mapping); 2934 } 2935 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2936 user_shm_unlock(inode->i_size, ucounts); 2937 info->flags &= ~VM_LOCKED; 2938 mapping_clear_unevictable(file->f_mapping); 2939 } 2940 retval = 0; 2941 2942 out_nomem: 2943 return retval; 2944 } 2945 2946 static int shmem_mmap_prepare(struct vm_area_desc *desc) 2947 { 2948 struct file *file = desc->file; 2949 struct inode *inode = file_inode(file); 2950 2951 file_accessed(file); 2952 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2953 if (inode->i_nlink) 2954 desc->vm_ops = &shmem_vm_ops; 2955 else 2956 desc->vm_ops = &shmem_anon_vm_ops; 2957 return 0; 2958 } 2959 2960 static int shmem_file_open(struct inode *inode, struct file *file) 2961 { 2962 file->f_mode |= FMODE_CAN_ODIRECT; 2963 return generic_file_open(inode, file); 2964 } 2965 2966 #ifdef CONFIG_TMPFS_XATTR 2967 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2968 2969 #if IS_ENABLED(CONFIG_UNICODE) 2970 /* 2971 * shmem_inode_casefold_flags - Deal with casefold file attribute flag 2972 * 2973 * The casefold file attribute needs some special checks. I can just be added to 2974 * an empty dir, and can't be removed from a non-empty dir. 2975 */ 2976 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 2977 struct dentry *dentry, unsigned int *i_flags) 2978 { 2979 unsigned int old = inode->i_flags; 2980 struct super_block *sb = inode->i_sb; 2981 2982 if (fsflags & FS_CASEFOLD_FL) { 2983 if (!(old & S_CASEFOLD)) { 2984 if (!sb->s_encoding) 2985 return -EOPNOTSUPP; 2986 2987 if (!S_ISDIR(inode->i_mode)) 2988 return -ENOTDIR; 2989 2990 if (dentry && !simple_empty(dentry)) 2991 return -ENOTEMPTY; 2992 } 2993 2994 *i_flags = *i_flags | S_CASEFOLD; 2995 } else if (old & S_CASEFOLD) { 2996 if (dentry && !simple_empty(dentry)) 2997 return -ENOTEMPTY; 2998 } 2999 3000 return 0; 3001 } 3002 #else 3003 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 3004 struct dentry *dentry, unsigned int *i_flags) 3005 { 3006 if (fsflags & FS_CASEFOLD_FL) 3007 return -EOPNOTSUPP; 3008 3009 return 0; 3010 } 3011 #endif 3012 3013 /* 3014 * chattr's fsflags are unrelated to extended attributes, 3015 * but tmpfs has chosen to enable them under the same config option. 3016 */ 3017 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3018 { 3019 unsigned int i_flags = 0; 3020 int ret; 3021 3022 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags); 3023 if (ret) 3024 return ret; 3025 3026 if (fsflags & FS_NOATIME_FL) 3027 i_flags |= S_NOATIME; 3028 if (fsflags & FS_APPEND_FL) 3029 i_flags |= S_APPEND; 3030 if (fsflags & FS_IMMUTABLE_FL) 3031 i_flags |= S_IMMUTABLE; 3032 /* 3033 * But FS_NODUMP_FL does not require any action in i_flags. 3034 */ 3035 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD); 3036 3037 return 0; 3038 } 3039 #else 3040 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3041 { 3042 } 3043 #define shmem_initxattrs NULL 3044 #endif 3045 3046 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 3047 { 3048 return &SHMEM_I(inode)->dir_offsets; 3049 } 3050 3051 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 3052 struct super_block *sb, 3053 struct inode *dir, umode_t mode, 3054 dev_t dev, unsigned long flags) 3055 { 3056 struct inode *inode; 3057 struct shmem_inode_info *info; 3058 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3059 ino_t ino; 3060 int err; 3061 3062 err = shmem_reserve_inode(sb, &ino); 3063 if (err) 3064 return ERR_PTR(err); 3065 3066 inode = new_inode(sb); 3067 if (!inode) { 3068 shmem_free_inode(sb, 0); 3069 return ERR_PTR(-ENOSPC); 3070 } 3071 3072 inode->i_ino = ino; 3073 inode_init_owner(idmap, inode, dir, mode); 3074 inode->i_blocks = 0; 3075 simple_inode_init_ts(inode); 3076 inode->i_generation = get_random_u32(); 3077 info = SHMEM_I(inode); 3078 memset(info, 0, (char *)inode - (char *)info); 3079 spin_lock_init(&info->lock); 3080 atomic_set(&info->stop_eviction, 0); 3081 info->seals = F_SEAL_SEAL; 3082 info->flags = flags & VM_NORESERVE; 3083 info->i_crtime = inode_get_mtime(inode); 3084 info->fsflags = (dir == NULL) ? 0 : 3085 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 3086 if (info->fsflags) 3087 shmem_set_inode_flags(inode, info->fsflags, NULL); 3088 INIT_LIST_HEAD(&info->shrinklist); 3089 INIT_LIST_HEAD(&info->swaplist); 3090 simple_xattrs_init(&info->xattrs); 3091 cache_no_acl(inode); 3092 if (sbinfo->noswap) 3093 mapping_set_unevictable(inode->i_mapping); 3094 3095 /* Don't consider 'deny' for emergencies and 'force' for testing */ 3096 if (sbinfo->huge) 3097 mapping_set_large_folios(inode->i_mapping); 3098 3099 switch (mode & S_IFMT) { 3100 default: 3101 inode->i_op = &shmem_special_inode_operations; 3102 init_special_inode(inode, mode, dev); 3103 break; 3104 case S_IFREG: 3105 inode->i_mapping->a_ops = &shmem_aops; 3106 inode->i_op = &shmem_inode_operations; 3107 inode->i_fop = &shmem_file_operations; 3108 mpol_shared_policy_init(&info->policy, 3109 shmem_get_sbmpol(sbinfo)); 3110 break; 3111 case S_IFDIR: 3112 inc_nlink(inode); 3113 /* Some things misbehave if size == 0 on a directory */ 3114 inode->i_size = 2 * BOGO_DIRENT_SIZE; 3115 inode->i_op = &shmem_dir_inode_operations; 3116 inode->i_fop = &simple_offset_dir_operations; 3117 simple_offset_init(shmem_get_offset_ctx(inode)); 3118 break; 3119 case S_IFLNK: 3120 /* 3121 * Must not load anything in the rbtree, 3122 * mpol_free_shared_policy will not be called. 3123 */ 3124 mpol_shared_policy_init(&info->policy, NULL); 3125 break; 3126 } 3127 3128 lockdep_annotate_inode_mutex_key(inode); 3129 return inode; 3130 } 3131 3132 #ifdef CONFIG_TMPFS_QUOTA 3133 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3134 struct super_block *sb, struct inode *dir, 3135 umode_t mode, dev_t dev, unsigned long flags) 3136 { 3137 int err; 3138 struct inode *inode; 3139 3140 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3141 if (IS_ERR(inode)) 3142 return inode; 3143 3144 err = dquot_initialize(inode); 3145 if (err) 3146 goto errout; 3147 3148 err = dquot_alloc_inode(inode); 3149 if (err) { 3150 dquot_drop(inode); 3151 goto errout; 3152 } 3153 return inode; 3154 3155 errout: 3156 inode->i_flags |= S_NOQUOTA; 3157 iput(inode); 3158 return ERR_PTR(err); 3159 } 3160 #else 3161 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3162 struct super_block *sb, struct inode *dir, 3163 umode_t mode, dev_t dev, unsigned long flags) 3164 { 3165 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3166 } 3167 #endif /* CONFIG_TMPFS_QUOTA */ 3168 3169 #ifdef CONFIG_USERFAULTFD 3170 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 3171 struct vm_area_struct *dst_vma, 3172 unsigned long dst_addr, 3173 unsigned long src_addr, 3174 uffd_flags_t flags, 3175 struct folio **foliop) 3176 { 3177 struct inode *inode = file_inode(dst_vma->vm_file); 3178 struct shmem_inode_info *info = SHMEM_I(inode); 3179 struct address_space *mapping = inode->i_mapping; 3180 gfp_t gfp = mapping_gfp_mask(mapping); 3181 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 3182 void *page_kaddr; 3183 struct folio *folio; 3184 int ret; 3185 pgoff_t max_off; 3186 3187 if (shmem_inode_acct_blocks(inode, 1)) { 3188 /* 3189 * We may have got a page, returned -ENOENT triggering a retry, 3190 * and now we find ourselves with -ENOMEM. Release the page, to 3191 * avoid a BUG_ON in our caller. 3192 */ 3193 if (unlikely(*foliop)) { 3194 folio_put(*foliop); 3195 *foliop = NULL; 3196 } 3197 return -ENOMEM; 3198 } 3199 3200 if (!*foliop) { 3201 ret = -ENOMEM; 3202 folio = shmem_alloc_folio(gfp, 0, info, pgoff); 3203 if (!folio) 3204 goto out_unacct_blocks; 3205 3206 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 3207 page_kaddr = kmap_local_folio(folio, 0); 3208 /* 3209 * The read mmap_lock is held here. Despite the 3210 * mmap_lock being read recursive a deadlock is still 3211 * possible if a writer has taken a lock. For example: 3212 * 3213 * process A thread 1 takes read lock on own mmap_lock 3214 * process A thread 2 calls mmap, blocks taking write lock 3215 * process B thread 1 takes page fault, read lock on own mmap lock 3216 * process B thread 2 calls mmap, blocks taking write lock 3217 * process A thread 1 blocks taking read lock on process B 3218 * process B thread 1 blocks taking read lock on process A 3219 * 3220 * Disable page faults to prevent potential deadlock 3221 * and retry the copy outside the mmap_lock. 3222 */ 3223 pagefault_disable(); 3224 ret = copy_from_user(page_kaddr, 3225 (const void __user *)src_addr, 3226 PAGE_SIZE); 3227 pagefault_enable(); 3228 kunmap_local(page_kaddr); 3229 3230 /* fallback to copy_from_user outside mmap_lock */ 3231 if (unlikely(ret)) { 3232 *foliop = folio; 3233 ret = -ENOENT; 3234 /* don't free the page */ 3235 goto out_unacct_blocks; 3236 } 3237 3238 flush_dcache_folio(folio); 3239 } else { /* ZEROPAGE */ 3240 clear_user_highpage(&folio->page, dst_addr); 3241 } 3242 } else { 3243 folio = *foliop; 3244 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 3245 *foliop = NULL; 3246 } 3247 3248 VM_BUG_ON(folio_test_locked(folio)); 3249 VM_BUG_ON(folio_test_swapbacked(folio)); 3250 __folio_set_locked(folio); 3251 __folio_set_swapbacked(folio); 3252 __folio_mark_uptodate(folio); 3253 3254 ret = -EFAULT; 3255 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3256 if (unlikely(pgoff >= max_off)) 3257 goto out_release; 3258 3259 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 3260 if (ret) 3261 goto out_release; 3262 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 3263 if (ret) 3264 goto out_release; 3265 3266 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 3267 &folio->page, true, flags); 3268 if (ret) 3269 goto out_delete_from_cache; 3270 3271 shmem_recalc_inode(inode, 1, 0); 3272 folio_unlock(folio); 3273 return 0; 3274 out_delete_from_cache: 3275 filemap_remove_folio(folio); 3276 out_release: 3277 folio_unlock(folio); 3278 folio_put(folio); 3279 out_unacct_blocks: 3280 shmem_inode_unacct_blocks(inode, 1); 3281 return ret; 3282 } 3283 #endif /* CONFIG_USERFAULTFD */ 3284 3285 #ifdef CONFIG_TMPFS 3286 static const struct inode_operations shmem_symlink_inode_operations; 3287 static const struct inode_operations shmem_short_symlink_operations; 3288 3289 static int 3290 shmem_write_begin(const struct kiocb *iocb, struct address_space *mapping, 3291 loff_t pos, unsigned len, 3292 struct folio **foliop, void **fsdata) 3293 { 3294 struct inode *inode = mapping->host; 3295 struct shmem_inode_info *info = SHMEM_I(inode); 3296 pgoff_t index = pos >> PAGE_SHIFT; 3297 struct folio *folio; 3298 int ret = 0; 3299 3300 /* i_rwsem is held by caller */ 3301 if (unlikely(info->seals & (F_SEAL_GROW | 3302 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 3303 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 3304 return -EPERM; 3305 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 3306 return -EPERM; 3307 } 3308 3309 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE); 3310 if (ret) 3311 return ret; 3312 3313 if (folio_contain_hwpoisoned_page(folio)) { 3314 folio_unlock(folio); 3315 folio_put(folio); 3316 return -EIO; 3317 } 3318 3319 *foliop = folio; 3320 return 0; 3321 } 3322 3323 static int 3324 shmem_write_end(const struct kiocb *iocb, struct address_space *mapping, 3325 loff_t pos, unsigned len, unsigned copied, 3326 struct folio *folio, void *fsdata) 3327 { 3328 struct inode *inode = mapping->host; 3329 3330 if (pos + copied > inode->i_size) 3331 i_size_write(inode, pos + copied); 3332 3333 if (!folio_test_uptodate(folio)) { 3334 if (copied < folio_size(folio)) { 3335 size_t from = offset_in_folio(folio, pos); 3336 folio_zero_segments(folio, 0, from, 3337 from + copied, folio_size(folio)); 3338 } 3339 folio_mark_uptodate(folio); 3340 } 3341 folio_mark_dirty(folio); 3342 folio_unlock(folio); 3343 folio_put(folio); 3344 3345 return copied; 3346 } 3347 3348 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3349 { 3350 struct file *file = iocb->ki_filp; 3351 struct inode *inode = file_inode(file); 3352 struct address_space *mapping = inode->i_mapping; 3353 pgoff_t index; 3354 unsigned long offset; 3355 int error = 0; 3356 ssize_t retval = 0; 3357 3358 for (;;) { 3359 struct folio *folio = NULL; 3360 struct page *page = NULL; 3361 unsigned long nr, ret; 3362 loff_t end_offset, i_size = i_size_read(inode); 3363 bool fallback_page_copy = false; 3364 size_t fsize; 3365 3366 if (unlikely(iocb->ki_pos >= i_size)) 3367 break; 3368 3369 index = iocb->ki_pos >> PAGE_SHIFT; 3370 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3371 if (error) { 3372 if (error == -EINVAL) 3373 error = 0; 3374 break; 3375 } 3376 if (folio) { 3377 folio_unlock(folio); 3378 3379 page = folio_file_page(folio, index); 3380 if (PageHWPoison(page)) { 3381 folio_put(folio); 3382 error = -EIO; 3383 break; 3384 } 3385 3386 if (folio_test_large(folio) && 3387 folio_test_has_hwpoisoned(folio)) 3388 fallback_page_copy = true; 3389 } 3390 3391 /* 3392 * We must evaluate after, since reads (unlike writes) 3393 * are called without i_rwsem protection against truncate 3394 */ 3395 i_size = i_size_read(inode); 3396 if (unlikely(iocb->ki_pos >= i_size)) { 3397 if (folio) 3398 folio_put(folio); 3399 break; 3400 } 3401 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count); 3402 if (folio && likely(!fallback_page_copy)) 3403 fsize = folio_size(folio); 3404 else 3405 fsize = PAGE_SIZE; 3406 offset = iocb->ki_pos & (fsize - 1); 3407 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset); 3408 3409 if (folio) { 3410 /* 3411 * If users can be writing to this page using arbitrary 3412 * virtual addresses, take care about potential aliasing 3413 * before reading the page on the kernel side. 3414 */ 3415 if (mapping_writably_mapped(mapping)) { 3416 if (likely(!fallback_page_copy)) 3417 flush_dcache_folio(folio); 3418 else 3419 flush_dcache_page(page); 3420 } 3421 3422 /* 3423 * Mark the folio accessed if we read the beginning. 3424 */ 3425 if (!offset) 3426 folio_mark_accessed(folio); 3427 /* 3428 * Ok, we have the page, and it's up-to-date, so 3429 * now we can copy it to user space... 3430 */ 3431 if (likely(!fallback_page_copy)) 3432 ret = copy_folio_to_iter(folio, offset, nr, to); 3433 else 3434 ret = copy_page_to_iter(page, offset, nr, to); 3435 folio_put(folio); 3436 } else if (user_backed_iter(to)) { 3437 /* 3438 * Copy to user tends to be so well optimized, but 3439 * clear_user() not so much, that it is noticeably 3440 * faster to copy the zero page instead of clearing. 3441 */ 3442 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 3443 } else { 3444 /* 3445 * But submitting the same page twice in a row to 3446 * splice() - or others? - can result in confusion: 3447 * so don't attempt that optimization on pipes etc. 3448 */ 3449 ret = iov_iter_zero(nr, to); 3450 } 3451 3452 retval += ret; 3453 iocb->ki_pos += ret; 3454 3455 if (!iov_iter_count(to)) 3456 break; 3457 if (ret < nr) { 3458 error = -EFAULT; 3459 break; 3460 } 3461 cond_resched(); 3462 } 3463 3464 file_accessed(file); 3465 return retval ? retval : error; 3466 } 3467 3468 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3469 { 3470 struct file *file = iocb->ki_filp; 3471 struct inode *inode = file->f_mapping->host; 3472 ssize_t ret; 3473 3474 inode_lock(inode); 3475 ret = generic_write_checks(iocb, from); 3476 if (ret <= 0) 3477 goto unlock; 3478 ret = file_remove_privs(file); 3479 if (ret) 3480 goto unlock; 3481 ret = file_update_time(file); 3482 if (ret) 3483 goto unlock; 3484 ret = generic_perform_write(iocb, from); 3485 unlock: 3486 inode_unlock(inode); 3487 return ret; 3488 } 3489 3490 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 3491 struct pipe_buffer *buf) 3492 { 3493 return true; 3494 } 3495 3496 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 3497 struct pipe_buffer *buf) 3498 { 3499 } 3500 3501 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 3502 struct pipe_buffer *buf) 3503 { 3504 return false; 3505 } 3506 3507 static const struct pipe_buf_operations zero_pipe_buf_ops = { 3508 .release = zero_pipe_buf_release, 3509 .try_steal = zero_pipe_buf_try_steal, 3510 .get = zero_pipe_buf_get, 3511 }; 3512 3513 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 3514 loff_t fpos, size_t size) 3515 { 3516 size_t offset = fpos & ~PAGE_MASK; 3517 3518 size = min_t(size_t, size, PAGE_SIZE - offset); 3519 3520 if (!pipe_is_full(pipe)) { 3521 struct pipe_buffer *buf = pipe_head_buf(pipe); 3522 3523 *buf = (struct pipe_buffer) { 3524 .ops = &zero_pipe_buf_ops, 3525 .page = ZERO_PAGE(0), 3526 .offset = offset, 3527 .len = size, 3528 }; 3529 pipe->head++; 3530 } 3531 3532 return size; 3533 } 3534 3535 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 3536 struct pipe_inode_info *pipe, 3537 size_t len, unsigned int flags) 3538 { 3539 struct inode *inode = file_inode(in); 3540 struct address_space *mapping = inode->i_mapping; 3541 struct folio *folio = NULL; 3542 size_t total_spliced = 0, used, npages, n, part; 3543 loff_t isize; 3544 int error = 0; 3545 3546 /* Work out how much data we can actually add into the pipe */ 3547 used = pipe_buf_usage(pipe); 3548 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3549 len = min_t(size_t, len, npages * PAGE_SIZE); 3550 3551 do { 3552 bool fallback_page_splice = false; 3553 struct page *page = NULL; 3554 pgoff_t index; 3555 size_t size; 3556 3557 if (*ppos >= i_size_read(inode)) 3558 break; 3559 3560 index = *ppos >> PAGE_SHIFT; 3561 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3562 if (error) { 3563 if (error == -EINVAL) 3564 error = 0; 3565 break; 3566 } 3567 if (folio) { 3568 folio_unlock(folio); 3569 3570 page = folio_file_page(folio, index); 3571 if (PageHWPoison(page)) { 3572 error = -EIO; 3573 break; 3574 } 3575 3576 if (folio_test_large(folio) && 3577 folio_test_has_hwpoisoned(folio)) 3578 fallback_page_splice = true; 3579 } 3580 3581 /* 3582 * i_size must be checked after we know the pages are Uptodate. 3583 * 3584 * Checking i_size after the check allows us to calculate 3585 * the correct value for "nr", which means the zero-filled 3586 * part of the page is not copied back to userspace (unless 3587 * another truncate extends the file - this is desired though). 3588 */ 3589 isize = i_size_read(inode); 3590 if (unlikely(*ppos >= isize)) 3591 break; 3592 /* 3593 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned 3594 * pages. 3595 */ 3596 size = len; 3597 if (unlikely(fallback_page_splice)) { 3598 size_t offset = *ppos & ~PAGE_MASK; 3599 3600 size = umin(size, PAGE_SIZE - offset); 3601 } 3602 part = min_t(loff_t, isize - *ppos, size); 3603 3604 if (folio) { 3605 /* 3606 * If users can be writing to this page using arbitrary 3607 * virtual addresses, take care about potential aliasing 3608 * before reading the page on the kernel side. 3609 */ 3610 if (mapping_writably_mapped(mapping)) { 3611 if (likely(!fallback_page_splice)) 3612 flush_dcache_folio(folio); 3613 else 3614 flush_dcache_page(page); 3615 } 3616 folio_mark_accessed(folio); 3617 /* 3618 * Ok, we have the page, and it's up-to-date, so we can 3619 * now splice it into the pipe. 3620 */ 3621 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3622 folio_put(folio); 3623 folio = NULL; 3624 } else { 3625 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3626 } 3627 3628 if (!n) 3629 break; 3630 len -= n; 3631 total_spliced += n; 3632 *ppos += n; 3633 in->f_ra.prev_pos = *ppos; 3634 if (pipe_is_full(pipe)) 3635 break; 3636 3637 cond_resched(); 3638 } while (len); 3639 3640 if (folio) 3641 folio_put(folio); 3642 3643 file_accessed(in); 3644 return total_spliced ? total_spliced : error; 3645 } 3646 3647 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3648 { 3649 struct address_space *mapping = file->f_mapping; 3650 struct inode *inode = mapping->host; 3651 3652 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3653 return generic_file_llseek_size(file, offset, whence, 3654 MAX_LFS_FILESIZE, i_size_read(inode)); 3655 if (offset < 0) 3656 return -ENXIO; 3657 3658 inode_lock(inode); 3659 /* We're holding i_rwsem so we can access i_size directly */ 3660 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3661 if (offset >= 0) 3662 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3663 inode_unlock(inode); 3664 return offset; 3665 } 3666 3667 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3668 loff_t len) 3669 { 3670 struct inode *inode = file_inode(file); 3671 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3672 struct shmem_inode_info *info = SHMEM_I(inode); 3673 struct shmem_falloc shmem_falloc; 3674 pgoff_t start, index, end, undo_fallocend; 3675 int error; 3676 3677 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3678 return -EOPNOTSUPP; 3679 3680 inode_lock(inode); 3681 3682 if (mode & FALLOC_FL_PUNCH_HOLE) { 3683 struct address_space *mapping = file->f_mapping; 3684 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3685 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3686 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3687 3688 /* protected by i_rwsem */ 3689 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3690 error = -EPERM; 3691 goto out; 3692 } 3693 3694 shmem_falloc.waitq = &shmem_falloc_waitq; 3695 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3696 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3697 spin_lock(&inode->i_lock); 3698 inode->i_private = &shmem_falloc; 3699 spin_unlock(&inode->i_lock); 3700 3701 if ((u64)unmap_end > (u64)unmap_start) 3702 unmap_mapping_range(mapping, unmap_start, 3703 1 + unmap_end - unmap_start, 0); 3704 shmem_truncate_range(inode, offset, offset + len - 1); 3705 /* No need to unmap again: hole-punching leaves COWed pages */ 3706 3707 spin_lock(&inode->i_lock); 3708 inode->i_private = NULL; 3709 wake_up_all(&shmem_falloc_waitq); 3710 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3711 spin_unlock(&inode->i_lock); 3712 error = 0; 3713 goto out; 3714 } 3715 3716 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3717 error = inode_newsize_ok(inode, offset + len); 3718 if (error) 3719 goto out; 3720 3721 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3722 error = -EPERM; 3723 goto out; 3724 } 3725 3726 start = offset >> PAGE_SHIFT; 3727 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3728 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3729 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3730 error = -ENOSPC; 3731 goto out; 3732 } 3733 3734 shmem_falloc.waitq = NULL; 3735 shmem_falloc.start = start; 3736 shmem_falloc.next = start; 3737 shmem_falloc.nr_falloced = 0; 3738 shmem_falloc.nr_unswapped = 0; 3739 spin_lock(&inode->i_lock); 3740 inode->i_private = &shmem_falloc; 3741 spin_unlock(&inode->i_lock); 3742 3743 /* 3744 * info->fallocend is only relevant when huge pages might be 3745 * involved: to prevent split_huge_page() freeing fallocated 3746 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3747 */ 3748 undo_fallocend = info->fallocend; 3749 if (info->fallocend < end) 3750 info->fallocend = end; 3751 3752 for (index = start; index < end; ) { 3753 struct folio *folio; 3754 3755 /* 3756 * Check for fatal signal so that we abort early in OOM 3757 * situations. We don't want to abort in case of non-fatal 3758 * signals as large fallocate can take noticeable time and 3759 * e.g. periodic timers may result in fallocate constantly 3760 * restarting. 3761 */ 3762 if (fatal_signal_pending(current)) 3763 error = -EINTR; 3764 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3765 error = -ENOMEM; 3766 else 3767 error = shmem_get_folio(inode, index, offset + len, 3768 &folio, SGP_FALLOC); 3769 if (error) { 3770 info->fallocend = undo_fallocend; 3771 /* Remove the !uptodate folios we added */ 3772 if (index > start) { 3773 shmem_undo_range(inode, 3774 (loff_t)start << PAGE_SHIFT, 3775 ((loff_t)index << PAGE_SHIFT) - 1, true); 3776 } 3777 goto undone; 3778 } 3779 3780 /* 3781 * Here is a more important optimization than it appears: 3782 * a second SGP_FALLOC on the same large folio will clear it, 3783 * making it uptodate and un-undoable if we fail later. 3784 */ 3785 index = folio_next_index(folio); 3786 /* Beware 32-bit wraparound */ 3787 if (!index) 3788 index--; 3789 3790 /* 3791 * Inform shmem_writeout() how far we have reached. 3792 * No need for lock or barrier: we have the page lock. 3793 */ 3794 if (!folio_test_uptodate(folio)) 3795 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3796 shmem_falloc.next = index; 3797 3798 /* 3799 * If !uptodate, leave it that way so that freeable folios 3800 * can be recognized if we need to rollback on error later. 3801 * But mark it dirty so that memory pressure will swap rather 3802 * than free the folios we are allocating (and SGP_CACHE folios 3803 * might still be clean: we now need to mark those dirty too). 3804 */ 3805 folio_mark_dirty(folio); 3806 folio_unlock(folio); 3807 folio_put(folio); 3808 cond_resched(); 3809 } 3810 3811 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3812 i_size_write(inode, offset + len); 3813 undone: 3814 spin_lock(&inode->i_lock); 3815 inode->i_private = NULL; 3816 spin_unlock(&inode->i_lock); 3817 out: 3818 if (!error) 3819 file_modified(file); 3820 inode_unlock(inode); 3821 return error; 3822 } 3823 3824 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3825 { 3826 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3827 3828 buf->f_type = TMPFS_MAGIC; 3829 buf->f_bsize = PAGE_SIZE; 3830 buf->f_namelen = NAME_MAX; 3831 if (sbinfo->max_blocks) { 3832 buf->f_blocks = sbinfo->max_blocks; 3833 buf->f_bavail = 3834 buf->f_bfree = sbinfo->max_blocks - 3835 percpu_counter_sum(&sbinfo->used_blocks); 3836 } 3837 if (sbinfo->max_inodes) { 3838 buf->f_files = sbinfo->max_inodes; 3839 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3840 } 3841 /* else leave those fields 0 like simple_statfs */ 3842 3843 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3844 3845 return 0; 3846 } 3847 3848 /* 3849 * File creation. Allocate an inode, and we're done.. 3850 */ 3851 static int 3852 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3853 struct dentry *dentry, umode_t mode, dev_t dev) 3854 { 3855 struct inode *inode; 3856 int error; 3857 3858 if (!generic_ci_validate_strict_name(dir, &dentry->d_name)) 3859 return -EINVAL; 3860 3861 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3862 if (IS_ERR(inode)) 3863 return PTR_ERR(inode); 3864 3865 error = simple_acl_create(dir, inode); 3866 if (error) 3867 goto out_iput; 3868 error = security_inode_init_security(inode, dir, &dentry->d_name, 3869 shmem_initxattrs, NULL); 3870 if (error && error != -EOPNOTSUPP) 3871 goto out_iput; 3872 3873 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3874 if (error) 3875 goto out_iput; 3876 3877 dir->i_size += BOGO_DIRENT_SIZE; 3878 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3879 inode_inc_iversion(dir); 3880 3881 d_make_persistent(dentry, inode); 3882 return error; 3883 3884 out_iput: 3885 iput(inode); 3886 return error; 3887 } 3888 3889 static int 3890 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3891 struct file *file, umode_t mode) 3892 { 3893 struct inode *inode; 3894 int error; 3895 3896 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3897 if (IS_ERR(inode)) { 3898 error = PTR_ERR(inode); 3899 goto err_out; 3900 } 3901 error = security_inode_init_security(inode, dir, NULL, 3902 shmem_initxattrs, NULL); 3903 if (error && error != -EOPNOTSUPP) 3904 goto out_iput; 3905 error = simple_acl_create(dir, inode); 3906 if (error) 3907 goto out_iput; 3908 d_tmpfile(file, inode); 3909 3910 err_out: 3911 return finish_open_simple(file, error); 3912 out_iput: 3913 iput(inode); 3914 return error; 3915 } 3916 3917 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3918 struct dentry *dentry, umode_t mode) 3919 { 3920 int error; 3921 3922 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3923 if (error) 3924 return ERR_PTR(error); 3925 inc_nlink(dir); 3926 return NULL; 3927 } 3928 3929 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3930 struct dentry *dentry, umode_t mode, bool excl) 3931 { 3932 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3933 } 3934 3935 /* 3936 * Link a file.. 3937 */ 3938 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3939 struct dentry *dentry) 3940 { 3941 struct inode *inode = d_inode(old_dentry); 3942 int ret; 3943 3944 /* 3945 * No ordinary (disk based) filesystem counts links as inodes; 3946 * but each new link needs a new dentry, pinning lowmem, and 3947 * tmpfs dentries cannot be pruned until they are unlinked. 3948 * But if an O_TMPFILE file is linked into the tmpfs, the 3949 * first link must skip that, to get the accounting right. 3950 */ 3951 if (inode->i_nlink) { 3952 ret = shmem_reserve_inode(inode->i_sb, NULL); 3953 if (ret) 3954 return ret; 3955 } 3956 3957 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3958 if (ret) { 3959 if (inode->i_nlink) 3960 shmem_free_inode(inode->i_sb, 0); 3961 return ret; 3962 } 3963 3964 dir->i_size += BOGO_DIRENT_SIZE; 3965 inode_inc_iversion(dir); 3966 return simple_link(old_dentry, dir, dentry); 3967 } 3968 3969 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3970 { 3971 struct inode *inode = d_inode(dentry); 3972 3973 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3974 shmem_free_inode(inode->i_sb, 0); 3975 3976 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3977 3978 dir->i_size -= BOGO_DIRENT_SIZE; 3979 inode_inc_iversion(dir); 3980 simple_unlink(dir, dentry); 3981 3982 /* 3983 * For now, VFS can't deal with case-insensitive negative dentries, so 3984 * we invalidate them 3985 */ 3986 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3987 d_invalidate(dentry); 3988 3989 return 0; 3990 } 3991 3992 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3993 { 3994 if (!simple_empty(dentry)) 3995 return -ENOTEMPTY; 3996 3997 drop_nlink(d_inode(dentry)); 3998 drop_nlink(dir); 3999 return shmem_unlink(dir, dentry); 4000 } 4001 4002 static int shmem_whiteout(struct mnt_idmap *idmap, 4003 struct inode *old_dir, struct dentry *old_dentry) 4004 { 4005 struct dentry *whiteout; 4006 int error; 4007 4008 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 4009 if (!whiteout) 4010 return -ENOMEM; 4011 4012 error = shmem_mknod(idmap, old_dir, whiteout, 4013 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4014 dput(whiteout); 4015 if (error) 4016 return error; 4017 4018 /* 4019 * Cheat and hash the whiteout while the old dentry is still in 4020 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 4021 * 4022 * d_lookup() will consistently find one of them at this point, 4023 * not sure which one, but that isn't even important. 4024 */ 4025 d_rehash(whiteout); 4026 return 0; 4027 } 4028 4029 /* 4030 * The VFS layer already does all the dentry stuff for rename, 4031 * we just have to decrement the usage count for the target if 4032 * it exists so that the VFS layer correctly free's it when it 4033 * gets overwritten. 4034 */ 4035 static int shmem_rename2(struct mnt_idmap *idmap, 4036 struct inode *old_dir, struct dentry *old_dentry, 4037 struct inode *new_dir, struct dentry *new_dentry, 4038 unsigned int flags) 4039 { 4040 struct inode *inode = d_inode(old_dentry); 4041 int they_are_dirs = S_ISDIR(inode->i_mode); 4042 int error; 4043 4044 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4045 return -EINVAL; 4046 4047 if (flags & RENAME_EXCHANGE) 4048 return simple_offset_rename_exchange(old_dir, old_dentry, 4049 new_dir, new_dentry); 4050 4051 if (!simple_empty(new_dentry)) 4052 return -ENOTEMPTY; 4053 4054 if (flags & RENAME_WHITEOUT) { 4055 error = shmem_whiteout(idmap, old_dir, old_dentry); 4056 if (error) 4057 return error; 4058 } 4059 4060 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 4061 if (error) 4062 return error; 4063 4064 if (d_really_is_positive(new_dentry)) { 4065 (void) shmem_unlink(new_dir, new_dentry); 4066 if (they_are_dirs) { 4067 drop_nlink(d_inode(new_dentry)); 4068 drop_nlink(old_dir); 4069 } 4070 } else if (they_are_dirs) { 4071 drop_nlink(old_dir); 4072 inc_nlink(new_dir); 4073 } 4074 4075 old_dir->i_size -= BOGO_DIRENT_SIZE; 4076 new_dir->i_size += BOGO_DIRENT_SIZE; 4077 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 4078 inode_inc_iversion(old_dir); 4079 inode_inc_iversion(new_dir); 4080 return 0; 4081 } 4082 4083 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 4084 struct dentry *dentry, const char *symname) 4085 { 4086 int error; 4087 int len; 4088 struct inode *inode; 4089 struct folio *folio; 4090 char *link; 4091 4092 len = strlen(symname) + 1; 4093 if (len > PAGE_SIZE) 4094 return -ENAMETOOLONG; 4095 4096 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 4097 VM_NORESERVE); 4098 if (IS_ERR(inode)) 4099 return PTR_ERR(inode); 4100 4101 error = security_inode_init_security(inode, dir, &dentry->d_name, 4102 shmem_initxattrs, NULL); 4103 if (error && error != -EOPNOTSUPP) 4104 goto out_iput; 4105 4106 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 4107 if (error) 4108 goto out_iput; 4109 4110 inode->i_size = len-1; 4111 if (len <= SHORT_SYMLINK_LEN) { 4112 link = kmemdup(symname, len, GFP_KERNEL); 4113 if (!link) { 4114 error = -ENOMEM; 4115 goto out_remove_offset; 4116 } 4117 inode->i_op = &shmem_short_symlink_operations; 4118 inode_set_cached_link(inode, link, len - 1); 4119 } else { 4120 inode_nohighmem(inode); 4121 inode->i_mapping->a_ops = &shmem_aops; 4122 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE); 4123 if (error) 4124 goto out_remove_offset; 4125 inode->i_op = &shmem_symlink_inode_operations; 4126 memcpy(folio_address(folio), symname, len); 4127 folio_mark_uptodate(folio); 4128 folio_mark_dirty(folio); 4129 folio_unlock(folio); 4130 folio_put(folio); 4131 } 4132 dir->i_size += BOGO_DIRENT_SIZE; 4133 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 4134 inode_inc_iversion(dir); 4135 d_make_persistent(dentry, inode); 4136 return 0; 4137 4138 out_remove_offset: 4139 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 4140 out_iput: 4141 iput(inode); 4142 return error; 4143 } 4144 4145 static void shmem_put_link(void *arg) 4146 { 4147 folio_mark_accessed(arg); 4148 folio_put(arg); 4149 } 4150 4151 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 4152 struct delayed_call *done) 4153 { 4154 struct folio *folio = NULL; 4155 int error; 4156 4157 if (!dentry) { 4158 folio = filemap_get_folio(inode->i_mapping, 0); 4159 if (IS_ERR(folio)) 4160 return ERR_PTR(-ECHILD); 4161 if (PageHWPoison(folio_page(folio, 0)) || 4162 !folio_test_uptodate(folio)) { 4163 folio_put(folio); 4164 return ERR_PTR(-ECHILD); 4165 } 4166 } else { 4167 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ); 4168 if (error) 4169 return ERR_PTR(error); 4170 if (!folio) 4171 return ERR_PTR(-ECHILD); 4172 if (PageHWPoison(folio_page(folio, 0))) { 4173 folio_unlock(folio); 4174 folio_put(folio); 4175 return ERR_PTR(-ECHILD); 4176 } 4177 folio_unlock(folio); 4178 } 4179 set_delayed_call(done, shmem_put_link, folio); 4180 return folio_address(folio); 4181 } 4182 4183 #ifdef CONFIG_TMPFS_XATTR 4184 4185 static int shmem_fileattr_get(struct dentry *dentry, struct file_kattr *fa) 4186 { 4187 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4188 4189 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 4190 4191 return 0; 4192 } 4193 4194 static int shmem_fileattr_set(struct mnt_idmap *idmap, 4195 struct dentry *dentry, struct file_kattr *fa) 4196 { 4197 struct inode *inode = d_inode(dentry); 4198 struct shmem_inode_info *info = SHMEM_I(inode); 4199 int ret, flags; 4200 4201 if (fileattr_has_fsx(fa)) 4202 return -EOPNOTSUPP; 4203 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 4204 return -EOPNOTSUPP; 4205 4206 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 4207 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 4208 4209 ret = shmem_set_inode_flags(inode, flags, dentry); 4210 4211 if (ret) 4212 return ret; 4213 4214 info->fsflags = flags; 4215 4216 inode_set_ctime_current(inode); 4217 inode_inc_iversion(inode); 4218 return 0; 4219 } 4220 4221 /* 4222 * Superblocks without xattr inode operations may get some security.* xattr 4223 * support from the LSM "for free". As soon as we have any other xattrs 4224 * like ACLs, we also need to implement the security.* handlers at 4225 * filesystem level, though. 4226 */ 4227 4228 /* 4229 * Callback for security_inode_init_security() for acquiring xattrs. 4230 */ 4231 static int shmem_initxattrs(struct inode *inode, 4232 const struct xattr *xattr_array, void *fs_info) 4233 { 4234 struct shmem_inode_info *info = SHMEM_I(inode); 4235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4236 const struct xattr *xattr; 4237 struct simple_xattr *new_xattr; 4238 size_t ispace = 0; 4239 size_t len; 4240 4241 if (sbinfo->max_inodes) { 4242 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4243 ispace += simple_xattr_space(xattr->name, 4244 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 4245 } 4246 if (ispace) { 4247 raw_spin_lock(&sbinfo->stat_lock); 4248 if (sbinfo->free_ispace < ispace) 4249 ispace = 0; 4250 else 4251 sbinfo->free_ispace -= ispace; 4252 raw_spin_unlock(&sbinfo->stat_lock); 4253 if (!ispace) 4254 return -ENOSPC; 4255 } 4256 } 4257 4258 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4259 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 4260 if (!new_xattr) 4261 break; 4262 4263 len = strlen(xattr->name) + 1; 4264 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 4265 GFP_KERNEL_ACCOUNT); 4266 if (!new_xattr->name) { 4267 kvfree(new_xattr); 4268 break; 4269 } 4270 4271 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 4272 XATTR_SECURITY_PREFIX_LEN); 4273 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 4274 xattr->name, len); 4275 4276 simple_xattr_add(&info->xattrs, new_xattr); 4277 } 4278 4279 if (xattr->name != NULL) { 4280 if (ispace) { 4281 raw_spin_lock(&sbinfo->stat_lock); 4282 sbinfo->free_ispace += ispace; 4283 raw_spin_unlock(&sbinfo->stat_lock); 4284 } 4285 simple_xattrs_free(&info->xattrs, NULL); 4286 return -ENOMEM; 4287 } 4288 4289 return 0; 4290 } 4291 4292 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 4293 struct dentry *unused, struct inode *inode, 4294 const char *name, void *buffer, size_t size) 4295 { 4296 struct shmem_inode_info *info = SHMEM_I(inode); 4297 4298 name = xattr_full_name(handler, name); 4299 return simple_xattr_get(&info->xattrs, name, buffer, size); 4300 } 4301 4302 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 4303 struct mnt_idmap *idmap, 4304 struct dentry *unused, struct inode *inode, 4305 const char *name, const void *value, 4306 size_t size, int flags) 4307 { 4308 struct shmem_inode_info *info = SHMEM_I(inode); 4309 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4310 struct simple_xattr *old_xattr; 4311 size_t ispace = 0; 4312 4313 name = xattr_full_name(handler, name); 4314 if (value && sbinfo->max_inodes) { 4315 ispace = simple_xattr_space(name, size); 4316 raw_spin_lock(&sbinfo->stat_lock); 4317 if (sbinfo->free_ispace < ispace) 4318 ispace = 0; 4319 else 4320 sbinfo->free_ispace -= ispace; 4321 raw_spin_unlock(&sbinfo->stat_lock); 4322 if (!ispace) 4323 return -ENOSPC; 4324 } 4325 4326 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 4327 if (!IS_ERR(old_xattr)) { 4328 ispace = 0; 4329 if (old_xattr && sbinfo->max_inodes) 4330 ispace = simple_xattr_space(old_xattr->name, 4331 old_xattr->size); 4332 simple_xattr_free(old_xattr); 4333 old_xattr = NULL; 4334 inode_set_ctime_current(inode); 4335 inode_inc_iversion(inode); 4336 } 4337 if (ispace) { 4338 raw_spin_lock(&sbinfo->stat_lock); 4339 sbinfo->free_ispace += ispace; 4340 raw_spin_unlock(&sbinfo->stat_lock); 4341 } 4342 return PTR_ERR(old_xattr); 4343 } 4344 4345 static const struct xattr_handler shmem_security_xattr_handler = { 4346 .prefix = XATTR_SECURITY_PREFIX, 4347 .get = shmem_xattr_handler_get, 4348 .set = shmem_xattr_handler_set, 4349 }; 4350 4351 static const struct xattr_handler shmem_trusted_xattr_handler = { 4352 .prefix = XATTR_TRUSTED_PREFIX, 4353 .get = shmem_xattr_handler_get, 4354 .set = shmem_xattr_handler_set, 4355 }; 4356 4357 static const struct xattr_handler shmem_user_xattr_handler = { 4358 .prefix = XATTR_USER_PREFIX, 4359 .get = shmem_xattr_handler_get, 4360 .set = shmem_xattr_handler_set, 4361 }; 4362 4363 static const struct xattr_handler * const shmem_xattr_handlers[] = { 4364 &shmem_security_xattr_handler, 4365 &shmem_trusted_xattr_handler, 4366 &shmem_user_xattr_handler, 4367 NULL 4368 }; 4369 4370 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 4371 { 4372 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4373 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 4374 } 4375 #endif /* CONFIG_TMPFS_XATTR */ 4376 4377 static const struct inode_operations shmem_short_symlink_operations = { 4378 .getattr = shmem_getattr, 4379 .setattr = shmem_setattr, 4380 .get_link = simple_get_link, 4381 #ifdef CONFIG_TMPFS_XATTR 4382 .listxattr = shmem_listxattr, 4383 #endif 4384 }; 4385 4386 static const struct inode_operations shmem_symlink_inode_operations = { 4387 .getattr = shmem_getattr, 4388 .setattr = shmem_setattr, 4389 .get_link = shmem_get_link, 4390 #ifdef CONFIG_TMPFS_XATTR 4391 .listxattr = shmem_listxattr, 4392 #endif 4393 }; 4394 4395 static struct dentry *shmem_get_parent(struct dentry *child) 4396 { 4397 return ERR_PTR(-ESTALE); 4398 } 4399 4400 static int shmem_match(struct inode *ino, void *vfh) 4401 { 4402 __u32 *fh = vfh; 4403 __u64 inum = fh[2]; 4404 inum = (inum << 32) | fh[1]; 4405 return ino->i_ino == inum && fh[0] == ino->i_generation; 4406 } 4407 4408 /* Find any alias of inode, but prefer a hashed alias */ 4409 static struct dentry *shmem_find_alias(struct inode *inode) 4410 { 4411 struct dentry *alias = d_find_alias(inode); 4412 4413 return alias ?: d_find_any_alias(inode); 4414 } 4415 4416 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 4417 struct fid *fid, int fh_len, int fh_type) 4418 { 4419 struct inode *inode; 4420 struct dentry *dentry = NULL; 4421 u64 inum; 4422 4423 if (fh_len < 3) 4424 return NULL; 4425 4426 inum = fid->raw[2]; 4427 inum = (inum << 32) | fid->raw[1]; 4428 4429 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 4430 shmem_match, fid->raw); 4431 if (inode) { 4432 dentry = shmem_find_alias(inode); 4433 iput(inode); 4434 } 4435 4436 return dentry; 4437 } 4438 4439 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 4440 struct inode *parent) 4441 { 4442 if (*len < 3) { 4443 *len = 3; 4444 return FILEID_INVALID; 4445 } 4446 4447 if (inode_unhashed(inode)) { 4448 /* Unfortunately insert_inode_hash is not idempotent, 4449 * so as we hash inodes here rather than at creation 4450 * time, we need a lock to ensure we only try 4451 * to do it once 4452 */ 4453 static DEFINE_SPINLOCK(lock); 4454 spin_lock(&lock); 4455 if (inode_unhashed(inode)) 4456 __insert_inode_hash(inode, 4457 inode->i_ino + inode->i_generation); 4458 spin_unlock(&lock); 4459 } 4460 4461 fh[0] = inode->i_generation; 4462 fh[1] = inode->i_ino; 4463 fh[2] = ((__u64)inode->i_ino) >> 32; 4464 4465 *len = 3; 4466 return 1; 4467 } 4468 4469 static const struct export_operations shmem_export_ops = { 4470 .get_parent = shmem_get_parent, 4471 .encode_fh = shmem_encode_fh, 4472 .fh_to_dentry = shmem_fh_to_dentry, 4473 }; 4474 4475 enum shmem_param { 4476 Opt_gid, 4477 Opt_huge, 4478 Opt_mode, 4479 Opt_mpol, 4480 Opt_nr_blocks, 4481 Opt_nr_inodes, 4482 Opt_size, 4483 Opt_uid, 4484 Opt_inode32, 4485 Opt_inode64, 4486 Opt_noswap, 4487 Opt_quota, 4488 Opt_usrquota, 4489 Opt_grpquota, 4490 Opt_usrquota_block_hardlimit, 4491 Opt_usrquota_inode_hardlimit, 4492 Opt_grpquota_block_hardlimit, 4493 Opt_grpquota_inode_hardlimit, 4494 Opt_casefold_version, 4495 Opt_casefold, 4496 Opt_strict_encoding, 4497 }; 4498 4499 static const struct constant_table shmem_param_enums_huge[] = { 4500 {"never", SHMEM_HUGE_NEVER }, 4501 {"always", SHMEM_HUGE_ALWAYS }, 4502 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 4503 {"advise", SHMEM_HUGE_ADVISE }, 4504 {} 4505 }; 4506 4507 const struct fs_parameter_spec shmem_fs_parameters[] = { 4508 fsparam_gid ("gid", Opt_gid), 4509 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 4510 fsparam_u32oct("mode", Opt_mode), 4511 fsparam_string("mpol", Opt_mpol), 4512 fsparam_string("nr_blocks", Opt_nr_blocks), 4513 fsparam_string("nr_inodes", Opt_nr_inodes), 4514 fsparam_string("size", Opt_size), 4515 fsparam_uid ("uid", Opt_uid), 4516 fsparam_flag ("inode32", Opt_inode32), 4517 fsparam_flag ("inode64", Opt_inode64), 4518 fsparam_flag ("noswap", Opt_noswap), 4519 #ifdef CONFIG_TMPFS_QUOTA 4520 fsparam_flag ("quota", Opt_quota), 4521 fsparam_flag ("usrquota", Opt_usrquota), 4522 fsparam_flag ("grpquota", Opt_grpquota), 4523 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 4524 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 4525 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 4526 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 4527 #endif 4528 fsparam_string("casefold", Opt_casefold_version), 4529 fsparam_flag ("casefold", Opt_casefold), 4530 fsparam_flag ("strict_encoding", Opt_strict_encoding), 4531 {} 4532 }; 4533 4534 #if IS_ENABLED(CONFIG_UNICODE) 4535 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4536 bool latest_version) 4537 { 4538 struct shmem_options *ctx = fc->fs_private; 4539 int version = UTF8_LATEST; 4540 struct unicode_map *encoding; 4541 char *version_str = param->string + 5; 4542 4543 if (!latest_version) { 4544 if (strncmp(param->string, "utf8-", 5)) 4545 return invalfc(fc, "Only UTF-8 encodings are supported " 4546 "in the format: utf8-<version number>"); 4547 4548 version = utf8_parse_version(version_str); 4549 if (version < 0) 4550 return invalfc(fc, "Invalid UTF-8 version: %s", version_str); 4551 } 4552 4553 encoding = utf8_load(version); 4554 4555 if (IS_ERR(encoding)) { 4556 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n", 4557 unicode_major(version), unicode_minor(version), 4558 unicode_rev(version)); 4559 } 4560 4561 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n", 4562 unicode_major(version), unicode_minor(version), unicode_rev(version)); 4563 4564 ctx->encoding = encoding; 4565 4566 return 0; 4567 } 4568 #else 4569 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4570 bool latest_version) 4571 { 4572 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4573 } 4574 #endif 4575 4576 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 4577 { 4578 struct shmem_options *ctx = fc->fs_private; 4579 struct fs_parse_result result; 4580 unsigned long long size; 4581 char *rest; 4582 int opt; 4583 kuid_t kuid; 4584 kgid_t kgid; 4585 4586 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 4587 if (opt < 0) 4588 return opt; 4589 4590 switch (opt) { 4591 case Opt_size: 4592 size = memparse(param->string, &rest); 4593 if (*rest == '%') { 4594 size <<= PAGE_SHIFT; 4595 size *= totalram_pages(); 4596 do_div(size, 100); 4597 rest++; 4598 } 4599 if (*rest) 4600 goto bad_value; 4601 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 4602 ctx->seen |= SHMEM_SEEN_BLOCKS; 4603 break; 4604 case Opt_nr_blocks: 4605 ctx->blocks = memparse(param->string, &rest); 4606 if (*rest || ctx->blocks > LONG_MAX) 4607 goto bad_value; 4608 ctx->seen |= SHMEM_SEEN_BLOCKS; 4609 break; 4610 case Opt_nr_inodes: 4611 ctx->inodes = memparse(param->string, &rest); 4612 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 4613 goto bad_value; 4614 ctx->seen |= SHMEM_SEEN_INODES; 4615 break; 4616 case Opt_mode: 4617 ctx->mode = result.uint_32 & 07777; 4618 break; 4619 case Opt_uid: 4620 kuid = result.uid; 4621 4622 /* 4623 * The requested uid must be representable in the 4624 * filesystem's idmapping. 4625 */ 4626 if (!kuid_has_mapping(fc->user_ns, kuid)) 4627 goto bad_value; 4628 4629 ctx->uid = kuid; 4630 break; 4631 case Opt_gid: 4632 kgid = result.gid; 4633 4634 /* 4635 * The requested gid must be representable in the 4636 * filesystem's idmapping. 4637 */ 4638 if (!kgid_has_mapping(fc->user_ns, kgid)) 4639 goto bad_value; 4640 4641 ctx->gid = kgid; 4642 break; 4643 case Opt_huge: 4644 ctx->huge = result.uint_32; 4645 if (ctx->huge != SHMEM_HUGE_NEVER && 4646 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4647 has_transparent_hugepage())) 4648 goto unsupported_parameter; 4649 ctx->seen |= SHMEM_SEEN_HUGE; 4650 break; 4651 case Opt_mpol: 4652 if (IS_ENABLED(CONFIG_NUMA)) { 4653 mpol_put(ctx->mpol); 4654 ctx->mpol = NULL; 4655 if (mpol_parse_str(param->string, &ctx->mpol)) 4656 goto bad_value; 4657 break; 4658 } 4659 goto unsupported_parameter; 4660 case Opt_inode32: 4661 ctx->full_inums = false; 4662 ctx->seen |= SHMEM_SEEN_INUMS; 4663 break; 4664 case Opt_inode64: 4665 if (sizeof(ino_t) < 8) { 4666 return invalfc(fc, 4667 "Cannot use inode64 with <64bit inums in kernel\n"); 4668 } 4669 ctx->full_inums = true; 4670 ctx->seen |= SHMEM_SEEN_INUMS; 4671 break; 4672 case Opt_noswap: 4673 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4674 return invalfc(fc, 4675 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4676 } 4677 ctx->noswap = true; 4678 break; 4679 case Opt_quota: 4680 if (fc->user_ns != &init_user_ns) 4681 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4682 ctx->seen |= SHMEM_SEEN_QUOTA; 4683 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4684 break; 4685 case Opt_usrquota: 4686 if (fc->user_ns != &init_user_ns) 4687 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4688 ctx->seen |= SHMEM_SEEN_QUOTA; 4689 ctx->quota_types |= QTYPE_MASK_USR; 4690 break; 4691 case Opt_grpquota: 4692 if (fc->user_ns != &init_user_ns) 4693 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4694 ctx->seen |= SHMEM_SEEN_QUOTA; 4695 ctx->quota_types |= QTYPE_MASK_GRP; 4696 break; 4697 case Opt_usrquota_block_hardlimit: 4698 size = memparse(param->string, &rest); 4699 if (*rest || !size) 4700 goto bad_value; 4701 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4702 return invalfc(fc, 4703 "User quota block hardlimit too large."); 4704 ctx->qlimits.usrquota_bhardlimit = size; 4705 break; 4706 case Opt_grpquota_block_hardlimit: 4707 size = memparse(param->string, &rest); 4708 if (*rest || !size) 4709 goto bad_value; 4710 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4711 return invalfc(fc, 4712 "Group quota block hardlimit too large."); 4713 ctx->qlimits.grpquota_bhardlimit = size; 4714 break; 4715 case Opt_usrquota_inode_hardlimit: 4716 size = memparse(param->string, &rest); 4717 if (*rest || !size) 4718 goto bad_value; 4719 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4720 return invalfc(fc, 4721 "User quota inode hardlimit too large."); 4722 ctx->qlimits.usrquota_ihardlimit = size; 4723 break; 4724 case Opt_grpquota_inode_hardlimit: 4725 size = memparse(param->string, &rest); 4726 if (*rest || !size) 4727 goto bad_value; 4728 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4729 return invalfc(fc, 4730 "Group quota inode hardlimit too large."); 4731 ctx->qlimits.grpquota_ihardlimit = size; 4732 break; 4733 case Opt_casefold_version: 4734 return shmem_parse_opt_casefold(fc, param, false); 4735 case Opt_casefold: 4736 return shmem_parse_opt_casefold(fc, param, true); 4737 case Opt_strict_encoding: 4738 #if IS_ENABLED(CONFIG_UNICODE) 4739 ctx->strict_encoding = true; 4740 break; 4741 #else 4742 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4743 #endif 4744 } 4745 return 0; 4746 4747 unsupported_parameter: 4748 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4749 bad_value: 4750 return invalfc(fc, "Bad value for '%s'", param->key); 4751 } 4752 4753 static char *shmem_next_opt(char **s) 4754 { 4755 char *sbegin = *s; 4756 char *p; 4757 4758 if (sbegin == NULL) 4759 return NULL; 4760 4761 /* 4762 * NUL-terminate this option: unfortunately, 4763 * mount options form a comma-separated list, 4764 * but mpol's nodelist may also contain commas. 4765 */ 4766 for (;;) { 4767 p = strchr(*s, ','); 4768 if (p == NULL) 4769 break; 4770 *s = p + 1; 4771 if (!isdigit(*(p+1))) { 4772 *p = '\0'; 4773 return sbegin; 4774 } 4775 } 4776 4777 *s = NULL; 4778 return sbegin; 4779 } 4780 4781 static int shmem_parse_monolithic(struct fs_context *fc, void *data) 4782 { 4783 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt); 4784 } 4785 4786 /* 4787 * Reconfigure a shmem filesystem. 4788 */ 4789 static int shmem_reconfigure(struct fs_context *fc) 4790 { 4791 struct shmem_options *ctx = fc->fs_private; 4792 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4793 unsigned long used_isp; 4794 struct mempolicy *mpol = NULL; 4795 const char *err; 4796 4797 raw_spin_lock(&sbinfo->stat_lock); 4798 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4799 4800 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4801 if (!sbinfo->max_blocks) { 4802 err = "Cannot retroactively limit size"; 4803 goto out; 4804 } 4805 if (percpu_counter_compare(&sbinfo->used_blocks, 4806 ctx->blocks) > 0) { 4807 err = "Too small a size for current use"; 4808 goto out; 4809 } 4810 } 4811 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4812 if (!sbinfo->max_inodes) { 4813 err = "Cannot retroactively limit inodes"; 4814 goto out; 4815 } 4816 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4817 err = "Too few inodes for current use"; 4818 goto out; 4819 } 4820 } 4821 4822 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4823 sbinfo->next_ino > UINT_MAX) { 4824 err = "Current inum too high to switch to 32-bit inums"; 4825 goto out; 4826 } 4827 4828 /* 4829 * "noswap" doesn't use fsparam_flag_no, i.e. there's no "swap" 4830 * counterpart for (re-)enabling swap. 4831 */ 4832 if (ctx->noswap && !sbinfo->noswap) { 4833 err = "Cannot disable swap on remount"; 4834 goto out; 4835 } 4836 4837 if (ctx->seen & SHMEM_SEEN_QUOTA && 4838 !sb_any_quota_loaded(fc->root->d_sb)) { 4839 err = "Cannot enable quota on remount"; 4840 goto out; 4841 } 4842 4843 #ifdef CONFIG_TMPFS_QUOTA 4844 #define CHANGED_LIMIT(name) \ 4845 (ctx->qlimits.name## hardlimit && \ 4846 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4847 4848 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4849 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4850 err = "Cannot change global quota limit on remount"; 4851 goto out; 4852 } 4853 #endif /* CONFIG_TMPFS_QUOTA */ 4854 4855 if (ctx->seen & SHMEM_SEEN_HUGE) 4856 sbinfo->huge = ctx->huge; 4857 if (ctx->seen & SHMEM_SEEN_INUMS) 4858 sbinfo->full_inums = ctx->full_inums; 4859 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4860 sbinfo->max_blocks = ctx->blocks; 4861 if (ctx->seen & SHMEM_SEEN_INODES) { 4862 sbinfo->max_inodes = ctx->inodes; 4863 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4864 } 4865 4866 /* 4867 * Preserve previous mempolicy unless mpol remount option was specified. 4868 */ 4869 if (ctx->mpol) { 4870 mpol = sbinfo->mpol; 4871 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4872 ctx->mpol = NULL; 4873 } 4874 4875 if (ctx->noswap) 4876 sbinfo->noswap = true; 4877 4878 raw_spin_unlock(&sbinfo->stat_lock); 4879 mpol_put(mpol); 4880 return 0; 4881 out: 4882 raw_spin_unlock(&sbinfo->stat_lock); 4883 return invalfc(fc, "%s", err); 4884 } 4885 4886 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4887 { 4888 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4889 struct mempolicy *mpol; 4890 4891 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4892 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4893 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4894 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4895 if (sbinfo->mode != (0777 | S_ISVTX)) 4896 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4897 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4898 seq_printf(seq, ",uid=%u", 4899 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4900 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4901 seq_printf(seq, ",gid=%u", 4902 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4903 4904 /* 4905 * Showing inode{64,32} might be useful even if it's the system default, 4906 * since then people don't have to resort to checking both here and 4907 * /proc/config.gz to confirm 64-bit inums were successfully applied 4908 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4909 * 4910 * We hide it when inode64 isn't the default and we are using 32-bit 4911 * inodes, since that probably just means the feature isn't even under 4912 * consideration. 4913 * 4914 * As such: 4915 * 4916 * +-----------------+-----------------+ 4917 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4918 * +------------------+-----------------+-----------------+ 4919 * | full_inums=true | show | show | 4920 * | full_inums=false | show | hide | 4921 * +------------------+-----------------+-----------------+ 4922 * 4923 */ 4924 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4925 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4926 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4927 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4928 if (sbinfo->huge) 4929 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4930 #endif 4931 mpol = shmem_get_sbmpol(sbinfo); 4932 shmem_show_mpol(seq, mpol); 4933 mpol_put(mpol); 4934 if (sbinfo->noswap) 4935 seq_printf(seq, ",noswap"); 4936 #ifdef CONFIG_TMPFS_QUOTA 4937 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4938 seq_printf(seq, ",usrquota"); 4939 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4940 seq_printf(seq, ",grpquota"); 4941 if (sbinfo->qlimits.usrquota_bhardlimit) 4942 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4943 sbinfo->qlimits.usrquota_bhardlimit); 4944 if (sbinfo->qlimits.grpquota_bhardlimit) 4945 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4946 sbinfo->qlimits.grpquota_bhardlimit); 4947 if (sbinfo->qlimits.usrquota_ihardlimit) 4948 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4949 sbinfo->qlimits.usrquota_ihardlimit); 4950 if (sbinfo->qlimits.grpquota_ihardlimit) 4951 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4952 sbinfo->qlimits.grpquota_ihardlimit); 4953 #endif 4954 return 0; 4955 } 4956 4957 #endif /* CONFIG_TMPFS */ 4958 4959 static void shmem_put_super(struct super_block *sb) 4960 { 4961 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4962 4963 #if IS_ENABLED(CONFIG_UNICODE) 4964 if (sb->s_encoding) 4965 utf8_unload(sb->s_encoding); 4966 #endif 4967 4968 #ifdef CONFIG_TMPFS_QUOTA 4969 shmem_disable_quotas(sb); 4970 #endif 4971 free_percpu(sbinfo->ino_batch); 4972 percpu_counter_destroy(&sbinfo->used_blocks); 4973 mpol_put(sbinfo->mpol); 4974 kfree(sbinfo); 4975 sb->s_fs_info = NULL; 4976 } 4977 4978 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS) 4979 static const struct dentry_operations shmem_ci_dentry_ops = { 4980 .d_hash = generic_ci_d_hash, 4981 .d_compare = generic_ci_d_compare, 4982 }; 4983 #endif 4984 4985 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4986 { 4987 struct shmem_options *ctx = fc->fs_private; 4988 struct inode *inode; 4989 struct shmem_sb_info *sbinfo; 4990 int error = -ENOMEM; 4991 4992 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4993 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4994 L1_CACHE_BYTES), GFP_KERNEL); 4995 if (!sbinfo) 4996 return error; 4997 4998 sb->s_fs_info = sbinfo; 4999 5000 #ifdef CONFIG_TMPFS 5001 /* 5002 * Per default we only allow half of the physical ram per 5003 * tmpfs instance, limiting inodes to one per page of lowmem; 5004 * but the internal instance is left unlimited. 5005 */ 5006 if (!(sb->s_flags & SB_KERNMOUNT)) { 5007 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 5008 ctx->blocks = shmem_default_max_blocks(); 5009 if (!(ctx->seen & SHMEM_SEEN_INODES)) 5010 ctx->inodes = shmem_default_max_inodes(); 5011 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 5012 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 5013 sbinfo->noswap = ctx->noswap; 5014 } else { 5015 sb->s_flags |= SB_NOUSER; 5016 } 5017 sb->s_export_op = &shmem_export_ops; 5018 sb->s_flags |= SB_NOSEC; 5019 5020 #if IS_ENABLED(CONFIG_UNICODE) 5021 if (!ctx->encoding && ctx->strict_encoding) { 5022 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n"); 5023 error = -EINVAL; 5024 goto failed; 5025 } 5026 5027 if (ctx->encoding) { 5028 sb->s_encoding = ctx->encoding; 5029 set_default_d_op(sb, &shmem_ci_dentry_ops); 5030 if (ctx->strict_encoding) 5031 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL; 5032 } 5033 #endif 5034 5035 #else 5036 sb->s_flags |= SB_NOUSER; 5037 #endif /* CONFIG_TMPFS */ 5038 sb->s_d_flags |= DCACHE_DONTCACHE; 5039 sbinfo->max_blocks = ctx->blocks; 5040 sbinfo->max_inodes = ctx->inodes; 5041 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 5042 if (sb->s_flags & SB_KERNMOUNT) { 5043 sbinfo->ino_batch = alloc_percpu(ino_t); 5044 if (!sbinfo->ino_batch) 5045 goto failed; 5046 } 5047 sbinfo->uid = ctx->uid; 5048 sbinfo->gid = ctx->gid; 5049 sbinfo->full_inums = ctx->full_inums; 5050 sbinfo->mode = ctx->mode; 5051 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5052 if (ctx->seen & SHMEM_SEEN_HUGE) 5053 sbinfo->huge = ctx->huge; 5054 else 5055 sbinfo->huge = tmpfs_huge; 5056 #endif 5057 sbinfo->mpol = ctx->mpol; 5058 ctx->mpol = NULL; 5059 5060 raw_spin_lock_init(&sbinfo->stat_lock); 5061 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 5062 goto failed; 5063 spin_lock_init(&sbinfo->shrinklist_lock); 5064 INIT_LIST_HEAD(&sbinfo->shrinklist); 5065 5066 sb->s_maxbytes = MAX_LFS_FILESIZE; 5067 sb->s_blocksize = PAGE_SIZE; 5068 sb->s_blocksize_bits = PAGE_SHIFT; 5069 sb->s_magic = TMPFS_MAGIC; 5070 sb->s_op = &shmem_ops; 5071 sb->s_time_gran = 1; 5072 #ifdef CONFIG_TMPFS_XATTR 5073 sb->s_xattr = shmem_xattr_handlers; 5074 #endif 5075 #ifdef CONFIG_TMPFS_POSIX_ACL 5076 sb->s_flags |= SB_POSIXACL; 5077 #endif 5078 uuid_t uuid; 5079 uuid_gen(&uuid); 5080 super_set_uuid(sb, uuid.b, sizeof(uuid)); 5081 5082 #ifdef CONFIG_TMPFS_QUOTA 5083 if (ctx->seen & SHMEM_SEEN_QUOTA) { 5084 sb->dq_op = &shmem_quota_operations; 5085 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5086 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 5087 5088 /* Copy the default limits from ctx into sbinfo */ 5089 memcpy(&sbinfo->qlimits, &ctx->qlimits, 5090 sizeof(struct shmem_quota_limits)); 5091 5092 if (shmem_enable_quotas(sb, ctx->quota_types)) 5093 goto failed; 5094 } 5095 #endif /* CONFIG_TMPFS_QUOTA */ 5096 5097 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 5098 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 5099 if (IS_ERR(inode)) { 5100 error = PTR_ERR(inode); 5101 goto failed; 5102 } 5103 inode->i_uid = sbinfo->uid; 5104 inode->i_gid = sbinfo->gid; 5105 sb->s_root = d_make_root(inode); 5106 if (!sb->s_root) 5107 goto failed; 5108 return 0; 5109 5110 failed: 5111 shmem_put_super(sb); 5112 return error; 5113 } 5114 5115 static int shmem_get_tree(struct fs_context *fc) 5116 { 5117 return get_tree_nodev(fc, shmem_fill_super); 5118 } 5119 5120 static void shmem_free_fc(struct fs_context *fc) 5121 { 5122 struct shmem_options *ctx = fc->fs_private; 5123 5124 if (ctx) { 5125 mpol_put(ctx->mpol); 5126 kfree(ctx); 5127 } 5128 } 5129 5130 static const struct fs_context_operations shmem_fs_context_ops = { 5131 .free = shmem_free_fc, 5132 .get_tree = shmem_get_tree, 5133 #ifdef CONFIG_TMPFS 5134 .parse_monolithic = shmem_parse_monolithic, 5135 .parse_param = shmem_parse_one, 5136 .reconfigure = shmem_reconfigure, 5137 #endif 5138 }; 5139 5140 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 5141 5142 static struct inode *shmem_alloc_inode(struct super_block *sb) 5143 { 5144 struct shmem_inode_info *info; 5145 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 5146 if (!info) 5147 return NULL; 5148 return &info->vfs_inode; 5149 } 5150 5151 static void shmem_free_in_core_inode(struct inode *inode) 5152 { 5153 if (S_ISLNK(inode->i_mode)) 5154 kfree(inode->i_link); 5155 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 5156 } 5157 5158 static void shmem_destroy_inode(struct inode *inode) 5159 { 5160 if (S_ISREG(inode->i_mode)) 5161 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 5162 if (S_ISDIR(inode->i_mode)) 5163 simple_offset_destroy(shmem_get_offset_ctx(inode)); 5164 } 5165 5166 static void shmem_init_inode(void *foo) 5167 { 5168 struct shmem_inode_info *info = foo; 5169 inode_init_once(&info->vfs_inode); 5170 } 5171 5172 static void __init shmem_init_inodecache(void) 5173 { 5174 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 5175 sizeof(struct shmem_inode_info), 5176 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 5177 } 5178 5179 static void __init shmem_destroy_inodecache(void) 5180 { 5181 kmem_cache_destroy(shmem_inode_cachep); 5182 } 5183 5184 /* Keep the page in page cache instead of truncating it */ 5185 static int shmem_error_remove_folio(struct address_space *mapping, 5186 struct folio *folio) 5187 { 5188 return 0; 5189 } 5190 5191 static const struct address_space_operations shmem_aops = { 5192 .dirty_folio = noop_dirty_folio, 5193 #ifdef CONFIG_TMPFS 5194 .write_begin = shmem_write_begin, 5195 .write_end = shmem_write_end, 5196 #endif 5197 #ifdef CONFIG_MIGRATION 5198 .migrate_folio = migrate_folio, 5199 #endif 5200 .error_remove_folio = shmem_error_remove_folio, 5201 }; 5202 5203 static const struct file_operations shmem_file_operations = { 5204 .mmap_prepare = shmem_mmap_prepare, 5205 .open = shmem_file_open, 5206 .get_unmapped_area = shmem_get_unmapped_area, 5207 #ifdef CONFIG_TMPFS 5208 .llseek = shmem_file_llseek, 5209 .read_iter = shmem_file_read_iter, 5210 .write_iter = shmem_file_write_iter, 5211 .fsync = noop_fsync, 5212 .splice_read = shmem_file_splice_read, 5213 .splice_write = iter_file_splice_write, 5214 .fallocate = shmem_fallocate, 5215 #endif 5216 }; 5217 5218 static const struct inode_operations shmem_inode_operations = { 5219 .getattr = shmem_getattr, 5220 .setattr = shmem_setattr, 5221 #ifdef CONFIG_TMPFS_XATTR 5222 .listxattr = shmem_listxattr, 5223 .set_acl = simple_set_acl, 5224 .fileattr_get = shmem_fileattr_get, 5225 .fileattr_set = shmem_fileattr_set, 5226 #endif 5227 }; 5228 5229 static const struct inode_operations shmem_dir_inode_operations = { 5230 #ifdef CONFIG_TMPFS 5231 .getattr = shmem_getattr, 5232 .create = shmem_create, 5233 .lookup = simple_lookup, 5234 .link = shmem_link, 5235 .unlink = shmem_unlink, 5236 .symlink = shmem_symlink, 5237 .mkdir = shmem_mkdir, 5238 .rmdir = shmem_rmdir, 5239 .mknod = shmem_mknod, 5240 .rename = shmem_rename2, 5241 .tmpfile = shmem_tmpfile, 5242 .get_offset_ctx = shmem_get_offset_ctx, 5243 #endif 5244 #ifdef CONFIG_TMPFS_XATTR 5245 .listxattr = shmem_listxattr, 5246 .fileattr_get = shmem_fileattr_get, 5247 .fileattr_set = shmem_fileattr_set, 5248 #endif 5249 #ifdef CONFIG_TMPFS_POSIX_ACL 5250 .setattr = shmem_setattr, 5251 .set_acl = simple_set_acl, 5252 #endif 5253 }; 5254 5255 static const struct inode_operations shmem_special_inode_operations = { 5256 .getattr = shmem_getattr, 5257 #ifdef CONFIG_TMPFS_XATTR 5258 .listxattr = shmem_listxattr, 5259 #endif 5260 #ifdef CONFIG_TMPFS_POSIX_ACL 5261 .setattr = shmem_setattr, 5262 .set_acl = simple_set_acl, 5263 #endif 5264 }; 5265 5266 static const struct super_operations shmem_ops = { 5267 .alloc_inode = shmem_alloc_inode, 5268 .free_inode = shmem_free_in_core_inode, 5269 .destroy_inode = shmem_destroy_inode, 5270 #ifdef CONFIG_TMPFS 5271 .statfs = shmem_statfs, 5272 .show_options = shmem_show_options, 5273 #endif 5274 #ifdef CONFIG_TMPFS_QUOTA 5275 .get_dquots = shmem_get_dquots, 5276 #endif 5277 .evict_inode = shmem_evict_inode, 5278 .drop_inode = inode_just_drop, 5279 .put_super = shmem_put_super, 5280 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5281 .nr_cached_objects = shmem_unused_huge_count, 5282 .free_cached_objects = shmem_unused_huge_scan, 5283 #endif 5284 }; 5285 5286 static const struct vm_operations_struct shmem_vm_ops = { 5287 .fault = shmem_fault, 5288 .map_pages = filemap_map_pages, 5289 #ifdef CONFIG_NUMA 5290 .set_policy = shmem_set_policy, 5291 .get_policy = shmem_get_policy, 5292 #endif 5293 }; 5294 5295 static const struct vm_operations_struct shmem_anon_vm_ops = { 5296 .fault = shmem_fault, 5297 .map_pages = filemap_map_pages, 5298 #ifdef CONFIG_NUMA 5299 .set_policy = shmem_set_policy, 5300 .get_policy = shmem_get_policy, 5301 #endif 5302 }; 5303 5304 int shmem_init_fs_context(struct fs_context *fc) 5305 { 5306 struct shmem_options *ctx; 5307 5308 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 5309 if (!ctx) 5310 return -ENOMEM; 5311 5312 ctx->mode = 0777 | S_ISVTX; 5313 ctx->uid = current_fsuid(); 5314 ctx->gid = current_fsgid(); 5315 5316 #if IS_ENABLED(CONFIG_UNICODE) 5317 ctx->encoding = NULL; 5318 #endif 5319 5320 fc->fs_private = ctx; 5321 fc->ops = &shmem_fs_context_ops; 5322 #ifdef CONFIG_TMPFS 5323 fc->sb_flags |= SB_I_VERSION; 5324 #endif 5325 return 0; 5326 } 5327 5328 static struct file_system_type shmem_fs_type = { 5329 .owner = THIS_MODULE, 5330 .name = "tmpfs", 5331 .init_fs_context = shmem_init_fs_context, 5332 #ifdef CONFIG_TMPFS 5333 .parameters = shmem_fs_parameters, 5334 #endif 5335 .kill_sb = kill_anon_super, 5336 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME, 5337 }; 5338 5339 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5340 5341 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \ 5342 { \ 5343 .attr = { .name = __stringify(_name), .mode = _mode }, \ 5344 .show = _show, \ 5345 .store = _store, \ 5346 } 5347 5348 #define TMPFS_ATTR_W(_name, _store) \ 5349 static struct kobj_attribute tmpfs_attr_##_name = \ 5350 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store) 5351 5352 #define TMPFS_ATTR_RW(_name, _show, _store) \ 5353 static struct kobj_attribute tmpfs_attr_##_name = \ 5354 __INIT_KOBJ_ATTR(_name, 0644, _show, _store) 5355 5356 #define TMPFS_ATTR_RO(_name, _show) \ 5357 static struct kobj_attribute tmpfs_attr_##_name = \ 5358 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL) 5359 5360 #if IS_ENABLED(CONFIG_UNICODE) 5361 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a, 5362 char *buf) 5363 { 5364 return sysfs_emit(buf, "supported\n"); 5365 } 5366 TMPFS_ATTR_RO(casefold, casefold_show); 5367 #endif 5368 5369 static struct attribute *tmpfs_attributes[] = { 5370 #if IS_ENABLED(CONFIG_UNICODE) 5371 &tmpfs_attr_casefold.attr, 5372 #endif 5373 NULL 5374 }; 5375 5376 static const struct attribute_group tmpfs_attribute_group = { 5377 .attrs = tmpfs_attributes, 5378 .name = "features" 5379 }; 5380 5381 static struct kobject *tmpfs_kobj; 5382 5383 static int __init tmpfs_sysfs_init(void) 5384 { 5385 int ret; 5386 5387 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj); 5388 if (!tmpfs_kobj) 5389 return -ENOMEM; 5390 5391 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group); 5392 if (ret) 5393 kobject_put(tmpfs_kobj); 5394 5395 return ret; 5396 } 5397 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */ 5398 5399 void __init shmem_init(void) 5400 { 5401 int error; 5402 5403 shmem_init_inodecache(); 5404 5405 #ifdef CONFIG_TMPFS_QUOTA 5406 register_quota_format(&shmem_quota_format); 5407 #endif 5408 5409 error = register_filesystem(&shmem_fs_type); 5410 if (error) { 5411 pr_err("Could not register tmpfs\n"); 5412 goto out2; 5413 } 5414 5415 shm_mnt = kern_mount(&shmem_fs_type); 5416 if (IS_ERR(shm_mnt)) { 5417 error = PTR_ERR(shm_mnt); 5418 pr_err("Could not kern_mount tmpfs\n"); 5419 goto out1; 5420 } 5421 5422 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5423 error = tmpfs_sysfs_init(); 5424 if (error) { 5425 pr_err("Could not init tmpfs sysfs\n"); 5426 goto out1; 5427 } 5428 #endif 5429 5430 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5431 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 5432 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5433 else 5434 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 5435 5436 /* 5437 * Default to setting PMD-sized THP to inherit the global setting and 5438 * disable all other multi-size THPs. 5439 */ 5440 if (!shmem_orders_configured) 5441 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER); 5442 #endif 5443 return; 5444 5445 out1: 5446 unregister_filesystem(&shmem_fs_type); 5447 out2: 5448 #ifdef CONFIG_TMPFS_QUOTA 5449 unregister_quota_format(&shmem_quota_format); 5450 #endif 5451 shmem_destroy_inodecache(); 5452 shm_mnt = ERR_PTR(error); 5453 } 5454 5455 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 5456 static ssize_t shmem_enabled_show(struct kobject *kobj, 5457 struct kobj_attribute *attr, char *buf) 5458 { 5459 static const int values[] = { 5460 SHMEM_HUGE_ALWAYS, 5461 SHMEM_HUGE_WITHIN_SIZE, 5462 SHMEM_HUGE_ADVISE, 5463 SHMEM_HUGE_NEVER, 5464 SHMEM_HUGE_DENY, 5465 SHMEM_HUGE_FORCE, 5466 }; 5467 int len = 0; 5468 int i; 5469 5470 for (i = 0; i < ARRAY_SIZE(values); i++) { 5471 len += sysfs_emit_at(buf, len, 5472 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 5473 i ? " " : "", shmem_format_huge(values[i])); 5474 } 5475 len += sysfs_emit_at(buf, len, "\n"); 5476 5477 return len; 5478 } 5479 5480 static ssize_t shmem_enabled_store(struct kobject *kobj, 5481 struct kobj_attribute *attr, const char *buf, size_t count) 5482 { 5483 char tmp[16]; 5484 int huge, err; 5485 5486 if (count + 1 > sizeof(tmp)) 5487 return -EINVAL; 5488 memcpy(tmp, buf, count); 5489 tmp[count] = '\0'; 5490 if (count && tmp[count - 1] == '\n') 5491 tmp[count - 1] = '\0'; 5492 5493 huge = shmem_parse_huge(tmp); 5494 if (huge == -EINVAL) 5495 return huge; 5496 5497 shmem_huge = huge; 5498 if (shmem_huge > SHMEM_HUGE_DENY) 5499 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5500 5501 err = start_stop_khugepaged(); 5502 return err ? err : count; 5503 } 5504 5505 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 5506 static DEFINE_SPINLOCK(huge_shmem_orders_lock); 5507 5508 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj, 5509 struct kobj_attribute *attr, char *buf) 5510 { 5511 int order = to_thpsize(kobj)->order; 5512 const char *output; 5513 5514 if (test_bit(order, &huge_shmem_orders_always)) 5515 output = "[always] inherit within_size advise never"; 5516 else if (test_bit(order, &huge_shmem_orders_inherit)) 5517 output = "always [inherit] within_size advise never"; 5518 else if (test_bit(order, &huge_shmem_orders_within_size)) 5519 output = "always inherit [within_size] advise never"; 5520 else if (test_bit(order, &huge_shmem_orders_madvise)) 5521 output = "always inherit within_size [advise] never"; 5522 else 5523 output = "always inherit within_size advise [never]"; 5524 5525 return sysfs_emit(buf, "%s\n", output); 5526 } 5527 5528 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj, 5529 struct kobj_attribute *attr, 5530 const char *buf, size_t count) 5531 { 5532 int order = to_thpsize(kobj)->order; 5533 ssize_t ret = count; 5534 5535 if (sysfs_streq(buf, "always")) { 5536 spin_lock(&huge_shmem_orders_lock); 5537 clear_bit(order, &huge_shmem_orders_inherit); 5538 clear_bit(order, &huge_shmem_orders_madvise); 5539 clear_bit(order, &huge_shmem_orders_within_size); 5540 set_bit(order, &huge_shmem_orders_always); 5541 spin_unlock(&huge_shmem_orders_lock); 5542 } else if (sysfs_streq(buf, "inherit")) { 5543 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5544 if (shmem_huge == SHMEM_HUGE_FORCE && 5545 order != HPAGE_PMD_ORDER) 5546 return -EINVAL; 5547 5548 spin_lock(&huge_shmem_orders_lock); 5549 clear_bit(order, &huge_shmem_orders_always); 5550 clear_bit(order, &huge_shmem_orders_madvise); 5551 clear_bit(order, &huge_shmem_orders_within_size); 5552 set_bit(order, &huge_shmem_orders_inherit); 5553 spin_unlock(&huge_shmem_orders_lock); 5554 } else if (sysfs_streq(buf, "within_size")) { 5555 spin_lock(&huge_shmem_orders_lock); 5556 clear_bit(order, &huge_shmem_orders_always); 5557 clear_bit(order, &huge_shmem_orders_inherit); 5558 clear_bit(order, &huge_shmem_orders_madvise); 5559 set_bit(order, &huge_shmem_orders_within_size); 5560 spin_unlock(&huge_shmem_orders_lock); 5561 } else if (sysfs_streq(buf, "advise")) { 5562 spin_lock(&huge_shmem_orders_lock); 5563 clear_bit(order, &huge_shmem_orders_always); 5564 clear_bit(order, &huge_shmem_orders_inherit); 5565 clear_bit(order, &huge_shmem_orders_within_size); 5566 set_bit(order, &huge_shmem_orders_madvise); 5567 spin_unlock(&huge_shmem_orders_lock); 5568 } else if (sysfs_streq(buf, "never")) { 5569 spin_lock(&huge_shmem_orders_lock); 5570 clear_bit(order, &huge_shmem_orders_always); 5571 clear_bit(order, &huge_shmem_orders_inherit); 5572 clear_bit(order, &huge_shmem_orders_within_size); 5573 clear_bit(order, &huge_shmem_orders_madvise); 5574 spin_unlock(&huge_shmem_orders_lock); 5575 } else { 5576 ret = -EINVAL; 5577 } 5578 5579 if (ret > 0) { 5580 int err = start_stop_khugepaged(); 5581 5582 if (err) 5583 ret = err; 5584 } 5585 return ret; 5586 } 5587 5588 struct kobj_attribute thpsize_shmem_enabled_attr = 5589 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store); 5590 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 5591 5592 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 5593 5594 static int __init setup_transparent_hugepage_shmem(char *str) 5595 { 5596 int huge; 5597 5598 huge = shmem_parse_huge(str); 5599 if (huge == -EINVAL) { 5600 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n"); 5601 return huge; 5602 } 5603 5604 shmem_huge = huge; 5605 return 1; 5606 } 5607 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem); 5608 5609 static int __init setup_transparent_hugepage_tmpfs(char *str) 5610 { 5611 int huge; 5612 5613 huge = shmem_parse_huge(str); 5614 if (huge < 0) { 5615 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n"); 5616 return huge; 5617 } 5618 5619 tmpfs_huge = huge; 5620 return 1; 5621 } 5622 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs); 5623 5624 static char str_dup[PAGE_SIZE] __initdata; 5625 static int __init setup_thp_shmem(char *str) 5626 { 5627 char *token, *range, *policy, *subtoken; 5628 unsigned long always, inherit, madvise, within_size; 5629 char *start_size, *end_size; 5630 int start, end, nr; 5631 char *p; 5632 5633 if (!str || strlen(str) + 1 > PAGE_SIZE) 5634 goto err; 5635 strscpy(str_dup, str); 5636 5637 always = huge_shmem_orders_always; 5638 inherit = huge_shmem_orders_inherit; 5639 madvise = huge_shmem_orders_madvise; 5640 within_size = huge_shmem_orders_within_size; 5641 p = str_dup; 5642 while ((token = strsep(&p, ";")) != NULL) { 5643 range = strsep(&token, ":"); 5644 policy = token; 5645 5646 if (!policy) 5647 goto err; 5648 5649 while ((subtoken = strsep(&range, ",")) != NULL) { 5650 if (strchr(subtoken, '-')) { 5651 start_size = strsep(&subtoken, "-"); 5652 end_size = subtoken; 5653 5654 start = get_order_from_str(start_size, 5655 THP_ORDERS_ALL_FILE_DEFAULT); 5656 end = get_order_from_str(end_size, 5657 THP_ORDERS_ALL_FILE_DEFAULT); 5658 } else { 5659 start_size = end_size = subtoken; 5660 start = end = get_order_from_str(subtoken, 5661 THP_ORDERS_ALL_FILE_DEFAULT); 5662 } 5663 5664 if (start < 0) { 5665 pr_err("invalid size %s in thp_shmem boot parameter\n", 5666 start_size); 5667 goto err; 5668 } 5669 5670 if (end < 0) { 5671 pr_err("invalid size %s in thp_shmem boot parameter\n", 5672 end_size); 5673 goto err; 5674 } 5675 5676 if (start > end) 5677 goto err; 5678 5679 nr = end - start + 1; 5680 if (!strcmp(policy, "always")) { 5681 bitmap_set(&always, start, nr); 5682 bitmap_clear(&inherit, start, nr); 5683 bitmap_clear(&madvise, start, nr); 5684 bitmap_clear(&within_size, start, nr); 5685 } else if (!strcmp(policy, "advise")) { 5686 bitmap_set(&madvise, start, nr); 5687 bitmap_clear(&inherit, start, nr); 5688 bitmap_clear(&always, start, nr); 5689 bitmap_clear(&within_size, start, nr); 5690 } else if (!strcmp(policy, "inherit")) { 5691 bitmap_set(&inherit, start, nr); 5692 bitmap_clear(&madvise, start, nr); 5693 bitmap_clear(&always, start, nr); 5694 bitmap_clear(&within_size, start, nr); 5695 } else if (!strcmp(policy, "within_size")) { 5696 bitmap_set(&within_size, start, nr); 5697 bitmap_clear(&inherit, start, nr); 5698 bitmap_clear(&madvise, start, nr); 5699 bitmap_clear(&always, start, nr); 5700 } else if (!strcmp(policy, "never")) { 5701 bitmap_clear(&inherit, start, nr); 5702 bitmap_clear(&madvise, start, nr); 5703 bitmap_clear(&always, start, nr); 5704 bitmap_clear(&within_size, start, nr); 5705 } else { 5706 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy); 5707 goto err; 5708 } 5709 } 5710 } 5711 5712 huge_shmem_orders_always = always; 5713 huge_shmem_orders_madvise = madvise; 5714 huge_shmem_orders_inherit = inherit; 5715 huge_shmem_orders_within_size = within_size; 5716 shmem_orders_configured = true; 5717 return 1; 5718 5719 err: 5720 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str); 5721 return 0; 5722 } 5723 __setup("thp_shmem=", setup_thp_shmem); 5724 5725 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5726 5727 #else /* !CONFIG_SHMEM */ 5728 5729 /* 5730 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 5731 * 5732 * This is intended for small system where the benefits of the full 5733 * shmem code (swap-backed and resource-limited) are outweighed by 5734 * their complexity. On systems without swap this code should be 5735 * effectively equivalent, but much lighter weight. 5736 */ 5737 5738 static struct file_system_type shmem_fs_type = { 5739 .name = "tmpfs", 5740 .init_fs_context = ramfs_init_fs_context, 5741 .parameters = ramfs_fs_parameters, 5742 .kill_sb = ramfs_kill_sb, 5743 .fs_flags = FS_USERNS_MOUNT, 5744 }; 5745 5746 void __init shmem_init(void) 5747 { 5748 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 5749 5750 shm_mnt = kern_mount(&shmem_fs_type); 5751 BUG_ON(IS_ERR(shm_mnt)); 5752 } 5753 5754 int shmem_unuse(unsigned int type) 5755 { 5756 return 0; 5757 } 5758 5759 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 5760 { 5761 return 0; 5762 } 5763 5764 void shmem_unlock_mapping(struct address_space *mapping) 5765 { 5766 } 5767 5768 #ifdef CONFIG_MMU 5769 unsigned long shmem_get_unmapped_area(struct file *file, 5770 unsigned long addr, unsigned long len, 5771 unsigned long pgoff, unsigned long flags) 5772 { 5773 return mm_get_unmapped_area(file, addr, len, pgoff, flags); 5774 } 5775 #endif 5776 5777 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend) 5778 { 5779 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 5780 } 5781 EXPORT_SYMBOL_GPL(shmem_truncate_range); 5782 5783 #define shmem_vm_ops generic_file_vm_ops 5784 #define shmem_anon_vm_ops generic_file_vm_ops 5785 #define shmem_file_operations ramfs_file_operations 5786 #define shmem_acct_size(flags, size) 0 5787 #define shmem_unacct_size(flags, size) do {} while (0) 5788 5789 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 5790 struct super_block *sb, struct inode *dir, 5791 umode_t mode, dev_t dev, unsigned long flags) 5792 { 5793 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 5794 return inode ? inode : ERR_PTR(-ENOSPC); 5795 } 5796 5797 #endif /* CONFIG_SHMEM */ 5798 5799 /* common code */ 5800 5801 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 5802 loff_t size, unsigned long flags, unsigned int i_flags) 5803 { 5804 struct inode *inode; 5805 struct file *res; 5806 5807 if (IS_ERR(mnt)) 5808 return ERR_CAST(mnt); 5809 5810 if (size < 0 || size > MAX_LFS_FILESIZE) 5811 return ERR_PTR(-EINVAL); 5812 5813 if (is_idmapped_mnt(mnt)) 5814 return ERR_PTR(-EINVAL); 5815 5816 if (shmem_acct_size(flags, size)) 5817 return ERR_PTR(-ENOMEM); 5818 5819 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 5820 S_IFREG | S_IRWXUGO, 0, flags); 5821 if (IS_ERR(inode)) { 5822 shmem_unacct_size(flags, size); 5823 return ERR_CAST(inode); 5824 } 5825 inode->i_flags |= i_flags; 5826 inode->i_size = size; 5827 clear_nlink(inode); /* It is unlinked */ 5828 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 5829 if (!IS_ERR(res)) 5830 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 5831 &shmem_file_operations); 5832 if (IS_ERR(res)) 5833 iput(inode); 5834 return res; 5835 } 5836 5837 /** 5838 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 5839 * kernel internal. There will be NO LSM permission checks against the 5840 * underlying inode. So users of this interface must do LSM checks at a 5841 * higher layer. The users are the big_key and shm implementations. LSM 5842 * checks are provided at the key or shm level rather than the inode. 5843 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5844 * @size: size to be set for the file 5845 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5846 */ 5847 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 5848 { 5849 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 5850 } 5851 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 5852 5853 /** 5854 * shmem_file_setup - get an unlinked file living in tmpfs 5855 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5856 * @size: size to be set for the file 5857 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5858 */ 5859 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 5860 { 5861 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 5862 } 5863 EXPORT_SYMBOL_GPL(shmem_file_setup); 5864 5865 /** 5866 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 5867 * @mnt: the tmpfs mount where the file will be created 5868 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5869 * @size: size to be set for the file 5870 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5871 */ 5872 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 5873 loff_t size, unsigned long flags) 5874 { 5875 return __shmem_file_setup(mnt, name, size, flags, 0); 5876 } 5877 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 5878 5879 static struct file *__shmem_zero_setup(unsigned long start, unsigned long end, vm_flags_t vm_flags) 5880 { 5881 loff_t size = end - start; 5882 5883 /* 5884 * Cloning a new file under mmap_lock leads to a lock ordering conflict 5885 * between XFS directory reading and selinux: since this file is only 5886 * accessible to the user through its mapping, use S_PRIVATE flag to 5887 * bypass file security, in the same way as shmem_kernel_file_setup(). 5888 */ 5889 return shmem_kernel_file_setup("dev/zero", size, vm_flags); 5890 } 5891 5892 /** 5893 * shmem_zero_setup - setup a shared anonymous mapping 5894 * @vma: the vma to be mmapped is prepared by do_mmap 5895 * Returns: 0 on success, or error 5896 */ 5897 int shmem_zero_setup(struct vm_area_struct *vma) 5898 { 5899 struct file *file = __shmem_zero_setup(vma->vm_start, vma->vm_end, vma->vm_flags); 5900 5901 if (IS_ERR(file)) 5902 return PTR_ERR(file); 5903 5904 if (vma->vm_file) 5905 fput(vma->vm_file); 5906 vma->vm_file = file; 5907 vma->vm_ops = &shmem_anon_vm_ops; 5908 5909 return 0; 5910 } 5911 5912 /** 5913 * shmem_zero_setup_desc - same as shmem_zero_setup, but determined by VMA 5914 * descriptor for convenience. 5915 * @desc: Describes VMA 5916 * Returns: 0 on success, or error 5917 */ 5918 int shmem_zero_setup_desc(struct vm_area_desc *desc) 5919 { 5920 struct file *file = __shmem_zero_setup(desc->start, desc->end, desc->vm_flags); 5921 5922 if (IS_ERR(file)) 5923 return PTR_ERR(file); 5924 5925 desc->vm_file = file; 5926 desc->vm_ops = &shmem_anon_vm_ops; 5927 5928 return 0; 5929 } 5930 5931 /** 5932 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 5933 * @mapping: the folio's address_space 5934 * @index: the folio index 5935 * @gfp: the page allocator flags to use if allocating 5936 * 5937 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 5938 * with any new page allocations done using the specified allocation flags. 5939 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 5940 * suit tmpfs, since it may have pages in swapcache, and needs to find those 5941 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 5942 * 5943 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 5944 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 5945 */ 5946 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 5947 pgoff_t index, gfp_t gfp) 5948 { 5949 #ifdef CONFIG_SHMEM 5950 struct inode *inode = mapping->host; 5951 struct folio *folio; 5952 int error; 5953 5954 error = shmem_get_folio_gfp(inode, index, i_size_read(inode), 5955 &folio, SGP_CACHE, gfp, NULL, NULL); 5956 if (error) 5957 return ERR_PTR(error); 5958 5959 folio_unlock(folio); 5960 return folio; 5961 #else 5962 /* 5963 * The tiny !SHMEM case uses ramfs without swap 5964 */ 5965 return mapping_read_folio_gfp(mapping, index, gfp); 5966 #endif 5967 } 5968 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 5969 5970 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 5971 pgoff_t index, gfp_t gfp) 5972 { 5973 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 5974 struct page *page; 5975 5976 if (IS_ERR(folio)) 5977 return &folio->page; 5978 5979 page = folio_file_page(folio, index); 5980 if (PageHWPoison(page)) { 5981 folio_put(folio); 5982 return ERR_PTR(-EIO); 5983 } 5984 5985 return page; 5986 } 5987 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 5988