xref: /linux/mm/shmem.c (revision 9f2c9170934eace462499ba0bfe042cc72900173)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/uio.h>
38 #include <linux/hugetlb.h>
39 #include <linux/fs_parser.h>
40 #include <linux/swapfile.h>
41 #include <linux/iversion.h>
42 #include "swap.h"
43 
44 static struct vfsmount *shm_mnt;
45 
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52 
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 
83 #include <linux/uaccess.h>
84 
85 #include "internal.h"
86 
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92 
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95 
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_rwsem making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 	pgoff_t start;		/* start of range currently being fallocated */
104 	pgoff_t next;		/* the next page offset to be fallocated */
105 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
106 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
107 };
108 
109 struct shmem_options {
110 	unsigned long long blocks;
111 	unsigned long long inodes;
112 	struct mempolicy *mpol;
113 	kuid_t uid;
114 	kgid_t gid;
115 	umode_t mode;
116 	bool full_inums;
117 	int huge;
118 	int seen;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
123 };
124 
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128 	return totalram_pages() / 2;
129 }
130 
131 static unsigned long shmem_default_max_inodes(void)
132 {
133 	unsigned long nr_pages = totalram_pages();
134 
135 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138 
139 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
140 			     struct folio **foliop, enum sgp_type sgp,
141 			     gfp_t gfp, struct vm_area_struct *vma,
142 			     vm_fault_t *fault_type);
143 
144 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
145 {
146 	return sb->s_fs_info;
147 }
148 
149 /*
150  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
151  * for shared memory and for shared anonymous (/dev/zero) mappings
152  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
153  * consistent with the pre-accounting of private mappings ...
154  */
155 static inline int shmem_acct_size(unsigned long flags, loff_t size)
156 {
157 	return (flags & VM_NORESERVE) ?
158 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
159 }
160 
161 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
162 {
163 	if (!(flags & VM_NORESERVE))
164 		vm_unacct_memory(VM_ACCT(size));
165 }
166 
167 static inline int shmem_reacct_size(unsigned long flags,
168 		loff_t oldsize, loff_t newsize)
169 {
170 	if (!(flags & VM_NORESERVE)) {
171 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
172 			return security_vm_enough_memory_mm(current->mm,
173 					VM_ACCT(newsize) - VM_ACCT(oldsize));
174 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
175 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
176 	}
177 	return 0;
178 }
179 
180 /*
181  * ... whereas tmpfs objects are accounted incrementally as
182  * pages are allocated, in order to allow large sparse files.
183  * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
184  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
185  */
186 static inline int shmem_acct_block(unsigned long flags, long pages)
187 {
188 	if (!(flags & VM_NORESERVE))
189 		return 0;
190 
191 	return security_vm_enough_memory_mm(current->mm,
192 			pages * VM_ACCT(PAGE_SIZE));
193 }
194 
195 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
196 {
197 	if (flags & VM_NORESERVE)
198 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
199 }
200 
201 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
202 {
203 	struct shmem_inode_info *info = SHMEM_I(inode);
204 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
205 
206 	if (shmem_acct_block(info->flags, pages))
207 		return false;
208 
209 	if (sbinfo->max_blocks) {
210 		if (percpu_counter_compare(&sbinfo->used_blocks,
211 					   sbinfo->max_blocks - pages) > 0)
212 			goto unacct;
213 		percpu_counter_add(&sbinfo->used_blocks, pages);
214 	}
215 
216 	return true;
217 
218 unacct:
219 	shmem_unacct_blocks(info->flags, pages);
220 	return false;
221 }
222 
223 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
224 {
225 	struct shmem_inode_info *info = SHMEM_I(inode);
226 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
227 
228 	if (sbinfo->max_blocks)
229 		percpu_counter_sub(&sbinfo->used_blocks, pages);
230 	shmem_unacct_blocks(info->flags, pages);
231 }
232 
233 static const struct super_operations shmem_ops;
234 const struct address_space_operations shmem_aops;
235 static const struct file_operations shmem_file_operations;
236 static const struct inode_operations shmem_inode_operations;
237 static const struct inode_operations shmem_dir_inode_operations;
238 static const struct inode_operations shmem_special_inode_operations;
239 static const struct vm_operations_struct shmem_vm_ops;
240 static const struct vm_operations_struct shmem_anon_vm_ops;
241 static struct file_system_type shmem_fs_type;
242 
243 bool vma_is_anon_shmem(struct vm_area_struct *vma)
244 {
245 	return vma->vm_ops == &shmem_anon_vm_ops;
246 }
247 
248 bool vma_is_shmem(struct vm_area_struct *vma)
249 {
250 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
251 }
252 
253 static LIST_HEAD(shmem_swaplist);
254 static DEFINE_MUTEX(shmem_swaplist_mutex);
255 
256 /*
257  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
258  * produces a novel ino for the newly allocated inode.
259  *
260  * It may also be called when making a hard link to permit the space needed by
261  * each dentry. However, in that case, no new inode number is needed since that
262  * internally draws from another pool of inode numbers (currently global
263  * get_next_ino()). This case is indicated by passing NULL as inop.
264  */
265 #define SHMEM_INO_BATCH 1024
266 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
267 {
268 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
269 	ino_t ino;
270 
271 	if (!(sb->s_flags & SB_KERNMOUNT)) {
272 		raw_spin_lock(&sbinfo->stat_lock);
273 		if (sbinfo->max_inodes) {
274 			if (!sbinfo->free_inodes) {
275 				raw_spin_unlock(&sbinfo->stat_lock);
276 				return -ENOSPC;
277 			}
278 			sbinfo->free_inodes--;
279 		}
280 		if (inop) {
281 			ino = sbinfo->next_ino++;
282 			if (unlikely(is_zero_ino(ino)))
283 				ino = sbinfo->next_ino++;
284 			if (unlikely(!sbinfo->full_inums &&
285 				     ino > UINT_MAX)) {
286 				/*
287 				 * Emulate get_next_ino uint wraparound for
288 				 * compatibility
289 				 */
290 				if (IS_ENABLED(CONFIG_64BIT))
291 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
292 						__func__, MINOR(sb->s_dev));
293 				sbinfo->next_ino = 1;
294 				ino = sbinfo->next_ino++;
295 			}
296 			*inop = ino;
297 		}
298 		raw_spin_unlock(&sbinfo->stat_lock);
299 	} else if (inop) {
300 		/*
301 		 * __shmem_file_setup, one of our callers, is lock-free: it
302 		 * doesn't hold stat_lock in shmem_reserve_inode since
303 		 * max_inodes is always 0, and is called from potentially
304 		 * unknown contexts. As such, use a per-cpu batched allocator
305 		 * which doesn't require the per-sb stat_lock unless we are at
306 		 * the batch boundary.
307 		 *
308 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
309 		 * shmem mounts are not exposed to userspace, so we don't need
310 		 * to worry about things like glibc compatibility.
311 		 */
312 		ino_t *next_ino;
313 
314 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
315 		ino = *next_ino;
316 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
317 			raw_spin_lock(&sbinfo->stat_lock);
318 			ino = sbinfo->next_ino;
319 			sbinfo->next_ino += SHMEM_INO_BATCH;
320 			raw_spin_unlock(&sbinfo->stat_lock);
321 			if (unlikely(is_zero_ino(ino)))
322 				ino++;
323 		}
324 		*inop = ino;
325 		*next_ino = ++ino;
326 		put_cpu();
327 	}
328 
329 	return 0;
330 }
331 
332 static void shmem_free_inode(struct super_block *sb)
333 {
334 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
335 	if (sbinfo->max_inodes) {
336 		raw_spin_lock(&sbinfo->stat_lock);
337 		sbinfo->free_inodes++;
338 		raw_spin_unlock(&sbinfo->stat_lock);
339 	}
340 }
341 
342 /**
343  * shmem_recalc_inode - recalculate the block usage of an inode
344  * @inode: inode to recalc
345  *
346  * We have to calculate the free blocks since the mm can drop
347  * undirtied hole pages behind our back.
348  *
349  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
350  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
351  *
352  * It has to be called with the spinlock held.
353  */
354 static void shmem_recalc_inode(struct inode *inode)
355 {
356 	struct shmem_inode_info *info = SHMEM_I(inode);
357 	long freed;
358 
359 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
360 	if (freed > 0) {
361 		info->alloced -= freed;
362 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
363 		shmem_inode_unacct_blocks(inode, freed);
364 	}
365 }
366 
367 bool shmem_charge(struct inode *inode, long pages)
368 {
369 	struct shmem_inode_info *info = SHMEM_I(inode);
370 	unsigned long flags;
371 
372 	if (!shmem_inode_acct_block(inode, pages))
373 		return false;
374 
375 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
376 	inode->i_mapping->nrpages += pages;
377 
378 	spin_lock_irqsave(&info->lock, flags);
379 	info->alloced += pages;
380 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
381 	shmem_recalc_inode(inode);
382 	spin_unlock_irqrestore(&info->lock, flags);
383 
384 	return true;
385 }
386 
387 void shmem_uncharge(struct inode *inode, long pages)
388 {
389 	struct shmem_inode_info *info = SHMEM_I(inode);
390 	unsigned long flags;
391 
392 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
393 
394 	spin_lock_irqsave(&info->lock, flags);
395 	info->alloced -= pages;
396 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
397 	shmem_recalc_inode(inode);
398 	spin_unlock_irqrestore(&info->lock, flags);
399 
400 	shmem_inode_unacct_blocks(inode, pages);
401 }
402 
403 /*
404  * Replace item expected in xarray by a new item, while holding xa_lock.
405  */
406 static int shmem_replace_entry(struct address_space *mapping,
407 			pgoff_t index, void *expected, void *replacement)
408 {
409 	XA_STATE(xas, &mapping->i_pages, index);
410 	void *item;
411 
412 	VM_BUG_ON(!expected);
413 	VM_BUG_ON(!replacement);
414 	item = xas_load(&xas);
415 	if (item != expected)
416 		return -ENOENT;
417 	xas_store(&xas, replacement);
418 	return 0;
419 }
420 
421 /*
422  * Sometimes, before we decide whether to proceed or to fail, we must check
423  * that an entry was not already brought back from swap by a racing thread.
424  *
425  * Checking page is not enough: by the time a SwapCache page is locked, it
426  * might be reused, and again be SwapCache, using the same swap as before.
427  */
428 static bool shmem_confirm_swap(struct address_space *mapping,
429 			       pgoff_t index, swp_entry_t swap)
430 {
431 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
432 }
433 
434 /*
435  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
436  *
437  * SHMEM_HUGE_NEVER:
438  *	disables huge pages for the mount;
439  * SHMEM_HUGE_ALWAYS:
440  *	enables huge pages for the mount;
441  * SHMEM_HUGE_WITHIN_SIZE:
442  *	only allocate huge pages if the page will be fully within i_size,
443  *	also respect fadvise()/madvise() hints;
444  * SHMEM_HUGE_ADVISE:
445  *	only allocate huge pages if requested with fadvise()/madvise();
446  */
447 
448 #define SHMEM_HUGE_NEVER	0
449 #define SHMEM_HUGE_ALWAYS	1
450 #define SHMEM_HUGE_WITHIN_SIZE	2
451 #define SHMEM_HUGE_ADVISE	3
452 
453 /*
454  * Special values.
455  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
456  *
457  * SHMEM_HUGE_DENY:
458  *	disables huge on shm_mnt and all mounts, for emergency use;
459  * SHMEM_HUGE_FORCE:
460  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
461  *
462  */
463 #define SHMEM_HUGE_DENY		(-1)
464 #define SHMEM_HUGE_FORCE	(-2)
465 
466 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
467 /* ifdef here to avoid bloating shmem.o when not necessary */
468 
469 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
470 
471 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
472 		   pgoff_t index, bool shmem_huge_force)
473 {
474 	loff_t i_size;
475 
476 	if (!S_ISREG(inode->i_mode))
477 		return false;
478 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
479 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
480 		return false;
481 	if (shmem_huge_force)
482 		return true;
483 	if (shmem_huge == SHMEM_HUGE_FORCE)
484 		return true;
485 	if (shmem_huge == SHMEM_HUGE_DENY)
486 		return false;
487 
488 	switch (SHMEM_SB(inode->i_sb)->huge) {
489 	case SHMEM_HUGE_ALWAYS:
490 		return true;
491 	case SHMEM_HUGE_WITHIN_SIZE:
492 		index = round_up(index + 1, HPAGE_PMD_NR);
493 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
494 		if (i_size >> PAGE_SHIFT >= index)
495 			return true;
496 		fallthrough;
497 	case SHMEM_HUGE_ADVISE:
498 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
499 			return true;
500 		fallthrough;
501 	default:
502 		return false;
503 	}
504 }
505 
506 #if defined(CONFIG_SYSFS)
507 static int shmem_parse_huge(const char *str)
508 {
509 	if (!strcmp(str, "never"))
510 		return SHMEM_HUGE_NEVER;
511 	if (!strcmp(str, "always"))
512 		return SHMEM_HUGE_ALWAYS;
513 	if (!strcmp(str, "within_size"))
514 		return SHMEM_HUGE_WITHIN_SIZE;
515 	if (!strcmp(str, "advise"))
516 		return SHMEM_HUGE_ADVISE;
517 	if (!strcmp(str, "deny"))
518 		return SHMEM_HUGE_DENY;
519 	if (!strcmp(str, "force"))
520 		return SHMEM_HUGE_FORCE;
521 	return -EINVAL;
522 }
523 #endif
524 
525 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
526 static const char *shmem_format_huge(int huge)
527 {
528 	switch (huge) {
529 	case SHMEM_HUGE_NEVER:
530 		return "never";
531 	case SHMEM_HUGE_ALWAYS:
532 		return "always";
533 	case SHMEM_HUGE_WITHIN_SIZE:
534 		return "within_size";
535 	case SHMEM_HUGE_ADVISE:
536 		return "advise";
537 	case SHMEM_HUGE_DENY:
538 		return "deny";
539 	case SHMEM_HUGE_FORCE:
540 		return "force";
541 	default:
542 		VM_BUG_ON(1);
543 		return "bad_val";
544 	}
545 }
546 #endif
547 
548 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
549 		struct shrink_control *sc, unsigned long nr_to_split)
550 {
551 	LIST_HEAD(list), *pos, *next;
552 	LIST_HEAD(to_remove);
553 	struct inode *inode;
554 	struct shmem_inode_info *info;
555 	struct folio *folio;
556 	unsigned long batch = sc ? sc->nr_to_scan : 128;
557 	int split = 0;
558 
559 	if (list_empty(&sbinfo->shrinklist))
560 		return SHRINK_STOP;
561 
562 	spin_lock(&sbinfo->shrinklist_lock);
563 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
564 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
565 
566 		/* pin the inode */
567 		inode = igrab(&info->vfs_inode);
568 
569 		/* inode is about to be evicted */
570 		if (!inode) {
571 			list_del_init(&info->shrinklist);
572 			goto next;
573 		}
574 
575 		/* Check if there's anything to gain */
576 		if (round_up(inode->i_size, PAGE_SIZE) ==
577 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
578 			list_move(&info->shrinklist, &to_remove);
579 			goto next;
580 		}
581 
582 		list_move(&info->shrinklist, &list);
583 next:
584 		sbinfo->shrinklist_len--;
585 		if (!--batch)
586 			break;
587 	}
588 	spin_unlock(&sbinfo->shrinklist_lock);
589 
590 	list_for_each_safe(pos, next, &to_remove) {
591 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
592 		inode = &info->vfs_inode;
593 		list_del_init(&info->shrinklist);
594 		iput(inode);
595 	}
596 
597 	list_for_each_safe(pos, next, &list) {
598 		int ret;
599 		pgoff_t index;
600 
601 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
602 		inode = &info->vfs_inode;
603 
604 		if (nr_to_split && split >= nr_to_split)
605 			goto move_back;
606 
607 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
608 		folio = filemap_get_folio(inode->i_mapping, index);
609 		if (!folio)
610 			goto drop;
611 
612 		/* No huge page at the end of the file: nothing to split */
613 		if (!folio_test_large(folio)) {
614 			folio_put(folio);
615 			goto drop;
616 		}
617 
618 		/*
619 		 * Move the inode on the list back to shrinklist if we failed
620 		 * to lock the page at this time.
621 		 *
622 		 * Waiting for the lock may lead to deadlock in the
623 		 * reclaim path.
624 		 */
625 		if (!folio_trylock(folio)) {
626 			folio_put(folio);
627 			goto move_back;
628 		}
629 
630 		ret = split_folio(folio);
631 		folio_unlock(folio);
632 		folio_put(folio);
633 
634 		/* If split failed move the inode on the list back to shrinklist */
635 		if (ret)
636 			goto move_back;
637 
638 		split++;
639 drop:
640 		list_del_init(&info->shrinklist);
641 		goto put;
642 move_back:
643 		/*
644 		 * Make sure the inode is either on the global list or deleted
645 		 * from any local list before iput() since it could be deleted
646 		 * in another thread once we put the inode (then the local list
647 		 * is corrupted).
648 		 */
649 		spin_lock(&sbinfo->shrinklist_lock);
650 		list_move(&info->shrinklist, &sbinfo->shrinklist);
651 		sbinfo->shrinklist_len++;
652 		spin_unlock(&sbinfo->shrinklist_lock);
653 put:
654 		iput(inode);
655 	}
656 
657 	return split;
658 }
659 
660 static long shmem_unused_huge_scan(struct super_block *sb,
661 		struct shrink_control *sc)
662 {
663 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
664 
665 	if (!READ_ONCE(sbinfo->shrinklist_len))
666 		return SHRINK_STOP;
667 
668 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
669 }
670 
671 static long shmem_unused_huge_count(struct super_block *sb,
672 		struct shrink_control *sc)
673 {
674 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
675 	return READ_ONCE(sbinfo->shrinklist_len);
676 }
677 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
678 
679 #define shmem_huge SHMEM_HUGE_DENY
680 
681 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
682 		   pgoff_t index, bool shmem_huge_force)
683 {
684 	return false;
685 }
686 
687 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
688 		struct shrink_control *sc, unsigned long nr_to_split)
689 {
690 	return 0;
691 }
692 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
693 
694 /*
695  * Like filemap_add_folio, but error if expected item has gone.
696  */
697 static int shmem_add_to_page_cache(struct folio *folio,
698 				   struct address_space *mapping,
699 				   pgoff_t index, void *expected, gfp_t gfp,
700 				   struct mm_struct *charge_mm)
701 {
702 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
703 	long nr = folio_nr_pages(folio);
704 	int error;
705 
706 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
707 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
708 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
709 	VM_BUG_ON(expected && folio_test_large(folio));
710 
711 	folio_ref_add(folio, nr);
712 	folio->mapping = mapping;
713 	folio->index = index;
714 
715 	if (!folio_test_swapcache(folio)) {
716 		error = mem_cgroup_charge(folio, charge_mm, gfp);
717 		if (error) {
718 			if (folio_test_pmd_mappable(folio)) {
719 				count_vm_event(THP_FILE_FALLBACK);
720 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
721 			}
722 			goto error;
723 		}
724 	}
725 	folio_throttle_swaprate(folio, gfp);
726 
727 	do {
728 		xas_lock_irq(&xas);
729 		if (expected != xas_find_conflict(&xas)) {
730 			xas_set_err(&xas, -EEXIST);
731 			goto unlock;
732 		}
733 		if (expected && xas_find_conflict(&xas)) {
734 			xas_set_err(&xas, -EEXIST);
735 			goto unlock;
736 		}
737 		xas_store(&xas, folio);
738 		if (xas_error(&xas))
739 			goto unlock;
740 		if (folio_test_pmd_mappable(folio)) {
741 			count_vm_event(THP_FILE_ALLOC);
742 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
743 		}
744 		mapping->nrpages += nr;
745 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
746 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
747 unlock:
748 		xas_unlock_irq(&xas);
749 	} while (xas_nomem(&xas, gfp));
750 
751 	if (xas_error(&xas)) {
752 		error = xas_error(&xas);
753 		goto error;
754 	}
755 
756 	return 0;
757 error:
758 	folio->mapping = NULL;
759 	folio_ref_sub(folio, nr);
760 	return error;
761 }
762 
763 /*
764  * Like delete_from_page_cache, but substitutes swap for @folio.
765  */
766 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
767 {
768 	struct address_space *mapping = folio->mapping;
769 	long nr = folio_nr_pages(folio);
770 	int error;
771 
772 	xa_lock_irq(&mapping->i_pages);
773 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
774 	folio->mapping = NULL;
775 	mapping->nrpages -= nr;
776 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
777 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
778 	xa_unlock_irq(&mapping->i_pages);
779 	folio_put(folio);
780 	BUG_ON(error);
781 }
782 
783 /*
784  * Remove swap entry from page cache, free the swap and its page cache.
785  */
786 static int shmem_free_swap(struct address_space *mapping,
787 			   pgoff_t index, void *radswap)
788 {
789 	void *old;
790 
791 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
792 	if (old != radswap)
793 		return -ENOENT;
794 	free_swap_and_cache(radix_to_swp_entry(radswap));
795 	return 0;
796 }
797 
798 /*
799  * Determine (in bytes) how many of the shmem object's pages mapped by the
800  * given offsets are swapped out.
801  *
802  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
803  * as long as the inode doesn't go away and racy results are not a problem.
804  */
805 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
806 						pgoff_t start, pgoff_t end)
807 {
808 	XA_STATE(xas, &mapping->i_pages, start);
809 	struct page *page;
810 	unsigned long swapped = 0;
811 
812 	rcu_read_lock();
813 	xas_for_each(&xas, page, end - 1) {
814 		if (xas_retry(&xas, page))
815 			continue;
816 		if (xa_is_value(page))
817 			swapped++;
818 
819 		if (need_resched()) {
820 			xas_pause(&xas);
821 			cond_resched_rcu();
822 		}
823 	}
824 
825 	rcu_read_unlock();
826 
827 	return swapped << PAGE_SHIFT;
828 }
829 
830 /*
831  * Determine (in bytes) how many of the shmem object's pages mapped by the
832  * given vma is swapped out.
833  *
834  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
835  * as long as the inode doesn't go away and racy results are not a problem.
836  */
837 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
838 {
839 	struct inode *inode = file_inode(vma->vm_file);
840 	struct shmem_inode_info *info = SHMEM_I(inode);
841 	struct address_space *mapping = inode->i_mapping;
842 	unsigned long swapped;
843 
844 	/* Be careful as we don't hold info->lock */
845 	swapped = READ_ONCE(info->swapped);
846 
847 	/*
848 	 * The easier cases are when the shmem object has nothing in swap, or
849 	 * the vma maps it whole. Then we can simply use the stats that we
850 	 * already track.
851 	 */
852 	if (!swapped)
853 		return 0;
854 
855 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
856 		return swapped << PAGE_SHIFT;
857 
858 	/* Here comes the more involved part */
859 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
860 					vma->vm_pgoff + vma_pages(vma));
861 }
862 
863 /*
864  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
865  */
866 void shmem_unlock_mapping(struct address_space *mapping)
867 {
868 	struct folio_batch fbatch;
869 	pgoff_t index = 0;
870 
871 	folio_batch_init(&fbatch);
872 	/*
873 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
874 	 */
875 	while (!mapping_unevictable(mapping) &&
876 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
877 		check_move_unevictable_folios(&fbatch);
878 		folio_batch_release(&fbatch);
879 		cond_resched();
880 	}
881 }
882 
883 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
884 {
885 	struct folio *folio;
886 
887 	/*
888 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
889 	 * beyond i_size, and reports fallocated pages as holes.
890 	 */
891 	folio = __filemap_get_folio(inode->i_mapping, index,
892 					FGP_ENTRY | FGP_LOCK, 0);
893 	if (!xa_is_value(folio))
894 		return folio;
895 	/*
896 	 * But read a page back from swap if any of it is within i_size
897 	 * (although in some cases this is just a waste of time).
898 	 */
899 	folio = NULL;
900 	shmem_get_folio(inode, index, &folio, SGP_READ);
901 	return folio;
902 }
903 
904 /*
905  * Remove range of pages and swap entries from page cache, and free them.
906  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
907  */
908 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
909 								 bool unfalloc)
910 {
911 	struct address_space *mapping = inode->i_mapping;
912 	struct shmem_inode_info *info = SHMEM_I(inode);
913 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
914 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
915 	struct folio_batch fbatch;
916 	pgoff_t indices[PAGEVEC_SIZE];
917 	struct folio *folio;
918 	bool same_folio;
919 	long nr_swaps_freed = 0;
920 	pgoff_t index;
921 	int i;
922 
923 	if (lend == -1)
924 		end = -1;	/* unsigned, so actually very big */
925 
926 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
927 		info->fallocend = start;
928 
929 	folio_batch_init(&fbatch);
930 	index = start;
931 	while (index < end && find_lock_entries(mapping, &index, end - 1,
932 			&fbatch, indices)) {
933 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
934 			folio = fbatch.folios[i];
935 
936 			if (xa_is_value(folio)) {
937 				if (unfalloc)
938 					continue;
939 				nr_swaps_freed += !shmem_free_swap(mapping,
940 							indices[i], folio);
941 				continue;
942 			}
943 
944 			if (!unfalloc || !folio_test_uptodate(folio))
945 				truncate_inode_folio(mapping, folio);
946 			folio_unlock(folio);
947 		}
948 		folio_batch_remove_exceptionals(&fbatch);
949 		folio_batch_release(&fbatch);
950 		cond_resched();
951 	}
952 
953 	/*
954 	 * When undoing a failed fallocate, we want none of the partial folio
955 	 * zeroing and splitting below, but shall want to truncate the whole
956 	 * folio when !uptodate indicates that it was added by this fallocate,
957 	 * even when [lstart, lend] covers only a part of the folio.
958 	 */
959 	if (unfalloc)
960 		goto whole_folios;
961 
962 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
963 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
964 	if (folio) {
965 		same_folio = lend < folio_pos(folio) + folio_size(folio);
966 		folio_mark_dirty(folio);
967 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
968 			start = folio->index + folio_nr_pages(folio);
969 			if (same_folio)
970 				end = folio->index;
971 		}
972 		folio_unlock(folio);
973 		folio_put(folio);
974 		folio = NULL;
975 	}
976 
977 	if (!same_folio)
978 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
979 	if (folio) {
980 		folio_mark_dirty(folio);
981 		if (!truncate_inode_partial_folio(folio, lstart, lend))
982 			end = folio->index;
983 		folio_unlock(folio);
984 		folio_put(folio);
985 	}
986 
987 whole_folios:
988 
989 	index = start;
990 	while (index < end) {
991 		cond_resched();
992 
993 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
994 				indices)) {
995 			/* If all gone or hole-punch or unfalloc, we're done */
996 			if (index == start || end != -1)
997 				break;
998 			/* But if truncating, restart to make sure all gone */
999 			index = start;
1000 			continue;
1001 		}
1002 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1003 			folio = fbatch.folios[i];
1004 
1005 			if (xa_is_value(folio)) {
1006 				if (unfalloc)
1007 					continue;
1008 				if (shmem_free_swap(mapping, indices[i], folio)) {
1009 					/* Swap was replaced by page: retry */
1010 					index = indices[i];
1011 					break;
1012 				}
1013 				nr_swaps_freed++;
1014 				continue;
1015 			}
1016 
1017 			folio_lock(folio);
1018 
1019 			if (!unfalloc || !folio_test_uptodate(folio)) {
1020 				if (folio_mapping(folio) != mapping) {
1021 					/* Page was replaced by swap: retry */
1022 					folio_unlock(folio);
1023 					index = indices[i];
1024 					break;
1025 				}
1026 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1027 						folio);
1028 				truncate_inode_folio(mapping, folio);
1029 			}
1030 			folio_unlock(folio);
1031 		}
1032 		folio_batch_remove_exceptionals(&fbatch);
1033 		folio_batch_release(&fbatch);
1034 	}
1035 
1036 	spin_lock_irq(&info->lock);
1037 	info->swapped -= nr_swaps_freed;
1038 	shmem_recalc_inode(inode);
1039 	spin_unlock_irq(&info->lock);
1040 }
1041 
1042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1043 {
1044 	shmem_undo_range(inode, lstart, lend, false);
1045 	inode->i_ctime = inode->i_mtime = current_time(inode);
1046 	inode_inc_iversion(inode);
1047 }
1048 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1049 
1050 static int shmem_getattr(struct user_namespace *mnt_userns,
1051 			 const struct path *path, struct kstat *stat,
1052 			 u32 request_mask, unsigned int query_flags)
1053 {
1054 	struct inode *inode = path->dentry->d_inode;
1055 	struct shmem_inode_info *info = SHMEM_I(inode);
1056 
1057 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1058 		spin_lock_irq(&info->lock);
1059 		shmem_recalc_inode(inode);
1060 		spin_unlock_irq(&info->lock);
1061 	}
1062 	if (info->fsflags & FS_APPEND_FL)
1063 		stat->attributes |= STATX_ATTR_APPEND;
1064 	if (info->fsflags & FS_IMMUTABLE_FL)
1065 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1066 	if (info->fsflags & FS_NODUMP_FL)
1067 		stat->attributes |= STATX_ATTR_NODUMP;
1068 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1069 			STATX_ATTR_IMMUTABLE |
1070 			STATX_ATTR_NODUMP);
1071 	generic_fillattr(&init_user_ns, inode, stat);
1072 
1073 	if (shmem_is_huge(NULL, inode, 0, false))
1074 		stat->blksize = HPAGE_PMD_SIZE;
1075 
1076 	if (request_mask & STATX_BTIME) {
1077 		stat->result_mask |= STATX_BTIME;
1078 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1079 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1080 	}
1081 
1082 	return 0;
1083 }
1084 
1085 static int shmem_setattr(struct user_namespace *mnt_userns,
1086 			 struct dentry *dentry, struct iattr *attr)
1087 {
1088 	struct inode *inode = d_inode(dentry);
1089 	struct shmem_inode_info *info = SHMEM_I(inode);
1090 	int error;
1091 	bool update_mtime = false;
1092 	bool update_ctime = true;
1093 
1094 	error = setattr_prepare(&init_user_ns, dentry, attr);
1095 	if (error)
1096 		return error;
1097 
1098 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1099 		loff_t oldsize = inode->i_size;
1100 		loff_t newsize = attr->ia_size;
1101 
1102 		/* protected by i_rwsem */
1103 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1104 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1105 			return -EPERM;
1106 
1107 		if (newsize != oldsize) {
1108 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1109 					oldsize, newsize);
1110 			if (error)
1111 				return error;
1112 			i_size_write(inode, newsize);
1113 			update_mtime = true;
1114 		} else {
1115 			update_ctime = false;
1116 		}
1117 		if (newsize <= oldsize) {
1118 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1119 			if (oldsize > holebegin)
1120 				unmap_mapping_range(inode->i_mapping,
1121 							holebegin, 0, 1);
1122 			if (info->alloced)
1123 				shmem_truncate_range(inode,
1124 							newsize, (loff_t)-1);
1125 			/* unmap again to remove racily COWed private pages */
1126 			if (oldsize > holebegin)
1127 				unmap_mapping_range(inode->i_mapping,
1128 							holebegin, 0, 1);
1129 		}
1130 	}
1131 
1132 	setattr_copy(&init_user_ns, inode, attr);
1133 	if (attr->ia_valid & ATTR_MODE)
1134 		error = posix_acl_chmod(&init_user_ns, dentry, inode->i_mode);
1135 	if (!error && update_ctime) {
1136 		inode->i_ctime = current_time(inode);
1137 		if (update_mtime)
1138 			inode->i_mtime = inode->i_ctime;
1139 		inode_inc_iversion(inode);
1140 	}
1141 	return error;
1142 }
1143 
1144 static void shmem_evict_inode(struct inode *inode)
1145 {
1146 	struct shmem_inode_info *info = SHMEM_I(inode);
1147 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1148 
1149 	if (shmem_mapping(inode->i_mapping)) {
1150 		shmem_unacct_size(info->flags, inode->i_size);
1151 		inode->i_size = 0;
1152 		mapping_set_exiting(inode->i_mapping);
1153 		shmem_truncate_range(inode, 0, (loff_t)-1);
1154 		if (!list_empty(&info->shrinklist)) {
1155 			spin_lock(&sbinfo->shrinklist_lock);
1156 			if (!list_empty(&info->shrinklist)) {
1157 				list_del_init(&info->shrinklist);
1158 				sbinfo->shrinklist_len--;
1159 			}
1160 			spin_unlock(&sbinfo->shrinklist_lock);
1161 		}
1162 		while (!list_empty(&info->swaplist)) {
1163 			/* Wait while shmem_unuse() is scanning this inode... */
1164 			wait_var_event(&info->stop_eviction,
1165 				       !atomic_read(&info->stop_eviction));
1166 			mutex_lock(&shmem_swaplist_mutex);
1167 			/* ...but beware of the race if we peeked too early */
1168 			if (!atomic_read(&info->stop_eviction))
1169 				list_del_init(&info->swaplist);
1170 			mutex_unlock(&shmem_swaplist_mutex);
1171 		}
1172 	}
1173 
1174 	simple_xattrs_free(&info->xattrs);
1175 	WARN_ON(inode->i_blocks);
1176 	shmem_free_inode(inode->i_sb);
1177 	clear_inode(inode);
1178 }
1179 
1180 static int shmem_find_swap_entries(struct address_space *mapping,
1181 				   pgoff_t start, struct folio_batch *fbatch,
1182 				   pgoff_t *indices, unsigned int type)
1183 {
1184 	XA_STATE(xas, &mapping->i_pages, start);
1185 	struct folio *folio;
1186 	swp_entry_t entry;
1187 
1188 	rcu_read_lock();
1189 	xas_for_each(&xas, folio, ULONG_MAX) {
1190 		if (xas_retry(&xas, folio))
1191 			continue;
1192 
1193 		if (!xa_is_value(folio))
1194 			continue;
1195 
1196 		entry = radix_to_swp_entry(folio);
1197 		/*
1198 		 * swapin error entries can be found in the mapping. But they're
1199 		 * deliberately ignored here as we've done everything we can do.
1200 		 */
1201 		if (swp_type(entry) != type)
1202 			continue;
1203 
1204 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1205 		if (!folio_batch_add(fbatch, folio))
1206 			break;
1207 
1208 		if (need_resched()) {
1209 			xas_pause(&xas);
1210 			cond_resched_rcu();
1211 		}
1212 	}
1213 	rcu_read_unlock();
1214 
1215 	return xas.xa_index;
1216 }
1217 
1218 /*
1219  * Move the swapped pages for an inode to page cache. Returns the count
1220  * of pages swapped in, or the error in case of failure.
1221  */
1222 static int shmem_unuse_swap_entries(struct inode *inode,
1223 		struct folio_batch *fbatch, pgoff_t *indices)
1224 {
1225 	int i = 0;
1226 	int ret = 0;
1227 	int error = 0;
1228 	struct address_space *mapping = inode->i_mapping;
1229 
1230 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1231 		struct folio *folio = fbatch->folios[i];
1232 
1233 		if (!xa_is_value(folio))
1234 			continue;
1235 		error = shmem_swapin_folio(inode, indices[i],
1236 					  &folio, SGP_CACHE,
1237 					  mapping_gfp_mask(mapping),
1238 					  NULL, NULL);
1239 		if (error == 0) {
1240 			folio_unlock(folio);
1241 			folio_put(folio);
1242 			ret++;
1243 		}
1244 		if (error == -ENOMEM)
1245 			break;
1246 		error = 0;
1247 	}
1248 	return error ? error : ret;
1249 }
1250 
1251 /*
1252  * If swap found in inode, free it and move page from swapcache to filecache.
1253  */
1254 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1255 {
1256 	struct address_space *mapping = inode->i_mapping;
1257 	pgoff_t start = 0;
1258 	struct folio_batch fbatch;
1259 	pgoff_t indices[PAGEVEC_SIZE];
1260 	int ret = 0;
1261 
1262 	do {
1263 		folio_batch_init(&fbatch);
1264 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1265 		if (folio_batch_count(&fbatch) == 0) {
1266 			ret = 0;
1267 			break;
1268 		}
1269 
1270 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1271 		if (ret < 0)
1272 			break;
1273 
1274 		start = indices[folio_batch_count(&fbatch) - 1];
1275 	} while (true);
1276 
1277 	return ret;
1278 }
1279 
1280 /*
1281  * Read all the shared memory data that resides in the swap
1282  * device 'type' back into memory, so the swap device can be
1283  * unused.
1284  */
1285 int shmem_unuse(unsigned int type)
1286 {
1287 	struct shmem_inode_info *info, *next;
1288 	int error = 0;
1289 
1290 	if (list_empty(&shmem_swaplist))
1291 		return 0;
1292 
1293 	mutex_lock(&shmem_swaplist_mutex);
1294 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1295 		if (!info->swapped) {
1296 			list_del_init(&info->swaplist);
1297 			continue;
1298 		}
1299 		/*
1300 		 * Drop the swaplist mutex while searching the inode for swap;
1301 		 * but before doing so, make sure shmem_evict_inode() will not
1302 		 * remove placeholder inode from swaplist, nor let it be freed
1303 		 * (igrab() would protect from unlink, but not from unmount).
1304 		 */
1305 		atomic_inc(&info->stop_eviction);
1306 		mutex_unlock(&shmem_swaplist_mutex);
1307 
1308 		error = shmem_unuse_inode(&info->vfs_inode, type);
1309 		cond_resched();
1310 
1311 		mutex_lock(&shmem_swaplist_mutex);
1312 		next = list_next_entry(info, swaplist);
1313 		if (!info->swapped)
1314 			list_del_init(&info->swaplist);
1315 		if (atomic_dec_and_test(&info->stop_eviction))
1316 			wake_up_var(&info->stop_eviction);
1317 		if (error)
1318 			break;
1319 	}
1320 	mutex_unlock(&shmem_swaplist_mutex);
1321 
1322 	return error;
1323 }
1324 
1325 /*
1326  * Move the page from the page cache to the swap cache.
1327  */
1328 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1329 {
1330 	struct folio *folio = page_folio(page);
1331 	struct shmem_inode_info *info;
1332 	struct address_space *mapping;
1333 	struct inode *inode;
1334 	swp_entry_t swap;
1335 	pgoff_t index;
1336 
1337 	/*
1338 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1339 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1340 	 * and its shmem_writeback() needs them to be split when swapping.
1341 	 */
1342 	if (folio_test_large(folio)) {
1343 		/* Ensure the subpages are still dirty */
1344 		folio_test_set_dirty(folio);
1345 		if (split_huge_page(page) < 0)
1346 			goto redirty;
1347 		folio = page_folio(page);
1348 		folio_clear_dirty(folio);
1349 	}
1350 
1351 	BUG_ON(!folio_test_locked(folio));
1352 	mapping = folio->mapping;
1353 	index = folio->index;
1354 	inode = mapping->host;
1355 	info = SHMEM_I(inode);
1356 	if (info->flags & VM_LOCKED)
1357 		goto redirty;
1358 	if (!total_swap_pages)
1359 		goto redirty;
1360 
1361 	/*
1362 	 * Our capabilities prevent regular writeback or sync from ever calling
1363 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1364 	 * its underlying filesystem, in which case tmpfs should write out to
1365 	 * swap only in response to memory pressure, and not for the writeback
1366 	 * threads or sync.
1367 	 */
1368 	if (!wbc->for_reclaim) {
1369 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1370 		goto redirty;
1371 	}
1372 
1373 	/*
1374 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1375 	 * value into swapfile.c, the only way we can correctly account for a
1376 	 * fallocated folio arriving here is now to initialize it and write it.
1377 	 *
1378 	 * That's okay for a folio already fallocated earlier, but if we have
1379 	 * not yet completed the fallocation, then (a) we want to keep track
1380 	 * of this folio in case we have to undo it, and (b) it may not be a
1381 	 * good idea to continue anyway, once we're pushing into swap.  So
1382 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1383 	 */
1384 	if (!folio_test_uptodate(folio)) {
1385 		if (inode->i_private) {
1386 			struct shmem_falloc *shmem_falloc;
1387 			spin_lock(&inode->i_lock);
1388 			shmem_falloc = inode->i_private;
1389 			if (shmem_falloc &&
1390 			    !shmem_falloc->waitq &&
1391 			    index >= shmem_falloc->start &&
1392 			    index < shmem_falloc->next)
1393 				shmem_falloc->nr_unswapped++;
1394 			else
1395 				shmem_falloc = NULL;
1396 			spin_unlock(&inode->i_lock);
1397 			if (shmem_falloc)
1398 				goto redirty;
1399 		}
1400 		folio_zero_range(folio, 0, folio_size(folio));
1401 		flush_dcache_folio(folio);
1402 		folio_mark_uptodate(folio);
1403 	}
1404 
1405 	swap = folio_alloc_swap(folio);
1406 	if (!swap.val)
1407 		goto redirty;
1408 
1409 	/*
1410 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1411 	 * if it's not already there.  Do it now before the folio is
1412 	 * moved to swap cache, when its pagelock no longer protects
1413 	 * the inode from eviction.  But don't unlock the mutex until
1414 	 * we've incremented swapped, because shmem_unuse_inode() will
1415 	 * prune a !swapped inode from the swaplist under this mutex.
1416 	 */
1417 	mutex_lock(&shmem_swaplist_mutex);
1418 	if (list_empty(&info->swaplist))
1419 		list_add(&info->swaplist, &shmem_swaplist);
1420 
1421 	if (add_to_swap_cache(folio, swap,
1422 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1423 			NULL) == 0) {
1424 		spin_lock_irq(&info->lock);
1425 		shmem_recalc_inode(inode);
1426 		info->swapped++;
1427 		spin_unlock_irq(&info->lock);
1428 
1429 		swap_shmem_alloc(swap);
1430 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1431 
1432 		mutex_unlock(&shmem_swaplist_mutex);
1433 		BUG_ON(folio_mapped(folio));
1434 		swap_writepage(&folio->page, wbc);
1435 		return 0;
1436 	}
1437 
1438 	mutex_unlock(&shmem_swaplist_mutex);
1439 	put_swap_folio(folio, swap);
1440 redirty:
1441 	folio_mark_dirty(folio);
1442 	if (wbc->for_reclaim)
1443 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1444 	folio_unlock(folio);
1445 	return 0;
1446 }
1447 
1448 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1449 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1450 {
1451 	char buffer[64];
1452 
1453 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1454 		return;		/* show nothing */
1455 
1456 	mpol_to_str(buffer, sizeof(buffer), mpol);
1457 
1458 	seq_printf(seq, ",mpol=%s", buffer);
1459 }
1460 
1461 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1462 {
1463 	struct mempolicy *mpol = NULL;
1464 	if (sbinfo->mpol) {
1465 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1466 		mpol = sbinfo->mpol;
1467 		mpol_get(mpol);
1468 		raw_spin_unlock(&sbinfo->stat_lock);
1469 	}
1470 	return mpol;
1471 }
1472 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1473 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1474 {
1475 }
1476 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1477 {
1478 	return NULL;
1479 }
1480 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1481 #ifndef CONFIG_NUMA
1482 #define vm_policy vm_private_data
1483 #endif
1484 
1485 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1486 		struct shmem_inode_info *info, pgoff_t index)
1487 {
1488 	/* Create a pseudo vma that just contains the policy */
1489 	vma_init(vma, NULL);
1490 	/* Bias interleave by inode number to distribute better across nodes */
1491 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1492 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1493 }
1494 
1495 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1496 {
1497 	/* Drop reference taken by mpol_shared_policy_lookup() */
1498 	mpol_cond_put(vma->vm_policy);
1499 }
1500 
1501 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1502 			struct shmem_inode_info *info, pgoff_t index)
1503 {
1504 	struct vm_area_struct pvma;
1505 	struct page *page;
1506 	struct vm_fault vmf = {
1507 		.vma = &pvma,
1508 	};
1509 
1510 	shmem_pseudo_vma_init(&pvma, info, index);
1511 	page = swap_cluster_readahead(swap, gfp, &vmf);
1512 	shmem_pseudo_vma_destroy(&pvma);
1513 
1514 	if (!page)
1515 		return NULL;
1516 	return page_folio(page);
1517 }
1518 
1519 /*
1520  * Make sure huge_gfp is always more limited than limit_gfp.
1521  * Some of the flags set permissions, while others set limitations.
1522  */
1523 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1524 {
1525 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1526 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1527 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1528 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1529 
1530 	/* Allow allocations only from the originally specified zones. */
1531 	result |= zoneflags;
1532 
1533 	/*
1534 	 * Minimize the result gfp by taking the union with the deny flags,
1535 	 * and the intersection of the allow flags.
1536 	 */
1537 	result |= (limit_gfp & denyflags);
1538 	result |= (huge_gfp & limit_gfp) & allowflags;
1539 
1540 	return result;
1541 }
1542 
1543 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1544 		struct shmem_inode_info *info, pgoff_t index)
1545 {
1546 	struct vm_area_struct pvma;
1547 	struct address_space *mapping = info->vfs_inode.i_mapping;
1548 	pgoff_t hindex;
1549 	struct folio *folio;
1550 
1551 	hindex = round_down(index, HPAGE_PMD_NR);
1552 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1553 								XA_PRESENT))
1554 		return NULL;
1555 
1556 	shmem_pseudo_vma_init(&pvma, info, hindex);
1557 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1558 	shmem_pseudo_vma_destroy(&pvma);
1559 	if (!folio)
1560 		count_vm_event(THP_FILE_FALLBACK);
1561 	return folio;
1562 }
1563 
1564 static struct folio *shmem_alloc_folio(gfp_t gfp,
1565 			struct shmem_inode_info *info, pgoff_t index)
1566 {
1567 	struct vm_area_struct pvma;
1568 	struct folio *folio;
1569 
1570 	shmem_pseudo_vma_init(&pvma, info, index);
1571 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1572 	shmem_pseudo_vma_destroy(&pvma);
1573 
1574 	return folio;
1575 }
1576 
1577 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1578 		pgoff_t index, bool huge)
1579 {
1580 	struct shmem_inode_info *info = SHMEM_I(inode);
1581 	struct folio *folio;
1582 	int nr;
1583 	int err = -ENOSPC;
1584 
1585 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1586 		huge = false;
1587 	nr = huge ? HPAGE_PMD_NR : 1;
1588 
1589 	if (!shmem_inode_acct_block(inode, nr))
1590 		goto failed;
1591 
1592 	if (huge)
1593 		folio = shmem_alloc_hugefolio(gfp, info, index);
1594 	else
1595 		folio = shmem_alloc_folio(gfp, info, index);
1596 	if (folio) {
1597 		__folio_set_locked(folio);
1598 		__folio_set_swapbacked(folio);
1599 		return folio;
1600 	}
1601 
1602 	err = -ENOMEM;
1603 	shmem_inode_unacct_blocks(inode, nr);
1604 failed:
1605 	return ERR_PTR(err);
1606 }
1607 
1608 /*
1609  * When a page is moved from swapcache to shmem filecache (either by the
1610  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1611  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1612  * ignorance of the mapping it belongs to.  If that mapping has special
1613  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1614  * we may need to copy to a suitable page before moving to filecache.
1615  *
1616  * In a future release, this may well be extended to respect cpuset and
1617  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1618  * but for now it is a simple matter of zone.
1619  */
1620 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1621 {
1622 	return folio_zonenum(folio) > gfp_zone(gfp);
1623 }
1624 
1625 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1626 				struct shmem_inode_info *info, pgoff_t index)
1627 {
1628 	struct folio *old, *new;
1629 	struct address_space *swap_mapping;
1630 	swp_entry_t entry;
1631 	pgoff_t swap_index;
1632 	int error;
1633 
1634 	old = *foliop;
1635 	entry = folio_swap_entry(old);
1636 	swap_index = swp_offset(entry);
1637 	swap_mapping = swap_address_space(entry);
1638 
1639 	/*
1640 	 * We have arrived here because our zones are constrained, so don't
1641 	 * limit chance of success by further cpuset and node constraints.
1642 	 */
1643 	gfp &= ~GFP_CONSTRAINT_MASK;
1644 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1645 	new = shmem_alloc_folio(gfp, info, index);
1646 	if (!new)
1647 		return -ENOMEM;
1648 
1649 	folio_get(new);
1650 	folio_copy(new, old);
1651 	flush_dcache_folio(new);
1652 
1653 	__folio_set_locked(new);
1654 	__folio_set_swapbacked(new);
1655 	folio_mark_uptodate(new);
1656 	folio_set_swap_entry(new, entry);
1657 	folio_set_swapcache(new);
1658 
1659 	/*
1660 	 * Our caller will very soon move newpage out of swapcache, but it's
1661 	 * a nice clean interface for us to replace oldpage by newpage there.
1662 	 */
1663 	xa_lock_irq(&swap_mapping->i_pages);
1664 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1665 	if (!error) {
1666 		mem_cgroup_migrate(old, new);
1667 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1668 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1669 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1670 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1671 	}
1672 	xa_unlock_irq(&swap_mapping->i_pages);
1673 
1674 	if (unlikely(error)) {
1675 		/*
1676 		 * Is this possible?  I think not, now that our callers check
1677 		 * both PageSwapCache and page_private after getting page lock;
1678 		 * but be defensive.  Reverse old to newpage for clear and free.
1679 		 */
1680 		old = new;
1681 	} else {
1682 		folio_add_lru(new);
1683 		*foliop = new;
1684 	}
1685 
1686 	folio_clear_swapcache(old);
1687 	old->private = NULL;
1688 
1689 	folio_unlock(old);
1690 	folio_put_refs(old, 2);
1691 	return error;
1692 }
1693 
1694 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1695 					 struct folio *folio, swp_entry_t swap)
1696 {
1697 	struct address_space *mapping = inode->i_mapping;
1698 	struct shmem_inode_info *info = SHMEM_I(inode);
1699 	swp_entry_t swapin_error;
1700 	void *old;
1701 
1702 	swapin_error = make_swapin_error_entry();
1703 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1704 			     swp_to_radix_entry(swap),
1705 			     swp_to_radix_entry(swapin_error), 0);
1706 	if (old != swp_to_radix_entry(swap))
1707 		return;
1708 
1709 	folio_wait_writeback(folio);
1710 	delete_from_swap_cache(folio);
1711 	spin_lock_irq(&info->lock);
1712 	/*
1713 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1714 	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1715 	 * shmem_evict_inode.
1716 	 */
1717 	info->alloced--;
1718 	info->swapped--;
1719 	shmem_recalc_inode(inode);
1720 	spin_unlock_irq(&info->lock);
1721 	swap_free(swap);
1722 }
1723 
1724 /*
1725  * Swap in the folio pointed to by *foliop.
1726  * Caller has to make sure that *foliop contains a valid swapped folio.
1727  * Returns 0 and the folio in foliop if success. On failure, returns the
1728  * error code and NULL in *foliop.
1729  */
1730 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1731 			     struct folio **foliop, enum sgp_type sgp,
1732 			     gfp_t gfp, struct vm_area_struct *vma,
1733 			     vm_fault_t *fault_type)
1734 {
1735 	struct address_space *mapping = inode->i_mapping;
1736 	struct shmem_inode_info *info = SHMEM_I(inode);
1737 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1738 	struct folio *folio = NULL;
1739 	swp_entry_t swap;
1740 	int error;
1741 
1742 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1743 	swap = radix_to_swp_entry(*foliop);
1744 	*foliop = NULL;
1745 
1746 	if (is_swapin_error_entry(swap))
1747 		return -EIO;
1748 
1749 	/* Look it up and read it in.. */
1750 	folio = swap_cache_get_folio(swap, NULL, 0);
1751 	if (!folio) {
1752 		/* Or update major stats only when swapin succeeds?? */
1753 		if (fault_type) {
1754 			*fault_type |= VM_FAULT_MAJOR;
1755 			count_vm_event(PGMAJFAULT);
1756 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1757 		}
1758 		/* Here we actually start the io */
1759 		folio = shmem_swapin(swap, gfp, info, index);
1760 		if (!folio) {
1761 			error = -ENOMEM;
1762 			goto failed;
1763 		}
1764 	}
1765 
1766 	/* We have to do this with folio locked to prevent races */
1767 	folio_lock(folio);
1768 	if (!folio_test_swapcache(folio) ||
1769 	    folio_swap_entry(folio).val != swap.val ||
1770 	    !shmem_confirm_swap(mapping, index, swap)) {
1771 		error = -EEXIST;
1772 		goto unlock;
1773 	}
1774 	if (!folio_test_uptodate(folio)) {
1775 		error = -EIO;
1776 		goto failed;
1777 	}
1778 	folio_wait_writeback(folio);
1779 
1780 	/*
1781 	 * Some architectures may have to restore extra metadata to the
1782 	 * folio after reading from swap.
1783 	 */
1784 	arch_swap_restore(swap, folio);
1785 
1786 	if (shmem_should_replace_folio(folio, gfp)) {
1787 		error = shmem_replace_folio(&folio, gfp, info, index);
1788 		if (error)
1789 			goto failed;
1790 	}
1791 
1792 	error = shmem_add_to_page_cache(folio, mapping, index,
1793 					swp_to_radix_entry(swap), gfp,
1794 					charge_mm);
1795 	if (error)
1796 		goto failed;
1797 
1798 	spin_lock_irq(&info->lock);
1799 	info->swapped--;
1800 	shmem_recalc_inode(inode);
1801 	spin_unlock_irq(&info->lock);
1802 
1803 	if (sgp == SGP_WRITE)
1804 		folio_mark_accessed(folio);
1805 
1806 	delete_from_swap_cache(folio);
1807 	folio_mark_dirty(folio);
1808 	swap_free(swap);
1809 
1810 	*foliop = folio;
1811 	return 0;
1812 failed:
1813 	if (!shmem_confirm_swap(mapping, index, swap))
1814 		error = -EEXIST;
1815 	if (error == -EIO)
1816 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1817 unlock:
1818 	if (folio) {
1819 		folio_unlock(folio);
1820 		folio_put(folio);
1821 	}
1822 
1823 	return error;
1824 }
1825 
1826 /*
1827  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1828  *
1829  * If we allocate a new one we do not mark it dirty. That's up to the
1830  * vm. If we swap it in we mark it dirty since we also free the swap
1831  * entry since a page cannot live in both the swap and page cache.
1832  *
1833  * vma, vmf, and fault_type are only supplied by shmem_fault:
1834  * otherwise they are NULL.
1835  */
1836 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1837 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1838 		struct vm_area_struct *vma, struct vm_fault *vmf,
1839 		vm_fault_t *fault_type)
1840 {
1841 	struct address_space *mapping = inode->i_mapping;
1842 	struct shmem_inode_info *info = SHMEM_I(inode);
1843 	struct shmem_sb_info *sbinfo;
1844 	struct mm_struct *charge_mm;
1845 	struct folio *folio;
1846 	pgoff_t hindex;
1847 	gfp_t huge_gfp;
1848 	int error;
1849 	int once = 0;
1850 	int alloced = 0;
1851 
1852 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1853 		return -EFBIG;
1854 repeat:
1855 	if (sgp <= SGP_CACHE &&
1856 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1857 		return -EINVAL;
1858 	}
1859 
1860 	sbinfo = SHMEM_SB(inode->i_sb);
1861 	charge_mm = vma ? vma->vm_mm : NULL;
1862 
1863 	folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1864 	if (folio && vma && userfaultfd_minor(vma)) {
1865 		if (!xa_is_value(folio)) {
1866 			folio_unlock(folio);
1867 			folio_put(folio);
1868 		}
1869 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1870 		return 0;
1871 	}
1872 
1873 	if (xa_is_value(folio)) {
1874 		error = shmem_swapin_folio(inode, index, &folio,
1875 					  sgp, gfp, vma, fault_type);
1876 		if (error == -EEXIST)
1877 			goto repeat;
1878 
1879 		*foliop = folio;
1880 		return error;
1881 	}
1882 
1883 	if (folio) {
1884 		if (sgp == SGP_WRITE)
1885 			folio_mark_accessed(folio);
1886 		if (folio_test_uptodate(folio))
1887 			goto out;
1888 		/* fallocated folio */
1889 		if (sgp != SGP_READ)
1890 			goto clear;
1891 		folio_unlock(folio);
1892 		folio_put(folio);
1893 	}
1894 
1895 	/*
1896 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1897 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1898 	 */
1899 	*foliop = NULL;
1900 	if (sgp == SGP_READ)
1901 		return 0;
1902 	if (sgp == SGP_NOALLOC)
1903 		return -ENOENT;
1904 
1905 	/*
1906 	 * Fast cache lookup and swap lookup did not find it: allocate.
1907 	 */
1908 
1909 	if (vma && userfaultfd_missing(vma)) {
1910 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1911 		return 0;
1912 	}
1913 
1914 	if (!shmem_is_huge(vma, inode, index, false))
1915 		goto alloc_nohuge;
1916 
1917 	huge_gfp = vma_thp_gfp_mask(vma);
1918 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1919 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1920 	if (IS_ERR(folio)) {
1921 alloc_nohuge:
1922 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1923 	}
1924 	if (IS_ERR(folio)) {
1925 		int retry = 5;
1926 
1927 		error = PTR_ERR(folio);
1928 		folio = NULL;
1929 		if (error != -ENOSPC)
1930 			goto unlock;
1931 		/*
1932 		 * Try to reclaim some space by splitting a large folio
1933 		 * beyond i_size on the filesystem.
1934 		 */
1935 		while (retry--) {
1936 			int ret;
1937 
1938 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1939 			if (ret == SHRINK_STOP)
1940 				break;
1941 			if (ret)
1942 				goto alloc_nohuge;
1943 		}
1944 		goto unlock;
1945 	}
1946 
1947 	hindex = round_down(index, folio_nr_pages(folio));
1948 
1949 	if (sgp == SGP_WRITE)
1950 		__folio_set_referenced(folio);
1951 
1952 	error = shmem_add_to_page_cache(folio, mapping, hindex,
1953 					NULL, gfp & GFP_RECLAIM_MASK,
1954 					charge_mm);
1955 	if (error)
1956 		goto unacct;
1957 	folio_add_lru(folio);
1958 
1959 	spin_lock_irq(&info->lock);
1960 	info->alloced += folio_nr_pages(folio);
1961 	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1962 	shmem_recalc_inode(inode);
1963 	spin_unlock_irq(&info->lock);
1964 	alloced = true;
1965 
1966 	if (folio_test_pmd_mappable(folio) &&
1967 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1968 					folio_next_index(folio) - 1) {
1969 		/*
1970 		 * Part of the large folio is beyond i_size: subject
1971 		 * to shrink under memory pressure.
1972 		 */
1973 		spin_lock(&sbinfo->shrinklist_lock);
1974 		/*
1975 		 * _careful to defend against unlocked access to
1976 		 * ->shrink_list in shmem_unused_huge_shrink()
1977 		 */
1978 		if (list_empty_careful(&info->shrinklist)) {
1979 			list_add_tail(&info->shrinklist,
1980 				      &sbinfo->shrinklist);
1981 			sbinfo->shrinklist_len++;
1982 		}
1983 		spin_unlock(&sbinfo->shrinklist_lock);
1984 	}
1985 
1986 	/*
1987 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
1988 	 */
1989 	if (sgp == SGP_FALLOC)
1990 		sgp = SGP_WRITE;
1991 clear:
1992 	/*
1993 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
1994 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
1995 	 * it now, lest undo on failure cancel our earlier guarantee.
1996 	 */
1997 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1998 		long i, n = folio_nr_pages(folio);
1999 
2000 		for (i = 0; i < n; i++)
2001 			clear_highpage(folio_page(folio, i));
2002 		flush_dcache_folio(folio);
2003 		folio_mark_uptodate(folio);
2004 	}
2005 
2006 	/* Perhaps the file has been truncated since we checked */
2007 	if (sgp <= SGP_CACHE &&
2008 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2009 		if (alloced) {
2010 			folio_clear_dirty(folio);
2011 			filemap_remove_folio(folio);
2012 			spin_lock_irq(&info->lock);
2013 			shmem_recalc_inode(inode);
2014 			spin_unlock_irq(&info->lock);
2015 		}
2016 		error = -EINVAL;
2017 		goto unlock;
2018 	}
2019 out:
2020 	*foliop = folio;
2021 	return 0;
2022 
2023 	/*
2024 	 * Error recovery.
2025 	 */
2026 unacct:
2027 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2028 
2029 	if (folio_test_large(folio)) {
2030 		folio_unlock(folio);
2031 		folio_put(folio);
2032 		goto alloc_nohuge;
2033 	}
2034 unlock:
2035 	if (folio) {
2036 		folio_unlock(folio);
2037 		folio_put(folio);
2038 	}
2039 	if (error == -ENOSPC && !once++) {
2040 		spin_lock_irq(&info->lock);
2041 		shmem_recalc_inode(inode);
2042 		spin_unlock_irq(&info->lock);
2043 		goto repeat;
2044 	}
2045 	if (error == -EEXIST)
2046 		goto repeat;
2047 	return error;
2048 }
2049 
2050 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2051 		enum sgp_type sgp)
2052 {
2053 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2054 			mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2055 }
2056 
2057 /*
2058  * This is like autoremove_wake_function, but it removes the wait queue
2059  * entry unconditionally - even if something else had already woken the
2060  * target.
2061  */
2062 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2063 {
2064 	int ret = default_wake_function(wait, mode, sync, key);
2065 	list_del_init(&wait->entry);
2066 	return ret;
2067 }
2068 
2069 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2070 {
2071 	struct vm_area_struct *vma = vmf->vma;
2072 	struct inode *inode = file_inode(vma->vm_file);
2073 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2074 	struct folio *folio = NULL;
2075 	int err;
2076 	vm_fault_t ret = VM_FAULT_LOCKED;
2077 
2078 	/*
2079 	 * Trinity finds that probing a hole which tmpfs is punching can
2080 	 * prevent the hole-punch from ever completing: which in turn
2081 	 * locks writers out with its hold on i_rwsem.  So refrain from
2082 	 * faulting pages into the hole while it's being punched.  Although
2083 	 * shmem_undo_range() does remove the additions, it may be unable to
2084 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2085 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2086 	 *
2087 	 * It does not matter if we sometimes reach this check just before the
2088 	 * hole-punch begins, so that one fault then races with the punch:
2089 	 * we just need to make racing faults a rare case.
2090 	 *
2091 	 * The implementation below would be much simpler if we just used a
2092 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2093 	 * and bloating every shmem inode for this unlikely case would be sad.
2094 	 */
2095 	if (unlikely(inode->i_private)) {
2096 		struct shmem_falloc *shmem_falloc;
2097 
2098 		spin_lock(&inode->i_lock);
2099 		shmem_falloc = inode->i_private;
2100 		if (shmem_falloc &&
2101 		    shmem_falloc->waitq &&
2102 		    vmf->pgoff >= shmem_falloc->start &&
2103 		    vmf->pgoff < shmem_falloc->next) {
2104 			struct file *fpin;
2105 			wait_queue_head_t *shmem_falloc_waitq;
2106 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2107 
2108 			ret = VM_FAULT_NOPAGE;
2109 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2110 			if (fpin)
2111 				ret = VM_FAULT_RETRY;
2112 
2113 			shmem_falloc_waitq = shmem_falloc->waitq;
2114 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2115 					TASK_UNINTERRUPTIBLE);
2116 			spin_unlock(&inode->i_lock);
2117 			schedule();
2118 
2119 			/*
2120 			 * shmem_falloc_waitq points into the shmem_fallocate()
2121 			 * stack of the hole-punching task: shmem_falloc_waitq
2122 			 * is usually invalid by the time we reach here, but
2123 			 * finish_wait() does not dereference it in that case;
2124 			 * though i_lock needed lest racing with wake_up_all().
2125 			 */
2126 			spin_lock(&inode->i_lock);
2127 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2128 			spin_unlock(&inode->i_lock);
2129 
2130 			if (fpin)
2131 				fput(fpin);
2132 			return ret;
2133 		}
2134 		spin_unlock(&inode->i_lock);
2135 	}
2136 
2137 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2138 				  gfp, vma, vmf, &ret);
2139 	if (err)
2140 		return vmf_error(err);
2141 	if (folio)
2142 		vmf->page = folio_file_page(folio, vmf->pgoff);
2143 	return ret;
2144 }
2145 
2146 unsigned long shmem_get_unmapped_area(struct file *file,
2147 				      unsigned long uaddr, unsigned long len,
2148 				      unsigned long pgoff, unsigned long flags)
2149 {
2150 	unsigned long (*get_area)(struct file *,
2151 		unsigned long, unsigned long, unsigned long, unsigned long);
2152 	unsigned long addr;
2153 	unsigned long offset;
2154 	unsigned long inflated_len;
2155 	unsigned long inflated_addr;
2156 	unsigned long inflated_offset;
2157 
2158 	if (len > TASK_SIZE)
2159 		return -ENOMEM;
2160 
2161 	get_area = current->mm->get_unmapped_area;
2162 	addr = get_area(file, uaddr, len, pgoff, flags);
2163 
2164 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2165 		return addr;
2166 	if (IS_ERR_VALUE(addr))
2167 		return addr;
2168 	if (addr & ~PAGE_MASK)
2169 		return addr;
2170 	if (addr > TASK_SIZE - len)
2171 		return addr;
2172 
2173 	if (shmem_huge == SHMEM_HUGE_DENY)
2174 		return addr;
2175 	if (len < HPAGE_PMD_SIZE)
2176 		return addr;
2177 	if (flags & MAP_FIXED)
2178 		return addr;
2179 	/*
2180 	 * Our priority is to support MAP_SHARED mapped hugely;
2181 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2182 	 * But if caller specified an address hint and we allocated area there
2183 	 * successfully, respect that as before.
2184 	 */
2185 	if (uaddr == addr)
2186 		return addr;
2187 
2188 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2189 		struct super_block *sb;
2190 
2191 		if (file) {
2192 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2193 			sb = file_inode(file)->i_sb;
2194 		} else {
2195 			/*
2196 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2197 			 * for "/dev/zero", to create a shared anonymous object.
2198 			 */
2199 			if (IS_ERR(shm_mnt))
2200 				return addr;
2201 			sb = shm_mnt->mnt_sb;
2202 		}
2203 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2204 			return addr;
2205 	}
2206 
2207 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2208 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2209 		return addr;
2210 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2211 		return addr;
2212 
2213 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2214 	if (inflated_len > TASK_SIZE)
2215 		return addr;
2216 	if (inflated_len < len)
2217 		return addr;
2218 
2219 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2220 	if (IS_ERR_VALUE(inflated_addr))
2221 		return addr;
2222 	if (inflated_addr & ~PAGE_MASK)
2223 		return addr;
2224 
2225 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2226 	inflated_addr += offset - inflated_offset;
2227 	if (inflated_offset > offset)
2228 		inflated_addr += HPAGE_PMD_SIZE;
2229 
2230 	if (inflated_addr > TASK_SIZE - len)
2231 		return addr;
2232 	return inflated_addr;
2233 }
2234 
2235 #ifdef CONFIG_NUMA
2236 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2237 {
2238 	struct inode *inode = file_inode(vma->vm_file);
2239 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2240 }
2241 
2242 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2243 					  unsigned long addr)
2244 {
2245 	struct inode *inode = file_inode(vma->vm_file);
2246 	pgoff_t index;
2247 
2248 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2249 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2250 }
2251 #endif
2252 
2253 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2254 {
2255 	struct inode *inode = file_inode(file);
2256 	struct shmem_inode_info *info = SHMEM_I(inode);
2257 	int retval = -ENOMEM;
2258 
2259 	/*
2260 	 * What serializes the accesses to info->flags?
2261 	 * ipc_lock_object() when called from shmctl_do_lock(),
2262 	 * no serialization needed when called from shm_destroy().
2263 	 */
2264 	if (lock && !(info->flags & VM_LOCKED)) {
2265 		if (!user_shm_lock(inode->i_size, ucounts))
2266 			goto out_nomem;
2267 		info->flags |= VM_LOCKED;
2268 		mapping_set_unevictable(file->f_mapping);
2269 	}
2270 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2271 		user_shm_unlock(inode->i_size, ucounts);
2272 		info->flags &= ~VM_LOCKED;
2273 		mapping_clear_unevictable(file->f_mapping);
2274 	}
2275 	retval = 0;
2276 
2277 out_nomem:
2278 	return retval;
2279 }
2280 
2281 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2282 {
2283 	struct inode *inode = file_inode(file);
2284 	struct shmem_inode_info *info = SHMEM_I(inode);
2285 	int ret;
2286 
2287 	ret = seal_check_future_write(info->seals, vma);
2288 	if (ret)
2289 		return ret;
2290 
2291 	/* arm64 - allow memory tagging on RAM-based files */
2292 	vma->vm_flags |= VM_MTE_ALLOWED;
2293 
2294 	file_accessed(file);
2295 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2296 	if (inode->i_nlink)
2297 		vma->vm_ops = &shmem_vm_ops;
2298 	else
2299 		vma->vm_ops = &shmem_anon_vm_ops;
2300 	return 0;
2301 }
2302 
2303 #ifdef CONFIG_TMPFS_XATTR
2304 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2305 
2306 /*
2307  * chattr's fsflags are unrelated to extended attributes,
2308  * but tmpfs has chosen to enable them under the same config option.
2309  */
2310 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2311 {
2312 	unsigned int i_flags = 0;
2313 
2314 	if (fsflags & FS_NOATIME_FL)
2315 		i_flags |= S_NOATIME;
2316 	if (fsflags & FS_APPEND_FL)
2317 		i_flags |= S_APPEND;
2318 	if (fsflags & FS_IMMUTABLE_FL)
2319 		i_flags |= S_IMMUTABLE;
2320 	/*
2321 	 * But FS_NODUMP_FL does not require any action in i_flags.
2322 	 */
2323 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2324 }
2325 #else
2326 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2327 {
2328 }
2329 #define shmem_initxattrs NULL
2330 #endif
2331 
2332 static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir,
2333 				     umode_t mode, dev_t dev, unsigned long flags)
2334 {
2335 	struct inode *inode;
2336 	struct shmem_inode_info *info;
2337 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2338 	ino_t ino;
2339 
2340 	if (shmem_reserve_inode(sb, &ino))
2341 		return NULL;
2342 
2343 	inode = new_inode(sb);
2344 	if (inode) {
2345 		inode->i_ino = ino;
2346 		inode_init_owner(&init_user_ns, inode, dir, mode);
2347 		inode->i_blocks = 0;
2348 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2349 		inode->i_generation = get_random_u32();
2350 		info = SHMEM_I(inode);
2351 		memset(info, 0, (char *)inode - (char *)info);
2352 		spin_lock_init(&info->lock);
2353 		atomic_set(&info->stop_eviction, 0);
2354 		info->seals = F_SEAL_SEAL;
2355 		info->flags = flags & VM_NORESERVE;
2356 		info->i_crtime = inode->i_mtime;
2357 		info->fsflags = (dir == NULL) ? 0 :
2358 			SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2359 		if (info->fsflags)
2360 			shmem_set_inode_flags(inode, info->fsflags);
2361 		INIT_LIST_HEAD(&info->shrinklist);
2362 		INIT_LIST_HEAD(&info->swaplist);
2363 		simple_xattrs_init(&info->xattrs);
2364 		cache_no_acl(inode);
2365 		mapping_set_large_folios(inode->i_mapping);
2366 
2367 		switch (mode & S_IFMT) {
2368 		default:
2369 			inode->i_op = &shmem_special_inode_operations;
2370 			init_special_inode(inode, mode, dev);
2371 			break;
2372 		case S_IFREG:
2373 			inode->i_mapping->a_ops = &shmem_aops;
2374 			inode->i_op = &shmem_inode_operations;
2375 			inode->i_fop = &shmem_file_operations;
2376 			mpol_shared_policy_init(&info->policy,
2377 						 shmem_get_sbmpol(sbinfo));
2378 			break;
2379 		case S_IFDIR:
2380 			inc_nlink(inode);
2381 			/* Some things misbehave if size == 0 on a directory */
2382 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2383 			inode->i_op = &shmem_dir_inode_operations;
2384 			inode->i_fop = &simple_dir_operations;
2385 			break;
2386 		case S_IFLNK:
2387 			/*
2388 			 * Must not load anything in the rbtree,
2389 			 * mpol_free_shared_policy will not be called.
2390 			 */
2391 			mpol_shared_policy_init(&info->policy, NULL);
2392 			break;
2393 		}
2394 
2395 		lockdep_annotate_inode_mutex_key(inode);
2396 	} else
2397 		shmem_free_inode(sb);
2398 	return inode;
2399 }
2400 
2401 #ifdef CONFIG_USERFAULTFD
2402 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2403 			   pmd_t *dst_pmd,
2404 			   struct vm_area_struct *dst_vma,
2405 			   unsigned long dst_addr,
2406 			   unsigned long src_addr,
2407 			   bool zeropage, bool wp_copy,
2408 			   struct page **pagep)
2409 {
2410 	struct inode *inode = file_inode(dst_vma->vm_file);
2411 	struct shmem_inode_info *info = SHMEM_I(inode);
2412 	struct address_space *mapping = inode->i_mapping;
2413 	gfp_t gfp = mapping_gfp_mask(mapping);
2414 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2415 	void *page_kaddr;
2416 	struct folio *folio;
2417 	int ret;
2418 	pgoff_t max_off;
2419 
2420 	if (!shmem_inode_acct_block(inode, 1)) {
2421 		/*
2422 		 * We may have got a page, returned -ENOENT triggering a retry,
2423 		 * and now we find ourselves with -ENOMEM. Release the page, to
2424 		 * avoid a BUG_ON in our caller.
2425 		 */
2426 		if (unlikely(*pagep)) {
2427 			put_page(*pagep);
2428 			*pagep = NULL;
2429 		}
2430 		return -ENOMEM;
2431 	}
2432 
2433 	if (!*pagep) {
2434 		ret = -ENOMEM;
2435 		folio = shmem_alloc_folio(gfp, info, pgoff);
2436 		if (!folio)
2437 			goto out_unacct_blocks;
2438 
2439 		if (!zeropage) {	/* COPY */
2440 			page_kaddr = kmap_local_folio(folio, 0);
2441 			/*
2442 			 * The read mmap_lock is held here.  Despite the
2443 			 * mmap_lock being read recursive a deadlock is still
2444 			 * possible if a writer has taken a lock.  For example:
2445 			 *
2446 			 * process A thread 1 takes read lock on own mmap_lock
2447 			 * process A thread 2 calls mmap, blocks taking write lock
2448 			 * process B thread 1 takes page fault, read lock on own mmap lock
2449 			 * process B thread 2 calls mmap, blocks taking write lock
2450 			 * process A thread 1 blocks taking read lock on process B
2451 			 * process B thread 1 blocks taking read lock on process A
2452 			 *
2453 			 * Disable page faults to prevent potential deadlock
2454 			 * and retry the copy outside the mmap_lock.
2455 			 */
2456 			pagefault_disable();
2457 			ret = copy_from_user(page_kaddr,
2458 					     (const void __user *)src_addr,
2459 					     PAGE_SIZE);
2460 			pagefault_enable();
2461 			kunmap_local(page_kaddr);
2462 
2463 			/* fallback to copy_from_user outside mmap_lock */
2464 			if (unlikely(ret)) {
2465 				*pagep = &folio->page;
2466 				ret = -ENOENT;
2467 				/* don't free the page */
2468 				goto out_unacct_blocks;
2469 			}
2470 
2471 			flush_dcache_folio(folio);
2472 		} else {		/* ZEROPAGE */
2473 			clear_user_highpage(&folio->page, dst_addr);
2474 		}
2475 	} else {
2476 		folio = page_folio(*pagep);
2477 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2478 		*pagep = NULL;
2479 	}
2480 
2481 	VM_BUG_ON(folio_test_locked(folio));
2482 	VM_BUG_ON(folio_test_swapbacked(folio));
2483 	__folio_set_locked(folio);
2484 	__folio_set_swapbacked(folio);
2485 	__folio_mark_uptodate(folio);
2486 
2487 	ret = -EFAULT;
2488 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2489 	if (unlikely(pgoff >= max_off))
2490 		goto out_release;
2491 
2492 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2493 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2494 	if (ret)
2495 		goto out_release;
2496 
2497 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2498 				       &folio->page, true, wp_copy);
2499 	if (ret)
2500 		goto out_delete_from_cache;
2501 
2502 	spin_lock_irq(&info->lock);
2503 	info->alloced++;
2504 	inode->i_blocks += BLOCKS_PER_PAGE;
2505 	shmem_recalc_inode(inode);
2506 	spin_unlock_irq(&info->lock);
2507 
2508 	folio_unlock(folio);
2509 	return 0;
2510 out_delete_from_cache:
2511 	filemap_remove_folio(folio);
2512 out_release:
2513 	folio_unlock(folio);
2514 	folio_put(folio);
2515 out_unacct_blocks:
2516 	shmem_inode_unacct_blocks(inode, 1);
2517 	return ret;
2518 }
2519 #endif /* CONFIG_USERFAULTFD */
2520 
2521 #ifdef CONFIG_TMPFS
2522 static const struct inode_operations shmem_symlink_inode_operations;
2523 static const struct inode_operations shmem_short_symlink_operations;
2524 
2525 static int
2526 shmem_write_begin(struct file *file, struct address_space *mapping,
2527 			loff_t pos, unsigned len,
2528 			struct page **pagep, void **fsdata)
2529 {
2530 	struct inode *inode = mapping->host;
2531 	struct shmem_inode_info *info = SHMEM_I(inode);
2532 	pgoff_t index = pos >> PAGE_SHIFT;
2533 	struct folio *folio;
2534 	int ret = 0;
2535 
2536 	/* i_rwsem is held by caller */
2537 	if (unlikely(info->seals & (F_SEAL_GROW |
2538 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2539 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2540 			return -EPERM;
2541 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2542 			return -EPERM;
2543 	}
2544 
2545 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2546 
2547 	if (ret)
2548 		return ret;
2549 
2550 	*pagep = folio_file_page(folio, index);
2551 	if (PageHWPoison(*pagep)) {
2552 		folio_unlock(folio);
2553 		folio_put(folio);
2554 		*pagep = NULL;
2555 		return -EIO;
2556 	}
2557 
2558 	return 0;
2559 }
2560 
2561 static int
2562 shmem_write_end(struct file *file, struct address_space *mapping,
2563 			loff_t pos, unsigned len, unsigned copied,
2564 			struct page *page, void *fsdata)
2565 {
2566 	struct inode *inode = mapping->host;
2567 
2568 	if (pos + copied > inode->i_size)
2569 		i_size_write(inode, pos + copied);
2570 
2571 	if (!PageUptodate(page)) {
2572 		struct page *head = compound_head(page);
2573 		if (PageTransCompound(page)) {
2574 			int i;
2575 
2576 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2577 				if (head + i == page)
2578 					continue;
2579 				clear_highpage(head + i);
2580 				flush_dcache_page(head + i);
2581 			}
2582 		}
2583 		if (copied < PAGE_SIZE) {
2584 			unsigned from = pos & (PAGE_SIZE - 1);
2585 			zero_user_segments(page, 0, from,
2586 					from + copied, PAGE_SIZE);
2587 		}
2588 		SetPageUptodate(head);
2589 	}
2590 	set_page_dirty(page);
2591 	unlock_page(page);
2592 	put_page(page);
2593 
2594 	return copied;
2595 }
2596 
2597 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2598 {
2599 	struct file *file = iocb->ki_filp;
2600 	struct inode *inode = file_inode(file);
2601 	struct address_space *mapping = inode->i_mapping;
2602 	pgoff_t index;
2603 	unsigned long offset;
2604 	int error = 0;
2605 	ssize_t retval = 0;
2606 	loff_t *ppos = &iocb->ki_pos;
2607 
2608 	index = *ppos >> PAGE_SHIFT;
2609 	offset = *ppos & ~PAGE_MASK;
2610 
2611 	for (;;) {
2612 		struct folio *folio = NULL;
2613 		struct page *page = NULL;
2614 		pgoff_t end_index;
2615 		unsigned long nr, ret;
2616 		loff_t i_size = i_size_read(inode);
2617 
2618 		end_index = i_size >> PAGE_SHIFT;
2619 		if (index > end_index)
2620 			break;
2621 		if (index == end_index) {
2622 			nr = i_size & ~PAGE_MASK;
2623 			if (nr <= offset)
2624 				break;
2625 		}
2626 
2627 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2628 		if (error) {
2629 			if (error == -EINVAL)
2630 				error = 0;
2631 			break;
2632 		}
2633 		if (folio) {
2634 			folio_unlock(folio);
2635 
2636 			page = folio_file_page(folio, index);
2637 			if (PageHWPoison(page)) {
2638 				folio_put(folio);
2639 				error = -EIO;
2640 				break;
2641 			}
2642 		}
2643 
2644 		/*
2645 		 * We must evaluate after, since reads (unlike writes)
2646 		 * are called without i_rwsem protection against truncate
2647 		 */
2648 		nr = PAGE_SIZE;
2649 		i_size = i_size_read(inode);
2650 		end_index = i_size >> PAGE_SHIFT;
2651 		if (index == end_index) {
2652 			nr = i_size & ~PAGE_MASK;
2653 			if (nr <= offset) {
2654 				if (folio)
2655 					folio_put(folio);
2656 				break;
2657 			}
2658 		}
2659 		nr -= offset;
2660 
2661 		if (folio) {
2662 			/*
2663 			 * If users can be writing to this page using arbitrary
2664 			 * virtual addresses, take care about potential aliasing
2665 			 * before reading the page on the kernel side.
2666 			 */
2667 			if (mapping_writably_mapped(mapping))
2668 				flush_dcache_page(page);
2669 			/*
2670 			 * Mark the page accessed if we read the beginning.
2671 			 */
2672 			if (!offset)
2673 				folio_mark_accessed(folio);
2674 			/*
2675 			 * Ok, we have the page, and it's up-to-date, so
2676 			 * now we can copy it to user space...
2677 			 */
2678 			ret = copy_page_to_iter(page, offset, nr, to);
2679 			folio_put(folio);
2680 
2681 		} else if (user_backed_iter(to)) {
2682 			/*
2683 			 * Copy to user tends to be so well optimized, but
2684 			 * clear_user() not so much, that it is noticeably
2685 			 * faster to copy the zero page instead of clearing.
2686 			 */
2687 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2688 		} else {
2689 			/*
2690 			 * But submitting the same page twice in a row to
2691 			 * splice() - or others? - can result in confusion:
2692 			 * so don't attempt that optimization on pipes etc.
2693 			 */
2694 			ret = iov_iter_zero(nr, to);
2695 		}
2696 
2697 		retval += ret;
2698 		offset += ret;
2699 		index += offset >> PAGE_SHIFT;
2700 		offset &= ~PAGE_MASK;
2701 
2702 		if (!iov_iter_count(to))
2703 			break;
2704 		if (ret < nr) {
2705 			error = -EFAULT;
2706 			break;
2707 		}
2708 		cond_resched();
2709 	}
2710 
2711 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2712 	file_accessed(file);
2713 	return retval ? retval : error;
2714 }
2715 
2716 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2717 {
2718 	struct address_space *mapping = file->f_mapping;
2719 	struct inode *inode = mapping->host;
2720 
2721 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2722 		return generic_file_llseek_size(file, offset, whence,
2723 					MAX_LFS_FILESIZE, i_size_read(inode));
2724 	if (offset < 0)
2725 		return -ENXIO;
2726 
2727 	inode_lock(inode);
2728 	/* We're holding i_rwsem so we can access i_size directly */
2729 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2730 	if (offset >= 0)
2731 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2732 	inode_unlock(inode);
2733 	return offset;
2734 }
2735 
2736 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2737 							 loff_t len)
2738 {
2739 	struct inode *inode = file_inode(file);
2740 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2741 	struct shmem_inode_info *info = SHMEM_I(inode);
2742 	struct shmem_falloc shmem_falloc;
2743 	pgoff_t start, index, end, undo_fallocend;
2744 	int error;
2745 
2746 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2747 		return -EOPNOTSUPP;
2748 
2749 	inode_lock(inode);
2750 
2751 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2752 		struct address_space *mapping = file->f_mapping;
2753 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2754 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2755 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2756 
2757 		/* protected by i_rwsem */
2758 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2759 			error = -EPERM;
2760 			goto out;
2761 		}
2762 
2763 		shmem_falloc.waitq = &shmem_falloc_waitq;
2764 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2765 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2766 		spin_lock(&inode->i_lock);
2767 		inode->i_private = &shmem_falloc;
2768 		spin_unlock(&inode->i_lock);
2769 
2770 		if ((u64)unmap_end > (u64)unmap_start)
2771 			unmap_mapping_range(mapping, unmap_start,
2772 					    1 + unmap_end - unmap_start, 0);
2773 		shmem_truncate_range(inode, offset, offset + len - 1);
2774 		/* No need to unmap again: hole-punching leaves COWed pages */
2775 
2776 		spin_lock(&inode->i_lock);
2777 		inode->i_private = NULL;
2778 		wake_up_all(&shmem_falloc_waitq);
2779 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2780 		spin_unlock(&inode->i_lock);
2781 		error = 0;
2782 		goto out;
2783 	}
2784 
2785 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2786 	error = inode_newsize_ok(inode, offset + len);
2787 	if (error)
2788 		goto out;
2789 
2790 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2791 		error = -EPERM;
2792 		goto out;
2793 	}
2794 
2795 	start = offset >> PAGE_SHIFT;
2796 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2797 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2798 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2799 		error = -ENOSPC;
2800 		goto out;
2801 	}
2802 
2803 	shmem_falloc.waitq = NULL;
2804 	shmem_falloc.start = start;
2805 	shmem_falloc.next  = start;
2806 	shmem_falloc.nr_falloced = 0;
2807 	shmem_falloc.nr_unswapped = 0;
2808 	spin_lock(&inode->i_lock);
2809 	inode->i_private = &shmem_falloc;
2810 	spin_unlock(&inode->i_lock);
2811 
2812 	/*
2813 	 * info->fallocend is only relevant when huge pages might be
2814 	 * involved: to prevent split_huge_page() freeing fallocated
2815 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2816 	 */
2817 	undo_fallocend = info->fallocend;
2818 	if (info->fallocend < end)
2819 		info->fallocend = end;
2820 
2821 	for (index = start; index < end; ) {
2822 		struct folio *folio;
2823 
2824 		/*
2825 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2826 		 * been interrupted because we are using up too much memory.
2827 		 */
2828 		if (signal_pending(current))
2829 			error = -EINTR;
2830 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2831 			error = -ENOMEM;
2832 		else
2833 			error = shmem_get_folio(inode, index, &folio,
2834 						SGP_FALLOC);
2835 		if (error) {
2836 			info->fallocend = undo_fallocend;
2837 			/* Remove the !uptodate folios we added */
2838 			if (index > start) {
2839 				shmem_undo_range(inode,
2840 				    (loff_t)start << PAGE_SHIFT,
2841 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2842 			}
2843 			goto undone;
2844 		}
2845 
2846 		/*
2847 		 * Here is a more important optimization than it appears:
2848 		 * a second SGP_FALLOC on the same large folio will clear it,
2849 		 * making it uptodate and un-undoable if we fail later.
2850 		 */
2851 		index = folio_next_index(folio);
2852 		/* Beware 32-bit wraparound */
2853 		if (!index)
2854 			index--;
2855 
2856 		/*
2857 		 * Inform shmem_writepage() how far we have reached.
2858 		 * No need for lock or barrier: we have the page lock.
2859 		 */
2860 		if (!folio_test_uptodate(folio))
2861 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2862 		shmem_falloc.next = index;
2863 
2864 		/*
2865 		 * If !uptodate, leave it that way so that freeable folios
2866 		 * can be recognized if we need to rollback on error later.
2867 		 * But mark it dirty so that memory pressure will swap rather
2868 		 * than free the folios we are allocating (and SGP_CACHE folios
2869 		 * might still be clean: we now need to mark those dirty too).
2870 		 */
2871 		folio_mark_dirty(folio);
2872 		folio_unlock(folio);
2873 		folio_put(folio);
2874 		cond_resched();
2875 	}
2876 
2877 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2878 		i_size_write(inode, offset + len);
2879 undone:
2880 	spin_lock(&inode->i_lock);
2881 	inode->i_private = NULL;
2882 	spin_unlock(&inode->i_lock);
2883 out:
2884 	if (!error)
2885 		file_modified(file);
2886 	inode_unlock(inode);
2887 	return error;
2888 }
2889 
2890 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2891 {
2892 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2893 
2894 	buf->f_type = TMPFS_MAGIC;
2895 	buf->f_bsize = PAGE_SIZE;
2896 	buf->f_namelen = NAME_MAX;
2897 	if (sbinfo->max_blocks) {
2898 		buf->f_blocks = sbinfo->max_blocks;
2899 		buf->f_bavail =
2900 		buf->f_bfree  = sbinfo->max_blocks -
2901 				percpu_counter_sum(&sbinfo->used_blocks);
2902 	}
2903 	if (sbinfo->max_inodes) {
2904 		buf->f_files = sbinfo->max_inodes;
2905 		buf->f_ffree = sbinfo->free_inodes;
2906 	}
2907 	/* else leave those fields 0 like simple_statfs */
2908 
2909 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2910 
2911 	return 0;
2912 }
2913 
2914 /*
2915  * File creation. Allocate an inode, and we're done..
2916  */
2917 static int
2918 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2919 	    struct dentry *dentry, umode_t mode, dev_t dev)
2920 {
2921 	struct inode *inode;
2922 	int error = -ENOSPC;
2923 
2924 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2925 	if (inode) {
2926 		error = simple_acl_create(dir, inode);
2927 		if (error)
2928 			goto out_iput;
2929 		error = security_inode_init_security(inode, dir,
2930 						     &dentry->d_name,
2931 						     shmem_initxattrs, NULL);
2932 		if (error && error != -EOPNOTSUPP)
2933 			goto out_iput;
2934 
2935 		error = 0;
2936 		dir->i_size += BOGO_DIRENT_SIZE;
2937 		dir->i_ctime = dir->i_mtime = current_time(dir);
2938 		inode_inc_iversion(dir);
2939 		d_instantiate(dentry, inode);
2940 		dget(dentry); /* Extra count - pin the dentry in core */
2941 	}
2942 	return error;
2943 out_iput:
2944 	iput(inode);
2945 	return error;
2946 }
2947 
2948 static int
2949 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2950 	      struct file *file, umode_t mode)
2951 {
2952 	struct inode *inode;
2953 	int error = -ENOSPC;
2954 
2955 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2956 	if (inode) {
2957 		error = security_inode_init_security(inode, dir,
2958 						     NULL,
2959 						     shmem_initxattrs, NULL);
2960 		if (error && error != -EOPNOTSUPP)
2961 			goto out_iput;
2962 		error = simple_acl_create(dir, inode);
2963 		if (error)
2964 			goto out_iput;
2965 		d_tmpfile(file, inode);
2966 	}
2967 	return finish_open_simple(file, error);
2968 out_iput:
2969 	iput(inode);
2970 	return error;
2971 }
2972 
2973 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2974 		       struct dentry *dentry, umode_t mode)
2975 {
2976 	int error;
2977 
2978 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2979 				 mode | S_IFDIR, 0)))
2980 		return error;
2981 	inc_nlink(dir);
2982 	return 0;
2983 }
2984 
2985 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2986 			struct dentry *dentry, umode_t mode, bool excl)
2987 {
2988 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2989 }
2990 
2991 /*
2992  * Link a file..
2993  */
2994 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2995 {
2996 	struct inode *inode = d_inode(old_dentry);
2997 	int ret = 0;
2998 
2999 	/*
3000 	 * No ordinary (disk based) filesystem counts links as inodes;
3001 	 * but each new link needs a new dentry, pinning lowmem, and
3002 	 * tmpfs dentries cannot be pruned until they are unlinked.
3003 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3004 	 * first link must skip that, to get the accounting right.
3005 	 */
3006 	if (inode->i_nlink) {
3007 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3008 		if (ret)
3009 			goto out;
3010 	}
3011 
3012 	dir->i_size += BOGO_DIRENT_SIZE;
3013 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3014 	inode_inc_iversion(dir);
3015 	inc_nlink(inode);
3016 	ihold(inode);	/* New dentry reference */
3017 	dget(dentry);		/* Extra pinning count for the created dentry */
3018 	d_instantiate(dentry, inode);
3019 out:
3020 	return ret;
3021 }
3022 
3023 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3024 {
3025 	struct inode *inode = d_inode(dentry);
3026 
3027 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3028 		shmem_free_inode(inode->i_sb);
3029 
3030 	dir->i_size -= BOGO_DIRENT_SIZE;
3031 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3032 	inode_inc_iversion(dir);
3033 	drop_nlink(inode);
3034 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3035 	return 0;
3036 }
3037 
3038 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3039 {
3040 	if (!simple_empty(dentry))
3041 		return -ENOTEMPTY;
3042 
3043 	drop_nlink(d_inode(dentry));
3044 	drop_nlink(dir);
3045 	return shmem_unlink(dir, dentry);
3046 }
3047 
3048 static int shmem_whiteout(struct user_namespace *mnt_userns,
3049 			  struct inode *old_dir, struct dentry *old_dentry)
3050 {
3051 	struct dentry *whiteout;
3052 	int error;
3053 
3054 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3055 	if (!whiteout)
3056 		return -ENOMEM;
3057 
3058 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3059 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3060 	dput(whiteout);
3061 	if (error)
3062 		return error;
3063 
3064 	/*
3065 	 * Cheat and hash the whiteout while the old dentry is still in
3066 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3067 	 *
3068 	 * d_lookup() will consistently find one of them at this point,
3069 	 * not sure which one, but that isn't even important.
3070 	 */
3071 	d_rehash(whiteout);
3072 	return 0;
3073 }
3074 
3075 /*
3076  * The VFS layer already does all the dentry stuff for rename,
3077  * we just have to decrement the usage count for the target if
3078  * it exists so that the VFS layer correctly free's it when it
3079  * gets overwritten.
3080  */
3081 static int shmem_rename2(struct user_namespace *mnt_userns,
3082 			 struct inode *old_dir, struct dentry *old_dentry,
3083 			 struct inode *new_dir, struct dentry *new_dentry,
3084 			 unsigned int flags)
3085 {
3086 	struct inode *inode = d_inode(old_dentry);
3087 	int they_are_dirs = S_ISDIR(inode->i_mode);
3088 
3089 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3090 		return -EINVAL;
3091 
3092 	if (flags & RENAME_EXCHANGE)
3093 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3094 
3095 	if (!simple_empty(new_dentry))
3096 		return -ENOTEMPTY;
3097 
3098 	if (flags & RENAME_WHITEOUT) {
3099 		int error;
3100 
3101 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3102 		if (error)
3103 			return error;
3104 	}
3105 
3106 	if (d_really_is_positive(new_dentry)) {
3107 		(void) shmem_unlink(new_dir, new_dentry);
3108 		if (they_are_dirs) {
3109 			drop_nlink(d_inode(new_dentry));
3110 			drop_nlink(old_dir);
3111 		}
3112 	} else if (they_are_dirs) {
3113 		drop_nlink(old_dir);
3114 		inc_nlink(new_dir);
3115 	}
3116 
3117 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3118 	new_dir->i_size += BOGO_DIRENT_SIZE;
3119 	old_dir->i_ctime = old_dir->i_mtime =
3120 	new_dir->i_ctime = new_dir->i_mtime =
3121 	inode->i_ctime = current_time(old_dir);
3122 	inode_inc_iversion(old_dir);
3123 	inode_inc_iversion(new_dir);
3124 	return 0;
3125 }
3126 
3127 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3128 			 struct dentry *dentry, const char *symname)
3129 {
3130 	int error;
3131 	int len;
3132 	struct inode *inode;
3133 	struct folio *folio;
3134 
3135 	len = strlen(symname) + 1;
3136 	if (len > PAGE_SIZE)
3137 		return -ENAMETOOLONG;
3138 
3139 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3140 				VM_NORESERVE);
3141 	if (!inode)
3142 		return -ENOSPC;
3143 
3144 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3145 					     shmem_initxattrs, NULL);
3146 	if (error && error != -EOPNOTSUPP) {
3147 		iput(inode);
3148 		return error;
3149 	}
3150 
3151 	inode->i_size = len-1;
3152 	if (len <= SHORT_SYMLINK_LEN) {
3153 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3154 		if (!inode->i_link) {
3155 			iput(inode);
3156 			return -ENOMEM;
3157 		}
3158 		inode->i_op = &shmem_short_symlink_operations;
3159 	} else {
3160 		inode_nohighmem(inode);
3161 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3162 		if (error) {
3163 			iput(inode);
3164 			return error;
3165 		}
3166 		inode->i_mapping->a_ops = &shmem_aops;
3167 		inode->i_op = &shmem_symlink_inode_operations;
3168 		memcpy(folio_address(folio), symname, len);
3169 		folio_mark_uptodate(folio);
3170 		folio_mark_dirty(folio);
3171 		folio_unlock(folio);
3172 		folio_put(folio);
3173 	}
3174 	dir->i_size += BOGO_DIRENT_SIZE;
3175 	dir->i_ctime = dir->i_mtime = current_time(dir);
3176 	inode_inc_iversion(dir);
3177 	d_instantiate(dentry, inode);
3178 	dget(dentry);
3179 	return 0;
3180 }
3181 
3182 static void shmem_put_link(void *arg)
3183 {
3184 	folio_mark_accessed(arg);
3185 	folio_put(arg);
3186 }
3187 
3188 static const char *shmem_get_link(struct dentry *dentry,
3189 				  struct inode *inode,
3190 				  struct delayed_call *done)
3191 {
3192 	struct folio *folio = NULL;
3193 	int error;
3194 
3195 	if (!dentry) {
3196 		folio = filemap_get_folio(inode->i_mapping, 0);
3197 		if (!folio)
3198 			return ERR_PTR(-ECHILD);
3199 		if (PageHWPoison(folio_page(folio, 0)) ||
3200 		    !folio_test_uptodate(folio)) {
3201 			folio_put(folio);
3202 			return ERR_PTR(-ECHILD);
3203 		}
3204 	} else {
3205 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3206 		if (error)
3207 			return ERR_PTR(error);
3208 		if (!folio)
3209 			return ERR_PTR(-ECHILD);
3210 		if (PageHWPoison(folio_page(folio, 0))) {
3211 			folio_unlock(folio);
3212 			folio_put(folio);
3213 			return ERR_PTR(-ECHILD);
3214 		}
3215 		folio_unlock(folio);
3216 	}
3217 	set_delayed_call(done, shmem_put_link, folio);
3218 	return folio_address(folio);
3219 }
3220 
3221 #ifdef CONFIG_TMPFS_XATTR
3222 
3223 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3224 {
3225 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3226 
3227 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3228 
3229 	return 0;
3230 }
3231 
3232 static int shmem_fileattr_set(struct user_namespace *mnt_userns,
3233 			      struct dentry *dentry, struct fileattr *fa)
3234 {
3235 	struct inode *inode = d_inode(dentry);
3236 	struct shmem_inode_info *info = SHMEM_I(inode);
3237 
3238 	if (fileattr_has_fsx(fa))
3239 		return -EOPNOTSUPP;
3240 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3241 		return -EOPNOTSUPP;
3242 
3243 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3244 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3245 
3246 	shmem_set_inode_flags(inode, info->fsflags);
3247 	inode->i_ctime = current_time(inode);
3248 	inode_inc_iversion(inode);
3249 	return 0;
3250 }
3251 
3252 /*
3253  * Superblocks without xattr inode operations may get some security.* xattr
3254  * support from the LSM "for free". As soon as we have any other xattrs
3255  * like ACLs, we also need to implement the security.* handlers at
3256  * filesystem level, though.
3257  */
3258 
3259 /*
3260  * Callback for security_inode_init_security() for acquiring xattrs.
3261  */
3262 static int shmem_initxattrs(struct inode *inode,
3263 			    const struct xattr *xattr_array,
3264 			    void *fs_info)
3265 {
3266 	struct shmem_inode_info *info = SHMEM_I(inode);
3267 	const struct xattr *xattr;
3268 	struct simple_xattr *new_xattr;
3269 	size_t len;
3270 
3271 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3272 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3273 		if (!new_xattr)
3274 			return -ENOMEM;
3275 
3276 		len = strlen(xattr->name) + 1;
3277 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3278 					  GFP_KERNEL);
3279 		if (!new_xattr->name) {
3280 			kvfree(new_xattr);
3281 			return -ENOMEM;
3282 		}
3283 
3284 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3285 		       XATTR_SECURITY_PREFIX_LEN);
3286 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3287 		       xattr->name, len);
3288 
3289 		simple_xattr_add(&info->xattrs, new_xattr);
3290 	}
3291 
3292 	return 0;
3293 }
3294 
3295 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3296 				   struct dentry *unused, struct inode *inode,
3297 				   const char *name, void *buffer, size_t size)
3298 {
3299 	struct shmem_inode_info *info = SHMEM_I(inode);
3300 
3301 	name = xattr_full_name(handler, name);
3302 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3303 }
3304 
3305 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3306 				   struct user_namespace *mnt_userns,
3307 				   struct dentry *unused, struct inode *inode,
3308 				   const char *name, const void *value,
3309 				   size_t size, int flags)
3310 {
3311 	struct shmem_inode_info *info = SHMEM_I(inode);
3312 	int err;
3313 
3314 	name = xattr_full_name(handler, name);
3315 	err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3316 	if (!err) {
3317 		inode->i_ctime = current_time(inode);
3318 		inode_inc_iversion(inode);
3319 	}
3320 	return err;
3321 }
3322 
3323 static const struct xattr_handler shmem_security_xattr_handler = {
3324 	.prefix = XATTR_SECURITY_PREFIX,
3325 	.get = shmem_xattr_handler_get,
3326 	.set = shmem_xattr_handler_set,
3327 };
3328 
3329 static const struct xattr_handler shmem_trusted_xattr_handler = {
3330 	.prefix = XATTR_TRUSTED_PREFIX,
3331 	.get = shmem_xattr_handler_get,
3332 	.set = shmem_xattr_handler_set,
3333 };
3334 
3335 static const struct xattr_handler *shmem_xattr_handlers[] = {
3336 #ifdef CONFIG_TMPFS_POSIX_ACL
3337 	&posix_acl_access_xattr_handler,
3338 	&posix_acl_default_xattr_handler,
3339 #endif
3340 	&shmem_security_xattr_handler,
3341 	&shmem_trusted_xattr_handler,
3342 	NULL
3343 };
3344 
3345 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3346 {
3347 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3348 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3349 }
3350 #endif /* CONFIG_TMPFS_XATTR */
3351 
3352 static const struct inode_operations shmem_short_symlink_operations = {
3353 	.getattr	= shmem_getattr,
3354 	.get_link	= simple_get_link,
3355 #ifdef CONFIG_TMPFS_XATTR
3356 	.listxattr	= shmem_listxattr,
3357 #endif
3358 };
3359 
3360 static const struct inode_operations shmem_symlink_inode_operations = {
3361 	.getattr	= shmem_getattr,
3362 	.get_link	= shmem_get_link,
3363 #ifdef CONFIG_TMPFS_XATTR
3364 	.listxattr	= shmem_listxattr,
3365 #endif
3366 };
3367 
3368 static struct dentry *shmem_get_parent(struct dentry *child)
3369 {
3370 	return ERR_PTR(-ESTALE);
3371 }
3372 
3373 static int shmem_match(struct inode *ino, void *vfh)
3374 {
3375 	__u32 *fh = vfh;
3376 	__u64 inum = fh[2];
3377 	inum = (inum << 32) | fh[1];
3378 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3379 }
3380 
3381 /* Find any alias of inode, but prefer a hashed alias */
3382 static struct dentry *shmem_find_alias(struct inode *inode)
3383 {
3384 	struct dentry *alias = d_find_alias(inode);
3385 
3386 	return alias ?: d_find_any_alias(inode);
3387 }
3388 
3389 
3390 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3391 		struct fid *fid, int fh_len, int fh_type)
3392 {
3393 	struct inode *inode;
3394 	struct dentry *dentry = NULL;
3395 	u64 inum;
3396 
3397 	if (fh_len < 3)
3398 		return NULL;
3399 
3400 	inum = fid->raw[2];
3401 	inum = (inum << 32) | fid->raw[1];
3402 
3403 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3404 			shmem_match, fid->raw);
3405 	if (inode) {
3406 		dentry = shmem_find_alias(inode);
3407 		iput(inode);
3408 	}
3409 
3410 	return dentry;
3411 }
3412 
3413 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3414 				struct inode *parent)
3415 {
3416 	if (*len < 3) {
3417 		*len = 3;
3418 		return FILEID_INVALID;
3419 	}
3420 
3421 	if (inode_unhashed(inode)) {
3422 		/* Unfortunately insert_inode_hash is not idempotent,
3423 		 * so as we hash inodes here rather than at creation
3424 		 * time, we need a lock to ensure we only try
3425 		 * to do it once
3426 		 */
3427 		static DEFINE_SPINLOCK(lock);
3428 		spin_lock(&lock);
3429 		if (inode_unhashed(inode))
3430 			__insert_inode_hash(inode,
3431 					    inode->i_ino + inode->i_generation);
3432 		spin_unlock(&lock);
3433 	}
3434 
3435 	fh[0] = inode->i_generation;
3436 	fh[1] = inode->i_ino;
3437 	fh[2] = ((__u64)inode->i_ino) >> 32;
3438 
3439 	*len = 3;
3440 	return 1;
3441 }
3442 
3443 static const struct export_operations shmem_export_ops = {
3444 	.get_parent     = shmem_get_parent,
3445 	.encode_fh      = shmem_encode_fh,
3446 	.fh_to_dentry	= shmem_fh_to_dentry,
3447 };
3448 
3449 enum shmem_param {
3450 	Opt_gid,
3451 	Opt_huge,
3452 	Opt_mode,
3453 	Opt_mpol,
3454 	Opt_nr_blocks,
3455 	Opt_nr_inodes,
3456 	Opt_size,
3457 	Opt_uid,
3458 	Opt_inode32,
3459 	Opt_inode64,
3460 };
3461 
3462 static const struct constant_table shmem_param_enums_huge[] = {
3463 	{"never",	SHMEM_HUGE_NEVER },
3464 	{"always",	SHMEM_HUGE_ALWAYS },
3465 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3466 	{"advise",	SHMEM_HUGE_ADVISE },
3467 	{}
3468 };
3469 
3470 const struct fs_parameter_spec shmem_fs_parameters[] = {
3471 	fsparam_u32   ("gid",		Opt_gid),
3472 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3473 	fsparam_u32oct("mode",		Opt_mode),
3474 	fsparam_string("mpol",		Opt_mpol),
3475 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3476 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3477 	fsparam_string("size",		Opt_size),
3478 	fsparam_u32   ("uid",		Opt_uid),
3479 	fsparam_flag  ("inode32",	Opt_inode32),
3480 	fsparam_flag  ("inode64",	Opt_inode64),
3481 	{}
3482 };
3483 
3484 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3485 {
3486 	struct shmem_options *ctx = fc->fs_private;
3487 	struct fs_parse_result result;
3488 	unsigned long long size;
3489 	char *rest;
3490 	int opt;
3491 
3492 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3493 	if (opt < 0)
3494 		return opt;
3495 
3496 	switch (opt) {
3497 	case Opt_size:
3498 		size = memparse(param->string, &rest);
3499 		if (*rest == '%') {
3500 			size <<= PAGE_SHIFT;
3501 			size *= totalram_pages();
3502 			do_div(size, 100);
3503 			rest++;
3504 		}
3505 		if (*rest)
3506 			goto bad_value;
3507 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3508 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3509 		break;
3510 	case Opt_nr_blocks:
3511 		ctx->blocks = memparse(param->string, &rest);
3512 		if (*rest || ctx->blocks > S64_MAX)
3513 			goto bad_value;
3514 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3515 		break;
3516 	case Opt_nr_inodes:
3517 		ctx->inodes = memparse(param->string, &rest);
3518 		if (*rest)
3519 			goto bad_value;
3520 		ctx->seen |= SHMEM_SEEN_INODES;
3521 		break;
3522 	case Opt_mode:
3523 		ctx->mode = result.uint_32 & 07777;
3524 		break;
3525 	case Opt_uid:
3526 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3527 		if (!uid_valid(ctx->uid))
3528 			goto bad_value;
3529 		break;
3530 	case Opt_gid:
3531 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3532 		if (!gid_valid(ctx->gid))
3533 			goto bad_value;
3534 		break;
3535 	case Opt_huge:
3536 		ctx->huge = result.uint_32;
3537 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3538 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3539 		      has_transparent_hugepage()))
3540 			goto unsupported_parameter;
3541 		ctx->seen |= SHMEM_SEEN_HUGE;
3542 		break;
3543 	case Opt_mpol:
3544 		if (IS_ENABLED(CONFIG_NUMA)) {
3545 			mpol_put(ctx->mpol);
3546 			ctx->mpol = NULL;
3547 			if (mpol_parse_str(param->string, &ctx->mpol))
3548 				goto bad_value;
3549 			break;
3550 		}
3551 		goto unsupported_parameter;
3552 	case Opt_inode32:
3553 		ctx->full_inums = false;
3554 		ctx->seen |= SHMEM_SEEN_INUMS;
3555 		break;
3556 	case Opt_inode64:
3557 		if (sizeof(ino_t) < 8) {
3558 			return invalfc(fc,
3559 				       "Cannot use inode64 with <64bit inums in kernel\n");
3560 		}
3561 		ctx->full_inums = true;
3562 		ctx->seen |= SHMEM_SEEN_INUMS;
3563 		break;
3564 	}
3565 	return 0;
3566 
3567 unsupported_parameter:
3568 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3569 bad_value:
3570 	return invalfc(fc, "Bad value for '%s'", param->key);
3571 }
3572 
3573 static int shmem_parse_options(struct fs_context *fc, void *data)
3574 {
3575 	char *options = data;
3576 
3577 	if (options) {
3578 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3579 		if (err)
3580 			return err;
3581 	}
3582 
3583 	while (options != NULL) {
3584 		char *this_char = options;
3585 		for (;;) {
3586 			/*
3587 			 * NUL-terminate this option: unfortunately,
3588 			 * mount options form a comma-separated list,
3589 			 * but mpol's nodelist may also contain commas.
3590 			 */
3591 			options = strchr(options, ',');
3592 			if (options == NULL)
3593 				break;
3594 			options++;
3595 			if (!isdigit(*options)) {
3596 				options[-1] = '\0';
3597 				break;
3598 			}
3599 		}
3600 		if (*this_char) {
3601 			char *value = strchr(this_char, '=');
3602 			size_t len = 0;
3603 			int err;
3604 
3605 			if (value) {
3606 				*value++ = '\0';
3607 				len = strlen(value);
3608 			}
3609 			err = vfs_parse_fs_string(fc, this_char, value, len);
3610 			if (err < 0)
3611 				return err;
3612 		}
3613 	}
3614 	return 0;
3615 }
3616 
3617 /*
3618  * Reconfigure a shmem filesystem.
3619  *
3620  * Note that we disallow change from limited->unlimited blocks/inodes while any
3621  * are in use; but we must separately disallow unlimited->limited, because in
3622  * that case we have no record of how much is already in use.
3623  */
3624 static int shmem_reconfigure(struct fs_context *fc)
3625 {
3626 	struct shmem_options *ctx = fc->fs_private;
3627 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3628 	unsigned long inodes;
3629 	struct mempolicy *mpol = NULL;
3630 	const char *err;
3631 
3632 	raw_spin_lock(&sbinfo->stat_lock);
3633 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3634 
3635 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3636 		if (!sbinfo->max_blocks) {
3637 			err = "Cannot retroactively limit size";
3638 			goto out;
3639 		}
3640 		if (percpu_counter_compare(&sbinfo->used_blocks,
3641 					   ctx->blocks) > 0) {
3642 			err = "Too small a size for current use";
3643 			goto out;
3644 		}
3645 	}
3646 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3647 		if (!sbinfo->max_inodes) {
3648 			err = "Cannot retroactively limit inodes";
3649 			goto out;
3650 		}
3651 		if (ctx->inodes < inodes) {
3652 			err = "Too few inodes for current use";
3653 			goto out;
3654 		}
3655 	}
3656 
3657 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3658 	    sbinfo->next_ino > UINT_MAX) {
3659 		err = "Current inum too high to switch to 32-bit inums";
3660 		goto out;
3661 	}
3662 
3663 	if (ctx->seen & SHMEM_SEEN_HUGE)
3664 		sbinfo->huge = ctx->huge;
3665 	if (ctx->seen & SHMEM_SEEN_INUMS)
3666 		sbinfo->full_inums = ctx->full_inums;
3667 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3668 		sbinfo->max_blocks  = ctx->blocks;
3669 	if (ctx->seen & SHMEM_SEEN_INODES) {
3670 		sbinfo->max_inodes  = ctx->inodes;
3671 		sbinfo->free_inodes = ctx->inodes - inodes;
3672 	}
3673 
3674 	/*
3675 	 * Preserve previous mempolicy unless mpol remount option was specified.
3676 	 */
3677 	if (ctx->mpol) {
3678 		mpol = sbinfo->mpol;
3679 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3680 		ctx->mpol = NULL;
3681 	}
3682 	raw_spin_unlock(&sbinfo->stat_lock);
3683 	mpol_put(mpol);
3684 	return 0;
3685 out:
3686 	raw_spin_unlock(&sbinfo->stat_lock);
3687 	return invalfc(fc, "%s", err);
3688 }
3689 
3690 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3691 {
3692 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3693 
3694 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3695 		seq_printf(seq, ",size=%luk",
3696 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3697 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3698 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3699 	if (sbinfo->mode != (0777 | S_ISVTX))
3700 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3701 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3702 		seq_printf(seq, ",uid=%u",
3703 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3704 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3705 		seq_printf(seq, ",gid=%u",
3706 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3707 
3708 	/*
3709 	 * Showing inode{64,32} might be useful even if it's the system default,
3710 	 * since then people don't have to resort to checking both here and
3711 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3712 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3713 	 *
3714 	 * We hide it when inode64 isn't the default and we are using 32-bit
3715 	 * inodes, since that probably just means the feature isn't even under
3716 	 * consideration.
3717 	 *
3718 	 * As such:
3719 	 *
3720 	 *                     +-----------------+-----------------+
3721 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3722 	 *  +------------------+-----------------+-----------------+
3723 	 *  | full_inums=true  | show            | show            |
3724 	 *  | full_inums=false | show            | hide            |
3725 	 *  +------------------+-----------------+-----------------+
3726 	 *
3727 	 */
3728 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3729 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3731 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3732 	if (sbinfo->huge)
3733 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3734 #endif
3735 	shmem_show_mpol(seq, sbinfo->mpol);
3736 	return 0;
3737 }
3738 
3739 #endif /* CONFIG_TMPFS */
3740 
3741 static void shmem_put_super(struct super_block *sb)
3742 {
3743 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3744 
3745 	free_percpu(sbinfo->ino_batch);
3746 	percpu_counter_destroy(&sbinfo->used_blocks);
3747 	mpol_put(sbinfo->mpol);
3748 	kfree(sbinfo);
3749 	sb->s_fs_info = NULL;
3750 }
3751 
3752 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3753 {
3754 	struct shmem_options *ctx = fc->fs_private;
3755 	struct inode *inode;
3756 	struct shmem_sb_info *sbinfo;
3757 
3758 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3759 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3760 				L1_CACHE_BYTES), GFP_KERNEL);
3761 	if (!sbinfo)
3762 		return -ENOMEM;
3763 
3764 	sb->s_fs_info = sbinfo;
3765 
3766 #ifdef CONFIG_TMPFS
3767 	/*
3768 	 * Per default we only allow half of the physical ram per
3769 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3770 	 * but the internal instance is left unlimited.
3771 	 */
3772 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3773 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3774 			ctx->blocks = shmem_default_max_blocks();
3775 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3776 			ctx->inodes = shmem_default_max_inodes();
3777 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3778 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3779 	} else {
3780 		sb->s_flags |= SB_NOUSER;
3781 	}
3782 	sb->s_export_op = &shmem_export_ops;
3783 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
3784 #else
3785 	sb->s_flags |= SB_NOUSER;
3786 #endif
3787 	sbinfo->max_blocks = ctx->blocks;
3788 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3789 	if (sb->s_flags & SB_KERNMOUNT) {
3790 		sbinfo->ino_batch = alloc_percpu(ino_t);
3791 		if (!sbinfo->ino_batch)
3792 			goto failed;
3793 	}
3794 	sbinfo->uid = ctx->uid;
3795 	sbinfo->gid = ctx->gid;
3796 	sbinfo->full_inums = ctx->full_inums;
3797 	sbinfo->mode = ctx->mode;
3798 	sbinfo->huge = ctx->huge;
3799 	sbinfo->mpol = ctx->mpol;
3800 	ctx->mpol = NULL;
3801 
3802 	raw_spin_lock_init(&sbinfo->stat_lock);
3803 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3804 		goto failed;
3805 	spin_lock_init(&sbinfo->shrinklist_lock);
3806 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3807 
3808 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3809 	sb->s_blocksize = PAGE_SIZE;
3810 	sb->s_blocksize_bits = PAGE_SHIFT;
3811 	sb->s_magic = TMPFS_MAGIC;
3812 	sb->s_op = &shmem_ops;
3813 	sb->s_time_gran = 1;
3814 #ifdef CONFIG_TMPFS_XATTR
3815 	sb->s_xattr = shmem_xattr_handlers;
3816 #endif
3817 #ifdef CONFIG_TMPFS_POSIX_ACL
3818 	sb->s_flags |= SB_POSIXACL;
3819 #endif
3820 	uuid_gen(&sb->s_uuid);
3821 
3822 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3823 	if (!inode)
3824 		goto failed;
3825 	inode->i_uid = sbinfo->uid;
3826 	inode->i_gid = sbinfo->gid;
3827 	sb->s_root = d_make_root(inode);
3828 	if (!sb->s_root)
3829 		goto failed;
3830 	return 0;
3831 
3832 failed:
3833 	shmem_put_super(sb);
3834 	return -ENOMEM;
3835 }
3836 
3837 static int shmem_get_tree(struct fs_context *fc)
3838 {
3839 	return get_tree_nodev(fc, shmem_fill_super);
3840 }
3841 
3842 static void shmem_free_fc(struct fs_context *fc)
3843 {
3844 	struct shmem_options *ctx = fc->fs_private;
3845 
3846 	if (ctx) {
3847 		mpol_put(ctx->mpol);
3848 		kfree(ctx);
3849 	}
3850 }
3851 
3852 static const struct fs_context_operations shmem_fs_context_ops = {
3853 	.free			= shmem_free_fc,
3854 	.get_tree		= shmem_get_tree,
3855 #ifdef CONFIG_TMPFS
3856 	.parse_monolithic	= shmem_parse_options,
3857 	.parse_param		= shmem_parse_one,
3858 	.reconfigure		= shmem_reconfigure,
3859 #endif
3860 };
3861 
3862 static struct kmem_cache *shmem_inode_cachep;
3863 
3864 static struct inode *shmem_alloc_inode(struct super_block *sb)
3865 {
3866 	struct shmem_inode_info *info;
3867 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3868 	if (!info)
3869 		return NULL;
3870 	return &info->vfs_inode;
3871 }
3872 
3873 static void shmem_free_in_core_inode(struct inode *inode)
3874 {
3875 	if (S_ISLNK(inode->i_mode))
3876 		kfree(inode->i_link);
3877 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3878 }
3879 
3880 static void shmem_destroy_inode(struct inode *inode)
3881 {
3882 	if (S_ISREG(inode->i_mode))
3883 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3884 }
3885 
3886 static void shmem_init_inode(void *foo)
3887 {
3888 	struct shmem_inode_info *info = foo;
3889 	inode_init_once(&info->vfs_inode);
3890 }
3891 
3892 static void shmem_init_inodecache(void)
3893 {
3894 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3895 				sizeof(struct shmem_inode_info),
3896 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3897 }
3898 
3899 static void shmem_destroy_inodecache(void)
3900 {
3901 	kmem_cache_destroy(shmem_inode_cachep);
3902 }
3903 
3904 /* Keep the page in page cache instead of truncating it */
3905 static int shmem_error_remove_page(struct address_space *mapping,
3906 				   struct page *page)
3907 {
3908 	return 0;
3909 }
3910 
3911 const struct address_space_operations shmem_aops = {
3912 	.writepage	= shmem_writepage,
3913 	.dirty_folio	= noop_dirty_folio,
3914 #ifdef CONFIG_TMPFS
3915 	.write_begin	= shmem_write_begin,
3916 	.write_end	= shmem_write_end,
3917 #endif
3918 #ifdef CONFIG_MIGRATION
3919 	.migrate_folio	= migrate_folio,
3920 #endif
3921 	.error_remove_page = shmem_error_remove_page,
3922 };
3923 EXPORT_SYMBOL(shmem_aops);
3924 
3925 static const struct file_operations shmem_file_operations = {
3926 	.mmap		= shmem_mmap,
3927 	.open		= generic_file_open,
3928 	.get_unmapped_area = shmem_get_unmapped_area,
3929 #ifdef CONFIG_TMPFS
3930 	.llseek		= shmem_file_llseek,
3931 	.read_iter	= shmem_file_read_iter,
3932 	.write_iter	= generic_file_write_iter,
3933 	.fsync		= noop_fsync,
3934 	.splice_read	= generic_file_splice_read,
3935 	.splice_write	= iter_file_splice_write,
3936 	.fallocate	= shmem_fallocate,
3937 #endif
3938 };
3939 
3940 static const struct inode_operations shmem_inode_operations = {
3941 	.getattr	= shmem_getattr,
3942 	.setattr	= shmem_setattr,
3943 #ifdef CONFIG_TMPFS_XATTR
3944 	.listxattr	= shmem_listxattr,
3945 	.set_acl	= simple_set_acl,
3946 	.fileattr_get	= shmem_fileattr_get,
3947 	.fileattr_set	= shmem_fileattr_set,
3948 #endif
3949 };
3950 
3951 static const struct inode_operations shmem_dir_inode_operations = {
3952 #ifdef CONFIG_TMPFS
3953 	.getattr	= shmem_getattr,
3954 	.create		= shmem_create,
3955 	.lookup		= simple_lookup,
3956 	.link		= shmem_link,
3957 	.unlink		= shmem_unlink,
3958 	.symlink	= shmem_symlink,
3959 	.mkdir		= shmem_mkdir,
3960 	.rmdir		= shmem_rmdir,
3961 	.mknod		= shmem_mknod,
3962 	.rename		= shmem_rename2,
3963 	.tmpfile	= shmem_tmpfile,
3964 #endif
3965 #ifdef CONFIG_TMPFS_XATTR
3966 	.listxattr	= shmem_listxattr,
3967 	.fileattr_get	= shmem_fileattr_get,
3968 	.fileattr_set	= shmem_fileattr_set,
3969 #endif
3970 #ifdef CONFIG_TMPFS_POSIX_ACL
3971 	.setattr	= shmem_setattr,
3972 	.set_acl	= simple_set_acl,
3973 #endif
3974 };
3975 
3976 static const struct inode_operations shmem_special_inode_operations = {
3977 	.getattr	= shmem_getattr,
3978 #ifdef CONFIG_TMPFS_XATTR
3979 	.listxattr	= shmem_listxattr,
3980 #endif
3981 #ifdef CONFIG_TMPFS_POSIX_ACL
3982 	.setattr	= shmem_setattr,
3983 	.set_acl	= simple_set_acl,
3984 #endif
3985 };
3986 
3987 static const struct super_operations shmem_ops = {
3988 	.alloc_inode	= shmem_alloc_inode,
3989 	.free_inode	= shmem_free_in_core_inode,
3990 	.destroy_inode	= shmem_destroy_inode,
3991 #ifdef CONFIG_TMPFS
3992 	.statfs		= shmem_statfs,
3993 	.show_options	= shmem_show_options,
3994 #endif
3995 	.evict_inode	= shmem_evict_inode,
3996 	.drop_inode	= generic_delete_inode,
3997 	.put_super	= shmem_put_super,
3998 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3999 	.nr_cached_objects	= shmem_unused_huge_count,
4000 	.free_cached_objects	= shmem_unused_huge_scan,
4001 #endif
4002 };
4003 
4004 static const struct vm_operations_struct shmem_vm_ops = {
4005 	.fault		= shmem_fault,
4006 	.map_pages	= filemap_map_pages,
4007 #ifdef CONFIG_NUMA
4008 	.set_policy     = shmem_set_policy,
4009 	.get_policy     = shmem_get_policy,
4010 #endif
4011 };
4012 
4013 static const struct vm_operations_struct shmem_anon_vm_ops = {
4014 	.fault		= shmem_fault,
4015 	.map_pages	= filemap_map_pages,
4016 #ifdef CONFIG_NUMA
4017 	.set_policy     = shmem_set_policy,
4018 	.get_policy     = shmem_get_policy,
4019 #endif
4020 };
4021 
4022 int shmem_init_fs_context(struct fs_context *fc)
4023 {
4024 	struct shmem_options *ctx;
4025 
4026 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4027 	if (!ctx)
4028 		return -ENOMEM;
4029 
4030 	ctx->mode = 0777 | S_ISVTX;
4031 	ctx->uid = current_fsuid();
4032 	ctx->gid = current_fsgid();
4033 
4034 	fc->fs_private = ctx;
4035 	fc->ops = &shmem_fs_context_ops;
4036 	return 0;
4037 }
4038 
4039 static struct file_system_type shmem_fs_type = {
4040 	.owner		= THIS_MODULE,
4041 	.name		= "tmpfs",
4042 	.init_fs_context = shmem_init_fs_context,
4043 #ifdef CONFIG_TMPFS
4044 	.parameters	= shmem_fs_parameters,
4045 #endif
4046 	.kill_sb	= kill_litter_super,
4047 	.fs_flags	= FS_USERNS_MOUNT,
4048 };
4049 
4050 void __init shmem_init(void)
4051 {
4052 	int error;
4053 
4054 	shmem_init_inodecache();
4055 
4056 	error = register_filesystem(&shmem_fs_type);
4057 	if (error) {
4058 		pr_err("Could not register tmpfs\n");
4059 		goto out2;
4060 	}
4061 
4062 	shm_mnt = kern_mount(&shmem_fs_type);
4063 	if (IS_ERR(shm_mnt)) {
4064 		error = PTR_ERR(shm_mnt);
4065 		pr_err("Could not kern_mount tmpfs\n");
4066 		goto out1;
4067 	}
4068 
4069 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4070 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4071 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4072 	else
4073 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4074 #endif
4075 	return;
4076 
4077 out1:
4078 	unregister_filesystem(&shmem_fs_type);
4079 out2:
4080 	shmem_destroy_inodecache();
4081 	shm_mnt = ERR_PTR(error);
4082 }
4083 
4084 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4085 static ssize_t shmem_enabled_show(struct kobject *kobj,
4086 				  struct kobj_attribute *attr, char *buf)
4087 {
4088 	static const int values[] = {
4089 		SHMEM_HUGE_ALWAYS,
4090 		SHMEM_HUGE_WITHIN_SIZE,
4091 		SHMEM_HUGE_ADVISE,
4092 		SHMEM_HUGE_NEVER,
4093 		SHMEM_HUGE_DENY,
4094 		SHMEM_HUGE_FORCE,
4095 	};
4096 	int len = 0;
4097 	int i;
4098 
4099 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4100 		len += sysfs_emit_at(buf, len,
4101 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4102 				     i ? " " : "",
4103 				     shmem_format_huge(values[i]));
4104 	}
4105 
4106 	len += sysfs_emit_at(buf, len, "\n");
4107 
4108 	return len;
4109 }
4110 
4111 static ssize_t shmem_enabled_store(struct kobject *kobj,
4112 		struct kobj_attribute *attr, const char *buf, size_t count)
4113 {
4114 	char tmp[16];
4115 	int huge;
4116 
4117 	if (count + 1 > sizeof(tmp))
4118 		return -EINVAL;
4119 	memcpy(tmp, buf, count);
4120 	tmp[count] = '\0';
4121 	if (count && tmp[count - 1] == '\n')
4122 		tmp[count - 1] = '\0';
4123 
4124 	huge = shmem_parse_huge(tmp);
4125 	if (huge == -EINVAL)
4126 		return -EINVAL;
4127 	if (!has_transparent_hugepage() &&
4128 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4129 		return -EINVAL;
4130 
4131 	shmem_huge = huge;
4132 	if (shmem_huge > SHMEM_HUGE_DENY)
4133 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4134 	return count;
4135 }
4136 
4137 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4138 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4139 
4140 #else /* !CONFIG_SHMEM */
4141 
4142 /*
4143  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4144  *
4145  * This is intended for small system where the benefits of the full
4146  * shmem code (swap-backed and resource-limited) are outweighed by
4147  * their complexity. On systems without swap this code should be
4148  * effectively equivalent, but much lighter weight.
4149  */
4150 
4151 static struct file_system_type shmem_fs_type = {
4152 	.name		= "tmpfs",
4153 	.init_fs_context = ramfs_init_fs_context,
4154 	.parameters	= ramfs_fs_parameters,
4155 	.kill_sb	= kill_litter_super,
4156 	.fs_flags	= FS_USERNS_MOUNT,
4157 };
4158 
4159 void __init shmem_init(void)
4160 {
4161 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4162 
4163 	shm_mnt = kern_mount(&shmem_fs_type);
4164 	BUG_ON(IS_ERR(shm_mnt));
4165 }
4166 
4167 int shmem_unuse(unsigned int type)
4168 {
4169 	return 0;
4170 }
4171 
4172 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4173 {
4174 	return 0;
4175 }
4176 
4177 void shmem_unlock_mapping(struct address_space *mapping)
4178 {
4179 }
4180 
4181 #ifdef CONFIG_MMU
4182 unsigned long shmem_get_unmapped_area(struct file *file,
4183 				      unsigned long addr, unsigned long len,
4184 				      unsigned long pgoff, unsigned long flags)
4185 {
4186 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4187 }
4188 #endif
4189 
4190 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4191 {
4192 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4193 }
4194 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4195 
4196 #define shmem_vm_ops				generic_file_vm_ops
4197 #define shmem_anon_vm_ops			generic_file_vm_ops
4198 #define shmem_file_operations			ramfs_file_operations
4199 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4200 #define shmem_acct_size(flags, size)		0
4201 #define shmem_unacct_size(flags, size)		do {} while (0)
4202 
4203 #endif /* CONFIG_SHMEM */
4204 
4205 /* common code */
4206 
4207 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4208 				       unsigned long flags, unsigned int i_flags)
4209 {
4210 	struct inode *inode;
4211 	struct file *res;
4212 
4213 	if (IS_ERR(mnt))
4214 		return ERR_CAST(mnt);
4215 
4216 	if (size < 0 || size > MAX_LFS_FILESIZE)
4217 		return ERR_PTR(-EINVAL);
4218 
4219 	if (shmem_acct_size(flags, size))
4220 		return ERR_PTR(-ENOMEM);
4221 
4222 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4223 				flags);
4224 	if (unlikely(!inode)) {
4225 		shmem_unacct_size(flags, size);
4226 		return ERR_PTR(-ENOSPC);
4227 	}
4228 	inode->i_flags |= i_flags;
4229 	inode->i_size = size;
4230 	clear_nlink(inode);	/* It is unlinked */
4231 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4232 	if (!IS_ERR(res))
4233 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4234 				&shmem_file_operations);
4235 	if (IS_ERR(res))
4236 		iput(inode);
4237 	return res;
4238 }
4239 
4240 /**
4241  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4242  * 	kernel internal.  There will be NO LSM permission checks against the
4243  * 	underlying inode.  So users of this interface must do LSM checks at a
4244  *	higher layer.  The users are the big_key and shm implementations.  LSM
4245  *	checks are provided at the key or shm level rather than the inode.
4246  * @name: name for dentry (to be seen in /proc/<pid>/maps
4247  * @size: size to be set for the file
4248  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4249  */
4250 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4251 {
4252 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4253 }
4254 
4255 /**
4256  * shmem_file_setup - get an unlinked file living in tmpfs
4257  * @name: name for dentry (to be seen in /proc/<pid>/maps
4258  * @size: size to be set for the file
4259  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4260  */
4261 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4262 {
4263 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4264 }
4265 EXPORT_SYMBOL_GPL(shmem_file_setup);
4266 
4267 /**
4268  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4269  * @mnt: the tmpfs mount where the file will be created
4270  * @name: name for dentry (to be seen in /proc/<pid>/maps
4271  * @size: size to be set for the file
4272  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4273  */
4274 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4275 				       loff_t size, unsigned long flags)
4276 {
4277 	return __shmem_file_setup(mnt, name, size, flags, 0);
4278 }
4279 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4280 
4281 /**
4282  * shmem_zero_setup - setup a shared anonymous mapping
4283  * @vma: the vma to be mmapped is prepared by do_mmap
4284  */
4285 int shmem_zero_setup(struct vm_area_struct *vma)
4286 {
4287 	struct file *file;
4288 	loff_t size = vma->vm_end - vma->vm_start;
4289 
4290 	/*
4291 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4292 	 * between XFS directory reading and selinux: since this file is only
4293 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4294 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4295 	 */
4296 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4297 	if (IS_ERR(file))
4298 		return PTR_ERR(file);
4299 
4300 	if (vma->vm_file)
4301 		fput(vma->vm_file);
4302 	vma->vm_file = file;
4303 	vma->vm_ops = &shmem_anon_vm_ops;
4304 
4305 	return 0;
4306 }
4307 
4308 /**
4309  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4310  * @mapping:	the page's address_space
4311  * @index:	the page index
4312  * @gfp:	the page allocator flags to use if allocating
4313  *
4314  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4315  * with any new page allocations done using the specified allocation flags.
4316  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4317  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4318  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4319  *
4320  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4321  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4322  */
4323 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4324 					 pgoff_t index, gfp_t gfp)
4325 {
4326 #ifdef CONFIG_SHMEM
4327 	struct inode *inode = mapping->host;
4328 	struct folio *folio;
4329 	struct page *page;
4330 	int error;
4331 
4332 	BUG_ON(!shmem_mapping(mapping));
4333 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4334 				  gfp, NULL, NULL, NULL);
4335 	if (error)
4336 		return ERR_PTR(error);
4337 
4338 	folio_unlock(folio);
4339 	page = folio_file_page(folio, index);
4340 	if (PageHWPoison(page)) {
4341 		folio_put(folio);
4342 		return ERR_PTR(-EIO);
4343 	}
4344 
4345 	return page;
4346 #else
4347 	/*
4348 	 * The tiny !SHMEM case uses ramfs without swap
4349 	 */
4350 	return read_cache_page_gfp(mapping, index, gfp);
4351 #endif
4352 }
4353 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4354