xref: /linux/mm/shmem.c (revision a58f3dcf20ea9e7e968ee8369fd782bbb53dff73)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include <linux/unicode.h>
44 #include "swap.h"
45 
46 static struct vfsmount *shm_mnt __ro_after_init;
47 
48 #ifdef CONFIG_SHMEM
49 /*
50  * This virtual memory filesystem is heavily based on the ramfs. It
51  * extends ramfs by the ability to use swap and honor resource limits
52  * which makes it a completely usable filesystem.
53  */
54 
55 #include <linux/xattr.h>
56 #include <linux/exportfs.h>
57 #include <linux/posix_acl.h>
58 #include <linux/posix_acl_xattr.h>
59 #include <linux/mman.h>
60 #include <linux/string.h>
61 #include <linux/slab.h>
62 #include <linux/backing-dev.h>
63 #include <linux/writeback.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 #include <linux/quotaops.h>
83 #include <linux/rcupdate_wait.h>
84 
85 #include <linux/uaccess.h>
86 
87 #include "internal.h"
88 
89 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
90 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
91 
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94 
95 /* Pretend that one inode + its dentry occupy this much memory */
96 #define BOGO_INODE_SIZE 1024
97 
98 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
99 #define SHORT_SYMLINK_LEN 128
100 
101 /*
102  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
103  * inode->i_private (with i_rwsem making sure that it has only one user at
104  * a time): we would prefer not to enlarge the shmem inode just for that.
105  */
106 struct shmem_falloc {
107 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
108 	pgoff_t start;		/* start of range currently being fallocated */
109 	pgoff_t next;		/* the next page offset to be fallocated */
110 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
111 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
112 };
113 
114 struct shmem_options {
115 	unsigned long long blocks;
116 	unsigned long long inodes;
117 	struct mempolicy *mpol;
118 	kuid_t uid;
119 	kgid_t gid;
120 	umode_t mode;
121 	bool full_inums;
122 	int huge;
123 	int seen;
124 	bool noswap;
125 	unsigned short quota_types;
126 	struct shmem_quota_limits qlimits;
127 #if IS_ENABLED(CONFIG_UNICODE)
128 	struct unicode_map *encoding;
129 	bool strict_encoding;
130 #endif
131 #define SHMEM_SEEN_BLOCKS 1
132 #define SHMEM_SEEN_INODES 2
133 #define SHMEM_SEEN_HUGE 4
134 #define SHMEM_SEEN_INUMS 8
135 #define SHMEM_SEEN_NOSWAP 16
136 #define SHMEM_SEEN_QUOTA 32
137 };
138 
139 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
140 static unsigned long huge_shmem_orders_always __read_mostly;
141 static unsigned long huge_shmem_orders_madvise __read_mostly;
142 static unsigned long huge_shmem_orders_inherit __read_mostly;
143 static unsigned long huge_shmem_orders_within_size __read_mostly;
144 static bool shmem_orders_configured __initdata;
145 #endif
146 
147 #ifdef CONFIG_TMPFS
148 static unsigned long shmem_default_max_blocks(void)
149 {
150 	return totalram_pages() / 2;
151 }
152 
153 static unsigned long shmem_default_max_inodes(void)
154 {
155 	unsigned long nr_pages = totalram_pages();
156 
157 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
158 			ULONG_MAX / BOGO_INODE_SIZE);
159 }
160 #endif
161 
162 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
163 			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
164 			struct vm_area_struct *vma, vm_fault_t *fault_type);
165 
166 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
167 {
168 	return sb->s_fs_info;
169 }
170 
171 /*
172  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
173  * for shared memory and for shared anonymous (/dev/zero) mappings
174  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
175  * consistent with the pre-accounting of private mappings ...
176  */
177 static inline int shmem_acct_size(unsigned long flags, loff_t size)
178 {
179 	return (flags & VM_NORESERVE) ?
180 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
181 }
182 
183 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
184 {
185 	if (!(flags & VM_NORESERVE))
186 		vm_unacct_memory(VM_ACCT(size));
187 }
188 
189 static inline int shmem_reacct_size(unsigned long flags,
190 		loff_t oldsize, loff_t newsize)
191 {
192 	if (!(flags & VM_NORESERVE)) {
193 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
194 			return security_vm_enough_memory_mm(current->mm,
195 					VM_ACCT(newsize) - VM_ACCT(oldsize));
196 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
197 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
198 	}
199 	return 0;
200 }
201 
202 /*
203  * ... whereas tmpfs objects are accounted incrementally as
204  * pages are allocated, in order to allow large sparse files.
205  * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
206  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
207  */
208 static inline int shmem_acct_blocks(unsigned long flags, long pages)
209 {
210 	if (!(flags & VM_NORESERVE))
211 		return 0;
212 
213 	return security_vm_enough_memory_mm(current->mm,
214 			pages * VM_ACCT(PAGE_SIZE));
215 }
216 
217 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
218 {
219 	if (flags & VM_NORESERVE)
220 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
221 }
222 
223 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
224 {
225 	struct shmem_inode_info *info = SHMEM_I(inode);
226 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
227 	int err = -ENOSPC;
228 
229 	if (shmem_acct_blocks(info->flags, pages))
230 		return err;
231 
232 	might_sleep();	/* when quotas */
233 	if (sbinfo->max_blocks) {
234 		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
235 						sbinfo->max_blocks, pages))
236 			goto unacct;
237 
238 		err = dquot_alloc_block_nodirty(inode, pages);
239 		if (err) {
240 			percpu_counter_sub(&sbinfo->used_blocks, pages);
241 			goto unacct;
242 		}
243 	} else {
244 		err = dquot_alloc_block_nodirty(inode, pages);
245 		if (err)
246 			goto unacct;
247 	}
248 
249 	return 0;
250 
251 unacct:
252 	shmem_unacct_blocks(info->flags, pages);
253 	return err;
254 }
255 
256 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
257 {
258 	struct shmem_inode_info *info = SHMEM_I(inode);
259 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
260 
261 	might_sleep();	/* when quotas */
262 	dquot_free_block_nodirty(inode, pages);
263 
264 	if (sbinfo->max_blocks)
265 		percpu_counter_sub(&sbinfo->used_blocks, pages);
266 	shmem_unacct_blocks(info->flags, pages);
267 }
268 
269 static const struct super_operations shmem_ops;
270 static const struct address_space_operations shmem_aops;
271 static const struct file_operations shmem_file_operations;
272 static const struct inode_operations shmem_inode_operations;
273 static const struct inode_operations shmem_dir_inode_operations;
274 static const struct inode_operations shmem_special_inode_operations;
275 static const struct vm_operations_struct shmem_vm_ops;
276 static const struct vm_operations_struct shmem_anon_vm_ops;
277 static struct file_system_type shmem_fs_type;
278 
279 bool shmem_mapping(struct address_space *mapping)
280 {
281 	return mapping->a_ops == &shmem_aops;
282 }
283 EXPORT_SYMBOL_GPL(shmem_mapping);
284 
285 bool vma_is_anon_shmem(struct vm_area_struct *vma)
286 {
287 	return vma->vm_ops == &shmem_anon_vm_ops;
288 }
289 
290 bool vma_is_shmem(struct vm_area_struct *vma)
291 {
292 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
293 }
294 
295 static LIST_HEAD(shmem_swaplist);
296 static DEFINE_MUTEX(shmem_swaplist_mutex);
297 
298 #ifdef CONFIG_TMPFS_QUOTA
299 
300 static int shmem_enable_quotas(struct super_block *sb,
301 			       unsigned short quota_types)
302 {
303 	int type, err = 0;
304 
305 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
306 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
307 		if (!(quota_types & (1 << type)))
308 			continue;
309 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
310 					  DQUOT_USAGE_ENABLED |
311 					  DQUOT_LIMITS_ENABLED);
312 		if (err)
313 			goto out_err;
314 	}
315 	return 0;
316 
317 out_err:
318 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
319 		type, err);
320 	for (type--; type >= 0; type--)
321 		dquot_quota_off(sb, type);
322 	return err;
323 }
324 
325 static void shmem_disable_quotas(struct super_block *sb)
326 {
327 	int type;
328 
329 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
330 		dquot_quota_off(sb, type);
331 }
332 
333 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
334 {
335 	return SHMEM_I(inode)->i_dquot;
336 }
337 #endif /* CONFIG_TMPFS_QUOTA */
338 
339 /*
340  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
341  * produces a novel ino for the newly allocated inode.
342  *
343  * It may also be called when making a hard link to permit the space needed by
344  * each dentry. However, in that case, no new inode number is needed since that
345  * internally draws from another pool of inode numbers (currently global
346  * get_next_ino()). This case is indicated by passing NULL as inop.
347  */
348 #define SHMEM_INO_BATCH 1024
349 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
350 {
351 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
352 	ino_t ino;
353 
354 	if (!(sb->s_flags & SB_KERNMOUNT)) {
355 		raw_spin_lock(&sbinfo->stat_lock);
356 		if (sbinfo->max_inodes) {
357 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
358 				raw_spin_unlock(&sbinfo->stat_lock);
359 				return -ENOSPC;
360 			}
361 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
362 		}
363 		if (inop) {
364 			ino = sbinfo->next_ino++;
365 			if (unlikely(is_zero_ino(ino)))
366 				ino = sbinfo->next_ino++;
367 			if (unlikely(!sbinfo->full_inums &&
368 				     ino > UINT_MAX)) {
369 				/*
370 				 * Emulate get_next_ino uint wraparound for
371 				 * compatibility
372 				 */
373 				if (IS_ENABLED(CONFIG_64BIT))
374 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
375 						__func__, MINOR(sb->s_dev));
376 				sbinfo->next_ino = 1;
377 				ino = sbinfo->next_ino++;
378 			}
379 			*inop = ino;
380 		}
381 		raw_spin_unlock(&sbinfo->stat_lock);
382 	} else if (inop) {
383 		/*
384 		 * __shmem_file_setup, one of our callers, is lock-free: it
385 		 * doesn't hold stat_lock in shmem_reserve_inode since
386 		 * max_inodes is always 0, and is called from potentially
387 		 * unknown contexts. As such, use a per-cpu batched allocator
388 		 * which doesn't require the per-sb stat_lock unless we are at
389 		 * the batch boundary.
390 		 *
391 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
392 		 * shmem mounts are not exposed to userspace, so we don't need
393 		 * to worry about things like glibc compatibility.
394 		 */
395 		ino_t *next_ino;
396 
397 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
398 		ino = *next_ino;
399 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
400 			raw_spin_lock(&sbinfo->stat_lock);
401 			ino = sbinfo->next_ino;
402 			sbinfo->next_ino += SHMEM_INO_BATCH;
403 			raw_spin_unlock(&sbinfo->stat_lock);
404 			if (unlikely(is_zero_ino(ino)))
405 				ino++;
406 		}
407 		*inop = ino;
408 		*next_ino = ++ino;
409 		put_cpu();
410 	}
411 
412 	return 0;
413 }
414 
415 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
416 {
417 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
418 	if (sbinfo->max_inodes) {
419 		raw_spin_lock(&sbinfo->stat_lock);
420 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
421 		raw_spin_unlock(&sbinfo->stat_lock);
422 	}
423 }
424 
425 /**
426  * shmem_recalc_inode - recalculate the block usage of an inode
427  * @inode: inode to recalc
428  * @alloced: the change in number of pages allocated to inode
429  * @swapped: the change in number of pages swapped from inode
430  *
431  * We have to calculate the free blocks since the mm can drop
432  * undirtied hole pages behind our back.
433  *
434  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
435  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
436  */
437 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
438 {
439 	struct shmem_inode_info *info = SHMEM_I(inode);
440 	long freed;
441 
442 	spin_lock(&info->lock);
443 	info->alloced += alloced;
444 	info->swapped += swapped;
445 	freed = info->alloced - info->swapped -
446 		READ_ONCE(inode->i_mapping->nrpages);
447 	/*
448 	 * Special case: whereas normally shmem_recalc_inode() is called
449 	 * after i_mapping->nrpages has already been adjusted (up or down),
450 	 * shmem_writepage() has to raise swapped before nrpages is lowered -
451 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
452 	 * been freed.  Compensate here, to avoid the need for a followup call.
453 	 */
454 	if (swapped > 0)
455 		freed += swapped;
456 	if (freed > 0)
457 		info->alloced -= freed;
458 	spin_unlock(&info->lock);
459 
460 	/* The quota case may block */
461 	if (freed > 0)
462 		shmem_inode_unacct_blocks(inode, freed);
463 }
464 
465 bool shmem_charge(struct inode *inode, long pages)
466 {
467 	struct address_space *mapping = inode->i_mapping;
468 
469 	if (shmem_inode_acct_blocks(inode, pages))
470 		return false;
471 
472 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
473 	xa_lock_irq(&mapping->i_pages);
474 	mapping->nrpages += pages;
475 	xa_unlock_irq(&mapping->i_pages);
476 
477 	shmem_recalc_inode(inode, pages, 0);
478 	return true;
479 }
480 
481 void shmem_uncharge(struct inode *inode, long pages)
482 {
483 	/* pages argument is currently unused: keep it to help debugging */
484 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
485 
486 	shmem_recalc_inode(inode, 0, 0);
487 }
488 
489 /*
490  * Replace item expected in xarray by a new item, while holding xa_lock.
491  */
492 static int shmem_replace_entry(struct address_space *mapping,
493 			pgoff_t index, void *expected, void *replacement)
494 {
495 	XA_STATE(xas, &mapping->i_pages, index);
496 	void *item;
497 
498 	VM_BUG_ON(!expected);
499 	VM_BUG_ON(!replacement);
500 	item = xas_load(&xas);
501 	if (item != expected)
502 		return -ENOENT;
503 	xas_store(&xas, replacement);
504 	return 0;
505 }
506 
507 /*
508  * Sometimes, before we decide whether to proceed or to fail, we must check
509  * that an entry was not already brought back from swap by a racing thread.
510  *
511  * Checking folio is not enough: by the time a swapcache folio is locked, it
512  * might be reused, and again be swapcache, using the same swap as before.
513  */
514 static bool shmem_confirm_swap(struct address_space *mapping,
515 			       pgoff_t index, swp_entry_t swap)
516 {
517 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
518 }
519 
520 /*
521  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
522  *
523  * SHMEM_HUGE_NEVER:
524  *	disables huge pages for the mount;
525  * SHMEM_HUGE_ALWAYS:
526  *	enables huge pages for the mount;
527  * SHMEM_HUGE_WITHIN_SIZE:
528  *	only allocate huge pages if the page will be fully within i_size,
529  *	also respect fadvise()/madvise() hints;
530  * SHMEM_HUGE_ADVISE:
531  *	only allocate huge pages if requested with fadvise()/madvise();
532  */
533 
534 #define SHMEM_HUGE_NEVER	0
535 #define SHMEM_HUGE_ALWAYS	1
536 #define SHMEM_HUGE_WITHIN_SIZE	2
537 #define SHMEM_HUGE_ADVISE	3
538 
539 /*
540  * Special values.
541  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
542  *
543  * SHMEM_HUGE_DENY:
544  *	disables huge on shm_mnt and all mounts, for emergency use;
545  * SHMEM_HUGE_FORCE:
546  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
547  *
548  */
549 #define SHMEM_HUGE_DENY		(-1)
550 #define SHMEM_HUGE_FORCE	(-2)
551 
552 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
553 /* ifdef here to avoid bloating shmem.o when not necessary */
554 
555 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
556 static int tmpfs_huge __read_mostly = SHMEM_HUGE_NEVER;
557 
558 /**
559  * shmem_mapping_size_orders - Get allowable folio orders for the given file size.
560  * @mapping: Target address_space.
561  * @index: The page index.
562  * @write_end: end of a write, could extend inode size.
563  *
564  * This returns huge orders for folios (when supported) based on the file size
565  * which the mapping currently allows at the given index. The index is relevant
566  * due to alignment considerations the mapping might have. The returned order
567  * may be less than the size passed.
568  *
569  * Return: The orders.
570  */
571 static inline unsigned int
572 shmem_mapping_size_orders(struct address_space *mapping, pgoff_t index, loff_t write_end)
573 {
574 	unsigned int order;
575 	size_t size;
576 
577 	if (!mapping_large_folio_support(mapping) || !write_end)
578 		return 0;
579 
580 	/* Calculate the write size based on the write_end */
581 	size = write_end - (index << PAGE_SHIFT);
582 	order = filemap_get_order(size);
583 	if (!order)
584 		return 0;
585 
586 	/* If we're not aligned, allocate a smaller folio */
587 	if (index & ((1UL << order) - 1))
588 		order = __ffs(index);
589 
590 	order = min_t(size_t, order, MAX_PAGECACHE_ORDER);
591 	return order > 0 ? BIT(order + 1) - 1 : 0;
592 }
593 
594 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
595 					      loff_t write_end, bool shmem_huge_force,
596 					      struct vm_area_struct *vma,
597 					      unsigned long vm_flags)
598 {
599 	unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ?
600 		0 : BIT(HPAGE_PMD_ORDER);
601 	unsigned long within_size_orders;
602 	unsigned int order;
603 	pgoff_t aligned_index;
604 	loff_t i_size;
605 
606 	if (!S_ISREG(inode->i_mode))
607 		return 0;
608 	if (shmem_huge == SHMEM_HUGE_DENY)
609 		return 0;
610 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
611 		return maybe_pmd_order;
612 
613 	/*
614 	 * The huge order allocation for anon shmem is controlled through
615 	 * the mTHP interface, so we still use PMD-sized huge order to
616 	 * check whether global control is enabled.
617 	 *
618 	 * For tmpfs mmap()'s huge order, we still use PMD-sized order to
619 	 * allocate huge pages due to lack of a write size hint.
620 	 *
621 	 * Otherwise, tmpfs will allow getting a highest order hint based on
622 	 * the size of write and fallocate paths, then will try each allowable
623 	 * huge orders.
624 	 */
625 	switch (SHMEM_SB(inode->i_sb)->huge) {
626 	case SHMEM_HUGE_ALWAYS:
627 		if (vma)
628 			return maybe_pmd_order;
629 
630 		return shmem_mapping_size_orders(inode->i_mapping, index, write_end);
631 	case SHMEM_HUGE_WITHIN_SIZE:
632 		if (vma)
633 			within_size_orders = maybe_pmd_order;
634 		else
635 			within_size_orders = shmem_mapping_size_orders(inode->i_mapping,
636 								       index, write_end);
637 
638 		order = highest_order(within_size_orders);
639 		while (within_size_orders) {
640 			aligned_index = round_up(index + 1, 1 << order);
641 			i_size = max(write_end, i_size_read(inode));
642 			i_size = round_up(i_size, PAGE_SIZE);
643 			if (i_size >> PAGE_SHIFT >= aligned_index)
644 				return within_size_orders;
645 
646 			order = next_order(&within_size_orders, order);
647 		}
648 		fallthrough;
649 	case SHMEM_HUGE_ADVISE:
650 		if (vm_flags & VM_HUGEPAGE)
651 			return maybe_pmd_order;
652 		fallthrough;
653 	default:
654 		return 0;
655 	}
656 }
657 
658 static int shmem_parse_huge(const char *str)
659 {
660 	int huge;
661 
662 	if (!str)
663 		return -EINVAL;
664 
665 	if (!strcmp(str, "never"))
666 		huge = SHMEM_HUGE_NEVER;
667 	else if (!strcmp(str, "always"))
668 		huge = SHMEM_HUGE_ALWAYS;
669 	else if (!strcmp(str, "within_size"))
670 		huge = SHMEM_HUGE_WITHIN_SIZE;
671 	else if (!strcmp(str, "advise"))
672 		huge = SHMEM_HUGE_ADVISE;
673 	else if (!strcmp(str, "deny"))
674 		huge = SHMEM_HUGE_DENY;
675 	else if (!strcmp(str, "force"))
676 		huge = SHMEM_HUGE_FORCE;
677 	else
678 		return -EINVAL;
679 
680 	if (!has_transparent_hugepage() &&
681 	    huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
682 		return -EINVAL;
683 
684 	/* Do not override huge allocation policy with non-PMD sized mTHP */
685 	if (huge == SHMEM_HUGE_FORCE &&
686 	    huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
687 		return -EINVAL;
688 
689 	return huge;
690 }
691 
692 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
693 static const char *shmem_format_huge(int huge)
694 {
695 	switch (huge) {
696 	case SHMEM_HUGE_NEVER:
697 		return "never";
698 	case SHMEM_HUGE_ALWAYS:
699 		return "always";
700 	case SHMEM_HUGE_WITHIN_SIZE:
701 		return "within_size";
702 	case SHMEM_HUGE_ADVISE:
703 		return "advise";
704 	case SHMEM_HUGE_DENY:
705 		return "deny";
706 	case SHMEM_HUGE_FORCE:
707 		return "force";
708 	default:
709 		VM_BUG_ON(1);
710 		return "bad_val";
711 	}
712 }
713 #endif
714 
715 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
716 		struct shrink_control *sc, unsigned long nr_to_free)
717 {
718 	LIST_HEAD(list), *pos, *next;
719 	struct inode *inode;
720 	struct shmem_inode_info *info;
721 	struct folio *folio;
722 	unsigned long batch = sc ? sc->nr_to_scan : 128;
723 	unsigned long split = 0, freed = 0;
724 
725 	if (list_empty(&sbinfo->shrinklist))
726 		return SHRINK_STOP;
727 
728 	spin_lock(&sbinfo->shrinklist_lock);
729 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
730 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
731 
732 		/* pin the inode */
733 		inode = igrab(&info->vfs_inode);
734 
735 		/* inode is about to be evicted */
736 		if (!inode) {
737 			list_del_init(&info->shrinklist);
738 			goto next;
739 		}
740 
741 		list_move(&info->shrinklist, &list);
742 next:
743 		sbinfo->shrinklist_len--;
744 		if (!--batch)
745 			break;
746 	}
747 	spin_unlock(&sbinfo->shrinklist_lock);
748 
749 	list_for_each_safe(pos, next, &list) {
750 		pgoff_t next, end;
751 		loff_t i_size;
752 		int ret;
753 
754 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
755 		inode = &info->vfs_inode;
756 
757 		if (nr_to_free && freed >= nr_to_free)
758 			goto move_back;
759 
760 		i_size = i_size_read(inode);
761 		folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
762 		if (!folio || xa_is_value(folio))
763 			goto drop;
764 
765 		/* No large folio at the end of the file: nothing to split */
766 		if (!folio_test_large(folio)) {
767 			folio_put(folio);
768 			goto drop;
769 		}
770 
771 		/* Check if there is anything to gain from splitting */
772 		next = folio_next_index(folio);
773 		end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
774 		if (end <= folio->index || end >= next) {
775 			folio_put(folio);
776 			goto drop;
777 		}
778 
779 		/*
780 		 * Move the inode on the list back to shrinklist if we failed
781 		 * to lock the page at this time.
782 		 *
783 		 * Waiting for the lock may lead to deadlock in the
784 		 * reclaim path.
785 		 */
786 		if (!folio_trylock(folio)) {
787 			folio_put(folio);
788 			goto move_back;
789 		}
790 
791 		ret = split_folio(folio);
792 		folio_unlock(folio);
793 		folio_put(folio);
794 
795 		/* If split failed move the inode on the list back to shrinklist */
796 		if (ret)
797 			goto move_back;
798 
799 		freed += next - end;
800 		split++;
801 drop:
802 		list_del_init(&info->shrinklist);
803 		goto put;
804 move_back:
805 		/*
806 		 * Make sure the inode is either on the global list or deleted
807 		 * from any local list before iput() since it could be deleted
808 		 * in another thread once we put the inode (then the local list
809 		 * is corrupted).
810 		 */
811 		spin_lock(&sbinfo->shrinklist_lock);
812 		list_move(&info->shrinklist, &sbinfo->shrinklist);
813 		sbinfo->shrinklist_len++;
814 		spin_unlock(&sbinfo->shrinklist_lock);
815 put:
816 		iput(inode);
817 	}
818 
819 	return split;
820 }
821 
822 static long shmem_unused_huge_scan(struct super_block *sb,
823 		struct shrink_control *sc)
824 {
825 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
826 
827 	if (!READ_ONCE(sbinfo->shrinklist_len))
828 		return SHRINK_STOP;
829 
830 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
831 }
832 
833 static long shmem_unused_huge_count(struct super_block *sb,
834 		struct shrink_control *sc)
835 {
836 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
837 	return READ_ONCE(sbinfo->shrinklist_len);
838 }
839 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
840 
841 #define shmem_huge SHMEM_HUGE_DENY
842 
843 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
844 		struct shrink_control *sc, unsigned long nr_to_free)
845 {
846 	return 0;
847 }
848 
849 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
850 					      loff_t write_end, bool shmem_huge_force,
851 					      struct vm_area_struct *vma,
852 					      unsigned long vm_flags)
853 {
854 	return 0;
855 }
856 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
857 
858 static void shmem_update_stats(struct folio *folio, int nr_pages)
859 {
860 	if (folio_test_pmd_mappable(folio))
861 		__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages);
862 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
863 	__lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages);
864 }
865 
866 /*
867  * Somewhat like filemap_add_folio, but error if expected item has gone.
868  */
869 static int shmem_add_to_page_cache(struct folio *folio,
870 				   struct address_space *mapping,
871 				   pgoff_t index, void *expected, gfp_t gfp)
872 {
873 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
874 	long nr = folio_nr_pages(folio);
875 
876 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
877 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
878 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
879 
880 	folio_ref_add(folio, nr);
881 	folio->mapping = mapping;
882 	folio->index = index;
883 
884 	gfp &= GFP_RECLAIM_MASK;
885 	folio_throttle_swaprate(folio, gfp);
886 
887 	do {
888 		xas_lock_irq(&xas);
889 		if (expected != xas_find_conflict(&xas)) {
890 			xas_set_err(&xas, -EEXIST);
891 			goto unlock;
892 		}
893 		if (expected && xas_find_conflict(&xas)) {
894 			xas_set_err(&xas, -EEXIST);
895 			goto unlock;
896 		}
897 		xas_store(&xas, folio);
898 		if (xas_error(&xas))
899 			goto unlock;
900 		shmem_update_stats(folio, nr);
901 		mapping->nrpages += nr;
902 unlock:
903 		xas_unlock_irq(&xas);
904 	} while (xas_nomem(&xas, gfp));
905 
906 	if (xas_error(&xas)) {
907 		folio->mapping = NULL;
908 		folio_ref_sub(folio, nr);
909 		return xas_error(&xas);
910 	}
911 
912 	return 0;
913 }
914 
915 /*
916  * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
917  */
918 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
919 {
920 	struct address_space *mapping = folio->mapping;
921 	long nr = folio_nr_pages(folio);
922 	int error;
923 
924 	xa_lock_irq(&mapping->i_pages);
925 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
926 	folio->mapping = NULL;
927 	mapping->nrpages -= nr;
928 	shmem_update_stats(folio, -nr);
929 	xa_unlock_irq(&mapping->i_pages);
930 	folio_put_refs(folio, nr);
931 	BUG_ON(error);
932 }
933 
934 /*
935  * Remove swap entry from page cache, free the swap and its page cache. Returns
936  * the number of pages being freed. 0 means entry not found in XArray (0 pages
937  * being freed).
938  */
939 static long shmem_free_swap(struct address_space *mapping,
940 			    pgoff_t index, void *radswap)
941 {
942 	int order = xa_get_order(&mapping->i_pages, index);
943 	void *old;
944 
945 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
946 	if (old != radswap)
947 		return 0;
948 	free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
949 
950 	return 1 << order;
951 }
952 
953 /*
954  * Determine (in bytes) how many of the shmem object's pages mapped by the
955  * given offsets are swapped out.
956  *
957  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
958  * as long as the inode doesn't go away and racy results are not a problem.
959  */
960 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
961 						pgoff_t start, pgoff_t end)
962 {
963 	XA_STATE(xas, &mapping->i_pages, start);
964 	struct page *page;
965 	unsigned long swapped = 0;
966 	unsigned long max = end - 1;
967 
968 	rcu_read_lock();
969 	xas_for_each(&xas, page, max) {
970 		if (xas_retry(&xas, page))
971 			continue;
972 		if (xa_is_value(page))
973 			swapped += 1 << xas_get_order(&xas);
974 		if (xas.xa_index == max)
975 			break;
976 		if (need_resched()) {
977 			xas_pause(&xas);
978 			cond_resched_rcu();
979 		}
980 	}
981 	rcu_read_unlock();
982 
983 	return swapped << PAGE_SHIFT;
984 }
985 
986 /*
987  * Determine (in bytes) how many of the shmem object's pages mapped by the
988  * given vma is swapped out.
989  *
990  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
991  * as long as the inode doesn't go away and racy results are not a problem.
992  */
993 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
994 {
995 	struct inode *inode = file_inode(vma->vm_file);
996 	struct shmem_inode_info *info = SHMEM_I(inode);
997 	struct address_space *mapping = inode->i_mapping;
998 	unsigned long swapped;
999 
1000 	/* Be careful as we don't hold info->lock */
1001 	swapped = READ_ONCE(info->swapped);
1002 
1003 	/*
1004 	 * The easier cases are when the shmem object has nothing in swap, or
1005 	 * the vma maps it whole. Then we can simply use the stats that we
1006 	 * already track.
1007 	 */
1008 	if (!swapped)
1009 		return 0;
1010 
1011 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
1012 		return swapped << PAGE_SHIFT;
1013 
1014 	/* Here comes the more involved part */
1015 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
1016 					vma->vm_pgoff + vma_pages(vma));
1017 }
1018 
1019 /*
1020  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
1021  */
1022 void shmem_unlock_mapping(struct address_space *mapping)
1023 {
1024 	struct folio_batch fbatch;
1025 	pgoff_t index = 0;
1026 
1027 	folio_batch_init(&fbatch);
1028 	/*
1029 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
1030 	 */
1031 	while (!mapping_unevictable(mapping) &&
1032 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
1033 		check_move_unevictable_folios(&fbatch);
1034 		folio_batch_release(&fbatch);
1035 		cond_resched();
1036 	}
1037 }
1038 
1039 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
1040 {
1041 	struct folio *folio;
1042 
1043 	/*
1044 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
1045 	 * beyond i_size, and reports fallocated folios as holes.
1046 	 */
1047 	folio = filemap_get_entry(inode->i_mapping, index);
1048 	if (!folio)
1049 		return folio;
1050 	if (!xa_is_value(folio)) {
1051 		folio_lock(folio);
1052 		if (folio->mapping == inode->i_mapping)
1053 			return folio;
1054 		/* The folio has been swapped out */
1055 		folio_unlock(folio);
1056 		folio_put(folio);
1057 	}
1058 	/*
1059 	 * But read a folio back from swap if any of it is within i_size
1060 	 * (although in some cases this is just a waste of time).
1061 	 */
1062 	folio = NULL;
1063 	shmem_get_folio(inode, index, 0, &folio, SGP_READ);
1064 	return folio;
1065 }
1066 
1067 /*
1068  * Remove range of pages and swap entries from page cache, and free them.
1069  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
1070  */
1071 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
1072 								 bool unfalloc)
1073 {
1074 	struct address_space *mapping = inode->i_mapping;
1075 	struct shmem_inode_info *info = SHMEM_I(inode);
1076 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
1077 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
1078 	struct folio_batch fbatch;
1079 	pgoff_t indices[PAGEVEC_SIZE];
1080 	struct folio *folio;
1081 	bool same_folio;
1082 	long nr_swaps_freed = 0;
1083 	pgoff_t index;
1084 	int i;
1085 
1086 	if (lend == -1)
1087 		end = -1;	/* unsigned, so actually very big */
1088 
1089 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1090 		info->fallocend = start;
1091 
1092 	folio_batch_init(&fbatch);
1093 	index = start;
1094 	while (index < end && find_lock_entries(mapping, &index, end - 1,
1095 			&fbatch, indices)) {
1096 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1097 			folio = fbatch.folios[i];
1098 
1099 			if (xa_is_value(folio)) {
1100 				if (unfalloc)
1101 					continue;
1102 				nr_swaps_freed += shmem_free_swap(mapping,
1103 							indices[i], folio);
1104 				continue;
1105 			}
1106 
1107 			if (!unfalloc || !folio_test_uptodate(folio))
1108 				truncate_inode_folio(mapping, folio);
1109 			folio_unlock(folio);
1110 		}
1111 		folio_batch_remove_exceptionals(&fbatch);
1112 		folio_batch_release(&fbatch);
1113 		cond_resched();
1114 	}
1115 
1116 	/*
1117 	 * When undoing a failed fallocate, we want none of the partial folio
1118 	 * zeroing and splitting below, but shall want to truncate the whole
1119 	 * folio when !uptodate indicates that it was added by this fallocate,
1120 	 * even when [lstart, lend] covers only a part of the folio.
1121 	 */
1122 	if (unfalloc)
1123 		goto whole_folios;
1124 
1125 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1126 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1127 	if (folio) {
1128 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1129 		folio_mark_dirty(folio);
1130 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1131 			start = folio_next_index(folio);
1132 			if (same_folio)
1133 				end = folio->index;
1134 		}
1135 		folio_unlock(folio);
1136 		folio_put(folio);
1137 		folio = NULL;
1138 	}
1139 
1140 	if (!same_folio)
1141 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1142 	if (folio) {
1143 		folio_mark_dirty(folio);
1144 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1145 			end = folio->index;
1146 		folio_unlock(folio);
1147 		folio_put(folio);
1148 	}
1149 
1150 whole_folios:
1151 
1152 	index = start;
1153 	while (index < end) {
1154 		cond_resched();
1155 
1156 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1157 				indices)) {
1158 			/* If all gone or hole-punch or unfalloc, we're done */
1159 			if (index == start || end != -1)
1160 				break;
1161 			/* But if truncating, restart to make sure all gone */
1162 			index = start;
1163 			continue;
1164 		}
1165 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1166 			folio = fbatch.folios[i];
1167 
1168 			if (xa_is_value(folio)) {
1169 				long swaps_freed;
1170 
1171 				if (unfalloc)
1172 					continue;
1173 				swaps_freed = shmem_free_swap(mapping, indices[i], folio);
1174 				if (!swaps_freed) {
1175 					/* Swap was replaced by page: retry */
1176 					index = indices[i];
1177 					break;
1178 				}
1179 				nr_swaps_freed += swaps_freed;
1180 				continue;
1181 			}
1182 
1183 			folio_lock(folio);
1184 
1185 			if (!unfalloc || !folio_test_uptodate(folio)) {
1186 				if (folio_mapping(folio) != mapping) {
1187 					/* Page was replaced by swap: retry */
1188 					folio_unlock(folio);
1189 					index = indices[i];
1190 					break;
1191 				}
1192 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1193 						folio);
1194 
1195 				if (!folio_test_large(folio)) {
1196 					truncate_inode_folio(mapping, folio);
1197 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1198 					/*
1199 					 * If we split a page, reset the loop so
1200 					 * that we pick up the new sub pages.
1201 					 * Otherwise the THP was entirely
1202 					 * dropped or the target range was
1203 					 * zeroed, so just continue the loop as
1204 					 * is.
1205 					 */
1206 					if (!folio_test_large(folio)) {
1207 						folio_unlock(folio);
1208 						index = start;
1209 						break;
1210 					}
1211 				}
1212 			}
1213 			folio_unlock(folio);
1214 		}
1215 		folio_batch_remove_exceptionals(&fbatch);
1216 		folio_batch_release(&fbatch);
1217 	}
1218 
1219 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1220 }
1221 
1222 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1223 {
1224 	shmem_undo_range(inode, lstart, lend, false);
1225 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1226 	inode_inc_iversion(inode);
1227 }
1228 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1229 
1230 static int shmem_getattr(struct mnt_idmap *idmap,
1231 			 const struct path *path, struct kstat *stat,
1232 			 u32 request_mask, unsigned int query_flags)
1233 {
1234 	struct inode *inode = path->dentry->d_inode;
1235 	struct shmem_inode_info *info = SHMEM_I(inode);
1236 
1237 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1238 		shmem_recalc_inode(inode, 0, 0);
1239 
1240 	if (info->fsflags & FS_APPEND_FL)
1241 		stat->attributes |= STATX_ATTR_APPEND;
1242 	if (info->fsflags & FS_IMMUTABLE_FL)
1243 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1244 	if (info->fsflags & FS_NODUMP_FL)
1245 		stat->attributes |= STATX_ATTR_NODUMP;
1246 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1247 			STATX_ATTR_IMMUTABLE |
1248 			STATX_ATTR_NODUMP);
1249 	generic_fillattr(idmap, request_mask, inode, stat);
1250 
1251 	if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
1252 		stat->blksize = HPAGE_PMD_SIZE;
1253 
1254 	if (request_mask & STATX_BTIME) {
1255 		stat->result_mask |= STATX_BTIME;
1256 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1257 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1258 	}
1259 
1260 	return 0;
1261 }
1262 
1263 static int shmem_setattr(struct mnt_idmap *idmap,
1264 			 struct dentry *dentry, struct iattr *attr)
1265 {
1266 	struct inode *inode = d_inode(dentry);
1267 	struct shmem_inode_info *info = SHMEM_I(inode);
1268 	int error;
1269 	bool update_mtime = false;
1270 	bool update_ctime = true;
1271 
1272 	error = setattr_prepare(idmap, dentry, attr);
1273 	if (error)
1274 		return error;
1275 
1276 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1277 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1278 			return -EPERM;
1279 		}
1280 	}
1281 
1282 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1283 		loff_t oldsize = inode->i_size;
1284 		loff_t newsize = attr->ia_size;
1285 
1286 		/* protected by i_rwsem */
1287 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1288 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1289 			return -EPERM;
1290 
1291 		if (newsize != oldsize) {
1292 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1293 					oldsize, newsize);
1294 			if (error)
1295 				return error;
1296 			i_size_write(inode, newsize);
1297 			update_mtime = true;
1298 		} else {
1299 			update_ctime = false;
1300 		}
1301 		if (newsize <= oldsize) {
1302 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1303 			if (oldsize > holebegin)
1304 				unmap_mapping_range(inode->i_mapping,
1305 							holebegin, 0, 1);
1306 			if (info->alloced)
1307 				shmem_truncate_range(inode,
1308 							newsize, (loff_t)-1);
1309 			/* unmap again to remove racily COWed private pages */
1310 			if (oldsize > holebegin)
1311 				unmap_mapping_range(inode->i_mapping,
1312 							holebegin, 0, 1);
1313 		}
1314 	}
1315 
1316 	if (is_quota_modification(idmap, inode, attr)) {
1317 		error = dquot_initialize(inode);
1318 		if (error)
1319 			return error;
1320 	}
1321 
1322 	/* Transfer quota accounting */
1323 	if (i_uid_needs_update(idmap, attr, inode) ||
1324 	    i_gid_needs_update(idmap, attr, inode)) {
1325 		error = dquot_transfer(idmap, inode, attr);
1326 		if (error)
1327 			return error;
1328 	}
1329 
1330 	setattr_copy(idmap, inode, attr);
1331 	if (attr->ia_valid & ATTR_MODE)
1332 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1333 	if (!error && update_ctime) {
1334 		inode_set_ctime_current(inode);
1335 		if (update_mtime)
1336 			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1337 		inode_inc_iversion(inode);
1338 	}
1339 	return error;
1340 }
1341 
1342 static void shmem_evict_inode(struct inode *inode)
1343 {
1344 	struct shmem_inode_info *info = SHMEM_I(inode);
1345 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1346 	size_t freed = 0;
1347 
1348 	if (shmem_mapping(inode->i_mapping)) {
1349 		shmem_unacct_size(info->flags, inode->i_size);
1350 		inode->i_size = 0;
1351 		mapping_set_exiting(inode->i_mapping);
1352 		shmem_truncate_range(inode, 0, (loff_t)-1);
1353 		if (!list_empty(&info->shrinklist)) {
1354 			spin_lock(&sbinfo->shrinklist_lock);
1355 			if (!list_empty(&info->shrinklist)) {
1356 				list_del_init(&info->shrinklist);
1357 				sbinfo->shrinklist_len--;
1358 			}
1359 			spin_unlock(&sbinfo->shrinklist_lock);
1360 		}
1361 		while (!list_empty(&info->swaplist)) {
1362 			/* Wait while shmem_unuse() is scanning this inode... */
1363 			wait_var_event(&info->stop_eviction,
1364 				       !atomic_read(&info->stop_eviction));
1365 			mutex_lock(&shmem_swaplist_mutex);
1366 			/* ...but beware of the race if we peeked too early */
1367 			if (!atomic_read(&info->stop_eviction))
1368 				list_del_init(&info->swaplist);
1369 			mutex_unlock(&shmem_swaplist_mutex);
1370 		}
1371 	}
1372 
1373 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1374 	shmem_free_inode(inode->i_sb, freed);
1375 	WARN_ON(inode->i_blocks);
1376 	clear_inode(inode);
1377 #ifdef CONFIG_TMPFS_QUOTA
1378 	dquot_free_inode(inode);
1379 	dquot_drop(inode);
1380 #endif
1381 }
1382 
1383 static int shmem_find_swap_entries(struct address_space *mapping,
1384 				   pgoff_t start, struct folio_batch *fbatch,
1385 				   pgoff_t *indices, unsigned int type)
1386 {
1387 	XA_STATE(xas, &mapping->i_pages, start);
1388 	struct folio *folio;
1389 	swp_entry_t entry;
1390 
1391 	rcu_read_lock();
1392 	xas_for_each(&xas, folio, ULONG_MAX) {
1393 		if (xas_retry(&xas, folio))
1394 			continue;
1395 
1396 		if (!xa_is_value(folio))
1397 			continue;
1398 
1399 		entry = radix_to_swp_entry(folio);
1400 		/*
1401 		 * swapin error entries can be found in the mapping. But they're
1402 		 * deliberately ignored here as we've done everything we can do.
1403 		 */
1404 		if (swp_type(entry) != type)
1405 			continue;
1406 
1407 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1408 		if (!folio_batch_add(fbatch, folio))
1409 			break;
1410 
1411 		if (need_resched()) {
1412 			xas_pause(&xas);
1413 			cond_resched_rcu();
1414 		}
1415 	}
1416 	rcu_read_unlock();
1417 
1418 	return xas.xa_index;
1419 }
1420 
1421 /*
1422  * Move the swapped pages for an inode to page cache. Returns the count
1423  * of pages swapped in, or the error in case of failure.
1424  */
1425 static int shmem_unuse_swap_entries(struct inode *inode,
1426 		struct folio_batch *fbatch, pgoff_t *indices)
1427 {
1428 	int i = 0;
1429 	int ret = 0;
1430 	int error = 0;
1431 	struct address_space *mapping = inode->i_mapping;
1432 
1433 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1434 		struct folio *folio = fbatch->folios[i];
1435 
1436 		if (!xa_is_value(folio))
1437 			continue;
1438 		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1439 					mapping_gfp_mask(mapping), NULL, NULL);
1440 		if (error == 0) {
1441 			folio_unlock(folio);
1442 			folio_put(folio);
1443 			ret++;
1444 		}
1445 		if (error == -ENOMEM)
1446 			break;
1447 		error = 0;
1448 	}
1449 	return error ? error : ret;
1450 }
1451 
1452 /*
1453  * If swap found in inode, free it and move page from swapcache to filecache.
1454  */
1455 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1456 {
1457 	struct address_space *mapping = inode->i_mapping;
1458 	pgoff_t start = 0;
1459 	struct folio_batch fbatch;
1460 	pgoff_t indices[PAGEVEC_SIZE];
1461 	int ret = 0;
1462 
1463 	do {
1464 		folio_batch_init(&fbatch);
1465 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1466 		if (folio_batch_count(&fbatch) == 0) {
1467 			ret = 0;
1468 			break;
1469 		}
1470 
1471 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1472 		if (ret < 0)
1473 			break;
1474 
1475 		start = indices[folio_batch_count(&fbatch) - 1];
1476 	} while (true);
1477 
1478 	return ret;
1479 }
1480 
1481 /*
1482  * Read all the shared memory data that resides in the swap
1483  * device 'type' back into memory, so the swap device can be
1484  * unused.
1485  */
1486 int shmem_unuse(unsigned int type)
1487 {
1488 	struct shmem_inode_info *info, *next;
1489 	int error = 0;
1490 
1491 	if (list_empty(&shmem_swaplist))
1492 		return 0;
1493 
1494 	mutex_lock(&shmem_swaplist_mutex);
1495 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1496 		if (!info->swapped) {
1497 			list_del_init(&info->swaplist);
1498 			continue;
1499 		}
1500 		/*
1501 		 * Drop the swaplist mutex while searching the inode for swap;
1502 		 * but before doing so, make sure shmem_evict_inode() will not
1503 		 * remove placeholder inode from swaplist, nor let it be freed
1504 		 * (igrab() would protect from unlink, but not from unmount).
1505 		 */
1506 		atomic_inc(&info->stop_eviction);
1507 		mutex_unlock(&shmem_swaplist_mutex);
1508 
1509 		error = shmem_unuse_inode(&info->vfs_inode, type);
1510 		cond_resched();
1511 
1512 		mutex_lock(&shmem_swaplist_mutex);
1513 		next = list_next_entry(info, swaplist);
1514 		if (!info->swapped)
1515 			list_del_init(&info->swaplist);
1516 		if (atomic_dec_and_test(&info->stop_eviction))
1517 			wake_up_var(&info->stop_eviction);
1518 		if (error)
1519 			break;
1520 	}
1521 	mutex_unlock(&shmem_swaplist_mutex);
1522 
1523 	return error;
1524 }
1525 
1526 /*
1527  * Move the page from the page cache to the swap cache.
1528  */
1529 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1530 {
1531 	struct folio *folio = page_folio(page);
1532 	struct address_space *mapping = folio->mapping;
1533 	struct inode *inode = mapping->host;
1534 	struct shmem_inode_info *info = SHMEM_I(inode);
1535 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1536 	pgoff_t index;
1537 	int nr_pages;
1538 	bool split = false;
1539 
1540 	/*
1541 	 * Our capabilities prevent regular writeback or sync from ever calling
1542 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1543 	 * its underlying filesystem, in which case tmpfs should write out to
1544 	 * swap only in response to memory pressure, and not for the writeback
1545 	 * threads or sync.
1546 	 */
1547 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1548 		goto redirty;
1549 
1550 	if ((info->flags & VM_LOCKED) || sbinfo->noswap)
1551 		goto redirty;
1552 
1553 	if (!total_swap_pages)
1554 		goto redirty;
1555 
1556 	/*
1557 	 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1558 	 * split when swapping.
1559 	 *
1560 	 * And shrinkage of pages beyond i_size does not split swap, so
1561 	 * swapout of a large folio crossing i_size needs to split too
1562 	 * (unless fallocate has been used to preallocate beyond EOF).
1563 	 */
1564 	if (folio_test_large(folio)) {
1565 		index = shmem_fallocend(inode,
1566 			DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1567 		if ((index > folio->index && index < folio_next_index(folio)) ||
1568 		    !IS_ENABLED(CONFIG_THP_SWAP))
1569 			split = true;
1570 	}
1571 
1572 	if (split) {
1573 try_split:
1574 		/* Ensure the subpages are still dirty */
1575 		folio_test_set_dirty(folio);
1576 		if (split_huge_page_to_list_to_order(page, wbc->list, 0))
1577 			goto redirty;
1578 		folio = page_folio(page);
1579 		folio_clear_dirty(folio);
1580 	}
1581 
1582 	index = folio->index;
1583 	nr_pages = folio_nr_pages(folio);
1584 
1585 	/*
1586 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1587 	 * value into swapfile.c, the only way we can correctly account for a
1588 	 * fallocated folio arriving here is now to initialize it and write it.
1589 	 *
1590 	 * That's okay for a folio already fallocated earlier, but if we have
1591 	 * not yet completed the fallocation, then (a) we want to keep track
1592 	 * of this folio in case we have to undo it, and (b) it may not be a
1593 	 * good idea to continue anyway, once we're pushing into swap.  So
1594 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1595 	 */
1596 	if (!folio_test_uptodate(folio)) {
1597 		if (inode->i_private) {
1598 			struct shmem_falloc *shmem_falloc;
1599 			spin_lock(&inode->i_lock);
1600 			shmem_falloc = inode->i_private;
1601 			if (shmem_falloc &&
1602 			    !shmem_falloc->waitq &&
1603 			    index >= shmem_falloc->start &&
1604 			    index < shmem_falloc->next)
1605 				shmem_falloc->nr_unswapped += nr_pages;
1606 			else
1607 				shmem_falloc = NULL;
1608 			spin_unlock(&inode->i_lock);
1609 			if (shmem_falloc)
1610 				goto redirty;
1611 		}
1612 		folio_zero_range(folio, 0, folio_size(folio));
1613 		flush_dcache_folio(folio);
1614 		folio_mark_uptodate(folio);
1615 	}
1616 
1617 	/*
1618 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1619 	 * if it's not already there.  Do it now before the folio is
1620 	 * moved to swap cache, when its pagelock no longer protects
1621 	 * the inode from eviction.  But don't unlock the mutex until
1622 	 * we've incremented swapped, because shmem_unuse_inode() will
1623 	 * prune a !swapped inode from the swaplist under this mutex.
1624 	 */
1625 	mutex_lock(&shmem_swaplist_mutex);
1626 	if (list_empty(&info->swaplist))
1627 		list_add(&info->swaplist, &shmem_swaplist);
1628 
1629 	if (!folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN)) {
1630 		shmem_recalc_inode(inode, 0, nr_pages);
1631 		swap_shmem_alloc(folio->swap, nr_pages);
1632 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap));
1633 
1634 		mutex_unlock(&shmem_swaplist_mutex);
1635 		BUG_ON(folio_mapped(folio));
1636 		return swap_writepage(&folio->page, wbc);
1637 	}
1638 
1639 	list_del_init(&info->swaplist);
1640 	mutex_unlock(&shmem_swaplist_mutex);
1641 	if (nr_pages > 1)
1642 		goto try_split;
1643 redirty:
1644 	folio_mark_dirty(folio);
1645 	if (wbc->for_reclaim)
1646 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1647 	folio_unlock(folio);
1648 	return 0;
1649 }
1650 
1651 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1652 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1653 {
1654 	char buffer[64];
1655 
1656 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1657 		return;		/* show nothing */
1658 
1659 	mpol_to_str(buffer, sizeof(buffer), mpol);
1660 
1661 	seq_printf(seq, ",mpol=%s", buffer);
1662 }
1663 
1664 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1665 {
1666 	struct mempolicy *mpol = NULL;
1667 	if (sbinfo->mpol) {
1668 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1669 		mpol = sbinfo->mpol;
1670 		mpol_get(mpol);
1671 		raw_spin_unlock(&sbinfo->stat_lock);
1672 	}
1673 	return mpol;
1674 }
1675 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1676 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1677 {
1678 }
1679 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1680 {
1681 	return NULL;
1682 }
1683 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1684 
1685 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1686 			pgoff_t index, unsigned int order, pgoff_t *ilx);
1687 
1688 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1689 			struct shmem_inode_info *info, pgoff_t index)
1690 {
1691 	struct mempolicy *mpol;
1692 	pgoff_t ilx;
1693 	struct folio *folio;
1694 
1695 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1696 	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1697 	mpol_cond_put(mpol);
1698 
1699 	return folio;
1700 }
1701 
1702 /*
1703  * Make sure huge_gfp is always more limited than limit_gfp.
1704  * Some of the flags set permissions, while others set limitations.
1705  */
1706 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1707 {
1708 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1709 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1710 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1711 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1712 
1713 	/* Allow allocations only from the originally specified zones. */
1714 	result |= zoneflags;
1715 
1716 	/*
1717 	 * Minimize the result gfp by taking the union with the deny flags,
1718 	 * and the intersection of the allow flags.
1719 	 */
1720 	result |= (limit_gfp & denyflags);
1721 	result |= (huge_gfp & limit_gfp) & allowflags;
1722 
1723 	return result;
1724 }
1725 
1726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1727 bool shmem_hpage_pmd_enabled(void)
1728 {
1729 	if (shmem_huge == SHMEM_HUGE_DENY)
1730 		return false;
1731 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
1732 		return true;
1733 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
1734 		return true;
1735 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
1736 		return true;
1737 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
1738 	    shmem_huge != SHMEM_HUGE_NEVER)
1739 		return true;
1740 
1741 	return false;
1742 }
1743 
1744 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1745 				struct vm_area_struct *vma, pgoff_t index,
1746 				loff_t write_end, bool shmem_huge_force)
1747 {
1748 	unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1749 	unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1750 	unsigned long vm_flags = vma ? vma->vm_flags : 0;
1751 	pgoff_t aligned_index;
1752 	unsigned int global_orders;
1753 	loff_t i_size;
1754 	int order;
1755 
1756 	if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags)))
1757 		return 0;
1758 
1759 	global_orders = shmem_huge_global_enabled(inode, index, write_end,
1760 						  shmem_huge_force, vma, vm_flags);
1761 	/* Tmpfs huge pages allocation */
1762 	if (!vma || !vma_is_anon_shmem(vma))
1763 		return global_orders;
1764 
1765 	/*
1766 	 * Following the 'deny' semantics of the top level, force the huge
1767 	 * option off from all mounts.
1768 	 */
1769 	if (shmem_huge == SHMEM_HUGE_DENY)
1770 		return 0;
1771 
1772 	/*
1773 	 * Only allow inherit orders if the top-level value is 'force', which
1774 	 * means non-PMD sized THP can not override 'huge' mount option now.
1775 	 */
1776 	if (shmem_huge == SHMEM_HUGE_FORCE)
1777 		return READ_ONCE(huge_shmem_orders_inherit);
1778 
1779 	/* Allow mTHP that will be fully within i_size. */
1780 	order = highest_order(within_size_orders);
1781 	while (within_size_orders) {
1782 		aligned_index = round_up(index + 1, 1 << order);
1783 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1784 		if (i_size >> PAGE_SHIFT >= aligned_index) {
1785 			mask |= within_size_orders;
1786 			break;
1787 		}
1788 
1789 		order = next_order(&within_size_orders, order);
1790 	}
1791 
1792 	if (vm_flags & VM_HUGEPAGE)
1793 		mask |= READ_ONCE(huge_shmem_orders_madvise);
1794 
1795 	if (global_orders > 0)
1796 		mask |= READ_ONCE(huge_shmem_orders_inherit);
1797 
1798 	return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1799 }
1800 
1801 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1802 					   struct address_space *mapping, pgoff_t index,
1803 					   unsigned long orders)
1804 {
1805 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1806 	pgoff_t aligned_index;
1807 	unsigned long pages;
1808 	int order;
1809 
1810 	if (vma) {
1811 		orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1812 		if (!orders)
1813 			return 0;
1814 	}
1815 
1816 	/* Find the highest order that can add into the page cache */
1817 	order = highest_order(orders);
1818 	while (orders) {
1819 		pages = 1UL << order;
1820 		aligned_index = round_down(index, pages);
1821 		/*
1822 		 * Check for conflict before waiting on a huge allocation.
1823 		 * Conflict might be that a huge page has just been allocated
1824 		 * and added to page cache by a racing thread, or that there
1825 		 * is already at least one small page in the huge extent.
1826 		 * Be careful to retry when appropriate, but not forever!
1827 		 * Elsewhere -EEXIST would be the right code, but not here.
1828 		 */
1829 		if (!xa_find(&mapping->i_pages, &aligned_index,
1830 			     aligned_index + pages - 1, XA_PRESENT))
1831 			break;
1832 		order = next_order(&orders, order);
1833 	}
1834 
1835 	return orders;
1836 }
1837 #else
1838 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1839 					   struct address_space *mapping, pgoff_t index,
1840 					   unsigned long orders)
1841 {
1842 	return 0;
1843 }
1844 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1845 
1846 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1847 		struct shmem_inode_info *info, pgoff_t index)
1848 {
1849 	struct mempolicy *mpol;
1850 	pgoff_t ilx;
1851 	struct folio *folio;
1852 
1853 	mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1854 	folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1855 	mpol_cond_put(mpol);
1856 
1857 	return folio;
1858 }
1859 
1860 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1861 		gfp_t gfp, struct inode *inode, pgoff_t index,
1862 		struct mm_struct *fault_mm, unsigned long orders)
1863 {
1864 	struct address_space *mapping = inode->i_mapping;
1865 	struct shmem_inode_info *info = SHMEM_I(inode);
1866 	unsigned long suitable_orders = 0;
1867 	struct folio *folio = NULL;
1868 	long pages;
1869 	int error, order;
1870 
1871 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1872 		orders = 0;
1873 
1874 	if (orders > 0) {
1875 		suitable_orders = shmem_suitable_orders(inode, vmf,
1876 							mapping, index, orders);
1877 
1878 		order = highest_order(suitable_orders);
1879 		while (suitable_orders) {
1880 			pages = 1UL << order;
1881 			index = round_down(index, pages);
1882 			folio = shmem_alloc_folio(gfp, order, info, index);
1883 			if (folio)
1884 				goto allocated;
1885 
1886 			if (pages == HPAGE_PMD_NR)
1887 				count_vm_event(THP_FILE_FALLBACK);
1888 			count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1889 			order = next_order(&suitable_orders, order);
1890 		}
1891 	} else {
1892 		pages = 1;
1893 		folio = shmem_alloc_folio(gfp, 0, info, index);
1894 	}
1895 	if (!folio)
1896 		return ERR_PTR(-ENOMEM);
1897 
1898 allocated:
1899 	__folio_set_locked(folio);
1900 	__folio_set_swapbacked(folio);
1901 
1902 	gfp &= GFP_RECLAIM_MASK;
1903 	error = mem_cgroup_charge(folio, fault_mm, gfp);
1904 	if (error) {
1905 		if (xa_find(&mapping->i_pages, &index,
1906 				index + pages - 1, XA_PRESENT)) {
1907 			error = -EEXIST;
1908 		} else if (pages > 1) {
1909 			if (pages == HPAGE_PMD_NR) {
1910 				count_vm_event(THP_FILE_FALLBACK);
1911 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
1912 			}
1913 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1914 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1915 		}
1916 		goto unlock;
1917 	}
1918 
1919 	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1920 	if (error)
1921 		goto unlock;
1922 
1923 	error = shmem_inode_acct_blocks(inode, pages);
1924 	if (error) {
1925 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1926 		long freed;
1927 		/*
1928 		 * Try to reclaim some space by splitting a few
1929 		 * large folios beyond i_size on the filesystem.
1930 		 */
1931 		shmem_unused_huge_shrink(sbinfo, NULL, pages);
1932 		/*
1933 		 * And do a shmem_recalc_inode() to account for freed pages:
1934 		 * except our folio is there in cache, so not quite balanced.
1935 		 */
1936 		spin_lock(&info->lock);
1937 		freed = pages + info->alloced - info->swapped -
1938 			READ_ONCE(mapping->nrpages);
1939 		if (freed > 0)
1940 			info->alloced -= freed;
1941 		spin_unlock(&info->lock);
1942 		if (freed > 0)
1943 			shmem_inode_unacct_blocks(inode, freed);
1944 		error = shmem_inode_acct_blocks(inode, pages);
1945 		if (error) {
1946 			filemap_remove_folio(folio);
1947 			goto unlock;
1948 		}
1949 	}
1950 
1951 	shmem_recalc_inode(inode, pages, 0);
1952 	folio_add_lru(folio);
1953 	return folio;
1954 
1955 unlock:
1956 	folio_unlock(folio);
1957 	folio_put(folio);
1958 	return ERR_PTR(error);
1959 }
1960 
1961 static struct folio *shmem_swap_alloc_folio(struct inode *inode,
1962 		struct vm_area_struct *vma, pgoff_t index,
1963 		swp_entry_t entry, int order, gfp_t gfp)
1964 {
1965 	struct shmem_inode_info *info = SHMEM_I(inode);
1966 	struct folio *new;
1967 	void *shadow;
1968 	int nr_pages;
1969 
1970 	/*
1971 	 * We have arrived here because our zones are constrained, so don't
1972 	 * limit chance of success with further cpuset and node constraints.
1973 	 */
1974 	gfp &= ~GFP_CONSTRAINT_MASK;
1975 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && order > 0) {
1976 		gfp_t huge_gfp = vma_thp_gfp_mask(vma);
1977 
1978 		gfp = limit_gfp_mask(huge_gfp, gfp);
1979 	}
1980 
1981 	new = shmem_alloc_folio(gfp, order, info, index);
1982 	if (!new)
1983 		return ERR_PTR(-ENOMEM);
1984 
1985 	nr_pages = folio_nr_pages(new);
1986 	if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL,
1987 					   gfp, entry)) {
1988 		folio_put(new);
1989 		return ERR_PTR(-ENOMEM);
1990 	}
1991 
1992 	/*
1993 	 * Prevent parallel swapin from proceeding with the swap cache flag.
1994 	 *
1995 	 * Of course there is another possible concurrent scenario as well,
1996 	 * that is to say, the swap cache flag of a large folio has already
1997 	 * been set by swapcache_prepare(), while another thread may have
1998 	 * already split the large swap entry stored in the shmem mapping.
1999 	 * In this case, shmem_add_to_page_cache() will help identify the
2000 	 * concurrent swapin and return -EEXIST.
2001 	 */
2002 	if (swapcache_prepare(entry, nr_pages)) {
2003 		folio_put(new);
2004 		return ERR_PTR(-EEXIST);
2005 	}
2006 
2007 	__folio_set_locked(new);
2008 	__folio_set_swapbacked(new);
2009 	new->swap = entry;
2010 
2011 	memcg1_swapin(entry, nr_pages);
2012 	shadow = get_shadow_from_swap_cache(entry);
2013 	if (shadow)
2014 		workingset_refault(new, shadow);
2015 	folio_add_lru(new);
2016 	swap_read_folio(new, NULL);
2017 	return new;
2018 }
2019 
2020 /*
2021  * When a page is moved from swapcache to shmem filecache (either by the
2022  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
2023  * shmem_unuse_inode()), it may have been read in earlier from swap, in
2024  * ignorance of the mapping it belongs to.  If that mapping has special
2025  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
2026  * we may need to copy to a suitable page before moving to filecache.
2027  *
2028  * In a future release, this may well be extended to respect cpuset and
2029  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
2030  * but for now it is a simple matter of zone.
2031  */
2032 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
2033 {
2034 	return folio_zonenum(folio) > gfp_zone(gfp);
2035 }
2036 
2037 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
2038 				struct shmem_inode_info *info, pgoff_t index,
2039 				struct vm_area_struct *vma)
2040 {
2041 	struct folio *new, *old = *foliop;
2042 	swp_entry_t entry = old->swap;
2043 	struct address_space *swap_mapping = swap_address_space(entry);
2044 	pgoff_t swap_index = swap_cache_index(entry);
2045 	XA_STATE(xas, &swap_mapping->i_pages, swap_index);
2046 	int nr_pages = folio_nr_pages(old);
2047 	int error = 0, i;
2048 
2049 	/*
2050 	 * We have arrived here because our zones are constrained, so don't
2051 	 * limit chance of success by further cpuset and node constraints.
2052 	 */
2053 	gfp &= ~GFP_CONSTRAINT_MASK;
2054 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2055 	if (nr_pages > 1) {
2056 		gfp_t huge_gfp = vma_thp_gfp_mask(vma);
2057 
2058 		gfp = limit_gfp_mask(huge_gfp, gfp);
2059 	}
2060 #endif
2061 
2062 	new = shmem_alloc_folio(gfp, folio_order(old), info, index);
2063 	if (!new)
2064 		return -ENOMEM;
2065 
2066 	folio_ref_add(new, nr_pages);
2067 	folio_copy(new, old);
2068 	flush_dcache_folio(new);
2069 
2070 	__folio_set_locked(new);
2071 	__folio_set_swapbacked(new);
2072 	folio_mark_uptodate(new);
2073 	new->swap = entry;
2074 	folio_set_swapcache(new);
2075 
2076 	/* Swap cache still stores N entries instead of a high-order entry */
2077 	xa_lock_irq(&swap_mapping->i_pages);
2078 	for (i = 0; i < nr_pages; i++) {
2079 		void *item = xas_load(&xas);
2080 
2081 		if (item != old) {
2082 			error = -ENOENT;
2083 			break;
2084 		}
2085 
2086 		xas_store(&xas, new);
2087 		xas_next(&xas);
2088 	}
2089 	if (!error) {
2090 		mem_cgroup_replace_folio(old, new);
2091 		shmem_update_stats(new, nr_pages);
2092 		shmem_update_stats(old, -nr_pages);
2093 	}
2094 	xa_unlock_irq(&swap_mapping->i_pages);
2095 
2096 	if (unlikely(error)) {
2097 		/*
2098 		 * Is this possible?  I think not, now that our callers
2099 		 * check both the swapcache flag and folio->private
2100 		 * after getting the folio lock; but be defensive.
2101 		 * Reverse old to newpage for clear and free.
2102 		 */
2103 		old = new;
2104 	} else {
2105 		folio_add_lru(new);
2106 		*foliop = new;
2107 	}
2108 
2109 	folio_clear_swapcache(old);
2110 	old->private = NULL;
2111 
2112 	folio_unlock(old);
2113 	/*
2114 	 * The old folio are removed from swap cache, drop the 'nr_pages'
2115 	 * reference, as well as one temporary reference getting from swap
2116 	 * cache.
2117 	 */
2118 	folio_put_refs(old, nr_pages + 1);
2119 	return error;
2120 }
2121 
2122 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
2123 					 struct folio *folio, swp_entry_t swap,
2124 					 bool skip_swapcache)
2125 {
2126 	struct address_space *mapping = inode->i_mapping;
2127 	swp_entry_t swapin_error;
2128 	void *old;
2129 	int nr_pages;
2130 
2131 	swapin_error = make_poisoned_swp_entry();
2132 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
2133 			     swp_to_radix_entry(swap),
2134 			     swp_to_radix_entry(swapin_error), 0);
2135 	if (old != swp_to_radix_entry(swap))
2136 		return;
2137 
2138 	nr_pages = folio_nr_pages(folio);
2139 	folio_wait_writeback(folio);
2140 	if (!skip_swapcache)
2141 		delete_from_swap_cache(folio);
2142 	/*
2143 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2144 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2145 	 * in shmem_evict_inode().
2146 	 */
2147 	shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2148 	swap_free_nr(swap, nr_pages);
2149 }
2150 
2151 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2152 				   swp_entry_t swap, gfp_t gfp)
2153 {
2154 	struct address_space *mapping = inode->i_mapping;
2155 	XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2156 	void *alloced_shadow = NULL;
2157 	int alloced_order = 0, i;
2158 
2159 	/* Convert user data gfp flags to xarray node gfp flags */
2160 	gfp &= GFP_RECLAIM_MASK;
2161 
2162 	for (;;) {
2163 		int order = -1, split_order = 0;
2164 		void *old = NULL;
2165 
2166 		xas_lock_irq(&xas);
2167 		old = xas_load(&xas);
2168 		if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2169 			xas_set_err(&xas, -EEXIST);
2170 			goto unlock;
2171 		}
2172 
2173 		order = xas_get_order(&xas);
2174 
2175 		/* Swap entry may have changed before we re-acquire the lock */
2176 		if (alloced_order &&
2177 		    (old != alloced_shadow || order != alloced_order)) {
2178 			xas_destroy(&xas);
2179 			alloced_order = 0;
2180 		}
2181 
2182 		/* Try to split large swap entry in pagecache */
2183 		if (order > 0) {
2184 			if (!alloced_order) {
2185 				split_order = order;
2186 				goto unlock;
2187 			}
2188 			xas_split(&xas, old, order);
2189 
2190 			/*
2191 			 * Re-set the swap entry after splitting, and the swap
2192 			 * offset of the original large entry must be continuous.
2193 			 */
2194 			for (i = 0; i < 1 << order; i++) {
2195 				pgoff_t aligned_index = round_down(index, 1 << order);
2196 				swp_entry_t tmp;
2197 
2198 				tmp = swp_entry(swp_type(swap), swp_offset(swap) + i);
2199 				__xa_store(&mapping->i_pages, aligned_index + i,
2200 					   swp_to_radix_entry(tmp), 0);
2201 			}
2202 		}
2203 
2204 unlock:
2205 		xas_unlock_irq(&xas);
2206 
2207 		/* split needed, alloc here and retry. */
2208 		if (split_order) {
2209 			xas_split_alloc(&xas, old, split_order, gfp);
2210 			if (xas_error(&xas))
2211 				goto error;
2212 			alloced_shadow = old;
2213 			alloced_order = split_order;
2214 			xas_reset(&xas);
2215 			continue;
2216 		}
2217 
2218 		if (!xas_nomem(&xas, gfp))
2219 			break;
2220 	}
2221 
2222 error:
2223 	if (xas_error(&xas))
2224 		return xas_error(&xas);
2225 
2226 	return alloced_order;
2227 }
2228 
2229 /*
2230  * Swap in the folio pointed to by *foliop.
2231  * Caller has to make sure that *foliop contains a valid swapped folio.
2232  * Returns 0 and the folio in foliop if success. On failure, returns the
2233  * error code and NULL in *foliop.
2234  */
2235 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2236 			     struct folio **foliop, enum sgp_type sgp,
2237 			     gfp_t gfp, struct vm_area_struct *vma,
2238 			     vm_fault_t *fault_type)
2239 {
2240 	struct address_space *mapping = inode->i_mapping;
2241 	struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2242 	struct shmem_inode_info *info = SHMEM_I(inode);
2243 	struct swap_info_struct *si;
2244 	struct folio *folio = NULL;
2245 	bool skip_swapcache = false;
2246 	swp_entry_t swap;
2247 	int error, nr_pages, order, split_order;
2248 
2249 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2250 	swap = radix_to_swp_entry(*foliop);
2251 	*foliop = NULL;
2252 
2253 	if (is_poisoned_swp_entry(swap))
2254 		return -EIO;
2255 
2256 	si = get_swap_device(swap);
2257 	if (!si) {
2258 		if (!shmem_confirm_swap(mapping, index, swap))
2259 			return -EEXIST;
2260 		else
2261 			return -EINVAL;
2262 	}
2263 
2264 	/* Look it up and read it in.. */
2265 	folio = swap_cache_get_folio(swap, NULL, 0);
2266 	order = xa_get_order(&mapping->i_pages, index);
2267 	if (!folio) {
2268 		bool fallback_order0 = false;
2269 
2270 		/* Or update major stats only when swapin succeeds?? */
2271 		if (fault_type) {
2272 			*fault_type |= VM_FAULT_MAJOR;
2273 			count_vm_event(PGMAJFAULT);
2274 			count_memcg_event_mm(fault_mm, PGMAJFAULT);
2275 		}
2276 
2277 		/*
2278 		 * If uffd is active for the vma, we need per-page fault
2279 		 * fidelity to maintain the uffd semantics, then fallback
2280 		 * to swapin order-0 folio, as well as for zswap case.
2281 		 */
2282 		if (order > 0 && ((vma && unlikely(userfaultfd_armed(vma))) ||
2283 				  !zswap_never_enabled()))
2284 			fallback_order0 = true;
2285 
2286 		/* Skip swapcache for synchronous device. */
2287 		if (!fallback_order0 && data_race(si->flags & SWP_SYNCHRONOUS_IO)) {
2288 			folio = shmem_swap_alloc_folio(inode, vma, index, swap, order, gfp);
2289 			if (!IS_ERR(folio)) {
2290 				skip_swapcache = true;
2291 				goto alloced;
2292 			}
2293 
2294 			/*
2295 			 * Fallback to swapin order-0 folio unless the swap entry
2296 			 * already exists.
2297 			 */
2298 			error = PTR_ERR(folio);
2299 			folio = NULL;
2300 			if (error == -EEXIST)
2301 				goto failed;
2302 		}
2303 
2304 		/*
2305 		 * Now swap device can only swap in order 0 folio, then we
2306 		 * should split the large swap entry stored in the pagecache
2307 		 * if necessary.
2308 		 */
2309 		split_order = shmem_split_large_entry(inode, index, swap, gfp);
2310 		if (split_order < 0) {
2311 			error = split_order;
2312 			goto failed;
2313 		}
2314 
2315 		/*
2316 		 * If the large swap entry has already been split, it is
2317 		 * necessary to recalculate the new swap entry based on
2318 		 * the old order alignment.
2319 		 */
2320 		if (split_order > 0) {
2321 			pgoff_t offset = index - round_down(index, 1 << split_order);
2322 
2323 			swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2324 		}
2325 
2326 		/* Here we actually start the io */
2327 		folio = shmem_swapin_cluster(swap, gfp, info, index);
2328 		if (!folio) {
2329 			error = -ENOMEM;
2330 			goto failed;
2331 		}
2332 	} else if (order != folio_order(folio)) {
2333 		/*
2334 		 * Swap readahead may swap in order 0 folios into swapcache
2335 		 * asynchronously, while the shmem mapping can still stores
2336 		 * large swap entries. In such cases, we should split the
2337 		 * large swap entry to prevent possible data corruption.
2338 		 */
2339 		split_order = shmem_split_large_entry(inode, index, swap, gfp);
2340 		if (split_order < 0) {
2341 			error = split_order;
2342 			goto failed;
2343 		}
2344 
2345 		/*
2346 		 * If the large swap entry has already been split, it is
2347 		 * necessary to recalculate the new swap entry based on
2348 		 * the old order alignment.
2349 		 */
2350 		if (split_order > 0) {
2351 			pgoff_t offset = index - round_down(index, 1 << split_order);
2352 
2353 			swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2354 		}
2355 	}
2356 
2357 alloced:
2358 	/* We have to do this with folio locked to prevent races */
2359 	folio_lock(folio);
2360 	if ((!skip_swapcache && !folio_test_swapcache(folio)) ||
2361 	    folio->swap.val != swap.val ||
2362 	    !shmem_confirm_swap(mapping, index, swap) ||
2363 	    xa_get_order(&mapping->i_pages, index) != folio_order(folio)) {
2364 		error = -EEXIST;
2365 		goto unlock;
2366 	}
2367 	if (!folio_test_uptodate(folio)) {
2368 		error = -EIO;
2369 		goto failed;
2370 	}
2371 	folio_wait_writeback(folio);
2372 	nr_pages = folio_nr_pages(folio);
2373 
2374 	/*
2375 	 * Some architectures may have to restore extra metadata to the
2376 	 * folio after reading from swap.
2377 	 */
2378 	arch_swap_restore(folio_swap(swap, folio), folio);
2379 
2380 	if (shmem_should_replace_folio(folio, gfp)) {
2381 		error = shmem_replace_folio(&folio, gfp, info, index, vma);
2382 		if (error)
2383 			goto failed;
2384 	}
2385 
2386 	error = shmem_add_to_page_cache(folio, mapping,
2387 					round_down(index, nr_pages),
2388 					swp_to_radix_entry(swap), gfp);
2389 	if (error)
2390 		goto failed;
2391 
2392 	shmem_recalc_inode(inode, 0, -nr_pages);
2393 
2394 	if (sgp == SGP_WRITE)
2395 		folio_mark_accessed(folio);
2396 
2397 	if (skip_swapcache) {
2398 		folio->swap.val = 0;
2399 		swapcache_clear(si, swap, nr_pages);
2400 	} else {
2401 		delete_from_swap_cache(folio);
2402 	}
2403 	folio_mark_dirty(folio);
2404 	swap_free_nr(swap, nr_pages);
2405 	put_swap_device(si);
2406 
2407 	*foliop = folio;
2408 	return 0;
2409 failed:
2410 	if (!shmem_confirm_swap(mapping, index, swap))
2411 		error = -EEXIST;
2412 	if (error == -EIO)
2413 		shmem_set_folio_swapin_error(inode, index, folio, swap,
2414 					     skip_swapcache);
2415 unlock:
2416 	if (skip_swapcache)
2417 		swapcache_clear(si, swap, folio_nr_pages(folio));
2418 	if (folio) {
2419 		folio_unlock(folio);
2420 		folio_put(folio);
2421 	}
2422 	put_swap_device(si);
2423 
2424 	return error;
2425 }
2426 
2427 /*
2428  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2429  *
2430  * If we allocate a new one we do not mark it dirty. That's up to the
2431  * vm. If we swap it in we mark it dirty since we also free the swap
2432  * entry since a page cannot live in both the swap and page cache.
2433  *
2434  * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2435  */
2436 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2437 		loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2438 		gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2439 {
2440 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2441 	struct mm_struct *fault_mm;
2442 	struct folio *folio;
2443 	int error;
2444 	bool alloced;
2445 	unsigned long orders = 0;
2446 
2447 	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2448 		return -EINVAL;
2449 
2450 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2451 		return -EFBIG;
2452 repeat:
2453 	if (sgp <= SGP_CACHE &&
2454 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2455 		return -EINVAL;
2456 
2457 	alloced = false;
2458 	fault_mm = vma ? vma->vm_mm : NULL;
2459 
2460 	folio = filemap_get_entry(inode->i_mapping, index);
2461 	if (folio && vma && userfaultfd_minor(vma)) {
2462 		if (!xa_is_value(folio))
2463 			folio_put(folio);
2464 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2465 		return 0;
2466 	}
2467 
2468 	if (xa_is_value(folio)) {
2469 		error = shmem_swapin_folio(inode, index, &folio,
2470 					   sgp, gfp, vma, fault_type);
2471 		if (error == -EEXIST)
2472 			goto repeat;
2473 
2474 		*foliop = folio;
2475 		return error;
2476 	}
2477 
2478 	if (folio) {
2479 		folio_lock(folio);
2480 
2481 		/* Has the folio been truncated or swapped out? */
2482 		if (unlikely(folio->mapping != inode->i_mapping)) {
2483 			folio_unlock(folio);
2484 			folio_put(folio);
2485 			goto repeat;
2486 		}
2487 		if (sgp == SGP_WRITE)
2488 			folio_mark_accessed(folio);
2489 		if (folio_test_uptodate(folio))
2490 			goto out;
2491 		/* fallocated folio */
2492 		if (sgp != SGP_READ)
2493 			goto clear;
2494 		folio_unlock(folio);
2495 		folio_put(folio);
2496 	}
2497 
2498 	/*
2499 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2500 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2501 	 */
2502 	*foliop = NULL;
2503 	if (sgp == SGP_READ)
2504 		return 0;
2505 	if (sgp == SGP_NOALLOC)
2506 		return -ENOENT;
2507 
2508 	/*
2509 	 * Fast cache lookup and swap lookup did not find it: allocate.
2510 	 */
2511 
2512 	if (vma && userfaultfd_missing(vma)) {
2513 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2514 		return 0;
2515 	}
2516 
2517 	/* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2518 	orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2519 	if (orders > 0) {
2520 		gfp_t huge_gfp;
2521 
2522 		huge_gfp = vma_thp_gfp_mask(vma);
2523 		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2524 		folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2525 				inode, index, fault_mm, orders);
2526 		if (!IS_ERR(folio)) {
2527 			if (folio_test_pmd_mappable(folio))
2528 				count_vm_event(THP_FILE_ALLOC);
2529 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2530 			goto alloced;
2531 		}
2532 		if (PTR_ERR(folio) == -EEXIST)
2533 			goto repeat;
2534 	}
2535 
2536 	folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2537 	if (IS_ERR(folio)) {
2538 		error = PTR_ERR(folio);
2539 		if (error == -EEXIST)
2540 			goto repeat;
2541 		folio = NULL;
2542 		goto unlock;
2543 	}
2544 
2545 alloced:
2546 	alloced = true;
2547 	if (folio_test_large(folio) &&
2548 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2549 					folio_next_index(folio)) {
2550 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2551 		struct shmem_inode_info *info = SHMEM_I(inode);
2552 		/*
2553 		 * Part of the large folio is beyond i_size: subject
2554 		 * to shrink under memory pressure.
2555 		 */
2556 		spin_lock(&sbinfo->shrinklist_lock);
2557 		/*
2558 		 * _careful to defend against unlocked access to
2559 		 * ->shrink_list in shmem_unused_huge_shrink()
2560 		 */
2561 		if (list_empty_careful(&info->shrinklist)) {
2562 			list_add_tail(&info->shrinklist,
2563 				      &sbinfo->shrinklist);
2564 			sbinfo->shrinklist_len++;
2565 		}
2566 		spin_unlock(&sbinfo->shrinklist_lock);
2567 	}
2568 
2569 	if (sgp == SGP_WRITE)
2570 		folio_set_referenced(folio);
2571 	/*
2572 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2573 	 */
2574 	if (sgp == SGP_FALLOC)
2575 		sgp = SGP_WRITE;
2576 clear:
2577 	/*
2578 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2579 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2580 	 * it now, lest undo on failure cancel our earlier guarantee.
2581 	 */
2582 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2583 		long i, n = folio_nr_pages(folio);
2584 
2585 		for (i = 0; i < n; i++)
2586 			clear_highpage(folio_page(folio, i));
2587 		flush_dcache_folio(folio);
2588 		folio_mark_uptodate(folio);
2589 	}
2590 
2591 	/* Perhaps the file has been truncated since we checked */
2592 	if (sgp <= SGP_CACHE &&
2593 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2594 		error = -EINVAL;
2595 		goto unlock;
2596 	}
2597 out:
2598 	*foliop = folio;
2599 	return 0;
2600 
2601 	/*
2602 	 * Error recovery.
2603 	 */
2604 unlock:
2605 	if (alloced)
2606 		filemap_remove_folio(folio);
2607 	shmem_recalc_inode(inode, 0, 0);
2608 	if (folio) {
2609 		folio_unlock(folio);
2610 		folio_put(folio);
2611 	}
2612 	return error;
2613 }
2614 
2615 /**
2616  * shmem_get_folio - find, and lock a shmem folio.
2617  * @inode:	inode to search
2618  * @index:	the page index.
2619  * @write_end:	end of a write, could extend inode size
2620  * @foliop:	pointer to the folio if found
2621  * @sgp:	SGP_* flags to control behavior
2622  *
2623  * Looks up the page cache entry at @inode & @index.  If a folio is
2624  * present, it is returned locked with an increased refcount.
2625  *
2626  * If the caller modifies data in the folio, it must call folio_mark_dirty()
2627  * before unlocking the folio to ensure that the folio is not reclaimed.
2628  * There is no need to reserve space before calling folio_mark_dirty().
2629  *
2630  * When no folio is found, the behavior depends on @sgp:
2631  *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2632  *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2633  *  - for all other flags a new folio is allocated, inserted into the
2634  *    page cache and returned locked in @foliop.
2635  *
2636  * Context: May sleep.
2637  * Return: 0 if successful, else a negative error code.
2638  */
2639 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2640 		    struct folio **foliop, enum sgp_type sgp)
2641 {
2642 	return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2643 			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2644 }
2645 EXPORT_SYMBOL_GPL(shmem_get_folio);
2646 
2647 /*
2648  * This is like autoremove_wake_function, but it removes the wait queue
2649  * entry unconditionally - even if something else had already woken the
2650  * target.
2651  */
2652 static int synchronous_wake_function(wait_queue_entry_t *wait,
2653 			unsigned int mode, int sync, void *key)
2654 {
2655 	int ret = default_wake_function(wait, mode, sync, key);
2656 	list_del_init(&wait->entry);
2657 	return ret;
2658 }
2659 
2660 /*
2661  * Trinity finds that probing a hole which tmpfs is punching can
2662  * prevent the hole-punch from ever completing: which in turn
2663  * locks writers out with its hold on i_rwsem.  So refrain from
2664  * faulting pages into the hole while it's being punched.  Although
2665  * shmem_undo_range() does remove the additions, it may be unable to
2666  * keep up, as each new page needs its own unmap_mapping_range() call,
2667  * and the i_mmap tree grows ever slower to scan if new vmas are added.
2668  *
2669  * It does not matter if we sometimes reach this check just before the
2670  * hole-punch begins, so that one fault then races with the punch:
2671  * we just need to make racing faults a rare case.
2672  *
2673  * The implementation below would be much simpler if we just used a
2674  * standard mutex or completion: but we cannot take i_rwsem in fault,
2675  * and bloating every shmem inode for this unlikely case would be sad.
2676  */
2677 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2678 {
2679 	struct shmem_falloc *shmem_falloc;
2680 	struct file *fpin = NULL;
2681 	vm_fault_t ret = 0;
2682 
2683 	spin_lock(&inode->i_lock);
2684 	shmem_falloc = inode->i_private;
2685 	if (shmem_falloc &&
2686 	    shmem_falloc->waitq &&
2687 	    vmf->pgoff >= shmem_falloc->start &&
2688 	    vmf->pgoff < shmem_falloc->next) {
2689 		wait_queue_head_t *shmem_falloc_waitq;
2690 		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2691 
2692 		ret = VM_FAULT_NOPAGE;
2693 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2694 		shmem_falloc_waitq = shmem_falloc->waitq;
2695 		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2696 				TASK_UNINTERRUPTIBLE);
2697 		spin_unlock(&inode->i_lock);
2698 		schedule();
2699 
2700 		/*
2701 		 * shmem_falloc_waitq points into the shmem_fallocate()
2702 		 * stack of the hole-punching task: shmem_falloc_waitq
2703 		 * is usually invalid by the time we reach here, but
2704 		 * finish_wait() does not dereference it in that case;
2705 		 * though i_lock needed lest racing with wake_up_all().
2706 		 */
2707 		spin_lock(&inode->i_lock);
2708 		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2709 	}
2710 	spin_unlock(&inode->i_lock);
2711 	if (fpin) {
2712 		fput(fpin);
2713 		ret = VM_FAULT_RETRY;
2714 	}
2715 	return ret;
2716 }
2717 
2718 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2719 {
2720 	struct inode *inode = file_inode(vmf->vma->vm_file);
2721 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2722 	struct folio *folio = NULL;
2723 	vm_fault_t ret = 0;
2724 	int err;
2725 
2726 	/*
2727 	 * Trinity finds that probing a hole which tmpfs is punching can
2728 	 * prevent the hole-punch from ever completing: noted in i_private.
2729 	 */
2730 	if (unlikely(inode->i_private)) {
2731 		ret = shmem_falloc_wait(vmf, inode);
2732 		if (ret)
2733 			return ret;
2734 	}
2735 
2736 	WARN_ON_ONCE(vmf->page != NULL);
2737 	err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2738 				  gfp, vmf, &ret);
2739 	if (err)
2740 		return vmf_error(err);
2741 	if (folio) {
2742 		vmf->page = folio_file_page(folio, vmf->pgoff);
2743 		ret |= VM_FAULT_LOCKED;
2744 	}
2745 	return ret;
2746 }
2747 
2748 unsigned long shmem_get_unmapped_area(struct file *file,
2749 				      unsigned long uaddr, unsigned long len,
2750 				      unsigned long pgoff, unsigned long flags)
2751 {
2752 	unsigned long addr;
2753 	unsigned long offset;
2754 	unsigned long inflated_len;
2755 	unsigned long inflated_addr;
2756 	unsigned long inflated_offset;
2757 	unsigned long hpage_size;
2758 
2759 	if (len > TASK_SIZE)
2760 		return -ENOMEM;
2761 
2762 	addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2763 				    flags);
2764 
2765 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2766 		return addr;
2767 	if (IS_ERR_VALUE(addr))
2768 		return addr;
2769 	if (addr & ~PAGE_MASK)
2770 		return addr;
2771 	if (addr > TASK_SIZE - len)
2772 		return addr;
2773 
2774 	if (shmem_huge == SHMEM_HUGE_DENY)
2775 		return addr;
2776 	if (flags & MAP_FIXED)
2777 		return addr;
2778 	/*
2779 	 * Our priority is to support MAP_SHARED mapped hugely;
2780 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2781 	 * But if caller specified an address hint and we allocated area there
2782 	 * successfully, respect that as before.
2783 	 */
2784 	if (uaddr == addr)
2785 		return addr;
2786 
2787 	hpage_size = HPAGE_PMD_SIZE;
2788 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2789 		struct super_block *sb;
2790 		unsigned long __maybe_unused hpage_orders;
2791 		int order = 0;
2792 
2793 		if (file) {
2794 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2795 			sb = file_inode(file)->i_sb;
2796 		} else {
2797 			/*
2798 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2799 			 * for "/dev/zero", to create a shared anonymous object.
2800 			 */
2801 			if (IS_ERR(shm_mnt))
2802 				return addr;
2803 			sb = shm_mnt->mnt_sb;
2804 
2805 			/*
2806 			 * Find the highest mTHP order used for anonymous shmem to
2807 			 * provide a suitable alignment address.
2808 			 */
2809 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2810 			hpage_orders = READ_ONCE(huge_shmem_orders_always);
2811 			hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2812 			hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2813 			if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2814 				hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2815 
2816 			if (hpage_orders > 0) {
2817 				order = highest_order(hpage_orders);
2818 				hpage_size = PAGE_SIZE << order;
2819 			}
2820 #endif
2821 		}
2822 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2823 			return addr;
2824 	}
2825 
2826 	if (len < hpage_size)
2827 		return addr;
2828 
2829 	offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2830 	if (offset && offset + len < 2 * hpage_size)
2831 		return addr;
2832 	if ((addr & (hpage_size - 1)) == offset)
2833 		return addr;
2834 
2835 	inflated_len = len + hpage_size - PAGE_SIZE;
2836 	if (inflated_len > TASK_SIZE)
2837 		return addr;
2838 	if (inflated_len < len)
2839 		return addr;
2840 
2841 	inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2842 					     inflated_len, 0, flags);
2843 	if (IS_ERR_VALUE(inflated_addr))
2844 		return addr;
2845 	if (inflated_addr & ~PAGE_MASK)
2846 		return addr;
2847 
2848 	inflated_offset = inflated_addr & (hpage_size - 1);
2849 	inflated_addr += offset - inflated_offset;
2850 	if (inflated_offset > offset)
2851 		inflated_addr += hpage_size;
2852 
2853 	if (inflated_addr > TASK_SIZE - len)
2854 		return addr;
2855 	return inflated_addr;
2856 }
2857 
2858 #ifdef CONFIG_NUMA
2859 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2860 {
2861 	struct inode *inode = file_inode(vma->vm_file);
2862 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2863 }
2864 
2865 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2866 					  unsigned long addr, pgoff_t *ilx)
2867 {
2868 	struct inode *inode = file_inode(vma->vm_file);
2869 	pgoff_t index;
2870 
2871 	/*
2872 	 * Bias interleave by inode number to distribute better across nodes;
2873 	 * but this interface is independent of which page order is used, so
2874 	 * supplies only that bias, letting caller apply the offset (adjusted
2875 	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2876 	 */
2877 	*ilx = inode->i_ino;
2878 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2879 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2880 }
2881 
2882 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2883 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2884 {
2885 	struct mempolicy *mpol;
2886 
2887 	/* Bias interleave by inode number to distribute better across nodes */
2888 	*ilx = info->vfs_inode.i_ino + (index >> order);
2889 
2890 	mpol = mpol_shared_policy_lookup(&info->policy, index);
2891 	return mpol ? mpol : get_task_policy(current);
2892 }
2893 #else
2894 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2895 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2896 {
2897 	*ilx = 0;
2898 	return NULL;
2899 }
2900 #endif /* CONFIG_NUMA */
2901 
2902 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2903 {
2904 	struct inode *inode = file_inode(file);
2905 	struct shmem_inode_info *info = SHMEM_I(inode);
2906 	int retval = -ENOMEM;
2907 
2908 	/*
2909 	 * What serializes the accesses to info->flags?
2910 	 * ipc_lock_object() when called from shmctl_do_lock(),
2911 	 * no serialization needed when called from shm_destroy().
2912 	 */
2913 	if (lock && !(info->flags & VM_LOCKED)) {
2914 		if (!user_shm_lock(inode->i_size, ucounts))
2915 			goto out_nomem;
2916 		info->flags |= VM_LOCKED;
2917 		mapping_set_unevictable(file->f_mapping);
2918 	}
2919 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2920 		user_shm_unlock(inode->i_size, ucounts);
2921 		info->flags &= ~VM_LOCKED;
2922 		mapping_clear_unevictable(file->f_mapping);
2923 	}
2924 	retval = 0;
2925 
2926 out_nomem:
2927 	return retval;
2928 }
2929 
2930 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2931 {
2932 	struct inode *inode = file_inode(file);
2933 
2934 	file_accessed(file);
2935 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2936 	if (inode->i_nlink)
2937 		vma->vm_ops = &shmem_vm_ops;
2938 	else
2939 		vma->vm_ops = &shmem_anon_vm_ops;
2940 	return 0;
2941 }
2942 
2943 static int shmem_file_open(struct inode *inode, struct file *file)
2944 {
2945 	file->f_mode |= FMODE_CAN_ODIRECT;
2946 	return generic_file_open(inode, file);
2947 }
2948 
2949 #ifdef CONFIG_TMPFS_XATTR
2950 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2951 
2952 #if IS_ENABLED(CONFIG_UNICODE)
2953 /*
2954  * shmem_inode_casefold_flags - Deal with casefold file attribute flag
2955  *
2956  * The casefold file attribute needs some special checks. I can just be added to
2957  * an empty dir, and can't be removed from a non-empty dir.
2958  */
2959 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2960 				      struct dentry *dentry, unsigned int *i_flags)
2961 {
2962 	unsigned int old = inode->i_flags;
2963 	struct super_block *sb = inode->i_sb;
2964 
2965 	if (fsflags & FS_CASEFOLD_FL) {
2966 		if (!(old & S_CASEFOLD)) {
2967 			if (!sb->s_encoding)
2968 				return -EOPNOTSUPP;
2969 
2970 			if (!S_ISDIR(inode->i_mode))
2971 				return -ENOTDIR;
2972 
2973 			if (dentry && !simple_empty(dentry))
2974 				return -ENOTEMPTY;
2975 		}
2976 
2977 		*i_flags = *i_flags | S_CASEFOLD;
2978 	} else if (old & S_CASEFOLD) {
2979 		if (dentry && !simple_empty(dentry))
2980 			return -ENOTEMPTY;
2981 	}
2982 
2983 	return 0;
2984 }
2985 #else
2986 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2987 				      struct dentry *dentry, unsigned int *i_flags)
2988 {
2989 	if (fsflags & FS_CASEFOLD_FL)
2990 		return -EOPNOTSUPP;
2991 
2992 	return 0;
2993 }
2994 #endif
2995 
2996 /*
2997  * chattr's fsflags are unrelated to extended attributes,
2998  * but tmpfs has chosen to enable them under the same config option.
2999  */
3000 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3001 {
3002 	unsigned int i_flags = 0;
3003 	int ret;
3004 
3005 	ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags);
3006 	if (ret)
3007 		return ret;
3008 
3009 	if (fsflags & FS_NOATIME_FL)
3010 		i_flags |= S_NOATIME;
3011 	if (fsflags & FS_APPEND_FL)
3012 		i_flags |= S_APPEND;
3013 	if (fsflags & FS_IMMUTABLE_FL)
3014 		i_flags |= S_IMMUTABLE;
3015 	/*
3016 	 * But FS_NODUMP_FL does not require any action in i_flags.
3017 	 */
3018 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD);
3019 
3020 	return 0;
3021 }
3022 #else
3023 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3024 {
3025 }
3026 #define shmem_initxattrs NULL
3027 #endif
3028 
3029 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
3030 {
3031 	return &SHMEM_I(inode)->dir_offsets;
3032 }
3033 
3034 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
3035 					     struct super_block *sb,
3036 					     struct inode *dir, umode_t mode,
3037 					     dev_t dev, unsigned long flags)
3038 {
3039 	struct inode *inode;
3040 	struct shmem_inode_info *info;
3041 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3042 	ino_t ino;
3043 	int err;
3044 
3045 	err = shmem_reserve_inode(sb, &ino);
3046 	if (err)
3047 		return ERR_PTR(err);
3048 
3049 	inode = new_inode(sb);
3050 	if (!inode) {
3051 		shmem_free_inode(sb, 0);
3052 		return ERR_PTR(-ENOSPC);
3053 	}
3054 
3055 	inode->i_ino = ino;
3056 	inode_init_owner(idmap, inode, dir, mode);
3057 	inode->i_blocks = 0;
3058 	simple_inode_init_ts(inode);
3059 	inode->i_generation = get_random_u32();
3060 	info = SHMEM_I(inode);
3061 	memset(info, 0, (char *)inode - (char *)info);
3062 	spin_lock_init(&info->lock);
3063 	atomic_set(&info->stop_eviction, 0);
3064 	info->seals = F_SEAL_SEAL;
3065 	info->flags = flags & VM_NORESERVE;
3066 	info->i_crtime = inode_get_mtime(inode);
3067 	info->fsflags = (dir == NULL) ? 0 :
3068 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
3069 	if (info->fsflags)
3070 		shmem_set_inode_flags(inode, info->fsflags, NULL);
3071 	INIT_LIST_HEAD(&info->shrinklist);
3072 	INIT_LIST_HEAD(&info->swaplist);
3073 	simple_xattrs_init(&info->xattrs);
3074 	cache_no_acl(inode);
3075 	if (sbinfo->noswap)
3076 		mapping_set_unevictable(inode->i_mapping);
3077 
3078 	/* Don't consider 'deny' for emergencies and 'force' for testing */
3079 	if (sbinfo->huge)
3080 		mapping_set_large_folios(inode->i_mapping);
3081 
3082 	switch (mode & S_IFMT) {
3083 	default:
3084 		inode->i_op = &shmem_special_inode_operations;
3085 		init_special_inode(inode, mode, dev);
3086 		break;
3087 	case S_IFREG:
3088 		inode->i_mapping->a_ops = &shmem_aops;
3089 		inode->i_op = &shmem_inode_operations;
3090 		inode->i_fop = &shmem_file_operations;
3091 		mpol_shared_policy_init(&info->policy,
3092 					 shmem_get_sbmpol(sbinfo));
3093 		break;
3094 	case S_IFDIR:
3095 		inc_nlink(inode);
3096 		/* Some things misbehave if size == 0 on a directory */
3097 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
3098 		inode->i_op = &shmem_dir_inode_operations;
3099 		inode->i_fop = &simple_offset_dir_operations;
3100 		simple_offset_init(shmem_get_offset_ctx(inode));
3101 		break;
3102 	case S_IFLNK:
3103 		/*
3104 		 * Must not load anything in the rbtree,
3105 		 * mpol_free_shared_policy will not be called.
3106 		 */
3107 		mpol_shared_policy_init(&info->policy, NULL);
3108 		break;
3109 	}
3110 
3111 	lockdep_annotate_inode_mutex_key(inode);
3112 	return inode;
3113 }
3114 
3115 #ifdef CONFIG_TMPFS_QUOTA
3116 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3117 				     struct super_block *sb, struct inode *dir,
3118 				     umode_t mode, dev_t dev, unsigned long flags)
3119 {
3120 	int err;
3121 	struct inode *inode;
3122 
3123 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3124 	if (IS_ERR(inode))
3125 		return inode;
3126 
3127 	err = dquot_initialize(inode);
3128 	if (err)
3129 		goto errout;
3130 
3131 	err = dquot_alloc_inode(inode);
3132 	if (err) {
3133 		dquot_drop(inode);
3134 		goto errout;
3135 	}
3136 	return inode;
3137 
3138 errout:
3139 	inode->i_flags |= S_NOQUOTA;
3140 	iput(inode);
3141 	return ERR_PTR(err);
3142 }
3143 #else
3144 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3145 				     struct super_block *sb, struct inode *dir,
3146 				     umode_t mode, dev_t dev, unsigned long flags)
3147 {
3148 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3149 }
3150 #endif /* CONFIG_TMPFS_QUOTA */
3151 
3152 #ifdef CONFIG_USERFAULTFD
3153 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
3154 			   struct vm_area_struct *dst_vma,
3155 			   unsigned long dst_addr,
3156 			   unsigned long src_addr,
3157 			   uffd_flags_t flags,
3158 			   struct folio **foliop)
3159 {
3160 	struct inode *inode = file_inode(dst_vma->vm_file);
3161 	struct shmem_inode_info *info = SHMEM_I(inode);
3162 	struct address_space *mapping = inode->i_mapping;
3163 	gfp_t gfp = mapping_gfp_mask(mapping);
3164 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
3165 	void *page_kaddr;
3166 	struct folio *folio;
3167 	int ret;
3168 	pgoff_t max_off;
3169 
3170 	if (shmem_inode_acct_blocks(inode, 1)) {
3171 		/*
3172 		 * We may have got a page, returned -ENOENT triggering a retry,
3173 		 * and now we find ourselves with -ENOMEM. Release the page, to
3174 		 * avoid a BUG_ON in our caller.
3175 		 */
3176 		if (unlikely(*foliop)) {
3177 			folio_put(*foliop);
3178 			*foliop = NULL;
3179 		}
3180 		return -ENOMEM;
3181 	}
3182 
3183 	if (!*foliop) {
3184 		ret = -ENOMEM;
3185 		folio = shmem_alloc_folio(gfp, 0, info, pgoff);
3186 		if (!folio)
3187 			goto out_unacct_blocks;
3188 
3189 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
3190 			page_kaddr = kmap_local_folio(folio, 0);
3191 			/*
3192 			 * The read mmap_lock is held here.  Despite the
3193 			 * mmap_lock being read recursive a deadlock is still
3194 			 * possible if a writer has taken a lock.  For example:
3195 			 *
3196 			 * process A thread 1 takes read lock on own mmap_lock
3197 			 * process A thread 2 calls mmap, blocks taking write lock
3198 			 * process B thread 1 takes page fault, read lock on own mmap lock
3199 			 * process B thread 2 calls mmap, blocks taking write lock
3200 			 * process A thread 1 blocks taking read lock on process B
3201 			 * process B thread 1 blocks taking read lock on process A
3202 			 *
3203 			 * Disable page faults to prevent potential deadlock
3204 			 * and retry the copy outside the mmap_lock.
3205 			 */
3206 			pagefault_disable();
3207 			ret = copy_from_user(page_kaddr,
3208 					     (const void __user *)src_addr,
3209 					     PAGE_SIZE);
3210 			pagefault_enable();
3211 			kunmap_local(page_kaddr);
3212 
3213 			/* fallback to copy_from_user outside mmap_lock */
3214 			if (unlikely(ret)) {
3215 				*foliop = folio;
3216 				ret = -ENOENT;
3217 				/* don't free the page */
3218 				goto out_unacct_blocks;
3219 			}
3220 
3221 			flush_dcache_folio(folio);
3222 		} else {		/* ZEROPAGE */
3223 			clear_user_highpage(&folio->page, dst_addr);
3224 		}
3225 	} else {
3226 		folio = *foliop;
3227 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
3228 		*foliop = NULL;
3229 	}
3230 
3231 	VM_BUG_ON(folio_test_locked(folio));
3232 	VM_BUG_ON(folio_test_swapbacked(folio));
3233 	__folio_set_locked(folio);
3234 	__folio_set_swapbacked(folio);
3235 	__folio_mark_uptodate(folio);
3236 
3237 	ret = -EFAULT;
3238 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3239 	if (unlikely(pgoff >= max_off))
3240 		goto out_release;
3241 
3242 	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
3243 	if (ret)
3244 		goto out_release;
3245 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3246 	if (ret)
3247 		goto out_release;
3248 
3249 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3250 				       &folio->page, true, flags);
3251 	if (ret)
3252 		goto out_delete_from_cache;
3253 
3254 	shmem_recalc_inode(inode, 1, 0);
3255 	folio_unlock(folio);
3256 	return 0;
3257 out_delete_from_cache:
3258 	filemap_remove_folio(folio);
3259 out_release:
3260 	folio_unlock(folio);
3261 	folio_put(folio);
3262 out_unacct_blocks:
3263 	shmem_inode_unacct_blocks(inode, 1);
3264 	return ret;
3265 }
3266 #endif /* CONFIG_USERFAULTFD */
3267 
3268 #ifdef CONFIG_TMPFS
3269 static const struct inode_operations shmem_symlink_inode_operations;
3270 static const struct inode_operations shmem_short_symlink_operations;
3271 
3272 static int
3273 shmem_write_begin(struct file *file, struct address_space *mapping,
3274 			loff_t pos, unsigned len,
3275 			struct folio **foliop, void **fsdata)
3276 {
3277 	struct inode *inode = mapping->host;
3278 	struct shmem_inode_info *info = SHMEM_I(inode);
3279 	pgoff_t index = pos >> PAGE_SHIFT;
3280 	struct folio *folio;
3281 	int ret = 0;
3282 
3283 	/* i_rwsem is held by caller */
3284 	if (unlikely(info->seals & (F_SEAL_GROW |
3285 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3286 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3287 			return -EPERM;
3288 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3289 			return -EPERM;
3290 	}
3291 
3292 	ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3293 	if (ret)
3294 		return ret;
3295 
3296 	if (folio_test_hwpoison(folio) ||
3297 	    (folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) {
3298 		folio_unlock(folio);
3299 		folio_put(folio);
3300 		return -EIO;
3301 	}
3302 
3303 	*foliop = folio;
3304 	return 0;
3305 }
3306 
3307 static int
3308 shmem_write_end(struct file *file, struct address_space *mapping,
3309 			loff_t pos, unsigned len, unsigned copied,
3310 			struct folio *folio, void *fsdata)
3311 {
3312 	struct inode *inode = mapping->host;
3313 
3314 	if (pos + copied > inode->i_size)
3315 		i_size_write(inode, pos + copied);
3316 
3317 	if (!folio_test_uptodate(folio)) {
3318 		if (copied < folio_size(folio)) {
3319 			size_t from = offset_in_folio(folio, pos);
3320 			folio_zero_segments(folio, 0, from,
3321 					from + copied, folio_size(folio));
3322 		}
3323 		folio_mark_uptodate(folio);
3324 	}
3325 	folio_mark_dirty(folio);
3326 	folio_unlock(folio);
3327 	folio_put(folio);
3328 
3329 	return copied;
3330 }
3331 
3332 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3333 {
3334 	struct file *file = iocb->ki_filp;
3335 	struct inode *inode = file_inode(file);
3336 	struct address_space *mapping = inode->i_mapping;
3337 	pgoff_t index;
3338 	unsigned long offset;
3339 	int error = 0;
3340 	ssize_t retval = 0;
3341 
3342 	for (;;) {
3343 		struct folio *folio = NULL;
3344 		struct page *page = NULL;
3345 		unsigned long nr, ret;
3346 		loff_t end_offset, i_size = i_size_read(inode);
3347 		bool fallback_page_copy = false;
3348 		size_t fsize;
3349 
3350 		if (unlikely(iocb->ki_pos >= i_size))
3351 			break;
3352 
3353 		index = iocb->ki_pos >> PAGE_SHIFT;
3354 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3355 		if (error) {
3356 			if (error == -EINVAL)
3357 				error = 0;
3358 			break;
3359 		}
3360 		if (folio) {
3361 			folio_unlock(folio);
3362 
3363 			page = folio_file_page(folio, index);
3364 			if (PageHWPoison(page)) {
3365 				folio_put(folio);
3366 				error = -EIO;
3367 				break;
3368 			}
3369 
3370 			if (folio_test_large(folio) &&
3371 			    folio_test_has_hwpoisoned(folio))
3372 				fallback_page_copy = true;
3373 		}
3374 
3375 		/*
3376 		 * We must evaluate after, since reads (unlike writes)
3377 		 * are called without i_rwsem protection against truncate
3378 		 */
3379 		i_size = i_size_read(inode);
3380 		if (unlikely(iocb->ki_pos >= i_size)) {
3381 			if (folio)
3382 				folio_put(folio);
3383 			break;
3384 		}
3385 		end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count);
3386 		if (folio && likely(!fallback_page_copy))
3387 			fsize = folio_size(folio);
3388 		else
3389 			fsize = PAGE_SIZE;
3390 		offset = iocb->ki_pos & (fsize - 1);
3391 		nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset);
3392 
3393 		if (folio) {
3394 			/*
3395 			 * If users can be writing to this page using arbitrary
3396 			 * virtual addresses, take care about potential aliasing
3397 			 * before reading the page on the kernel side.
3398 			 */
3399 			if (mapping_writably_mapped(mapping)) {
3400 				if (likely(!fallback_page_copy))
3401 					flush_dcache_folio(folio);
3402 				else
3403 					flush_dcache_page(page);
3404 			}
3405 
3406 			/*
3407 			 * Mark the folio accessed if we read the beginning.
3408 			 */
3409 			if (!offset)
3410 				folio_mark_accessed(folio);
3411 			/*
3412 			 * Ok, we have the page, and it's up-to-date, so
3413 			 * now we can copy it to user space...
3414 			 */
3415 			if (likely(!fallback_page_copy))
3416 				ret = copy_folio_to_iter(folio, offset, nr, to);
3417 			else
3418 				ret = copy_page_to_iter(page, offset, nr, to);
3419 			folio_put(folio);
3420 		} else if (user_backed_iter(to)) {
3421 			/*
3422 			 * Copy to user tends to be so well optimized, but
3423 			 * clear_user() not so much, that it is noticeably
3424 			 * faster to copy the zero page instead of clearing.
3425 			 */
3426 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3427 		} else {
3428 			/*
3429 			 * But submitting the same page twice in a row to
3430 			 * splice() - or others? - can result in confusion:
3431 			 * so don't attempt that optimization on pipes etc.
3432 			 */
3433 			ret = iov_iter_zero(nr, to);
3434 		}
3435 
3436 		retval += ret;
3437 		iocb->ki_pos += ret;
3438 
3439 		if (!iov_iter_count(to))
3440 			break;
3441 		if (ret < nr) {
3442 			error = -EFAULT;
3443 			break;
3444 		}
3445 		cond_resched();
3446 	}
3447 
3448 	file_accessed(file);
3449 	return retval ? retval : error;
3450 }
3451 
3452 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3453 {
3454 	struct file *file = iocb->ki_filp;
3455 	struct inode *inode = file->f_mapping->host;
3456 	ssize_t ret;
3457 
3458 	inode_lock(inode);
3459 	ret = generic_write_checks(iocb, from);
3460 	if (ret <= 0)
3461 		goto unlock;
3462 	ret = file_remove_privs(file);
3463 	if (ret)
3464 		goto unlock;
3465 	ret = file_update_time(file);
3466 	if (ret)
3467 		goto unlock;
3468 	ret = generic_perform_write(iocb, from);
3469 unlock:
3470 	inode_unlock(inode);
3471 	return ret;
3472 }
3473 
3474 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3475 			      struct pipe_buffer *buf)
3476 {
3477 	return true;
3478 }
3479 
3480 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3481 				  struct pipe_buffer *buf)
3482 {
3483 }
3484 
3485 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3486 				    struct pipe_buffer *buf)
3487 {
3488 	return false;
3489 }
3490 
3491 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3492 	.release	= zero_pipe_buf_release,
3493 	.try_steal	= zero_pipe_buf_try_steal,
3494 	.get		= zero_pipe_buf_get,
3495 };
3496 
3497 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3498 					loff_t fpos, size_t size)
3499 {
3500 	size_t offset = fpos & ~PAGE_MASK;
3501 
3502 	size = min_t(size_t, size, PAGE_SIZE - offset);
3503 
3504 	if (!pipe_is_full(pipe)) {
3505 		struct pipe_buffer *buf = pipe_head_buf(pipe);
3506 
3507 		*buf = (struct pipe_buffer) {
3508 			.ops	= &zero_pipe_buf_ops,
3509 			.page	= ZERO_PAGE(0),
3510 			.offset	= offset,
3511 			.len	= size,
3512 		};
3513 		pipe->head++;
3514 	}
3515 
3516 	return size;
3517 }
3518 
3519 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3520 				      struct pipe_inode_info *pipe,
3521 				      size_t len, unsigned int flags)
3522 {
3523 	struct inode *inode = file_inode(in);
3524 	struct address_space *mapping = inode->i_mapping;
3525 	struct folio *folio = NULL;
3526 	size_t total_spliced = 0, used, npages, n, part;
3527 	loff_t isize;
3528 	int error = 0;
3529 
3530 	/* Work out how much data we can actually add into the pipe */
3531 	used = pipe_buf_usage(pipe);
3532 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
3533 	len = min_t(size_t, len, npages * PAGE_SIZE);
3534 
3535 	do {
3536 		bool fallback_page_splice = false;
3537 		struct page *page = NULL;
3538 		pgoff_t index;
3539 		size_t size;
3540 
3541 		if (*ppos >= i_size_read(inode))
3542 			break;
3543 
3544 		index = *ppos >> PAGE_SHIFT;
3545 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3546 		if (error) {
3547 			if (error == -EINVAL)
3548 				error = 0;
3549 			break;
3550 		}
3551 		if (folio) {
3552 			folio_unlock(folio);
3553 
3554 			page = folio_file_page(folio, index);
3555 			if (PageHWPoison(page)) {
3556 				error = -EIO;
3557 				break;
3558 			}
3559 
3560 			if (folio_test_large(folio) &&
3561 			    folio_test_has_hwpoisoned(folio))
3562 				fallback_page_splice = true;
3563 		}
3564 
3565 		/*
3566 		 * i_size must be checked after we know the pages are Uptodate.
3567 		 *
3568 		 * Checking i_size after the check allows us to calculate
3569 		 * the correct value for "nr", which means the zero-filled
3570 		 * part of the page is not copied back to userspace (unless
3571 		 * another truncate extends the file - this is desired though).
3572 		 */
3573 		isize = i_size_read(inode);
3574 		if (unlikely(*ppos >= isize))
3575 			break;
3576 		/*
3577 		 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned
3578 		 * pages.
3579 		 */
3580 		size = len;
3581 		if (unlikely(fallback_page_splice)) {
3582 			size_t offset = *ppos & ~PAGE_MASK;
3583 
3584 			size = umin(size, PAGE_SIZE - offset);
3585 		}
3586 		part = min_t(loff_t, isize - *ppos, size);
3587 
3588 		if (folio) {
3589 			/*
3590 			 * If users can be writing to this page using arbitrary
3591 			 * virtual addresses, take care about potential aliasing
3592 			 * before reading the page on the kernel side.
3593 			 */
3594 			if (mapping_writably_mapped(mapping)) {
3595 				if (likely(!fallback_page_splice))
3596 					flush_dcache_folio(folio);
3597 				else
3598 					flush_dcache_page(page);
3599 			}
3600 			folio_mark_accessed(folio);
3601 			/*
3602 			 * Ok, we have the page, and it's up-to-date, so we can
3603 			 * now splice it into the pipe.
3604 			 */
3605 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3606 			folio_put(folio);
3607 			folio = NULL;
3608 		} else {
3609 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3610 		}
3611 
3612 		if (!n)
3613 			break;
3614 		len -= n;
3615 		total_spliced += n;
3616 		*ppos += n;
3617 		in->f_ra.prev_pos = *ppos;
3618 		if (pipe_is_full(pipe))
3619 			break;
3620 
3621 		cond_resched();
3622 	} while (len);
3623 
3624 	if (folio)
3625 		folio_put(folio);
3626 
3627 	file_accessed(in);
3628 	return total_spliced ? total_spliced : error;
3629 }
3630 
3631 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3632 {
3633 	struct address_space *mapping = file->f_mapping;
3634 	struct inode *inode = mapping->host;
3635 
3636 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3637 		return generic_file_llseek_size(file, offset, whence,
3638 					MAX_LFS_FILESIZE, i_size_read(inode));
3639 	if (offset < 0)
3640 		return -ENXIO;
3641 
3642 	inode_lock(inode);
3643 	/* We're holding i_rwsem so we can access i_size directly */
3644 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3645 	if (offset >= 0)
3646 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3647 	inode_unlock(inode);
3648 	return offset;
3649 }
3650 
3651 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3652 							 loff_t len)
3653 {
3654 	struct inode *inode = file_inode(file);
3655 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3656 	struct shmem_inode_info *info = SHMEM_I(inode);
3657 	struct shmem_falloc shmem_falloc;
3658 	pgoff_t start, index, end, undo_fallocend;
3659 	int error;
3660 
3661 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3662 		return -EOPNOTSUPP;
3663 
3664 	inode_lock(inode);
3665 
3666 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3667 		struct address_space *mapping = file->f_mapping;
3668 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3669 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3670 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3671 
3672 		/* protected by i_rwsem */
3673 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3674 			error = -EPERM;
3675 			goto out;
3676 		}
3677 
3678 		shmem_falloc.waitq = &shmem_falloc_waitq;
3679 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3680 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3681 		spin_lock(&inode->i_lock);
3682 		inode->i_private = &shmem_falloc;
3683 		spin_unlock(&inode->i_lock);
3684 
3685 		if ((u64)unmap_end > (u64)unmap_start)
3686 			unmap_mapping_range(mapping, unmap_start,
3687 					    1 + unmap_end - unmap_start, 0);
3688 		shmem_truncate_range(inode, offset, offset + len - 1);
3689 		/* No need to unmap again: hole-punching leaves COWed pages */
3690 
3691 		spin_lock(&inode->i_lock);
3692 		inode->i_private = NULL;
3693 		wake_up_all(&shmem_falloc_waitq);
3694 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3695 		spin_unlock(&inode->i_lock);
3696 		error = 0;
3697 		goto out;
3698 	}
3699 
3700 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3701 	error = inode_newsize_ok(inode, offset + len);
3702 	if (error)
3703 		goto out;
3704 
3705 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3706 		error = -EPERM;
3707 		goto out;
3708 	}
3709 
3710 	start = offset >> PAGE_SHIFT;
3711 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3712 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3713 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3714 		error = -ENOSPC;
3715 		goto out;
3716 	}
3717 
3718 	shmem_falloc.waitq = NULL;
3719 	shmem_falloc.start = start;
3720 	shmem_falloc.next  = start;
3721 	shmem_falloc.nr_falloced = 0;
3722 	shmem_falloc.nr_unswapped = 0;
3723 	spin_lock(&inode->i_lock);
3724 	inode->i_private = &shmem_falloc;
3725 	spin_unlock(&inode->i_lock);
3726 
3727 	/*
3728 	 * info->fallocend is only relevant when huge pages might be
3729 	 * involved: to prevent split_huge_page() freeing fallocated
3730 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3731 	 */
3732 	undo_fallocend = info->fallocend;
3733 	if (info->fallocend < end)
3734 		info->fallocend = end;
3735 
3736 	for (index = start; index < end; ) {
3737 		struct folio *folio;
3738 
3739 		/*
3740 		 * Check for fatal signal so that we abort early in OOM
3741 		 * situations. We don't want to abort in case of non-fatal
3742 		 * signals as large fallocate can take noticeable time and
3743 		 * e.g. periodic timers may result in fallocate constantly
3744 		 * restarting.
3745 		 */
3746 		if (fatal_signal_pending(current))
3747 			error = -EINTR;
3748 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3749 			error = -ENOMEM;
3750 		else
3751 			error = shmem_get_folio(inode, index, offset + len,
3752 						&folio, SGP_FALLOC);
3753 		if (error) {
3754 			info->fallocend = undo_fallocend;
3755 			/* Remove the !uptodate folios we added */
3756 			if (index > start) {
3757 				shmem_undo_range(inode,
3758 				    (loff_t)start << PAGE_SHIFT,
3759 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3760 			}
3761 			goto undone;
3762 		}
3763 
3764 		/*
3765 		 * Here is a more important optimization than it appears:
3766 		 * a second SGP_FALLOC on the same large folio will clear it,
3767 		 * making it uptodate and un-undoable if we fail later.
3768 		 */
3769 		index = folio_next_index(folio);
3770 		/* Beware 32-bit wraparound */
3771 		if (!index)
3772 			index--;
3773 
3774 		/*
3775 		 * Inform shmem_writepage() how far we have reached.
3776 		 * No need for lock or barrier: we have the page lock.
3777 		 */
3778 		if (!folio_test_uptodate(folio))
3779 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3780 		shmem_falloc.next = index;
3781 
3782 		/*
3783 		 * If !uptodate, leave it that way so that freeable folios
3784 		 * can be recognized if we need to rollback on error later.
3785 		 * But mark it dirty so that memory pressure will swap rather
3786 		 * than free the folios we are allocating (and SGP_CACHE folios
3787 		 * might still be clean: we now need to mark those dirty too).
3788 		 */
3789 		folio_mark_dirty(folio);
3790 		folio_unlock(folio);
3791 		folio_put(folio);
3792 		cond_resched();
3793 	}
3794 
3795 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3796 		i_size_write(inode, offset + len);
3797 undone:
3798 	spin_lock(&inode->i_lock);
3799 	inode->i_private = NULL;
3800 	spin_unlock(&inode->i_lock);
3801 out:
3802 	if (!error)
3803 		file_modified(file);
3804 	inode_unlock(inode);
3805 	return error;
3806 }
3807 
3808 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3809 {
3810 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3811 
3812 	buf->f_type = TMPFS_MAGIC;
3813 	buf->f_bsize = PAGE_SIZE;
3814 	buf->f_namelen = NAME_MAX;
3815 	if (sbinfo->max_blocks) {
3816 		buf->f_blocks = sbinfo->max_blocks;
3817 		buf->f_bavail =
3818 		buf->f_bfree  = sbinfo->max_blocks -
3819 				percpu_counter_sum(&sbinfo->used_blocks);
3820 	}
3821 	if (sbinfo->max_inodes) {
3822 		buf->f_files = sbinfo->max_inodes;
3823 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3824 	}
3825 	/* else leave those fields 0 like simple_statfs */
3826 
3827 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3828 
3829 	return 0;
3830 }
3831 
3832 /*
3833  * File creation. Allocate an inode, and we're done..
3834  */
3835 static int
3836 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3837 	    struct dentry *dentry, umode_t mode, dev_t dev)
3838 {
3839 	struct inode *inode;
3840 	int error;
3841 
3842 	if (!generic_ci_validate_strict_name(dir, &dentry->d_name))
3843 		return -EINVAL;
3844 
3845 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3846 	if (IS_ERR(inode))
3847 		return PTR_ERR(inode);
3848 
3849 	error = simple_acl_create(dir, inode);
3850 	if (error)
3851 		goto out_iput;
3852 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3853 					     shmem_initxattrs, NULL);
3854 	if (error && error != -EOPNOTSUPP)
3855 		goto out_iput;
3856 
3857 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3858 	if (error)
3859 		goto out_iput;
3860 
3861 	dir->i_size += BOGO_DIRENT_SIZE;
3862 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3863 	inode_inc_iversion(dir);
3864 
3865 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3866 		d_add(dentry, inode);
3867 	else
3868 		d_instantiate(dentry, inode);
3869 
3870 	dget(dentry); /* Extra count - pin the dentry in core */
3871 	return error;
3872 
3873 out_iput:
3874 	iput(inode);
3875 	return error;
3876 }
3877 
3878 static int
3879 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3880 	      struct file *file, umode_t mode)
3881 {
3882 	struct inode *inode;
3883 	int error;
3884 
3885 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3886 	if (IS_ERR(inode)) {
3887 		error = PTR_ERR(inode);
3888 		goto err_out;
3889 	}
3890 	error = security_inode_init_security(inode, dir, NULL,
3891 					     shmem_initxattrs, NULL);
3892 	if (error && error != -EOPNOTSUPP)
3893 		goto out_iput;
3894 	error = simple_acl_create(dir, inode);
3895 	if (error)
3896 		goto out_iput;
3897 	d_tmpfile(file, inode);
3898 
3899 err_out:
3900 	return finish_open_simple(file, error);
3901 out_iput:
3902 	iput(inode);
3903 	return error;
3904 }
3905 
3906 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3907 		       struct dentry *dentry, umode_t mode)
3908 {
3909 	int error;
3910 
3911 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3912 	if (error)
3913 		return error;
3914 	inc_nlink(dir);
3915 	return 0;
3916 }
3917 
3918 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3919 			struct dentry *dentry, umode_t mode, bool excl)
3920 {
3921 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3922 }
3923 
3924 /*
3925  * Link a file..
3926  */
3927 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3928 		      struct dentry *dentry)
3929 {
3930 	struct inode *inode = d_inode(old_dentry);
3931 	int ret = 0;
3932 
3933 	/*
3934 	 * No ordinary (disk based) filesystem counts links as inodes;
3935 	 * but each new link needs a new dentry, pinning lowmem, and
3936 	 * tmpfs dentries cannot be pruned until they are unlinked.
3937 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3938 	 * first link must skip that, to get the accounting right.
3939 	 */
3940 	if (inode->i_nlink) {
3941 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3942 		if (ret)
3943 			goto out;
3944 	}
3945 
3946 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3947 	if (ret) {
3948 		if (inode->i_nlink)
3949 			shmem_free_inode(inode->i_sb, 0);
3950 		goto out;
3951 	}
3952 
3953 	dir->i_size += BOGO_DIRENT_SIZE;
3954 	inode_set_mtime_to_ts(dir,
3955 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3956 	inode_inc_iversion(dir);
3957 	inc_nlink(inode);
3958 	ihold(inode);	/* New dentry reference */
3959 	dget(dentry);	/* Extra pinning count for the created dentry */
3960 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3961 		d_add(dentry, inode);
3962 	else
3963 		d_instantiate(dentry, inode);
3964 out:
3965 	return ret;
3966 }
3967 
3968 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3969 {
3970 	struct inode *inode = d_inode(dentry);
3971 
3972 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3973 		shmem_free_inode(inode->i_sb, 0);
3974 
3975 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3976 
3977 	dir->i_size -= BOGO_DIRENT_SIZE;
3978 	inode_set_mtime_to_ts(dir,
3979 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3980 	inode_inc_iversion(dir);
3981 	drop_nlink(inode);
3982 	dput(dentry);	/* Undo the count from "create" - does all the work */
3983 
3984 	/*
3985 	 * For now, VFS can't deal with case-insensitive negative dentries, so
3986 	 * we invalidate them
3987 	 */
3988 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3989 		d_invalidate(dentry);
3990 
3991 	return 0;
3992 }
3993 
3994 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3995 {
3996 	if (!simple_empty(dentry))
3997 		return -ENOTEMPTY;
3998 
3999 	drop_nlink(d_inode(dentry));
4000 	drop_nlink(dir);
4001 	return shmem_unlink(dir, dentry);
4002 }
4003 
4004 static int shmem_whiteout(struct mnt_idmap *idmap,
4005 			  struct inode *old_dir, struct dentry *old_dentry)
4006 {
4007 	struct dentry *whiteout;
4008 	int error;
4009 
4010 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
4011 	if (!whiteout)
4012 		return -ENOMEM;
4013 
4014 	error = shmem_mknod(idmap, old_dir, whiteout,
4015 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4016 	dput(whiteout);
4017 	if (error)
4018 		return error;
4019 
4020 	/*
4021 	 * Cheat and hash the whiteout while the old dentry is still in
4022 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
4023 	 *
4024 	 * d_lookup() will consistently find one of them at this point,
4025 	 * not sure which one, but that isn't even important.
4026 	 */
4027 	d_rehash(whiteout);
4028 	return 0;
4029 }
4030 
4031 /*
4032  * The VFS layer already does all the dentry stuff for rename,
4033  * we just have to decrement the usage count for the target if
4034  * it exists so that the VFS layer correctly free's it when it
4035  * gets overwritten.
4036  */
4037 static int shmem_rename2(struct mnt_idmap *idmap,
4038 			 struct inode *old_dir, struct dentry *old_dentry,
4039 			 struct inode *new_dir, struct dentry *new_dentry,
4040 			 unsigned int flags)
4041 {
4042 	struct inode *inode = d_inode(old_dentry);
4043 	int they_are_dirs = S_ISDIR(inode->i_mode);
4044 	int error;
4045 
4046 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4047 		return -EINVAL;
4048 
4049 	if (flags & RENAME_EXCHANGE)
4050 		return simple_offset_rename_exchange(old_dir, old_dentry,
4051 						     new_dir, new_dentry);
4052 
4053 	if (!simple_empty(new_dentry))
4054 		return -ENOTEMPTY;
4055 
4056 	if (flags & RENAME_WHITEOUT) {
4057 		error = shmem_whiteout(idmap, old_dir, old_dentry);
4058 		if (error)
4059 			return error;
4060 	}
4061 
4062 	error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
4063 	if (error)
4064 		return error;
4065 
4066 	if (d_really_is_positive(new_dentry)) {
4067 		(void) shmem_unlink(new_dir, new_dentry);
4068 		if (they_are_dirs) {
4069 			drop_nlink(d_inode(new_dentry));
4070 			drop_nlink(old_dir);
4071 		}
4072 	} else if (they_are_dirs) {
4073 		drop_nlink(old_dir);
4074 		inc_nlink(new_dir);
4075 	}
4076 
4077 	old_dir->i_size -= BOGO_DIRENT_SIZE;
4078 	new_dir->i_size += BOGO_DIRENT_SIZE;
4079 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
4080 	inode_inc_iversion(old_dir);
4081 	inode_inc_iversion(new_dir);
4082 	return 0;
4083 }
4084 
4085 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
4086 			 struct dentry *dentry, const char *symname)
4087 {
4088 	int error;
4089 	int len;
4090 	struct inode *inode;
4091 	struct folio *folio;
4092 	char *link;
4093 
4094 	len = strlen(symname) + 1;
4095 	if (len > PAGE_SIZE)
4096 		return -ENAMETOOLONG;
4097 
4098 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
4099 				VM_NORESERVE);
4100 	if (IS_ERR(inode))
4101 		return PTR_ERR(inode);
4102 
4103 	error = security_inode_init_security(inode, dir, &dentry->d_name,
4104 					     shmem_initxattrs, NULL);
4105 	if (error && error != -EOPNOTSUPP)
4106 		goto out_iput;
4107 
4108 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
4109 	if (error)
4110 		goto out_iput;
4111 
4112 	inode->i_size = len-1;
4113 	if (len <= SHORT_SYMLINK_LEN) {
4114 		link = kmemdup(symname, len, GFP_KERNEL);
4115 		if (!link) {
4116 			error = -ENOMEM;
4117 			goto out_remove_offset;
4118 		}
4119 		inode->i_op = &shmem_short_symlink_operations;
4120 		inode_set_cached_link(inode, link, len - 1);
4121 	} else {
4122 		inode_nohighmem(inode);
4123 		inode->i_mapping->a_ops = &shmem_aops;
4124 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
4125 		if (error)
4126 			goto out_remove_offset;
4127 		inode->i_op = &shmem_symlink_inode_operations;
4128 		memcpy(folio_address(folio), symname, len);
4129 		folio_mark_uptodate(folio);
4130 		folio_mark_dirty(folio);
4131 		folio_unlock(folio);
4132 		folio_put(folio);
4133 	}
4134 	dir->i_size += BOGO_DIRENT_SIZE;
4135 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
4136 	inode_inc_iversion(dir);
4137 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
4138 		d_add(dentry, inode);
4139 	else
4140 		d_instantiate(dentry, inode);
4141 	dget(dentry);
4142 	return 0;
4143 
4144 out_remove_offset:
4145 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
4146 out_iput:
4147 	iput(inode);
4148 	return error;
4149 }
4150 
4151 static void shmem_put_link(void *arg)
4152 {
4153 	folio_mark_accessed(arg);
4154 	folio_put(arg);
4155 }
4156 
4157 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
4158 				  struct delayed_call *done)
4159 {
4160 	struct folio *folio = NULL;
4161 	int error;
4162 
4163 	if (!dentry) {
4164 		folio = filemap_get_folio(inode->i_mapping, 0);
4165 		if (IS_ERR(folio))
4166 			return ERR_PTR(-ECHILD);
4167 		if (PageHWPoison(folio_page(folio, 0)) ||
4168 		    !folio_test_uptodate(folio)) {
4169 			folio_put(folio);
4170 			return ERR_PTR(-ECHILD);
4171 		}
4172 	} else {
4173 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
4174 		if (error)
4175 			return ERR_PTR(error);
4176 		if (!folio)
4177 			return ERR_PTR(-ECHILD);
4178 		if (PageHWPoison(folio_page(folio, 0))) {
4179 			folio_unlock(folio);
4180 			folio_put(folio);
4181 			return ERR_PTR(-ECHILD);
4182 		}
4183 		folio_unlock(folio);
4184 	}
4185 	set_delayed_call(done, shmem_put_link, folio);
4186 	return folio_address(folio);
4187 }
4188 
4189 #ifdef CONFIG_TMPFS_XATTR
4190 
4191 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
4192 {
4193 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4194 
4195 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
4196 
4197 	return 0;
4198 }
4199 
4200 static int shmem_fileattr_set(struct mnt_idmap *idmap,
4201 			      struct dentry *dentry, struct fileattr *fa)
4202 {
4203 	struct inode *inode = d_inode(dentry);
4204 	struct shmem_inode_info *info = SHMEM_I(inode);
4205 	int ret, flags;
4206 
4207 	if (fileattr_has_fsx(fa))
4208 		return -EOPNOTSUPP;
4209 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
4210 		return -EOPNOTSUPP;
4211 
4212 	flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
4213 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
4214 
4215 	ret = shmem_set_inode_flags(inode, flags, dentry);
4216 
4217 	if (ret)
4218 		return ret;
4219 
4220 	info->fsflags = flags;
4221 
4222 	inode_set_ctime_current(inode);
4223 	inode_inc_iversion(inode);
4224 	return 0;
4225 }
4226 
4227 /*
4228  * Superblocks without xattr inode operations may get some security.* xattr
4229  * support from the LSM "for free". As soon as we have any other xattrs
4230  * like ACLs, we also need to implement the security.* handlers at
4231  * filesystem level, though.
4232  */
4233 
4234 /*
4235  * Callback for security_inode_init_security() for acquiring xattrs.
4236  */
4237 static int shmem_initxattrs(struct inode *inode,
4238 			    const struct xattr *xattr_array, void *fs_info)
4239 {
4240 	struct shmem_inode_info *info = SHMEM_I(inode);
4241 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4242 	const struct xattr *xattr;
4243 	struct simple_xattr *new_xattr;
4244 	size_t ispace = 0;
4245 	size_t len;
4246 
4247 	if (sbinfo->max_inodes) {
4248 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4249 			ispace += simple_xattr_space(xattr->name,
4250 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
4251 		}
4252 		if (ispace) {
4253 			raw_spin_lock(&sbinfo->stat_lock);
4254 			if (sbinfo->free_ispace < ispace)
4255 				ispace = 0;
4256 			else
4257 				sbinfo->free_ispace -= ispace;
4258 			raw_spin_unlock(&sbinfo->stat_lock);
4259 			if (!ispace)
4260 				return -ENOSPC;
4261 		}
4262 	}
4263 
4264 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4265 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
4266 		if (!new_xattr)
4267 			break;
4268 
4269 		len = strlen(xattr->name) + 1;
4270 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
4271 					  GFP_KERNEL_ACCOUNT);
4272 		if (!new_xattr->name) {
4273 			kvfree(new_xattr);
4274 			break;
4275 		}
4276 
4277 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4278 		       XATTR_SECURITY_PREFIX_LEN);
4279 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4280 		       xattr->name, len);
4281 
4282 		simple_xattr_add(&info->xattrs, new_xattr);
4283 	}
4284 
4285 	if (xattr->name != NULL) {
4286 		if (ispace) {
4287 			raw_spin_lock(&sbinfo->stat_lock);
4288 			sbinfo->free_ispace += ispace;
4289 			raw_spin_unlock(&sbinfo->stat_lock);
4290 		}
4291 		simple_xattrs_free(&info->xattrs, NULL);
4292 		return -ENOMEM;
4293 	}
4294 
4295 	return 0;
4296 }
4297 
4298 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4299 				   struct dentry *unused, struct inode *inode,
4300 				   const char *name, void *buffer, size_t size)
4301 {
4302 	struct shmem_inode_info *info = SHMEM_I(inode);
4303 
4304 	name = xattr_full_name(handler, name);
4305 	return simple_xattr_get(&info->xattrs, name, buffer, size);
4306 }
4307 
4308 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4309 				   struct mnt_idmap *idmap,
4310 				   struct dentry *unused, struct inode *inode,
4311 				   const char *name, const void *value,
4312 				   size_t size, int flags)
4313 {
4314 	struct shmem_inode_info *info = SHMEM_I(inode);
4315 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4316 	struct simple_xattr *old_xattr;
4317 	size_t ispace = 0;
4318 
4319 	name = xattr_full_name(handler, name);
4320 	if (value && sbinfo->max_inodes) {
4321 		ispace = simple_xattr_space(name, size);
4322 		raw_spin_lock(&sbinfo->stat_lock);
4323 		if (sbinfo->free_ispace < ispace)
4324 			ispace = 0;
4325 		else
4326 			sbinfo->free_ispace -= ispace;
4327 		raw_spin_unlock(&sbinfo->stat_lock);
4328 		if (!ispace)
4329 			return -ENOSPC;
4330 	}
4331 
4332 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4333 	if (!IS_ERR(old_xattr)) {
4334 		ispace = 0;
4335 		if (old_xattr && sbinfo->max_inodes)
4336 			ispace = simple_xattr_space(old_xattr->name,
4337 						    old_xattr->size);
4338 		simple_xattr_free(old_xattr);
4339 		old_xattr = NULL;
4340 		inode_set_ctime_current(inode);
4341 		inode_inc_iversion(inode);
4342 	}
4343 	if (ispace) {
4344 		raw_spin_lock(&sbinfo->stat_lock);
4345 		sbinfo->free_ispace += ispace;
4346 		raw_spin_unlock(&sbinfo->stat_lock);
4347 	}
4348 	return PTR_ERR(old_xattr);
4349 }
4350 
4351 static const struct xattr_handler shmem_security_xattr_handler = {
4352 	.prefix = XATTR_SECURITY_PREFIX,
4353 	.get = shmem_xattr_handler_get,
4354 	.set = shmem_xattr_handler_set,
4355 };
4356 
4357 static const struct xattr_handler shmem_trusted_xattr_handler = {
4358 	.prefix = XATTR_TRUSTED_PREFIX,
4359 	.get = shmem_xattr_handler_get,
4360 	.set = shmem_xattr_handler_set,
4361 };
4362 
4363 static const struct xattr_handler shmem_user_xattr_handler = {
4364 	.prefix = XATTR_USER_PREFIX,
4365 	.get = shmem_xattr_handler_get,
4366 	.set = shmem_xattr_handler_set,
4367 };
4368 
4369 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4370 	&shmem_security_xattr_handler,
4371 	&shmem_trusted_xattr_handler,
4372 	&shmem_user_xattr_handler,
4373 	NULL
4374 };
4375 
4376 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4377 {
4378 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4379 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4380 }
4381 #endif /* CONFIG_TMPFS_XATTR */
4382 
4383 static const struct inode_operations shmem_short_symlink_operations = {
4384 	.getattr	= shmem_getattr,
4385 	.setattr	= shmem_setattr,
4386 	.get_link	= simple_get_link,
4387 #ifdef CONFIG_TMPFS_XATTR
4388 	.listxattr	= shmem_listxattr,
4389 #endif
4390 };
4391 
4392 static const struct inode_operations shmem_symlink_inode_operations = {
4393 	.getattr	= shmem_getattr,
4394 	.setattr	= shmem_setattr,
4395 	.get_link	= shmem_get_link,
4396 #ifdef CONFIG_TMPFS_XATTR
4397 	.listxattr	= shmem_listxattr,
4398 #endif
4399 };
4400 
4401 static struct dentry *shmem_get_parent(struct dentry *child)
4402 {
4403 	return ERR_PTR(-ESTALE);
4404 }
4405 
4406 static int shmem_match(struct inode *ino, void *vfh)
4407 {
4408 	__u32 *fh = vfh;
4409 	__u64 inum = fh[2];
4410 	inum = (inum << 32) | fh[1];
4411 	return ino->i_ino == inum && fh[0] == ino->i_generation;
4412 }
4413 
4414 /* Find any alias of inode, but prefer a hashed alias */
4415 static struct dentry *shmem_find_alias(struct inode *inode)
4416 {
4417 	struct dentry *alias = d_find_alias(inode);
4418 
4419 	return alias ?: d_find_any_alias(inode);
4420 }
4421 
4422 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4423 		struct fid *fid, int fh_len, int fh_type)
4424 {
4425 	struct inode *inode;
4426 	struct dentry *dentry = NULL;
4427 	u64 inum;
4428 
4429 	if (fh_len < 3)
4430 		return NULL;
4431 
4432 	inum = fid->raw[2];
4433 	inum = (inum << 32) | fid->raw[1];
4434 
4435 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4436 			shmem_match, fid->raw);
4437 	if (inode) {
4438 		dentry = shmem_find_alias(inode);
4439 		iput(inode);
4440 	}
4441 
4442 	return dentry;
4443 }
4444 
4445 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4446 				struct inode *parent)
4447 {
4448 	if (*len < 3) {
4449 		*len = 3;
4450 		return FILEID_INVALID;
4451 	}
4452 
4453 	if (inode_unhashed(inode)) {
4454 		/* Unfortunately insert_inode_hash is not idempotent,
4455 		 * so as we hash inodes here rather than at creation
4456 		 * time, we need a lock to ensure we only try
4457 		 * to do it once
4458 		 */
4459 		static DEFINE_SPINLOCK(lock);
4460 		spin_lock(&lock);
4461 		if (inode_unhashed(inode))
4462 			__insert_inode_hash(inode,
4463 					    inode->i_ino + inode->i_generation);
4464 		spin_unlock(&lock);
4465 	}
4466 
4467 	fh[0] = inode->i_generation;
4468 	fh[1] = inode->i_ino;
4469 	fh[2] = ((__u64)inode->i_ino) >> 32;
4470 
4471 	*len = 3;
4472 	return 1;
4473 }
4474 
4475 static const struct export_operations shmem_export_ops = {
4476 	.get_parent     = shmem_get_parent,
4477 	.encode_fh      = shmem_encode_fh,
4478 	.fh_to_dentry	= shmem_fh_to_dentry,
4479 };
4480 
4481 enum shmem_param {
4482 	Opt_gid,
4483 	Opt_huge,
4484 	Opt_mode,
4485 	Opt_mpol,
4486 	Opt_nr_blocks,
4487 	Opt_nr_inodes,
4488 	Opt_size,
4489 	Opt_uid,
4490 	Opt_inode32,
4491 	Opt_inode64,
4492 	Opt_noswap,
4493 	Opt_quota,
4494 	Opt_usrquota,
4495 	Opt_grpquota,
4496 	Opt_usrquota_block_hardlimit,
4497 	Opt_usrquota_inode_hardlimit,
4498 	Opt_grpquota_block_hardlimit,
4499 	Opt_grpquota_inode_hardlimit,
4500 	Opt_casefold_version,
4501 	Opt_casefold,
4502 	Opt_strict_encoding,
4503 };
4504 
4505 static const struct constant_table shmem_param_enums_huge[] = {
4506 	{"never",	SHMEM_HUGE_NEVER },
4507 	{"always",	SHMEM_HUGE_ALWAYS },
4508 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
4509 	{"advise",	SHMEM_HUGE_ADVISE },
4510 	{}
4511 };
4512 
4513 const struct fs_parameter_spec shmem_fs_parameters[] = {
4514 	fsparam_gid   ("gid",		Opt_gid),
4515 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
4516 	fsparam_u32oct("mode",		Opt_mode),
4517 	fsparam_string("mpol",		Opt_mpol),
4518 	fsparam_string("nr_blocks",	Opt_nr_blocks),
4519 	fsparam_string("nr_inodes",	Opt_nr_inodes),
4520 	fsparam_string("size",		Opt_size),
4521 	fsparam_uid   ("uid",		Opt_uid),
4522 	fsparam_flag  ("inode32",	Opt_inode32),
4523 	fsparam_flag  ("inode64",	Opt_inode64),
4524 	fsparam_flag  ("noswap",	Opt_noswap),
4525 #ifdef CONFIG_TMPFS_QUOTA
4526 	fsparam_flag  ("quota",		Opt_quota),
4527 	fsparam_flag  ("usrquota",	Opt_usrquota),
4528 	fsparam_flag  ("grpquota",	Opt_grpquota),
4529 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4530 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4531 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4532 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4533 #endif
4534 	fsparam_string("casefold",	Opt_casefold_version),
4535 	fsparam_flag  ("casefold",	Opt_casefold),
4536 	fsparam_flag  ("strict_encoding", Opt_strict_encoding),
4537 	{}
4538 };
4539 
4540 #if IS_ENABLED(CONFIG_UNICODE)
4541 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4542 				    bool latest_version)
4543 {
4544 	struct shmem_options *ctx = fc->fs_private;
4545 	int version = UTF8_LATEST;
4546 	struct unicode_map *encoding;
4547 	char *version_str = param->string + 5;
4548 
4549 	if (!latest_version) {
4550 		if (strncmp(param->string, "utf8-", 5))
4551 			return invalfc(fc, "Only UTF-8 encodings are supported "
4552 				       "in the format: utf8-<version number>");
4553 
4554 		version = utf8_parse_version(version_str);
4555 		if (version < 0)
4556 			return invalfc(fc, "Invalid UTF-8 version: %s", version_str);
4557 	}
4558 
4559 	encoding = utf8_load(version);
4560 
4561 	if (IS_ERR(encoding)) {
4562 		return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n",
4563 			       unicode_major(version), unicode_minor(version),
4564 			       unicode_rev(version));
4565 	}
4566 
4567 	pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n",
4568 		unicode_major(version), unicode_minor(version), unicode_rev(version));
4569 
4570 	ctx->encoding = encoding;
4571 
4572 	return 0;
4573 }
4574 #else
4575 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4576 				    bool latest_version)
4577 {
4578 	return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4579 }
4580 #endif
4581 
4582 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4583 {
4584 	struct shmem_options *ctx = fc->fs_private;
4585 	struct fs_parse_result result;
4586 	unsigned long long size;
4587 	char *rest;
4588 	int opt;
4589 	kuid_t kuid;
4590 	kgid_t kgid;
4591 
4592 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4593 	if (opt < 0)
4594 		return opt;
4595 
4596 	switch (opt) {
4597 	case Opt_size:
4598 		size = memparse(param->string, &rest);
4599 		if (*rest == '%') {
4600 			size <<= PAGE_SHIFT;
4601 			size *= totalram_pages();
4602 			do_div(size, 100);
4603 			rest++;
4604 		}
4605 		if (*rest)
4606 			goto bad_value;
4607 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4608 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4609 		break;
4610 	case Opt_nr_blocks:
4611 		ctx->blocks = memparse(param->string, &rest);
4612 		if (*rest || ctx->blocks > LONG_MAX)
4613 			goto bad_value;
4614 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4615 		break;
4616 	case Opt_nr_inodes:
4617 		ctx->inodes = memparse(param->string, &rest);
4618 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4619 			goto bad_value;
4620 		ctx->seen |= SHMEM_SEEN_INODES;
4621 		break;
4622 	case Opt_mode:
4623 		ctx->mode = result.uint_32 & 07777;
4624 		break;
4625 	case Opt_uid:
4626 		kuid = result.uid;
4627 
4628 		/*
4629 		 * The requested uid must be representable in the
4630 		 * filesystem's idmapping.
4631 		 */
4632 		if (!kuid_has_mapping(fc->user_ns, kuid))
4633 			goto bad_value;
4634 
4635 		ctx->uid = kuid;
4636 		break;
4637 	case Opt_gid:
4638 		kgid = result.gid;
4639 
4640 		/*
4641 		 * The requested gid must be representable in the
4642 		 * filesystem's idmapping.
4643 		 */
4644 		if (!kgid_has_mapping(fc->user_ns, kgid))
4645 			goto bad_value;
4646 
4647 		ctx->gid = kgid;
4648 		break;
4649 	case Opt_huge:
4650 		ctx->huge = result.uint_32;
4651 		if (ctx->huge != SHMEM_HUGE_NEVER &&
4652 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4653 		      has_transparent_hugepage()))
4654 			goto unsupported_parameter;
4655 		ctx->seen |= SHMEM_SEEN_HUGE;
4656 		break;
4657 	case Opt_mpol:
4658 		if (IS_ENABLED(CONFIG_NUMA)) {
4659 			mpol_put(ctx->mpol);
4660 			ctx->mpol = NULL;
4661 			if (mpol_parse_str(param->string, &ctx->mpol))
4662 				goto bad_value;
4663 			break;
4664 		}
4665 		goto unsupported_parameter;
4666 	case Opt_inode32:
4667 		ctx->full_inums = false;
4668 		ctx->seen |= SHMEM_SEEN_INUMS;
4669 		break;
4670 	case Opt_inode64:
4671 		if (sizeof(ino_t) < 8) {
4672 			return invalfc(fc,
4673 				       "Cannot use inode64 with <64bit inums in kernel\n");
4674 		}
4675 		ctx->full_inums = true;
4676 		ctx->seen |= SHMEM_SEEN_INUMS;
4677 		break;
4678 	case Opt_noswap:
4679 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4680 			return invalfc(fc,
4681 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4682 		}
4683 		ctx->noswap = true;
4684 		ctx->seen |= SHMEM_SEEN_NOSWAP;
4685 		break;
4686 	case Opt_quota:
4687 		if (fc->user_ns != &init_user_ns)
4688 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4689 		ctx->seen |= SHMEM_SEEN_QUOTA;
4690 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4691 		break;
4692 	case Opt_usrquota:
4693 		if (fc->user_ns != &init_user_ns)
4694 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4695 		ctx->seen |= SHMEM_SEEN_QUOTA;
4696 		ctx->quota_types |= QTYPE_MASK_USR;
4697 		break;
4698 	case Opt_grpquota:
4699 		if (fc->user_ns != &init_user_ns)
4700 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4701 		ctx->seen |= SHMEM_SEEN_QUOTA;
4702 		ctx->quota_types |= QTYPE_MASK_GRP;
4703 		break;
4704 	case Opt_usrquota_block_hardlimit:
4705 		size = memparse(param->string, &rest);
4706 		if (*rest || !size)
4707 			goto bad_value;
4708 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4709 			return invalfc(fc,
4710 				       "User quota block hardlimit too large.");
4711 		ctx->qlimits.usrquota_bhardlimit = size;
4712 		break;
4713 	case Opt_grpquota_block_hardlimit:
4714 		size = memparse(param->string, &rest);
4715 		if (*rest || !size)
4716 			goto bad_value;
4717 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4718 			return invalfc(fc,
4719 				       "Group quota block hardlimit too large.");
4720 		ctx->qlimits.grpquota_bhardlimit = size;
4721 		break;
4722 	case Opt_usrquota_inode_hardlimit:
4723 		size = memparse(param->string, &rest);
4724 		if (*rest || !size)
4725 			goto bad_value;
4726 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4727 			return invalfc(fc,
4728 				       "User quota inode hardlimit too large.");
4729 		ctx->qlimits.usrquota_ihardlimit = size;
4730 		break;
4731 	case Opt_grpquota_inode_hardlimit:
4732 		size = memparse(param->string, &rest);
4733 		if (*rest || !size)
4734 			goto bad_value;
4735 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4736 			return invalfc(fc,
4737 				       "Group quota inode hardlimit too large.");
4738 		ctx->qlimits.grpquota_ihardlimit = size;
4739 		break;
4740 	case Opt_casefold_version:
4741 		return shmem_parse_opt_casefold(fc, param, false);
4742 	case Opt_casefold:
4743 		return shmem_parse_opt_casefold(fc, param, true);
4744 	case Opt_strict_encoding:
4745 #if IS_ENABLED(CONFIG_UNICODE)
4746 		ctx->strict_encoding = true;
4747 		break;
4748 #else
4749 		return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4750 #endif
4751 	}
4752 	return 0;
4753 
4754 unsupported_parameter:
4755 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4756 bad_value:
4757 	return invalfc(fc, "Bad value for '%s'", param->key);
4758 }
4759 
4760 static char *shmem_next_opt(char **s)
4761 {
4762 	char *sbegin = *s;
4763 	char *p;
4764 
4765 	if (sbegin == NULL)
4766 		return NULL;
4767 
4768 	/*
4769 	 * NUL-terminate this option: unfortunately,
4770 	 * mount options form a comma-separated list,
4771 	 * but mpol's nodelist may also contain commas.
4772 	 */
4773 	for (;;) {
4774 		p = strchr(*s, ',');
4775 		if (p == NULL)
4776 			break;
4777 		*s = p + 1;
4778 		if (!isdigit(*(p+1))) {
4779 			*p = '\0';
4780 			return sbegin;
4781 		}
4782 	}
4783 
4784 	*s = NULL;
4785 	return sbegin;
4786 }
4787 
4788 static int shmem_parse_monolithic(struct fs_context *fc, void *data)
4789 {
4790 	return vfs_parse_monolithic_sep(fc, data, shmem_next_opt);
4791 }
4792 
4793 /*
4794  * Reconfigure a shmem filesystem.
4795  */
4796 static int shmem_reconfigure(struct fs_context *fc)
4797 {
4798 	struct shmem_options *ctx = fc->fs_private;
4799 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4800 	unsigned long used_isp;
4801 	struct mempolicy *mpol = NULL;
4802 	const char *err;
4803 
4804 	raw_spin_lock(&sbinfo->stat_lock);
4805 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4806 
4807 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4808 		if (!sbinfo->max_blocks) {
4809 			err = "Cannot retroactively limit size";
4810 			goto out;
4811 		}
4812 		if (percpu_counter_compare(&sbinfo->used_blocks,
4813 					   ctx->blocks) > 0) {
4814 			err = "Too small a size for current use";
4815 			goto out;
4816 		}
4817 	}
4818 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4819 		if (!sbinfo->max_inodes) {
4820 			err = "Cannot retroactively limit inodes";
4821 			goto out;
4822 		}
4823 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4824 			err = "Too few inodes for current use";
4825 			goto out;
4826 		}
4827 	}
4828 
4829 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4830 	    sbinfo->next_ino > UINT_MAX) {
4831 		err = "Current inum too high to switch to 32-bit inums";
4832 		goto out;
4833 	}
4834 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4835 		err = "Cannot disable swap on remount";
4836 		goto out;
4837 	}
4838 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4839 		err = "Cannot enable swap on remount if it was disabled on first mount";
4840 		goto out;
4841 	}
4842 
4843 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4844 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4845 		err = "Cannot enable quota on remount";
4846 		goto out;
4847 	}
4848 
4849 #ifdef CONFIG_TMPFS_QUOTA
4850 #define CHANGED_LIMIT(name)						\
4851 	(ctx->qlimits.name## hardlimit &&				\
4852 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4853 
4854 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4855 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4856 		err = "Cannot change global quota limit on remount";
4857 		goto out;
4858 	}
4859 #endif /* CONFIG_TMPFS_QUOTA */
4860 
4861 	if (ctx->seen & SHMEM_SEEN_HUGE)
4862 		sbinfo->huge = ctx->huge;
4863 	if (ctx->seen & SHMEM_SEEN_INUMS)
4864 		sbinfo->full_inums = ctx->full_inums;
4865 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4866 		sbinfo->max_blocks  = ctx->blocks;
4867 	if (ctx->seen & SHMEM_SEEN_INODES) {
4868 		sbinfo->max_inodes  = ctx->inodes;
4869 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4870 	}
4871 
4872 	/*
4873 	 * Preserve previous mempolicy unless mpol remount option was specified.
4874 	 */
4875 	if (ctx->mpol) {
4876 		mpol = sbinfo->mpol;
4877 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4878 		ctx->mpol = NULL;
4879 	}
4880 
4881 	if (ctx->noswap)
4882 		sbinfo->noswap = true;
4883 
4884 	raw_spin_unlock(&sbinfo->stat_lock);
4885 	mpol_put(mpol);
4886 	return 0;
4887 out:
4888 	raw_spin_unlock(&sbinfo->stat_lock);
4889 	return invalfc(fc, "%s", err);
4890 }
4891 
4892 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4893 {
4894 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4895 	struct mempolicy *mpol;
4896 
4897 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4898 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4899 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4900 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4901 	if (sbinfo->mode != (0777 | S_ISVTX))
4902 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4903 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4904 		seq_printf(seq, ",uid=%u",
4905 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4906 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4907 		seq_printf(seq, ",gid=%u",
4908 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4909 
4910 	/*
4911 	 * Showing inode{64,32} might be useful even if it's the system default,
4912 	 * since then people don't have to resort to checking both here and
4913 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4914 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4915 	 *
4916 	 * We hide it when inode64 isn't the default and we are using 32-bit
4917 	 * inodes, since that probably just means the feature isn't even under
4918 	 * consideration.
4919 	 *
4920 	 * As such:
4921 	 *
4922 	 *                     +-----------------+-----------------+
4923 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4924 	 *  +------------------+-----------------+-----------------+
4925 	 *  | full_inums=true  | show            | show            |
4926 	 *  | full_inums=false | show            | hide            |
4927 	 *  +------------------+-----------------+-----------------+
4928 	 *
4929 	 */
4930 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4931 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4932 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4933 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4934 	if (sbinfo->huge)
4935 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4936 #endif
4937 	mpol = shmem_get_sbmpol(sbinfo);
4938 	shmem_show_mpol(seq, mpol);
4939 	mpol_put(mpol);
4940 	if (sbinfo->noswap)
4941 		seq_printf(seq, ",noswap");
4942 #ifdef CONFIG_TMPFS_QUOTA
4943 	if (sb_has_quota_active(root->d_sb, USRQUOTA))
4944 		seq_printf(seq, ",usrquota");
4945 	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4946 		seq_printf(seq, ",grpquota");
4947 	if (sbinfo->qlimits.usrquota_bhardlimit)
4948 		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4949 			   sbinfo->qlimits.usrquota_bhardlimit);
4950 	if (sbinfo->qlimits.grpquota_bhardlimit)
4951 		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4952 			   sbinfo->qlimits.grpquota_bhardlimit);
4953 	if (sbinfo->qlimits.usrquota_ihardlimit)
4954 		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4955 			   sbinfo->qlimits.usrquota_ihardlimit);
4956 	if (sbinfo->qlimits.grpquota_ihardlimit)
4957 		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4958 			   sbinfo->qlimits.grpquota_ihardlimit);
4959 #endif
4960 	return 0;
4961 }
4962 
4963 #endif /* CONFIG_TMPFS */
4964 
4965 static void shmem_put_super(struct super_block *sb)
4966 {
4967 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4968 
4969 #if IS_ENABLED(CONFIG_UNICODE)
4970 	if (sb->s_encoding)
4971 		utf8_unload(sb->s_encoding);
4972 #endif
4973 
4974 #ifdef CONFIG_TMPFS_QUOTA
4975 	shmem_disable_quotas(sb);
4976 #endif
4977 	free_percpu(sbinfo->ino_batch);
4978 	percpu_counter_destroy(&sbinfo->used_blocks);
4979 	mpol_put(sbinfo->mpol);
4980 	kfree(sbinfo);
4981 	sb->s_fs_info = NULL;
4982 }
4983 
4984 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS)
4985 static const struct dentry_operations shmem_ci_dentry_ops = {
4986 	.d_hash = generic_ci_d_hash,
4987 	.d_compare = generic_ci_d_compare,
4988 	.d_delete = always_delete_dentry,
4989 };
4990 #endif
4991 
4992 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4993 {
4994 	struct shmem_options *ctx = fc->fs_private;
4995 	struct inode *inode;
4996 	struct shmem_sb_info *sbinfo;
4997 	int error = -ENOMEM;
4998 
4999 	/* Round up to L1_CACHE_BYTES to resist false sharing */
5000 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
5001 				L1_CACHE_BYTES), GFP_KERNEL);
5002 	if (!sbinfo)
5003 		return error;
5004 
5005 	sb->s_fs_info = sbinfo;
5006 
5007 #ifdef CONFIG_TMPFS
5008 	/*
5009 	 * Per default we only allow half of the physical ram per
5010 	 * tmpfs instance, limiting inodes to one per page of lowmem;
5011 	 * but the internal instance is left unlimited.
5012 	 */
5013 	if (!(sb->s_flags & SB_KERNMOUNT)) {
5014 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
5015 			ctx->blocks = shmem_default_max_blocks();
5016 		if (!(ctx->seen & SHMEM_SEEN_INODES))
5017 			ctx->inodes = shmem_default_max_inodes();
5018 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
5019 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
5020 		sbinfo->noswap = ctx->noswap;
5021 	} else {
5022 		sb->s_flags |= SB_NOUSER;
5023 	}
5024 	sb->s_export_op = &shmem_export_ops;
5025 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
5026 
5027 #if IS_ENABLED(CONFIG_UNICODE)
5028 	if (!ctx->encoding && ctx->strict_encoding) {
5029 		pr_err("tmpfs: strict_encoding option without encoding is forbidden\n");
5030 		error = -EINVAL;
5031 		goto failed;
5032 	}
5033 
5034 	if (ctx->encoding) {
5035 		sb->s_encoding = ctx->encoding;
5036 		sb->s_d_op = &shmem_ci_dentry_ops;
5037 		if (ctx->strict_encoding)
5038 			sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL;
5039 	}
5040 #endif
5041 
5042 #else
5043 	sb->s_flags |= SB_NOUSER;
5044 #endif /* CONFIG_TMPFS */
5045 	sbinfo->max_blocks = ctx->blocks;
5046 	sbinfo->max_inodes = ctx->inodes;
5047 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
5048 	if (sb->s_flags & SB_KERNMOUNT) {
5049 		sbinfo->ino_batch = alloc_percpu(ino_t);
5050 		if (!sbinfo->ino_batch)
5051 			goto failed;
5052 	}
5053 	sbinfo->uid = ctx->uid;
5054 	sbinfo->gid = ctx->gid;
5055 	sbinfo->full_inums = ctx->full_inums;
5056 	sbinfo->mode = ctx->mode;
5057 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5058 	if (ctx->seen & SHMEM_SEEN_HUGE)
5059 		sbinfo->huge = ctx->huge;
5060 	else
5061 		sbinfo->huge = tmpfs_huge;
5062 #endif
5063 	sbinfo->mpol = ctx->mpol;
5064 	ctx->mpol = NULL;
5065 
5066 	raw_spin_lock_init(&sbinfo->stat_lock);
5067 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
5068 		goto failed;
5069 	spin_lock_init(&sbinfo->shrinklist_lock);
5070 	INIT_LIST_HEAD(&sbinfo->shrinklist);
5071 
5072 	sb->s_maxbytes = MAX_LFS_FILESIZE;
5073 	sb->s_blocksize = PAGE_SIZE;
5074 	sb->s_blocksize_bits = PAGE_SHIFT;
5075 	sb->s_magic = TMPFS_MAGIC;
5076 	sb->s_op = &shmem_ops;
5077 	sb->s_time_gran = 1;
5078 #ifdef CONFIG_TMPFS_XATTR
5079 	sb->s_xattr = shmem_xattr_handlers;
5080 #endif
5081 #ifdef CONFIG_TMPFS_POSIX_ACL
5082 	sb->s_flags |= SB_POSIXACL;
5083 #endif
5084 	uuid_t uuid;
5085 	uuid_gen(&uuid);
5086 	super_set_uuid(sb, uuid.b, sizeof(uuid));
5087 
5088 #ifdef CONFIG_TMPFS_QUOTA
5089 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
5090 		sb->dq_op = &shmem_quota_operations;
5091 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5092 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
5093 
5094 		/* Copy the default limits from ctx into sbinfo */
5095 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
5096 		       sizeof(struct shmem_quota_limits));
5097 
5098 		if (shmem_enable_quotas(sb, ctx->quota_types))
5099 			goto failed;
5100 	}
5101 #endif /* CONFIG_TMPFS_QUOTA */
5102 
5103 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
5104 				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
5105 	if (IS_ERR(inode)) {
5106 		error = PTR_ERR(inode);
5107 		goto failed;
5108 	}
5109 	inode->i_uid = sbinfo->uid;
5110 	inode->i_gid = sbinfo->gid;
5111 	sb->s_root = d_make_root(inode);
5112 	if (!sb->s_root)
5113 		goto failed;
5114 	return 0;
5115 
5116 failed:
5117 	shmem_put_super(sb);
5118 	return error;
5119 }
5120 
5121 static int shmem_get_tree(struct fs_context *fc)
5122 {
5123 	return get_tree_nodev(fc, shmem_fill_super);
5124 }
5125 
5126 static void shmem_free_fc(struct fs_context *fc)
5127 {
5128 	struct shmem_options *ctx = fc->fs_private;
5129 
5130 	if (ctx) {
5131 		mpol_put(ctx->mpol);
5132 		kfree(ctx);
5133 	}
5134 }
5135 
5136 static const struct fs_context_operations shmem_fs_context_ops = {
5137 	.free			= shmem_free_fc,
5138 	.get_tree		= shmem_get_tree,
5139 #ifdef CONFIG_TMPFS
5140 	.parse_monolithic	= shmem_parse_monolithic,
5141 	.parse_param		= shmem_parse_one,
5142 	.reconfigure		= shmem_reconfigure,
5143 #endif
5144 };
5145 
5146 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
5147 
5148 static struct inode *shmem_alloc_inode(struct super_block *sb)
5149 {
5150 	struct shmem_inode_info *info;
5151 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
5152 	if (!info)
5153 		return NULL;
5154 	return &info->vfs_inode;
5155 }
5156 
5157 static void shmem_free_in_core_inode(struct inode *inode)
5158 {
5159 	if (S_ISLNK(inode->i_mode))
5160 		kfree(inode->i_link);
5161 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
5162 }
5163 
5164 static void shmem_destroy_inode(struct inode *inode)
5165 {
5166 	if (S_ISREG(inode->i_mode))
5167 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
5168 	if (S_ISDIR(inode->i_mode))
5169 		simple_offset_destroy(shmem_get_offset_ctx(inode));
5170 }
5171 
5172 static void shmem_init_inode(void *foo)
5173 {
5174 	struct shmem_inode_info *info = foo;
5175 	inode_init_once(&info->vfs_inode);
5176 }
5177 
5178 static void __init shmem_init_inodecache(void)
5179 {
5180 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
5181 				sizeof(struct shmem_inode_info),
5182 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
5183 }
5184 
5185 static void __init shmem_destroy_inodecache(void)
5186 {
5187 	kmem_cache_destroy(shmem_inode_cachep);
5188 }
5189 
5190 /* Keep the page in page cache instead of truncating it */
5191 static int shmem_error_remove_folio(struct address_space *mapping,
5192 				   struct folio *folio)
5193 {
5194 	return 0;
5195 }
5196 
5197 static const struct address_space_operations shmem_aops = {
5198 	.writepage	= shmem_writepage,
5199 	.dirty_folio	= noop_dirty_folio,
5200 #ifdef CONFIG_TMPFS
5201 	.write_begin	= shmem_write_begin,
5202 	.write_end	= shmem_write_end,
5203 #endif
5204 #ifdef CONFIG_MIGRATION
5205 	.migrate_folio	= migrate_folio,
5206 #endif
5207 	.error_remove_folio = shmem_error_remove_folio,
5208 };
5209 
5210 static const struct file_operations shmem_file_operations = {
5211 	.mmap		= shmem_mmap,
5212 	.open		= shmem_file_open,
5213 	.get_unmapped_area = shmem_get_unmapped_area,
5214 #ifdef CONFIG_TMPFS
5215 	.llseek		= shmem_file_llseek,
5216 	.read_iter	= shmem_file_read_iter,
5217 	.write_iter	= shmem_file_write_iter,
5218 	.fsync		= noop_fsync,
5219 	.splice_read	= shmem_file_splice_read,
5220 	.splice_write	= iter_file_splice_write,
5221 	.fallocate	= shmem_fallocate,
5222 #endif
5223 };
5224 
5225 static const struct inode_operations shmem_inode_operations = {
5226 	.getattr	= shmem_getattr,
5227 	.setattr	= shmem_setattr,
5228 #ifdef CONFIG_TMPFS_XATTR
5229 	.listxattr	= shmem_listxattr,
5230 	.set_acl	= simple_set_acl,
5231 	.fileattr_get	= shmem_fileattr_get,
5232 	.fileattr_set	= shmem_fileattr_set,
5233 #endif
5234 };
5235 
5236 static const struct inode_operations shmem_dir_inode_operations = {
5237 #ifdef CONFIG_TMPFS
5238 	.getattr	= shmem_getattr,
5239 	.create		= shmem_create,
5240 	.lookup		= simple_lookup,
5241 	.link		= shmem_link,
5242 	.unlink		= shmem_unlink,
5243 	.symlink	= shmem_symlink,
5244 	.mkdir		= shmem_mkdir,
5245 	.rmdir		= shmem_rmdir,
5246 	.mknod		= shmem_mknod,
5247 	.rename		= shmem_rename2,
5248 	.tmpfile	= shmem_tmpfile,
5249 	.get_offset_ctx	= shmem_get_offset_ctx,
5250 #endif
5251 #ifdef CONFIG_TMPFS_XATTR
5252 	.listxattr	= shmem_listxattr,
5253 	.fileattr_get	= shmem_fileattr_get,
5254 	.fileattr_set	= shmem_fileattr_set,
5255 #endif
5256 #ifdef CONFIG_TMPFS_POSIX_ACL
5257 	.setattr	= shmem_setattr,
5258 	.set_acl	= simple_set_acl,
5259 #endif
5260 };
5261 
5262 static const struct inode_operations shmem_special_inode_operations = {
5263 	.getattr	= shmem_getattr,
5264 #ifdef CONFIG_TMPFS_XATTR
5265 	.listxattr	= shmem_listxattr,
5266 #endif
5267 #ifdef CONFIG_TMPFS_POSIX_ACL
5268 	.setattr	= shmem_setattr,
5269 	.set_acl	= simple_set_acl,
5270 #endif
5271 };
5272 
5273 static const struct super_operations shmem_ops = {
5274 	.alloc_inode	= shmem_alloc_inode,
5275 	.free_inode	= shmem_free_in_core_inode,
5276 	.destroy_inode	= shmem_destroy_inode,
5277 #ifdef CONFIG_TMPFS
5278 	.statfs		= shmem_statfs,
5279 	.show_options	= shmem_show_options,
5280 #endif
5281 #ifdef CONFIG_TMPFS_QUOTA
5282 	.get_dquots	= shmem_get_dquots,
5283 #endif
5284 	.evict_inode	= shmem_evict_inode,
5285 	.drop_inode	= generic_delete_inode,
5286 	.put_super	= shmem_put_super,
5287 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5288 	.nr_cached_objects	= shmem_unused_huge_count,
5289 	.free_cached_objects	= shmem_unused_huge_scan,
5290 #endif
5291 };
5292 
5293 static const struct vm_operations_struct shmem_vm_ops = {
5294 	.fault		= shmem_fault,
5295 	.map_pages	= filemap_map_pages,
5296 #ifdef CONFIG_NUMA
5297 	.set_policy     = shmem_set_policy,
5298 	.get_policy     = shmem_get_policy,
5299 #endif
5300 };
5301 
5302 static const struct vm_operations_struct shmem_anon_vm_ops = {
5303 	.fault		= shmem_fault,
5304 	.map_pages	= filemap_map_pages,
5305 #ifdef CONFIG_NUMA
5306 	.set_policy     = shmem_set_policy,
5307 	.get_policy     = shmem_get_policy,
5308 #endif
5309 };
5310 
5311 int shmem_init_fs_context(struct fs_context *fc)
5312 {
5313 	struct shmem_options *ctx;
5314 
5315 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
5316 	if (!ctx)
5317 		return -ENOMEM;
5318 
5319 	ctx->mode = 0777 | S_ISVTX;
5320 	ctx->uid = current_fsuid();
5321 	ctx->gid = current_fsgid();
5322 
5323 #if IS_ENABLED(CONFIG_UNICODE)
5324 	ctx->encoding = NULL;
5325 #endif
5326 
5327 	fc->fs_private = ctx;
5328 	fc->ops = &shmem_fs_context_ops;
5329 	return 0;
5330 }
5331 
5332 static struct file_system_type shmem_fs_type = {
5333 	.owner		= THIS_MODULE,
5334 	.name		= "tmpfs",
5335 	.init_fs_context = shmem_init_fs_context,
5336 #ifdef CONFIG_TMPFS
5337 	.parameters	= shmem_fs_parameters,
5338 #endif
5339 	.kill_sb	= kill_litter_super,
5340 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
5341 };
5342 
5343 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5344 
5345 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store)			\
5346 {									\
5347 	.attr	= { .name = __stringify(_name), .mode = _mode },	\
5348 	.show	= _show,						\
5349 	.store	= _store,						\
5350 }
5351 
5352 #define TMPFS_ATTR_W(_name, _store)				\
5353 	static struct kobj_attribute tmpfs_attr_##_name =	\
5354 			__INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
5355 
5356 #define TMPFS_ATTR_RW(_name, _show, _store)			\
5357 	static struct kobj_attribute tmpfs_attr_##_name =	\
5358 			__INIT_KOBJ_ATTR(_name, 0644, _show, _store)
5359 
5360 #define TMPFS_ATTR_RO(_name, _show)				\
5361 	static struct kobj_attribute tmpfs_attr_##_name =	\
5362 			__INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
5363 
5364 #if IS_ENABLED(CONFIG_UNICODE)
5365 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a,
5366 			char *buf)
5367 {
5368 		return sysfs_emit(buf, "supported\n");
5369 }
5370 TMPFS_ATTR_RO(casefold, casefold_show);
5371 #endif
5372 
5373 static struct attribute *tmpfs_attributes[] = {
5374 #if IS_ENABLED(CONFIG_UNICODE)
5375 	&tmpfs_attr_casefold.attr,
5376 #endif
5377 	NULL
5378 };
5379 
5380 static const struct attribute_group tmpfs_attribute_group = {
5381 	.attrs = tmpfs_attributes,
5382 	.name = "features"
5383 };
5384 
5385 static struct kobject *tmpfs_kobj;
5386 
5387 static int __init tmpfs_sysfs_init(void)
5388 {
5389 	int ret;
5390 
5391 	tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj);
5392 	if (!tmpfs_kobj)
5393 		return -ENOMEM;
5394 
5395 	ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group);
5396 	if (ret)
5397 		kobject_put(tmpfs_kobj);
5398 
5399 	return ret;
5400 }
5401 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */
5402 
5403 void __init shmem_init(void)
5404 {
5405 	int error;
5406 
5407 	shmem_init_inodecache();
5408 
5409 #ifdef CONFIG_TMPFS_QUOTA
5410 	register_quota_format(&shmem_quota_format);
5411 #endif
5412 
5413 	error = register_filesystem(&shmem_fs_type);
5414 	if (error) {
5415 		pr_err("Could not register tmpfs\n");
5416 		goto out2;
5417 	}
5418 
5419 	shm_mnt = kern_mount(&shmem_fs_type);
5420 	if (IS_ERR(shm_mnt)) {
5421 		error = PTR_ERR(shm_mnt);
5422 		pr_err("Could not kern_mount tmpfs\n");
5423 		goto out1;
5424 	}
5425 
5426 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5427 	error = tmpfs_sysfs_init();
5428 	if (error) {
5429 		pr_err("Could not init tmpfs sysfs\n");
5430 		goto out1;
5431 	}
5432 #endif
5433 
5434 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5435 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5436 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5437 	else
5438 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5439 
5440 	/*
5441 	 * Default to setting PMD-sized THP to inherit the global setting and
5442 	 * disable all other multi-size THPs.
5443 	 */
5444 	if (!shmem_orders_configured)
5445 		huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5446 #endif
5447 	return;
5448 
5449 out1:
5450 	unregister_filesystem(&shmem_fs_type);
5451 out2:
5452 #ifdef CONFIG_TMPFS_QUOTA
5453 	unregister_quota_format(&shmem_quota_format);
5454 #endif
5455 	shmem_destroy_inodecache();
5456 	shm_mnt = ERR_PTR(error);
5457 }
5458 
5459 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5460 static ssize_t shmem_enabled_show(struct kobject *kobj,
5461 				  struct kobj_attribute *attr, char *buf)
5462 {
5463 	static const int values[] = {
5464 		SHMEM_HUGE_ALWAYS,
5465 		SHMEM_HUGE_WITHIN_SIZE,
5466 		SHMEM_HUGE_ADVISE,
5467 		SHMEM_HUGE_NEVER,
5468 		SHMEM_HUGE_DENY,
5469 		SHMEM_HUGE_FORCE,
5470 	};
5471 	int len = 0;
5472 	int i;
5473 
5474 	for (i = 0; i < ARRAY_SIZE(values); i++) {
5475 		len += sysfs_emit_at(buf, len,
5476 				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5477 				i ? " " : "", shmem_format_huge(values[i]));
5478 	}
5479 	len += sysfs_emit_at(buf, len, "\n");
5480 
5481 	return len;
5482 }
5483 
5484 static ssize_t shmem_enabled_store(struct kobject *kobj,
5485 		struct kobj_attribute *attr, const char *buf, size_t count)
5486 {
5487 	char tmp[16];
5488 	int huge, err;
5489 
5490 	if (count + 1 > sizeof(tmp))
5491 		return -EINVAL;
5492 	memcpy(tmp, buf, count);
5493 	tmp[count] = '\0';
5494 	if (count && tmp[count - 1] == '\n')
5495 		tmp[count - 1] = '\0';
5496 
5497 	huge = shmem_parse_huge(tmp);
5498 	if (huge == -EINVAL)
5499 		return huge;
5500 
5501 	shmem_huge = huge;
5502 	if (shmem_huge > SHMEM_HUGE_DENY)
5503 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5504 
5505 	err = start_stop_khugepaged();
5506 	return err ? err : count;
5507 }
5508 
5509 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5510 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5511 
5512 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5513 					  struct kobj_attribute *attr, char *buf)
5514 {
5515 	int order = to_thpsize(kobj)->order;
5516 	const char *output;
5517 
5518 	if (test_bit(order, &huge_shmem_orders_always))
5519 		output = "[always] inherit within_size advise never";
5520 	else if (test_bit(order, &huge_shmem_orders_inherit))
5521 		output = "always [inherit] within_size advise never";
5522 	else if (test_bit(order, &huge_shmem_orders_within_size))
5523 		output = "always inherit [within_size] advise never";
5524 	else if (test_bit(order, &huge_shmem_orders_madvise))
5525 		output = "always inherit within_size [advise] never";
5526 	else
5527 		output = "always inherit within_size advise [never]";
5528 
5529 	return sysfs_emit(buf, "%s\n", output);
5530 }
5531 
5532 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5533 					   struct kobj_attribute *attr,
5534 					   const char *buf, size_t count)
5535 {
5536 	int order = to_thpsize(kobj)->order;
5537 	ssize_t ret = count;
5538 
5539 	if (sysfs_streq(buf, "always")) {
5540 		spin_lock(&huge_shmem_orders_lock);
5541 		clear_bit(order, &huge_shmem_orders_inherit);
5542 		clear_bit(order, &huge_shmem_orders_madvise);
5543 		clear_bit(order, &huge_shmem_orders_within_size);
5544 		set_bit(order, &huge_shmem_orders_always);
5545 		spin_unlock(&huge_shmem_orders_lock);
5546 	} else if (sysfs_streq(buf, "inherit")) {
5547 		/* Do not override huge allocation policy with non-PMD sized mTHP */
5548 		if (shmem_huge == SHMEM_HUGE_FORCE &&
5549 		    order != HPAGE_PMD_ORDER)
5550 			return -EINVAL;
5551 
5552 		spin_lock(&huge_shmem_orders_lock);
5553 		clear_bit(order, &huge_shmem_orders_always);
5554 		clear_bit(order, &huge_shmem_orders_madvise);
5555 		clear_bit(order, &huge_shmem_orders_within_size);
5556 		set_bit(order, &huge_shmem_orders_inherit);
5557 		spin_unlock(&huge_shmem_orders_lock);
5558 	} else if (sysfs_streq(buf, "within_size")) {
5559 		spin_lock(&huge_shmem_orders_lock);
5560 		clear_bit(order, &huge_shmem_orders_always);
5561 		clear_bit(order, &huge_shmem_orders_inherit);
5562 		clear_bit(order, &huge_shmem_orders_madvise);
5563 		set_bit(order, &huge_shmem_orders_within_size);
5564 		spin_unlock(&huge_shmem_orders_lock);
5565 	} else if (sysfs_streq(buf, "advise")) {
5566 		spin_lock(&huge_shmem_orders_lock);
5567 		clear_bit(order, &huge_shmem_orders_always);
5568 		clear_bit(order, &huge_shmem_orders_inherit);
5569 		clear_bit(order, &huge_shmem_orders_within_size);
5570 		set_bit(order, &huge_shmem_orders_madvise);
5571 		spin_unlock(&huge_shmem_orders_lock);
5572 	} else if (sysfs_streq(buf, "never")) {
5573 		spin_lock(&huge_shmem_orders_lock);
5574 		clear_bit(order, &huge_shmem_orders_always);
5575 		clear_bit(order, &huge_shmem_orders_inherit);
5576 		clear_bit(order, &huge_shmem_orders_within_size);
5577 		clear_bit(order, &huge_shmem_orders_madvise);
5578 		spin_unlock(&huge_shmem_orders_lock);
5579 	} else {
5580 		ret = -EINVAL;
5581 	}
5582 
5583 	if (ret > 0) {
5584 		int err = start_stop_khugepaged();
5585 
5586 		if (err)
5587 			ret = err;
5588 	}
5589 	return ret;
5590 }
5591 
5592 struct kobj_attribute thpsize_shmem_enabled_attr =
5593 	__ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5594 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5595 
5596 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
5597 
5598 static int __init setup_transparent_hugepage_shmem(char *str)
5599 {
5600 	int huge;
5601 
5602 	huge = shmem_parse_huge(str);
5603 	if (huge == -EINVAL) {
5604 		pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n");
5605 		return huge;
5606 	}
5607 
5608 	shmem_huge = huge;
5609 	return 1;
5610 }
5611 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem);
5612 
5613 static int __init setup_transparent_hugepage_tmpfs(char *str)
5614 {
5615 	int huge;
5616 
5617 	huge = shmem_parse_huge(str);
5618 	if (huge < 0) {
5619 		pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n");
5620 		return huge;
5621 	}
5622 
5623 	tmpfs_huge = huge;
5624 	return 1;
5625 }
5626 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs);
5627 
5628 static char str_dup[PAGE_SIZE] __initdata;
5629 static int __init setup_thp_shmem(char *str)
5630 {
5631 	char *token, *range, *policy, *subtoken;
5632 	unsigned long always, inherit, madvise, within_size;
5633 	char *start_size, *end_size;
5634 	int start, end, nr;
5635 	char *p;
5636 
5637 	if (!str || strlen(str) + 1 > PAGE_SIZE)
5638 		goto err;
5639 	strscpy(str_dup, str);
5640 
5641 	always = huge_shmem_orders_always;
5642 	inherit = huge_shmem_orders_inherit;
5643 	madvise = huge_shmem_orders_madvise;
5644 	within_size = huge_shmem_orders_within_size;
5645 	p = str_dup;
5646 	while ((token = strsep(&p, ";")) != NULL) {
5647 		range = strsep(&token, ":");
5648 		policy = token;
5649 
5650 		if (!policy)
5651 			goto err;
5652 
5653 		while ((subtoken = strsep(&range, ",")) != NULL) {
5654 			if (strchr(subtoken, '-')) {
5655 				start_size = strsep(&subtoken, "-");
5656 				end_size = subtoken;
5657 
5658 				start = get_order_from_str(start_size,
5659 							   THP_ORDERS_ALL_FILE_DEFAULT);
5660 				end = get_order_from_str(end_size,
5661 							 THP_ORDERS_ALL_FILE_DEFAULT);
5662 			} else {
5663 				start_size = end_size = subtoken;
5664 				start = end = get_order_from_str(subtoken,
5665 								 THP_ORDERS_ALL_FILE_DEFAULT);
5666 			}
5667 
5668 			if (start == -EINVAL) {
5669 				pr_err("invalid size %s in thp_shmem boot parameter\n",
5670 				       start_size);
5671 				goto err;
5672 			}
5673 
5674 			if (end == -EINVAL) {
5675 				pr_err("invalid size %s in thp_shmem boot parameter\n",
5676 				       end_size);
5677 				goto err;
5678 			}
5679 
5680 			if (start < 0 || end < 0 || start > end)
5681 				goto err;
5682 
5683 			nr = end - start + 1;
5684 			if (!strcmp(policy, "always")) {
5685 				bitmap_set(&always, start, nr);
5686 				bitmap_clear(&inherit, start, nr);
5687 				bitmap_clear(&madvise, start, nr);
5688 				bitmap_clear(&within_size, start, nr);
5689 			} else if (!strcmp(policy, "advise")) {
5690 				bitmap_set(&madvise, start, nr);
5691 				bitmap_clear(&inherit, start, nr);
5692 				bitmap_clear(&always, start, nr);
5693 				bitmap_clear(&within_size, start, nr);
5694 			} else if (!strcmp(policy, "inherit")) {
5695 				bitmap_set(&inherit, start, nr);
5696 				bitmap_clear(&madvise, start, nr);
5697 				bitmap_clear(&always, start, nr);
5698 				bitmap_clear(&within_size, start, nr);
5699 			} else if (!strcmp(policy, "within_size")) {
5700 				bitmap_set(&within_size, start, nr);
5701 				bitmap_clear(&inherit, start, nr);
5702 				bitmap_clear(&madvise, start, nr);
5703 				bitmap_clear(&always, start, nr);
5704 			} else if (!strcmp(policy, "never")) {
5705 				bitmap_clear(&inherit, start, nr);
5706 				bitmap_clear(&madvise, start, nr);
5707 				bitmap_clear(&always, start, nr);
5708 				bitmap_clear(&within_size, start, nr);
5709 			} else {
5710 				pr_err("invalid policy %s in thp_shmem boot parameter\n", policy);
5711 				goto err;
5712 			}
5713 		}
5714 	}
5715 
5716 	huge_shmem_orders_always = always;
5717 	huge_shmem_orders_madvise = madvise;
5718 	huge_shmem_orders_inherit = inherit;
5719 	huge_shmem_orders_within_size = within_size;
5720 	shmem_orders_configured = true;
5721 	return 1;
5722 
5723 err:
5724 	pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str);
5725 	return 0;
5726 }
5727 __setup("thp_shmem=", setup_thp_shmem);
5728 
5729 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5730 
5731 #else /* !CONFIG_SHMEM */
5732 
5733 /*
5734  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5735  *
5736  * This is intended for small system where the benefits of the full
5737  * shmem code (swap-backed and resource-limited) are outweighed by
5738  * their complexity. On systems without swap this code should be
5739  * effectively equivalent, but much lighter weight.
5740  */
5741 
5742 static struct file_system_type shmem_fs_type = {
5743 	.name		= "tmpfs",
5744 	.init_fs_context = ramfs_init_fs_context,
5745 	.parameters	= ramfs_fs_parameters,
5746 	.kill_sb	= ramfs_kill_sb,
5747 	.fs_flags	= FS_USERNS_MOUNT,
5748 };
5749 
5750 void __init shmem_init(void)
5751 {
5752 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5753 
5754 	shm_mnt = kern_mount(&shmem_fs_type);
5755 	BUG_ON(IS_ERR(shm_mnt));
5756 }
5757 
5758 int shmem_unuse(unsigned int type)
5759 {
5760 	return 0;
5761 }
5762 
5763 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5764 {
5765 	return 0;
5766 }
5767 
5768 void shmem_unlock_mapping(struct address_space *mapping)
5769 {
5770 }
5771 
5772 #ifdef CONFIG_MMU
5773 unsigned long shmem_get_unmapped_area(struct file *file,
5774 				      unsigned long addr, unsigned long len,
5775 				      unsigned long pgoff, unsigned long flags)
5776 {
5777 	return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5778 }
5779 #endif
5780 
5781 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5782 {
5783 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5784 }
5785 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5786 
5787 #define shmem_vm_ops				generic_file_vm_ops
5788 #define shmem_anon_vm_ops			generic_file_vm_ops
5789 #define shmem_file_operations			ramfs_file_operations
5790 #define shmem_acct_size(flags, size)		0
5791 #define shmem_unacct_size(flags, size)		do {} while (0)
5792 
5793 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5794 				struct super_block *sb, struct inode *dir,
5795 				umode_t mode, dev_t dev, unsigned long flags)
5796 {
5797 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5798 	return inode ? inode : ERR_PTR(-ENOSPC);
5799 }
5800 
5801 #endif /* CONFIG_SHMEM */
5802 
5803 /* common code */
5804 
5805 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5806 			loff_t size, unsigned long flags, unsigned int i_flags)
5807 {
5808 	struct inode *inode;
5809 	struct file *res;
5810 
5811 	if (IS_ERR(mnt))
5812 		return ERR_CAST(mnt);
5813 
5814 	if (size < 0 || size > MAX_LFS_FILESIZE)
5815 		return ERR_PTR(-EINVAL);
5816 
5817 	if (shmem_acct_size(flags, size))
5818 		return ERR_PTR(-ENOMEM);
5819 
5820 	if (is_idmapped_mnt(mnt))
5821 		return ERR_PTR(-EINVAL);
5822 
5823 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5824 				S_IFREG | S_IRWXUGO, 0, flags);
5825 	if (IS_ERR(inode)) {
5826 		shmem_unacct_size(flags, size);
5827 		return ERR_CAST(inode);
5828 	}
5829 	inode->i_flags |= i_flags;
5830 	inode->i_size = size;
5831 	clear_nlink(inode);	/* It is unlinked */
5832 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5833 	if (!IS_ERR(res))
5834 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5835 				&shmem_file_operations);
5836 	if (IS_ERR(res))
5837 		iput(inode);
5838 	return res;
5839 }
5840 
5841 /**
5842  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5843  * 	kernel internal.  There will be NO LSM permission checks against the
5844  * 	underlying inode.  So users of this interface must do LSM checks at a
5845  *	higher layer.  The users are the big_key and shm implementations.  LSM
5846  *	checks are provided at the key or shm level rather than the inode.
5847  * @name: name for dentry (to be seen in /proc/<pid>/maps
5848  * @size: size to be set for the file
5849  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5850  */
5851 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5852 {
5853 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5854 }
5855 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5856 
5857 /**
5858  * shmem_file_setup - get an unlinked file living in tmpfs
5859  * @name: name for dentry (to be seen in /proc/<pid>/maps
5860  * @size: size to be set for the file
5861  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5862  */
5863 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5864 {
5865 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5866 }
5867 EXPORT_SYMBOL_GPL(shmem_file_setup);
5868 
5869 /**
5870  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5871  * @mnt: the tmpfs mount where the file will be created
5872  * @name: name for dentry (to be seen in /proc/<pid>/maps
5873  * @size: size to be set for the file
5874  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5875  */
5876 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5877 				       loff_t size, unsigned long flags)
5878 {
5879 	return __shmem_file_setup(mnt, name, size, flags, 0);
5880 }
5881 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5882 
5883 /**
5884  * shmem_zero_setup - setup a shared anonymous mapping
5885  * @vma: the vma to be mmapped is prepared by do_mmap
5886  */
5887 int shmem_zero_setup(struct vm_area_struct *vma)
5888 {
5889 	struct file *file;
5890 	loff_t size = vma->vm_end - vma->vm_start;
5891 
5892 	/*
5893 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5894 	 * between XFS directory reading and selinux: since this file is only
5895 	 * accessible to the user through its mapping, use S_PRIVATE flag to
5896 	 * bypass file security, in the same way as shmem_kernel_file_setup().
5897 	 */
5898 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5899 	if (IS_ERR(file))
5900 		return PTR_ERR(file);
5901 
5902 	if (vma->vm_file)
5903 		fput(vma->vm_file);
5904 	vma->vm_file = file;
5905 	vma->vm_ops = &shmem_anon_vm_ops;
5906 
5907 	return 0;
5908 }
5909 
5910 /**
5911  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5912  * @mapping:	the folio's address_space
5913  * @index:	the folio index
5914  * @gfp:	the page allocator flags to use if allocating
5915  *
5916  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5917  * with any new page allocations done using the specified allocation flags.
5918  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5919  * suit tmpfs, since it may have pages in swapcache, and needs to find those
5920  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5921  *
5922  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5923  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5924  */
5925 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5926 		pgoff_t index, gfp_t gfp)
5927 {
5928 #ifdef CONFIG_SHMEM
5929 	struct inode *inode = mapping->host;
5930 	struct folio *folio;
5931 	int error;
5932 
5933 	error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE,
5934 				    gfp, NULL, NULL);
5935 	if (error)
5936 		return ERR_PTR(error);
5937 
5938 	folio_unlock(folio);
5939 	return folio;
5940 #else
5941 	/*
5942 	 * The tiny !SHMEM case uses ramfs without swap
5943 	 */
5944 	return mapping_read_folio_gfp(mapping, index, gfp);
5945 #endif
5946 }
5947 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5948 
5949 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5950 					 pgoff_t index, gfp_t gfp)
5951 {
5952 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5953 	struct page *page;
5954 
5955 	if (IS_ERR(folio))
5956 		return &folio->page;
5957 
5958 	page = folio_file_page(folio, index);
5959 	if (PageHWPoison(page)) {
5960 		folio_put(folio);
5961 		return ERR_PTR(-EIO);
5962 	}
5963 
5964 	return page;
5965 }
5966 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5967