1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/hugetlb.h> 38 #include <linux/fs_parser.h> 39 #include <linux/swapfile.h> 40 #include "swap.h" 41 42 static struct vfsmount *shm_mnt; 43 44 #ifdef CONFIG_SHMEM 45 /* 46 * This virtual memory filesystem is heavily based on the ramfs. It 47 * extends ramfs by the ability to use swap and honor resource limits 48 * which makes it a completely usable filesystem. 49 */ 50 51 #include <linux/xattr.h> 52 #include <linux/exportfs.h> 53 #include <linux/posix_acl.h> 54 #include <linux/posix_acl_xattr.h> 55 #include <linux/mman.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 #include <linux/backing-dev.h> 59 #include <linux/shmem_fs.h> 60 #include <linux/writeback.h> 61 #include <linux/pagevec.h> 62 #include <linux/percpu_counter.h> 63 #include <linux/falloc.h> 64 #include <linux/splice.h> 65 #include <linux/security.h> 66 #include <linux/swapops.h> 67 #include <linux/mempolicy.h> 68 #include <linux/namei.h> 69 #include <linux/ctype.h> 70 #include <linux/migrate.h> 71 #include <linux/highmem.h> 72 #include <linux/seq_file.h> 73 #include <linux/magic.h> 74 #include <linux/syscalls.h> 75 #include <linux/fcntl.h> 76 #include <uapi/linux/memfd.h> 77 #include <linux/userfaultfd_k.h> 78 #include <linux/rmap.h> 79 #include <linux/uuid.h> 80 81 #include <linux/uaccess.h> 82 83 #include "internal.h" 84 85 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 86 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 87 88 /* Pretend that each entry is of this size in directory's i_size */ 89 #define BOGO_DIRENT_SIZE 20 90 91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 92 #define SHORT_SYMLINK_LEN 128 93 94 /* 95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 96 * inode->i_private (with i_rwsem making sure that it has only one user at 97 * a time): we would prefer not to enlarge the shmem inode just for that. 98 */ 99 struct shmem_falloc { 100 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 101 pgoff_t start; /* start of range currently being fallocated */ 102 pgoff_t next; /* the next page offset to be fallocated */ 103 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 104 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 105 }; 106 107 struct shmem_options { 108 unsigned long long blocks; 109 unsigned long long inodes; 110 struct mempolicy *mpol; 111 kuid_t uid; 112 kgid_t gid; 113 umode_t mode; 114 bool full_inums; 115 int huge; 116 int seen; 117 #define SHMEM_SEEN_BLOCKS 1 118 #define SHMEM_SEEN_INODES 2 119 #define SHMEM_SEEN_HUGE 4 120 #define SHMEM_SEEN_INUMS 8 121 }; 122 123 #ifdef CONFIG_TMPFS 124 static unsigned long shmem_default_max_blocks(void) 125 { 126 return totalram_pages() / 2; 127 } 128 129 static unsigned long shmem_default_max_inodes(void) 130 { 131 unsigned long nr_pages = totalram_pages(); 132 133 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 134 } 135 #endif 136 137 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 138 struct folio **foliop, enum sgp_type sgp, 139 gfp_t gfp, struct vm_area_struct *vma, 140 vm_fault_t *fault_type); 141 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 142 struct page **pagep, enum sgp_type sgp, 143 gfp_t gfp, struct vm_area_struct *vma, 144 struct vm_fault *vmf, vm_fault_t *fault_type); 145 146 int shmem_getpage(struct inode *inode, pgoff_t index, 147 struct page **pagep, enum sgp_type sgp) 148 { 149 return shmem_getpage_gfp(inode, index, pagep, sgp, 150 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 151 } 152 153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 154 { 155 return sb->s_fs_info; 156 } 157 158 /* 159 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 160 * for shared memory and for shared anonymous (/dev/zero) mappings 161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 162 * consistent with the pre-accounting of private mappings ... 163 */ 164 static inline int shmem_acct_size(unsigned long flags, loff_t size) 165 { 166 return (flags & VM_NORESERVE) ? 167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 168 } 169 170 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 171 { 172 if (!(flags & VM_NORESERVE)) 173 vm_unacct_memory(VM_ACCT(size)); 174 } 175 176 static inline int shmem_reacct_size(unsigned long flags, 177 loff_t oldsize, loff_t newsize) 178 { 179 if (!(flags & VM_NORESERVE)) { 180 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 181 return security_vm_enough_memory_mm(current->mm, 182 VM_ACCT(newsize) - VM_ACCT(oldsize)); 183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 185 } 186 return 0; 187 } 188 189 /* 190 * ... whereas tmpfs objects are accounted incrementally as 191 * pages are allocated, in order to allow large sparse files. 192 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 194 */ 195 static inline int shmem_acct_block(unsigned long flags, long pages) 196 { 197 if (!(flags & VM_NORESERVE)) 198 return 0; 199 200 return security_vm_enough_memory_mm(current->mm, 201 pages * VM_ACCT(PAGE_SIZE)); 202 } 203 204 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 205 { 206 if (flags & VM_NORESERVE) 207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 211 { 212 struct shmem_inode_info *info = SHMEM_I(inode); 213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 214 215 if (shmem_acct_block(info->flags, pages)) 216 return false; 217 218 if (sbinfo->max_blocks) { 219 if (percpu_counter_compare(&sbinfo->used_blocks, 220 sbinfo->max_blocks - pages) > 0) 221 goto unacct; 222 percpu_counter_add(&sbinfo->used_blocks, pages); 223 } 224 225 return true; 226 227 unacct: 228 shmem_unacct_blocks(info->flags, pages); 229 return false; 230 } 231 232 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 233 { 234 struct shmem_inode_info *info = SHMEM_I(inode); 235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 236 237 if (sbinfo->max_blocks) 238 percpu_counter_sub(&sbinfo->used_blocks, pages); 239 shmem_unacct_blocks(info->flags, pages); 240 } 241 242 static const struct super_operations shmem_ops; 243 const struct address_space_operations shmem_aops; 244 static const struct file_operations shmem_file_operations; 245 static const struct inode_operations shmem_inode_operations; 246 static const struct inode_operations shmem_dir_inode_operations; 247 static const struct inode_operations shmem_special_inode_operations; 248 static const struct vm_operations_struct shmem_vm_ops; 249 static struct file_system_type shmem_fs_type; 250 251 bool vma_is_shmem(struct vm_area_struct *vma) 252 { 253 return vma->vm_ops == &shmem_vm_ops; 254 } 255 256 static LIST_HEAD(shmem_swaplist); 257 static DEFINE_MUTEX(shmem_swaplist_mutex); 258 259 /* 260 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 261 * produces a novel ino for the newly allocated inode. 262 * 263 * It may also be called when making a hard link to permit the space needed by 264 * each dentry. However, in that case, no new inode number is needed since that 265 * internally draws from another pool of inode numbers (currently global 266 * get_next_ino()). This case is indicated by passing NULL as inop. 267 */ 268 #define SHMEM_INO_BATCH 1024 269 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 270 { 271 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 272 ino_t ino; 273 274 if (!(sb->s_flags & SB_KERNMOUNT)) { 275 raw_spin_lock(&sbinfo->stat_lock); 276 if (sbinfo->max_inodes) { 277 if (!sbinfo->free_inodes) { 278 raw_spin_unlock(&sbinfo->stat_lock); 279 return -ENOSPC; 280 } 281 sbinfo->free_inodes--; 282 } 283 if (inop) { 284 ino = sbinfo->next_ino++; 285 if (unlikely(is_zero_ino(ino))) 286 ino = sbinfo->next_ino++; 287 if (unlikely(!sbinfo->full_inums && 288 ino > UINT_MAX)) { 289 /* 290 * Emulate get_next_ino uint wraparound for 291 * compatibility 292 */ 293 if (IS_ENABLED(CONFIG_64BIT)) 294 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 295 __func__, MINOR(sb->s_dev)); 296 sbinfo->next_ino = 1; 297 ino = sbinfo->next_ino++; 298 } 299 *inop = ino; 300 } 301 raw_spin_unlock(&sbinfo->stat_lock); 302 } else if (inop) { 303 /* 304 * __shmem_file_setup, one of our callers, is lock-free: it 305 * doesn't hold stat_lock in shmem_reserve_inode since 306 * max_inodes is always 0, and is called from potentially 307 * unknown contexts. As such, use a per-cpu batched allocator 308 * which doesn't require the per-sb stat_lock unless we are at 309 * the batch boundary. 310 * 311 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 312 * shmem mounts are not exposed to userspace, so we don't need 313 * to worry about things like glibc compatibility. 314 */ 315 ino_t *next_ino; 316 317 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 318 ino = *next_ino; 319 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 320 raw_spin_lock(&sbinfo->stat_lock); 321 ino = sbinfo->next_ino; 322 sbinfo->next_ino += SHMEM_INO_BATCH; 323 raw_spin_unlock(&sbinfo->stat_lock); 324 if (unlikely(is_zero_ino(ino))) 325 ino++; 326 } 327 *inop = ino; 328 *next_ino = ++ino; 329 put_cpu(); 330 } 331 332 return 0; 333 } 334 335 static void shmem_free_inode(struct super_block *sb) 336 { 337 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 338 if (sbinfo->max_inodes) { 339 raw_spin_lock(&sbinfo->stat_lock); 340 sbinfo->free_inodes++; 341 raw_spin_unlock(&sbinfo->stat_lock); 342 } 343 } 344 345 /** 346 * shmem_recalc_inode - recalculate the block usage of an inode 347 * @inode: inode to recalc 348 * 349 * We have to calculate the free blocks since the mm can drop 350 * undirtied hole pages behind our back. 351 * 352 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 353 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 354 * 355 * It has to be called with the spinlock held. 356 */ 357 static void shmem_recalc_inode(struct inode *inode) 358 { 359 struct shmem_inode_info *info = SHMEM_I(inode); 360 long freed; 361 362 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 363 if (freed > 0) { 364 info->alloced -= freed; 365 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 366 shmem_inode_unacct_blocks(inode, freed); 367 } 368 } 369 370 bool shmem_charge(struct inode *inode, long pages) 371 { 372 struct shmem_inode_info *info = SHMEM_I(inode); 373 unsigned long flags; 374 375 if (!shmem_inode_acct_block(inode, pages)) 376 return false; 377 378 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 379 inode->i_mapping->nrpages += pages; 380 381 spin_lock_irqsave(&info->lock, flags); 382 info->alloced += pages; 383 inode->i_blocks += pages * BLOCKS_PER_PAGE; 384 shmem_recalc_inode(inode); 385 spin_unlock_irqrestore(&info->lock, flags); 386 387 return true; 388 } 389 390 void shmem_uncharge(struct inode *inode, long pages) 391 { 392 struct shmem_inode_info *info = SHMEM_I(inode); 393 unsigned long flags; 394 395 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 396 397 spin_lock_irqsave(&info->lock, flags); 398 info->alloced -= pages; 399 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 400 shmem_recalc_inode(inode); 401 spin_unlock_irqrestore(&info->lock, flags); 402 403 shmem_inode_unacct_blocks(inode, pages); 404 } 405 406 /* 407 * Replace item expected in xarray by a new item, while holding xa_lock. 408 */ 409 static int shmem_replace_entry(struct address_space *mapping, 410 pgoff_t index, void *expected, void *replacement) 411 { 412 XA_STATE(xas, &mapping->i_pages, index); 413 void *item; 414 415 VM_BUG_ON(!expected); 416 VM_BUG_ON(!replacement); 417 item = xas_load(&xas); 418 if (item != expected) 419 return -ENOENT; 420 xas_store(&xas, replacement); 421 return 0; 422 } 423 424 /* 425 * Sometimes, before we decide whether to proceed or to fail, we must check 426 * that an entry was not already brought back from swap by a racing thread. 427 * 428 * Checking page is not enough: by the time a SwapCache page is locked, it 429 * might be reused, and again be SwapCache, using the same swap as before. 430 */ 431 static bool shmem_confirm_swap(struct address_space *mapping, 432 pgoff_t index, swp_entry_t swap) 433 { 434 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 435 } 436 437 /* 438 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 439 * 440 * SHMEM_HUGE_NEVER: 441 * disables huge pages for the mount; 442 * SHMEM_HUGE_ALWAYS: 443 * enables huge pages for the mount; 444 * SHMEM_HUGE_WITHIN_SIZE: 445 * only allocate huge pages if the page will be fully within i_size, 446 * also respect fadvise()/madvise() hints; 447 * SHMEM_HUGE_ADVISE: 448 * only allocate huge pages if requested with fadvise()/madvise(); 449 */ 450 451 #define SHMEM_HUGE_NEVER 0 452 #define SHMEM_HUGE_ALWAYS 1 453 #define SHMEM_HUGE_WITHIN_SIZE 2 454 #define SHMEM_HUGE_ADVISE 3 455 456 /* 457 * Special values. 458 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 459 * 460 * SHMEM_HUGE_DENY: 461 * disables huge on shm_mnt and all mounts, for emergency use; 462 * SHMEM_HUGE_FORCE: 463 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 464 * 465 */ 466 #define SHMEM_HUGE_DENY (-1) 467 #define SHMEM_HUGE_FORCE (-2) 468 469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 470 /* ifdef here to avoid bloating shmem.o when not necessary */ 471 472 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 473 474 bool shmem_is_huge(struct vm_area_struct *vma, 475 struct inode *inode, pgoff_t index) 476 { 477 loff_t i_size; 478 479 if (!S_ISREG(inode->i_mode)) 480 return false; 481 if (shmem_huge == SHMEM_HUGE_DENY) 482 return false; 483 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) || 484 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))) 485 return false; 486 if (shmem_huge == SHMEM_HUGE_FORCE) 487 return true; 488 489 switch (SHMEM_SB(inode->i_sb)->huge) { 490 case SHMEM_HUGE_ALWAYS: 491 return true; 492 case SHMEM_HUGE_WITHIN_SIZE: 493 index = round_up(index + 1, HPAGE_PMD_NR); 494 i_size = round_up(i_size_read(inode), PAGE_SIZE); 495 if (i_size >> PAGE_SHIFT >= index) 496 return true; 497 fallthrough; 498 case SHMEM_HUGE_ADVISE: 499 if (vma && (vma->vm_flags & VM_HUGEPAGE)) 500 return true; 501 fallthrough; 502 default: 503 return false; 504 } 505 } 506 507 #if defined(CONFIG_SYSFS) 508 static int shmem_parse_huge(const char *str) 509 { 510 if (!strcmp(str, "never")) 511 return SHMEM_HUGE_NEVER; 512 if (!strcmp(str, "always")) 513 return SHMEM_HUGE_ALWAYS; 514 if (!strcmp(str, "within_size")) 515 return SHMEM_HUGE_WITHIN_SIZE; 516 if (!strcmp(str, "advise")) 517 return SHMEM_HUGE_ADVISE; 518 if (!strcmp(str, "deny")) 519 return SHMEM_HUGE_DENY; 520 if (!strcmp(str, "force")) 521 return SHMEM_HUGE_FORCE; 522 return -EINVAL; 523 } 524 #endif 525 526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 527 static const char *shmem_format_huge(int huge) 528 { 529 switch (huge) { 530 case SHMEM_HUGE_NEVER: 531 return "never"; 532 case SHMEM_HUGE_ALWAYS: 533 return "always"; 534 case SHMEM_HUGE_WITHIN_SIZE: 535 return "within_size"; 536 case SHMEM_HUGE_ADVISE: 537 return "advise"; 538 case SHMEM_HUGE_DENY: 539 return "deny"; 540 case SHMEM_HUGE_FORCE: 541 return "force"; 542 default: 543 VM_BUG_ON(1); 544 return "bad_val"; 545 } 546 } 547 #endif 548 549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 550 struct shrink_control *sc, unsigned long nr_to_split) 551 { 552 LIST_HEAD(list), *pos, *next; 553 LIST_HEAD(to_remove); 554 struct inode *inode; 555 struct shmem_inode_info *info; 556 struct folio *folio; 557 unsigned long batch = sc ? sc->nr_to_scan : 128; 558 int split = 0; 559 560 if (list_empty(&sbinfo->shrinklist)) 561 return SHRINK_STOP; 562 563 spin_lock(&sbinfo->shrinklist_lock); 564 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 565 info = list_entry(pos, struct shmem_inode_info, shrinklist); 566 567 /* pin the inode */ 568 inode = igrab(&info->vfs_inode); 569 570 /* inode is about to be evicted */ 571 if (!inode) { 572 list_del_init(&info->shrinklist); 573 goto next; 574 } 575 576 /* Check if there's anything to gain */ 577 if (round_up(inode->i_size, PAGE_SIZE) == 578 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 579 list_move(&info->shrinklist, &to_remove); 580 goto next; 581 } 582 583 list_move(&info->shrinklist, &list); 584 next: 585 sbinfo->shrinklist_len--; 586 if (!--batch) 587 break; 588 } 589 spin_unlock(&sbinfo->shrinklist_lock); 590 591 list_for_each_safe(pos, next, &to_remove) { 592 info = list_entry(pos, struct shmem_inode_info, shrinklist); 593 inode = &info->vfs_inode; 594 list_del_init(&info->shrinklist); 595 iput(inode); 596 } 597 598 list_for_each_safe(pos, next, &list) { 599 int ret; 600 pgoff_t index; 601 602 info = list_entry(pos, struct shmem_inode_info, shrinklist); 603 inode = &info->vfs_inode; 604 605 if (nr_to_split && split >= nr_to_split) 606 goto move_back; 607 608 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 609 folio = filemap_get_folio(inode->i_mapping, index); 610 if (!folio) 611 goto drop; 612 613 /* No huge page at the end of the file: nothing to split */ 614 if (!folio_test_large(folio)) { 615 folio_put(folio); 616 goto drop; 617 } 618 619 /* 620 * Move the inode on the list back to shrinklist if we failed 621 * to lock the page at this time. 622 * 623 * Waiting for the lock may lead to deadlock in the 624 * reclaim path. 625 */ 626 if (!folio_trylock(folio)) { 627 folio_put(folio); 628 goto move_back; 629 } 630 631 ret = split_huge_page(&folio->page); 632 folio_unlock(folio); 633 folio_put(folio); 634 635 /* If split failed move the inode on the list back to shrinklist */ 636 if (ret) 637 goto move_back; 638 639 split++; 640 drop: 641 list_del_init(&info->shrinklist); 642 goto put; 643 move_back: 644 /* 645 * Make sure the inode is either on the global list or deleted 646 * from any local list before iput() since it could be deleted 647 * in another thread once we put the inode (then the local list 648 * is corrupted). 649 */ 650 spin_lock(&sbinfo->shrinklist_lock); 651 list_move(&info->shrinklist, &sbinfo->shrinklist); 652 sbinfo->shrinklist_len++; 653 spin_unlock(&sbinfo->shrinklist_lock); 654 put: 655 iput(inode); 656 } 657 658 return split; 659 } 660 661 static long shmem_unused_huge_scan(struct super_block *sb, 662 struct shrink_control *sc) 663 { 664 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 665 666 if (!READ_ONCE(sbinfo->shrinklist_len)) 667 return SHRINK_STOP; 668 669 return shmem_unused_huge_shrink(sbinfo, sc, 0); 670 } 671 672 static long shmem_unused_huge_count(struct super_block *sb, 673 struct shrink_control *sc) 674 { 675 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 676 return READ_ONCE(sbinfo->shrinklist_len); 677 } 678 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 679 680 #define shmem_huge SHMEM_HUGE_DENY 681 682 bool shmem_is_huge(struct vm_area_struct *vma, 683 struct inode *inode, pgoff_t index) 684 { 685 return false; 686 } 687 688 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 689 struct shrink_control *sc, unsigned long nr_to_split) 690 { 691 return 0; 692 } 693 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 694 695 /* 696 * Like add_to_page_cache_locked, but error if expected item has gone. 697 */ 698 static int shmem_add_to_page_cache(struct folio *folio, 699 struct address_space *mapping, 700 pgoff_t index, void *expected, gfp_t gfp, 701 struct mm_struct *charge_mm) 702 { 703 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 704 long nr = folio_nr_pages(folio); 705 int error; 706 707 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 708 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 709 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 710 VM_BUG_ON(expected && folio_test_large(folio)); 711 712 folio_ref_add(folio, nr); 713 folio->mapping = mapping; 714 folio->index = index; 715 716 if (!folio_test_swapcache(folio)) { 717 error = mem_cgroup_charge(folio, charge_mm, gfp); 718 if (error) { 719 if (folio_test_pmd_mappable(folio)) { 720 count_vm_event(THP_FILE_FALLBACK); 721 count_vm_event(THP_FILE_FALLBACK_CHARGE); 722 } 723 goto error; 724 } 725 } 726 folio_throttle_swaprate(folio, gfp); 727 728 do { 729 xas_lock_irq(&xas); 730 if (expected != xas_find_conflict(&xas)) { 731 xas_set_err(&xas, -EEXIST); 732 goto unlock; 733 } 734 if (expected && xas_find_conflict(&xas)) { 735 xas_set_err(&xas, -EEXIST); 736 goto unlock; 737 } 738 xas_store(&xas, folio); 739 if (xas_error(&xas)) 740 goto unlock; 741 if (folio_test_pmd_mappable(folio)) { 742 count_vm_event(THP_FILE_ALLOC); 743 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 744 } 745 mapping->nrpages += nr; 746 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 747 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 748 unlock: 749 xas_unlock_irq(&xas); 750 } while (xas_nomem(&xas, gfp)); 751 752 if (xas_error(&xas)) { 753 error = xas_error(&xas); 754 goto error; 755 } 756 757 return 0; 758 error: 759 folio->mapping = NULL; 760 folio_ref_sub(folio, nr); 761 return error; 762 } 763 764 /* 765 * Like delete_from_page_cache, but substitutes swap for page. 766 */ 767 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 768 { 769 struct address_space *mapping = page->mapping; 770 int error; 771 772 VM_BUG_ON_PAGE(PageCompound(page), page); 773 774 xa_lock_irq(&mapping->i_pages); 775 error = shmem_replace_entry(mapping, page->index, page, radswap); 776 page->mapping = NULL; 777 mapping->nrpages--; 778 __dec_lruvec_page_state(page, NR_FILE_PAGES); 779 __dec_lruvec_page_state(page, NR_SHMEM); 780 xa_unlock_irq(&mapping->i_pages); 781 put_page(page); 782 BUG_ON(error); 783 } 784 785 /* 786 * Remove swap entry from page cache, free the swap and its page cache. 787 */ 788 static int shmem_free_swap(struct address_space *mapping, 789 pgoff_t index, void *radswap) 790 { 791 void *old; 792 793 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 794 if (old != radswap) 795 return -ENOENT; 796 free_swap_and_cache(radix_to_swp_entry(radswap)); 797 return 0; 798 } 799 800 /* 801 * Determine (in bytes) how many of the shmem object's pages mapped by the 802 * given offsets are swapped out. 803 * 804 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 805 * as long as the inode doesn't go away and racy results are not a problem. 806 */ 807 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 808 pgoff_t start, pgoff_t end) 809 { 810 XA_STATE(xas, &mapping->i_pages, start); 811 struct page *page; 812 unsigned long swapped = 0; 813 814 rcu_read_lock(); 815 xas_for_each(&xas, page, end - 1) { 816 if (xas_retry(&xas, page)) 817 continue; 818 if (xa_is_value(page)) 819 swapped++; 820 821 if (need_resched()) { 822 xas_pause(&xas); 823 cond_resched_rcu(); 824 } 825 } 826 827 rcu_read_unlock(); 828 829 return swapped << PAGE_SHIFT; 830 } 831 832 /* 833 * Determine (in bytes) how many of the shmem object's pages mapped by the 834 * given vma is swapped out. 835 * 836 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 837 * as long as the inode doesn't go away and racy results are not a problem. 838 */ 839 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 840 { 841 struct inode *inode = file_inode(vma->vm_file); 842 struct shmem_inode_info *info = SHMEM_I(inode); 843 struct address_space *mapping = inode->i_mapping; 844 unsigned long swapped; 845 846 /* Be careful as we don't hold info->lock */ 847 swapped = READ_ONCE(info->swapped); 848 849 /* 850 * The easier cases are when the shmem object has nothing in swap, or 851 * the vma maps it whole. Then we can simply use the stats that we 852 * already track. 853 */ 854 if (!swapped) 855 return 0; 856 857 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 858 return swapped << PAGE_SHIFT; 859 860 /* Here comes the more involved part */ 861 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 862 vma->vm_pgoff + vma_pages(vma)); 863 } 864 865 /* 866 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 867 */ 868 void shmem_unlock_mapping(struct address_space *mapping) 869 { 870 struct pagevec pvec; 871 pgoff_t index = 0; 872 873 pagevec_init(&pvec); 874 /* 875 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 876 */ 877 while (!mapping_unevictable(mapping)) { 878 if (!pagevec_lookup(&pvec, mapping, &index)) 879 break; 880 check_move_unevictable_pages(&pvec); 881 pagevec_release(&pvec); 882 cond_resched(); 883 } 884 } 885 886 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 887 { 888 struct folio *folio; 889 struct page *page; 890 891 /* 892 * At first avoid shmem_getpage(,,,SGP_READ): that fails 893 * beyond i_size, and reports fallocated pages as holes. 894 */ 895 folio = __filemap_get_folio(inode->i_mapping, index, 896 FGP_ENTRY | FGP_LOCK, 0); 897 if (!xa_is_value(folio)) 898 return folio; 899 /* 900 * But read a page back from swap if any of it is within i_size 901 * (although in some cases this is just a waste of time). 902 */ 903 page = NULL; 904 shmem_getpage(inode, index, &page, SGP_READ); 905 return page ? page_folio(page) : NULL; 906 } 907 908 /* 909 * Remove range of pages and swap entries from page cache, and free them. 910 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 911 */ 912 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 913 bool unfalloc) 914 { 915 struct address_space *mapping = inode->i_mapping; 916 struct shmem_inode_info *info = SHMEM_I(inode); 917 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 918 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 919 struct folio_batch fbatch; 920 pgoff_t indices[PAGEVEC_SIZE]; 921 struct folio *folio; 922 bool same_folio; 923 long nr_swaps_freed = 0; 924 pgoff_t index; 925 int i; 926 927 if (lend == -1) 928 end = -1; /* unsigned, so actually very big */ 929 930 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 931 info->fallocend = start; 932 933 folio_batch_init(&fbatch); 934 index = start; 935 while (index < end && find_lock_entries(mapping, index, end - 1, 936 &fbatch, indices)) { 937 for (i = 0; i < folio_batch_count(&fbatch); i++) { 938 folio = fbatch.folios[i]; 939 940 index = indices[i]; 941 942 if (xa_is_value(folio)) { 943 if (unfalloc) 944 continue; 945 nr_swaps_freed += !shmem_free_swap(mapping, 946 index, folio); 947 continue; 948 } 949 index += folio_nr_pages(folio) - 1; 950 951 if (!unfalloc || !folio_test_uptodate(folio)) 952 truncate_inode_folio(mapping, folio); 953 folio_unlock(folio); 954 } 955 folio_batch_remove_exceptionals(&fbatch); 956 folio_batch_release(&fbatch); 957 cond_resched(); 958 index++; 959 } 960 961 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 962 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 963 if (folio) { 964 same_folio = lend < folio_pos(folio) + folio_size(folio); 965 folio_mark_dirty(folio); 966 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 967 start = folio->index + folio_nr_pages(folio); 968 if (same_folio) 969 end = folio->index; 970 } 971 folio_unlock(folio); 972 folio_put(folio); 973 folio = NULL; 974 } 975 976 if (!same_folio) 977 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 978 if (folio) { 979 folio_mark_dirty(folio); 980 if (!truncate_inode_partial_folio(folio, lstart, lend)) 981 end = folio->index; 982 folio_unlock(folio); 983 folio_put(folio); 984 } 985 986 index = start; 987 while (index < end) { 988 cond_resched(); 989 990 if (!find_get_entries(mapping, index, end - 1, &fbatch, 991 indices)) { 992 /* If all gone or hole-punch or unfalloc, we're done */ 993 if (index == start || end != -1) 994 break; 995 /* But if truncating, restart to make sure all gone */ 996 index = start; 997 continue; 998 } 999 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1000 folio = fbatch.folios[i]; 1001 1002 index = indices[i]; 1003 if (xa_is_value(folio)) { 1004 if (unfalloc) 1005 continue; 1006 if (shmem_free_swap(mapping, index, folio)) { 1007 /* Swap was replaced by page: retry */ 1008 index--; 1009 break; 1010 } 1011 nr_swaps_freed++; 1012 continue; 1013 } 1014 1015 folio_lock(folio); 1016 1017 if (!unfalloc || !folio_test_uptodate(folio)) { 1018 if (folio_mapping(folio) != mapping) { 1019 /* Page was replaced by swap: retry */ 1020 folio_unlock(folio); 1021 index--; 1022 break; 1023 } 1024 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1025 folio); 1026 truncate_inode_folio(mapping, folio); 1027 } 1028 index = folio->index + folio_nr_pages(folio) - 1; 1029 folio_unlock(folio); 1030 } 1031 folio_batch_remove_exceptionals(&fbatch); 1032 folio_batch_release(&fbatch); 1033 index++; 1034 } 1035 1036 spin_lock_irq(&info->lock); 1037 info->swapped -= nr_swaps_freed; 1038 shmem_recalc_inode(inode); 1039 spin_unlock_irq(&info->lock); 1040 } 1041 1042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1043 { 1044 shmem_undo_range(inode, lstart, lend, false); 1045 inode->i_ctime = inode->i_mtime = current_time(inode); 1046 } 1047 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1048 1049 static int shmem_getattr(struct user_namespace *mnt_userns, 1050 const struct path *path, struct kstat *stat, 1051 u32 request_mask, unsigned int query_flags) 1052 { 1053 struct inode *inode = path->dentry->d_inode; 1054 struct shmem_inode_info *info = SHMEM_I(inode); 1055 1056 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1057 spin_lock_irq(&info->lock); 1058 shmem_recalc_inode(inode); 1059 spin_unlock_irq(&info->lock); 1060 } 1061 generic_fillattr(&init_user_ns, inode, stat); 1062 1063 if (shmem_is_huge(NULL, inode, 0)) 1064 stat->blksize = HPAGE_PMD_SIZE; 1065 1066 if (request_mask & STATX_BTIME) { 1067 stat->result_mask |= STATX_BTIME; 1068 stat->btime.tv_sec = info->i_crtime.tv_sec; 1069 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1070 } 1071 1072 return 0; 1073 } 1074 1075 static int shmem_setattr(struct user_namespace *mnt_userns, 1076 struct dentry *dentry, struct iattr *attr) 1077 { 1078 struct inode *inode = d_inode(dentry); 1079 struct shmem_inode_info *info = SHMEM_I(inode); 1080 int error; 1081 1082 error = setattr_prepare(&init_user_ns, dentry, attr); 1083 if (error) 1084 return error; 1085 1086 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1087 loff_t oldsize = inode->i_size; 1088 loff_t newsize = attr->ia_size; 1089 1090 /* protected by i_rwsem */ 1091 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1092 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1093 return -EPERM; 1094 1095 if (newsize != oldsize) { 1096 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1097 oldsize, newsize); 1098 if (error) 1099 return error; 1100 i_size_write(inode, newsize); 1101 inode->i_ctime = inode->i_mtime = current_time(inode); 1102 } 1103 if (newsize <= oldsize) { 1104 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1105 if (oldsize > holebegin) 1106 unmap_mapping_range(inode->i_mapping, 1107 holebegin, 0, 1); 1108 if (info->alloced) 1109 shmem_truncate_range(inode, 1110 newsize, (loff_t)-1); 1111 /* unmap again to remove racily COWed private pages */ 1112 if (oldsize > holebegin) 1113 unmap_mapping_range(inode->i_mapping, 1114 holebegin, 0, 1); 1115 } 1116 } 1117 1118 setattr_copy(&init_user_ns, inode, attr); 1119 if (attr->ia_valid & ATTR_MODE) 1120 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode); 1121 return error; 1122 } 1123 1124 static void shmem_evict_inode(struct inode *inode) 1125 { 1126 struct shmem_inode_info *info = SHMEM_I(inode); 1127 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1128 1129 if (shmem_mapping(inode->i_mapping)) { 1130 shmem_unacct_size(info->flags, inode->i_size); 1131 inode->i_size = 0; 1132 mapping_set_exiting(inode->i_mapping); 1133 shmem_truncate_range(inode, 0, (loff_t)-1); 1134 if (!list_empty(&info->shrinklist)) { 1135 spin_lock(&sbinfo->shrinklist_lock); 1136 if (!list_empty(&info->shrinklist)) { 1137 list_del_init(&info->shrinklist); 1138 sbinfo->shrinklist_len--; 1139 } 1140 spin_unlock(&sbinfo->shrinklist_lock); 1141 } 1142 while (!list_empty(&info->swaplist)) { 1143 /* Wait while shmem_unuse() is scanning this inode... */ 1144 wait_var_event(&info->stop_eviction, 1145 !atomic_read(&info->stop_eviction)); 1146 mutex_lock(&shmem_swaplist_mutex); 1147 /* ...but beware of the race if we peeked too early */ 1148 if (!atomic_read(&info->stop_eviction)) 1149 list_del_init(&info->swaplist); 1150 mutex_unlock(&shmem_swaplist_mutex); 1151 } 1152 } 1153 1154 simple_xattrs_free(&info->xattrs); 1155 WARN_ON(inode->i_blocks); 1156 shmem_free_inode(inode->i_sb); 1157 clear_inode(inode); 1158 } 1159 1160 static int shmem_find_swap_entries(struct address_space *mapping, 1161 pgoff_t start, struct folio_batch *fbatch, 1162 pgoff_t *indices, unsigned int type) 1163 { 1164 XA_STATE(xas, &mapping->i_pages, start); 1165 struct folio *folio; 1166 swp_entry_t entry; 1167 1168 rcu_read_lock(); 1169 xas_for_each(&xas, folio, ULONG_MAX) { 1170 if (xas_retry(&xas, folio)) 1171 continue; 1172 1173 if (!xa_is_value(folio)) 1174 continue; 1175 1176 entry = radix_to_swp_entry(folio); 1177 /* 1178 * swapin error entries can be found in the mapping. But they're 1179 * deliberately ignored here as we've done everything we can do. 1180 */ 1181 if (swp_type(entry) != type) 1182 continue; 1183 1184 indices[folio_batch_count(fbatch)] = xas.xa_index; 1185 if (!folio_batch_add(fbatch, folio)) 1186 break; 1187 1188 if (need_resched()) { 1189 xas_pause(&xas); 1190 cond_resched_rcu(); 1191 } 1192 } 1193 rcu_read_unlock(); 1194 1195 return xas.xa_index; 1196 } 1197 1198 /* 1199 * Move the swapped pages for an inode to page cache. Returns the count 1200 * of pages swapped in, or the error in case of failure. 1201 */ 1202 static int shmem_unuse_swap_entries(struct inode *inode, 1203 struct folio_batch *fbatch, pgoff_t *indices) 1204 { 1205 int i = 0; 1206 int ret = 0; 1207 int error = 0; 1208 struct address_space *mapping = inode->i_mapping; 1209 1210 for (i = 0; i < folio_batch_count(fbatch); i++) { 1211 struct folio *folio = fbatch->folios[i]; 1212 1213 if (!xa_is_value(folio)) 1214 continue; 1215 error = shmem_swapin_folio(inode, indices[i], 1216 &folio, SGP_CACHE, 1217 mapping_gfp_mask(mapping), 1218 NULL, NULL); 1219 if (error == 0) { 1220 folio_unlock(folio); 1221 folio_put(folio); 1222 ret++; 1223 } 1224 if (error == -ENOMEM) 1225 break; 1226 error = 0; 1227 } 1228 return error ? error : ret; 1229 } 1230 1231 /* 1232 * If swap found in inode, free it and move page from swapcache to filecache. 1233 */ 1234 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1235 { 1236 struct address_space *mapping = inode->i_mapping; 1237 pgoff_t start = 0; 1238 struct folio_batch fbatch; 1239 pgoff_t indices[PAGEVEC_SIZE]; 1240 int ret = 0; 1241 1242 do { 1243 folio_batch_init(&fbatch); 1244 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1245 if (folio_batch_count(&fbatch) == 0) { 1246 ret = 0; 1247 break; 1248 } 1249 1250 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1251 if (ret < 0) 1252 break; 1253 1254 start = indices[folio_batch_count(&fbatch) - 1]; 1255 } while (true); 1256 1257 return ret; 1258 } 1259 1260 /* 1261 * Read all the shared memory data that resides in the swap 1262 * device 'type' back into memory, so the swap device can be 1263 * unused. 1264 */ 1265 int shmem_unuse(unsigned int type) 1266 { 1267 struct shmem_inode_info *info, *next; 1268 int error = 0; 1269 1270 if (list_empty(&shmem_swaplist)) 1271 return 0; 1272 1273 mutex_lock(&shmem_swaplist_mutex); 1274 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1275 if (!info->swapped) { 1276 list_del_init(&info->swaplist); 1277 continue; 1278 } 1279 /* 1280 * Drop the swaplist mutex while searching the inode for swap; 1281 * but before doing so, make sure shmem_evict_inode() will not 1282 * remove placeholder inode from swaplist, nor let it be freed 1283 * (igrab() would protect from unlink, but not from unmount). 1284 */ 1285 atomic_inc(&info->stop_eviction); 1286 mutex_unlock(&shmem_swaplist_mutex); 1287 1288 error = shmem_unuse_inode(&info->vfs_inode, type); 1289 cond_resched(); 1290 1291 mutex_lock(&shmem_swaplist_mutex); 1292 next = list_next_entry(info, swaplist); 1293 if (!info->swapped) 1294 list_del_init(&info->swaplist); 1295 if (atomic_dec_and_test(&info->stop_eviction)) 1296 wake_up_var(&info->stop_eviction); 1297 if (error) 1298 break; 1299 } 1300 mutex_unlock(&shmem_swaplist_mutex); 1301 1302 return error; 1303 } 1304 1305 /* 1306 * Move the page from the page cache to the swap cache. 1307 */ 1308 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1309 { 1310 struct folio *folio = page_folio(page); 1311 struct shmem_inode_info *info; 1312 struct address_space *mapping; 1313 struct inode *inode; 1314 swp_entry_t swap; 1315 pgoff_t index; 1316 1317 /* 1318 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1319 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1320 * and its shmem_writeback() needs them to be split when swapping. 1321 */ 1322 if (PageTransCompound(page)) { 1323 /* Ensure the subpages are still dirty */ 1324 SetPageDirty(page); 1325 if (split_huge_page(page) < 0) 1326 goto redirty; 1327 ClearPageDirty(page); 1328 } 1329 1330 BUG_ON(!PageLocked(page)); 1331 mapping = page->mapping; 1332 index = page->index; 1333 inode = mapping->host; 1334 info = SHMEM_I(inode); 1335 if (info->flags & VM_LOCKED) 1336 goto redirty; 1337 if (!total_swap_pages) 1338 goto redirty; 1339 1340 /* 1341 * Our capabilities prevent regular writeback or sync from ever calling 1342 * shmem_writepage; but a stacking filesystem might use ->writepage of 1343 * its underlying filesystem, in which case tmpfs should write out to 1344 * swap only in response to memory pressure, and not for the writeback 1345 * threads or sync. 1346 */ 1347 if (!wbc->for_reclaim) { 1348 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1349 goto redirty; 1350 } 1351 1352 /* 1353 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1354 * value into swapfile.c, the only way we can correctly account for a 1355 * fallocated page arriving here is now to initialize it and write it. 1356 * 1357 * That's okay for a page already fallocated earlier, but if we have 1358 * not yet completed the fallocation, then (a) we want to keep track 1359 * of this page in case we have to undo it, and (b) it may not be a 1360 * good idea to continue anyway, once we're pushing into swap. So 1361 * reactivate the page, and let shmem_fallocate() quit when too many. 1362 */ 1363 if (!PageUptodate(page)) { 1364 if (inode->i_private) { 1365 struct shmem_falloc *shmem_falloc; 1366 spin_lock(&inode->i_lock); 1367 shmem_falloc = inode->i_private; 1368 if (shmem_falloc && 1369 !shmem_falloc->waitq && 1370 index >= shmem_falloc->start && 1371 index < shmem_falloc->next) 1372 shmem_falloc->nr_unswapped++; 1373 else 1374 shmem_falloc = NULL; 1375 spin_unlock(&inode->i_lock); 1376 if (shmem_falloc) 1377 goto redirty; 1378 } 1379 clear_highpage(page); 1380 flush_dcache_page(page); 1381 SetPageUptodate(page); 1382 } 1383 1384 swap = folio_alloc_swap(folio); 1385 if (!swap.val) 1386 goto redirty; 1387 1388 /* 1389 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1390 * if it's not already there. Do it now before the page is 1391 * moved to swap cache, when its pagelock no longer protects 1392 * the inode from eviction. But don't unlock the mutex until 1393 * we've incremented swapped, because shmem_unuse_inode() will 1394 * prune a !swapped inode from the swaplist under this mutex. 1395 */ 1396 mutex_lock(&shmem_swaplist_mutex); 1397 if (list_empty(&info->swaplist)) 1398 list_add(&info->swaplist, &shmem_swaplist); 1399 1400 if (add_to_swap_cache(page, swap, 1401 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1402 NULL) == 0) { 1403 spin_lock_irq(&info->lock); 1404 shmem_recalc_inode(inode); 1405 info->swapped++; 1406 spin_unlock_irq(&info->lock); 1407 1408 swap_shmem_alloc(swap); 1409 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1410 1411 mutex_unlock(&shmem_swaplist_mutex); 1412 BUG_ON(page_mapped(page)); 1413 swap_writepage(page, wbc); 1414 return 0; 1415 } 1416 1417 mutex_unlock(&shmem_swaplist_mutex); 1418 put_swap_page(page, swap); 1419 redirty: 1420 set_page_dirty(page); 1421 if (wbc->for_reclaim) 1422 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1423 unlock_page(page); 1424 return 0; 1425 } 1426 1427 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1428 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1429 { 1430 char buffer[64]; 1431 1432 if (!mpol || mpol->mode == MPOL_DEFAULT) 1433 return; /* show nothing */ 1434 1435 mpol_to_str(buffer, sizeof(buffer), mpol); 1436 1437 seq_printf(seq, ",mpol=%s", buffer); 1438 } 1439 1440 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1441 { 1442 struct mempolicy *mpol = NULL; 1443 if (sbinfo->mpol) { 1444 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1445 mpol = sbinfo->mpol; 1446 mpol_get(mpol); 1447 raw_spin_unlock(&sbinfo->stat_lock); 1448 } 1449 return mpol; 1450 } 1451 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1452 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1453 { 1454 } 1455 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1456 { 1457 return NULL; 1458 } 1459 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1460 #ifndef CONFIG_NUMA 1461 #define vm_policy vm_private_data 1462 #endif 1463 1464 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1465 struct shmem_inode_info *info, pgoff_t index) 1466 { 1467 /* Create a pseudo vma that just contains the policy */ 1468 vma_init(vma, NULL); 1469 /* Bias interleave by inode number to distribute better across nodes */ 1470 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1471 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1472 } 1473 1474 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1475 { 1476 /* Drop reference taken by mpol_shared_policy_lookup() */ 1477 mpol_cond_put(vma->vm_policy); 1478 } 1479 1480 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1481 struct shmem_inode_info *info, pgoff_t index) 1482 { 1483 struct vm_area_struct pvma; 1484 struct page *page; 1485 struct vm_fault vmf = { 1486 .vma = &pvma, 1487 }; 1488 1489 shmem_pseudo_vma_init(&pvma, info, index); 1490 page = swap_cluster_readahead(swap, gfp, &vmf); 1491 shmem_pseudo_vma_destroy(&pvma); 1492 1493 return page; 1494 } 1495 1496 /* 1497 * Make sure huge_gfp is always more limited than limit_gfp. 1498 * Some of the flags set permissions, while others set limitations. 1499 */ 1500 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1501 { 1502 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1503 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1504 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1505 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1506 1507 /* Allow allocations only from the originally specified zones. */ 1508 result |= zoneflags; 1509 1510 /* 1511 * Minimize the result gfp by taking the union with the deny flags, 1512 * and the intersection of the allow flags. 1513 */ 1514 result |= (limit_gfp & denyflags); 1515 result |= (huge_gfp & limit_gfp) & allowflags; 1516 1517 return result; 1518 } 1519 1520 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1521 struct shmem_inode_info *info, pgoff_t index) 1522 { 1523 struct vm_area_struct pvma; 1524 struct address_space *mapping = info->vfs_inode.i_mapping; 1525 pgoff_t hindex; 1526 struct folio *folio; 1527 1528 hindex = round_down(index, HPAGE_PMD_NR); 1529 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1530 XA_PRESENT)) 1531 return NULL; 1532 1533 shmem_pseudo_vma_init(&pvma, info, hindex); 1534 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1535 shmem_pseudo_vma_destroy(&pvma); 1536 if (!folio) 1537 count_vm_event(THP_FILE_FALLBACK); 1538 return folio; 1539 } 1540 1541 static struct folio *shmem_alloc_folio(gfp_t gfp, 1542 struct shmem_inode_info *info, pgoff_t index) 1543 { 1544 struct vm_area_struct pvma; 1545 struct folio *folio; 1546 1547 shmem_pseudo_vma_init(&pvma, info, index); 1548 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false); 1549 shmem_pseudo_vma_destroy(&pvma); 1550 1551 return folio; 1552 } 1553 1554 static struct page *shmem_alloc_page(gfp_t gfp, 1555 struct shmem_inode_info *info, pgoff_t index) 1556 { 1557 return &shmem_alloc_folio(gfp, info, index)->page; 1558 } 1559 1560 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode, 1561 pgoff_t index, bool huge) 1562 { 1563 struct shmem_inode_info *info = SHMEM_I(inode); 1564 struct folio *folio; 1565 int nr; 1566 int err = -ENOSPC; 1567 1568 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1569 huge = false; 1570 nr = huge ? HPAGE_PMD_NR : 1; 1571 1572 if (!shmem_inode_acct_block(inode, nr)) 1573 goto failed; 1574 1575 if (huge) 1576 folio = shmem_alloc_hugefolio(gfp, info, index); 1577 else 1578 folio = shmem_alloc_folio(gfp, info, index); 1579 if (folio) { 1580 __folio_set_locked(folio); 1581 __folio_set_swapbacked(folio); 1582 return folio; 1583 } 1584 1585 err = -ENOMEM; 1586 shmem_inode_unacct_blocks(inode, nr); 1587 failed: 1588 return ERR_PTR(err); 1589 } 1590 1591 /* 1592 * When a page is moved from swapcache to shmem filecache (either by the 1593 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1594 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1595 * ignorance of the mapping it belongs to. If that mapping has special 1596 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1597 * we may need to copy to a suitable page before moving to filecache. 1598 * 1599 * In a future release, this may well be extended to respect cpuset and 1600 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1601 * but for now it is a simple matter of zone. 1602 */ 1603 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1604 { 1605 return folio_zonenum(folio) > gfp_zone(gfp); 1606 } 1607 1608 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1609 struct shmem_inode_info *info, pgoff_t index) 1610 { 1611 struct page *oldpage, *newpage; 1612 struct folio *old, *new; 1613 struct address_space *swap_mapping; 1614 swp_entry_t entry; 1615 pgoff_t swap_index; 1616 int error; 1617 1618 oldpage = *pagep; 1619 entry.val = page_private(oldpage); 1620 swap_index = swp_offset(entry); 1621 swap_mapping = page_mapping(oldpage); 1622 1623 /* 1624 * We have arrived here because our zones are constrained, so don't 1625 * limit chance of success by further cpuset and node constraints. 1626 */ 1627 gfp &= ~GFP_CONSTRAINT_MASK; 1628 newpage = shmem_alloc_page(gfp, info, index); 1629 if (!newpage) 1630 return -ENOMEM; 1631 1632 get_page(newpage); 1633 copy_highpage(newpage, oldpage); 1634 flush_dcache_page(newpage); 1635 1636 __SetPageLocked(newpage); 1637 __SetPageSwapBacked(newpage); 1638 SetPageUptodate(newpage); 1639 set_page_private(newpage, entry.val); 1640 SetPageSwapCache(newpage); 1641 1642 /* 1643 * Our caller will very soon move newpage out of swapcache, but it's 1644 * a nice clean interface for us to replace oldpage by newpage there. 1645 */ 1646 xa_lock_irq(&swap_mapping->i_pages); 1647 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1648 if (!error) { 1649 old = page_folio(oldpage); 1650 new = page_folio(newpage); 1651 mem_cgroup_migrate(old, new); 1652 __inc_lruvec_page_state(newpage, NR_FILE_PAGES); 1653 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); 1654 } 1655 xa_unlock_irq(&swap_mapping->i_pages); 1656 1657 if (unlikely(error)) { 1658 /* 1659 * Is this possible? I think not, now that our callers check 1660 * both PageSwapCache and page_private after getting page lock; 1661 * but be defensive. Reverse old to newpage for clear and free. 1662 */ 1663 oldpage = newpage; 1664 } else { 1665 lru_cache_add(newpage); 1666 *pagep = newpage; 1667 } 1668 1669 ClearPageSwapCache(oldpage); 1670 set_page_private(oldpage, 0); 1671 1672 unlock_page(oldpage); 1673 put_page(oldpage); 1674 put_page(oldpage); 1675 return error; 1676 } 1677 1678 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1679 struct folio *folio, swp_entry_t swap) 1680 { 1681 struct address_space *mapping = inode->i_mapping; 1682 struct shmem_inode_info *info = SHMEM_I(inode); 1683 swp_entry_t swapin_error; 1684 void *old; 1685 1686 swapin_error = make_swapin_error_entry(&folio->page); 1687 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1688 swp_to_radix_entry(swap), 1689 swp_to_radix_entry(swapin_error), 0); 1690 if (old != swp_to_radix_entry(swap)) 1691 return; 1692 1693 folio_wait_writeback(folio); 1694 delete_from_swap_cache(&folio->page); 1695 spin_lock_irq(&info->lock); 1696 /* 1697 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't 1698 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in 1699 * shmem_evict_inode. 1700 */ 1701 info->alloced--; 1702 info->swapped--; 1703 shmem_recalc_inode(inode); 1704 spin_unlock_irq(&info->lock); 1705 swap_free(swap); 1706 } 1707 1708 /* 1709 * Swap in the page pointed to by *pagep. 1710 * Caller has to make sure that *pagep contains a valid swapped page. 1711 * Returns 0 and the page in pagep if success. On failure, returns the 1712 * error code and NULL in *pagep. 1713 */ 1714 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1715 struct folio **foliop, enum sgp_type sgp, 1716 gfp_t gfp, struct vm_area_struct *vma, 1717 vm_fault_t *fault_type) 1718 { 1719 struct address_space *mapping = inode->i_mapping; 1720 struct shmem_inode_info *info = SHMEM_I(inode); 1721 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1722 struct page *page; 1723 struct folio *folio = NULL; 1724 swp_entry_t swap; 1725 int error; 1726 1727 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1728 swap = radix_to_swp_entry(*foliop); 1729 *foliop = NULL; 1730 1731 if (is_swapin_error_entry(swap)) 1732 return -EIO; 1733 1734 /* Look it up and read it in.. */ 1735 page = lookup_swap_cache(swap, NULL, 0); 1736 if (!page) { 1737 /* Or update major stats only when swapin succeeds?? */ 1738 if (fault_type) { 1739 *fault_type |= VM_FAULT_MAJOR; 1740 count_vm_event(PGMAJFAULT); 1741 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1742 } 1743 /* Here we actually start the io */ 1744 page = shmem_swapin(swap, gfp, info, index); 1745 if (!page) { 1746 error = -ENOMEM; 1747 goto failed; 1748 } 1749 } 1750 folio = page_folio(page); 1751 1752 /* We have to do this with page locked to prevent races */ 1753 folio_lock(folio); 1754 if (!folio_test_swapcache(folio) || 1755 folio_swap_entry(folio).val != swap.val || 1756 !shmem_confirm_swap(mapping, index, swap)) { 1757 error = -EEXIST; 1758 goto unlock; 1759 } 1760 if (!folio_test_uptodate(folio)) { 1761 error = -EIO; 1762 goto failed; 1763 } 1764 folio_wait_writeback(folio); 1765 1766 /* 1767 * Some architectures may have to restore extra metadata to the 1768 * folio after reading from swap. 1769 */ 1770 arch_swap_restore(swap, folio); 1771 1772 if (shmem_should_replace_folio(folio, gfp)) { 1773 error = shmem_replace_page(&page, gfp, info, index); 1774 if (error) 1775 goto failed; 1776 } 1777 1778 error = shmem_add_to_page_cache(folio, mapping, index, 1779 swp_to_radix_entry(swap), gfp, 1780 charge_mm); 1781 if (error) 1782 goto failed; 1783 1784 spin_lock_irq(&info->lock); 1785 info->swapped--; 1786 shmem_recalc_inode(inode); 1787 spin_unlock_irq(&info->lock); 1788 1789 if (sgp == SGP_WRITE) 1790 folio_mark_accessed(folio); 1791 1792 delete_from_swap_cache(&folio->page); 1793 folio_mark_dirty(folio); 1794 swap_free(swap); 1795 1796 *foliop = folio; 1797 return 0; 1798 failed: 1799 if (!shmem_confirm_swap(mapping, index, swap)) 1800 error = -EEXIST; 1801 if (error == -EIO) 1802 shmem_set_folio_swapin_error(inode, index, folio, swap); 1803 unlock: 1804 if (folio) { 1805 folio_unlock(folio); 1806 folio_put(folio); 1807 } 1808 1809 return error; 1810 } 1811 1812 /* 1813 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1814 * 1815 * If we allocate a new one we do not mark it dirty. That's up to the 1816 * vm. If we swap it in we mark it dirty since we also free the swap 1817 * entry since a page cannot live in both the swap and page cache. 1818 * 1819 * vma, vmf, and fault_type are only supplied by shmem_fault: 1820 * otherwise they are NULL. 1821 */ 1822 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1823 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1824 struct vm_area_struct *vma, struct vm_fault *vmf, 1825 vm_fault_t *fault_type) 1826 { 1827 struct address_space *mapping = inode->i_mapping; 1828 struct shmem_inode_info *info = SHMEM_I(inode); 1829 struct shmem_sb_info *sbinfo; 1830 struct mm_struct *charge_mm; 1831 struct folio *folio; 1832 pgoff_t hindex = index; 1833 gfp_t huge_gfp; 1834 int error; 1835 int once = 0; 1836 int alloced = 0; 1837 1838 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1839 return -EFBIG; 1840 repeat: 1841 if (sgp <= SGP_CACHE && 1842 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1843 return -EINVAL; 1844 } 1845 1846 sbinfo = SHMEM_SB(inode->i_sb); 1847 charge_mm = vma ? vma->vm_mm : NULL; 1848 1849 folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0); 1850 if (folio && vma && userfaultfd_minor(vma)) { 1851 if (!xa_is_value(folio)) { 1852 folio_unlock(folio); 1853 folio_put(folio); 1854 } 1855 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1856 return 0; 1857 } 1858 1859 if (xa_is_value(folio)) { 1860 error = shmem_swapin_folio(inode, index, &folio, 1861 sgp, gfp, vma, fault_type); 1862 if (error == -EEXIST) 1863 goto repeat; 1864 1865 *pagep = &folio->page; 1866 return error; 1867 } 1868 1869 if (folio) { 1870 hindex = folio->index; 1871 if (sgp == SGP_WRITE) 1872 folio_mark_accessed(folio); 1873 if (folio_test_uptodate(folio)) 1874 goto out; 1875 /* fallocated page */ 1876 if (sgp != SGP_READ) 1877 goto clear; 1878 folio_unlock(folio); 1879 folio_put(folio); 1880 } 1881 1882 /* 1883 * SGP_READ: succeed on hole, with NULL page, letting caller zero. 1884 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail. 1885 */ 1886 *pagep = NULL; 1887 if (sgp == SGP_READ) 1888 return 0; 1889 if (sgp == SGP_NOALLOC) 1890 return -ENOENT; 1891 1892 /* 1893 * Fast cache lookup and swap lookup did not find it: allocate. 1894 */ 1895 1896 if (vma && userfaultfd_missing(vma)) { 1897 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1898 return 0; 1899 } 1900 1901 if (!shmem_is_huge(vma, inode, index)) 1902 goto alloc_nohuge; 1903 1904 huge_gfp = vma_thp_gfp_mask(vma); 1905 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 1906 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true); 1907 if (IS_ERR(folio)) { 1908 alloc_nohuge: 1909 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false); 1910 } 1911 if (IS_ERR(folio)) { 1912 int retry = 5; 1913 1914 error = PTR_ERR(folio); 1915 folio = NULL; 1916 if (error != -ENOSPC) 1917 goto unlock; 1918 /* 1919 * Try to reclaim some space by splitting a huge page 1920 * beyond i_size on the filesystem. 1921 */ 1922 while (retry--) { 1923 int ret; 1924 1925 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1926 if (ret == SHRINK_STOP) 1927 break; 1928 if (ret) 1929 goto alloc_nohuge; 1930 } 1931 goto unlock; 1932 } 1933 1934 hindex = round_down(index, folio_nr_pages(folio)); 1935 1936 if (sgp == SGP_WRITE) 1937 __folio_set_referenced(folio); 1938 1939 error = shmem_add_to_page_cache(folio, mapping, hindex, 1940 NULL, gfp & GFP_RECLAIM_MASK, 1941 charge_mm); 1942 if (error) 1943 goto unacct; 1944 folio_add_lru(folio); 1945 1946 spin_lock_irq(&info->lock); 1947 info->alloced += folio_nr_pages(folio); 1948 inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio); 1949 shmem_recalc_inode(inode); 1950 spin_unlock_irq(&info->lock); 1951 alloced = true; 1952 1953 if (folio_test_pmd_mappable(folio) && 1954 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1955 hindex + HPAGE_PMD_NR - 1) { 1956 /* 1957 * Part of the huge page is beyond i_size: subject 1958 * to shrink under memory pressure. 1959 */ 1960 spin_lock(&sbinfo->shrinklist_lock); 1961 /* 1962 * _careful to defend against unlocked access to 1963 * ->shrink_list in shmem_unused_huge_shrink() 1964 */ 1965 if (list_empty_careful(&info->shrinklist)) { 1966 list_add_tail(&info->shrinklist, 1967 &sbinfo->shrinklist); 1968 sbinfo->shrinklist_len++; 1969 } 1970 spin_unlock(&sbinfo->shrinklist_lock); 1971 } 1972 1973 /* 1974 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1975 */ 1976 if (sgp == SGP_FALLOC) 1977 sgp = SGP_WRITE; 1978 clear: 1979 /* 1980 * Let SGP_WRITE caller clear ends if write does not fill page; 1981 * but SGP_FALLOC on a page fallocated earlier must initialize 1982 * it now, lest undo on failure cancel our earlier guarantee. 1983 */ 1984 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 1985 long i, n = folio_nr_pages(folio); 1986 1987 for (i = 0; i < n; i++) 1988 clear_highpage(folio_page(folio, i)); 1989 flush_dcache_folio(folio); 1990 folio_mark_uptodate(folio); 1991 } 1992 1993 /* Perhaps the file has been truncated since we checked */ 1994 if (sgp <= SGP_CACHE && 1995 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1996 if (alloced) { 1997 folio_clear_dirty(folio); 1998 filemap_remove_folio(folio); 1999 spin_lock_irq(&info->lock); 2000 shmem_recalc_inode(inode); 2001 spin_unlock_irq(&info->lock); 2002 } 2003 error = -EINVAL; 2004 goto unlock; 2005 } 2006 out: 2007 *pagep = folio_page(folio, index - hindex); 2008 return 0; 2009 2010 /* 2011 * Error recovery. 2012 */ 2013 unacct: 2014 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio)); 2015 2016 if (folio_test_large(folio)) { 2017 folio_unlock(folio); 2018 folio_put(folio); 2019 goto alloc_nohuge; 2020 } 2021 unlock: 2022 if (folio) { 2023 folio_unlock(folio); 2024 folio_put(folio); 2025 } 2026 if (error == -ENOSPC && !once++) { 2027 spin_lock_irq(&info->lock); 2028 shmem_recalc_inode(inode); 2029 spin_unlock_irq(&info->lock); 2030 goto repeat; 2031 } 2032 if (error == -EEXIST) 2033 goto repeat; 2034 return error; 2035 } 2036 2037 /* 2038 * This is like autoremove_wake_function, but it removes the wait queue 2039 * entry unconditionally - even if something else had already woken the 2040 * target. 2041 */ 2042 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2043 { 2044 int ret = default_wake_function(wait, mode, sync, key); 2045 list_del_init(&wait->entry); 2046 return ret; 2047 } 2048 2049 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2050 { 2051 struct vm_area_struct *vma = vmf->vma; 2052 struct inode *inode = file_inode(vma->vm_file); 2053 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2054 int err; 2055 vm_fault_t ret = VM_FAULT_LOCKED; 2056 2057 /* 2058 * Trinity finds that probing a hole which tmpfs is punching can 2059 * prevent the hole-punch from ever completing: which in turn 2060 * locks writers out with its hold on i_rwsem. So refrain from 2061 * faulting pages into the hole while it's being punched. Although 2062 * shmem_undo_range() does remove the additions, it may be unable to 2063 * keep up, as each new page needs its own unmap_mapping_range() call, 2064 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2065 * 2066 * It does not matter if we sometimes reach this check just before the 2067 * hole-punch begins, so that one fault then races with the punch: 2068 * we just need to make racing faults a rare case. 2069 * 2070 * The implementation below would be much simpler if we just used a 2071 * standard mutex or completion: but we cannot take i_rwsem in fault, 2072 * and bloating every shmem inode for this unlikely case would be sad. 2073 */ 2074 if (unlikely(inode->i_private)) { 2075 struct shmem_falloc *shmem_falloc; 2076 2077 spin_lock(&inode->i_lock); 2078 shmem_falloc = inode->i_private; 2079 if (shmem_falloc && 2080 shmem_falloc->waitq && 2081 vmf->pgoff >= shmem_falloc->start && 2082 vmf->pgoff < shmem_falloc->next) { 2083 struct file *fpin; 2084 wait_queue_head_t *shmem_falloc_waitq; 2085 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2086 2087 ret = VM_FAULT_NOPAGE; 2088 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2089 if (fpin) 2090 ret = VM_FAULT_RETRY; 2091 2092 shmem_falloc_waitq = shmem_falloc->waitq; 2093 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2094 TASK_UNINTERRUPTIBLE); 2095 spin_unlock(&inode->i_lock); 2096 schedule(); 2097 2098 /* 2099 * shmem_falloc_waitq points into the shmem_fallocate() 2100 * stack of the hole-punching task: shmem_falloc_waitq 2101 * is usually invalid by the time we reach here, but 2102 * finish_wait() does not dereference it in that case; 2103 * though i_lock needed lest racing with wake_up_all(). 2104 */ 2105 spin_lock(&inode->i_lock); 2106 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2107 spin_unlock(&inode->i_lock); 2108 2109 if (fpin) 2110 fput(fpin); 2111 return ret; 2112 } 2113 spin_unlock(&inode->i_lock); 2114 } 2115 2116 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE, 2117 gfp, vma, vmf, &ret); 2118 if (err) 2119 return vmf_error(err); 2120 return ret; 2121 } 2122 2123 unsigned long shmem_get_unmapped_area(struct file *file, 2124 unsigned long uaddr, unsigned long len, 2125 unsigned long pgoff, unsigned long flags) 2126 { 2127 unsigned long (*get_area)(struct file *, 2128 unsigned long, unsigned long, unsigned long, unsigned long); 2129 unsigned long addr; 2130 unsigned long offset; 2131 unsigned long inflated_len; 2132 unsigned long inflated_addr; 2133 unsigned long inflated_offset; 2134 2135 if (len > TASK_SIZE) 2136 return -ENOMEM; 2137 2138 get_area = current->mm->get_unmapped_area; 2139 addr = get_area(file, uaddr, len, pgoff, flags); 2140 2141 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2142 return addr; 2143 if (IS_ERR_VALUE(addr)) 2144 return addr; 2145 if (addr & ~PAGE_MASK) 2146 return addr; 2147 if (addr > TASK_SIZE - len) 2148 return addr; 2149 2150 if (shmem_huge == SHMEM_HUGE_DENY) 2151 return addr; 2152 if (len < HPAGE_PMD_SIZE) 2153 return addr; 2154 if (flags & MAP_FIXED) 2155 return addr; 2156 /* 2157 * Our priority is to support MAP_SHARED mapped hugely; 2158 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2159 * But if caller specified an address hint and we allocated area there 2160 * successfully, respect that as before. 2161 */ 2162 if (uaddr == addr) 2163 return addr; 2164 2165 if (shmem_huge != SHMEM_HUGE_FORCE) { 2166 struct super_block *sb; 2167 2168 if (file) { 2169 VM_BUG_ON(file->f_op != &shmem_file_operations); 2170 sb = file_inode(file)->i_sb; 2171 } else { 2172 /* 2173 * Called directly from mm/mmap.c, or drivers/char/mem.c 2174 * for "/dev/zero", to create a shared anonymous object. 2175 */ 2176 if (IS_ERR(shm_mnt)) 2177 return addr; 2178 sb = shm_mnt->mnt_sb; 2179 } 2180 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2181 return addr; 2182 } 2183 2184 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2185 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2186 return addr; 2187 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2188 return addr; 2189 2190 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2191 if (inflated_len > TASK_SIZE) 2192 return addr; 2193 if (inflated_len < len) 2194 return addr; 2195 2196 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2197 if (IS_ERR_VALUE(inflated_addr)) 2198 return addr; 2199 if (inflated_addr & ~PAGE_MASK) 2200 return addr; 2201 2202 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2203 inflated_addr += offset - inflated_offset; 2204 if (inflated_offset > offset) 2205 inflated_addr += HPAGE_PMD_SIZE; 2206 2207 if (inflated_addr > TASK_SIZE - len) 2208 return addr; 2209 return inflated_addr; 2210 } 2211 2212 #ifdef CONFIG_NUMA 2213 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2214 { 2215 struct inode *inode = file_inode(vma->vm_file); 2216 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2217 } 2218 2219 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2220 unsigned long addr) 2221 { 2222 struct inode *inode = file_inode(vma->vm_file); 2223 pgoff_t index; 2224 2225 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2226 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2227 } 2228 #endif 2229 2230 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2231 { 2232 struct inode *inode = file_inode(file); 2233 struct shmem_inode_info *info = SHMEM_I(inode); 2234 int retval = -ENOMEM; 2235 2236 /* 2237 * What serializes the accesses to info->flags? 2238 * ipc_lock_object() when called from shmctl_do_lock(), 2239 * no serialization needed when called from shm_destroy(). 2240 */ 2241 if (lock && !(info->flags & VM_LOCKED)) { 2242 if (!user_shm_lock(inode->i_size, ucounts)) 2243 goto out_nomem; 2244 info->flags |= VM_LOCKED; 2245 mapping_set_unevictable(file->f_mapping); 2246 } 2247 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2248 user_shm_unlock(inode->i_size, ucounts); 2249 info->flags &= ~VM_LOCKED; 2250 mapping_clear_unevictable(file->f_mapping); 2251 } 2252 retval = 0; 2253 2254 out_nomem: 2255 return retval; 2256 } 2257 2258 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2259 { 2260 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2261 int ret; 2262 2263 ret = seal_check_future_write(info->seals, vma); 2264 if (ret) 2265 return ret; 2266 2267 /* arm64 - allow memory tagging on RAM-based files */ 2268 vma->vm_flags |= VM_MTE_ALLOWED; 2269 2270 file_accessed(file); 2271 vma->vm_ops = &shmem_vm_ops; 2272 return 0; 2273 } 2274 2275 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2276 umode_t mode, dev_t dev, unsigned long flags) 2277 { 2278 struct inode *inode; 2279 struct shmem_inode_info *info; 2280 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2281 ino_t ino; 2282 2283 if (shmem_reserve_inode(sb, &ino)) 2284 return NULL; 2285 2286 inode = new_inode(sb); 2287 if (inode) { 2288 inode->i_ino = ino; 2289 inode_init_owner(&init_user_ns, inode, dir, mode); 2290 inode->i_blocks = 0; 2291 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2292 inode->i_generation = prandom_u32(); 2293 info = SHMEM_I(inode); 2294 memset(info, 0, (char *)inode - (char *)info); 2295 spin_lock_init(&info->lock); 2296 atomic_set(&info->stop_eviction, 0); 2297 info->seals = F_SEAL_SEAL; 2298 info->flags = flags & VM_NORESERVE; 2299 info->i_crtime = inode->i_mtime; 2300 INIT_LIST_HEAD(&info->shrinklist); 2301 INIT_LIST_HEAD(&info->swaplist); 2302 simple_xattrs_init(&info->xattrs); 2303 cache_no_acl(inode); 2304 mapping_set_large_folios(inode->i_mapping); 2305 2306 switch (mode & S_IFMT) { 2307 default: 2308 inode->i_op = &shmem_special_inode_operations; 2309 init_special_inode(inode, mode, dev); 2310 break; 2311 case S_IFREG: 2312 inode->i_mapping->a_ops = &shmem_aops; 2313 inode->i_op = &shmem_inode_operations; 2314 inode->i_fop = &shmem_file_operations; 2315 mpol_shared_policy_init(&info->policy, 2316 shmem_get_sbmpol(sbinfo)); 2317 break; 2318 case S_IFDIR: 2319 inc_nlink(inode); 2320 /* Some things misbehave if size == 0 on a directory */ 2321 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2322 inode->i_op = &shmem_dir_inode_operations; 2323 inode->i_fop = &simple_dir_operations; 2324 break; 2325 case S_IFLNK: 2326 /* 2327 * Must not load anything in the rbtree, 2328 * mpol_free_shared_policy will not be called. 2329 */ 2330 mpol_shared_policy_init(&info->policy, NULL); 2331 break; 2332 } 2333 2334 lockdep_annotate_inode_mutex_key(inode); 2335 } else 2336 shmem_free_inode(sb); 2337 return inode; 2338 } 2339 2340 #ifdef CONFIG_USERFAULTFD 2341 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2342 pmd_t *dst_pmd, 2343 struct vm_area_struct *dst_vma, 2344 unsigned long dst_addr, 2345 unsigned long src_addr, 2346 bool zeropage, bool wp_copy, 2347 struct page **pagep) 2348 { 2349 struct inode *inode = file_inode(dst_vma->vm_file); 2350 struct shmem_inode_info *info = SHMEM_I(inode); 2351 struct address_space *mapping = inode->i_mapping; 2352 gfp_t gfp = mapping_gfp_mask(mapping); 2353 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2354 void *page_kaddr; 2355 struct folio *folio; 2356 struct page *page; 2357 int ret; 2358 pgoff_t max_off; 2359 2360 if (!shmem_inode_acct_block(inode, 1)) { 2361 /* 2362 * We may have got a page, returned -ENOENT triggering a retry, 2363 * and now we find ourselves with -ENOMEM. Release the page, to 2364 * avoid a BUG_ON in our caller. 2365 */ 2366 if (unlikely(*pagep)) { 2367 put_page(*pagep); 2368 *pagep = NULL; 2369 } 2370 return -ENOMEM; 2371 } 2372 2373 if (!*pagep) { 2374 ret = -ENOMEM; 2375 page = shmem_alloc_page(gfp, info, pgoff); 2376 if (!page) 2377 goto out_unacct_blocks; 2378 2379 if (!zeropage) { /* COPY */ 2380 page_kaddr = kmap_atomic(page); 2381 ret = copy_from_user(page_kaddr, 2382 (const void __user *)src_addr, 2383 PAGE_SIZE); 2384 kunmap_atomic(page_kaddr); 2385 2386 /* fallback to copy_from_user outside mmap_lock */ 2387 if (unlikely(ret)) { 2388 *pagep = page; 2389 ret = -ENOENT; 2390 /* don't free the page */ 2391 goto out_unacct_blocks; 2392 } 2393 2394 flush_dcache_page(page); 2395 } else { /* ZEROPAGE */ 2396 clear_user_highpage(page, dst_addr); 2397 } 2398 } else { 2399 page = *pagep; 2400 *pagep = NULL; 2401 } 2402 2403 VM_BUG_ON(PageLocked(page)); 2404 VM_BUG_ON(PageSwapBacked(page)); 2405 __SetPageLocked(page); 2406 __SetPageSwapBacked(page); 2407 __SetPageUptodate(page); 2408 2409 ret = -EFAULT; 2410 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2411 if (unlikely(pgoff >= max_off)) 2412 goto out_release; 2413 2414 folio = page_folio(page); 2415 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, 2416 gfp & GFP_RECLAIM_MASK, dst_mm); 2417 if (ret) 2418 goto out_release; 2419 2420 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr, 2421 page, true, wp_copy); 2422 if (ret) 2423 goto out_delete_from_cache; 2424 2425 spin_lock_irq(&info->lock); 2426 info->alloced++; 2427 inode->i_blocks += BLOCKS_PER_PAGE; 2428 shmem_recalc_inode(inode); 2429 spin_unlock_irq(&info->lock); 2430 2431 unlock_page(page); 2432 return 0; 2433 out_delete_from_cache: 2434 delete_from_page_cache(page); 2435 out_release: 2436 unlock_page(page); 2437 put_page(page); 2438 out_unacct_blocks: 2439 shmem_inode_unacct_blocks(inode, 1); 2440 return ret; 2441 } 2442 #endif /* CONFIG_USERFAULTFD */ 2443 2444 #ifdef CONFIG_TMPFS 2445 static const struct inode_operations shmem_symlink_inode_operations; 2446 static const struct inode_operations shmem_short_symlink_operations; 2447 2448 #ifdef CONFIG_TMPFS_XATTR 2449 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2450 #else 2451 #define shmem_initxattrs NULL 2452 #endif 2453 2454 static int 2455 shmem_write_begin(struct file *file, struct address_space *mapping, 2456 loff_t pos, unsigned len, 2457 struct page **pagep, void **fsdata) 2458 { 2459 struct inode *inode = mapping->host; 2460 struct shmem_inode_info *info = SHMEM_I(inode); 2461 pgoff_t index = pos >> PAGE_SHIFT; 2462 int ret = 0; 2463 2464 /* i_rwsem is held by caller */ 2465 if (unlikely(info->seals & (F_SEAL_GROW | 2466 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2467 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2468 return -EPERM; 2469 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2470 return -EPERM; 2471 } 2472 2473 ret = shmem_getpage(inode, index, pagep, SGP_WRITE); 2474 2475 if (ret) 2476 return ret; 2477 2478 if (PageHWPoison(*pagep)) { 2479 unlock_page(*pagep); 2480 put_page(*pagep); 2481 *pagep = NULL; 2482 return -EIO; 2483 } 2484 2485 return 0; 2486 } 2487 2488 static int 2489 shmem_write_end(struct file *file, struct address_space *mapping, 2490 loff_t pos, unsigned len, unsigned copied, 2491 struct page *page, void *fsdata) 2492 { 2493 struct inode *inode = mapping->host; 2494 2495 if (pos + copied > inode->i_size) 2496 i_size_write(inode, pos + copied); 2497 2498 if (!PageUptodate(page)) { 2499 struct page *head = compound_head(page); 2500 if (PageTransCompound(page)) { 2501 int i; 2502 2503 for (i = 0; i < HPAGE_PMD_NR; i++) { 2504 if (head + i == page) 2505 continue; 2506 clear_highpage(head + i); 2507 flush_dcache_page(head + i); 2508 } 2509 } 2510 if (copied < PAGE_SIZE) { 2511 unsigned from = pos & (PAGE_SIZE - 1); 2512 zero_user_segments(page, 0, from, 2513 from + copied, PAGE_SIZE); 2514 } 2515 SetPageUptodate(head); 2516 } 2517 set_page_dirty(page); 2518 unlock_page(page); 2519 put_page(page); 2520 2521 return copied; 2522 } 2523 2524 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2525 { 2526 struct file *file = iocb->ki_filp; 2527 struct inode *inode = file_inode(file); 2528 struct address_space *mapping = inode->i_mapping; 2529 pgoff_t index; 2530 unsigned long offset; 2531 int error = 0; 2532 ssize_t retval = 0; 2533 loff_t *ppos = &iocb->ki_pos; 2534 2535 index = *ppos >> PAGE_SHIFT; 2536 offset = *ppos & ~PAGE_MASK; 2537 2538 for (;;) { 2539 struct page *page = NULL; 2540 pgoff_t end_index; 2541 unsigned long nr, ret; 2542 loff_t i_size = i_size_read(inode); 2543 2544 end_index = i_size >> PAGE_SHIFT; 2545 if (index > end_index) 2546 break; 2547 if (index == end_index) { 2548 nr = i_size & ~PAGE_MASK; 2549 if (nr <= offset) 2550 break; 2551 } 2552 2553 error = shmem_getpage(inode, index, &page, SGP_READ); 2554 if (error) { 2555 if (error == -EINVAL) 2556 error = 0; 2557 break; 2558 } 2559 if (page) { 2560 unlock_page(page); 2561 2562 if (PageHWPoison(page)) { 2563 put_page(page); 2564 error = -EIO; 2565 break; 2566 } 2567 } 2568 2569 /* 2570 * We must evaluate after, since reads (unlike writes) 2571 * are called without i_rwsem protection against truncate 2572 */ 2573 nr = PAGE_SIZE; 2574 i_size = i_size_read(inode); 2575 end_index = i_size >> PAGE_SHIFT; 2576 if (index == end_index) { 2577 nr = i_size & ~PAGE_MASK; 2578 if (nr <= offset) { 2579 if (page) 2580 put_page(page); 2581 break; 2582 } 2583 } 2584 nr -= offset; 2585 2586 if (page) { 2587 /* 2588 * If users can be writing to this page using arbitrary 2589 * virtual addresses, take care about potential aliasing 2590 * before reading the page on the kernel side. 2591 */ 2592 if (mapping_writably_mapped(mapping)) 2593 flush_dcache_page(page); 2594 /* 2595 * Mark the page accessed if we read the beginning. 2596 */ 2597 if (!offset) 2598 mark_page_accessed(page); 2599 /* 2600 * Ok, we have the page, and it's up-to-date, so 2601 * now we can copy it to user space... 2602 */ 2603 ret = copy_page_to_iter(page, offset, nr, to); 2604 put_page(page); 2605 2606 } else if (iter_is_iovec(to)) { 2607 /* 2608 * Copy to user tends to be so well optimized, but 2609 * clear_user() not so much, that it is noticeably 2610 * faster to copy the zero page instead of clearing. 2611 */ 2612 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2613 } else { 2614 /* 2615 * But submitting the same page twice in a row to 2616 * splice() - or others? - can result in confusion: 2617 * so don't attempt that optimization on pipes etc. 2618 */ 2619 ret = iov_iter_zero(nr, to); 2620 } 2621 2622 retval += ret; 2623 offset += ret; 2624 index += offset >> PAGE_SHIFT; 2625 offset &= ~PAGE_MASK; 2626 2627 if (!iov_iter_count(to)) 2628 break; 2629 if (ret < nr) { 2630 error = -EFAULT; 2631 break; 2632 } 2633 cond_resched(); 2634 } 2635 2636 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2637 file_accessed(file); 2638 return retval ? retval : error; 2639 } 2640 2641 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2642 { 2643 struct address_space *mapping = file->f_mapping; 2644 struct inode *inode = mapping->host; 2645 2646 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2647 return generic_file_llseek_size(file, offset, whence, 2648 MAX_LFS_FILESIZE, i_size_read(inode)); 2649 if (offset < 0) 2650 return -ENXIO; 2651 2652 inode_lock(inode); 2653 /* We're holding i_rwsem so we can access i_size directly */ 2654 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2655 if (offset >= 0) 2656 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2657 inode_unlock(inode); 2658 return offset; 2659 } 2660 2661 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2662 loff_t len) 2663 { 2664 struct inode *inode = file_inode(file); 2665 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2666 struct shmem_inode_info *info = SHMEM_I(inode); 2667 struct shmem_falloc shmem_falloc; 2668 pgoff_t start, index, end, undo_fallocend; 2669 int error; 2670 2671 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2672 return -EOPNOTSUPP; 2673 2674 inode_lock(inode); 2675 2676 if (mode & FALLOC_FL_PUNCH_HOLE) { 2677 struct address_space *mapping = file->f_mapping; 2678 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2679 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2680 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2681 2682 /* protected by i_rwsem */ 2683 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2684 error = -EPERM; 2685 goto out; 2686 } 2687 2688 shmem_falloc.waitq = &shmem_falloc_waitq; 2689 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2690 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2691 spin_lock(&inode->i_lock); 2692 inode->i_private = &shmem_falloc; 2693 spin_unlock(&inode->i_lock); 2694 2695 if ((u64)unmap_end > (u64)unmap_start) 2696 unmap_mapping_range(mapping, unmap_start, 2697 1 + unmap_end - unmap_start, 0); 2698 shmem_truncate_range(inode, offset, offset + len - 1); 2699 /* No need to unmap again: hole-punching leaves COWed pages */ 2700 2701 spin_lock(&inode->i_lock); 2702 inode->i_private = NULL; 2703 wake_up_all(&shmem_falloc_waitq); 2704 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2705 spin_unlock(&inode->i_lock); 2706 error = 0; 2707 goto out; 2708 } 2709 2710 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2711 error = inode_newsize_ok(inode, offset + len); 2712 if (error) 2713 goto out; 2714 2715 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2716 error = -EPERM; 2717 goto out; 2718 } 2719 2720 start = offset >> PAGE_SHIFT; 2721 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2722 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2723 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2724 error = -ENOSPC; 2725 goto out; 2726 } 2727 2728 shmem_falloc.waitq = NULL; 2729 shmem_falloc.start = start; 2730 shmem_falloc.next = start; 2731 shmem_falloc.nr_falloced = 0; 2732 shmem_falloc.nr_unswapped = 0; 2733 spin_lock(&inode->i_lock); 2734 inode->i_private = &shmem_falloc; 2735 spin_unlock(&inode->i_lock); 2736 2737 /* 2738 * info->fallocend is only relevant when huge pages might be 2739 * involved: to prevent split_huge_page() freeing fallocated 2740 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 2741 */ 2742 undo_fallocend = info->fallocend; 2743 if (info->fallocend < end) 2744 info->fallocend = end; 2745 2746 for (index = start; index < end; ) { 2747 struct page *page; 2748 2749 /* 2750 * Good, the fallocate(2) manpage permits EINTR: we may have 2751 * been interrupted because we are using up too much memory. 2752 */ 2753 if (signal_pending(current)) 2754 error = -EINTR; 2755 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2756 error = -ENOMEM; 2757 else 2758 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2759 if (error) { 2760 info->fallocend = undo_fallocend; 2761 /* Remove the !PageUptodate pages we added */ 2762 if (index > start) { 2763 shmem_undo_range(inode, 2764 (loff_t)start << PAGE_SHIFT, 2765 ((loff_t)index << PAGE_SHIFT) - 1, true); 2766 } 2767 goto undone; 2768 } 2769 2770 index++; 2771 /* 2772 * Here is a more important optimization than it appears: 2773 * a second SGP_FALLOC on the same huge page will clear it, 2774 * making it PageUptodate and un-undoable if we fail later. 2775 */ 2776 if (PageTransCompound(page)) { 2777 index = round_up(index, HPAGE_PMD_NR); 2778 /* Beware 32-bit wraparound */ 2779 if (!index) 2780 index--; 2781 } 2782 2783 /* 2784 * Inform shmem_writepage() how far we have reached. 2785 * No need for lock or barrier: we have the page lock. 2786 */ 2787 if (!PageUptodate(page)) 2788 shmem_falloc.nr_falloced += index - shmem_falloc.next; 2789 shmem_falloc.next = index; 2790 2791 /* 2792 * If !PageUptodate, leave it that way so that freeable pages 2793 * can be recognized if we need to rollback on error later. 2794 * But set_page_dirty so that memory pressure will swap rather 2795 * than free the pages we are allocating (and SGP_CACHE pages 2796 * might still be clean: we now need to mark those dirty too). 2797 */ 2798 set_page_dirty(page); 2799 unlock_page(page); 2800 put_page(page); 2801 cond_resched(); 2802 } 2803 2804 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2805 i_size_write(inode, offset + len); 2806 inode->i_ctime = current_time(inode); 2807 undone: 2808 spin_lock(&inode->i_lock); 2809 inode->i_private = NULL; 2810 spin_unlock(&inode->i_lock); 2811 out: 2812 inode_unlock(inode); 2813 return error; 2814 } 2815 2816 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2817 { 2818 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2819 2820 buf->f_type = TMPFS_MAGIC; 2821 buf->f_bsize = PAGE_SIZE; 2822 buf->f_namelen = NAME_MAX; 2823 if (sbinfo->max_blocks) { 2824 buf->f_blocks = sbinfo->max_blocks; 2825 buf->f_bavail = 2826 buf->f_bfree = sbinfo->max_blocks - 2827 percpu_counter_sum(&sbinfo->used_blocks); 2828 } 2829 if (sbinfo->max_inodes) { 2830 buf->f_files = sbinfo->max_inodes; 2831 buf->f_ffree = sbinfo->free_inodes; 2832 } 2833 /* else leave those fields 0 like simple_statfs */ 2834 2835 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 2836 2837 return 0; 2838 } 2839 2840 /* 2841 * File creation. Allocate an inode, and we're done.. 2842 */ 2843 static int 2844 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2845 struct dentry *dentry, umode_t mode, dev_t dev) 2846 { 2847 struct inode *inode; 2848 int error = -ENOSPC; 2849 2850 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2851 if (inode) { 2852 error = simple_acl_create(dir, inode); 2853 if (error) 2854 goto out_iput; 2855 error = security_inode_init_security(inode, dir, 2856 &dentry->d_name, 2857 shmem_initxattrs, NULL); 2858 if (error && error != -EOPNOTSUPP) 2859 goto out_iput; 2860 2861 error = 0; 2862 dir->i_size += BOGO_DIRENT_SIZE; 2863 dir->i_ctime = dir->i_mtime = current_time(dir); 2864 d_instantiate(dentry, inode); 2865 dget(dentry); /* Extra count - pin the dentry in core */ 2866 } 2867 return error; 2868 out_iput: 2869 iput(inode); 2870 return error; 2871 } 2872 2873 static int 2874 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 2875 struct dentry *dentry, umode_t mode) 2876 { 2877 struct inode *inode; 2878 int error = -ENOSPC; 2879 2880 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2881 if (inode) { 2882 error = security_inode_init_security(inode, dir, 2883 NULL, 2884 shmem_initxattrs, NULL); 2885 if (error && error != -EOPNOTSUPP) 2886 goto out_iput; 2887 error = simple_acl_create(dir, inode); 2888 if (error) 2889 goto out_iput; 2890 d_tmpfile(dentry, inode); 2891 } 2892 return error; 2893 out_iput: 2894 iput(inode); 2895 return error; 2896 } 2897 2898 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2899 struct dentry *dentry, umode_t mode) 2900 { 2901 int error; 2902 2903 if ((error = shmem_mknod(&init_user_ns, dir, dentry, 2904 mode | S_IFDIR, 0))) 2905 return error; 2906 inc_nlink(dir); 2907 return 0; 2908 } 2909 2910 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir, 2911 struct dentry *dentry, umode_t mode, bool excl) 2912 { 2913 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 2914 } 2915 2916 /* 2917 * Link a file.. 2918 */ 2919 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2920 { 2921 struct inode *inode = d_inode(old_dentry); 2922 int ret = 0; 2923 2924 /* 2925 * No ordinary (disk based) filesystem counts links as inodes; 2926 * but each new link needs a new dentry, pinning lowmem, and 2927 * tmpfs dentries cannot be pruned until they are unlinked. 2928 * But if an O_TMPFILE file is linked into the tmpfs, the 2929 * first link must skip that, to get the accounting right. 2930 */ 2931 if (inode->i_nlink) { 2932 ret = shmem_reserve_inode(inode->i_sb, NULL); 2933 if (ret) 2934 goto out; 2935 } 2936 2937 dir->i_size += BOGO_DIRENT_SIZE; 2938 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2939 inc_nlink(inode); 2940 ihold(inode); /* New dentry reference */ 2941 dget(dentry); /* Extra pinning count for the created dentry */ 2942 d_instantiate(dentry, inode); 2943 out: 2944 return ret; 2945 } 2946 2947 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2948 { 2949 struct inode *inode = d_inode(dentry); 2950 2951 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2952 shmem_free_inode(inode->i_sb); 2953 2954 dir->i_size -= BOGO_DIRENT_SIZE; 2955 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2956 drop_nlink(inode); 2957 dput(dentry); /* Undo the count from "create" - this does all the work */ 2958 return 0; 2959 } 2960 2961 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2962 { 2963 if (!simple_empty(dentry)) 2964 return -ENOTEMPTY; 2965 2966 drop_nlink(d_inode(dentry)); 2967 drop_nlink(dir); 2968 return shmem_unlink(dir, dentry); 2969 } 2970 2971 static int shmem_whiteout(struct user_namespace *mnt_userns, 2972 struct inode *old_dir, struct dentry *old_dentry) 2973 { 2974 struct dentry *whiteout; 2975 int error; 2976 2977 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2978 if (!whiteout) 2979 return -ENOMEM; 2980 2981 error = shmem_mknod(&init_user_ns, old_dir, whiteout, 2982 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2983 dput(whiteout); 2984 if (error) 2985 return error; 2986 2987 /* 2988 * Cheat and hash the whiteout while the old dentry is still in 2989 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2990 * 2991 * d_lookup() will consistently find one of them at this point, 2992 * not sure which one, but that isn't even important. 2993 */ 2994 d_rehash(whiteout); 2995 return 0; 2996 } 2997 2998 /* 2999 * The VFS layer already does all the dentry stuff for rename, 3000 * we just have to decrement the usage count for the target if 3001 * it exists so that the VFS layer correctly free's it when it 3002 * gets overwritten. 3003 */ 3004 static int shmem_rename2(struct user_namespace *mnt_userns, 3005 struct inode *old_dir, struct dentry *old_dentry, 3006 struct inode *new_dir, struct dentry *new_dentry, 3007 unsigned int flags) 3008 { 3009 struct inode *inode = d_inode(old_dentry); 3010 int they_are_dirs = S_ISDIR(inode->i_mode); 3011 3012 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3013 return -EINVAL; 3014 3015 if (flags & RENAME_EXCHANGE) 3016 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 3017 3018 if (!simple_empty(new_dentry)) 3019 return -ENOTEMPTY; 3020 3021 if (flags & RENAME_WHITEOUT) { 3022 int error; 3023 3024 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry); 3025 if (error) 3026 return error; 3027 } 3028 3029 if (d_really_is_positive(new_dentry)) { 3030 (void) shmem_unlink(new_dir, new_dentry); 3031 if (they_are_dirs) { 3032 drop_nlink(d_inode(new_dentry)); 3033 drop_nlink(old_dir); 3034 } 3035 } else if (they_are_dirs) { 3036 drop_nlink(old_dir); 3037 inc_nlink(new_dir); 3038 } 3039 3040 old_dir->i_size -= BOGO_DIRENT_SIZE; 3041 new_dir->i_size += BOGO_DIRENT_SIZE; 3042 old_dir->i_ctime = old_dir->i_mtime = 3043 new_dir->i_ctime = new_dir->i_mtime = 3044 inode->i_ctime = current_time(old_dir); 3045 return 0; 3046 } 3047 3048 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir, 3049 struct dentry *dentry, const char *symname) 3050 { 3051 int error; 3052 int len; 3053 struct inode *inode; 3054 struct page *page; 3055 3056 len = strlen(symname) + 1; 3057 if (len > PAGE_SIZE) 3058 return -ENAMETOOLONG; 3059 3060 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3061 VM_NORESERVE); 3062 if (!inode) 3063 return -ENOSPC; 3064 3065 error = security_inode_init_security(inode, dir, &dentry->d_name, 3066 shmem_initxattrs, NULL); 3067 if (error && error != -EOPNOTSUPP) { 3068 iput(inode); 3069 return error; 3070 } 3071 3072 inode->i_size = len-1; 3073 if (len <= SHORT_SYMLINK_LEN) { 3074 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3075 if (!inode->i_link) { 3076 iput(inode); 3077 return -ENOMEM; 3078 } 3079 inode->i_op = &shmem_short_symlink_operations; 3080 } else { 3081 inode_nohighmem(inode); 3082 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3083 if (error) { 3084 iput(inode); 3085 return error; 3086 } 3087 inode->i_mapping->a_ops = &shmem_aops; 3088 inode->i_op = &shmem_symlink_inode_operations; 3089 memcpy(page_address(page), symname, len); 3090 SetPageUptodate(page); 3091 set_page_dirty(page); 3092 unlock_page(page); 3093 put_page(page); 3094 } 3095 dir->i_size += BOGO_DIRENT_SIZE; 3096 dir->i_ctime = dir->i_mtime = current_time(dir); 3097 d_instantiate(dentry, inode); 3098 dget(dentry); 3099 return 0; 3100 } 3101 3102 static void shmem_put_link(void *arg) 3103 { 3104 mark_page_accessed(arg); 3105 put_page(arg); 3106 } 3107 3108 static const char *shmem_get_link(struct dentry *dentry, 3109 struct inode *inode, 3110 struct delayed_call *done) 3111 { 3112 struct page *page = NULL; 3113 int error; 3114 if (!dentry) { 3115 page = find_get_page(inode->i_mapping, 0); 3116 if (!page) 3117 return ERR_PTR(-ECHILD); 3118 if (PageHWPoison(page) || 3119 !PageUptodate(page)) { 3120 put_page(page); 3121 return ERR_PTR(-ECHILD); 3122 } 3123 } else { 3124 error = shmem_getpage(inode, 0, &page, SGP_READ); 3125 if (error) 3126 return ERR_PTR(error); 3127 if (!page) 3128 return ERR_PTR(-ECHILD); 3129 if (PageHWPoison(page)) { 3130 unlock_page(page); 3131 put_page(page); 3132 return ERR_PTR(-ECHILD); 3133 } 3134 unlock_page(page); 3135 } 3136 set_delayed_call(done, shmem_put_link, page); 3137 return page_address(page); 3138 } 3139 3140 #ifdef CONFIG_TMPFS_XATTR 3141 /* 3142 * Superblocks without xattr inode operations may get some security.* xattr 3143 * support from the LSM "for free". As soon as we have any other xattrs 3144 * like ACLs, we also need to implement the security.* handlers at 3145 * filesystem level, though. 3146 */ 3147 3148 /* 3149 * Callback for security_inode_init_security() for acquiring xattrs. 3150 */ 3151 static int shmem_initxattrs(struct inode *inode, 3152 const struct xattr *xattr_array, 3153 void *fs_info) 3154 { 3155 struct shmem_inode_info *info = SHMEM_I(inode); 3156 const struct xattr *xattr; 3157 struct simple_xattr *new_xattr; 3158 size_t len; 3159 3160 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3161 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3162 if (!new_xattr) 3163 return -ENOMEM; 3164 3165 len = strlen(xattr->name) + 1; 3166 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3167 GFP_KERNEL); 3168 if (!new_xattr->name) { 3169 kvfree(new_xattr); 3170 return -ENOMEM; 3171 } 3172 3173 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3174 XATTR_SECURITY_PREFIX_LEN); 3175 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3176 xattr->name, len); 3177 3178 simple_xattr_list_add(&info->xattrs, new_xattr); 3179 } 3180 3181 return 0; 3182 } 3183 3184 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3185 struct dentry *unused, struct inode *inode, 3186 const char *name, void *buffer, size_t size) 3187 { 3188 struct shmem_inode_info *info = SHMEM_I(inode); 3189 3190 name = xattr_full_name(handler, name); 3191 return simple_xattr_get(&info->xattrs, name, buffer, size); 3192 } 3193 3194 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3195 struct user_namespace *mnt_userns, 3196 struct dentry *unused, struct inode *inode, 3197 const char *name, const void *value, 3198 size_t size, int flags) 3199 { 3200 struct shmem_inode_info *info = SHMEM_I(inode); 3201 3202 name = xattr_full_name(handler, name); 3203 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3204 } 3205 3206 static const struct xattr_handler shmem_security_xattr_handler = { 3207 .prefix = XATTR_SECURITY_PREFIX, 3208 .get = shmem_xattr_handler_get, 3209 .set = shmem_xattr_handler_set, 3210 }; 3211 3212 static const struct xattr_handler shmem_trusted_xattr_handler = { 3213 .prefix = XATTR_TRUSTED_PREFIX, 3214 .get = shmem_xattr_handler_get, 3215 .set = shmem_xattr_handler_set, 3216 }; 3217 3218 static const struct xattr_handler *shmem_xattr_handlers[] = { 3219 #ifdef CONFIG_TMPFS_POSIX_ACL 3220 &posix_acl_access_xattr_handler, 3221 &posix_acl_default_xattr_handler, 3222 #endif 3223 &shmem_security_xattr_handler, 3224 &shmem_trusted_xattr_handler, 3225 NULL 3226 }; 3227 3228 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3229 { 3230 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3231 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3232 } 3233 #endif /* CONFIG_TMPFS_XATTR */ 3234 3235 static const struct inode_operations shmem_short_symlink_operations = { 3236 .getattr = shmem_getattr, 3237 .get_link = simple_get_link, 3238 #ifdef CONFIG_TMPFS_XATTR 3239 .listxattr = shmem_listxattr, 3240 #endif 3241 }; 3242 3243 static const struct inode_operations shmem_symlink_inode_operations = { 3244 .getattr = shmem_getattr, 3245 .get_link = shmem_get_link, 3246 #ifdef CONFIG_TMPFS_XATTR 3247 .listxattr = shmem_listxattr, 3248 #endif 3249 }; 3250 3251 static struct dentry *shmem_get_parent(struct dentry *child) 3252 { 3253 return ERR_PTR(-ESTALE); 3254 } 3255 3256 static int shmem_match(struct inode *ino, void *vfh) 3257 { 3258 __u32 *fh = vfh; 3259 __u64 inum = fh[2]; 3260 inum = (inum << 32) | fh[1]; 3261 return ino->i_ino == inum && fh[0] == ino->i_generation; 3262 } 3263 3264 /* Find any alias of inode, but prefer a hashed alias */ 3265 static struct dentry *shmem_find_alias(struct inode *inode) 3266 { 3267 struct dentry *alias = d_find_alias(inode); 3268 3269 return alias ?: d_find_any_alias(inode); 3270 } 3271 3272 3273 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3274 struct fid *fid, int fh_len, int fh_type) 3275 { 3276 struct inode *inode; 3277 struct dentry *dentry = NULL; 3278 u64 inum; 3279 3280 if (fh_len < 3) 3281 return NULL; 3282 3283 inum = fid->raw[2]; 3284 inum = (inum << 32) | fid->raw[1]; 3285 3286 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3287 shmem_match, fid->raw); 3288 if (inode) { 3289 dentry = shmem_find_alias(inode); 3290 iput(inode); 3291 } 3292 3293 return dentry; 3294 } 3295 3296 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3297 struct inode *parent) 3298 { 3299 if (*len < 3) { 3300 *len = 3; 3301 return FILEID_INVALID; 3302 } 3303 3304 if (inode_unhashed(inode)) { 3305 /* Unfortunately insert_inode_hash is not idempotent, 3306 * so as we hash inodes here rather than at creation 3307 * time, we need a lock to ensure we only try 3308 * to do it once 3309 */ 3310 static DEFINE_SPINLOCK(lock); 3311 spin_lock(&lock); 3312 if (inode_unhashed(inode)) 3313 __insert_inode_hash(inode, 3314 inode->i_ino + inode->i_generation); 3315 spin_unlock(&lock); 3316 } 3317 3318 fh[0] = inode->i_generation; 3319 fh[1] = inode->i_ino; 3320 fh[2] = ((__u64)inode->i_ino) >> 32; 3321 3322 *len = 3; 3323 return 1; 3324 } 3325 3326 static const struct export_operations shmem_export_ops = { 3327 .get_parent = shmem_get_parent, 3328 .encode_fh = shmem_encode_fh, 3329 .fh_to_dentry = shmem_fh_to_dentry, 3330 }; 3331 3332 enum shmem_param { 3333 Opt_gid, 3334 Opt_huge, 3335 Opt_mode, 3336 Opt_mpol, 3337 Opt_nr_blocks, 3338 Opt_nr_inodes, 3339 Opt_size, 3340 Opt_uid, 3341 Opt_inode32, 3342 Opt_inode64, 3343 }; 3344 3345 static const struct constant_table shmem_param_enums_huge[] = { 3346 {"never", SHMEM_HUGE_NEVER }, 3347 {"always", SHMEM_HUGE_ALWAYS }, 3348 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3349 {"advise", SHMEM_HUGE_ADVISE }, 3350 {} 3351 }; 3352 3353 const struct fs_parameter_spec shmem_fs_parameters[] = { 3354 fsparam_u32 ("gid", Opt_gid), 3355 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3356 fsparam_u32oct("mode", Opt_mode), 3357 fsparam_string("mpol", Opt_mpol), 3358 fsparam_string("nr_blocks", Opt_nr_blocks), 3359 fsparam_string("nr_inodes", Opt_nr_inodes), 3360 fsparam_string("size", Opt_size), 3361 fsparam_u32 ("uid", Opt_uid), 3362 fsparam_flag ("inode32", Opt_inode32), 3363 fsparam_flag ("inode64", Opt_inode64), 3364 {} 3365 }; 3366 3367 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3368 { 3369 struct shmem_options *ctx = fc->fs_private; 3370 struct fs_parse_result result; 3371 unsigned long long size; 3372 char *rest; 3373 int opt; 3374 3375 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3376 if (opt < 0) 3377 return opt; 3378 3379 switch (opt) { 3380 case Opt_size: 3381 size = memparse(param->string, &rest); 3382 if (*rest == '%') { 3383 size <<= PAGE_SHIFT; 3384 size *= totalram_pages(); 3385 do_div(size, 100); 3386 rest++; 3387 } 3388 if (*rest) 3389 goto bad_value; 3390 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3391 ctx->seen |= SHMEM_SEEN_BLOCKS; 3392 break; 3393 case Opt_nr_blocks: 3394 ctx->blocks = memparse(param->string, &rest); 3395 if (*rest) 3396 goto bad_value; 3397 ctx->seen |= SHMEM_SEEN_BLOCKS; 3398 break; 3399 case Opt_nr_inodes: 3400 ctx->inodes = memparse(param->string, &rest); 3401 if (*rest) 3402 goto bad_value; 3403 ctx->seen |= SHMEM_SEEN_INODES; 3404 break; 3405 case Opt_mode: 3406 ctx->mode = result.uint_32 & 07777; 3407 break; 3408 case Opt_uid: 3409 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3410 if (!uid_valid(ctx->uid)) 3411 goto bad_value; 3412 break; 3413 case Opt_gid: 3414 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3415 if (!gid_valid(ctx->gid)) 3416 goto bad_value; 3417 break; 3418 case Opt_huge: 3419 ctx->huge = result.uint_32; 3420 if (ctx->huge != SHMEM_HUGE_NEVER && 3421 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3422 has_transparent_hugepage())) 3423 goto unsupported_parameter; 3424 ctx->seen |= SHMEM_SEEN_HUGE; 3425 break; 3426 case Opt_mpol: 3427 if (IS_ENABLED(CONFIG_NUMA)) { 3428 mpol_put(ctx->mpol); 3429 ctx->mpol = NULL; 3430 if (mpol_parse_str(param->string, &ctx->mpol)) 3431 goto bad_value; 3432 break; 3433 } 3434 goto unsupported_parameter; 3435 case Opt_inode32: 3436 ctx->full_inums = false; 3437 ctx->seen |= SHMEM_SEEN_INUMS; 3438 break; 3439 case Opt_inode64: 3440 if (sizeof(ino_t) < 8) { 3441 return invalfc(fc, 3442 "Cannot use inode64 with <64bit inums in kernel\n"); 3443 } 3444 ctx->full_inums = true; 3445 ctx->seen |= SHMEM_SEEN_INUMS; 3446 break; 3447 } 3448 return 0; 3449 3450 unsupported_parameter: 3451 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3452 bad_value: 3453 return invalfc(fc, "Bad value for '%s'", param->key); 3454 } 3455 3456 static int shmem_parse_options(struct fs_context *fc, void *data) 3457 { 3458 char *options = data; 3459 3460 if (options) { 3461 int err = security_sb_eat_lsm_opts(options, &fc->security); 3462 if (err) 3463 return err; 3464 } 3465 3466 while (options != NULL) { 3467 char *this_char = options; 3468 for (;;) { 3469 /* 3470 * NUL-terminate this option: unfortunately, 3471 * mount options form a comma-separated list, 3472 * but mpol's nodelist may also contain commas. 3473 */ 3474 options = strchr(options, ','); 3475 if (options == NULL) 3476 break; 3477 options++; 3478 if (!isdigit(*options)) { 3479 options[-1] = '\0'; 3480 break; 3481 } 3482 } 3483 if (*this_char) { 3484 char *value = strchr(this_char, '='); 3485 size_t len = 0; 3486 int err; 3487 3488 if (value) { 3489 *value++ = '\0'; 3490 len = strlen(value); 3491 } 3492 err = vfs_parse_fs_string(fc, this_char, value, len); 3493 if (err < 0) 3494 return err; 3495 } 3496 } 3497 return 0; 3498 } 3499 3500 /* 3501 * Reconfigure a shmem filesystem. 3502 * 3503 * Note that we disallow change from limited->unlimited blocks/inodes while any 3504 * are in use; but we must separately disallow unlimited->limited, because in 3505 * that case we have no record of how much is already in use. 3506 */ 3507 static int shmem_reconfigure(struct fs_context *fc) 3508 { 3509 struct shmem_options *ctx = fc->fs_private; 3510 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3511 unsigned long inodes; 3512 struct mempolicy *mpol = NULL; 3513 const char *err; 3514 3515 raw_spin_lock(&sbinfo->stat_lock); 3516 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3517 if (ctx->blocks > S64_MAX) { 3518 err = "Number of blocks too large"; 3519 goto out; 3520 } 3521 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3522 if (!sbinfo->max_blocks) { 3523 err = "Cannot retroactively limit size"; 3524 goto out; 3525 } 3526 if (percpu_counter_compare(&sbinfo->used_blocks, 3527 ctx->blocks) > 0) { 3528 err = "Too small a size for current use"; 3529 goto out; 3530 } 3531 } 3532 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3533 if (!sbinfo->max_inodes) { 3534 err = "Cannot retroactively limit inodes"; 3535 goto out; 3536 } 3537 if (ctx->inodes < inodes) { 3538 err = "Too few inodes for current use"; 3539 goto out; 3540 } 3541 } 3542 3543 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3544 sbinfo->next_ino > UINT_MAX) { 3545 err = "Current inum too high to switch to 32-bit inums"; 3546 goto out; 3547 } 3548 3549 if (ctx->seen & SHMEM_SEEN_HUGE) 3550 sbinfo->huge = ctx->huge; 3551 if (ctx->seen & SHMEM_SEEN_INUMS) 3552 sbinfo->full_inums = ctx->full_inums; 3553 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3554 sbinfo->max_blocks = ctx->blocks; 3555 if (ctx->seen & SHMEM_SEEN_INODES) { 3556 sbinfo->max_inodes = ctx->inodes; 3557 sbinfo->free_inodes = ctx->inodes - inodes; 3558 } 3559 3560 /* 3561 * Preserve previous mempolicy unless mpol remount option was specified. 3562 */ 3563 if (ctx->mpol) { 3564 mpol = sbinfo->mpol; 3565 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3566 ctx->mpol = NULL; 3567 } 3568 raw_spin_unlock(&sbinfo->stat_lock); 3569 mpol_put(mpol); 3570 return 0; 3571 out: 3572 raw_spin_unlock(&sbinfo->stat_lock); 3573 return invalfc(fc, "%s", err); 3574 } 3575 3576 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3577 { 3578 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3579 3580 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3581 seq_printf(seq, ",size=%luk", 3582 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3583 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3584 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3585 if (sbinfo->mode != (0777 | S_ISVTX)) 3586 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3587 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3588 seq_printf(seq, ",uid=%u", 3589 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3590 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3591 seq_printf(seq, ",gid=%u", 3592 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3593 3594 /* 3595 * Showing inode{64,32} might be useful even if it's the system default, 3596 * since then people don't have to resort to checking both here and 3597 * /proc/config.gz to confirm 64-bit inums were successfully applied 3598 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3599 * 3600 * We hide it when inode64 isn't the default and we are using 32-bit 3601 * inodes, since that probably just means the feature isn't even under 3602 * consideration. 3603 * 3604 * As such: 3605 * 3606 * +-----------------+-----------------+ 3607 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3608 * +------------------+-----------------+-----------------+ 3609 * | full_inums=true | show | show | 3610 * | full_inums=false | show | hide | 3611 * +------------------+-----------------+-----------------+ 3612 * 3613 */ 3614 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3615 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3616 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3617 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3618 if (sbinfo->huge) 3619 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3620 #endif 3621 shmem_show_mpol(seq, sbinfo->mpol); 3622 return 0; 3623 } 3624 3625 #endif /* CONFIG_TMPFS */ 3626 3627 static void shmem_put_super(struct super_block *sb) 3628 { 3629 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3630 3631 free_percpu(sbinfo->ino_batch); 3632 percpu_counter_destroy(&sbinfo->used_blocks); 3633 mpol_put(sbinfo->mpol); 3634 kfree(sbinfo); 3635 sb->s_fs_info = NULL; 3636 } 3637 3638 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3639 { 3640 struct shmem_options *ctx = fc->fs_private; 3641 struct inode *inode; 3642 struct shmem_sb_info *sbinfo; 3643 3644 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3645 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3646 L1_CACHE_BYTES), GFP_KERNEL); 3647 if (!sbinfo) 3648 return -ENOMEM; 3649 3650 sb->s_fs_info = sbinfo; 3651 3652 #ifdef CONFIG_TMPFS 3653 /* 3654 * Per default we only allow half of the physical ram per 3655 * tmpfs instance, limiting inodes to one per page of lowmem; 3656 * but the internal instance is left unlimited. 3657 */ 3658 if (!(sb->s_flags & SB_KERNMOUNT)) { 3659 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3660 ctx->blocks = shmem_default_max_blocks(); 3661 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3662 ctx->inodes = shmem_default_max_inodes(); 3663 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3664 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3665 } else { 3666 sb->s_flags |= SB_NOUSER; 3667 } 3668 sb->s_export_op = &shmem_export_ops; 3669 sb->s_flags |= SB_NOSEC; 3670 #else 3671 sb->s_flags |= SB_NOUSER; 3672 #endif 3673 sbinfo->max_blocks = ctx->blocks; 3674 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3675 if (sb->s_flags & SB_KERNMOUNT) { 3676 sbinfo->ino_batch = alloc_percpu(ino_t); 3677 if (!sbinfo->ino_batch) 3678 goto failed; 3679 } 3680 sbinfo->uid = ctx->uid; 3681 sbinfo->gid = ctx->gid; 3682 sbinfo->full_inums = ctx->full_inums; 3683 sbinfo->mode = ctx->mode; 3684 sbinfo->huge = ctx->huge; 3685 sbinfo->mpol = ctx->mpol; 3686 ctx->mpol = NULL; 3687 3688 raw_spin_lock_init(&sbinfo->stat_lock); 3689 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3690 goto failed; 3691 spin_lock_init(&sbinfo->shrinklist_lock); 3692 INIT_LIST_HEAD(&sbinfo->shrinklist); 3693 3694 sb->s_maxbytes = MAX_LFS_FILESIZE; 3695 sb->s_blocksize = PAGE_SIZE; 3696 sb->s_blocksize_bits = PAGE_SHIFT; 3697 sb->s_magic = TMPFS_MAGIC; 3698 sb->s_op = &shmem_ops; 3699 sb->s_time_gran = 1; 3700 #ifdef CONFIG_TMPFS_XATTR 3701 sb->s_xattr = shmem_xattr_handlers; 3702 #endif 3703 #ifdef CONFIG_TMPFS_POSIX_ACL 3704 sb->s_flags |= SB_POSIXACL; 3705 #endif 3706 uuid_gen(&sb->s_uuid); 3707 3708 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3709 if (!inode) 3710 goto failed; 3711 inode->i_uid = sbinfo->uid; 3712 inode->i_gid = sbinfo->gid; 3713 sb->s_root = d_make_root(inode); 3714 if (!sb->s_root) 3715 goto failed; 3716 return 0; 3717 3718 failed: 3719 shmem_put_super(sb); 3720 return -ENOMEM; 3721 } 3722 3723 static int shmem_get_tree(struct fs_context *fc) 3724 { 3725 return get_tree_nodev(fc, shmem_fill_super); 3726 } 3727 3728 static void shmem_free_fc(struct fs_context *fc) 3729 { 3730 struct shmem_options *ctx = fc->fs_private; 3731 3732 if (ctx) { 3733 mpol_put(ctx->mpol); 3734 kfree(ctx); 3735 } 3736 } 3737 3738 static const struct fs_context_operations shmem_fs_context_ops = { 3739 .free = shmem_free_fc, 3740 .get_tree = shmem_get_tree, 3741 #ifdef CONFIG_TMPFS 3742 .parse_monolithic = shmem_parse_options, 3743 .parse_param = shmem_parse_one, 3744 .reconfigure = shmem_reconfigure, 3745 #endif 3746 }; 3747 3748 static struct kmem_cache *shmem_inode_cachep; 3749 3750 static struct inode *shmem_alloc_inode(struct super_block *sb) 3751 { 3752 struct shmem_inode_info *info; 3753 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 3754 if (!info) 3755 return NULL; 3756 return &info->vfs_inode; 3757 } 3758 3759 static void shmem_free_in_core_inode(struct inode *inode) 3760 { 3761 if (S_ISLNK(inode->i_mode)) 3762 kfree(inode->i_link); 3763 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3764 } 3765 3766 static void shmem_destroy_inode(struct inode *inode) 3767 { 3768 if (S_ISREG(inode->i_mode)) 3769 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3770 } 3771 3772 static void shmem_init_inode(void *foo) 3773 { 3774 struct shmem_inode_info *info = foo; 3775 inode_init_once(&info->vfs_inode); 3776 } 3777 3778 static void shmem_init_inodecache(void) 3779 { 3780 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3781 sizeof(struct shmem_inode_info), 3782 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3783 } 3784 3785 static void shmem_destroy_inodecache(void) 3786 { 3787 kmem_cache_destroy(shmem_inode_cachep); 3788 } 3789 3790 /* Keep the page in page cache instead of truncating it */ 3791 static int shmem_error_remove_page(struct address_space *mapping, 3792 struct page *page) 3793 { 3794 return 0; 3795 } 3796 3797 const struct address_space_operations shmem_aops = { 3798 .writepage = shmem_writepage, 3799 .dirty_folio = noop_dirty_folio, 3800 #ifdef CONFIG_TMPFS 3801 .write_begin = shmem_write_begin, 3802 .write_end = shmem_write_end, 3803 #endif 3804 #ifdef CONFIG_MIGRATION 3805 .migratepage = migrate_page, 3806 #endif 3807 .error_remove_page = shmem_error_remove_page, 3808 }; 3809 EXPORT_SYMBOL(shmem_aops); 3810 3811 static const struct file_operations shmem_file_operations = { 3812 .mmap = shmem_mmap, 3813 .get_unmapped_area = shmem_get_unmapped_area, 3814 #ifdef CONFIG_TMPFS 3815 .llseek = shmem_file_llseek, 3816 .read_iter = shmem_file_read_iter, 3817 .write_iter = generic_file_write_iter, 3818 .fsync = noop_fsync, 3819 .splice_read = generic_file_splice_read, 3820 .splice_write = iter_file_splice_write, 3821 .fallocate = shmem_fallocate, 3822 #endif 3823 }; 3824 3825 static const struct inode_operations shmem_inode_operations = { 3826 .getattr = shmem_getattr, 3827 .setattr = shmem_setattr, 3828 #ifdef CONFIG_TMPFS_XATTR 3829 .listxattr = shmem_listxattr, 3830 .set_acl = simple_set_acl, 3831 #endif 3832 }; 3833 3834 static const struct inode_operations shmem_dir_inode_operations = { 3835 #ifdef CONFIG_TMPFS 3836 .getattr = shmem_getattr, 3837 .create = shmem_create, 3838 .lookup = simple_lookup, 3839 .link = shmem_link, 3840 .unlink = shmem_unlink, 3841 .symlink = shmem_symlink, 3842 .mkdir = shmem_mkdir, 3843 .rmdir = shmem_rmdir, 3844 .mknod = shmem_mknod, 3845 .rename = shmem_rename2, 3846 .tmpfile = shmem_tmpfile, 3847 #endif 3848 #ifdef CONFIG_TMPFS_XATTR 3849 .listxattr = shmem_listxattr, 3850 #endif 3851 #ifdef CONFIG_TMPFS_POSIX_ACL 3852 .setattr = shmem_setattr, 3853 .set_acl = simple_set_acl, 3854 #endif 3855 }; 3856 3857 static const struct inode_operations shmem_special_inode_operations = { 3858 .getattr = shmem_getattr, 3859 #ifdef CONFIG_TMPFS_XATTR 3860 .listxattr = shmem_listxattr, 3861 #endif 3862 #ifdef CONFIG_TMPFS_POSIX_ACL 3863 .setattr = shmem_setattr, 3864 .set_acl = simple_set_acl, 3865 #endif 3866 }; 3867 3868 static const struct super_operations shmem_ops = { 3869 .alloc_inode = shmem_alloc_inode, 3870 .free_inode = shmem_free_in_core_inode, 3871 .destroy_inode = shmem_destroy_inode, 3872 #ifdef CONFIG_TMPFS 3873 .statfs = shmem_statfs, 3874 .show_options = shmem_show_options, 3875 #endif 3876 .evict_inode = shmem_evict_inode, 3877 .drop_inode = generic_delete_inode, 3878 .put_super = shmem_put_super, 3879 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3880 .nr_cached_objects = shmem_unused_huge_count, 3881 .free_cached_objects = shmem_unused_huge_scan, 3882 #endif 3883 }; 3884 3885 static const struct vm_operations_struct shmem_vm_ops = { 3886 .fault = shmem_fault, 3887 .map_pages = filemap_map_pages, 3888 #ifdef CONFIG_NUMA 3889 .set_policy = shmem_set_policy, 3890 .get_policy = shmem_get_policy, 3891 #endif 3892 }; 3893 3894 int shmem_init_fs_context(struct fs_context *fc) 3895 { 3896 struct shmem_options *ctx; 3897 3898 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3899 if (!ctx) 3900 return -ENOMEM; 3901 3902 ctx->mode = 0777 | S_ISVTX; 3903 ctx->uid = current_fsuid(); 3904 ctx->gid = current_fsgid(); 3905 3906 fc->fs_private = ctx; 3907 fc->ops = &shmem_fs_context_ops; 3908 return 0; 3909 } 3910 3911 static struct file_system_type shmem_fs_type = { 3912 .owner = THIS_MODULE, 3913 .name = "tmpfs", 3914 .init_fs_context = shmem_init_fs_context, 3915 #ifdef CONFIG_TMPFS 3916 .parameters = shmem_fs_parameters, 3917 #endif 3918 .kill_sb = kill_litter_super, 3919 .fs_flags = FS_USERNS_MOUNT, 3920 }; 3921 3922 void __init shmem_init(void) 3923 { 3924 int error; 3925 3926 shmem_init_inodecache(); 3927 3928 error = register_filesystem(&shmem_fs_type); 3929 if (error) { 3930 pr_err("Could not register tmpfs\n"); 3931 goto out2; 3932 } 3933 3934 shm_mnt = kern_mount(&shmem_fs_type); 3935 if (IS_ERR(shm_mnt)) { 3936 error = PTR_ERR(shm_mnt); 3937 pr_err("Could not kern_mount tmpfs\n"); 3938 goto out1; 3939 } 3940 3941 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3942 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3943 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3944 else 3945 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 3946 #endif 3947 return; 3948 3949 out1: 3950 unregister_filesystem(&shmem_fs_type); 3951 out2: 3952 shmem_destroy_inodecache(); 3953 shm_mnt = ERR_PTR(error); 3954 } 3955 3956 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 3957 static ssize_t shmem_enabled_show(struct kobject *kobj, 3958 struct kobj_attribute *attr, char *buf) 3959 { 3960 static const int values[] = { 3961 SHMEM_HUGE_ALWAYS, 3962 SHMEM_HUGE_WITHIN_SIZE, 3963 SHMEM_HUGE_ADVISE, 3964 SHMEM_HUGE_NEVER, 3965 SHMEM_HUGE_DENY, 3966 SHMEM_HUGE_FORCE, 3967 }; 3968 int len = 0; 3969 int i; 3970 3971 for (i = 0; i < ARRAY_SIZE(values); i++) { 3972 len += sysfs_emit_at(buf, len, 3973 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 3974 i ? " " : "", 3975 shmem_format_huge(values[i])); 3976 } 3977 3978 len += sysfs_emit_at(buf, len, "\n"); 3979 3980 return len; 3981 } 3982 3983 static ssize_t shmem_enabled_store(struct kobject *kobj, 3984 struct kobj_attribute *attr, const char *buf, size_t count) 3985 { 3986 char tmp[16]; 3987 int huge; 3988 3989 if (count + 1 > sizeof(tmp)) 3990 return -EINVAL; 3991 memcpy(tmp, buf, count); 3992 tmp[count] = '\0'; 3993 if (count && tmp[count - 1] == '\n') 3994 tmp[count - 1] = '\0'; 3995 3996 huge = shmem_parse_huge(tmp); 3997 if (huge == -EINVAL) 3998 return -EINVAL; 3999 if (!has_transparent_hugepage() && 4000 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4001 return -EINVAL; 4002 4003 shmem_huge = huge; 4004 if (shmem_huge > SHMEM_HUGE_DENY) 4005 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4006 return count; 4007 } 4008 4009 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4010 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4011 4012 #else /* !CONFIG_SHMEM */ 4013 4014 /* 4015 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4016 * 4017 * This is intended for small system where the benefits of the full 4018 * shmem code (swap-backed and resource-limited) are outweighed by 4019 * their complexity. On systems without swap this code should be 4020 * effectively equivalent, but much lighter weight. 4021 */ 4022 4023 static struct file_system_type shmem_fs_type = { 4024 .name = "tmpfs", 4025 .init_fs_context = ramfs_init_fs_context, 4026 .parameters = ramfs_fs_parameters, 4027 .kill_sb = kill_litter_super, 4028 .fs_flags = FS_USERNS_MOUNT, 4029 }; 4030 4031 void __init shmem_init(void) 4032 { 4033 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4034 4035 shm_mnt = kern_mount(&shmem_fs_type); 4036 BUG_ON(IS_ERR(shm_mnt)); 4037 } 4038 4039 int shmem_unuse(unsigned int type) 4040 { 4041 return 0; 4042 } 4043 4044 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4045 { 4046 return 0; 4047 } 4048 4049 void shmem_unlock_mapping(struct address_space *mapping) 4050 { 4051 } 4052 4053 #ifdef CONFIG_MMU 4054 unsigned long shmem_get_unmapped_area(struct file *file, 4055 unsigned long addr, unsigned long len, 4056 unsigned long pgoff, unsigned long flags) 4057 { 4058 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4059 } 4060 #endif 4061 4062 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4063 { 4064 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4065 } 4066 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4067 4068 #define shmem_vm_ops generic_file_vm_ops 4069 #define shmem_file_operations ramfs_file_operations 4070 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4071 #define shmem_acct_size(flags, size) 0 4072 #define shmem_unacct_size(flags, size) do {} while (0) 4073 4074 #endif /* CONFIG_SHMEM */ 4075 4076 /* common code */ 4077 4078 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4079 unsigned long flags, unsigned int i_flags) 4080 { 4081 struct inode *inode; 4082 struct file *res; 4083 4084 if (IS_ERR(mnt)) 4085 return ERR_CAST(mnt); 4086 4087 if (size < 0 || size > MAX_LFS_FILESIZE) 4088 return ERR_PTR(-EINVAL); 4089 4090 if (shmem_acct_size(flags, size)) 4091 return ERR_PTR(-ENOMEM); 4092 4093 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4094 flags); 4095 if (unlikely(!inode)) { 4096 shmem_unacct_size(flags, size); 4097 return ERR_PTR(-ENOSPC); 4098 } 4099 inode->i_flags |= i_flags; 4100 inode->i_size = size; 4101 clear_nlink(inode); /* It is unlinked */ 4102 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4103 if (!IS_ERR(res)) 4104 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4105 &shmem_file_operations); 4106 if (IS_ERR(res)) 4107 iput(inode); 4108 return res; 4109 } 4110 4111 /** 4112 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4113 * kernel internal. There will be NO LSM permission checks against the 4114 * underlying inode. So users of this interface must do LSM checks at a 4115 * higher layer. The users are the big_key and shm implementations. LSM 4116 * checks are provided at the key or shm level rather than the inode. 4117 * @name: name for dentry (to be seen in /proc/<pid>/maps 4118 * @size: size to be set for the file 4119 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4120 */ 4121 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4122 { 4123 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4124 } 4125 4126 /** 4127 * shmem_file_setup - get an unlinked file living in tmpfs 4128 * @name: name for dentry (to be seen in /proc/<pid>/maps 4129 * @size: size to be set for the file 4130 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4131 */ 4132 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4133 { 4134 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4135 } 4136 EXPORT_SYMBOL_GPL(shmem_file_setup); 4137 4138 /** 4139 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4140 * @mnt: the tmpfs mount where the file will be created 4141 * @name: name for dentry (to be seen in /proc/<pid>/maps 4142 * @size: size to be set for the file 4143 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4144 */ 4145 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4146 loff_t size, unsigned long flags) 4147 { 4148 return __shmem_file_setup(mnt, name, size, flags, 0); 4149 } 4150 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4151 4152 /** 4153 * shmem_zero_setup - setup a shared anonymous mapping 4154 * @vma: the vma to be mmapped is prepared by do_mmap 4155 */ 4156 int shmem_zero_setup(struct vm_area_struct *vma) 4157 { 4158 struct file *file; 4159 loff_t size = vma->vm_end - vma->vm_start; 4160 4161 /* 4162 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4163 * between XFS directory reading and selinux: since this file is only 4164 * accessible to the user through its mapping, use S_PRIVATE flag to 4165 * bypass file security, in the same way as shmem_kernel_file_setup(). 4166 */ 4167 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4168 if (IS_ERR(file)) 4169 return PTR_ERR(file); 4170 4171 if (vma->vm_file) 4172 fput(vma->vm_file); 4173 vma->vm_file = file; 4174 vma->vm_ops = &shmem_vm_ops; 4175 4176 return 0; 4177 } 4178 4179 /** 4180 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4181 * @mapping: the page's address_space 4182 * @index: the page index 4183 * @gfp: the page allocator flags to use if allocating 4184 * 4185 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4186 * with any new page allocations done using the specified allocation flags. 4187 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4188 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4189 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4190 * 4191 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4192 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4193 */ 4194 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4195 pgoff_t index, gfp_t gfp) 4196 { 4197 #ifdef CONFIG_SHMEM 4198 struct inode *inode = mapping->host; 4199 struct page *page; 4200 int error; 4201 4202 BUG_ON(!shmem_mapping(mapping)); 4203 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4204 gfp, NULL, NULL, NULL); 4205 if (error) 4206 return ERR_PTR(error); 4207 4208 unlock_page(page); 4209 if (PageHWPoison(page)) { 4210 put_page(page); 4211 return ERR_PTR(-EIO); 4212 } 4213 4214 return page; 4215 #else 4216 /* 4217 * The tiny !SHMEM case uses ramfs without swap 4218 */ 4219 return read_cache_page_gfp(mapping, index, gfp); 4220 #endif 4221 } 4222 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4223