1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include "swap.h" 44 45 static struct vfsmount *shm_mnt __ro_after_init; 46 47 #ifdef CONFIG_SHMEM 48 /* 49 * This virtual memory filesystem is heavily based on the ramfs. It 50 * extends ramfs by the ability to use swap and honor resource limits 51 * which makes it a completely usable filesystem. 52 */ 53 54 #include <linux/xattr.h> 55 #include <linux/exportfs.h> 56 #include <linux/posix_acl.h> 57 #include <linux/posix_acl_xattr.h> 58 #include <linux/mman.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/backing-dev.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 #include <linux/quotaops.h> 82 #include <linux/rcupdate_wait.h> 83 84 #include <linux/uaccess.h> 85 86 #include "internal.h" 87 88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Pretend that one inode + its dentry occupy this much memory */ 95 #define BOGO_INODE_SIZE 1024 96 97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 98 #define SHORT_SYMLINK_LEN 128 99 100 /* 101 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 102 * inode->i_private (with i_rwsem making sure that it has only one user at 103 * a time): we would prefer not to enlarge the shmem inode just for that. 104 */ 105 struct shmem_falloc { 106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 107 pgoff_t start; /* start of range currently being fallocated */ 108 pgoff_t next; /* the next page offset to be fallocated */ 109 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 110 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 111 }; 112 113 struct shmem_options { 114 unsigned long long blocks; 115 unsigned long long inodes; 116 struct mempolicy *mpol; 117 kuid_t uid; 118 kgid_t gid; 119 umode_t mode; 120 bool full_inums; 121 int huge; 122 int seen; 123 bool noswap; 124 unsigned short quota_types; 125 struct shmem_quota_limits qlimits; 126 #define SHMEM_SEEN_BLOCKS 1 127 #define SHMEM_SEEN_INODES 2 128 #define SHMEM_SEEN_HUGE 4 129 #define SHMEM_SEEN_INUMS 8 130 #define SHMEM_SEEN_NOSWAP 16 131 #define SHMEM_SEEN_QUOTA 32 132 }; 133 134 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 135 static unsigned long huge_shmem_orders_always __read_mostly; 136 static unsigned long huge_shmem_orders_madvise __read_mostly; 137 static unsigned long huge_shmem_orders_inherit __read_mostly; 138 static unsigned long huge_shmem_orders_within_size __read_mostly; 139 #endif 140 141 #ifdef CONFIG_TMPFS 142 static unsigned long shmem_default_max_blocks(void) 143 { 144 return totalram_pages() / 2; 145 } 146 147 static unsigned long shmem_default_max_inodes(void) 148 { 149 unsigned long nr_pages = totalram_pages(); 150 151 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 152 ULONG_MAX / BOGO_INODE_SIZE); 153 } 154 #endif 155 156 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 157 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 158 struct vm_area_struct *vma, vm_fault_t *fault_type); 159 160 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 161 { 162 return sb->s_fs_info; 163 } 164 165 /* 166 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 167 * for shared memory and for shared anonymous (/dev/zero) mappings 168 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 169 * consistent with the pre-accounting of private mappings ... 170 */ 171 static inline int shmem_acct_size(unsigned long flags, loff_t size) 172 { 173 return (flags & VM_NORESERVE) ? 174 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 175 } 176 177 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 178 { 179 if (!(flags & VM_NORESERVE)) 180 vm_unacct_memory(VM_ACCT(size)); 181 } 182 183 static inline int shmem_reacct_size(unsigned long flags, 184 loff_t oldsize, loff_t newsize) 185 { 186 if (!(flags & VM_NORESERVE)) { 187 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 188 return security_vm_enough_memory_mm(current->mm, 189 VM_ACCT(newsize) - VM_ACCT(oldsize)); 190 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 191 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 192 } 193 return 0; 194 } 195 196 /* 197 * ... whereas tmpfs objects are accounted incrementally as 198 * pages are allocated, in order to allow large sparse files. 199 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 200 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 201 */ 202 static inline int shmem_acct_blocks(unsigned long flags, long pages) 203 { 204 if (!(flags & VM_NORESERVE)) 205 return 0; 206 207 return security_vm_enough_memory_mm(current->mm, 208 pages * VM_ACCT(PAGE_SIZE)); 209 } 210 211 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 212 { 213 if (flags & VM_NORESERVE) 214 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 215 } 216 217 static int shmem_inode_acct_blocks(struct inode *inode, long pages) 218 { 219 struct shmem_inode_info *info = SHMEM_I(inode); 220 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 221 int err = -ENOSPC; 222 223 if (shmem_acct_blocks(info->flags, pages)) 224 return err; 225 226 might_sleep(); /* when quotas */ 227 if (sbinfo->max_blocks) { 228 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 229 sbinfo->max_blocks, pages)) 230 goto unacct; 231 232 err = dquot_alloc_block_nodirty(inode, pages); 233 if (err) { 234 percpu_counter_sub(&sbinfo->used_blocks, pages); 235 goto unacct; 236 } 237 } else { 238 err = dquot_alloc_block_nodirty(inode, pages); 239 if (err) 240 goto unacct; 241 } 242 243 return 0; 244 245 unacct: 246 shmem_unacct_blocks(info->flags, pages); 247 return err; 248 } 249 250 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 251 { 252 struct shmem_inode_info *info = SHMEM_I(inode); 253 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 254 255 might_sleep(); /* when quotas */ 256 dquot_free_block_nodirty(inode, pages); 257 258 if (sbinfo->max_blocks) 259 percpu_counter_sub(&sbinfo->used_blocks, pages); 260 shmem_unacct_blocks(info->flags, pages); 261 } 262 263 static const struct super_operations shmem_ops; 264 static const struct address_space_operations shmem_aops; 265 static const struct file_operations shmem_file_operations; 266 static const struct inode_operations shmem_inode_operations; 267 static const struct inode_operations shmem_dir_inode_operations; 268 static const struct inode_operations shmem_special_inode_operations; 269 static const struct vm_operations_struct shmem_vm_ops; 270 static const struct vm_operations_struct shmem_anon_vm_ops; 271 static struct file_system_type shmem_fs_type; 272 273 bool shmem_mapping(struct address_space *mapping) 274 { 275 return mapping->a_ops == &shmem_aops; 276 } 277 EXPORT_SYMBOL_GPL(shmem_mapping); 278 279 bool vma_is_anon_shmem(struct vm_area_struct *vma) 280 { 281 return vma->vm_ops == &shmem_anon_vm_ops; 282 } 283 284 bool vma_is_shmem(struct vm_area_struct *vma) 285 { 286 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 287 } 288 289 static LIST_HEAD(shmem_swaplist); 290 static DEFINE_MUTEX(shmem_swaplist_mutex); 291 292 #ifdef CONFIG_TMPFS_QUOTA 293 294 static int shmem_enable_quotas(struct super_block *sb, 295 unsigned short quota_types) 296 { 297 int type, err = 0; 298 299 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 300 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 301 if (!(quota_types & (1 << type))) 302 continue; 303 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 304 DQUOT_USAGE_ENABLED | 305 DQUOT_LIMITS_ENABLED); 306 if (err) 307 goto out_err; 308 } 309 return 0; 310 311 out_err: 312 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 313 type, err); 314 for (type--; type >= 0; type--) 315 dquot_quota_off(sb, type); 316 return err; 317 } 318 319 static void shmem_disable_quotas(struct super_block *sb) 320 { 321 int type; 322 323 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 324 dquot_quota_off(sb, type); 325 } 326 327 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 328 { 329 return SHMEM_I(inode)->i_dquot; 330 } 331 #endif /* CONFIG_TMPFS_QUOTA */ 332 333 /* 334 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 335 * produces a novel ino for the newly allocated inode. 336 * 337 * It may also be called when making a hard link to permit the space needed by 338 * each dentry. However, in that case, no new inode number is needed since that 339 * internally draws from another pool of inode numbers (currently global 340 * get_next_ino()). This case is indicated by passing NULL as inop. 341 */ 342 #define SHMEM_INO_BATCH 1024 343 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 344 { 345 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 346 ino_t ino; 347 348 if (!(sb->s_flags & SB_KERNMOUNT)) { 349 raw_spin_lock(&sbinfo->stat_lock); 350 if (sbinfo->max_inodes) { 351 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 352 raw_spin_unlock(&sbinfo->stat_lock); 353 return -ENOSPC; 354 } 355 sbinfo->free_ispace -= BOGO_INODE_SIZE; 356 } 357 if (inop) { 358 ino = sbinfo->next_ino++; 359 if (unlikely(is_zero_ino(ino))) 360 ino = sbinfo->next_ino++; 361 if (unlikely(!sbinfo->full_inums && 362 ino > UINT_MAX)) { 363 /* 364 * Emulate get_next_ino uint wraparound for 365 * compatibility 366 */ 367 if (IS_ENABLED(CONFIG_64BIT)) 368 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 369 __func__, MINOR(sb->s_dev)); 370 sbinfo->next_ino = 1; 371 ino = sbinfo->next_ino++; 372 } 373 *inop = ino; 374 } 375 raw_spin_unlock(&sbinfo->stat_lock); 376 } else if (inop) { 377 /* 378 * __shmem_file_setup, one of our callers, is lock-free: it 379 * doesn't hold stat_lock in shmem_reserve_inode since 380 * max_inodes is always 0, and is called from potentially 381 * unknown contexts. As such, use a per-cpu batched allocator 382 * which doesn't require the per-sb stat_lock unless we are at 383 * the batch boundary. 384 * 385 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 386 * shmem mounts are not exposed to userspace, so we don't need 387 * to worry about things like glibc compatibility. 388 */ 389 ino_t *next_ino; 390 391 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 392 ino = *next_ino; 393 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 394 raw_spin_lock(&sbinfo->stat_lock); 395 ino = sbinfo->next_ino; 396 sbinfo->next_ino += SHMEM_INO_BATCH; 397 raw_spin_unlock(&sbinfo->stat_lock); 398 if (unlikely(is_zero_ino(ino))) 399 ino++; 400 } 401 *inop = ino; 402 *next_ino = ++ino; 403 put_cpu(); 404 } 405 406 return 0; 407 } 408 409 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 410 { 411 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 412 if (sbinfo->max_inodes) { 413 raw_spin_lock(&sbinfo->stat_lock); 414 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 415 raw_spin_unlock(&sbinfo->stat_lock); 416 } 417 } 418 419 /** 420 * shmem_recalc_inode - recalculate the block usage of an inode 421 * @inode: inode to recalc 422 * @alloced: the change in number of pages allocated to inode 423 * @swapped: the change in number of pages swapped from inode 424 * 425 * We have to calculate the free blocks since the mm can drop 426 * undirtied hole pages behind our back. 427 * 428 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 429 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 430 */ 431 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 432 { 433 struct shmem_inode_info *info = SHMEM_I(inode); 434 long freed; 435 436 spin_lock(&info->lock); 437 info->alloced += alloced; 438 info->swapped += swapped; 439 freed = info->alloced - info->swapped - 440 READ_ONCE(inode->i_mapping->nrpages); 441 /* 442 * Special case: whereas normally shmem_recalc_inode() is called 443 * after i_mapping->nrpages has already been adjusted (up or down), 444 * shmem_writepage() has to raise swapped before nrpages is lowered - 445 * to stop a racing shmem_recalc_inode() from thinking that a page has 446 * been freed. Compensate here, to avoid the need for a followup call. 447 */ 448 if (swapped > 0) 449 freed += swapped; 450 if (freed > 0) 451 info->alloced -= freed; 452 spin_unlock(&info->lock); 453 454 /* The quota case may block */ 455 if (freed > 0) 456 shmem_inode_unacct_blocks(inode, freed); 457 } 458 459 bool shmem_charge(struct inode *inode, long pages) 460 { 461 struct address_space *mapping = inode->i_mapping; 462 463 if (shmem_inode_acct_blocks(inode, pages)) 464 return false; 465 466 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 467 xa_lock_irq(&mapping->i_pages); 468 mapping->nrpages += pages; 469 xa_unlock_irq(&mapping->i_pages); 470 471 shmem_recalc_inode(inode, pages, 0); 472 return true; 473 } 474 475 void shmem_uncharge(struct inode *inode, long pages) 476 { 477 /* pages argument is currently unused: keep it to help debugging */ 478 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 479 480 shmem_recalc_inode(inode, 0, 0); 481 } 482 483 /* 484 * Replace item expected in xarray by a new item, while holding xa_lock. 485 */ 486 static int shmem_replace_entry(struct address_space *mapping, 487 pgoff_t index, void *expected, void *replacement) 488 { 489 XA_STATE(xas, &mapping->i_pages, index); 490 void *item; 491 492 VM_BUG_ON(!expected); 493 VM_BUG_ON(!replacement); 494 item = xas_load(&xas); 495 if (item != expected) 496 return -ENOENT; 497 xas_store(&xas, replacement); 498 return 0; 499 } 500 501 /* 502 * Sometimes, before we decide whether to proceed or to fail, we must check 503 * that an entry was not already brought back from swap by a racing thread. 504 * 505 * Checking folio is not enough: by the time a swapcache folio is locked, it 506 * might be reused, and again be swapcache, using the same swap as before. 507 */ 508 static bool shmem_confirm_swap(struct address_space *mapping, 509 pgoff_t index, swp_entry_t swap) 510 { 511 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 512 } 513 514 /* 515 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 516 * 517 * SHMEM_HUGE_NEVER: 518 * disables huge pages for the mount; 519 * SHMEM_HUGE_ALWAYS: 520 * enables huge pages for the mount; 521 * SHMEM_HUGE_WITHIN_SIZE: 522 * only allocate huge pages if the page will be fully within i_size, 523 * also respect fadvise()/madvise() hints; 524 * SHMEM_HUGE_ADVISE: 525 * only allocate huge pages if requested with fadvise()/madvise(); 526 */ 527 528 #define SHMEM_HUGE_NEVER 0 529 #define SHMEM_HUGE_ALWAYS 1 530 #define SHMEM_HUGE_WITHIN_SIZE 2 531 #define SHMEM_HUGE_ADVISE 3 532 533 /* 534 * Special values. 535 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 536 * 537 * SHMEM_HUGE_DENY: 538 * disables huge on shm_mnt and all mounts, for emergency use; 539 * SHMEM_HUGE_FORCE: 540 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 541 * 542 */ 543 #define SHMEM_HUGE_DENY (-1) 544 #define SHMEM_HUGE_FORCE (-2) 545 546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 547 /* ifdef here to avoid bloating shmem.o when not necessary */ 548 549 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 550 551 static bool __shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 552 loff_t write_end, bool shmem_huge_force, 553 struct vm_area_struct *vma, 554 unsigned long vm_flags) 555 { 556 struct mm_struct *mm = vma ? vma->vm_mm : NULL; 557 loff_t i_size; 558 559 if (!S_ISREG(inode->i_mode)) 560 return false; 561 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags))) 562 return false; 563 if (shmem_huge == SHMEM_HUGE_DENY) 564 return false; 565 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 566 return true; 567 568 switch (SHMEM_SB(inode->i_sb)->huge) { 569 case SHMEM_HUGE_ALWAYS: 570 return true; 571 case SHMEM_HUGE_WITHIN_SIZE: 572 index = round_up(index + 1, HPAGE_PMD_NR); 573 i_size = max(write_end, i_size_read(inode)); 574 i_size = round_up(i_size, PAGE_SIZE); 575 if (i_size >> PAGE_SHIFT >= index) 576 return true; 577 fallthrough; 578 case SHMEM_HUGE_ADVISE: 579 if (mm && (vm_flags & VM_HUGEPAGE)) 580 return true; 581 fallthrough; 582 default: 583 return false; 584 } 585 } 586 587 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 588 loff_t write_end, bool shmem_huge_force, 589 struct vm_area_struct *vma, unsigned long vm_flags) 590 { 591 if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER) 592 return false; 593 594 return __shmem_huge_global_enabled(inode, index, write_end, 595 shmem_huge_force, vma, vm_flags); 596 } 597 598 #if defined(CONFIG_SYSFS) 599 static int shmem_parse_huge(const char *str) 600 { 601 if (!strcmp(str, "never")) 602 return SHMEM_HUGE_NEVER; 603 if (!strcmp(str, "always")) 604 return SHMEM_HUGE_ALWAYS; 605 if (!strcmp(str, "within_size")) 606 return SHMEM_HUGE_WITHIN_SIZE; 607 if (!strcmp(str, "advise")) 608 return SHMEM_HUGE_ADVISE; 609 if (!strcmp(str, "deny")) 610 return SHMEM_HUGE_DENY; 611 if (!strcmp(str, "force")) 612 return SHMEM_HUGE_FORCE; 613 return -EINVAL; 614 } 615 #endif 616 617 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 618 static const char *shmem_format_huge(int huge) 619 { 620 switch (huge) { 621 case SHMEM_HUGE_NEVER: 622 return "never"; 623 case SHMEM_HUGE_ALWAYS: 624 return "always"; 625 case SHMEM_HUGE_WITHIN_SIZE: 626 return "within_size"; 627 case SHMEM_HUGE_ADVISE: 628 return "advise"; 629 case SHMEM_HUGE_DENY: 630 return "deny"; 631 case SHMEM_HUGE_FORCE: 632 return "force"; 633 default: 634 VM_BUG_ON(1); 635 return "bad_val"; 636 } 637 } 638 #endif 639 640 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 641 struct shrink_control *sc, unsigned long nr_to_free) 642 { 643 LIST_HEAD(list), *pos, *next; 644 struct inode *inode; 645 struct shmem_inode_info *info; 646 struct folio *folio; 647 unsigned long batch = sc ? sc->nr_to_scan : 128; 648 unsigned long split = 0, freed = 0; 649 650 if (list_empty(&sbinfo->shrinklist)) 651 return SHRINK_STOP; 652 653 spin_lock(&sbinfo->shrinklist_lock); 654 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 655 info = list_entry(pos, struct shmem_inode_info, shrinklist); 656 657 /* pin the inode */ 658 inode = igrab(&info->vfs_inode); 659 660 /* inode is about to be evicted */ 661 if (!inode) { 662 list_del_init(&info->shrinklist); 663 goto next; 664 } 665 666 list_move(&info->shrinklist, &list); 667 next: 668 sbinfo->shrinklist_len--; 669 if (!--batch) 670 break; 671 } 672 spin_unlock(&sbinfo->shrinklist_lock); 673 674 list_for_each_safe(pos, next, &list) { 675 pgoff_t next, end; 676 loff_t i_size; 677 int ret; 678 679 info = list_entry(pos, struct shmem_inode_info, shrinklist); 680 inode = &info->vfs_inode; 681 682 if (nr_to_free && freed >= nr_to_free) 683 goto move_back; 684 685 i_size = i_size_read(inode); 686 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE); 687 if (!folio || xa_is_value(folio)) 688 goto drop; 689 690 /* No large folio at the end of the file: nothing to split */ 691 if (!folio_test_large(folio)) { 692 folio_put(folio); 693 goto drop; 694 } 695 696 /* Check if there is anything to gain from splitting */ 697 next = folio_next_index(folio); 698 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE)); 699 if (end <= folio->index || end >= next) { 700 folio_put(folio); 701 goto drop; 702 } 703 704 /* 705 * Move the inode on the list back to shrinklist if we failed 706 * to lock the page at this time. 707 * 708 * Waiting for the lock may lead to deadlock in the 709 * reclaim path. 710 */ 711 if (!folio_trylock(folio)) { 712 folio_put(folio); 713 goto move_back; 714 } 715 716 ret = split_folio(folio); 717 folio_unlock(folio); 718 folio_put(folio); 719 720 /* If split failed move the inode on the list back to shrinklist */ 721 if (ret) 722 goto move_back; 723 724 freed += next - end; 725 split++; 726 drop: 727 list_del_init(&info->shrinklist); 728 goto put; 729 move_back: 730 /* 731 * Make sure the inode is either on the global list or deleted 732 * from any local list before iput() since it could be deleted 733 * in another thread once we put the inode (then the local list 734 * is corrupted). 735 */ 736 spin_lock(&sbinfo->shrinklist_lock); 737 list_move(&info->shrinklist, &sbinfo->shrinklist); 738 sbinfo->shrinklist_len++; 739 spin_unlock(&sbinfo->shrinklist_lock); 740 put: 741 iput(inode); 742 } 743 744 return split; 745 } 746 747 static long shmem_unused_huge_scan(struct super_block *sb, 748 struct shrink_control *sc) 749 { 750 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 751 752 if (!READ_ONCE(sbinfo->shrinklist_len)) 753 return SHRINK_STOP; 754 755 return shmem_unused_huge_shrink(sbinfo, sc, 0); 756 } 757 758 static long shmem_unused_huge_count(struct super_block *sb, 759 struct shrink_control *sc) 760 { 761 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 762 return READ_ONCE(sbinfo->shrinklist_len); 763 } 764 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 765 766 #define shmem_huge SHMEM_HUGE_DENY 767 768 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 769 struct shrink_control *sc, unsigned long nr_to_free) 770 { 771 return 0; 772 } 773 774 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 775 loff_t write_end, bool shmem_huge_force, 776 struct vm_area_struct *vma, unsigned long vm_flags) 777 { 778 return false; 779 } 780 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 781 782 /* 783 * Somewhat like filemap_add_folio, but error if expected item has gone. 784 */ 785 static int shmem_add_to_page_cache(struct folio *folio, 786 struct address_space *mapping, 787 pgoff_t index, void *expected, gfp_t gfp) 788 { 789 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 790 long nr = folio_nr_pages(folio); 791 792 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 793 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 794 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 795 796 folio_ref_add(folio, nr); 797 folio->mapping = mapping; 798 folio->index = index; 799 800 gfp &= GFP_RECLAIM_MASK; 801 folio_throttle_swaprate(folio, gfp); 802 803 do { 804 xas_lock_irq(&xas); 805 if (expected != xas_find_conflict(&xas)) { 806 xas_set_err(&xas, -EEXIST); 807 goto unlock; 808 } 809 if (expected && xas_find_conflict(&xas)) { 810 xas_set_err(&xas, -EEXIST); 811 goto unlock; 812 } 813 xas_store(&xas, folio); 814 if (xas_error(&xas)) 815 goto unlock; 816 if (folio_test_pmd_mappable(folio)) 817 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 818 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 819 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 820 mapping->nrpages += nr; 821 unlock: 822 xas_unlock_irq(&xas); 823 } while (xas_nomem(&xas, gfp)); 824 825 if (xas_error(&xas)) { 826 folio->mapping = NULL; 827 folio_ref_sub(folio, nr); 828 return xas_error(&xas); 829 } 830 831 return 0; 832 } 833 834 /* 835 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 836 */ 837 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 838 { 839 struct address_space *mapping = folio->mapping; 840 long nr = folio_nr_pages(folio); 841 int error; 842 843 xa_lock_irq(&mapping->i_pages); 844 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 845 folio->mapping = NULL; 846 mapping->nrpages -= nr; 847 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 848 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 849 xa_unlock_irq(&mapping->i_pages); 850 folio_put_refs(folio, nr); 851 BUG_ON(error); 852 } 853 854 /* 855 * Remove swap entry from page cache, free the swap and its page cache. Returns 856 * the number of pages being freed. 0 means entry not found in XArray (0 pages 857 * being freed). 858 */ 859 static long shmem_free_swap(struct address_space *mapping, 860 pgoff_t index, void *radswap) 861 { 862 int order = xa_get_order(&mapping->i_pages, index); 863 void *old; 864 865 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 866 if (old != radswap) 867 return 0; 868 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order); 869 870 return 1 << order; 871 } 872 873 /* 874 * Determine (in bytes) how many of the shmem object's pages mapped by the 875 * given offsets are swapped out. 876 * 877 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 878 * as long as the inode doesn't go away and racy results are not a problem. 879 */ 880 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 881 pgoff_t start, pgoff_t end) 882 { 883 XA_STATE(xas, &mapping->i_pages, start); 884 struct page *page; 885 unsigned long swapped = 0; 886 unsigned long max = end - 1; 887 888 rcu_read_lock(); 889 xas_for_each(&xas, page, max) { 890 if (xas_retry(&xas, page)) 891 continue; 892 if (xa_is_value(page)) 893 swapped += 1 << xas_get_order(&xas); 894 if (xas.xa_index == max) 895 break; 896 if (need_resched()) { 897 xas_pause(&xas); 898 cond_resched_rcu(); 899 } 900 } 901 rcu_read_unlock(); 902 903 return swapped << PAGE_SHIFT; 904 } 905 906 /* 907 * Determine (in bytes) how many of the shmem object's pages mapped by the 908 * given vma is swapped out. 909 * 910 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 911 * as long as the inode doesn't go away and racy results are not a problem. 912 */ 913 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 914 { 915 struct inode *inode = file_inode(vma->vm_file); 916 struct shmem_inode_info *info = SHMEM_I(inode); 917 struct address_space *mapping = inode->i_mapping; 918 unsigned long swapped; 919 920 /* Be careful as we don't hold info->lock */ 921 swapped = READ_ONCE(info->swapped); 922 923 /* 924 * The easier cases are when the shmem object has nothing in swap, or 925 * the vma maps it whole. Then we can simply use the stats that we 926 * already track. 927 */ 928 if (!swapped) 929 return 0; 930 931 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 932 return swapped << PAGE_SHIFT; 933 934 /* Here comes the more involved part */ 935 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 936 vma->vm_pgoff + vma_pages(vma)); 937 } 938 939 /* 940 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 941 */ 942 void shmem_unlock_mapping(struct address_space *mapping) 943 { 944 struct folio_batch fbatch; 945 pgoff_t index = 0; 946 947 folio_batch_init(&fbatch); 948 /* 949 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 950 */ 951 while (!mapping_unevictable(mapping) && 952 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 953 check_move_unevictable_folios(&fbatch); 954 folio_batch_release(&fbatch); 955 cond_resched(); 956 } 957 } 958 959 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 960 { 961 struct folio *folio; 962 963 /* 964 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 965 * beyond i_size, and reports fallocated folios as holes. 966 */ 967 folio = filemap_get_entry(inode->i_mapping, index); 968 if (!folio) 969 return folio; 970 if (!xa_is_value(folio)) { 971 folio_lock(folio); 972 if (folio->mapping == inode->i_mapping) 973 return folio; 974 /* The folio has been swapped out */ 975 folio_unlock(folio); 976 folio_put(folio); 977 } 978 /* 979 * But read a folio back from swap if any of it is within i_size 980 * (although in some cases this is just a waste of time). 981 */ 982 folio = NULL; 983 shmem_get_folio(inode, index, 0, &folio, SGP_READ); 984 return folio; 985 } 986 987 /* 988 * Remove range of pages and swap entries from page cache, and free them. 989 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 990 */ 991 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 992 bool unfalloc) 993 { 994 struct address_space *mapping = inode->i_mapping; 995 struct shmem_inode_info *info = SHMEM_I(inode); 996 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 997 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 998 struct folio_batch fbatch; 999 pgoff_t indices[PAGEVEC_SIZE]; 1000 struct folio *folio; 1001 bool same_folio; 1002 long nr_swaps_freed = 0; 1003 pgoff_t index; 1004 int i; 1005 1006 if (lend == -1) 1007 end = -1; /* unsigned, so actually very big */ 1008 1009 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1010 info->fallocend = start; 1011 1012 folio_batch_init(&fbatch); 1013 index = start; 1014 while (index < end && find_lock_entries(mapping, &index, end - 1, 1015 &fbatch, indices)) { 1016 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1017 folio = fbatch.folios[i]; 1018 1019 if (xa_is_value(folio)) { 1020 if (unfalloc) 1021 continue; 1022 nr_swaps_freed += shmem_free_swap(mapping, 1023 indices[i], folio); 1024 continue; 1025 } 1026 1027 if (!unfalloc || !folio_test_uptodate(folio)) 1028 truncate_inode_folio(mapping, folio); 1029 folio_unlock(folio); 1030 } 1031 folio_batch_remove_exceptionals(&fbatch); 1032 folio_batch_release(&fbatch); 1033 cond_resched(); 1034 } 1035 1036 /* 1037 * When undoing a failed fallocate, we want none of the partial folio 1038 * zeroing and splitting below, but shall want to truncate the whole 1039 * folio when !uptodate indicates that it was added by this fallocate, 1040 * even when [lstart, lend] covers only a part of the folio. 1041 */ 1042 if (unfalloc) 1043 goto whole_folios; 1044 1045 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1046 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1047 if (folio) { 1048 same_folio = lend < folio_pos(folio) + folio_size(folio); 1049 folio_mark_dirty(folio); 1050 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1051 start = folio_next_index(folio); 1052 if (same_folio) 1053 end = folio->index; 1054 } 1055 folio_unlock(folio); 1056 folio_put(folio); 1057 folio = NULL; 1058 } 1059 1060 if (!same_folio) 1061 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1062 if (folio) { 1063 folio_mark_dirty(folio); 1064 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1065 end = folio->index; 1066 folio_unlock(folio); 1067 folio_put(folio); 1068 } 1069 1070 whole_folios: 1071 1072 index = start; 1073 while (index < end) { 1074 cond_resched(); 1075 1076 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1077 indices)) { 1078 /* If all gone or hole-punch or unfalloc, we're done */ 1079 if (index == start || end != -1) 1080 break; 1081 /* But if truncating, restart to make sure all gone */ 1082 index = start; 1083 continue; 1084 } 1085 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1086 folio = fbatch.folios[i]; 1087 1088 if (xa_is_value(folio)) { 1089 long swaps_freed; 1090 1091 if (unfalloc) 1092 continue; 1093 swaps_freed = shmem_free_swap(mapping, indices[i], folio); 1094 if (!swaps_freed) { 1095 /* Swap was replaced by page: retry */ 1096 index = indices[i]; 1097 break; 1098 } 1099 nr_swaps_freed += swaps_freed; 1100 continue; 1101 } 1102 1103 folio_lock(folio); 1104 1105 if (!unfalloc || !folio_test_uptodate(folio)) { 1106 if (folio_mapping(folio) != mapping) { 1107 /* Page was replaced by swap: retry */ 1108 folio_unlock(folio); 1109 index = indices[i]; 1110 break; 1111 } 1112 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1113 folio); 1114 1115 if (!folio_test_large(folio)) { 1116 truncate_inode_folio(mapping, folio); 1117 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1118 /* 1119 * If we split a page, reset the loop so 1120 * that we pick up the new sub pages. 1121 * Otherwise the THP was entirely 1122 * dropped or the target range was 1123 * zeroed, so just continue the loop as 1124 * is. 1125 */ 1126 if (!folio_test_large(folio)) { 1127 folio_unlock(folio); 1128 index = start; 1129 break; 1130 } 1131 } 1132 } 1133 folio_unlock(folio); 1134 } 1135 folio_batch_remove_exceptionals(&fbatch); 1136 folio_batch_release(&fbatch); 1137 } 1138 1139 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1140 } 1141 1142 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1143 { 1144 shmem_undo_range(inode, lstart, lend, false); 1145 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1146 inode_inc_iversion(inode); 1147 } 1148 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1149 1150 static int shmem_getattr(struct mnt_idmap *idmap, 1151 const struct path *path, struct kstat *stat, 1152 u32 request_mask, unsigned int query_flags) 1153 { 1154 struct inode *inode = path->dentry->d_inode; 1155 struct shmem_inode_info *info = SHMEM_I(inode); 1156 1157 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1158 shmem_recalc_inode(inode, 0, 0); 1159 1160 if (info->fsflags & FS_APPEND_FL) 1161 stat->attributes |= STATX_ATTR_APPEND; 1162 if (info->fsflags & FS_IMMUTABLE_FL) 1163 stat->attributes |= STATX_ATTR_IMMUTABLE; 1164 if (info->fsflags & FS_NODUMP_FL) 1165 stat->attributes |= STATX_ATTR_NODUMP; 1166 stat->attributes_mask |= (STATX_ATTR_APPEND | 1167 STATX_ATTR_IMMUTABLE | 1168 STATX_ATTR_NODUMP); 1169 generic_fillattr(idmap, request_mask, inode, stat); 1170 1171 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0)) 1172 stat->blksize = HPAGE_PMD_SIZE; 1173 1174 if (request_mask & STATX_BTIME) { 1175 stat->result_mask |= STATX_BTIME; 1176 stat->btime.tv_sec = info->i_crtime.tv_sec; 1177 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1178 } 1179 1180 return 0; 1181 } 1182 1183 static int shmem_setattr(struct mnt_idmap *idmap, 1184 struct dentry *dentry, struct iattr *attr) 1185 { 1186 struct inode *inode = d_inode(dentry); 1187 struct shmem_inode_info *info = SHMEM_I(inode); 1188 int error; 1189 bool update_mtime = false; 1190 bool update_ctime = true; 1191 1192 error = setattr_prepare(idmap, dentry, attr); 1193 if (error) 1194 return error; 1195 1196 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1197 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1198 return -EPERM; 1199 } 1200 } 1201 1202 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1203 loff_t oldsize = inode->i_size; 1204 loff_t newsize = attr->ia_size; 1205 1206 /* protected by i_rwsem */ 1207 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1208 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1209 return -EPERM; 1210 1211 if (newsize != oldsize) { 1212 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1213 oldsize, newsize); 1214 if (error) 1215 return error; 1216 i_size_write(inode, newsize); 1217 update_mtime = true; 1218 } else { 1219 update_ctime = false; 1220 } 1221 if (newsize <= oldsize) { 1222 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1223 if (oldsize > holebegin) 1224 unmap_mapping_range(inode->i_mapping, 1225 holebegin, 0, 1); 1226 if (info->alloced) 1227 shmem_truncate_range(inode, 1228 newsize, (loff_t)-1); 1229 /* unmap again to remove racily COWed private pages */ 1230 if (oldsize > holebegin) 1231 unmap_mapping_range(inode->i_mapping, 1232 holebegin, 0, 1); 1233 } 1234 } 1235 1236 if (is_quota_modification(idmap, inode, attr)) { 1237 error = dquot_initialize(inode); 1238 if (error) 1239 return error; 1240 } 1241 1242 /* Transfer quota accounting */ 1243 if (i_uid_needs_update(idmap, attr, inode) || 1244 i_gid_needs_update(idmap, attr, inode)) { 1245 error = dquot_transfer(idmap, inode, attr); 1246 if (error) 1247 return error; 1248 } 1249 1250 setattr_copy(idmap, inode, attr); 1251 if (attr->ia_valid & ATTR_MODE) 1252 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1253 if (!error && update_ctime) { 1254 inode_set_ctime_current(inode); 1255 if (update_mtime) 1256 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1257 inode_inc_iversion(inode); 1258 } 1259 return error; 1260 } 1261 1262 static void shmem_evict_inode(struct inode *inode) 1263 { 1264 struct shmem_inode_info *info = SHMEM_I(inode); 1265 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1266 size_t freed = 0; 1267 1268 if (shmem_mapping(inode->i_mapping)) { 1269 shmem_unacct_size(info->flags, inode->i_size); 1270 inode->i_size = 0; 1271 mapping_set_exiting(inode->i_mapping); 1272 shmem_truncate_range(inode, 0, (loff_t)-1); 1273 if (!list_empty(&info->shrinklist)) { 1274 spin_lock(&sbinfo->shrinklist_lock); 1275 if (!list_empty(&info->shrinklist)) { 1276 list_del_init(&info->shrinklist); 1277 sbinfo->shrinklist_len--; 1278 } 1279 spin_unlock(&sbinfo->shrinklist_lock); 1280 } 1281 while (!list_empty(&info->swaplist)) { 1282 /* Wait while shmem_unuse() is scanning this inode... */ 1283 wait_var_event(&info->stop_eviction, 1284 !atomic_read(&info->stop_eviction)); 1285 mutex_lock(&shmem_swaplist_mutex); 1286 /* ...but beware of the race if we peeked too early */ 1287 if (!atomic_read(&info->stop_eviction)) 1288 list_del_init(&info->swaplist); 1289 mutex_unlock(&shmem_swaplist_mutex); 1290 } 1291 } 1292 1293 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1294 shmem_free_inode(inode->i_sb, freed); 1295 WARN_ON(inode->i_blocks); 1296 clear_inode(inode); 1297 #ifdef CONFIG_TMPFS_QUOTA 1298 dquot_free_inode(inode); 1299 dquot_drop(inode); 1300 #endif 1301 } 1302 1303 static int shmem_find_swap_entries(struct address_space *mapping, 1304 pgoff_t start, struct folio_batch *fbatch, 1305 pgoff_t *indices, unsigned int type) 1306 { 1307 XA_STATE(xas, &mapping->i_pages, start); 1308 struct folio *folio; 1309 swp_entry_t entry; 1310 1311 rcu_read_lock(); 1312 xas_for_each(&xas, folio, ULONG_MAX) { 1313 if (xas_retry(&xas, folio)) 1314 continue; 1315 1316 if (!xa_is_value(folio)) 1317 continue; 1318 1319 entry = radix_to_swp_entry(folio); 1320 /* 1321 * swapin error entries can be found in the mapping. But they're 1322 * deliberately ignored here as we've done everything we can do. 1323 */ 1324 if (swp_type(entry) != type) 1325 continue; 1326 1327 indices[folio_batch_count(fbatch)] = xas.xa_index; 1328 if (!folio_batch_add(fbatch, folio)) 1329 break; 1330 1331 if (need_resched()) { 1332 xas_pause(&xas); 1333 cond_resched_rcu(); 1334 } 1335 } 1336 rcu_read_unlock(); 1337 1338 return xas.xa_index; 1339 } 1340 1341 /* 1342 * Move the swapped pages for an inode to page cache. Returns the count 1343 * of pages swapped in, or the error in case of failure. 1344 */ 1345 static int shmem_unuse_swap_entries(struct inode *inode, 1346 struct folio_batch *fbatch, pgoff_t *indices) 1347 { 1348 int i = 0; 1349 int ret = 0; 1350 int error = 0; 1351 struct address_space *mapping = inode->i_mapping; 1352 1353 for (i = 0; i < folio_batch_count(fbatch); i++) { 1354 struct folio *folio = fbatch->folios[i]; 1355 1356 if (!xa_is_value(folio)) 1357 continue; 1358 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1359 mapping_gfp_mask(mapping), NULL, NULL); 1360 if (error == 0) { 1361 folio_unlock(folio); 1362 folio_put(folio); 1363 ret++; 1364 } 1365 if (error == -ENOMEM) 1366 break; 1367 error = 0; 1368 } 1369 return error ? error : ret; 1370 } 1371 1372 /* 1373 * If swap found in inode, free it and move page from swapcache to filecache. 1374 */ 1375 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1376 { 1377 struct address_space *mapping = inode->i_mapping; 1378 pgoff_t start = 0; 1379 struct folio_batch fbatch; 1380 pgoff_t indices[PAGEVEC_SIZE]; 1381 int ret = 0; 1382 1383 do { 1384 folio_batch_init(&fbatch); 1385 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1386 if (folio_batch_count(&fbatch) == 0) { 1387 ret = 0; 1388 break; 1389 } 1390 1391 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1392 if (ret < 0) 1393 break; 1394 1395 start = indices[folio_batch_count(&fbatch) - 1]; 1396 } while (true); 1397 1398 return ret; 1399 } 1400 1401 /* 1402 * Read all the shared memory data that resides in the swap 1403 * device 'type' back into memory, so the swap device can be 1404 * unused. 1405 */ 1406 int shmem_unuse(unsigned int type) 1407 { 1408 struct shmem_inode_info *info, *next; 1409 int error = 0; 1410 1411 if (list_empty(&shmem_swaplist)) 1412 return 0; 1413 1414 mutex_lock(&shmem_swaplist_mutex); 1415 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1416 if (!info->swapped) { 1417 list_del_init(&info->swaplist); 1418 continue; 1419 } 1420 /* 1421 * Drop the swaplist mutex while searching the inode for swap; 1422 * but before doing so, make sure shmem_evict_inode() will not 1423 * remove placeholder inode from swaplist, nor let it be freed 1424 * (igrab() would protect from unlink, but not from unmount). 1425 */ 1426 atomic_inc(&info->stop_eviction); 1427 mutex_unlock(&shmem_swaplist_mutex); 1428 1429 error = shmem_unuse_inode(&info->vfs_inode, type); 1430 cond_resched(); 1431 1432 mutex_lock(&shmem_swaplist_mutex); 1433 next = list_next_entry(info, swaplist); 1434 if (!info->swapped) 1435 list_del_init(&info->swaplist); 1436 if (atomic_dec_and_test(&info->stop_eviction)) 1437 wake_up_var(&info->stop_eviction); 1438 if (error) 1439 break; 1440 } 1441 mutex_unlock(&shmem_swaplist_mutex); 1442 1443 return error; 1444 } 1445 1446 /* 1447 * Move the page from the page cache to the swap cache. 1448 */ 1449 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1450 { 1451 struct folio *folio = page_folio(page); 1452 struct address_space *mapping = folio->mapping; 1453 struct inode *inode = mapping->host; 1454 struct shmem_inode_info *info = SHMEM_I(inode); 1455 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1456 swp_entry_t swap; 1457 pgoff_t index; 1458 int nr_pages; 1459 bool split = false; 1460 1461 /* 1462 * Our capabilities prevent regular writeback or sync from ever calling 1463 * shmem_writepage; but a stacking filesystem might use ->writepage of 1464 * its underlying filesystem, in which case tmpfs should write out to 1465 * swap only in response to memory pressure, and not for the writeback 1466 * threads or sync. 1467 */ 1468 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1469 goto redirty; 1470 1471 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap)) 1472 goto redirty; 1473 1474 if (!total_swap_pages) 1475 goto redirty; 1476 1477 /* 1478 * If CONFIG_THP_SWAP is not enabled, the large folio should be 1479 * split when swapping. 1480 * 1481 * And shrinkage of pages beyond i_size does not split swap, so 1482 * swapout of a large folio crossing i_size needs to split too 1483 * (unless fallocate has been used to preallocate beyond EOF). 1484 */ 1485 if (folio_test_large(folio)) { 1486 index = shmem_fallocend(inode, 1487 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 1488 if ((index > folio->index && index < folio_next_index(folio)) || 1489 !IS_ENABLED(CONFIG_THP_SWAP)) 1490 split = true; 1491 } 1492 1493 if (split) { 1494 try_split: 1495 /* Ensure the subpages are still dirty */ 1496 folio_test_set_dirty(folio); 1497 if (split_huge_page_to_list_to_order(page, wbc->list, 0)) 1498 goto redirty; 1499 folio = page_folio(page); 1500 folio_clear_dirty(folio); 1501 } 1502 1503 index = folio->index; 1504 nr_pages = folio_nr_pages(folio); 1505 1506 /* 1507 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1508 * value into swapfile.c, the only way we can correctly account for a 1509 * fallocated folio arriving here is now to initialize it and write it. 1510 * 1511 * That's okay for a folio already fallocated earlier, but if we have 1512 * not yet completed the fallocation, then (a) we want to keep track 1513 * of this folio in case we have to undo it, and (b) it may not be a 1514 * good idea to continue anyway, once we're pushing into swap. So 1515 * reactivate the folio, and let shmem_fallocate() quit when too many. 1516 */ 1517 if (!folio_test_uptodate(folio)) { 1518 if (inode->i_private) { 1519 struct shmem_falloc *shmem_falloc; 1520 spin_lock(&inode->i_lock); 1521 shmem_falloc = inode->i_private; 1522 if (shmem_falloc && 1523 !shmem_falloc->waitq && 1524 index >= shmem_falloc->start && 1525 index < shmem_falloc->next) 1526 shmem_falloc->nr_unswapped++; 1527 else 1528 shmem_falloc = NULL; 1529 spin_unlock(&inode->i_lock); 1530 if (shmem_falloc) 1531 goto redirty; 1532 } 1533 folio_zero_range(folio, 0, folio_size(folio)); 1534 flush_dcache_folio(folio); 1535 folio_mark_uptodate(folio); 1536 } 1537 1538 swap = folio_alloc_swap(folio); 1539 if (!swap.val) { 1540 if (nr_pages > 1) 1541 goto try_split; 1542 1543 goto redirty; 1544 } 1545 1546 /* 1547 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1548 * if it's not already there. Do it now before the folio is 1549 * moved to swap cache, when its pagelock no longer protects 1550 * the inode from eviction. But don't unlock the mutex until 1551 * we've incremented swapped, because shmem_unuse_inode() will 1552 * prune a !swapped inode from the swaplist under this mutex. 1553 */ 1554 mutex_lock(&shmem_swaplist_mutex); 1555 if (list_empty(&info->swaplist)) 1556 list_add(&info->swaplist, &shmem_swaplist); 1557 1558 if (add_to_swap_cache(folio, swap, 1559 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1560 NULL) == 0) { 1561 shmem_recalc_inode(inode, 0, nr_pages); 1562 swap_shmem_alloc(swap, nr_pages); 1563 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1564 1565 mutex_unlock(&shmem_swaplist_mutex); 1566 BUG_ON(folio_mapped(folio)); 1567 return swap_writepage(&folio->page, wbc); 1568 } 1569 1570 mutex_unlock(&shmem_swaplist_mutex); 1571 put_swap_folio(folio, swap); 1572 redirty: 1573 folio_mark_dirty(folio); 1574 if (wbc->for_reclaim) 1575 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1576 folio_unlock(folio); 1577 return 0; 1578 } 1579 1580 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1581 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1582 { 1583 char buffer[64]; 1584 1585 if (!mpol || mpol->mode == MPOL_DEFAULT) 1586 return; /* show nothing */ 1587 1588 mpol_to_str(buffer, sizeof(buffer), mpol); 1589 1590 seq_printf(seq, ",mpol=%s", buffer); 1591 } 1592 1593 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1594 { 1595 struct mempolicy *mpol = NULL; 1596 if (sbinfo->mpol) { 1597 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1598 mpol = sbinfo->mpol; 1599 mpol_get(mpol); 1600 raw_spin_unlock(&sbinfo->stat_lock); 1601 } 1602 return mpol; 1603 } 1604 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1605 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1606 { 1607 } 1608 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1609 { 1610 return NULL; 1611 } 1612 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1613 1614 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1615 pgoff_t index, unsigned int order, pgoff_t *ilx); 1616 1617 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1618 struct shmem_inode_info *info, pgoff_t index) 1619 { 1620 struct mempolicy *mpol; 1621 pgoff_t ilx; 1622 struct folio *folio; 1623 1624 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1625 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1626 mpol_cond_put(mpol); 1627 1628 return folio; 1629 } 1630 1631 /* 1632 * Make sure huge_gfp is always more limited than limit_gfp. 1633 * Some of the flags set permissions, while others set limitations. 1634 */ 1635 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1636 { 1637 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1638 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1639 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1640 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1641 1642 /* Allow allocations only from the originally specified zones. */ 1643 result |= zoneflags; 1644 1645 /* 1646 * Minimize the result gfp by taking the union with the deny flags, 1647 * and the intersection of the allow flags. 1648 */ 1649 result |= (limit_gfp & denyflags); 1650 result |= (huge_gfp & limit_gfp) & allowflags; 1651 1652 return result; 1653 } 1654 1655 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1656 unsigned long shmem_allowable_huge_orders(struct inode *inode, 1657 struct vm_area_struct *vma, pgoff_t index, 1658 loff_t write_end, bool shmem_huge_force) 1659 { 1660 unsigned long mask = READ_ONCE(huge_shmem_orders_always); 1661 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size); 1662 unsigned long vm_flags = vma ? vma->vm_flags : 0; 1663 bool global_huge; 1664 loff_t i_size; 1665 int order; 1666 1667 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags))) 1668 return 0; 1669 1670 global_huge = shmem_huge_global_enabled(inode, index, write_end, 1671 shmem_huge_force, vma, vm_flags); 1672 if (!vma || !vma_is_anon_shmem(vma)) { 1673 /* 1674 * For tmpfs, we now only support PMD sized THP if huge page 1675 * is enabled, otherwise fallback to order 0. 1676 */ 1677 return global_huge ? BIT(HPAGE_PMD_ORDER) : 0; 1678 } 1679 1680 /* 1681 * Following the 'deny' semantics of the top level, force the huge 1682 * option off from all mounts. 1683 */ 1684 if (shmem_huge == SHMEM_HUGE_DENY) 1685 return 0; 1686 1687 /* 1688 * Only allow inherit orders if the top-level value is 'force', which 1689 * means non-PMD sized THP can not override 'huge' mount option now. 1690 */ 1691 if (shmem_huge == SHMEM_HUGE_FORCE) 1692 return READ_ONCE(huge_shmem_orders_inherit); 1693 1694 /* Allow mTHP that will be fully within i_size. */ 1695 order = highest_order(within_size_orders); 1696 while (within_size_orders) { 1697 index = round_up(index + 1, order); 1698 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1699 if (i_size >> PAGE_SHIFT >= index) { 1700 mask |= within_size_orders; 1701 break; 1702 } 1703 1704 order = next_order(&within_size_orders, order); 1705 } 1706 1707 if (vm_flags & VM_HUGEPAGE) 1708 mask |= READ_ONCE(huge_shmem_orders_madvise); 1709 1710 if (global_huge) 1711 mask |= READ_ONCE(huge_shmem_orders_inherit); 1712 1713 return THP_ORDERS_ALL_FILE_DEFAULT & mask; 1714 } 1715 1716 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1717 struct address_space *mapping, pgoff_t index, 1718 unsigned long orders) 1719 { 1720 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1721 pgoff_t aligned_index; 1722 unsigned long pages; 1723 int order; 1724 1725 if (vma) { 1726 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 1727 if (!orders) 1728 return 0; 1729 } 1730 1731 /* Find the highest order that can add into the page cache */ 1732 order = highest_order(orders); 1733 while (orders) { 1734 pages = 1UL << order; 1735 aligned_index = round_down(index, pages); 1736 /* 1737 * Check for conflict before waiting on a huge allocation. 1738 * Conflict might be that a huge page has just been allocated 1739 * and added to page cache by a racing thread, or that there 1740 * is already at least one small page in the huge extent. 1741 * Be careful to retry when appropriate, but not forever! 1742 * Elsewhere -EEXIST would be the right code, but not here. 1743 */ 1744 if (!xa_find(&mapping->i_pages, &aligned_index, 1745 aligned_index + pages - 1, XA_PRESENT)) 1746 break; 1747 order = next_order(&orders, order); 1748 } 1749 1750 return orders; 1751 } 1752 #else 1753 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1754 struct address_space *mapping, pgoff_t index, 1755 unsigned long orders) 1756 { 1757 return 0; 1758 } 1759 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1760 1761 static struct folio *shmem_alloc_folio(gfp_t gfp, int order, 1762 struct shmem_inode_info *info, pgoff_t index) 1763 { 1764 struct mempolicy *mpol; 1765 pgoff_t ilx; 1766 struct folio *folio; 1767 1768 mpol = shmem_get_pgoff_policy(info, index, order, &ilx); 1769 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id()); 1770 mpol_cond_put(mpol); 1771 1772 return folio; 1773 } 1774 1775 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf, 1776 gfp_t gfp, struct inode *inode, pgoff_t index, 1777 struct mm_struct *fault_mm, unsigned long orders) 1778 { 1779 struct address_space *mapping = inode->i_mapping; 1780 struct shmem_inode_info *info = SHMEM_I(inode); 1781 unsigned long suitable_orders = 0; 1782 struct folio *folio = NULL; 1783 long pages; 1784 int error, order; 1785 1786 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1787 orders = 0; 1788 1789 if (orders > 0) { 1790 suitable_orders = shmem_suitable_orders(inode, vmf, 1791 mapping, index, orders); 1792 1793 order = highest_order(suitable_orders); 1794 while (suitable_orders) { 1795 pages = 1UL << order; 1796 index = round_down(index, pages); 1797 folio = shmem_alloc_folio(gfp, order, info, index); 1798 if (folio) 1799 goto allocated; 1800 1801 if (pages == HPAGE_PMD_NR) 1802 count_vm_event(THP_FILE_FALLBACK); 1803 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK); 1804 order = next_order(&suitable_orders, order); 1805 } 1806 } else { 1807 pages = 1; 1808 folio = shmem_alloc_folio(gfp, 0, info, index); 1809 } 1810 if (!folio) 1811 return ERR_PTR(-ENOMEM); 1812 1813 allocated: 1814 __folio_set_locked(folio); 1815 __folio_set_swapbacked(folio); 1816 1817 gfp &= GFP_RECLAIM_MASK; 1818 error = mem_cgroup_charge(folio, fault_mm, gfp); 1819 if (error) { 1820 if (xa_find(&mapping->i_pages, &index, 1821 index + pages - 1, XA_PRESENT)) { 1822 error = -EEXIST; 1823 } else if (pages > 1) { 1824 if (pages == HPAGE_PMD_NR) { 1825 count_vm_event(THP_FILE_FALLBACK); 1826 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1827 } 1828 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK); 1829 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE); 1830 } 1831 goto unlock; 1832 } 1833 1834 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1835 if (error) 1836 goto unlock; 1837 1838 error = shmem_inode_acct_blocks(inode, pages); 1839 if (error) { 1840 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1841 long freed; 1842 /* 1843 * Try to reclaim some space by splitting a few 1844 * large folios beyond i_size on the filesystem. 1845 */ 1846 shmem_unused_huge_shrink(sbinfo, NULL, pages); 1847 /* 1848 * And do a shmem_recalc_inode() to account for freed pages: 1849 * except our folio is there in cache, so not quite balanced. 1850 */ 1851 spin_lock(&info->lock); 1852 freed = pages + info->alloced - info->swapped - 1853 READ_ONCE(mapping->nrpages); 1854 if (freed > 0) 1855 info->alloced -= freed; 1856 spin_unlock(&info->lock); 1857 if (freed > 0) 1858 shmem_inode_unacct_blocks(inode, freed); 1859 error = shmem_inode_acct_blocks(inode, pages); 1860 if (error) { 1861 filemap_remove_folio(folio); 1862 goto unlock; 1863 } 1864 } 1865 1866 shmem_recalc_inode(inode, pages, 0); 1867 folio_add_lru(folio); 1868 return folio; 1869 1870 unlock: 1871 folio_unlock(folio); 1872 folio_put(folio); 1873 return ERR_PTR(error); 1874 } 1875 1876 /* 1877 * When a page is moved from swapcache to shmem filecache (either by the 1878 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1879 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1880 * ignorance of the mapping it belongs to. If that mapping has special 1881 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1882 * we may need to copy to a suitable page before moving to filecache. 1883 * 1884 * In a future release, this may well be extended to respect cpuset and 1885 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1886 * but for now it is a simple matter of zone. 1887 */ 1888 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1889 { 1890 return folio_zonenum(folio) > gfp_zone(gfp); 1891 } 1892 1893 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1894 struct shmem_inode_info *info, pgoff_t index, 1895 struct vm_area_struct *vma) 1896 { 1897 struct folio *new, *old = *foliop; 1898 swp_entry_t entry = old->swap; 1899 struct address_space *swap_mapping = swap_address_space(entry); 1900 pgoff_t swap_index = swap_cache_index(entry); 1901 XA_STATE(xas, &swap_mapping->i_pages, swap_index); 1902 int nr_pages = folio_nr_pages(old); 1903 int error = 0, i; 1904 1905 /* 1906 * We have arrived here because our zones are constrained, so don't 1907 * limit chance of success by further cpuset and node constraints. 1908 */ 1909 gfp &= ~GFP_CONSTRAINT_MASK; 1910 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1911 if (nr_pages > 1) { 1912 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 1913 1914 gfp = limit_gfp_mask(huge_gfp, gfp); 1915 } 1916 #endif 1917 1918 new = shmem_alloc_folio(gfp, folio_order(old), info, index); 1919 if (!new) 1920 return -ENOMEM; 1921 1922 folio_ref_add(new, nr_pages); 1923 folio_copy(new, old); 1924 flush_dcache_folio(new); 1925 1926 __folio_set_locked(new); 1927 __folio_set_swapbacked(new); 1928 folio_mark_uptodate(new); 1929 new->swap = entry; 1930 folio_set_swapcache(new); 1931 1932 /* Swap cache still stores N entries instead of a high-order entry */ 1933 xa_lock_irq(&swap_mapping->i_pages); 1934 for (i = 0; i < nr_pages; i++) { 1935 void *item = xas_load(&xas); 1936 1937 if (item != old) { 1938 error = -ENOENT; 1939 break; 1940 } 1941 1942 xas_store(&xas, new); 1943 xas_next(&xas); 1944 } 1945 if (!error) { 1946 mem_cgroup_replace_folio(old, new); 1947 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, nr_pages); 1948 __lruvec_stat_mod_folio(new, NR_SHMEM, nr_pages); 1949 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -nr_pages); 1950 __lruvec_stat_mod_folio(old, NR_SHMEM, -nr_pages); 1951 } 1952 xa_unlock_irq(&swap_mapping->i_pages); 1953 1954 if (unlikely(error)) { 1955 /* 1956 * Is this possible? I think not, now that our callers 1957 * check both the swapcache flag and folio->private 1958 * after getting the folio lock; but be defensive. 1959 * Reverse old to newpage for clear and free. 1960 */ 1961 old = new; 1962 } else { 1963 folio_add_lru(new); 1964 *foliop = new; 1965 } 1966 1967 folio_clear_swapcache(old); 1968 old->private = NULL; 1969 1970 folio_unlock(old); 1971 /* 1972 * The old folio are removed from swap cache, drop the 'nr_pages' 1973 * reference, as well as one temporary reference getting from swap 1974 * cache. 1975 */ 1976 folio_put_refs(old, nr_pages + 1); 1977 return error; 1978 } 1979 1980 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1981 struct folio *folio, swp_entry_t swap) 1982 { 1983 struct address_space *mapping = inode->i_mapping; 1984 swp_entry_t swapin_error; 1985 void *old; 1986 int nr_pages; 1987 1988 swapin_error = make_poisoned_swp_entry(); 1989 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1990 swp_to_radix_entry(swap), 1991 swp_to_radix_entry(swapin_error), 0); 1992 if (old != swp_to_radix_entry(swap)) 1993 return; 1994 1995 nr_pages = folio_nr_pages(folio); 1996 folio_wait_writeback(folio); 1997 delete_from_swap_cache(folio); 1998 /* 1999 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 2000 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 2001 * in shmem_evict_inode(). 2002 */ 2003 shmem_recalc_inode(inode, -nr_pages, -nr_pages); 2004 swap_free_nr(swap, nr_pages); 2005 } 2006 2007 static int shmem_split_large_entry(struct inode *inode, pgoff_t index, 2008 swp_entry_t swap, gfp_t gfp) 2009 { 2010 struct address_space *mapping = inode->i_mapping; 2011 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0); 2012 void *alloced_shadow = NULL; 2013 int alloced_order = 0, i; 2014 2015 /* Convert user data gfp flags to xarray node gfp flags */ 2016 gfp &= GFP_RECLAIM_MASK; 2017 2018 for (;;) { 2019 int order = -1, split_order = 0; 2020 void *old = NULL; 2021 2022 xas_lock_irq(&xas); 2023 old = xas_load(&xas); 2024 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) { 2025 xas_set_err(&xas, -EEXIST); 2026 goto unlock; 2027 } 2028 2029 order = xas_get_order(&xas); 2030 2031 /* Swap entry may have changed before we re-acquire the lock */ 2032 if (alloced_order && 2033 (old != alloced_shadow || order != alloced_order)) { 2034 xas_destroy(&xas); 2035 alloced_order = 0; 2036 } 2037 2038 /* Try to split large swap entry in pagecache */ 2039 if (order > 0) { 2040 if (!alloced_order) { 2041 split_order = order; 2042 goto unlock; 2043 } 2044 xas_split(&xas, old, order); 2045 2046 /* 2047 * Re-set the swap entry after splitting, and the swap 2048 * offset of the original large entry must be continuous. 2049 */ 2050 for (i = 0; i < 1 << order; i++) { 2051 pgoff_t aligned_index = round_down(index, 1 << order); 2052 swp_entry_t tmp; 2053 2054 tmp = swp_entry(swp_type(swap), swp_offset(swap) + i); 2055 __xa_store(&mapping->i_pages, aligned_index + i, 2056 swp_to_radix_entry(tmp), 0); 2057 } 2058 } 2059 2060 unlock: 2061 xas_unlock_irq(&xas); 2062 2063 /* split needed, alloc here and retry. */ 2064 if (split_order) { 2065 xas_split_alloc(&xas, old, split_order, gfp); 2066 if (xas_error(&xas)) 2067 goto error; 2068 alloced_shadow = old; 2069 alloced_order = split_order; 2070 xas_reset(&xas); 2071 continue; 2072 } 2073 2074 if (!xas_nomem(&xas, gfp)) 2075 break; 2076 } 2077 2078 error: 2079 if (xas_error(&xas)) 2080 return xas_error(&xas); 2081 2082 return alloced_order; 2083 } 2084 2085 /* 2086 * Swap in the folio pointed to by *foliop. 2087 * Caller has to make sure that *foliop contains a valid swapped folio. 2088 * Returns 0 and the folio in foliop if success. On failure, returns the 2089 * error code and NULL in *foliop. 2090 */ 2091 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 2092 struct folio **foliop, enum sgp_type sgp, 2093 gfp_t gfp, struct vm_area_struct *vma, 2094 vm_fault_t *fault_type) 2095 { 2096 struct address_space *mapping = inode->i_mapping; 2097 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL; 2098 struct shmem_inode_info *info = SHMEM_I(inode); 2099 struct swap_info_struct *si; 2100 struct folio *folio = NULL; 2101 swp_entry_t swap; 2102 int error, nr_pages; 2103 2104 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 2105 swap = radix_to_swp_entry(*foliop); 2106 *foliop = NULL; 2107 2108 if (is_poisoned_swp_entry(swap)) 2109 return -EIO; 2110 2111 si = get_swap_device(swap); 2112 if (!si) { 2113 if (!shmem_confirm_swap(mapping, index, swap)) 2114 return -EEXIST; 2115 else 2116 return -EINVAL; 2117 } 2118 2119 /* Look it up and read it in.. */ 2120 folio = swap_cache_get_folio(swap, NULL, 0); 2121 if (!folio) { 2122 int split_order; 2123 2124 /* Or update major stats only when swapin succeeds?? */ 2125 if (fault_type) { 2126 *fault_type |= VM_FAULT_MAJOR; 2127 count_vm_event(PGMAJFAULT); 2128 count_memcg_event_mm(fault_mm, PGMAJFAULT); 2129 } 2130 2131 /* 2132 * Now swap device can only swap in order 0 folio, then we 2133 * should split the large swap entry stored in the pagecache 2134 * if necessary. 2135 */ 2136 split_order = shmem_split_large_entry(inode, index, swap, gfp); 2137 if (split_order < 0) { 2138 error = split_order; 2139 goto failed; 2140 } 2141 2142 /* 2143 * If the large swap entry has already been split, it is 2144 * necessary to recalculate the new swap entry based on 2145 * the old order alignment. 2146 */ 2147 if (split_order > 0) { 2148 pgoff_t offset = index - round_down(index, 1 << split_order); 2149 2150 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2151 } 2152 2153 /* Here we actually start the io */ 2154 folio = shmem_swapin_cluster(swap, gfp, info, index); 2155 if (!folio) { 2156 error = -ENOMEM; 2157 goto failed; 2158 } 2159 } 2160 2161 /* We have to do this with folio locked to prevent races */ 2162 folio_lock(folio); 2163 if (!folio_test_swapcache(folio) || 2164 folio->swap.val != swap.val || 2165 !shmem_confirm_swap(mapping, index, swap)) { 2166 error = -EEXIST; 2167 goto unlock; 2168 } 2169 if (!folio_test_uptodate(folio)) { 2170 error = -EIO; 2171 goto failed; 2172 } 2173 folio_wait_writeback(folio); 2174 nr_pages = folio_nr_pages(folio); 2175 2176 /* 2177 * Some architectures may have to restore extra metadata to the 2178 * folio after reading from swap. 2179 */ 2180 arch_swap_restore(folio_swap(swap, folio), folio); 2181 2182 if (shmem_should_replace_folio(folio, gfp)) { 2183 error = shmem_replace_folio(&folio, gfp, info, index, vma); 2184 if (error) 2185 goto failed; 2186 } 2187 2188 error = shmem_add_to_page_cache(folio, mapping, 2189 round_down(index, nr_pages), 2190 swp_to_radix_entry(swap), gfp); 2191 if (error) 2192 goto failed; 2193 2194 shmem_recalc_inode(inode, 0, -nr_pages); 2195 2196 if (sgp == SGP_WRITE) 2197 folio_mark_accessed(folio); 2198 2199 delete_from_swap_cache(folio); 2200 folio_mark_dirty(folio); 2201 swap_free_nr(swap, nr_pages); 2202 put_swap_device(si); 2203 2204 *foliop = folio; 2205 return 0; 2206 failed: 2207 if (!shmem_confirm_swap(mapping, index, swap)) 2208 error = -EEXIST; 2209 if (error == -EIO) 2210 shmem_set_folio_swapin_error(inode, index, folio, swap); 2211 unlock: 2212 if (folio) { 2213 folio_unlock(folio); 2214 folio_put(folio); 2215 } 2216 put_swap_device(si); 2217 2218 return error; 2219 } 2220 2221 /* 2222 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 2223 * 2224 * If we allocate a new one we do not mark it dirty. That's up to the 2225 * vm. If we swap it in we mark it dirty since we also free the swap 2226 * entry since a page cannot live in both the swap and page cache. 2227 * 2228 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 2229 */ 2230 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 2231 loff_t write_end, struct folio **foliop, enum sgp_type sgp, 2232 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type) 2233 { 2234 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 2235 struct mm_struct *fault_mm; 2236 struct folio *folio; 2237 int error; 2238 bool alloced; 2239 unsigned long orders = 0; 2240 2241 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 2242 return -EINVAL; 2243 2244 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 2245 return -EFBIG; 2246 repeat: 2247 if (sgp <= SGP_CACHE && 2248 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 2249 return -EINVAL; 2250 2251 alloced = false; 2252 fault_mm = vma ? vma->vm_mm : NULL; 2253 2254 folio = filemap_get_entry(inode->i_mapping, index); 2255 if (folio && vma && userfaultfd_minor(vma)) { 2256 if (!xa_is_value(folio)) 2257 folio_put(folio); 2258 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 2259 return 0; 2260 } 2261 2262 if (xa_is_value(folio)) { 2263 error = shmem_swapin_folio(inode, index, &folio, 2264 sgp, gfp, vma, fault_type); 2265 if (error == -EEXIST) 2266 goto repeat; 2267 2268 *foliop = folio; 2269 return error; 2270 } 2271 2272 if (folio) { 2273 folio_lock(folio); 2274 2275 /* Has the folio been truncated or swapped out? */ 2276 if (unlikely(folio->mapping != inode->i_mapping)) { 2277 folio_unlock(folio); 2278 folio_put(folio); 2279 goto repeat; 2280 } 2281 if (sgp == SGP_WRITE) 2282 folio_mark_accessed(folio); 2283 if (folio_test_uptodate(folio)) 2284 goto out; 2285 /* fallocated folio */ 2286 if (sgp != SGP_READ) 2287 goto clear; 2288 folio_unlock(folio); 2289 folio_put(folio); 2290 } 2291 2292 /* 2293 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2294 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2295 */ 2296 *foliop = NULL; 2297 if (sgp == SGP_READ) 2298 return 0; 2299 if (sgp == SGP_NOALLOC) 2300 return -ENOENT; 2301 2302 /* 2303 * Fast cache lookup and swap lookup did not find it: allocate. 2304 */ 2305 2306 if (vma && userfaultfd_missing(vma)) { 2307 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2308 return 0; 2309 } 2310 2311 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */ 2312 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false); 2313 if (orders > 0) { 2314 gfp_t huge_gfp; 2315 2316 huge_gfp = vma_thp_gfp_mask(vma); 2317 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2318 folio = shmem_alloc_and_add_folio(vmf, huge_gfp, 2319 inode, index, fault_mm, orders); 2320 if (!IS_ERR(folio)) { 2321 if (folio_test_pmd_mappable(folio)) 2322 count_vm_event(THP_FILE_ALLOC); 2323 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC); 2324 goto alloced; 2325 } 2326 if (PTR_ERR(folio) == -EEXIST) 2327 goto repeat; 2328 } 2329 2330 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0); 2331 if (IS_ERR(folio)) { 2332 error = PTR_ERR(folio); 2333 if (error == -EEXIST) 2334 goto repeat; 2335 folio = NULL; 2336 goto unlock; 2337 } 2338 2339 alloced: 2340 alloced = true; 2341 if (folio_test_large(folio) && 2342 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2343 folio_next_index(folio)) { 2344 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2345 struct shmem_inode_info *info = SHMEM_I(inode); 2346 /* 2347 * Part of the large folio is beyond i_size: subject 2348 * to shrink under memory pressure. 2349 */ 2350 spin_lock(&sbinfo->shrinklist_lock); 2351 /* 2352 * _careful to defend against unlocked access to 2353 * ->shrink_list in shmem_unused_huge_shrink() 2354 */ 2355 if (list_empty_careful(&info->shrinklist)) { 2356 list_add_tail(&info->shrinklist, 2357 &sbinfo->shrinklist); 2358 sbinfo->shrinklist_len++; 2359 } 2360 spin_unlock(&sbinfo->shrinklist_lock); 2361 } 2362 2363 if (sgp == SGP_WRITE) 2364 folio_set_referenced(folio); 2365 /* 2366 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2367 */ 2368 if (sgp == SGP_FALLOC) 2369 sgp = SGP_WRITE; 2370 clear: 2371 /* 2372 * Let SGP_WRITE caller clear ends if write does not fill folio; 2373 * but SGP_FALLOC on a folio fallocated earlier must initialize 2374 * it now, lest undo on failure cancel our earlier guarantee. 2375 */ 2376 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2377 long i, n = folio_nr_pages(folio); 2378 2379 for (i = 0; i < n; i++) 2380 clear_highpage(folio_page(folio, i)); 2381 flush_dcache_folio(folio); 2382 folio_mark_uptodate(folio); 2383 } 2384 2385 /* Perhaps the file has been truncated since we checked */ 2386 if (sgp <= SGP_CACHE && 2387 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2388 error = -EINVAL; 2389 goto unlock; 2390 } 2391 out: 2392 *foliop = folio; 2393 return 0; 2394 2395 /* 2396 * Error recovery. 2397 */ 2398 unlock: 2399 if (alloced) 2400 filemap_remove_folio(folio); 2401 shmem_recalc_inode(inode, 0, 0); 2402 if (folio) { 2403 folio_unlock(folio); 2404 folio_put(folio); 2405 } 2406 return error; 2407 } 2408 2409 /** 2410 * shmem_get_folio - find, and lock a shmem folio. 2411 * @inode: inode to search 2412 * @index: the page index. 2413 * @write_end: end of a write, could extend inode size 2414 * @foliop: pointer to the folio if found 2415 * @sgp: SGP_* flags to control behavior 2416 * 2417 * Looks up the page cache entry at @inode & @index. If a folio is 2418 * present, it is returned locked with an increased refcount. 2419 * 2420 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2421 * before unlocking the folio to ensure that the folio is not reclaimed. 2422 * There is no need to reserve space before calling folio_mark_dirty(). 2423 * 2424 * When no folio is found, the behavior depends on @sgp: 2425 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2426 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2427 * - for all other flags a new folio is allocated, inserted into the 2428 * page cache and returned locked in @foliop. 2429 * 2430 * Context: May sleep. 2431 * Return: 0 if successful, else a negative error code. 2432 */ 2433 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end, 2434 struct folio **foliop, enum sgp_type sgp) 2435 { 2436 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp, 2437 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2438 } 2439 EXPORT_SYMBOL_GPL(shmem_get_folio); 2440 2441 /* 2442 * This is like autoremove_wake_function, but it removes the wait queue 2443 * entry unconditionally - even if something else had already woken the 2444 * target. 2445 */ 2446 static int synchronous_wake_function(wait_queue_entry_t *wait, 2447 unsigned int mode, int sync, void *key) 2448 { 2449 int ret = default_wake_function(wait, mode, sync, key); 2450 list_del_init(&wait->entry); 2451 return ret; 2452 } 2453 2454 /* 2455 * Trinity finds that probing a hole which tmpfs is punching can 2456 * prevent the hole-punch from ever completing: which in turn 2457 * locks writers out with its hold on i_rwsem. So refrain from 2458 * faulting pages into the hole while it's being punched. Although 2459 * shmem_undo_range() does remove the additions, it may be unable to 2460 * keep up, as each new page needs its own unmap_mapping_range() call, 2461 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2462 * 2463 * It does not matter if we sometimes reach this check just before the 2464 * hole-punch begins, so that one fault then races with the punch: 2465 * we just need to make racing faults a rare case. 2466 * 2467 * The implementation below would be much simpler if we just used a 2468 * standard mutex or completion: but we cannot take i_rwsem in fault, 2469 * and bloating every shmem inode for this unlikely case would be sad. 2470 */ 2471 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2472 { 2473 struct shmem_falloc *shmem_falloc; 2474 struct file *fpin = NULL; 2475 vm_fault_t ret = 0; 2476 2477 spin_lock(&inode->i_lock); 2478 shmem_falloc = inode->i_private; 2479 if (shmem_falloc && 2480 shmem_falloc->waitq && 2481 vmf->pgoff >= shmem_falloc->start && 2482 vmf->pgoff < shmem_falloc->next) { 2483 wait_queue_head_t *shmem_falloc_waitq; 2484 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2485 2486 ret = VM_FAULT_NOPAGE; 2487 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2488 shmem_falloc_waitq = shmem_falloc->waitq; 2489 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2490 TASK_UNINTERRUPTIBLE); 2491 spin_unlock(&inode->i_lock); 2492 schedule(); 2493 2494 /* 2495 * shmem_falloc_waitq points into the shmem_fallocate() 2496 * stack of the hole-punching task: shmem_falloc_waitq 2497 * is usually invalid by the time we reach here, but 2498 * finish_wait() does not dereference it in that case; 2499 * though i_lock needed lest racing with wake_up_all(). 2500 */ 2501 spin_lock(&inode->i_lock); 2502 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2503 } 2504 spin_unlock(&inode->i_lock); 2505 if (fpin) { 2506 fput(fpin); 2507 ret = VM_FAULT_RETRY; 2508 } 2509 return ret; 2510 } 2511 2512 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2513 { 2514 struct inode *inode = file_inode(vmf->vma->vm_file); 2515 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2516 struct folio *folio = NULL; 2517 vm_fault_t ret = 0; 2518 int err; 2519 2520 /* 2521 * Trinity finds that probing a hole which tmpfs is punching can 2522 * prevent the hole-punch from ever completing: noted in i_private. 2523 */ 2524 if (unlikely(inode->i_private)) { 2525 ret = shmem_falloc_wait(vmf, inode); 2526 if (ret) 2527 return ret; 2528 } 2529 2530 WARN_ON_ONCE(vmf->page != NULL); 2531 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE, 2532 gfp, vmf, &ret); 2533 if (err) 2534 return vmf_error(err); 2535 if (folio) { 2536 vmf->page = folio_file_page(folio, vmf->pgoff); 2537 ret |= VM_FAULT_LOCKED; 2538 } 2539 return ret; 2540 } 2541 2542 unsigned long shmem_get_unmapped_area(struct file *file, 2543 unsigned long uaddr, unsigned long len, 2544 unsigned long pgoff, unsigned long flags) 2545 { 2546 unsigned long addr; 2547 unsigned long offset; 2548 unsigned long inflated_len; 2549 unsigned long inflated_addr; 2550 unsigned long inflated_offset; 2551 unsigned long hpage_size; 2552 2553 if (len > TASK_SIZE) 2554 return -ENOMEM; 2555 2556 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff, 2557 flags); 2558 2559 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2560 return addr; 2561 if (IS_ERR_VALUE(addr)) 2562 return addr; 2563 if (addr & ~PAGE_MASK) 2564 return addr; 2565 if (addr > TASK_SIZE - len) 2566 return addr; 2567 2568 if (shmem_huge == SHMEM_HUGE_DENY) 2569 return addr; 2570 if (flags & MAP_FIXED) 2571 return addr; 2572 /* 2573 * Our priority is to support MAP_SHARED mapped hugely; 2574 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2575 * But if caller specified an address hint and we allocated area there 2576 * successfully, respect that as before. 2577 */ 2578 if (uaddr == addr) 2579 return addr; 2580 2581 hpage_size = HPAGE_PMD_SIZE; 2582 if (shmem_huge != SHMEM_HUGE_FORCE) { 2583 struct super_block *sb; 2584 unsigned long __maybe_unused hpage_orders; 2585 int order = 0; 2586 2587 if (file) { 2588 VM_BUG_ON(file->f_op != &shmem_file_operations); 2589 sb = file_inode(file)->i_sb; 2590 } else { 2591 /* 2592 * Called directly from mm/mmap.c, or drivers/char/mem.c 2593 * for "/dev/zero", to create a shared anonymous object. 2594 */ 2595 if (IS_ERR(shm_mnt)) 2596 return addr; 2597 sb = shm_mnt->mnt_sb; 2598 2599 /* 2600 * Find the highest mTHP order used for anonymous shmem to 2601 * provide a suitable alignment address. 2602 */ 2603 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2604 hpage_orders = READ_ONCE(huge_shmem_orders_always); 2605 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size); 2606 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise); 2607 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 2608 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit); 2609 2610 if (hpage_orders > 0) { 2611 order = highest_order(hpage_orders); 2612 hpage_size = PAGE_SIZE << order; 2613 } 2614 #endif 2615 } 2616 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order) 2617 return addr; 2618 } 2619 2620 if (len < hpage_size) 2621 return addr; 2622 2623 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1); 2624 if (offset && offset + len < 2 * hpage_size) 2625 return addr; 2626 if ((addr & (hpage_size - 1)) == offset) 2627 return addr; 2628 2629 inflated_len = len + hpage_size - PAGE_SIZE; 2630 if (inflated_len > TASK_SIZE) 2631 return addr; 2632 if (inflated_len < len) 2633 return addr; 2634 2635 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr, 2636 inflated_len, 0, flags); 2637 if (IS_ERR_VALUE(inflated_addr)) 2638 return addr; 2639 if (inflated_addr & ~PAGE_MASK) 2640 return addr; 2641 2642 inflated_offset = inflated_addr & (hpage_size - 1); 2643 inflated_addr += offset - inflated_offset; 2644 if (inflated_offset > offset) 2645 inflated_addr += hpage_size; 2646 2647 if (inflated_addr > TASK_SIZE - len) 2648 return addr; 2649 return inflated_addr; 2650 } 2651 2652 #ifdef CONFIG_NUMA 2653 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2654 { 2655 struct inode *inode = file_inode(vma->vm_file); 2656 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2657 } 2658 2659 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2660 unsigned long addr, pgoff_t *ilx) 2661 { 2662 struct inode *inode = file_inode(vma->vm_file); 2663 pgoff_t index; 2664 2665 /* 2666 * Bias interleave by inode number to distribute better across nodes; 2667 * but this interface is independent of which page order is used, so 2668 * supplies only that bias, letting caller apply the offset (adjusted 2669 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2670 */ 2671 *ilx = inode->i_ino; 2672 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2673 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2674 } 2675 2676 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2677 pgoff_t index, unsigned int order, pgoff_t *ilx) 2678 { 2679 struct mempolicy *mpol; 2680 2681 /* Bias interleave by inode number to distribute better across nodes */ 2682 *ilx = info->vfs_inode.i_ino + (index >> order); 2683 2684 mpol = mpol_shared_policy_lookup(&info->policy, index); 2685 return mpol ? mpol : get_task_policy(current); 2686 } 2687 #else 2688 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2689 pgoff_t index, unsigned int order, pgoff_t *ilx) 2690 { 2691 *ilx = 0; 2692 return NULL; 2693 } 2694 #endif /* CONFIG_NUMA */ 2695 2696 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2697 { 2698 struct inode *inode = file_inode(file); 2699 struct shmem_inode_info *info = SHMEM_I(inode); 2700 int retval = -ENOMEM; 2701 2702 /* 2703 * What serializes the accesses to info->flags? 2704 * ipc_lock_object() when called from shmctl_do_lock(), 2705 * no serialization needed when called from shm_destroy(). 2706 */ 2707 if (lock && !(info->flags & VM_LOCKED)) { 2708 if (!user_shm_lock(inode->i_size, ucounts)) 2709 goto out_nomem; 2710 info->flags |= VM_LOCKED; 2711 mapping_set_unevictable(file->f_mapping); 2712 } 2713 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2714 user_shm_unlock(inode->i_size, ucounts); 2715 info->flags &= ~VM_LOCKED; 2716 mapping_clear_unevictable(file->f_mapping); 2717 } 2718 retval = 0; 2719 2720 out_nomem: 2721 return retval; 2722 } 2723 2724 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2725 { 2726 struct inode *inode = file_inode(file); 2727 struct shmem_inode_info *info = SHMEM_I(inode); 2728 int ret; 2729 2730 ret = seal_check_write(info->seals, vma); 2731 if (ret) 2732 return ret; 2733 2734 /* arm64 - allow memory tagging on RAM-based files */ 2735 vm_flags_set(vma, VM_MTE_ALLOWED); 2736 2737 file_accessed(file); 2738 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2739 if (inode->i_nlink) 2740 vma->vm_ops = &shmem_vm_ops; 2741 else 2742 vma->vm_ops = &shmem_anon_vm_ops; 2743 return 0; 2744 } 2745 2746 static int shmem_file_open(struct inode *inode, struct file *file) 2747 { 2748 file->f_mode |= FMODE_CAN_ODIRECT; 2749 return generic_file_open(inode, file); 2750 } 2751 2752 #ifdef CONFIG_TMPFS_XATTR 2753 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2754 2755 /* 2756 * chattr's fsflags are unrelated to extended attributes, 2757 * but tmpfs has chosen to enable them under the same config option. 2758 */ 2759 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2760 { 2761 unsigned int i_flags = 0; 2762 2763 if (fsflags & FS_NOATIME_FL) 2764 i_flags |= S_NOATIME; 2765 if (fsflags & FS_APPEND_FL) 2766 i_flags |= S_APPEND; 2767 if (fsflags & FS_IMMUTABLE_FL) 2768 i_flags |= S_IMMUTABLE; 2769 /* 2770 * But FS_NODUMP_FL does not require any action in i_flags. 2771 */ 2772 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2773 } 2774 #else 2775 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2776 { 2777 } 2778 #define shmem_initxattrs NULL 2779 #endif 2780 2781 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 2782 { 2783 return &SHMEM_I(inode)->dir_offsets; 2784 } 2785 2786 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 2787 struct super_block *sb, 2788 struct inode *dir, umode_t mode, 2789 dev_t dev, unsigned long flags) 2790 { 2791 struct inode *inode; 2792 struct shmem_inode_info *info; 2793 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2794 ino_t ino; 2795 int err; 2796 2797 err = shmem_reserve_inode(sb, &ino); 2798 if (err) 2799 return ERR_PTR(err); 2800 2801 inode = new_inode(sb); 2802 if (!inode) { 2803 shmem_free_inode(sb, 0); 2804 return ERR_PTR(-ENOSPC); 2805 } 2806 2807 inode->i_ino = ino; 2808 inode_init_owner(idmap, inode, dir, mode); 2809 inode->i_blocks = 0; 2810 simple_inode_init_ts(inode); 2811 inode->i_generation = get_random_u32(); 2812 info = SHMEM_I(inode); 2813 memset(info, 0, (char *)inode - (char *)info); 2814 spin_lock_init(&info->lock); 2815 atomic_set(&info->stop_eviction, 0); 2816 info->seals = F_SEAL_SEAL; 2817 info->flags = flags & VM_NORESERVE; 2818 info->i_crtime = inode_get_mtime(inode); 2819 info->fsflags = (dir == NULL) ? 0 : 2820 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2821 if (info->fsflags) 2822 shmem_set_inode_flags(inode, info->fsflags); 2823 INIT_LIST_HEAD(&info->shrinklist); 2824 INIT_LIST_HEAD(&info->swaplist); 2825 simple_xattrs_init(&info->xattrs); 2826 cache_no_acl(inode); 2827 if (sbinfo->noswap) 2828 mapping_set_unevictable(inode->i_mapping); 2829 mapping_set_large_folios(inode->i_mapping); 2830 2831 switch (mode & S_IFMT) { 2832 default: 2833 inode->i_op = &shmem_special_inode_operations; 2834 init_special_inode(inode, mode, dev); 2835 break; 2836 case S_IFREG: 2837 inode->i_mapping->a_ops = &shmem_aops; 2838 inode->i_op = &shmem_inode_operations; 2839 inode->i_fop = &shmem_file_operations; 2840 mpol_shared_policy_init(&info->policy, 2841 shmem_get_sbmpol(sbinfo)); 2842 break; 2843 case S_IFDIR: 2844 inc_nlink(inode); 2845 /* Some things misbehave if size == 0 on a directory */ 2846 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2847 inode->i_op = &shmem_dir_inode_operations; 2848 inode->i_fop = &simple_offset_dir_operations; 2849 simple_offset_init(shmem_get_offset_ctx(inode)); 2850 break; 2851 case S_IFLNK: 2852 /* 2853 * Must not load anything in the rbtree, 2854 * mpol_free_shared_policy will not be called. 2855 */ 2856 mpol_shared_policy_init(&info->policy, NULL); 2857 break; 2858 } 2859 2860 lockdep_annotate_inode_mutex_key(inode); 2861 return inode; 2862 } 2863 2864 #ifdef CONFIG_TMPFS_QUOTA 2865 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2866 struct super_block *sb, struct inode *dir, 2867 umode_t mode, dev_t dev, unsigned long flags) 2868 { 2869 int err; 2870 struct inode *inode; 2871 2872 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2873 if (IS_ERR(inode)) 2874 return inode; 2875 2876 err = dquot_initialize(inode); 2877 if (err) 2878 goto errout; 2879 2880 err = dquot_alloc_inode(inode); 2881 if (err) { 2882 dquot_drop(inode); 2883 goto errout; 2884 } 2885 return inode; 2886 2887 errout: 2888 inode->i_flags |= S_NOQUOTA; 2889 iput(inode); 2890 return ERR_PTR(err); 2891 } 2892 #else 2893 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2894 struct super_block *sb, struct inode *dir, 2895 umode_t mode, dev_t dev, unsigned long flags) 2896 { 2897 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2898 } 2899 #endif /* CONFIG_TMPFS_QUOTA */ 2900 2901 #ifdef CONFIG_USERFAULTFD 2902 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 2903 struct vm_area_struct *dst_vma, 2904 unsigned long dst_addr, 2905 unsigned long src_addr, 2906 uffd_flags_t flags, 2907 struct folio **foliop) 2908 { 2909 struct inode *inode = file_inode(dst_vma->vm_file); 2910 struct shmem_inode_info *info = SHMEM_I(inode); 2911 struct address_space *mapping = inode->i_mapping; 2912 gfp_t gfp = mapping_gfp_mask(mapping); 2913 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2914 void *page_kaddr; 2915 struct folio *folio; 2916 int ret; 2917 pgoff_t max_off; 2918 2919 if (shmem_inode_acct_blocks(inode, 1)) { 2920 /* 2921 * We may have got a page, returned -ENOENT triggering a retry, 2922 * and now we find ourselves with -ENOMEM. Release the page, to 2923 * avoid a BUG_ON in our caller. 2924 */ 2925 if (unlikely(*foliop)) { 2926 folio_put(*foliop); 2927 *foliop = NULL; 2928 } 2929 return -ENOMEM; 2930 } 2931 2932 if (!*foliop) { 2933 ret = -ENOMEM; 2934 folio = shmem_alloc_folio(gfp, 0, info, pgoff); 2935 if (!folio) 2936 goto out_unacct_blocks; 2937 2938 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 2939 page_kaddr = kmap_local_folio(folio, 0); 2940 /* 2941 * The read mmap_lock is held here. Despite the 2942 * mmap_lock being read recursive a deadlock is still 2943 * possible if a writer has taken a lock. For example: 2944 * 2945 * process A thread 1 takes read lock on own mmap_lock 2946 * process A thread 2 calls mmap, blocks taking write lock 2947 * process B thread 1 takes page fault, read lock on own mmap lock 2948 * process B thread 2 calls mmap, blocks taking write lock 2949 * process A thread 1 blocks taking read lock on process B 2950 * process B thread 1 blocks taking read lock on process A 2951 * 2952 * Disable page faults to prevent potential deadlock 2953 * and retry the copy outside the mmap_lock. 2954 */ 2955 pagefault_disable(); 2956 ret = copy_from_user(page_kaddr, 2957 (const void __user *)src_addr, 2958 PAGE_SIZE); 2959 pagefault_enable(); 2960 kunmap_local(page_kaddr); 2961 2962 /* fallback to copy_from_user outside mmap_lock */ 2963 if (unlikely(ret)) { 2964 *foliop = folio; 2965 ret = -ENOENT; 2966 /* don't free the page */ 2967 goto out_unacct_blocks; 2968 } 2969 2970 flush_dcache_folio(folio); 2971 } else { /* ZEROPAGE */ 2972 clear_user_highpage(&folio->page, dst_addr); 2973 } 2974 } else { 2975 folio = *foliop; 2976 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2977 *foliop = NULL; 2978 } 2979 2980 VM_BUG_ON(folio_test_locked(folio)); 2981 VM_BUG_ON(folio_test_swapbacked(folio)); 2982 __folio_set_locked(folio); 2983 __folio_set_swapbacked(folio); 2984 __folio_mark_uptodate(folio); 2985 2986 ret = -EFAULT; 2987 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2988 if (unlikely(pgoff >= max_off)) 2989 goto out_release; 2990 2991 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 2992 if (ret) 2993 goto out_release; 2994 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 2995 if (ret) 2996 goto out_release; 2997 2998 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 2999 &folio->page, true, flags); 3000 if (ret) 3001 goto out_delete_from_cache; 3002 3003 shmem_recalc_inode(inode, 1, 0); 3004 folio_unlock(folio); 3005 return 0; 3006 out_delete_from_cache: 3007 filemap_remove_folio(folio); 3008 out_release: 3009 folio_unlock(folio); 3010 folio_put(folio); 3011 out_unacct_blocks: 3012 shmem_inode_unacct_blocks(inode, 1); 3013 return ret; 3014 } 3015 #endif /* CONFIG_USERFAULTFD */ 3016 3017 #ifdef CONFIG_TMPFS 3018 static const struct inode_operations shmem_symlink_inode_operations; 3019 static const struct inode_operations shmem_short_symlink_operations; 3020 3021 static int 3022 shmem_write_begin(struct file *file, struct address_space *mapping, 3023 loff_t pos, unsigned len, 3024 struct folio **foliop, void **fsdata) 3025 { 3026 struct inode *inode = mapping->host; 3027 struct shmem_inode_info *info = SHMEM_I(inode); 3028 pgoff_t index = pos >> PAGE_SHIFT; 3029 struct folio *folio; 3030 int ret = 0; 3031 3032 /* i_rwsem is held by caller */ 3033 if (unlikely(info->seals & (F_SEAL_GROW | 3034 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 3035 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 3036 return -EPERM; 3037 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 3038 return -EPERM; 3039 } 3040 3041 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE); 3042 if (ret) 3043 return ret; 3044 3045 if (folio_test_hwpoison(folio) || 3046 (folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) { 3047 folio_unlock(folio); 3048 folio_put(folio); 3049 return -EIO; 3050 } 3051 3052 *foliop = folio; 3053 return 0; 3054 } 3055 3056 static int 3057 shmem_write_end(struct file *file, struct address_space *mapping, 3058 loff_t pos, unsigned len, unsigned copied, 3059 struct folio *folio, void *fsdata) 3060 { 3061 struct inode *inode = mapping->host; 3062 3063 if (pos + copied > inode->i_size) 3064 i_size_write(inode, pos + copied); 3065 3066 if (!folio_test_uptodate(folio)) { 3067 if (copied < folio_size(folio)) { 3068 size_t from = offset_in_folio(folio, pos); 3069 folio_zero_segments(folio, 0, from, 3070 from + copied, folio_size(folio)); 3071 } 3072 folio_mark_uptodate(folio); 3073 } 3074 folio_mark_dirty(folio); 3075 folio_unlock(folio); 3076 folio_put(folio); 3077 3078 return copied; 3079 } 3080 3081 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3082 { 3083 struct file *file = iocb->ki_filp; 3084 struct inode *inode = file_inode(file); 3085 struct address_space *mapping = inode->i_mapping; 3086 pgoff_t index; 3087 unsigned long offset; 3088 int error = 0; 3089 ssize_t retval = 0; 3090 loff_t *ppos = &iocb->ki_pos; 3091 3092 index = *ppos >> PAGE_SHIFT; 3093 offset = *ppos & ~PAGE_MASK; 3094 3095 for (;;) { 3096 struct folio *folio = NULL; 3097 struct page *page = NULL; 3098 pgoff_t end_index; 3099 unsigned long nr, ret; 3100 loff_t i_size = i_size_read(inode); 3101 3102 end_index = i_size >> PAGE_SHIFT; 3103 if (index > end_index) 3104 break; 3105 if (index == end_index) { 3106 nr = i_size & ~PAGE_MASK; 3107 if (nr <= offset) 3108 break; 3109 } 3110 3111 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3112 if (error) { 3113 if (error == -EINVAL) 3114 error = 0; 3115 break; 3116 } 3117 if (folio) { 3118 folio_unlock(folio); 3119 3120 page = folio_file_page(folio, index); 3121 if (PageHWPoison(page)) { 3122 folio_put(folio); 3123 error = -EIO; 3124 break; 3125 } 3126 } 3127 3128 /* 3129 * We must evaluate after, since reads (unlike writes) 3130 * are called without i_rwsem protection against truncate 3131 */ 3132 nr = PAGE_SIZE; 3133 i_size = i_size_read(inode); 3134 end_index = i_size >> PAGE_SHIFT; 3135 if (index == end_index) { 3136 nr = i_size & ~PAGE_MASK; 3137 if (nr <= offset) { 3138 if (folio) 3139 folio_put(folio); 3140 break; 3141 } 3142 } 3143 nr -= offset; 3144 3145 if (folio) { 3146 /* 3147 * If users can be writing to this page using arbitrary 3148 * virtual addresses, take care about potential aliasing 3149 * before reading the page on the kernel side. 3150 */ 3151 if (mapping_writably_mapped(mapping)) 3152 flush_dcache_page(page); 3153 /* 3154 * Mark the page accessed if we read the beginning. 3155 */ 3156 if (!offset) 3157 folio_mark_accessed(folio); 3158 /* 3159 * Ok, we have the page, and it's up-to-date, so 3160 * now we can copy it to user space... 3161 */ 3162 ret = copy_page_to_iter(page, offset, nr, to); 3163 folio_put(folio); 3164 3165 } else if (user_backed_iter(to)) { 3166 /* 3167 * Copy to user tends to be so well optimized, but 3168 * clear_user() not so much, that it is noticeably 3169 * faster to copy the zero page instead of clearing. 3170 */ 3171 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 3172 } else { 3173 /* 3174 * But submitting the same page twice in a row to 3175 * splice() - or others? - can result in confusion: 3176 * so don't attempt that optimization on pipes etc. 3177 */ 3178 ret = iov_iter_zero(nr, to); 3179 } 3180 3181 retval += ret; 3182 offset += ret; 3183 index += offset >> PAGE_SHIFT; 3184 offset &= ~PAGE_MASK; 3185 3186 if (!iov_iter_count(to)) 3187 break; 3188 if (ret < nr) { 3189 error = -EFAULT; 3190 break; 3191 } 3192 cond_resched(); 3193 } 3194 3195 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 3196 file_accessed(file); 3197 return retval ? retval : error; 3198 } 3199 3200 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3201 { 3202 struct file *file = iocb->ki_filp; 3203 struct inode *inode = file->f_mapping->host; 3204 ssize_t ret; 3205 3206 inode_lock(inode); 3207 ret = generic_write_checks(iocb, from); 3208 if (ret <= 0) 3209 goto unlock; 3210 ret = file_remove_privs(file); 3211 if (ret) 3212 goto unlock; 3213 ret = file_update_time(file); 3214 if (ret) 3215 goto unlock; 3216 ret = generic_perform_write(iocb, from); 3217 unlock: 3218 inode_unlock(inode); 3219 return ret; 3220 } 3221 3222 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 3223 struct pipe_buffer *buf) 3224 { 3225 return true; 3226 } 3227 3228 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 3229 struct pipe_buffer *buf) 3230 { 3231 } 3232 3233 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 3234 struct pipe_buffer *buf) 3235 { 3236 return false; 3237 } 3238 3239 static const struct pipe_buf_operations zero_pipe_buf_ops = { 3240 .release = zero_pipe_buf_release, 3241 .try_steal = zero_pipe_buf_try_steal, 3242 .get = zero_pipe_buf_get, 3243 }; 3244 3245 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 3246 loff_t fpos, size_t size) 3247 { 3248 size_t offset = fpos & ~PAGE_MASK; 3249 3250 size = min_t(size_t, size, PAGE_SIZE - offset); 3251 3252 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 3253 struct pipe_buffer *buf = pipe_head_buf(pipe); 3254 3255 *buf = (struct pipe_buffer) { 3256 .ops = &zero_pipe_buf_ops, 3257 .page = ZERO_PAGE(0), 3258 .offset = offset, 3259 .len = size, 3260 }; 3261 pipe->head++; 3262 } 3263 3264 return size; 3265 } 3266 3267 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 3268 struct pipe_inode_info *pipe, 3269 size_t len, unsigned int flags) 3270 { 3271 struct inode *inode = file_inode(in); 3272 struct address_space *mapping = inode->i_mapping; 3273 struct folio *folio = NULL; 3274 size_t total_spliced = 0, used, npages, n, part; 3275 loff_t isize; 3276 int error = 0; 3277 3278 /* Work out how much data we can actually add into the pipe */ 3279 used = pipe_occupancy(pipe->head, pipe->tail); 3280 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3281 len = min_t(size_t, len, npages * PAGE_SIZE); 3282 3283 do { 3284 if (*ppos >= i_size_read(inode)) 3285 break; 3286 3287 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, 0, &folio, 3288 SGP_READ); 3289 if (error) { 3290 if (error == -EINVAL) 3291 error = 0; 3292 break; 3293 } 3294 if (folio) { 3295 folio_unlock(folio); 3296 3297 if (folio_test_hwpoison(folio) || 3298 (folio_test_large(folio) && 3299 folio_test_has_hwpoisoned(folio))) { 3300 error = -EIO; 3301 break; 3302 } 3303 } 3304 3305 /* 3306 * i_size must be checked after we know the pages are Uptodate. 3307 * 3308 * Checking i_size after the check allows us to calculate 3309 * the correct value for "nr", which means the zero-filled 3310 * part of the page is not copied back to userspace (unless 3311 * another truncate extends the file - this is desired though). 3312 */ 3313 isize = i_size_read(inode); 3314 if (unlikely(*ppos >= isize)) 3315 break; 3316 part = min_t(loff_t, isize - *ppos, len); 3317 3318 if (folio) { 3319 /* 3320 * If users can be writing to this page using arbitrary 3321 * virtual addresses, take care about potential aliasing 3322 * before reading the page on the kernel side. 3323 */ 3324 if (mapping_writably_mapped(mapping)) 3325 flush_dcache_folio(folio); 3326 folio_mark_accessed(folio); 3327 /* 3328 * Ok, we have the page, and it's up-to-date, so we can 3329 * now splice it into the pipe. 3330 */ 3331 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3332 folio_put(folio); 3333 folio = NULL; 3334 } else { 3335 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3336 } 3337 3338 if (!n) 3339 break; 3340 len -= n; 3341 total_spliced += n; 3342 *ppos += n; 3343 in->f_ra.prev_pos = *ppos; 3344 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 3345 break; 3346 3347 cond_resched(); 3348 } while (len); 3349 3350 if (folio) 3351 folio_put(folio); 3352 3353 file_accessed(in); 3354 return total_spliced ? total_spliced : error; 3355 } 3356 3357 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3358 { 3359 struct address_space *mapping = file->f_mapping; 3360 struct inode *inode = mapping->host; 3361 3362 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3363 return generic_file_llseek_size(file, offset, whence, 3364 MAX_LFS_FILESIZE, i_size_read(inode)); 3365 if (offset < 0) 3366 return -ENXIO; 3367 3368 inode_lock(inode); 3369 /* We're holding i_rwsem so we can access i_size directly */ 3370 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3371 if (offset >= 0) 3372 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3373 inode_unlock(inode); 3374 return offset; 3375 } 3376 3377 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3378 loff_t len) 3379 { 3380 struct inode *inode = file_inode(file); 3381 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3382 struct shmem_inode_info *info = SHMEM_I(inode); 3383 struct shmem_falloc shmem_falloc; 3384 pgoff_t start, index, end, undo_fallocend; 3385 int error; 3386 3387 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3388 return -EOPNOTSUPP; 3389 3390 inode_lock(inode); 3391 3392 if (mode & FALLOC_FL_PUNCH_HOLE) { 3393 struct address_space *mapping = file->f_mapping; 3394 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3395 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3396 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3397 3398 /* protected by i_rwsem */ 3399 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3400 error = -EPERM; 3401 goto out; 3402 } 3403 3404 shmem_falloc.waitq = &shmem_falloc_waitq; 3405 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3406 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3407 spin_lock(&inode->i_lock); 3408 inode->i_private = &shmem_falloc; 3409 spin_unlock(&inode->i_lock); 3410 3411 if ((u64)unmap_end > (u64)unmap_start) 3412 unmap_mapping_range(mapping, unmap_start, 3413 1 + unmap_end - unmap_start, 0); 3414 shmem_truncate_range(inode, offset, offset + len - 1); 3415 /* No need to unmap again: hole-punching leaves COWed pages */ 3416 3417 spin_lock(&inode->i_lock); 3418 inode->i_private = NULL; 3419 wake_up_all(&shmem_falloc_waitq); 3420 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3421 spin_unlock(&inode->i_lock); 3422 error = 0; 3423 goto out; 3424 } 3425 3426 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3427 error = inode_newsize_ok(inode, offset + len); 3428 if (error) 3429 goto out; 3430 3431 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3432 error = -EPERM; 3433 goto out; 3434 } 3435 3436 start = offset >> PAGE_SHIFT; 3437 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3438 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3439 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3440 error = -ENOSPC; 3441 goto out; 3442 } 3443 3444 shmem_falloc.waitq = NULL; 3445 shmem_falloc.start = start; 3446 shmem_falloc.next = start; 3447 shmem_falloc.nr_falloced = 0; 3448 shmem_falloc.nr_unswapped = 0; 3449 spin_lock(&inode->i_lock); 3450 inode->i_private = &shmem_falloc; 3451 spin_unlock(&inode->i_lock); 3452 3453 /* 3454 * info->fallocend is only relevant when huge pages might be 3455 * involved: to prevent split_huge_page() freeing fallocated 3456 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3457 */ 3458 undo_fallocend = info->fallocend; 3459 if (info->fallocend < end) 3460 info->fallocend = end; 3461 3462 for (index = start; index < end; ) { 3463 struct folio *folio; 3464 3465 /* 3466 * Check for fatal signal so that we abort early in OOM 3467 * situations. We don't want to abort in case of non-fatal 3468 * signals as large fallocate can take noticeable time and 3469 * e.g. periodic timers may result in fallocate constantly 3470 * restarting. 3471 */ 3472 if (fatal_signal_pending(current)) 3473 error = -EINTR; 3474 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3475 error = -ENOMEM; 3476 else 3477 error = shmem_get_folio(inode, index, offset + len, 3478 &folio, SGP_FALLOC); 3479 if (error) { 3480 info->fallocend = undo_fallocend; 3481 /* Remove the !uptodate folios we added */ 3482 if (index > start) { 3483 shmem_undo_range(inode, 3484 (loff_t)start << PAGE_SHIFT, 3485 ((loff_t)index << PAGE_SHIFT) - 1, true); 3486 } 3487 goto undone; 3488 } 3489 3490 /* 3491 * Here is a more important optimization than it appears: 3492 * a second SGP_FALLOC on the same large folio will clear it, 3493 * making it uptodate and un-undoable if we fail later. 3494 */ 3495 index = folio_next_index(folio); 3496 /* Beware 32-bit wraparound */ 3497 if (!index) 3498 index--; 3499 3500 /* 3501 * Inform shmem_writepage() how far we have reached. 3502 * No need for lock or barrier: we have the page lock. 3503 */ 3504 if (!folio_test_uptodate(folio)) 3505 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3506 shmem_falloc.next = index; 3507 3508 /* 3509 * If !uptodate, leave it that way so that freeable folios 3510 * can be recognized if we need to rollback on error later. 3511 * But mark it dirty so that memory pressure will swap rather 3512 * than free the folios we are allocating (and SGP_CACHE folios 3513 * might still be clean: we now need to mark those dirty too). 3514 */ 3515 folio_mark_dirty(folio); 3516 folio_unlock(folio); 3517 folio_put(folio); 3518 cond_resched(); 3519 } 3520 3521 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3522 i_size_write(inode, offset + len); 3523 undone: 3524 spin_lock(&inode->i_lock); 3525 inode->i_private = NULL; 3526 spin_unlock(&inode->i_lock); 3527 out: 3528 if (!error) 3529 file_modified(file); 3530 inode_unlock(inode); 3531 return error; 3532 } 3533 3534 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3535 { 3536 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3537 3538 buf->f_type = TMPFS_MAGIC; 3539 buf->f_bsize = PAGE_SIZE; 3540 buf->f_namelen = NAME_MAX; 3541 if (sbinfo->max_blocks) { 3542 buf->f_blocks = sbinfo->max_blocks; 3543 buf->f_bavail = 3544 buf->f_bfree = sbinfo->max_blocks - 3545 percpu_counter_sum(&sbinfo->used_blocks); 3546 } 3547 if (sbinfo->max_inodes) { 3548 buf->f_files = sbinfo->max_inodes; 3549 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3550 } 3551 /* else leave those fields 0 like simple_statfs */ 3552 3553 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3554 3555 return 0; 3556 } 3557 3558 /* 3559 * File creation. Allocate an inode, and we're done.. 3560 */ 3561 static int 3562 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3563 struct dentry *dentry, umode_t mode, dev_t dev) 3564 { 3565 struct inode *inode; 3566 int error; 3567 3568 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3569 if (IS_ERR(inode)) 3570 return PTR_ERR(inode); 3571 3572 error = simple_acl_create(dir, inode); 3573 if (error) 3574 goto out_iput; 3575 error = security_inode_init_security(inode, dir, &dentry->d_name, 3576 shmem_initxattrs, NULL); 3577 if (error && error != -EOPNOTSUPP) 3578 goto out_iput; 3579 3580 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3581 if (error) 3582 goto out_iput; 3583 3584 dir->i_size += BOGO_DIRENT_SIZE; 3585 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3586 inode_inc_iversion(dir); 3587 d_instantiate(dentry, inode); 3588 dget(dentry); /* Extra count - pin the dentry in core */ 3589 return error; 3590 3591 out_iput: 3592 iput(inode); 3593 return error; 3594 } 3595 3596 static int 3597 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3598 struct file *file, umode_t mode) 3599 { 3600 struct inode *inode; 3601 int error; 3602 3603 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3604 if (IS_ERR(inode)) { 3605 error = PTR_ERR(inode); 3606 goto err_out; 3607 } 3608 error = security_inode_init_security(inode, dir, NULL, 3609 shmem_initxattrs, NULL); 3610 if (error && error != -EOPNOTSUPP) 3611 goto out_iput; 3612 error = simple_acl_create(dir, inode); 3613 if (error) 3614 goto out_iput; 3615 d_tmpfile(file, inode); 3616 3617 err_out: 3618 return finish_open_simple(file, error); 3619 out_iput: 3620 iput(inode); 3621 return error; 3622 } 3623 3624 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3625 struct dentry *dentry, umode_t mode) 3626 { 3627 int error; 3628 3629 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3630 if (error) 3631 return error; 3632 inc_nlink(dir); 3633 return 0; 3634 } 3635 3636 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3637 struct dentry *dentry, umode_t mode, bool excl) 3638 { 3639 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3640 } 3641 3642 /* 3643 * Link a file.. 3644 */ 3645 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3646 struct dentry *dentry) 3647 { 3648 struct inode *inode = d_inode(old_dentry); 3649 int ret = 0; 3650 3651 /* 3652 * No ordinary (disk based) filesystem counts links as inodes; 3653 * but each new link needs a new dentry, pinning lowmem, and 3654 * tmpfs dentries cannot be pruned until they are unlinked. 3655 * But if an O_TMPFILE file is linked into the tmpfs, the 3656 * first link must skip that, to get the accounting right. 3657 */ 3658 if (inode->i_nlink) { 3659 ret = shmem_reserve_inode(inode->i_sb, NULL); 3660 if (ret) 3661 goto out; 3662 } 3663 3664 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3665 if (ret) { 3666 if (inode->i_nlink) 3667 shmem_free_inode(inode->i_sb, 0); 3668 goto out; 3669 } 3670 3671 dir->i_size += BOGO_DIRENT_SIZE; 3672 inode_set_mtime_to_ts(dir, 3673 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3674 inode_inc_iversion(dir); 3675 inc_nlink(inode); 3676 ihold(inode); /* New dentry reference */ 3677 dget(dentry); /* Extra pinning count for the created dentry */ 3678 d_instantiate(dentry, inode); 3679 out: 3680 return ret; 3681 } 3682 3683 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3684 { 3685 struct inode *inode = d_inode(dentry); 3686 3687 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3688 shmem_free_inode(inode->i_sb, 0); 3689 3690 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3691 3692 dir->i_size -= BOGO_DIRENT_SIZE; 3693 inode_set_mtime_to_ts(dir, 3694 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3695 inode_inc_iversion(dir); 3696 drop_nlink(inode); 3697 dput(dentry); /* Undo the count from "create" - does all the work */ 3698 return 0; 3699 } 3700 3701 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3702 { 3703 if (!simple_offset_empty(dentry)) 3704 return -ENOTEMPTY; 3705 3706 drop_nlink(d_inode(dentry)); 3707 drop_nlink(dir); 3708 return shmem_unlink(dir, dentry); 3709 } 3710 3711 static int shmem_whiteout(struct mnt_idmap *idmap, 3712 struct inode *old_dir, struct dentry *old_dentry) 3713 { 3714 struct dentry *whiteout; 3715 int error; 3716 3717 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3718 if (!whiteout) 3719 return -ENOMEM; 3720 3721 error = shmem_mknod(idmap, old_dir, whiteout, 3722 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3723 dput(whiteout); 3724 if (error) 3725 return error; 3726 3727 /* 3728 * Cheat and hash the whiteout while the old dentry is still in 3729 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3730 * 3731 * d_lookup() will consistently find one of them at this point, 3732 * not sure which one, but that isn't even important. 3733 */ 3734 d_rehash(whiteout); 3735 return 0; 3736 } 3737 3738 /* 3739 * The VFS layer already does all the dentry stuff for rename, 3740 * we just have to decrement the usage count for the target if 3741 * it exists so that the VFS layer correctly free's it when it 3742 * gets overwritten. 3743 */ 3744 static int shmem_rename2(struct mnt_idmap *idmap, 3745 struct inode *old_dir, struct dentry *old_dentry, 3746 struct inode *new_dir, struct dentry *new_dentry, 3747 unsigned int flags) 3748 { 3749 struct inode *inode = d_inode(old_dentry); 3750 int they_are_dirs = S_ISDIR(inode->i_mode); 3751 int error; 3752 3753 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3754 return -EINVAL; 3755 3756 if (flags & RENAME_EXCHANGE) 3757 return simple_offset_rename_exchange(old_dir, old_dentry, 3758 new_dir, new_dentry); 3759 3760 if (!simple_offset_empty(new_dentry)) 3761 return -ENOTEMPTY; 3762 3763 if (flags & RENAME_WHITEOUT) { 3764 error = shmem_whiteout(idmap, old_dir, old_dentry); 3765 if (error) 3766 return error; 3767 } 3768 3769 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 3770 if (error) 3771 return error; 3772 3773 if (d_really_is_positive(new_dentry)) { 3774 (void) shmem_unlink(new_dir, new_dentry); 3775 if (they_are_dirs) { 3776 drop_nlink(d_inode(new_dentry)); 3777 drop_nlink(old_dir); 3778 } 3779 } else if (they_are_dirs) { 3780 drop_nlink(old_dir); 3781 inc_nlink(new_dir); 3782 } 3783 3784 old_dir->i_size -= BOGO_DIRENT_SIZE; 3785 new_dir->i_size += BOGO_DIRENT_SIZE; 3786 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 3787 inode_inc_iversion(old_dir); 3788 inode_inc_iversion(new_dir); 3789 return 0; 3790 } 3791 3792 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3793 struct dentry *dentry, const char *symname) 3794 { 3795 int error; 3796 int len; 3797 struct inode *inode; 3798 struct folio *folio; 3799 3800 len = strlen(symname) + 1; 3801 if (len > PAGE_SIZE) 3802 return -ENAMETOOLONG; 3803 3804 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3805 VM_NORESERVE); 3806 if (IS_ERR(inode)) 3807 return PTR_ERR(inode); 3808 3809 error = security_inode_init_security(inode, dir, &dentry->d_name, 3810 shmem_initxattrs, NULL); 3811 if (error && error != -EOPNOTSUPP) 3812 goto out_iput; 3813 3814 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3815 if (error) 3816 goto out_iput; 3817 3818 inode->i_size = len-1; 3819 if (len <= SHORT_SYMLINK_LEN) { 3820 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3821 if (!inode->i_link) { 3822 error = -ENOMEM; 3823 goto out_remove_offset; 3824 } 3825 inode->i_op = &shmem_short_symlink_operations; 3826 } else { 3827 inode_nohighmem(inode); 3828 inode->i_mapping->a_ops = &shmem_aops; 3829 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE); 3830 if (error) 3831 goto out_remove_offset; 3832 inode->i_op = &shmem_symlink_inode_operations; 3833 memcpy(folio_address(folio), symname, len); 3834 folio_mark_uptodate(folio); 3835 folio_mark_dirty(folio); 3836 folio_unlock(folio); 3837 folio_put(folio); 3838 } 3839 dir->i_size += BOGO_DIRENT_SIZE; 3840 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3841 inode_inc_iversion(dir); 3842 d_instantiate(dentry, inode); 3843 dget(dentry); 3844 return 0; 3845 3846 out_remove_offset: 3847 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3848 out_iput: 3849 iput(inode); 3850 return error; 3851 } 3852 3853 static void shmem_put_link(void *arg) 3854 { 3855 folio_mark_accessed(arg); 3856 folio_put(arg); 3857 } 3858 3859 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 3860 struct delayed_call *done) 3861 { 3862 struct folio *folio = NULL; 3863 int error; 3864 3865 if (!dentry) { 3866 folio = filemap_get_folio(inode->i_mapping, 0); 3867 if (IS_ERR(folio)) 3868 return ERR_PTR(-ECHILD); 3869 if (PageHWPoison(folio_page(folio, 0)) || 3870 !folio_test_uptodate(folio)) { 3871 folio_put(folio); 3872 return ERR_PTR(-ECHILD); 3873 } 3874 } else { 3875 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ); 3876 if (error) 3877 return ERR_PTR(error); 3878 if (!folio) 3879 return ERR_PTR(-ECHILD); 3880 if (PageHWPoison(folio_page(folio, 0))) { 3881 folio_unlock(folio); 3882 folio_put(folio); 3883 return ERR_PTR(-ECHILD); 3884 } 3885 folio_unlock(folio); 3886 } 3887 set_delayed_call(done, shmem_put_link, folio); 3888 return folio_address(folio); 3889 } 3890 3891 #ifdef CONFIG_TMPFS_XATTR 3892 3893 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3894 { 3895 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3896 3897 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3898 3899 return 0; 3900 } 3901 3902 static int shmem_fileattr_set(struct mnt_idmap *idmap, 3903 struct dentry *dentry, struct fileattr *fa) 3904 { 3905 struct inode *inode = d_inode(dentry); 3906 struct shmem_inode_info *info = SHMEM_I(inode); 3907 3908 if (fileattr_has_fsx(fa)) 3909 return -EOPNOTSUPP; 3910 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3911 return -EOPNOTSUPP; 3912 3913 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3914 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3915 3916 shmem_set_inode_flags(inode, info->fsflags); 3917 inode_set_ctime_current(inode); 3918 inode_inc_iversion(inode); 3919 return 0; 3920 } 3921 3922 /* 3923 * Superblocks without xattr inode operations may get some security.* xattr 3924 * support from the LSM "for free". As soon as we have any other xattrs 3925 * like ACLs, we also need to implement the security.* handlers at 3926 * filesystem level, though. 3927 */ 3928 3929 /* 3930 * Callback for security_inode_init_security() for acquiring xattrs. 3931 */ 3932 static int shmem_initxattrs(struct inode *inode, 3933 const struct xattr *xattr_array, void *fs_info) 3934 { 3935 struct shmem_inode_info *info = SHMEM_I(inode); 3936 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3937 const struct xattr *xattr; 3938 struct simple_xattr *new_xattr; 3939 size_t ispace = 0; 3940 size_t len; 3941 3942 if (sbinfo->max_inodes) { 3943 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3944 ispace += simple_xattr_space(xattr->name, 3945 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 3946 } 3947 if (ispace) { 3948 raw_spin_lock(&sbinfo->stat_lock); 3949 if (sbinfo->free_ispace < ispace) 3950 ispace = 0; 3951 else 3952 sbinfo->free_ispace -= ispace; 3953 raw_spin_unlock(&sbinfo->stat_lock); 3954 if (!ispace) 3955 return -ENOSPC; 3956 } 3957 } 3958 3959 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3960 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3961 if (!new_xattr) 3962 break; 3963 3964 len = strlen(xattr->name) + 1; 3965 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3966 GFP_KERNEL_ACCOUNT); 3967 if (!new_xattr->name) { 3968 kvfree(new_xattr); 3969 break; 3970 } 3971 3972 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3973 XATTR_SECURITY_PREFIX_LEN); 3974 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3975 xattr->name, len); 3976 3977 simple_xattr_add(&info->xattrs, new_xattr); 3978 } 3979 3980 if (xattr->name != NULL) { 3981 if (ispace) { 3982 raw_spin_lock(&sbinfo->stat_lock); 3983 sbinfo->free_ispace += ispace; 3984 raw_spin_unlock(&sbinfo->stat_lock); 3985 } 3986 simple_xattrs_free(&info->xattrs, NULL); 3987 return -ENOMEM; 3988 } 3989 3990 return 0; 3991 } 3992 3993 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3994 struct dentry *unused, struct inode *inode, 3995 const char *name, void *buffer, size_t size) 3996 { 3997 struct shmem_inode_info *info = SHMEM_I(inode); 3998 3999 name = xattr_full_name(handler, name); 4000 return simple_xattr_get(&info->xattrs, name, buffer, size); 4001 } 4002 4003 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 4004 struct mnt_idmap *idmap, 4005 struct dentry *unused, struct inode *inode, 4006 const char *name, const void *value, 4007 size_t size, int flags) 4008 { 4009 struct shmem_inode_info *info = SHMEM_I(inode); 4010 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4011 struct simple_xattr *old_xattr; 4012 size_t ispace = 0; 4013 4014 name = xattr_full_name(handler, name); 4015 if (value && sbinfo->max_inodes) { 4016 ispace = simple_xattr_space(name, size); 4017 raw_spin_lock(&sbinfo->stat_lock); 4018 if (sbinfo->free_ispace < ispace) 4019 ispace = 0; 4020 else 4021 sbinfo->free_ispace -= ispace; 4022 raw_spin_unlock(&sbinfo->stat_lock); 4023 if (!ispace) 4024 return -ENOSPC; 4025 } 4026 4027 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 4028 if (!IS_ERR(old_xattr)) { 4029 ispace = 0; 4030 if (old_xattr && sbinfo->max_inodes) 4031 ispace = simple_xattr_space(old_xattr->name, 4032 old_xattr->size); 4033 simple_xattr_free(old_xattr); 4034 old_xattr = NULL; 4035 inode_set_ctime_current(inode); 4036 inode_inc_iversion(inode); 4037 } 4038 if (ispace) { 4039 raw_spin_lock(&sbinfo->stat_lock); 4040 sbinfo->free_ispace += ispace; 4041 raw_spin_unlock(&sbinfo->stat_lock); 4042 } 4043 return PTR_ERR(old_xattr); 4044 } 4045 4046 static const struct xattr_handler shmem_security_xattr_handler = { 4047 .prefix = XATTR_SECURITY_PREFIX, 4048 .get = shmem_xattr_handler_get, 4049 .set = shmem_xattr_handler_set, 4050 }; 4051 4052 static const struct xattr_handler shmem_trusted_xattr_handler = { 4053 .prefix = XATTR_TRUSTED_PREFIX, 4054 .get = shmem_xattr_handler_get, 4055 .set = shmem_xattr_handler_set, 4056 }; 4057 4058 static const struct xattr_handler shmem_user_xattr_handler = { 4059 .prefix = XATTR_USER_PREFIX, 4060 .get = shmem_xattr_handler_get, 4061 .set = shmem_xattr_handler_set, 4062 }; 4063 4064 static const struct xattr_handler * const shmem_xattr_handlers[] = { 4065 &shmem_security_xattr_handler, 4066 &shmem_trusted_xattr_handler, 4067 &shmem_user_xattr_handler, 4068 NULL 4069 }; 4070 4071 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 4072 { 4073 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4074 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 4075 } 4076 #endif /* CONFIG_TMPFS_XATTR */ 4077 4078 static const struct inode_operations shmem_short_symlink_operations = { 4079 .getattr = shmem_getattr, 4080 .setattr = shmem_setattr, 4081 .get_link = simple_get_link, 4082 #ifdef CONFIG_TMPFS_XATTR 4083 .listxattr = shmem_listxattr, 4084 #endif 4085 }; 4086 4087 static const struct inode_operations shmem_symlink_inode_operations = { 4088 .getattr = shmem_getattr, 4089 .setattr = shmem_setattr, 4090 .get_link = shmem_get_link, 4091 #ifdef CONFIG_TMPFS_XATTR 4092 .listxattr = shmem_listxattr, 4093 #endif 4094 }; 4095 4096 static struct dentry *shmem_get_parent(struct dentry *child) 4097 { 4098 return ERR_PTR(-ESTALE); 4099 } 4100 4101 static int shmem_match(struct inode *ino, void *vfh) 4102 { 4103 __u32 *fh = vfh; 4104 __u64 inum = fh[2]; 4105 inum = (inum << 32) | fh[1]; 4106 return ino->i_ino == inum && fh[0] == ino->i_generation; 4107 } 4108 4109 /* Find any alias of inode, but prefer a hashed alias */ 4110 static struct dentry *shmem_find_alias(struct inode *inode) 4111 { 4112 struct dentry *alias = d_find_alias(inode); 4113 4114 return alias ?: d_find_any_alias(inode); 4115 } 4116 4117 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 4118 struct fid *fid, int fh_len, int fh_type) 4119 { 4120 struct inode *inode; 4121 struct dentry *dentry = NULL; 4122 u64 inum; 4123 4124 if (fh_len < 3) 4125 return NULL; 4126 4127 inum = fid->raw[2]; 4128 inum = (inum << 32) | fid->raw[1]; 4129 4130 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 4131 shmem_match, fid->raw); 4132 if (inode) { 4133 dentry = shmem_find_alias(inode); 4134 iput(inode); 4135 } 4136 4137 return dentry; 4138 } 4139 4140 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 4141 struct inode *parent) 4142 { 4143 if (*len < 3) { 4144 *len = 3; 4145 return FILEID_INVALID; 4146 } 4147 4148 if (inode_unhashed(inode)) { 4149 /* Unfortunately insert_inode_hash is not idempotent, 4150 * so as we hash inodes here rather than at creation 4151 * time, we need a lock to ensure we only try 4152 * to do it once 4153 */ 4154 static DEFINE_SPINLOCK(lock); 4155 spin_lock(&lock); 4156 if (inode_unhashed(inode)) 4157 __insert_inode_hash(inode, 4158 inode->i_ino + inode->i_generation); 4159 spin_unlock(&lock); 4160 } 4161 4162 fh[0] = inode->i_generation; 4163 fh[1] = inode->i_ino; 4164 fh[2] = ((__u64)inode->i_ino) >> 32; 4165 4166 *len = 3; 4167 return 1; 4168 } 4169 4170 static const struct export_operations shmem_export_ops = { 4171 .get_parent = shmem_get_parent, 4172 .encode_fh = shmem_encode_fh, 4173 .fh_to_dentry = shmem_fh_to_dentry, 4174 }; 4175 4176 enum shmem_param { 4177 Opt_gid, 4178 Opt_huge, 4179 Opt_mode, 4180 Opt_mpol, 4181 Opt_nr_blocks, 4182 Opt_nr_inodes, 4183 Opt_size, 4184 Opt_uid, 4185 Opt_inode32, 4186 Opt_inode64, 4187 Opt_noswap, 4188 Opt_quota, 4189 Opt_usrquota, 4190 Opt_grpquota, 4191 Opt_usrquota_block_hardlimit, 4192 Opt_usrquota_inode_hardlimit, 4193 Opt_grpquota_block_hardlimit, 4194 Opt_grpquota_inode_hardlimit, 4195 }; 4196 4197 static const struct constant_table shmem_param_enums_huge[] = { 4198 {"never", SHMEM_HUGE_NEVER }, 4199 {"always", SHMEM_HUGE_ALWAYS }, 4200 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 4201 {"advise", SHMEM_HUGE_ADVISE }, 4202 {} 4203 }; 4204 4205 const struct fs_parameter_spec shmem_fs_parameters[] = { 4206 fsparam_gid ("gid", Opt_gid), 4207 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 4208 fsparam_u32oct("mode", Opt_mode), 4209 fsparam_string("mpol", Opt_mpol), 4210 fsparam_string("nr_blocks", Opt_nr_blocks), 4211 fsparam_string("nr_inodes", Opt_nr_inodes), 4212 fsparam_string("size", Opt_size), 4213 fsparam_uid ("uid", Opt_uid), 4214 fsparam_flag ("inode32", Opt_inode32), 4215 fsparam_flag ("inode64", Opt_inode64), 4216 fsparam_flag ("noswap", Opt_noswap), 4217 #ifdef CONFIG_TMPFS_QUOTA 4218 fsparam_flag ("quota", Opt_quota), 4219 fsparam_flag ("usrquota", Opt_usrquota), 4220 fsparam_flag ("grpquota", Opt_grpquota), 4221 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 4222 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 4223 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 4224 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 4225 #endif 4226 {} 4227 }; 4228 4229 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 4230 { 4231 struct shmem_options *ctx = fc->fs_private; 4232 struct fs_parse_result result; 4233 unsigned long long size; 4234 char *rest; 4235 int opt; 4236 kuid_t kuid; 4237 kgid_t kgid; 4238 4239 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 4240 if (opt < 0) 4241 return opt; 4242 4243 switch (opt) { 4244 case Opt_size: 4245 size = memparse(param->string, &rest); 4246 if (*rest == '%') { 4247 size <<= PAGE_SHIFT; 4248 size *= totalram_pages(); 4249 do_div(size, 100); 4250 rest++; 4251 } 4252 if (*rest) 4253 goto bad_value; 4254 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 4255 ctx->seen |= SHMEM_SEEN_BLOCKS; 4256 break; 4257 case Opt_nr_blocks: 4258 ctx->blocks = memparse(param->string, &rest); 4259 if (*rest || ctx->blocks > LONG_MAX) 4260 goto bad_value; 4261 ctx->seen |= SHMEM_SEEN_BLOCKS; 4262 break; 4263 case Opt_nr_inodes: 4264 ctx->inodes = memparse(param->string, &rest); 4265 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 4266 goto bad_value; 4267 ctx->seen |= SHMEM_SEEN_INODES; 4268 break; 4269 case Opt_mode: 4270 ctx->mode = result.uint_32 & 07777; 4271 break; 4272 case Opt_uid: 4273 kuid = result.uid; 4274 4275 /* 4276 * The requested uid must be representable in the 4277 * filesystem's idmapping. 4278 */ 4279 if (!kuid_has_mapping(fc->user_ns, kuid)) 4280 goto bad_value; 4281 4282 ctx->uid = kuid; 4283 break; 4284 case Opt_gid: 4285 kgid = result.gid; 4286 4287 /* 4288 * The requested gid must be representable in the 4289 * filesystem's idmapping. 4290 */ 4291 if (!kgid_has_mapping(fc->user_ns, kgid)) 4292 goto bad_value; 4293 4294 ctx->gid = kgid; 4295 break; 4296 case Opt_huge: 4297 ctx->huge = result.uint_32; 4298 if (ctx->huge != SHMEM_HUGE_NEVER && 4299 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4300 has_transparent_hugepage())) 4301 goto unsupported_parameter; 4302 ctx->seen |= SHMEM_SEEN_HUGE; 4303 break; 4304 case Opt_mpol: 4305 if (IS_ENABLED(CONFIG_NUMA)) { 4306 mpol_put(ctx->mpol); 4307 ctx->mpol = NULL; 4308 if (mpol_parse_str(param->string, &ctx->mpol)) 4309 goto bad_value; 4310 break; 4311 } 4312 goto unsupported_parameter; 4313 case Opt_inode32: 4314 ctx->full_inums = false; 4315 ctx->seen |= SHMEM_SEEN_INUMS; 4316 break; 4317 case Opt_inode64: 4318 if (sizeof(ino_t) < 8) { 4319 return invalfc(fc, 4320 "Cannot use inode64 with <64bit inums in kernel\n"); 4321 } 4322 ctx->full_inums = true; 4323 ctx->seen |= SHMEM_SEEN_INUMS; 4324 break; 4325 case Opt_noswap: 4326 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4327 return invalfc(fc, 4328 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4329 } 4330 ctx->noswap = true; 4331 ctx->seen |= SHMEM_SEEN_NOSWAP; 4332 break; 4333 case Opt_quota: 4334 if (fc->user_ns != &init_user_ns) 4335 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4336 ctx->seen |= SHMEM_SEEN_QUOTA; 4337 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4338 break; 4339 case Opt_usrquota: 4340 if (fc->user_ns != &init_user_ns) 4341 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4342 ctx->seen |= SHMEM_SEEN_QUOTA; 4343 ctx->quota_types |= QTYPE_MASK_USR; 4344 break; 4345 case Opt_grpquota: 4346 if (fc->user_ns != &init_user_ns) 4347 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4348 ctx->seen |= SHMEM_SEEN_QUOTA; 4349 ctx->quota_types |= QTYPE_MASK_GRP; 4350 break; 4351 case Opt_usrquota_block_hardlimit: 4352 size = memparse(param->string, &rest); 4353 if (*rest || !size) 4354 goto bad_value; 4355 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4356 return invalfc(fc, 4357 "User quota block hardlimit too large."); 4358 ctx->qlimits.usrquota_bhardlimit = size; 4359 break; 4360 case Opt_grpquota_block_hardlimit: 4361 size = memparse(param->string, &rest); 4362 if (*rest || !size) 4363 goto bad_value; 4364 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4365 return invalfc(fc, 4366 "Group quota block hardlimit too large."); 4367 ctx->qlimits.grpquota_bhardlimit = size; 4368 break; 4369 case Opt_usrquota_inode_hardlimit: 4370 size = memparse(param->string, &rest); 4371 if (*rest || !size) 4372 goto bad_value; 4373 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4374 return invalfc(fc, 4375 "User quota inode hardlimit too large."); 4376 ctx->qlimits.usrquota_ihardlimit = size; 4377 break; 4378 case Opt_grpquota_inode_hardlimit: 4379 size = memparse(param->string, &rest); 4380 if (*rest || !size) 4381 goto bad_value; 4382 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4383 return invalfc(fc, 4384 "Group quota inode hardlimit too large."); 4385 ctx->qlimits.grpquota_ihardlimit = size; 4386 break; 4387 } 4388 return 0; 4389 4390 unsupported_parameter: 4391 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4392 bad_value: 4393 return invalfc(fc, "Bad value for '%s'", param->key); 4394 } 4395 4396 static int shmem_parse_options(struct fs_context *fc, void *data) 4397 { 4398 char *options = data; 4399 4400 if (options) { 4401 int err = security_sb_eat_lsm_opts(options, &fc->security); 4402 if (err) 4403 return err; 4404 } 4405 4406 while (options != NULL) { 4407 char *this_char = options; 4408 for (;;) { 4409 /* 4410 * NUL-terminate this option: unfortunately, 4411 * mount options form a comma-separated list, 4412 * but mpol's nodelist may also contain commas. 4413 */ 4414 options = strchr(options, ','); 4415 if (options == NULL) 4416 break; 4417 options++; 4418 if (!isdigit(*options)) { 4419 options[-1] = '\0'; 4420 break; 4421 } 4422 } 4423 if (*this_char) { 4424 char *value = strchr(this_char, '='); 4425 size_t len = 0; 4426 int err; 4427 4428 if (value) { 4429 *value++ = '\0'; 4430 len = strlen(value); 4431 } 4432 err = vfs_parse_fs_string(fc, this_char, value, len); 4433 if (err < 0) 4434 return err; 4435 } 4436 } 4437 return 0; 4438 } 4439 4440 /* 4441 * Reconfigure a shmem filesystem. 4442 */ 4443 static int shmem_reconfigure(struct fs_context *fc) 4444 { 4445 struct shmem_options *ctx = fc->fs_private; 4446 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4447 unsigned long used_isp; 4448 struct mempolicy *mpol = NULL; 4449 const char *err; 4450 4451 raw_spin_lock(&sbinfo->stat_lock); 4452 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4453 4454 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4455 if (!sbinfo->max_blocks) { 4456 err = "Cannot retroactively limit size"; 4457 goto out; 4458 } 4459 if (percpu_counter_compare(&sbinfo->used_blocks, 4460 ctx->blocks) > 0) { 4461 err = "Too small a size for current use"; 4462 goto out; 4463 } 4464 } 4465 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4466 if (!sbinfo->max_inodes) { 4467 err = "Cannot retroactively limit inodes"; 4468 goto out; 4469 } 4470 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4471 err = "Too few inodes for current use"; 4472 goto out; 4473 } 4474 } 4475 4476 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4477 sbinfo->next_ino > UINT_MAX) { 4478 err = "Current inum too high to switch to 32-bit inums"; 4479 goto out; 4480 } 4481 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4482 err = "Cannot disable swap on remount"; 4483 goto out; 4484 } 4485 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4486 err = "Cannot enable swap on remount if it was disabled on first mount"; 4487 goto out; 4488 } 4489 4490 if (ctx->seen & SHMEM_SEEN_QUOTA && 4491 !sb_any_quota_loaded(fc->root->d_sb)) { 4492 err = "Cannot enable quota on remount"; 4493 goto out; 4494 } 4495 4496 #ifdef CONFIG_TMPFS_QUOTA 4497 #define CHANGED_LIMIT(name) \ 4498 (ctx->qlimits.name## hardlimit && \ 4499 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4500 4501 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4502 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4503 err = "Cannot change global quota limit on remount"; 4504 goto out; 4505 } 4506 #endif /* CONFIG_TMPFS_QUOTA */ 4507 4508 if (ctx->seen & SHMEM_SEEN_HUGE) 4509 sbinfo->huge = ctx->huge; 4510 if (ctx->seen & SHMEM_SEEN_INUMS) 4511 sbinfo->full_inums = ctx->full_inums; 4512 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4513 sbinfo->max_blocks = ctx->blocks; 4514 if (ctx->seen & SHMEM_SEEN_INODES) { 4515 sbinfo->max_inodes = ctx->inodes; 4516 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4517 } 4518 4519 /* 4520 * Preserve previous mempolicy unless mpol remount option was specified. 4521 */ 4522 if (ctx->mpol) { 4523 mpol = sbinfo->mpol; 4524 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4525 ctx->mpol = NULL; 4526 } 4527 4528 if (ctx->noswap) 4529 sbinfo->noswap = true; 4530 4531 raw_spin_unlock(&sbinfo->stat_lock); 4532 mpol_put(mpol); 4533 return 0; 4534 out: 4535 raw_spin_unlock(&sbinfo->stat_lock); 4536 return invalfc(fc, "%s", err); 4537 } 4538 4539 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4540 { 4541 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4542 struct mempolicy *mpol; 4543 4544 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4545 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4546 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4547 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4548 if (sbinfo->mode != (0777 | S_ISVTX)) 4549 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4550 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4551 seq_printf(seq, ",uid=%u", 4552 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4553 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4554 seq_printf(seq, ",gid=%u", 4555 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4556 4557 /* 4558 * Showing inode{64,32} might be useful even if it's the system default, 4559 * since then people don't have to resort to checking both here and 4560 * /proc/config.gz to confirm 64-bit inums were successfully applied 4561 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4562 * 4563 * We hide it when inode64 isn't the default and we are using 32-bit 4564 * inodes, since that probably just means the feature isn't even under 4565 * consideration. 4566 * 4567 * As such: 4568 * 4569 * +-----------------+-----------------+ 4570 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4571 * +------------------+-----------------+-----------------+ 4572 * | full_inums=true | show | show | 4573 * | full_inums=false | show | hide | 4574 * +------------------+-----------------+-----------------+ 4575 * 4576 */ 4577 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4578 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4579 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4580 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4581 if (sbinfo->huge) 4582 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4583 #endif 4584 mpol = shmem_get_sbmpol(sbinfo); 4585 shmem_show_mpol(seq, mpol); 4586 mpol_put(mpol); 4587 if (sbinfo->noswap) 4588 seq_printf(seq, ",noswap"); 4589 #ifdef CONFIG_TMPFS_QUOTA 4590 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4591 seq_printf(seq, ",usrquota"); 4592 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4593 seq_printf(seq, ",grpquota"); 4594 if (sbinfo->qlimits.usrquota_bhardlimit) 4595 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4596 sbinfo->qlimits.usrquota_bhardlimit); 4597 if (sbinfo->qlimits.grpquota_bhardlimit) 4598 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4599 sbinfo->qlimits.grpquota_bhardlimit); 4600 if (sbinfo->qlimits.usrquota_ihardlimit) 4601 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4602 sbinfo->qlimits.usrquota_ihardlimit); 4603 if (sbinfo->qlimits.grpquota_ihardlimit) 4604 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4605 sbinfo->qlimits.grpquota_ihardlimit); 4606 #endif 4607 return 0; 4608 } 4609 4610 #endif /* CONFIG_TMPFS */ 4611 4612 static void shmem_put_super(struct super_block *sb) 4613 { 4614 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4615 4616 #ifdef CONFIG_TMPFS_QUOTA 4617 shmem_disable_quotas(sb); 4618 #endif 4619 free_percpu(sbinfo->ino_batch); 4620 percpu_counter_destroy(&sbinfo->used_blocks); 4621 mpol_put(sbinfo->mpol); 4622 kfree(sbinfo); 4623 sb->s_fs_info = NULL; 4624 } 4625 4626 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4627 { 4628 struct shmem_options *ctx = fc->fs_private; 4629 struct inode *inode; 4630 struct shmem_sb_info *sbinfo; 4631 int error = -ENOMEM; 4632 4633 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4634 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4635 L1_CACHE_BYTES), GFP_KERNEL); 4636 if (!sbinfo) 4637 return error; 4638 4639 sb->s_fs_info = sbinfo; 4640 4641 #ifdef CONFIG_TMPFS 4642 /* 4643 * Per default we only allow half of the physical ram per 4644 * tmpfs instance, limiting inodes to one per page of lowmem; 4645 * but the internal instance is left unlimited. 4646 */ 4647 if (!(sb->s_flags & SB_KERNMOUNT)) { 4648 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 4649 ctx->blocks = shmem_default_max_blocks(); 4650 if (!(ctx->seen & SHMEM_SEEN_INODES)) 4651 ctx->inodes = shmem_default_max_inodes(); 4652 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 4653 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 4654 sbinfo->noswap = ctx->noswap; 4655 } else { 4656 sb->s_flags |= SB_NOUSER; 4657 } 4658 sb->s_export_op = &shmem_export_ops; 4659 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 4660 #else 4661 sb->s_flags |= SB_NOUSER; 4662 #endif 4663 sbinfo->max_blocks = ctx->blocks; 4664 sbinfo->max_inodes = ctx->inodes; 4665 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 4666 if (sb->s_flags & SB_KERNMOUNT) { 4667 sbinfo->ino_batch = alloc_percpu(ino_t); 4668 if (!sbinfo->ino_batch) 4669 goto failed; 4670 } 4671 sbinfo->uid = ctx->uid; 4672 sbinfo->gid = ctx->gid; 4673 sbinfo->full_inums = ctx->full_inums; 4674 sbinfo->mode = ctx->mode; 4675 sbinfo->huge = ctx->huge; 4676 sbinfo->mpol = ctx->mpol; 4677 ctx->mpol = NULL; 4678 4679 raw_spin_lock_init(&sbinfo->stat_lock); 4680 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 4681 goto failed; 4682 spin_lock_init(&sbinfo->shrinklist_lock); 4683 INIT_LIST_HEAD(&sbinfo->shrinklist); 4684 4685 sb->s_maxbytes = MAX_LFS_FILESIZE; 4686 sb->s_blocksize = PAGE_SIZE; 4687 sb->s_blocksize_bits = PAGE_SHIFT; 4688 sb->s_magic = TMPFS_MAGIC; 4689 sb->s_op = &shmem_ops; 4690 sb->s_time_gran = 1; 4691 #ifdef CONFIG_TMPFS_XATTR 4692 sb->s_xattr = shmem_xattr_handlers; 4693 #endif 4694 #ifdef CONFIG_TMPFS_POSIX_ACL 4695 sb->s_flags |= SB_POSIXACL; 4696 #endif 4697 uuid_t uuid; 4698 uuid_gen(&uuid); 4699 super_set_uuid(sb, uuid.b, sizeof(uuid)); 4700 4701 #ifdef CONFIG_TMPFS_QUOTA 4702 if (ctx->seen & SHMEM_SEEN_QUOTA) { 4703 sb->dq_op = &shmem_quota_operations; 4704 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4705 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4706 4707 /* Copy the default limits from ctx into sbinfo */ 4708 memcpy(&sbinfo->qlimits, &ctx->qlimits, 4709 sizeof(struct shmem_quota_limits)); 4710 4711 if (shmem_enable_quotas(sb, ctx->quota_types)) 4712 goto failed; 4713 } 4714 #endif /* CONFIG_TMPFS_QUOTA */ 4715 4716 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 4717 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 4718 if (IS_ERR(inode)) { 4719 error = PTR_ERR(inode); 4720 goto failed; 4721 } 4722 inode->i_uid = sbinfo->uid; 4723 inode->i_gid = sbinfo->gid; 4724 sb->s_root = d_make_root(inode); 4725 if (!sb->s_root) 4726 goto failed; 4727 return 0; 4728 4729 failed: 4730 shmem_put_super(sb); 4731 return error; 4732 } 4733 4734 static int shmem_get_tree(struct fs_context *fc) 4735 { 4736 return get_tree_nodev(fc, shmem_fill_super); 4737 } 4738 4739 static void shmem_free_fc(struct fs_context *fc) 4740 { 4741 struct shmem_options *ctx = fc->fs_private; 4742 4743 if (ctx) { 4744 mpol_put(ctx->mpol); 4745 kfree(ctx); 4746 } 4747 } 4748 4749 static const struct fs_context_operations shmem_fs_context_ops = { 4750 .free = shmem_free_fc, 4751 .get_tree = shmem_get_tree, 4752 #ifdef CONFIG_TMPFS 4753 .parse_monolithic = shmem_parse_options, 4754 .parse_param = shmem_parse_one, 4755 .reconfigure = shmem_reconfigure, 4756 #endif 4757 }; 4758 4759 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 4760 4761 static struct inode *shmem_alloc_inode(struct super_block *sb) 4762 { 4763 struct shmem_inode_info *info; 4764 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 4765 if (!info) 4766 return NULL; 4767 return &info->vfs_inode; 4768 } 4769 4770 static void shmem_free_in_core_inode(struct inode *inode) 4771 { 4772 if (S_ISLNK(inode->i_mode)) 4773 kfree(inode->i_link); 4774 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 4775 } 4776 4777 static void shmem_destroy_inode(struct inode *inode) 4778 { 4779 if (S_ISREG(inode->i_mode)) 4780 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 4781 if (S_ISDIR(inode->i_mode)) 4782 simple_offset_destroy(shmem_get_offset_ctx(inode)); 4783 } 4784 4785 static void shmem_init_inode(void *foo) 4786 { 4787 struct shmem_inode_info *info = foo; 4788 inode_init_once(&info->vfs_inode); 4789 } 4790 4791 static void __init shmem_init_inodecache(void) 4792 { 4793 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 4794 sizeof(struct shmem_inode_info), 4795 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 4796 } 4797 4798 static void __init shmem_destroy_inodecache(void) 4799 { 4800 kmem_cache_destroy(shmem_inode_cachep); 4801 } 4802 4803 /* Keep the page in page cache instead of truncating it */ 4804 static int shmem_error_remove_folio(struct address_space *mapping, 4805 struct folio *folio) 4806 { 4807 return 0; 4808 } 4809 4810 static const struct address_space_operations shmem_aops = { 4811 .writepage = shmem_writepage, 4812 .dirty_folio = noop_dirty_folio, 4813 #ifdef CONFIG_TMPFS 4814 .write_begin = shmem_write_begin, 4815 .write_end = shmem_write_end, 4816 #endif 4817 #ifdef CONFIG_MIGRATION 4818 .migrate_folio = migrate_folio, 4819 #endif 4820 .error_remove_folio = shmem_error_remove_folio, 4821 }; 4822 4823 static const struct file_operations shmem_file_operations = { 4824 .mmap = shmem_mmap, 4825 .open = shmem_file_open, 4826 .get_unmapped_area = shmem_get_unmapped_area, 4827 #ifdef CONFIG_TMPFS 4828 .llseek = shmem_file_llseek, 4829 .read_iter = shmem_file_read_iter, 4830 .write_iter = shmem_file_write_iter, 4831 .fsync = noop_fsync, 4832 .splice_read = shmem_file_splice_read, 4833 .splice_write = iter_file_splice_write, 4834 .fallocate = shmem_fallocate, 4835 #endif 4836 }; 4837 4838 static const struct inode_operations shmem_inode_operations = { 4839 .getattr = shmem_getattr, 4840 .setattr = shmem_setattr, 4841 #ifdef CONFIG_TMPFS_XATTR 4842 .listxattr = shmem_listxattr, 4843 .set_acl = simple_set_acl, 4844 .fileattr_get = shmem_fileattr_get, 4845 .fileattr_set = shmem_fileattr_set, 4846 #endif 4847 }; 4848 4849 static const struct inode_operations shmem_dir_inode_operations = { 4850 #ifdef CONFIG_TMPFS 4851 .getattr = shmem_getattr, 4852 .create = shmem_create, 4853 .lookup = simple_lookup, 4854 .link = shmem_link, 4855 .unlink = shmem_unlink, 4856 .symlink = shmem_symlink, 4857 .mkdir = shmem_mkdir, 4858 .rmdir = shmem_rmdir, 4859 .mknod = shmem_mknod, 4860 .rename = shmem_rename2, 4861 .tmpfile = shmem_tmpfile, 4862 .get_offset_ctx = shmem_get_offset_ctx, 4863 #endif 4864 #ifdef CONFIG_TMPFS_XATTR 4865 .listxattr = shmem_listxattr, 4866 .fileattr_get = shmem_fileattr_get, 4867 .fileattr_set = shmem_fileattr_set, 4868 #endif 4869 #ifdef CONFIG_TMPFS_POSIX_ACL 4870 .setattr = shmem_setattr, 4871 .set_acl = simple_set_acl, 4872 #endif 4873 }; 4874 4875 static const struct inode_operations shmem_special_inode_operations = { 4876 .getattr = shmem_getattr, 4877 #ifdef CONFIG_TMPFS_XATTR 4878 .listxattr = shmem_listxattr, 4879 #endif 4880 #ifdef CONFIG_TMPFS_POSIX_ACL 4881 .setattr = shmem_setattr, 4882 .set_acl = simple_set_acl, 4883 #endif 4884 }; 4885 4886 static const struct super_operations shmem_ops = { 4887 .alloc_inode = shmem_alloc_inode, 4888 .free_inode = shmem_free_in_core_inode, 4889 .destroy_inode = shmem_destroy_inode, 4890 #ifdef CONFIG_TMPFS 4891 .statfs = shmem_statfs, 4892 .show_options = shmem_show_options, 4893 #endif 4894 #ifdef CONFIG_TMPFS_QUOTA 4895 .get_dquots = shmem_get_dquots, 4896 #endif 4897 .evict_inode = shmem_evict_inode, 4898 .drop_inode = generic_delete_inode, 4899 .put_super = shmem_put_super, 4900 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4901 .nr_cached_objects = shmem_unused_huge_count, 4902 .free_cached_objects = shmem_unused_huge_scan, 4903 #endif 4904 }; 4905 4906 static const struct vm_operations_struct shmem_vm_ops = { 4907 .fault = shmem_fault, 4908 .map_pages = filemap_map_pages, 4909 #ifdef CONFIG_NUMA 4910 .set_policy = shmem_set_policy, 4911 .get_policy = shmem_get_policy, 4912 #endif 4913 }; 4914 4915 static const struct vm_operations_struct shmem_anon_vm_ops = { 4916 .fault = shmem_fault, 4917 .map_pages = filemap_map_pages, 4918 #ifdef CONFIG_NUMA 4919 .set_policy = shmem_set_policy, 4920 .get_policy = shmem_get_policy, 4921 #endif 4922 }; 4923 4924 int shmem_init_fs_context(struct fs_context *fc) 4925 { 4926 struct shmem_options *ctx; 4927 4928 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4929 if (!ctx) 4930 return -ENOMEM; 4931 4932 ctx->mode = 0777 | S_ISVTX; 4933 ctx->uid = current_fsuid(); 4934 ctx->gid = current_fsgid(); 4935 4936 fc->fs_private = ctx; 4937 fc->ops = &shmem_fs_context_ops; 4938 return 0; 4939 } 4940 4941 static struct file_system_type shmem_fs_type = { 4942 .owner = THIS_MODULE, 4943 .name = "tmpfs", 4944 .init_fs_context = shmem_init_fs_context, 4945 #ifdef CONFIG_TMPFS 4946 .parameters = shmem_fs_parameters, 4947 #endif 4948 .kill_sb = kill_litter_super, 4949 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP, 4950 }; 4951 4952 void __init shmem_init(void) 4953 { 4954 int error; 4955 4956 shmem_init_inodecache(); 4957 4958 #ifdef CONFIG_TMPFS_QUOTA 4959 register_quota_format(&shmem_quota_format); 4960 #endif 4961 4962 error = register_filesystem(&shmem_fs_type); 4963 if (error) { 4964 pr_err("Could not register tmpfs\n"); 4965 goto out2; 4966 } 4967 4968 shm_mnt = kern_mount(&shmem_fs_type); 4969 if (IS_ERR(shm_mnt)) { 4970 error = PTR_ERR(shm_mnt); 4971 pr_err("Could not kern_mount tmpfs\n"); 4972 goto out1; 4973 } 4974 4975 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4976 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4977 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4978 else 4979 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4980 4981 /* 4982 * Default to setting PMD-sized THP to inherit the global setting and 4983 * disable all other multi-size THPs. 4984 */ 4985 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER); 4986 #endif 4987 return; 4988 4989 out1: 4990 unregister_filesystem(&shmem_fs_type); 4991 out2: 4992 #ifdef CONFIG_TMPFS_QUOTA 4993 unregister_quota_format(&shmem_quota_format); 4994 #endif 4995 shmem_destroy_inodecache(); 4996 shm_mnt = ERR_PTR(error); 4997 } 4998 4999 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 5000 static ssize_t shmem_enabled_show(struct kobject *kobj, 5001 struct kobj_attribute *attr, char *buf) 5002 { 5003 static const int values[] = { 5004 SHMEM_HUGE_ALWAYS, 5005 SHMEM_HUGE_WITHIN_SIZE, 5006 SHMEM_HUGE_ADVISE, 5007 SHMEM_HUGE_NEVER, 5008 SHMEM_HUGE_DENY, 5009 SHMEM_HUGE_FORCE, 5010 }; 5011 int len = 0; 5012 int i; 5013 5014 for (i = 0; i < ARRAY_SIZE(values); i++) { 5015 len += sysfs_emit_at(buf, len, 5016 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 5017 i ? " " : "", shmem_format_huge(values[i])); 5018 } 5019 len += sysfs_emit_at(buf, len, "\n"); 5020 5021 return len; 5022 } 5023 5024 static ssize_t shmem_enabled_store(struct kobject *kobj, 5025 struct kobj_attribute *attr, const char *buf, size_t count) 5026 { 5027 char tmp[16]; 5028 int huge; 5029 5030 if (count + 1 > sizeof(tmp)) 5031 return -EINVAL; 5032 memcpy(tmp, buf, count); 5033 tmp[count] = '\0'; 5034 if (count && tmp[count - 1] == '\n') 5035 tmp[count - 1] = '\0'; 5036 5037 huge = shmem_parse_huge(tmp); 5038 if (huge == -EINVAL) 5039 return -EINVAL; 5040 if (!has_transparent_hugepage() && 5041 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 5042 return -EINVAL; 5043 5044 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5045 if (huge == SHMEM_HUGE_FORCE && 5046 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER)) 5047 return -EINVAL; 5048 5049 shmem_huge = huge; 5050 if (shmem_huge > SHMEM_HUGE_DENY) 5051 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5052 return count; 5053 } 5054 5055 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 5056 static DEFINE_SPINLOCK(huge_shmem_orders_lock); 5057 5058 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj, 5059 struct kobj_attribute *attr, char *buf) 5060 { 5061 int order = to_thpsize(kobj)->order; 5062 const char *output; 5063 5064 if (test_bit(order, &huge_shmem_orders_always)) 5065 output = "[always] inherit within_size advise never"; 5066 else if (test_bit(order, &huge_shmem_orders_inherit)) 5067 output = "always [inherit] within_size advise never"; 5068 else if (test_bit(order, &huge_shmem_orders_within_size)) 5069 output = "always inherit [within_size] advise never"; 5070 else if (test_bit(order, &huge_shmem_orders_madvise)) 5071 output = "always inherit within_size [advise] never"; 5072 else 5073 output = "always inherit within_size advise [never]"; 5074 5075 return sysfs_emit(buf, "%s\n", output); 5076 } 5077 5078 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj, 5079 struct kobj_attribute *attr, 5080 const char *buf, size_t count) 5081 { 5082 int order = to_thpsize(kobj)->order; 5083 ssize_t ret = count; 5084 5085 if (sysfs_streq(buf, "always")) { 5086 spin_lock(&huge_shmem_orders_lock); 5087 clear_bit(order, &huge_shmem_orders_inherit); 5088 clear_bit(order, &huge_shmem_orders_madvise); 5089 clear_bit(order, &huge_shmem_orders_within_size); 5090 set_bit(order, &huge_shmem_orders_always); 5091 spin_unlock(&huge_shmem_orders_lock); 5092 } else if (sysfs_streq(buf, "inherit")) { 5093 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5094 if (shmem_huge == SHMEM_HUGE_FORCE && 5095 order != HPAGE_PMD_ORDER) 5096 return -EINVAL; 5097 5098 spin_lock(&huge_shmem_orders_lock); 5099 clear_bit(order, &huge_shmem_orders_always); 5100 clear_bit(order, &huge_shmem_orders_madvise); 5101 clear_bit(order, &huge_shmem_orders_within_size); 5102 set_bit(order, &huge_shmem_orders_inherit); 5103 spin_unlock(&huge_shmem_orders_lock); 5104 } else if (sysfs_streq(buf, "within_size")) { 5105 spin_lock(&huge_shmem_orders_lock); 5106 clear_bit(order, &huge_shmem_orders_always); 5107 clear_bit(order, &huge_shmem_orders_inherit); 5108 clear_bit(order, &huge_shmem_orders_madvise); 5109 set_bit(order, &huge_shmem_orders_within_size); 5110 spin_unlock(&huge_shmem_orders_lock); 5111 } else if (sysfs_streq(buf, "advise")) { 5112 spin_lock(&huge_shmem_orders_lock); 5113 clear_bit(order, &huge_shmem_orders_always); 5114 clear_bit(order, &huge_shmem_orders_inherit); 5115 clear_bit(order, &huge_shmem_orders_within_size); 5116 set_bit(order, &huge_shmem_orders_madvise); 5117 spin_unlock(&huge_shmem_orders_lock); 5118 } else if (sysfs_streq(buf, "never")) { 5119 spin_lock(&huge_shmem_orders_lock); 5120 clear_bit(order, &huge_shmem_orders_always); 5121 clear_bit(order, &huge_shmem_orders_inherit); 5122 clear_bit(order, &huge_shmem_orders_within_size); 5123 clear_bit(order, &huge_shmem_orders_madvise); 5124 spin_unlock(&huge_shmem_orders_lock); 5125 } else { 5126 ret = -EINVAL; 5127 } 5128 5129 return ret; 5130 } 5131 5132 struct kobj_attribute thpsize_shmem_enabled_attr = 5133 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store); 5134 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 5135 5136 #else /* !CONFIG_SHMEM */ 5137 5138 /* 5139 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 5140 * 5141 * This is intended for small system where the benefits of the full 5142 * shmem code (swap-backed and resource-limited) are outweighed by 5143 * their complexity. On systems without swap this code should be 5144 * effectively equivalent, but much lighter weight. 5145 */ 5146 5147 static struct file_system_type shmem_fs_type = { 5148 .name = "tmpfs", 5149 .init_fs_context = ramfs_init_fs_context, 5150 .parameters = ramfs_fs_parameters, 5151 .kill_sb = ramfs_kill_sb, 5152 .fs_flags = FS_USERNS_MOUNT, 5153 }; 5154 5155 void __init shmem_init(void) 5156 { 5157 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 5158 5159 shm_mnt = kern_mount(&shmem_fs_type); 5160 BUG_ON(IS_ERR(shm_mnt)); 5161 } 5162 5163 int shmem_unuse(unsigned int type) 5164 { 5165 return 0; 5166 } 5167 5168 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 5169 { 5170 return 0; 5171 } 5172 5173 void shmem_unlock_mapping(struct address_space *mapping) 5174 { 5175 } 5176 5177 #ifdef CONFIG_MMU 5178 unsigned long shmem_get_unmapped_area(struct file *file, 5179 unsigned long addr, unsigned long len, 5180 unsigned long pgoff, unsigned long flags) 5181 { 5182 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags); 5183 } 5184 #endif 5185 5186 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 5187 { 5188 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 5189 } 5190 EXPORT_SYMBOL_GPL(shmem_truncate_range); 5191 5192 #define shmem_vm_ops generic_file_vm_ops 5193 #define shmem_anon_vm_ops generic_file_vm_ops 5194 #define shmem_file_operations ramfs_file_operations 5195 #define shmem_acct_size(flags, size) 0 5196 #define shmem_unacct_size(flags, size) do {} while (0) 5197 5198 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 5199 struct super_block *sb, struct inode *dir, 5200 umode_t mode, dev_t dev, unsigned long flags) 5201 { 5202 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 5203 return inode ? inode : ERR_PTR(-ENOSPC); 5204 } 5205 5206 #endif /* CONFIG_SHMEM */ 5207 5208 /* common code */ 5209 5210 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 5211 loff_t size, unsigned long flags, unsigned int i_flags) 5212 { 5213 struct inode *inode; 5214 struct file *res; 5215 5216 if (IS_ERR(mnt)) 5217 return ERR_CAST(mnt); 5218 5219 if (size < 0 || size > MAX_LFS_FILESIZE) 5220 return ERR_PTR(-EINVAL); 5221 5222 if (shmem_acct_size(flags, size)) 5223 return ERR_PTR(-ENOMEM); 5224 5225 if (is_idmapped_mnt(mnt)) 5226 return ERR_PTR(-EINVAL); 5227 5228 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 5229 S_IFREG | S_IRWXUGO, 0, flags); 5230 if (IS_ERR(inode)) { 5231 shmem_unacct_size(flags, size); 5232 return ERR_CAST(inode); 5233 } 5234 inode->i_flags |= i_flags; 5235 inode->i_size = size; 5236 clear_nlink(inode); /* It is unlinked */ 5237 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 5238 if (!IS_ERR(res)) 5239 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 5240 &shmem_file_operations); 5241 if (IS_ERR(res)) 5242 iput(inode); 5243 return res; 5244 } 5245 5246 /** 5247 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 5248 * kernel internal. There will be NO LSM permission checks against the 5249 * underlying inode. So users of this interface must do LSM checks at a 5250 * higher layer. The users are the big_key and shm implementations. LSM 5251 * checks are provided at the key or shm level rather than the inode. 5252 * @name: name for dentry (to be seen in /proc/<pid>/maps 5253 * @size: size to be set for the file 5254 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5255 */ 5256 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 5257 { 5258 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 5259 } 5260 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 5261 5262 /** 5263 * shmem_file_setup - get an unlinked file living in tmpfs 5264 * @name: name for dentry (to be seen in /proc/<pid>/maps 5265 * @size: size to be set for the file 5266 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5267 */ 5268 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 5269 { 5270 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 5271 } 5272 EXPORT_SYMBOL_GPL(shmem_file_setup); 5273 5274 /** 5275 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 5276 * @mnt: the tmpfs mount where the file will be created 5277 * @name: name for dentry (to be seen in /proc/<pid>/maps 5278 * @size: size to be set for the file 5279 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5280 */ 5281 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 5282 loff_t size, unsigned long flags) 5283 { 5284 return __shmem_file_setup(mnt, name, size, flags, 0); 5285 } 5286 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 5287 5288 /** 5289 * shmem_zero_setup - setup a shared anonymous mapping 5290 * @vma: the vma to be mmapped is prepared by do_mmap 5291 */ 5292 int shmem_zero_setup(struct vm_area_struct *vma) 5293 { 5294 struct file *file; 5295 loff_t size = vma->vm_end - vma->vm_start; 5296 5297 /* 5298 * Cloning a new file under mmap_lock leads to a lock ordering conflict 5299 * between XFS directory reading and selinux: since this file is only 5300 * accessible to the user through its mapping, use S_PRIVATE flag to 5301 * bypass file security, in the same way as shmem_kernel_file_setup(). 5302 */ 5303 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 5304 if (IS_ERR(file)) 5305 return PTR_ERR(file); 5306 5307 if (vma->vm_file) 5308 fput(vma->vm_file); 5309 vma->vm_file = file; 5310 vma->vm_ops = &shmem_anon_vm_ops; 5311 5312 return 0; 5313 } 5314 5315 /** 5316 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 5317 * @mapping: the folio's address_space 5318 * @index: the folio index 5319 * @gfp: the page allocator flags to use if allocating 5320 * 5321 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 5322 * with any new page allocations done using the specified allocation flags. 5323 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 5324 * suit tmpfs, since it may have pages in swapcache, and needs to find those 5325 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 5326 * 5327 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 5328 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 5329 */ 5330 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 5331 pgoff_t index, gfp_t gfp) 5332 { 5333 #ifdef CONFIG_SHMEM 5334 struct inode *inode = mapping->host; 5335 struct folio *folio; 5336 int error; 5337 5338 error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE, 5339 gfp, NULL, NULL); 5340 if (error) 5341 return ERR_PTR(error); 5342 5343 folio_unlock(folio); 5344 return folio; 5345 #else 5346 /* 5347 * The tiny !SHMEM case uses ramfs without swap 5348 */ 5349 return mapping_read_folio_gfp(mapping, index, gfp); 5350 #endif 5351 } 5352 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 5353 5354 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 5355 pgoff_t index, gfp_t gfp) 5356 { 5357 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 5358 struct page *page; 5359 5360 if (IS_ERR(folio)) 5361 return &folio->page; 5362 5363 page = folio_file_page(folio, index); 5364 if (PageHWPoison(page)) { 5365 folio_put(folio); 5366 return ERR_PTR(-EIO); 5367 } 5368 5369 return page; 5370 } 5371 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 5372