1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/export.h> 33 #include <linux/swap.h> 34 #include <linux/uio.h> 35 36 static struct vfsmount *shm_mnt; 37 38 #ifdef CONFIG_SHMEM 39 /* 40 * This virtual memory filesystem is heavily based on the ramfs. It 41 * extends ramfs by the ability to use swap and honor resource limits 42 * which makes it a completely usable filesystem. 43 */ 44 45 #include <linux/xattr.h> 46 #include <linux/exportfs.h> 47 #include <linux/posix_acl.h> 48 #include <linux/posix_acl_xattr.h> 49 #include <linux/mman.h> 50 #include <linux/string.h> 51 #include <linux/slab.h> 52 #include <linux/backing-dev.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/writeback.h> 55 #include <linux/blkdev.h> 56 #include <linux/pagevec.h> 57 #include <linux/percpu_counter.h> 58 #include <linux/falloc.h> 59 #include <linux/splice.h> 60 #include <linux/security.h> 61 #include <linux/swapops.h> 62 #include <linux/mempolicy.h> 63 #include <linux/namei.h> 64 #include <linux/ctype.h> 65 #include <linux/migrate.h> 66 #include <linux/highmem.h> 67 #include <linux/seq_file.h> 68 #include <linux/magic.h> 69 #include <linux/syscalls.h> 70 #include <linux/fcntl.h> 71 #include <uapi/linux/memfd.h> 72 73 #include <asm/uaccess.h> 74 #include <asm/pgtable.h> 75 76 #include "internal.h" 77 78 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 79 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 80 81 /* Pretend that each entry is of this size in directory's i_size */ 82 #define BOGO_DIRENT_SIZE 20 83 84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 85 #define SHORT_SYMLINK_LEN 128 86 87 /* 88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 89 * inode->i_private (with i_mutex making sure that it has only one user at 90 * a time): we would prefer not to enlarge the shmem inode just for that. 91 */ 92 struct shmem_falloc { 93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 94 pgoff_t start; /* start of range currently being fallocated */ 95 pgoff_t next; /* the next page offset to be fallocated */ 96 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 98 }; 99 100 /* Flag allocation requirements to shmem_getpage */ 101 enum sgp_type { 102 SGP_READ, /* don't exceed i_size, don't allocate page */ 103 SGP_CACHE, /* don't exceed i_size, may allocate page */ 104 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 105 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */ 106 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */ 107 }; 108 109 #ifdef CONFIG_TMPFS 110 static unsigned long shmem_default_max_blocks(void) 111 { 112 return totalram_pages / 2; 113 } 114 115 static unsigned long shmem_default_max_inodes(void) 116 { 117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 118 } 119 #endif 120 121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 122 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 123 struct shmem_inode_info *info, pgoff_t index); 124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 125 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type); 126 127 static inline int shmem_getpage(struct inode *inode, pgoff_t index, 128 struct page **pagep, enum sgp_type sgp, int *fault_type) 129 { 130 return shmem_getpage_gfp(inode, index, pagep, sgp, 131 mapping_gfp_mask(inode->i_mapping), fault_type); 132 } 133 134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 135 { 136 return sb->s_fs_info; 137 } 138 139 /* 140 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 141 * for shared memory and for shared anonymous (/dev/zero) mappings 142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 143 * consistent with the pre-accounting of private mappings ... 144 */ 145 static inline int shmem_acct_size(unsigned long flags, loff_t size) 146 { 147 return (flags & VM_NORESERVE) ? 148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 149 } 150 151 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 152 { 153 if (!(flags & VM_NORESERVE)) 154 vm_unacct_memory(VM_ACCT(size)); 155 } 156 157 static inline int shmem_reacct_size(unsigned long flags, 158 loff_t oldsize, loff_t newsize) 159 { 160 if (!(flags & VM_NORESERVE)) { 161 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 162 return security_vm_enough_memory_mm(current->mm, 163 VM_ACCT(newsize) - VM_ACCT(oldsize)); 164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 166 } 167 return 0; 168 } 169 170 /* 171 * ... whereas tmpfs objects are accounted incrementally as 172 * pages are allocated, in order to allow huge sparse files. 173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 175 */ 176 static inline int shmem_acct_block(unsigned long flags) 177 { 178 return (flags & VM_NORESERVE) ? 179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0; 180 } 181 182 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 183 { 184 if (flags & VM_NORESERVE) 185 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 186 } 187 188 static const struct super_operations shmem_ops; 189 static const struct address_space_operations shmem_aops; 190 static const struct file_operations shmem_file_operations; 191 static const struct inode_operations shmem_inode_operations; 192 static const struct inode_operations shmem_dir_inode_operations; 193 static const struct inode_operations shmem_special_inode_operations; 194 static const struct vm_operations_struct shmem_vm_ops; 195 196 static LIST_HEAD(shmem_swaplist); 197 static DEFINE_MUTEX(shmem_swaplist_mutex); 198 199 static int shmem_reserve_inode(struct super_block *sb) 200 { 201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 202 if (sbinfo->max_inodes) { 203 spin_lock(&sbinfo->stat_lock); 204 if (!sbinfo->free_inodes) { 205 spin_unlock(&sbinfo->stat_lock); 206 return -ENOSPC; 207 } 208 sbinfo->free_inodes--; 209 spin_unlock(&sbinfo->stat_lock); 210 } 211 return 0; 212 } 213 214 static void shmem_free_inode(struct super_block *sb) 215 { 216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 217 if (sbinfo->max_inodes) { 218 spin_lock(&sbinfo->stat_lock); 219 sbinfo->free_inodes++; 220 spin_unlock(&sbinfo->stat_lock); 221 } 222 } 223 224 /** 225 * shmem_recalc_inode - recalculate the block usage of an inode 226 * @inode: inode to recalc 227 * 228 * We have to calculate the free blocks since the mm can drop 229 * undirtied hole pages behind our back. 230 * 231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 233 * 234 * It has to be called with the spinlock held. 235 */ 236 static void shmem_recalc_inode(struct inode *inode) 237 { 238 struct shmem_inode_info *info = SHMEM_I(inode); 239 long freed; 240 241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 242 if (freed > 0) { 243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 244 if (sbinfo->max_blocks) 245 percpu_counter_add(&sbinfo->used_blocks, -freed); 246 info->alloced -= freed; 247 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 248 shmem_unacct_blocks(info->flags, freed); 249 } 250 } 251 252 /* 253 * Replace item expected in radix tree by a new item, while holding tree lock. 254 */ 255 static int shmem_radix_tree_replace(struct address_space *mapping, 256 pgoff_t index, void *expected, void *replacement) 257 { 258 void **pslot; 259 void *item; 260 261 VM_BUG_ON(!expected); 262 VM_BUG_ON(!replacement); 263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 264 if (!pslot) 265 return -ENOENT; 266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock); 267 if (item != expected) 268 return -ENOENT; 269 radix_tree_replace_slot(pslot, replacement); 270 return 0; 271 } 272 273 /* 274 * Sometimes, before we decide whether to proceed or to fail, we must check 275 * that an entry was not already brought back from swap by a racing thread. 276 * 277 * Checking page is not enough: by the time a SwapCache page is locked, it 278 * might be reused, and again be SwapCache, using the same swap as before. 279 */ 280 static bool shmem_confirm_swap(struct address_space *mapping, 281 pgoff_t index, swp_entry_t swap) 282 { 283 void *item; 284 285 rcu_read_lock(); 286 item = radix_tree_lookup(&mapping->page_tree, index); 287 rcu_read_unlock(); 288 return item == swp_to_radix_entry(swap); 289 } 290 291 /* 292 * Like add_to_page_cache_locked, but error if expected item has gone. 293 */ 294 static int shmem_add_to_page_cache(struct page *page, 295 struct address_space *mapping, 296 pgoff_t index, void *expected) 297 { 298 int error; 299 300 VM_BUG_ON_PAGE(!PageLocked(page), page); 301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 302 303 page_cache_get(page); 304 page->mapping = mapping; 305 page->index = index; 306 307 spin_lock_irq(&mapping->tree_lock); 308 if (!expected) 309 error = radix_tree_insert(&mapping->page_tree, index, page); 310 else 311 error = shmem_radix_tree_replace(mapping, index, expected, 312 page); 313 if (!error) { 314 mapping->nrpages++; 315 __inc_zone_page_state(page, NR_FILE_PAGES); 316 __inc_zone_page_state(page, NR_SHMEM); 317 spin_unlock_irq(&mapping->tree_lock); 318 } else { 319 page->mapping = NULL; 320 spin_unlock_irq(&mapping->tree_lock); 321 page_cache_release(page); 322 } 323 return error; 324 } 325 326 /* 327 * Like delete_from_page_cache, but substitutes swap for page. 328 */ 329 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 330 { 331 struct address_space *mapping = page->mapping; 332 int error; 333 334 spin_lock_irq(&mapping->tree_lock); 335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 336 page->mapping = NULL; 337 mapping->nrpages--; 338 __dec_zone_page_state(page, NR_FILE_PAGES); 339 __dec_zone_page_state(page, NR_SHMEM); 340 spin_unlock_irq(&mapping->tree_lock); 341 page_cache_release(page); 342 BUG_ON(error); 343 } 344 345 /* 346 * Remove swap entry from radix tree, free the swap and its page cache. 347 */ 348 static int shmem_free_swap(struct address_space *mapping, 349 pgoff_t index, void *radswap) 350 { 351 void *old; 352 353 spin_lock_irq(&mapping->tree_lock); 354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 355 spin_unlock_irq(&mapping->tree_lock); 356 if (old != radswap) 357 return -ENOENT; 358 free_swap_and_cache(radix_to_swp_entry(radswap)); 359 return 0; 360 } 361 362 /* 363 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 364 */ 365 void shmem_unlock_mapping(struct address_space *mapping) 366 { 367 struct pagevec pvec; 368 pgoff_t indices[PAGEVEC_SIZE]; 369 pgoff_t index = 0; 370 371 pagevec_init(&pvec, 0); 372 /* 373 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 374 */ 375 while (!mapping_unevictable(mapping)) { 376 /* 377 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 378 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 379 */ 380 pvec.nr = find_get_entries(mapping, index, 381 PAGEVEC_SIZE, pvec.pages, indices); 382 if (!pvec.nr) 383 break; 384 index = indices[pvec.nr - 1] + 1; 385 pagevec_remove_exceptionals(&pvec); 386 check_move_unevictable_pages(pvec.pages, pvec.nr); 387 pagevec_release(&pvec); 388 cond_resched(); 389 } 390 } 391 392 /* 393 * Remove range of pages and swap entries from radix tree, and free them. 394 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 395 */ 396 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 397 bool unfalloc) 398 { 399 struct address_space *mapping = inode->i_mapping; 400 struct shmem_inode_info *info = SHMEM_I(inode); 401 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 402 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT; 403 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1); 404 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 405 struct pagevec pvec; 406 pgoff_t indices[PAGEVEC_SIZE]; 407 long nr_swaps_freed = 0; 408 pgoff_t index; 409 int i; 410 411 if (lend == -1) 412 end = -1; /* unsigned, so actually very big */ 413 414 pagevec_init(&pvec, 0); 415 index = start; 416 while (index < end) { 417 pvec.nr = find_get_entries(mapping, index, 418 min(end - index, (pgoff_t)PAGEVEC_SIZE), 419 pvec.pages, indices); 420 if (!pvec.nr) 421 break; 422 for (i = 0; i < pagevec_count(&pvec); i++) { 423 struct page *page = pvec.pages[i]; 424 425 index = indices[i]; 426 if (index >= end) 427 break; 428 429 if (radix_tree_exceptional_entry(page)) { 430 if (unfalloc) 431 continue; 432 nr_swaps_freed += !shmem_free_swap(mapping, 433 index, page); 434 continue; 435 } 436 437 if (!trylock_page(page)) 438 continue; 439 if (!unfalloc || !PageUptodate(page)) { 440 if (page->mapping == mapping) { 441 VM_BUG_ON_PAGE(PageWriteback(page), page); 442 truncate_inode_page(mapping, page); 443 } 444 } 445 unlock_page(page); 446 } 447 pagevec_remove_exceptionals(&pvec); 448 pagevec_release(&pvec); 449 cond_resched(); 450 index++; 451 } 452 453 if (partial_start) { 454 struct page *page = NULL; 455 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL); 456 if (page) { 457 unsigned int top = PAGE_CACHE_SIZE; 458 if (start > end) { 459 top = partial_end; 460 partial_end = 0; 461 } 462 zero_user_segment(page, partial_start, top); 463 set_page_dirty(page); 464 unlock_page(page); 465 page_cache_release(page); 466 } 467 } 468 if (partial_end) { 469 struct page *page = NULL; 470 shmem_getpage(inode, end, &page, SGP_READ, NULL); 471 if (page) { 472 zero_user_segment(page, 0, partial_end); 473 set_page_dirty(page); 474 unlock_page(page); 475 page_cache_release(page); 476 } 477 } 478 if (start >= end) 479 return; 480 481 index = start; 482 while (index < end) { 483 cond_resched(); 484 485 pvec.nr = find_get_entries(mapping, index, 486 min(end - index, (pgoff_t)PAGEVEC_SIZE), 487 pvec.pages, indices); 488 if (!pvec.nr) { 489 /* If all gone or hole-punch or unfalloc, we're done */ 490 if (index == start || end != -1) 491 break; 492 /* But if truncating, restart to make sure all gone */ 493 index = start; 494 continue; 495 } 496 for (i = 0; i < pagevec_count(&pvec); i++) { 497 struct page *page = pvec.pages[i]; 498 499 index = indices[i]; 500 if (index >= end) 501 break; 502 503 if (radix_tree_exceptional_entry(page)) { 504 if (unfalloc) 505 continue; 506 if (shmem_free_swap(mapping, index, page)) { 507 /* Swap was replaced by page: retry */ 508 index--; 509 break; 510 } 511 nr_swaps_freed++; 512 continue; 513 } 514 515 lock_page(page); 516 if (!unfalloc || !PageUptodate(page)) { 517 if (page->mapping == mapping) { 518 VM_BUG_ON_PAGE(PageWriteback(page), page); 519 truncate_inode_page(mapping, page); 520 } else { 521 /* Page was replaced by swap: retry */ 522 unlock_page(page); 523 index--; 524 break; 525 } 526 } 527 unlock_page(page); 528 } 529 pagevec_remove_exceptionals(&pvec); 530 pagevec_release(&pvec); 531 index++; 532 } 533 534 spin_lock(&info->lock); 535 info->swapped -= nr_swaps_freed; 536 shmem_recalc_inode(inode); 537 spin_unlock(&info->lock); 538 } 539 540 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 541 { 542 shmem_undo_range(inode, lstart, lend, false); 543 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 544 } 545 EXPORT_SYMBOL_GPL(shmem_truncate_range); 546 547 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry, 548 struct kstat *stat) 549 { 550 struct inode *inode = dentry->d_inode; 551 struct shmem_inode_info *info = SHMEM_I(inode); 552 553 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 554 spin_lock(&info->lock); 555 shmem_recalc_inode(inode); 556 spin_unlock(&info->lock); 557 } 558 generic_fillattr(inode, stat); 559 return 0; 560 } 561 562 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 563 { 564 struct inode *inode = d_inode(dentry); 565 struct shmem_inode_info *info = SHMEM_I(inode); 566 int error; 567 568 error = inode_change_ok(inode, attr); 569 if (error) 570 return error; 571 572 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 573 loff_t oldsize = inode->i_size; 574 loff_t newsize = attr->ia_size; 575 576 /* protected by i_mutex */ 577 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 578 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 579 return -EPERM; 580 581 if (newsize != oldsize) { 582 error = shmem_reacct_size(SHMEM_I(inode)->flags, 583 oldsize, newsize); 584 if (error) 585 return error; 586 i_size_write(inode, newsize); 587 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 588 } 589 if (newsize <= oldsize) { 590 loff_t holebegin = round_up(newsize, PAGE_SIZE); 591 if (oldsize > holebegin) 592 unmap_mapping_range(inode->i_mapping, 593 holebegin, 0, 1); 594 if (info->alloced) 595 shmem_truncate_range(inode, 596 newsize, (loff_t)-1); 597 /* unmap again to remove racily COWed private pages */ 598 if (oldsize > holebegin) 599 unmap_mapping_range(inode->i_mapping, 600 holebegin, 0, 1); 601 } 602 } 603 604 setattr_copy(inode, attr); 605 if (attr->ia_valid & ATTR_MODE) 606 error = posix_acl_chmod(inode, inode->i_mode); 607 return error; 608 } 609 610 static void shmem_evict_inode(struct inode *inode) 611 { 612 struct shmem_inode_info *info = SHMEM_I(inode); 613 614 if (inode->i_mapping->a_ops == &shmem_aops) { 615 shmem_unacct_size(info->flags, inode->i_size); 616 inode->i_size = 0; 617 shmem_truncate_range(inode, 0, (loff_t)-1); 618 if (!list_empty(&info->swaplist)) { 619 mutex_lock(&shmem_swaplist_mutex); 620 list_del_init(&info->swaplist); 621 mutex_unlock(&shmem_swaplist_mutex); 622 } 623 } else 624 kfree(info->symlink); 625 626 simple_xattrs_free(&info->xattrs); 627 WARN_ON(inode->i_blocks); 628 shmem_free_inode(inode->i_sb); 629 clear_inode(inode); 630 } 631 632 /* 633 * If swap found in inode, free it and move page from swapcache to filecache. 634 */ 635 static int shmem_unuse_inode(struct shmem_inode_info *info, 636 swp_entry_t swap, struct page **pagep) 637 { 638 struct address_space *mapping = info->vfs_inode.i_mapping; 639 void *radswap; 640 pgoff_t index; 641 gfp_t gfp; 642 int error = 0; 643 644 radswap = swp_to_radix_entry(swap); 645 index = radix_tree_locate_item(&mapping->page_tree, radswap); 646 if (index == -1) 647 return -EAGAIN; /* tell shmem_unuse we found nothing */ 648 649 /* 650 * Move _head_ to start search for next from here. 651 * But be careful: shmem_evict_inode checks list_empty without taking 652 * mutex, and there's an instant in list_move_tail when info->swaplist 653 * would appear empty, if it were the only one on shmem_swaplist. 654 */ 655 if (shmem_swaplist.next != &info->swaplist) 656 list_move_tail(&shmem_swaplist, &info->swaplist); 657 658 gfp = mapping_gfp_mask(mapping); 659 if (shmem_should_replace_page(*pagep, gfp)) { 660 mutex_unlock(&shmem_swaplist_mutex); 661 error = shmem_replace_page(pagep, gfp, info, index); 662 mutex_lock(&shmem_swaplist_mutex); 663 /* 664 * We needed to drop mutex to make that restrictive page 665 * allocation, but the inode might have been freed while we 666 * dropped it: although a racing shmem_evict_inode() cannot 667 * complete without emptying the radix_tree, our page lock 668 * on this swapcache page is not enough to prevent that - 669 * free_swap_and_cache() of our swap entry will only 670 * trylock_page(), removing swap from radix_tree whatever. 671 * 672 * We must not proceed to shmem_add_to_page_cache() if the 673 * inode has been freed, but of course we cannot rely on 674 * inode or mapping or info to check that. However, we can 675 * safely check if our swap entry is still in use (and here 676 * it can't have got reused for another page): if it's still 677 * in use, then the inode cannot have been freed yet, and we 678 * can safely proceed (if it's no longer in use, that tells 679 * nothing about the inode, but we don't need to unuse swap). 680 */ 681 if (!page_swapcount(*pagep)) 682 error = -ENOENT; 683 } 684 685 /* 686 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 687 * but also to hold up shmem_evict_inode(): so inode cannot be freed 688 * beneath us (pagelock doesn't help until the page is in pagecache). 689 */ 690 if (!error) 691 error = shmem_add_to_page_cache(*pagep, mapping, index, 692 radswap); 693 if (error != -ENOMEM) { 694 /* 695 * Truncation and eviction use free_swap_and_cache(), which 696 * only does trylock page: if we raced, best clean up here. 697 */ 698 delete_from_swap_cache(*pagep); 699 set_page_dirty(*pagep); 700 if (!error) { 701 spin_lock(&info->lock); 702 info->swapped--; 703 spin_unlock(&info->lock); 704 swap_free(swap); 705 } 706 } 707 return error; 708 } 709 710 /* 711 * Search through swapped inodes to find and replace swap by page. 712 */ 713 int shmem_unuse(swp_entry_t swap, struct page *page) 714 { 715 struct list_head *this, *next; 716 struct shmem_inode_info *info; 717 struct mem_cgroup *memcg; 718 int error = 0; 719 720 /* 721 * There's a faint possibility that swap page was replaced before 722 * caller locked it: caller will come back later with the right page. 723 */ 724 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 725 goto out; 726 727 /* 728 * Charge page using GFP_KERNEL while we can wait, before taking 729 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 730 * Charged back to the user (not to caller) when swap account is used. 731 */ 732 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg); 733 if (error) 734 goto out; 735 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 736 error = -EAGAIN; 737 738 mutex_lock(&shmem_swaplist_mutex); 739 list_for_each_safe(this, next, &shmem_swaplist) { 740 info = list_entry(this, struct shmem_inode_info, swaplist); 741 if (info->swapped) 742 error = shmem_unuse_inode(info, swap, &page); 743 else 744 list_del_init(&info->swaplist); 745 cond_resched(); 746 if (error != -EAGAIN) 747 break; 748 /* found nothing in this: move on to search the next */ 749 } 750 mutex_unlock(&shmem_swaplist_mutex); 751 752 if (error) { 753 if (error != -ENOMEM) 754 error = 0; 755 mem_cgroup_cancel_charge(page, memcg); 756 } else 757 mem_cgroup_commit_charge(page, memcg, true); 758 out: 759 unlock_page(page); 760 page_cache_release(page); 761 return error; 762 } 763 764 /* 765 * Move the page from the page cache to the swap cache. 766 */ 767 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 768 { 769 struct shmem_inode_info *info; 770 struct address_space *mapping; 771 struct inode *inode; 772 swp_entry_t swap; 773 pgoff_t index; 774 775 BUG_ON(!PageLocked(page)); 776 mapping = page->mapping; 777 index = page->index; 778 inode = mapping->host; 779 info = SHMEM_I(inode); 780 if (info->flags & VM_LOCKED) 781 goto redirty; 782 if (!total_swap_pages) 783 goto redirty; 784 785 /* 786 * Our capabilities prevent regular writeback or sync from ever calling 787 * shmem_writepage; but a stacking filesystem might use ->writepage of 788 * its underlying filesystem, in which case tmpfs should write out to 789 * swap only in response to memory pressure, and not for the writeback 790 * threads or sync. 791 */ 792 if (!wbc->for_reclaim) { 793 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 794 goto redirty; 795 } 796 797 /* 798 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 799 * value into swapfile.c, the only way we can correctly account for a 800 * fallocated page arriving here is now to initialize it and write it. 801 * 802 * That's okay for a page already fallocated earlier, but if we have 803 * not yet completed the fallocation, then (a) we want to keep track 804 * of this page in case we have to undo it, and (b) it may not be a 805 * good idea to continue anyway, once we're pushing into swap. So 806 * reactivate the page, and let shmem_fallocate() quit when too many. 807 */ 808 if (!PageUptodate(page)) { 809 if (inode->i_private) { 810 struct shmem_falloc *shmem_falloc; 811 spin_lock(&inode->i_lock); 812 shmem_falloc = inode->i_private; 813 if (shmem_falloc && 814 !shmem_falloc->waitq && 815 index >= shmem_falloc->start && 816 index < shmem_falloc->next) 817 shmem_falloc->nr_unswapped++; 818 else 819 shmem_falloc = NULL; 820 spin_unlock(&inode->i_lock); 821 if (shmem_falloc) 822 goto redirty; 823 } 824 clear_highpage(page); 825 flush_dcache_page(page); 826 SetPageUptodate(page); 827 } 828 829 swap = get_swap_page(); 830 if (!swap.val) 831 goto redirty; 832 833 /* 834 * Add inode to shmem_unuse()'s list of swapped-out inodes, 835 * if it's not already there. Do it now before the page is 836 * moved to swap cache, when its pagelock no longer protects 837 * the inode from eviction. But don't unlock the mutex until 838 * we've incremented swapped, because shmem_unuse_inode() will 839 * prune a !swapped inode from the swaplist under this mutex. 840 */ 841 mutex_lock(&shmem_swaplist_mutex); 842 if (list_empty(&info->swaplist)) 843 list_add_tail(&info->swaplist, &shmem_swaplist); 844 845 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 846 swap_shmem_alloc(swap); 847 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 848 849 spin_lock(&info->lock); 850 info->swapped++; 851 shmem_recalc_inode(inode); 852 spin_unlock(&info->lock); 853 854 mutex_unlock(&shmem_swaplist_mutex); 855 BUG_ON(page_mapped(page)); 856 swap_writepage(page, wbc); 857 return 0; 858 } 859 860 mutex_unlock(&shmem_swaplist_mutex); 861 swapcache_free(swap); 862 redirty: 863 set_page_dirty(page); 864 if (wbc->for_reclaim) 865 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 866 unlock_page(page); 867 return 0; 868 } 869 870 #ifdef CONFIG_NUMA 871 #ifdef CONFIG_TMPFS 872 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 873 { 874 char buffer[64]; 875 876 if (!mpol || mpol->mode == MPOL_DEFAULT) 877 return; /* show nothing */ 878 879 mpol_to_str(buffer, sizeof(buffer), mpol); 880 881 seq_printf(seq, ",mpol=%s", buffer); 882 } 883 884 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 885 { 886 struct mempolicy *mpol = NULL; 887 if (sbinfo->mpol) { 888 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 889 mpol = sbinfo->mpol; 890 mpol_get(mpol); 891 spin_unlock(&sbinfo->stat_lock); 892 } 893 return mpol; 894 } 895 #endif /* CONFIG_TMPFS */ 896 897 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 898 struct shmem_inode_info *info, pgoff_t index) 899 { 900 struct vm_area_struct pvma; 901 struct page *page; 902 903 /* Create a pseudo vma that just contains the policy */ 904 pvma.vm_start = 0; 905 /* Bias interleave by inode number to distribute better across nodes */ 906 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 907 pvma.vm_ops = NULL; 908 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 909 910 page = swapin_readahead(swap, gfp, &pvma, 0); 911 912 /* Drop reference taken by mpol_shared_policy_lookup() */ 913 mpol_cond_put(pvma.vm_policy); 914 915 return page; 916 } 917 918 static struct page *shmem_alloc_page(gfp_t gfp, 919 struct shmem_inode_info *info, pgoff_t index) 920 { 921 struct vm_area_struct pvma; 922 struct page *page; 923 924 /* Create a pseudo vma that just contains the policy */ 925 pvma.vm_start = 0; 926 /* Bias interleave by inode number to distribute better across nodes */ 927 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 928 pvma.vm_ops = NULL; 929 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 930 931 page = alloc_page_vma(gfp, &pvma, 0); 932 933 /* Drop reference taken by mpol_shared_policy_lookup() */ 934 mpol_cond_put(pvma.vm_policy); 935 936 return page; 937 } 938 #else /* !CONFIG_NUMA */ 939 #ifdef CONFIG_TMPFS 940 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 941 { 942 } 943 #endif /* CONFIG_TMPFS */ 944 945 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 946 struct shmem_inode_info *info, pgoff_t index) 947 { 948 return swapin_readahead(swap, gfp, NULL, 0); 949 } 950 951 static inline struct page *shmem_alloc_page(gfp_t gfp, 952 struct shmem_inode_info *info, pgoff_t index) 953 { 954 return alloc_page(gfp); 955 } 956 #endif /* CONFIG_NUMA */ 957 958 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 959 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 960 { 961 return NULL; 962 } 963 #endif 964 965 /* 966 * When a page is moved from swapcache to shmem filecache (either by the 967 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 968 * shmem_unuse_inode()), it may have been read in earlier from swap, in 969 * ignorance of the mapping it belongs to. If that mapping has special 970 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 971 * we may need to copy to a suitable page before moving to filecache. 972 * 973 * In a future release, this may well be extended to respect cpuset and 974 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 975 * but for now it is a simple matter of zone. 976 */ 977 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 978 { 979 return page_zonenum(page) > gfp_zone(gfp); 980 } 981 982 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 983 struct shmem_inode_info *info, pgoff_t index) 984 { 985 struct page *oldpage, *newpage; 986 struct address_space *swap_mapping; 987 pgoff_t swap_index; 988 int error; 989 990 oldpage = *pagep; 991 swap_index = page_private(oldpage); 992 swap_mapping = page_mapping(oldpage); 993 994 /* 995 * We have arrived here because our zones are constrained, so don't 996 * limit chance of success by further cpuset and node constraints. 997 */ 998 gfp &= ~GFP_CONSTRAINT_MASK; 999 newpage = shmem_alloc_page(gfp, info, index); 1000 if (!newpage) 1001 return -ENOMEM; 1002 1003 page_cache_get(newpage); 1004 copy_highpage(newpage, oldpage); 1005 flush_dcache_page(newpage); 1006 1007 __set_page_locked(newpage); 1008 SetPageUptodate(newpage); 1009 SetPageSwapBacked(newpage); 1010 set_page_private(newpage, swap_index); 1011 SetPageSwapCache(newpage); 1012 1013 /* 1014 * Our caller will very soon move newpage out of swapcache, but it's 1015 * a nice clean interface for us to replace oldpage by newpage there. 1016 */ 1017 spin_lock_irq(&swap_mapping->tree_lock); 1018 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1019 newpage); 1020 if (!error) { 1021 __inc_zone_page_state(newpage, NR_FILE_PAGES); 1022 __dec_zone_page_state(oldpage, NR_FILE_PAGES); 1023 } 1024 spin_unlock_irq(&swap_mapping->tree_lock); 1025 1026 if (unlikely(error)) { 1027 /* 1028 * Is this possible? I think not, now that our callers check 1029 * both PageSwapCache and page_private after getting page lock; 1030 * but be defensive. Reverse old to newpage for clear and free. 1031 */ 1032 oldpage = newpage; 1033 } else { 1034 mem_cgroup_replace_page(oldpage, newpage); 1035 lru_cache_add_anon(newpage); 1036 *pagep = newpage; 1037 } 1038 1039 ClearPageSwapCache(oldpage); 1040 set_page_private(oldpage, 0); 1041 1042 unlock_page(oldpage); 1043 page_cache_release(oldpage); 1044 page_cache_release(oldpage); 1045 return error; 1046 } 1047 1048 /* 1049 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1050 * 1051 * If we allocate a new one we do not mark it dirty. That's up to the 1052 * vm. If we swap it in we mark it dirty since we also free the swap 1053 * entry since a page cannot live in both the swap and page cache 1054 */ 1055 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1056 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type) 1057 { 1058 struct address_space *mapping = inode->i_mapping; 1059 struct shmem_inode_info *info; 1060 struct shmem_sb_info *sbinfo; 1061 struct mem_cgroup *memcg; 1062 struct page *page; 1063 swp_entry_t swap; 1064 int error; 1065 int once = 0; 1066 int alloced = 0; 1067 1068 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT)) 1069 return -EFBIG; 1070 repeat: 1071 swap.val = 0; 1072 page = find_lock_entry(mapping, index); 1073 if (radix_tree_exceptional_entry(page)) { 1074 swap = radix_to_swp_entry(page); 1075 page = NULL; 1076 } 1077 1078 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1079 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1080 error = -EINVAL; 1081 goto failed; 1082 } 1083 1084 if (page && sgp == SGP_WRITE) 1085 mark_page_accessed(page); 1086 1087 /* fallocated page? */ 1088 if (page && !PageUptodate(page)) { 1089 if (sgp != SGP_READ) 1090 goto clear; 1091 unlock_page(page); 1092 page_cache_release(page); 1093 page = NULL; 1094 } 1095 if (page || (sgp == SGP_READ && !swap.val)) { 1096 *pagep = page; 1097 return 0; 1098 } 1099 1100 /* 1101 * Fast cache lookup did not find it: 1102 * bring it back from swap or allocate. 1103 */ 1104 info = SHMEM_I(inode); 1105 sbinfo = SHMEM_SB(inode->i_sb); 1106 1107 if (swap.val) { 1108 /* Look it up and read it in.. */ 1109 page = lookup_swap_cache(swap); 1110 if (!page) { 1111 /* here we actually do the io */ 1112 if (fault_type) 1113 *fault_type |= VM_FAULT_MAJOR; 1114 page = shmem_swapin(swap, gfp, info, index); 1115 if (!page) { 1116 error = -ENOMEM; 1117 goto failed; 1118 } 1119 } 1120 1121 /* We have to do this with page locked to prevent races */ 1122 lock_page(page); 1123 if (!PageSwapCache(page) || page_private(page) != swap.val || 1124 !shmem_confirm_swap(mapping, index, swap)) { 1125 error = -EEXIST; /* try again */ 1126 goto unlock; 1127 } 1128 if (!PageUptodate(page)) { 1129 error = -EIO; 1130 goto failed; 1131 } 1132 wait_on_page_writeback(page); 1133 1134 if (shmem_should_replace_page(page, gfp)) { 1135 error = shmem_replace_page(&page, gfp, info, index); 1136 if (error) 1137 goto failed; 1138 } 1139 1140 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg); 1141 if (!error) { 1142 error = shmem_add_to_page_cache(page, mapping, index, 1143 swp_to_radix_entry(swap)); 1144 /* 1145 * We already confirmed swap under page lock, and make 1146 * no memory allocation here, so usually no possibility 1147 * of error; but free_swap_and_cache() only trylocks a 1148 * page, so it is just possible that the entry has been 1149 * truncated or holepunched since swap was confirmed. 1150 * shmem_undo_range() will have done some of the 1151 * unaccounting, now delete_from_swap_cache() will do 1152 * the rest. 1153 * Reset swap.val? No, leave it so "failed" goes back to 1154 * "repeat": reading a hole and writing should succeed. 1155 */ 1156 if (error) { 1157 mem_cgroup_cancel_charge(page, memcg); 1158 delete_from_swap_cache(page); 1159 } 1160 } 1161 if (error) 1162 goto failed; 1163 1164 mem_cgroup_commit_charge(page, memcg, true); 1165 1166 spin_lock(&info->lock); 1167 info->swapped--; 1168 shmem_recalc_inode(inode); 1169 spin_unlock(&info->lock); 1170 1171 if (sgp == SGP_WRITE) 1172 mark_page_accessed(page); 1173 1174 delete_from_swap_cache(page); 1175 set_page_dirty(page); 1176 swap_free(swap); 1177 1178 } else { 1179 if (shmem_acct_block(info->flags)) { 1180 error = -ENOSPC; 1181 goto failed; 1182 } 1183 if (sbinfo->max_blocks) { 1184 if (percpu_counter_compare(&sbinfo->used_blocks, 1185 sbinfo->max_blocks) >= 0) { 1186 error = -ENOSPC; 1187 goto unacct; 1188 } 1189 percpu_counter_inc(&sbinfo->used_blocks); 1190 } 1191 1192 page = shmem_alloc_page(gfp, info, index); 1193 if (!page) { 1194 error = -ENOMEM; 1195 goto decused; 1196 } 1197 1198 __SetPageSwapBacked(page); 1199 __set_page_locked(page); 1200 if (sgp == SGP_WRITE) 1201 __SetPageReferenced(page); 1202 1203 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg); 1204 if (error) 1205 goto decused; 1206 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 1207 if (!error) { 1208 error = shmem_add_to_page_cache(page, mapping, index, 1209 NULL); 1210 radix_tree_preload_end(); 1211 } 1212 if (error) { 1213 mem_cgroup_cancel_charge(page, memcg); 1214 goto decused; 1215 } 1216 mem_cgroup_commit_charge(page, memcg, false); 1217 lru_cache_add_anon(page); 1218 1219 spin_lock(&info->lock); 1220 info->alloced++; 1221 inode->i_blocks += BLOCKS_PER_PAGE; 1222 shmem_recalc_inode(inode); 1223 spin_unlock(&info->lock); 1224 alloced = true; 1225 1226 /* 1227 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1228 */ 1229 if (sgp == SGP_FALLOC) 1230 sgp = SGP_WRITE; 1231 clear: 1232 /* 1233 * Let SGP_WRITE caller clear ends if write does not fill page; 1234 * but SGP_FALLOC on a page fallocated earlier must initialize 1235 * it now, lest undo on failure cancel our earlier guarantee. 1236 */ 1237 if (sgp != SGP_WRITE) { 1238 clear_highpage(page); 1239 flush_dcache_page(page); 1240 SetPageUptodate(page); 1241 } 1242 if (sgp == SGP_DIRTY) 1243 set_page_dirty(page); 1244 } 1245 1246 /* Perhaps the file has been truncated since we checked */ 1247 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1248 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1249 error = -EINVAL; 1250 if (alloced) 1251 goto trunc; 1252 else 1253 goto failed; 1254 } 1255 *pagep = page; 1256 return 0; 1257 1258 /* 1259 * Error recovery. 1260 */ 1261 trunc: 1262 info = SHMEM_I(inode); 1263 ClearPageDirty(page); 1264 delete_from_page_cache(page); 1265 spin_lock(&info->lock); 1266 info->alloced--; 1267 inode->i_blocks -= BLOCKS_PER_PAGE; 1268 spin_unlock(&info->lock); 1269 decused: 1270 sbinfo = SHMEM_SB(inode->i_sb); 1271 if (sbinfo->max_blocks) 1272 percpu_counter_add(&sbinfo->used_blocks, -1); 1273 unacct: 1274 shmem_unacct_blocks(info->flags, 1); 1275 failed: 1276 if (swap.val && error != -EINVAL && 1277 !shmem_confirm_swap(mapping, index, swap)) 1278 error = -EEXIST; 1279 unlock: 1280 if (page) { 1281 unlock_page(page); 1282 page_cache_release(page); 1283 } 1284 if (error == -ENOSPC && !once++) { 1285 info = SHMEM_I(inode); 1286 spin_lock(&info->lock); 1287 shmem_recalc_inode(inode); 1288 spin_unlock(&info->lock); 1289 goto repeat; 1290 } 1291 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1292 goto repeat; 1293 return error; 1294 } 1295 1296 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1297 { 1298 struct inode *inode = file_inode(vma->vm_file); 1299 int error; 1300 int ret = VM_FAULT_LOCKED; 1301 1302 /* 1303 * Trinity finds that probing a hole which tmpfs is punching can 1304 * prevent the hole-punch from ever completing: which in turn 1305 * locks writers out with its hold on i_mutex. So refrain from 1306 * faulting pages into the hole while it's being punched. Although 1307 * shmem_undo_range() does remove the additions, it may be unable to 1308 * keep up, as each new page needs its own unmap_mapping_range() call, 1309 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1310 * 1311 * It does not matter if we sometimes reach this check just before the 1312 * hole-punch begins, so that one fault then races with the punch: 1313 * we just need to make racing faults a rare case. 1314 * 1315 * The implementation below would be much simpler if we just used a 1316 * standard mutex or completion: but we cannot take i_mutex in fault, 1317 * and bloating every shmem inode for this unlikely case would be sad. 1318 */ 1319 if (unlikely(inode->i_private)) { 1320 struct shmem_falloc *shmem_falloc; 1321 1322 spin_lock(&inode->i_lock); 1323 shmem_falloc = inode->i_private; 1324 if (shmem_falloc && 1325 shmem_falloc->waitq && 1326 vmf->pgoff >= shmem_falloc->start && 1327 vmf->pgoff < shmem_falloc->next) { 1328 wait_queue_head_t *shmem_falloc_waitq; 1329 DEFINE_WAIT(shmem_fault_wait); 1330 1331 ret = VM_FAULT_NOPAGE; 1332 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1333 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1334 /* It's polite to up mmap_sem if we can */ 1335 up_read(&vma->vm_mm->mmap_sem); 1336 ret = VM_FAULT_RETRY; 1337 } 1338 1339 shmem_falloc_waitq = shmem_falloc->waitq; 1340 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1341 TASK_UNINTERRUPTIBLE); 1342 spin_unlock(&inode->i_lock); 1343 schedule(); 1344 1345 /* 1346 * shmem_falloc_waitq points into the shmem_fallocate() 1347 * stack of the hole-punching task: shmem_falloc_waitq 1348 * is usually invalid by the time we reach here, but 1349 * finish_wait() does not dereference it in that case; 1350 * though i_lock needed lest racing with wake_up_all(). 1351 */ 1352 spin_lock(&inode->i_lock); 1353 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1354 spin_unlock(&inode->i_lock); 1355 return ret; 1356 } 1357 spin_unlock(&inode->i_lock); 1358 } 1359 1360 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1361 if (error) 1362 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1363 1364 if (ret & VM_FAULT_MAJOR) { 1365 count_vm_event(PGMAJFAULT); 1366 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1367 } 1368 return ret; 1369 } 1370 1371 #ifdef CONFIG_NUMA 1372 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 1373 { 1374 struct inode *inode = file_inode(vma->vm_file); 1375 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 1376 } 1377 1378 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1379 unsigned long addr) 1380 { 1381 struct inode *inode = file_inode(vma->vm_file); 1382 pgoff_t index; 1383 1384 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1385 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 1386 } 1387 #endif 1388 1389 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1390 { 1391 struct inode *inode = file_inode(file); 1392 struct shmem_inode_info *info = SHMEM_I(inode); 1393 int retval = -ENOMEM; 1394 1395 spin_lock(&info->lock); 1396 if (lock && !(info->flags & VM_LOCKED)) { 1397 if (!user_shm_lock(inode->i_size, user)) 1398 goto out_nomem; 1399 info->flags |= VM_LOCKED; 1400 mapping_set_unevictable(file->f_mapping); 1401 } 1402 if (!lock && (info->flags & VM_LOCKED) && user) { 1403 user_shm_unlock(inode->i_size, user); 1404 info->flags &= ~VM_LOCKED; 1405 mapping_clear_unevictable(file->f_mapping); 1406 } 1407 retval = 0; 1408 1409 out_nomem: 1410 spin_unlock(&info->lock); 1411 return retval; 1412 } 1413 1414 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1415 { 1416 file_accessed(file); 1417 vma->vm_ops = &shmem_vm_ops; 1418 return 0; 1419 } 1420 1421 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 1422 umode_t mode, dev_t dev, unsigned long flags) 1423 { 1424 struct inode *inode; 1425 struct shmem_inode_info *info; 1426 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1427 1428 if (shmem_reserve_inode(sb)) 1429 return NULL; 1430 1431 inode = new_inode(sb); 1432 if (inode) { 1433 inode->i_ino = get_next_ino(); 1434 inode_init_owner(inode, dir, mode); 1435 inode->i_blocks = 0; 1436 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1437 inode->i_generation = get_seconds(); 1438 info = SHMEM_I(inode); 1439 memset(info, 0, (char *)inode - (char *)info); 1440 spin_lock_init(&info->lock); 1441 info->seals = F_SEAL_SEAL; 1442 info->flags = flags & VM_NORESERVE; 1443 INIT_LIST_HEAD(&info->swaplist); 1444 simple_xattrs_init(&info->xattrs); 1445 cache_no_acl(inode); 1446 1447 switch (mode & S_IFMT) { 1448 default: 1449 inode->i_op = &shmem_special_inode_operations; 1450 init_special_inode(inode, mode, dev); 1451 break; 1452 case S_IFREG: 1453 inode->i_mapping->a_ops = &shmem_aops; 1454 inode->i_op = &shmem_inode_operations; 1455 inode->i_fop = &shmem_file_operations; 1456 mpol_shared_policy_init(&info->policy, 1457 shmem_get_sbmpol(sbinfo)); 1458 break; 1459 case S_IFDIR: 1460 inc_nlink(inode); 1461 /* Some things misbehave if size == 0 on a directory */ 1462 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1463 inode->i_op = &shmem_dir_inode_operations; 1464 inode->i_fop = &simple_dir_operations; 1465 break; 1466 case S_IFLNK: 1467 /* 1468 * Must not load anything in the rbtree, 1469 * mpol_free_shared_policy will not be called. 1470 */ 1471 mpol_shared_policy_init(&info->policy, NULL); 1472 break; 1473 } 1474 } else 1475 shmem_free_inode(sb); 1476 return inode; 1477 } 1478 1479 bool shmem_mapping(struct address_space *mapping) 1480 { 1481 if (!mapping->host) 1482 return false; 1483 1484 return mapping->host->i_sb->s_op == &shmem_ops; 1485 } 1486 1487 #ifdef CONFIG_TMPFS 1488 static const struct inode_operations shmem_symlink_inode_operations; 1489 static const struct inode_operations shmem_short_symlink_operations; 1490 1491 #ifdef CONFIG_TMPFS_XATTR 1492 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 1493 #else 1494 #define shmem_initxattrs NULL 1495 #endif 1496 1497 static int 1498 shmem_write_begin(struct file *file, struct address_space *mapping, 1499 loff_t pos, unsigned len, unsigned flags, 1500 struct page **pagep, void **fsdata) 1501 { 1502 struct inode *inode = mapping->host; 1503 struct shmem_inode_info *info = SHMEM_I(inode); 1504 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1505 1506 /* i_mutex is held by caller */ 1507 if (unlikely(info->seals)) { 1508 if (info->seals & F_SEAL_WRITE) 1509 return -EPERM; 1510 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 1511 return -EPERM; 1512 } 1513 1514 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1515 } 1516 1517 static int 1518 shmem_write_end(struct file *file, struct address_space *mapping, 1519 loff_t pos, unsigned len, unsigned copied, 1520 struct page *page, void *fsdata) 1521 { 1522 struct inode *inode = mapping->host; 1523 1524 if (pos + copied > inode->i_size) 1525 i_size_write(inode, pos + copied); 1526 1527 if (!PageUptodate(page)) { 1528 if (copied < PAGE_CACHE_SIZE) { 1529 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1530 zero_user_segments(page, 0, from, 1531 from + copied, PAGE_CACHE_SIZE); 1532 } 1533 SetPageUptodate(page); 1534 } 1535 set_page_dirty(page); 1536 unlock_page(page); 1537 page_cache_release(page); 1538 1539 return copied; 1540 } 1541 1542 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1543 { 1544 struct file *file = iocb->ki_filp; 1545 struct inode *inode = file_inode(file); 1546 struct address_space *mapping = inode->i_mapping; 1547 pgoff_t index; 1548 unsigned long offset; 1549 enum sgp_type sgp = SGP_READ; 1550 int error = 0; 1551 ssize_t retval = 0; 1552 loff_t *ppos = &iocb->ki_pos; 1553 1554 /* 1555 * Might this read be for a stacking filesystem? Then when reading 1556 * holes of a sparse file, we actually need to allocate those pages, 1557 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1558 */ 1559 if (!iter_is_iovec(to)) 1560 sgp = SGP_DIRTY; 1561 1562 index = *ppos >> PAGE_CACHE_SHIFT; 1563 offset = *ppos & ~PAGE_CACHE_MASK; 1564 1565 for (;;) { 1566 struct page *page = NULL; 1567 pgoff_t end_index; 1568 unsigned long nr, ret; 1569 loff_t i_size = i_size_read(inode); 1570 1571 end_index = i_size >> PAGE_CACHE_SHIFT; 1572 if (index > end_index) 1573 break; 1574 if (index == end_index) { 1575 nr = i_size & ~PAGE_CACHE_MASK; 1576 if (nr <= offset) 1577 break; 1578 } 1579 1580 error = shmem_getpage(inode, index, &page, sgp, NULL); 1581 if (error) { 1582 if (error == -EINVAL) 1583 error = 0; 1584 break; 1585 } 1586 if (page) 1587 unlock_page(page); 1588 1589 /* 1590 * We must evaluate after, since reads (unlike writes) 1591 * are called without i_mutex protection against truncate 1592 */ 1593 nr = PAGE_CACHE_SIZE; 1594 i_size = i_size_read(inode); 1595 end_index = i_size >> PAGE_CACHE_SHIFT; 1596 if (index == end_index) { 1597 nr = i_size & ~PAGE_CACHE_MASK; 1598 if (nr <= offset) { 1599 if (page) 1600 page_cache_release(page); 1601 break; 1602 } 1603 } 1604 nr -= offset; 1605 1606 if (page) { 1607 /* 1608 * If users can be writing to this page using arbitrary 1609 * virtual addresses, take care about potential aliasing 1610 * before reading the page on the kernel side. 1611 */ 1612 if (mapping_writably_mapped(mapping)) 1613 flush_dcache_page(page); 1614 /* 1615 * Mark the page accessed if we read the beginning. 1616 */ 1617 if (!offset) 1618 mark_page_accessed(page); 1619 } else { 1620 page = ZERO_PAGE(0); 1621 page_cache_get(page); 1622 } 1623 1624 /* 1625 * Ok, we have the page, and it's up-to-date, so 1626 * now we can copy it to user space... 1627 */ 1628 ret = copy_page_to_iter(page, offset, nr, to); 1629 retval += ret; 1630 offset += ret; 1631 index += offset >> PAGE_CACHE_SHIFT; 1632 offset &= ~PAGE_CACHE_MASK; 1633 1634 page_cache_release(page); 1635 if (!iov_iter_count(to)) 1636 break; 1637 if (ret < nr) { 1638 error = -EFAULT; 1639 break; 1640 } 1641 cond_resched(); 1642 } 1643 1644 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1645 file_accessed(file); 1646 return retval ? retval : error; 1647 } 1648 1649 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 1650 struct pipe_inode_info *pipe, size_t len, 1651 unsigned int flags) 1652 { 1653 struct address_space *mapping = in->f_mapping; 1654 struct inode *inode = mapping->host; 1655 unsigned int loff, nr_pages, req_pages; 1656 struct page *pages[PIPE_DEF_BUFFERS]; 1657 struct partial_page partial[PIPE_DEF_BUFFERS]; 1658 struct page *page; 1659 pgoff_t index, end_index; 1660 loff_t isize, left; 1661 int error, page_nr; 1662 struct splice_pipe_desc spd = { 1663 .pages = pages, 1664 .partial = partial, 1665 .nr_pages_max = PIPE_DEF_BUFFERS, 1666 .flags = flags, 1667 .ops = &page_cache_pipe_buf_ops, 1668 .spd_release = spd_release_page, 1669 }; 1670 1671 isize = i_size_read(inode); 1672 if (unlikely(*ppos >= isize)) 1673 return 0; 1674 1675 left = isize - *ppos; 1676 if (unlikely(left < len)) 1677 len = left; 1678 1679 if (splice_grow_spd(pipe, &spd)) 1680 return -ENOMEM; 1681 1682 index = *ppos >> PAGE_CACHE_SHIFT; 1683 loff = *ppos & ~PAGE_CACHE_MASK; 1684 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1685 nr_pages = min(req_pages, spd.nr_pages_max); 1686 1687 spd.nr_pages = find_get_pages_contig(mapping, index, 1688 nr_pages, spd.pages); 1689 index += spd.nr_pages; 1690 error = 0; 1691 1692 while (spd.nr_pages < nr_pages) { 1693 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL); 1694 if (error) 1695 break; 1696 unlock_page(page); 1697 spd.pages[spd.nr_pages++] = page; 1698 index++; 1699 } 1700 1701 index = *ppos >> PAGE_CACHE_SHIFT; 1702 nr_pages = spd.nr_pages; 1703 spd.nr_pages = 0; 1704 1705 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 1706 unsigned int this_len; 1707 1708 if (!len) 1709 break; 1710 1711 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 1712 page = spd.pages[page_nr]; 1713 1714 if (!PageUptodate(page) || page->mapping != mapping) { 1715 error = shmem_getpage(inode, index, &page, 1716 SGP_CACHE, NULL); 1717 if (error) 1718 break; 1719 unlock_page(page); 1720 page_cache_release(spd.pages[page_nr]); 1721 spd.pages[page_nr] = page; 1722 } 1723 1724 isize = i_size_read(inode); 1725 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1726 if (unlikely(!isize || index > end_index)) 1727 break; 1728 1729 if (end_index == index) { 1730 unsigned int plen; 1731 1732 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1733 if (plen <= loff) 1734 break; 1735 1736 this_len = min(this_len, plen - loff); 1737 len = this_len; 1738 } 1739 1740 spd.partial[page_nr].offset = loff; 1741 spd.partial[page_nr].len = this_len; 1742 len -= this_len; 1743 loff = 0; 1744 spd.nr_pages++; 1745 index++; 1746 } 1747 1748 while (page_nr < nr_pages) 1749 page_cache_release(spd.pages[page_nr++]); 1750 1751 if (spd.nr_pages) 1752 error = splice_to_pipe(pipe, &spd); 1753 1754 splice_shrink_spd(&spd); 1755 1756 if (error > 0) { 1757 *ppos += error; 1758 file_accessed(in); 1759 } 1760 return error; 1761 } 1762 1763 /* 1764 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 1765 */ 1766 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 1767 pgoff_t index, pgoff_t end, int whence) 1768 { 1769 struct page *page; 1770 struct pagevec pvec; 1771 pgoff_t indices[PAGEVEC_SIZE]; 1772 bool done = false; 1773 int i; 1774 1775 pagevec_init(&pvec, 0); 1776 pvec.nr = 1; /* start small: we may be there already */ 1777 while (!done) { 1778 pvec.nr = find_get_entries(mapping, index, 1779 pvec.nr, pvec.pages, indices); 1780 if (!pvec.nr) { 1781 if (whence == SEEK_DATA) 1782 index = end; 1783 break; 1784 } 1785 for (i = 0; i < pvec.nr; i++, index++) { 1786 if (index < indices[i]) { 1787 if (whence == SEEK_HOLE) { 1788 done = true; 1789 break; 1790 } 1791 index = indices[i]; 1792 } 1793 page = pvec.pages[i]; 1794 if (page && !radix_tree_exceptional_entry(page)) { 1795 if (!PageUptodate(page)) 1796 page = NULL; 1797 } 1798 if (index >= end || 1799 (page && whence == SEEK_DATA) || 1800 (!page && whence == SEEK_HOLE)) { 1801 done = true; 1802 break; 1803 } 1804 } 1805 pagevec_remove_exceptionals(&pvec); 1806 pagevec_release(&pvec); 1807 pvec.nr = PAGEVEC_SIZE; 1808 cond_resched(); 1809 } 1810 return index; 1811 } 1812 1813 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 1814 { 1815 struct address_space *mapping = file->f_mapping; 1816 struct inode *inode = mapping->host; 1817 pgoff_t start, end; 1818 loff_t new_offset; 1819 1820 if (whence != SEEK_DATA && whence != SEEK_HOLE) 1821 return generic_file_llseek_size(file, offset, whence, 1822 MAX_LFS_FILESIZE, i_size_read(inode)); 1823 mutex_lock(&inode->i_mutex); 1824 /* We're holding i_mutex so we can access i_size directly */ 1825 1826 if (offset < 0) 1827 offset = -EINVAL; 1828 else if (offset >= inode->i_size) 1829 offset = -ENXIO; 1830 else { 1831 start = offset >> PAGE_CACHE_SHIFT; 1832 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1833 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 1834 new_offset <<= PAGE_CACHE_SHIFT; 1835 if (new_offset > offset) { 1836 if (new_offset < inode->i_size) 1837 offset = new_offset; 1838 else if (whence == SEEK_DATA) 1839 offset = -ENXIO; 1840 else 1841 offset = inode->i_size; 1842 } 1843 } 1844 1845 if (offset >= 0) 1846 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 1847 mutex_unlock(&inode->i_mutex); 1848 return offset; 1849 } 1850 1851 /* 1852 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, 1853 * so reuse a tag which we firmly believe is never set or cleared on shmem. 1854 */ 1855 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE 1856 #define LAST_SCAN 4 /* about 150ms max */ 1857 1858 static void shmem_tag_pins(struct address_space *mapping) 1859 { 1860 struct radix_tree_iter iter; 1861 void **slot; 1862 pgoff_t start; 1863 struct page *page; 1864 1865 lru_add_drain(); 1866 start = 0; 1867 rcu_read_lock(); 1868 1869 restart: 1870 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1871 page = radix_tree_deref_slot(slot); 1872 if (!page || radix_tree_exception(page)) { 1873 if (radix_tree_deref_retry(page)) 1874 goto restart; 1875 } else if (page_count(page) - page_mapcount(page) > 1) { 1876 spin_lock_irq(&mapping->tree_lock); 1877 radix_tree_tag_set(&mapping->page_tree, iter.index, 1878 SHMEM_TAG_PINNED); 1879 spin_unlock_irq(&mapping->tree_lock); 1880 } 1881 1882 if (need_resched()) { 1883 cond_resched_rcu(); 1884 start = iter.index + 1; 1885 goto restart; 1886 } 1887 } 1888 rcu_read_unlock(); 1889 } 1890 1891 /* 1892 * Setting SEAL_WRITE requires us to verify there's no pending writer. However, 1893 * via get_user_pages(), drivers might have some pending I/O without any active 1894 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages 1895 * and see whether it has an elevated ref-count. If so, we tag them and wait for 1896 * them to be dropped. 1897 * The caller must guarantee that no new user will acquire writable references 1898 * to those pages to avoid races. 1899 */ 1900 static int shmem_wait_for_pins(struct address_space *mapping) 1901 { 1902 struct radix_tree_iter iter; 1903 void **slot; 1904 pgoff_t start; 1905 struct page *page; 1906 int error, scan; 1907 1908 shmem_tag_pins(mapping); 1909 1910 error = 0; 1911 for (scan = 0; scan <= LAST_SCAN; scan++) { 1912 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) 1913 break; 1914 1915 if (!scan) 1916 lru_add_drain_all(); 1917 else if (schedule_timeout_killable((HZ << scan) / 200)) 1918 scan = LAST_SCAN; 1919 1920 start = 0; 1921 rcu_read_lock(); 1922 restart: 1923 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 1924 start, SHMEM_TAG_PINNED) { 1925 1926 page = radix_tree_deref_slot(slot); 1927 if (radix_tree_exception(page)) { 1928 if (radix_tree_deref_retry(page)) 1929 goto restart; 1930 1931 page = NULL; 1932 } 1933 1934 if (page && 1935 page_count(page) - page_mapcount(page) != 1) { 1936 if (scan < LAST_SCAN) 1937 goto continue_resched; 1938 1939 /* 1940 * On the last scan, we clean up all those tags 1941 * we inserted; but make a note that we still 1942 * found pages pinned. 1943 */ 1944 error = -EBUSY; 1945 } 1946 1947 spin_lock_irq(&mapping->tree_lock); 1948 radix_tree_tag_clear(&mapping->page_tree, 1949 iter.index, SHMEM_TAG_PINNED); 1950 spin_unlock_irq(&mapping->tree_lock); 1951 continue_resched: 1952 if (need_resched()) { 1953 cond_resched_rcu(); 1954 start = iter.index + 1; 1955 goto restart; 1956 } 1957 } 1958 rcu_read_unlock(); 1959 } 1960 1961 return error; 1962 } 1963 1964 #define F_ALL_SEALS (F_SEAL_SEAL | \ 1965 F_SEAL_SHRINK | \ 1966 F_SEAL_GROW | \ 1967 F_SEAL_WRITE) 1968 1969 int shmem_add_seals(struct file *file, unsigned int seals) 1970 { 1971 struct inode *inode = file_inode(file); 1972 struct shmem_inode_info *info = SHMEM_I(inode); 1973 int error; 1974 1975 /* 1976 * SEALING 1977 * Sealing allows multiple parties to share a shmem-file but restrict 1978 * access to a specific subset of file operations. Seals can only be 1979 * added, but never removed. This way, mutually untrusted parties can 1980 * share common memory regions with a well-defined policy. A malicious 1981 * peer can thus never perform unwanted operations on a shared object. 1982 * 1983 * Seals are only supported on special shmem-files and always affect 1984 * the whole underlying inode. Once a seal is set, it may prevent some 1985 * kinds of access to the file. Currently, the following seals are 1986 * defined: 1987 * SEAL_SEAL: Prevent further seals from being set on this file 1988 * SEAL_SHRINK: Prevent the file from shrinking 1989 * SEAL_GROW: Prevent the file from growing 1990 * SEAL_WRITE: Prevent write access to the file 1991 * 1992 * As we don't require any trust relationship between two parties, we 1993 * must prevent seals from being removed. Therefore, sealing a file 1994 * only adds a given set of seals to the file, it never touches 1995 * existing seals. Furthermore, the "setting seals"-operation can be 1996 * sealed itself, which basically prevents any further seal from being 1997 * added. 1998 * 1999 * Semantics of sealing are only defined on volatile files. Only 2000 * anonymous shmem files support sealing. More importantly, seals are 2001 * never written to disk. Therefore, there's no plan to support it on 2002 * other file types. 2003 */ 2004 2005 if (file->f_op != &shmem_file_operations) 2006 return -EINVAL; 2007 if (!(file->f_mode & FMODE_WRITE)) 2008 return -EPERM; 2009 if (seals & ~(unsigned int)F_ALL_SEALS) 2010 return -EINVAL; 2011 2012 mutex_lock(&inode->i_mutex); 2013 2014 if (info->seals & F_SEAL_SEAL) { 2015 error = -EPERM; 2016 goto unlock; 2017 } 2018 2019 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) { 2020 error = mapping_deny_writable(file->f_mapping); 2021 if (error) 2022 goto unlock; 2023 2024 error = shmem_wait_for_pins(file->f_mapping); 2025 if (error) { 2026 mapping_allow_writable(file->f_mapping); 2027 goto unlock; 2028 } 2029 } 2030 2031 info->seals |= seals; 2032 error = 0; 2033 2034 unlock: 2035 mutex_unlock(&inode->i_mutex); 2036 return error; 2037 } 2038 EXPORT_SYMBOL_GPL(shmem_add_seals); 2039 2040 int shmem_get_seals(struct file *file) 2041 { 2042 if (file->f_op != &shmem_file_operations) 2043 return -EINVAL; 2044 2045 return SHMEM_I(file_inode(file))->seals; 2046 } 2047 EXPORT_SYMBOL_GPL(shmem_get_seals); 2048 2049 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2050 { 2051 long error; 2052 2053 switch (cmd) { 2054 case F_ADD_SEALS: 2055 /* disallow upper 32bit */ 2056 if (arg > UINT_MAX) 2057 return -EINVAL; 2058 2059 error = shmem_add_seals(file, arg); 2060 break; 2061 case F_GET_SEALS: 2062 error = shmem_get_seals(file); 2063 break; 2064 default: 2065 error = -EINVAL; 2066 break; 2067 } 2068 2069 return error; 2070 } 2071 2072 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2073 loff_t len) 2074 { 2075 struct inode *inode = file_inode(file); 2076 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2077 struct shmem_inode_info *info = SHMEM_I(inode); 2078 struct shmem_falloc shmem_falloc; 2079 pgoff_t start, index, end; 2080 int error; 2081 2082 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2083 return -EOPNOTSUPP; 2084 2085 mutex_lock(&inode->i_mutex); 2086 2087 if (mode & FALLOC_FL_PUNCH_HOLE) { 2088 struct address_space *mapping = file->f_mapping; 2089 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2090 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2091 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2092 2093 /* protected by i_mutex */ 2094 if (info->seals & F_SEAL_WRITE) { 2095 error = -EPERM; 2096 goto out; 2097 } 2098 2099 shmem_falloc.waitq = &shmem_falloc_waitq; 2100 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2101 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2102 spin_lock(&inode->i_lock); 2103 inode->i_private = &shmem_falloc; 2104 spin_unlock(&inode->i_lock); 2105 2106 if ((u64)unmap_end > (u64)unmap_start) 2107 unmap_mapping_range(mapping, unmap_start, 2108 1 + unmap_end - unmap_start, 0); 2109 shmem_truncate_range(inode, offset, offset + len - 1); 2110 /* No need to unmap again: hole-punching leaves COWed pages */ 2111 2112 spin_lock(&inode->i_lock); 2113 inode->i_private = NULL; 2114 wake_up_all(&shmem_falloc_waitq); 2115 spin_unlock(&inode->i_lock); 2116 error = 0; 2117 goto out; 2118 } 2119 2120 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2121 error = inode_newsize_ok(inode, offset + len); 2122 if (error) 2123 goto out; 2124 2125 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2126 error = -EPERM; 2127 goto out; 2128 } 2129 2130 start = offset >> PAGE_CACHE_SHIFT; 2131 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 2132 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2133 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2134 error = -ENOSPC; 2135 goto out; 2136 } 2137 2138 shmem_falloc.waitq = NULL; 2139 shmem_falloc.start = start; 2140 shmem_falloc.next = start; 2141 shmem_falloc.nr_falloced = 0; 2142 shmem_falloc.nr_unswapped = 0; 2143 spin_lock(&inode->i_lock); 2144 inode->i_private = &shmem_falloc; 2145 spin_unlock(&inode->i_lock); 2146 2147 for (index = start; index < end; index++) { 2148 struct page *page; 2149 2150 /* 2151 * Good, the fallocate(2) manpage permits EINTR: we may have 2152 * been interrupted because we are using up too much memory. 2153 */ 2154 if (signal_pending(current)) 2155 error = -EINTR; 2156 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2157 error = -ENOMEM; 2158 else 2159 error = shmem_getpage(inode, index, &page, SGP_FALLOC, 2160 NULL); 2161 if (error) { 2162 /* Remove the !PageUptodate pages we added */ 2163 shmem_undo_range(inode, 2164 (loff_t)start << PAGE_CACHE_SHIFT, 2165 (loff_t)index << PAGE_CACHE_SHIFT, true); 2166 goto undone; 2167 } 2168 2169 /* 2170 * Inform shmem_writepage() how far we have reached. 2171 * No need for lock or barrier: we have the page lock. 2172 */ 2173 shmem_falloc.next++; 2174 if (!PageUptodate(page)) 2175 shmem_falloc.nr_falloced++; 2176 2177 /* 2178 * If !PageUptodate, leave it that way so that freeable pages 2179 * can be recognized if we need to rollback on error later. 2180 * But set_page_dirty so that memory pressure will swap rather 2181 * than free the pages we are allocating (and SGP_CACHE pages 2182 * might still be clean: we now need to mark those dirty too). 2183 */ 2184 set_page_dirty(page); 2185 unlock_page(page); 2186 page_cache_release(page); 2187 cond_resched(); 2188 } 2189 2190 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2191 i_size_write(inode, offset + len); 2192 inode->i_ctime = CURRENT_TIME; 2193 undone: 2194 spin_lock(&inode->i_lock); 2195 inode->i_private = NULL; 2196 spin_unlock(&inode->i_lock); 2197 out: 2198 mutex_unlock(&inode->i_mutex); 2199 return error; 2200 } 2201 2202 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2203 { 2204 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2205 2206 buf->f_type = TMPFS_MAGIC; 2207 buf->f_bsize = PAGE_CACHE_SIZE; 2208 buf->f_namelen = NAME_MAX; 2209 if (sbinfo->max_blocks) { 2210 buf->f_blocks = sbinfo->max_blocks; 2211 buf->f_bavail = 2212 buf->f_bfree = sbinfo->max_blocks - 2213 percpu_counter_sum(&sbinfo->used_blocks); 2214 } 2215 if (sbinfo->max_inodes) { 2216 buf->f_files = sbinfo->max_inodes; 2217 buf->f_ffree = sbinfo->free_inodes; 2218 } 2219 /* else leave those fields 0 like simple_statfs */ 2220 return 0; 2221 } 2222 2223 /* 2224 * File creation. Allocate an inode, and we're done.. 2225 */ 2226 static int 2227 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2228 { 2229 struct inode *inode; 2230 int error = -ENOSPC; 2231 2232 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2233 if (inode) { 2234 error = simple_acl_create(dir, inode); 2235 if (error) 2236 goto out_iput; 2237 error = security_inode_init_security(inode, dir, 2238 &dentry->d_name, 2239 shmem_initxattrs, NULL); 2240 if (error && error != -EOPNOTSUPP) 2241 goto out_iput; 2242 2243 error = 0; 2244 dir->i_size += BOGO_DIRENT_SIZE; 2245 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2246 d_instantiate(dentry, inode); 2247 dget(dentry); /* Extra count - pin the dentry in core */ 2248 } 2249 return error; 2250 out_iput: 2251 iput(inode); 2252 return error; 2253 } 2254 2255 static int 2256 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2257 { 2258 struct inode *inode; 2259 int error = -ENOSPC; 2260 2261 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2262 if (inode) { 2263 error = security_inode_init_security(inode, dir, 2264 NULL, 2265 shmem_initxattrs, NULL); 2266 if (error && error != -EOPNOTSUPP) 2267 goto out_iput; 2268 error = simple_acl_create(dir, inode); 2269 if (error) 2270 goto out_iput; 2271 d_tmpfile(dentry, inode); 2272 } 2273 return error; 2274 out_iput: 2275 iput(inode); 2276 return error; 2277 } 2278 2279 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2280 { 2281 int error; 2282 2283 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2284 return error; 2285 inc_nlink(dir); 2286 return 0; 2287 } 2288 2289 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2290 bool excl) 2291 { 2292 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2293 } 2294 2295 /* 2296 * Link a file.. 2297 */ 2298 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2299 { 2300 struct inode *inode = d_inode(old_dentry); 2301 int ret; 2302 2303 /* 2304 * No ordinary (disk based) filesystem counts links as inodes; 2305 * but each new link needs a new dentry, pinning lowmem, and 2306 * tmpfs dentries cannot be pruned until they are unlinked. 2307 */ 2308 ret = shmem_reserve_inode(inode->i_sb); 2309 if (ret) 2310 goto out; 2311 2312 dir->i_size += BOGO_DIRENT_SIZE; 2313 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2314 inc_nlink(inode); 2315 ihold(inode); /* New dentry reference */ 2316 dget(dentry); /* Extra pinning count for the created dentry */ 2317 d_instantiate(dentry, inode); 2318 out: 2319 return ret; 2320 } 2321 2322 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2323 { 2324 struct inode *inode = d_inode(dentry); 2325 2326 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2327 shmem_free_inode(inode->i_sb); 2328 2329 dir->i_size -= BOGO_DIRENT_SIZE; 2330 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2331 drop_nlink(inode); 2332 dput(dentry); /* Undo the count from "create" - this does all the work */ 2333 return 0; 2334 } 2335 2336 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2337 { 2338 if (!simple_empty(dentry)) 2339 return -ENOTEMPTY; 2340 2341 drop_nlink(d_inode(dentry)); 2342 drop_nlink(dir); 2343 return shmem_unlink(dir, dentry); 2344 } 2345 2346 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2347 { 2348 bool old_is_dir = d_is_dir(old_dentry); 2349 bool new_is_dir = d_is_dir(new_dentry); 2350 2351 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2352 if (old_is_dir) { 2353 drop_nlink(old_dir); 2354 inc_nlink(new_dir); 2355 } else { 2356 drop_nlink(new_dir); 2357 inc_nlink(old_dir); 2358 } 2359 } 2360 old_dir->i_ctime = old_dir->i_mtime = 2361 new_dir->i_ctime = new_dir->i_mtime = 2362 d_inode(old_dentry)->i_ctime = 2363 d_inode(new_dentry)->i_ctime = CURRENT_TIME; 2364 2365 return 0; 2366 } 2367 2368 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 2369 { 2370 struct dentry *whiteout; 2371 int error; 2372 2373 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2374 if (!whiteout) 2375 return -ENOMEM; 2376 2377 error = shmem_mknod(old_dir, whiteout, 2378 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2379 dput(whiteout); 2380 if (error) 2381 return error; 2382 2383 /* 2384 * Cheat and hash the whiteout while the old dentry is still in 2385 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2386 * 2387 * d_lookup() will consistently find one of them at this point, 2388 * not sure which one, but that isn't even important. 2389 */ 2390 d_rehash(whiteout); 2391 return 0; 2392 } 2393 2394 /* 2395 * The VFS layer already does all the dentry stuff for rename, 2396 * we just have to decrement the usage count for the target if 2397 * it exists so that the VFS layer correctly free's it when it 2398 * gets overwritten. 2399 */ 2400 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 2401 { 2402 struct inode *inode = d_inode(old_dentry); 2403 int they_are_dirs = S_ISDIR(inode->i_mode); 2404 2405 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 2406 return -EINVAL; 2407 2408 if (flags & RENAME_EXCHANGE) 2409 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 2410 2411 if (!simple_empty(new_dentry)) 2412 return -ENOTEMPTY; 2413 2414 if (flags & RENAME_WHITEOUT) { 2415 int error; 2416 2417 error = shmem_whiteout(old_dir, old_dentry); 2418 if (error) 2419 return error; 2420 } 2421 2422 if (d_really_is_positive(new_dentry)) { 2423 (void) shmem_unlink(new_dir, new_dentry); 2424 if (they_are_dirs) { 2425 drop_nlink(d_inode(new_dentry)); 2426 drop_nlink(old_dir); 2427 } 2428 } else if (they_are_dirs) { 2429 drop_nlink(old_dir); 2430 inc_nlink(new_dir); 2431 } 2432 2433 old_dir->i_size -= BOGO_DIRENT_SIZE; 2434 new_dir->i_size += BOGO_DIRENT_SIZE; 2435 old_dir->i_ctime = old_dir->i_mtime = 2436 new_dir->i_ctime = new_dir->i_mtime = 2437 inode->i_ctime = CURRENT_TIME; 2438 return 0; 2439 } 2440 2441 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2442 { 2443 int error; 2444 int len; 2445 struct inode *inode; 2446 struct page *page; 2447 char *kaddr; 2448 struct shmem_inode_info *info; 2449 2450 len = strlen(symname) + 1; 2451 if (len > PAGE_CACHE_SIZE) 2452 return -ENAMETOOLONG; 2453 2454 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 2455 if (!inode) 2456 return -ENOSPC; 2457 2458 error = security_inode_init_security(inode, dir, &dentry->d_name, 2459 shmem_initxattrs, NULL); 2460 if (error) { 2461 if (error != -EOPNOTSUPP) { 2462 iput(inode); 2463 return error; 2464 } 2465 error = 0; 2466 } 2467 2468 info = SHMEM_I(inode); 2469 inode->i_size = len-1; 2470 if (len <= SHORT_SYMLINK_LEN) { 2471 info->symlink = kmemdup(symname, len, GFP_KERNEL); 2472 if (!info->symlink) { 2473 iput(inode); 2474 return -ENOMEM; 2475 } 2476 inode->i_op = &shmem_short_symlink_operations; 2477 inode->i_link = info->symlink; 2478 } else { 2479 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 2480 if (error) { 2481 iput(inode); 2482 return error; 2483 } 2484 inode->i_mapping->a_ops = &shmem_aops; 2485 inode->i_op = &shmem_symlink_inode_operations; 2486 kaddr = kmap_atomic(page); 2487 memcpy(kaddr, symname, len); 2488 kunmap_atomic(kaddr); 2489 SetPageUptodate(page); 2490 set_page_dirty(page); 2491 unlock_page(page); 2492 page_cache_release(page); 2493 } 2494 dir->i_size += BOGO_DIRENT_SIZE; 2495 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2496 d_instantiate(dentry, inode); 2497 dget(dentry); 2498 return 0; 2499 } 2500 2501 static const char *shmem_follow_link(struct dentry *dentry, void **cookie) 2502 { 2503 struct page *page = NULL; 2504 int error = shmem_getpage(d_inode(dentry), 0, &page, SGP_READ, NULL); 2505 if (error) 2506 return ERR_PTR(error); 2507 unlock_page(page); 2508 *cookie = page; 2509 return kmap(page); 2510 } 2511 2512 static void shmem_put_link(struct inode *unused, void *cookie) 2513 { 2514 struct page *page = cookie; 2515 kunmap(page); 2516 mark_page_accessed(page); 2517 page_cache_release(page); 2518 } 2519 2520 #ifdef CONFIG_TMPFS_XATTR 2521 /* 2522 * Superblocks without xattr inode operations may get some security.* xattr 2523 * support from the LSM "for free". As soon as we have any other xattrs 2524 * like ACLs, we also need to implement the security.* handlers at 2525 * filesystem level, though. 2526 */ 2527 2528 /* 2529 * Callback for security_inode_init_security() for acquiring xattrs. 2530 */ 2531 static int shmem_initxattrs(struct inode *inode, 2532 const struct xattr *xattr_array, 2533 void *fs_info) 2534 { 2535 struct shmem_inode_info *info = SHMEM_I(inode); 2536 const struct xattr *xattr; 2537 struct simple_xattr *new_xattr; 2538 size_t len; 2539 2540 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 2541 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 2542 if (!new_xattr) 2543 return -ENOMEM; 2544 2545 len = strlen(xattr->name) + 1; 2546 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 2547 GFP_KERNEL); 2548 if (!new_xattr->name) { 2549 kfree(new_xattr); 2550 return -ENOMEM; 2551 } 2552 2553 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 2554 XATTR_SECURITY_PREFIX_LEN); 2555 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 2556 xattr->name, len); 2557 2558 simple_xattr_list_add(&info->xattrs, new_xattr); 2559 } 2560 2561 return 0; 2562 } 2563 2564 static const struct xattr_handler *shmem_xattr_handlers[] = { 2565 #ifdef CONFIG_TMPFS_POSIX_ACL 2566 &posix_acl_access_xattr_handler, 2567 &posix_acl_default_xattr_handler, 2568 #endif 2569 NULL 2570 }; 2571 2572 static int shmem_xattr_validate(const char *name) 2573 { 2574 struct { const char *prefix; size_t len; } arr[] = { 2575 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN }, 2576 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN } 2577 }; 2578 int i; 2579 2580 for (i = 0; i < ARRAY_SIZE(arr); i++) { 2581 size_t preflen = arr[i].len; 2582 if (strncmp(name, arr[i].prefix, preflen) == 0) { 2583 if (!name[preflen]) 2584 return -EINVAL; 2585 return 0; 2586 } 2587 } 2588 return -EOPNOTSUPP; 2589 } 2590 2591 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name, 2592 void *buffer, size_t size) 2593 { 2594 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2595 int err; 2596 2597 /* 2598 * If this is a request for a synthetic attribute in the system.* 2599 * namespace use the generic infrastructure to resolve a handler 2600 * for it via sb->s_xattr. 2601 */ 2602 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2603 return generic_getxattr(dentry, name, buffer, size); 2604 2605 err = shmem_xattr_validate(name); 2606 if (err) 2607 return err; 2608 2609 return simple_xattr_get(&info->xattrs, name, buffer, size); 2610 } 2611 2612 static int shmem_setxattr(struct dentry *dentry, const char *name, 2613 const void *value, size_t size, int flags) 2614 { 2615 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2616 int err; 2617 2618 /* 2619 * If this is a request for a synthetic attribute in the system.* 2620 * namespace use the generic infrastructure to resolve a handler 2621 * for it via sb->s_xattr. 2622 */ 2623 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2624 return generic_setxattr(dentry, name, value, size, flags); 2625 2626 err = shmem_xattr_validate(name); 2627 if (err) 2628 return err; 2629 2630 return simple_xattr_set(&info->xattrs, name, value, size, flags); 2631 } 2632 2633 static int shmem_removexattr(struct dentry *dentry, const char *name) 2634 { 2635 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2636 int err; 2637 2638 /* 2639 * If this is a request for a synthetic attribute in the system.* 2640 * namespace use the generic infrastructure to resolve a handler 2641 * for it via sb->s_xattr. 2642 */ 2643 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2644 return generic_removexattr(dentry, name); 2645 2646 err = shmem_xattr_validate(name); 2647 if (err) 2648 return err; 2649 2650 return simple_xattr_remove(&info->xattrs, name); 2651 } 2652 2653 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 2654 { 2655 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2656 return simple_xattr_list(&info->xattrs, buffer, size); 2657 } 2658 #endif /* CONFIG_TMPFS_XATTR */ 2659 2660 static const struct inode_operations shmem_short_symlink_operations = { 2661 .readlink = generic_readlink, 2662 .follow_link = simple_follow_link, 2663 #ifdef CONFIG_TMPFS_XATTR 2664 .setxattr = shmem_setxattr, 2665 .getxattr = shmem_getxattr, 2666 .listxattr = shmem_listxattr, 2667 .removexattr = shmem_removexattr, 2668 #endif 2669 }; 2670 2671 static const struct inode_operations shmem_symlink_inode_operations = { 2672 .readlink = generic_readlink, 2673 .follow_link = shmem_follow_link, 2674 .put_link = shmem_put_link, 2675 #ifdef CONFIG_TMPFS_XATTR 2676 .setxattr = shmem_setxattr, 2677 .getxattr = shmem_getxattr, 2678 .listxattr = shmem_listxattr, 2679 .removexattr = shmem_removexattr, 2680 #endif 2681 }; 2682 2683 static struct dentry *shmem_get_parent(struct dentry *child) 2684 { 2685 return ERR_PTR(-ESTALE); 2686 } 2687 2688 static int shmem_match(struct inode *ino, void *vfh) 2689 { 2690 __u32 *fh = vfh; 2691 __u64 inum = fh[2]; 2692 inum = (inum << 32) | fh[1]; 2693 return ino->i_ino == inum && fh[0] == ino->i_generation; 2694 } 2695 2696 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2697 struct fid *fid, int fh_len, int fh_type) 2698 { 2699 struct inode *inode; 2700 struct dentry *dentry = NULL; 2701 u64 inum; 2702 2703 if (fh_len < 3) 2704 return NULL; 2705 2706 inum = fid->raw[2]; 2707 inum = (inum << 32) | fid->raw[1]; 2708 2709 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2710 shmem_match, fid->raw); 2711 if (inode) { 2712 dentry = d_find_alias(inode); 2713 iput(inode); 2714 } 2715 2716 return dentry; 2717 } 2718 2719 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 2720 struct inode *parent) 2721 { 2722 if (*len < 3) { 2723 *len = 3; 2724 return FILEID_INVALID; 2725 } 2726 2727 if (inode_unhashed(inode)) { 2728 /* Unfortunately insert_inode_hash is not idempotent, 2729 * so as we hash inodes here rather than at creation 2730 * time, we need a lock to ensure we only try 2731 * to do it once 2732 */ 2733 static DEFINE_SPINLOCK(lock); 2734 spin_lock(&lock); 2735 if (inode_unhashed(inode)) 2736 __insert_inode_hash(inode, 2737 inode->i_ino + inode->i_generation); 2738 spin_unlock(&lock); 2739 } 2740 2741 fh[0] = inode->i_generation; 2742 fh[1] = inode->i_ino; 2743 fh[2] = ((__u64)inode->i_ino) >> 32; 2744 2745 *len = 3; 2746 return 1; 2747 } 2748 2749 static const struct export_operations shmem_export_ops = { 2750 .get_parent = shmem_get_parent, 2751 .encode_fh = shmem_encode_fh, 2752 .fh_to_dentry = shmem_fh_to_dentry, 2753 }; 2754 2755 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2756 bool remount) 2757 { 2758 char *this_char, *value, *rest; 2759 struct mempolicy *mpol = NULL; 2760 uid_t uid; 2761 gid_t gid; 2762 2763 while (options != NULL) { 2764 this_char = options; 2765 for (;;) { 2766 /* 2767 * NUL-terminate this option: unfortunately, 2768 * mount options form a comma-separated list, 2769 * but mpol's nodelist may also contain commas. 2770 */ 2771 options = strchr(options, ','); 2772 if (options == NULL) 2773 break; 2774 options++; 2775 if (!isdigit(*options)) { 2776 options[-1] = '\0'; 2777 break; 2778 } 2779 } 2780 if (!*this_char) 2781 continue; 2782 if ((value = strchr(this_char,'=')) != NULL) { 2783 *value++ = 0; 2784 } else { 2785 printk(KERN_ERR 2786 "tmpfs: No value for mount option '%s'\n", 2787 this_char); 2788 goto error; 2789 } 2790 2791 if (!strcmp(this_char,"size")) { 2792 unsigned long long size; 2793 size = memparse(value,&rest); 2794 if (*rest == '%') { 2795 size <<= PAGE_SHIFT; 2796 size *= totalram_pages; 2797 do_div(size, 100); 2798 rest++; 2799 } 2800 if (*rest) 2801 goto bad_val; 2802 sbinfo->max_blocks = 2803 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2804 } else if (!strcmp(this_char,"nr_blocks")) { 2805 sbinfo->max_blocks = memparse(value, &rest); 2806 if (*rest) 2807 goto bad_val; 2808 } else if (!strcmp(this_char,"nr_inodes")) { 2809 sbinfo->max_inodes = memparse(value, &rest); 2810 if (*rest) 2811 goto bad_val; 2812 } else if (!strcmp(this_char,"mode")) { 2813 if (remount) 2814 continue; 2815 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2816 if (*rest) 2817 goto bad_val; 2818 } else if (!strcmp(this_char,"uid")) { 2819 if (remount) 2820 continue; 2821 uid = simple_strtoul(value, &rest, 0); 2822 if (*rest) 2823 goto bad_val; 2824 sbinfo->uid = make_kuid(current_user_ns(), uid); 2825 if (!uid_valid(sbinfo->uid)) 2826 goto bad_val; 2827 } else if (!strcmp(this_char,"gid")) { 2828 if (remount) 2829 continue; 2830 gid = simple_strtoul(value, &rest, 0); 2831 if (*rest) 2832 goto bad_val; 2833 sbinfo->gid = make_kgid(current_user_ns(), gid); 2834 if (!gid_valid(sbinfo->gid)) 2835 goto bad_val; 2836 } else if (!strcmp(this_char,"mpol")) { 2837 mpol_put(mpol); 2838 mpol = NULL; 2839 if (mpol_parse_str(value, &mpol)) 2840 goto bad_val; 2841 } else { 2842 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2843 this_char); 2844 goto error; 2845 } 2846 } 2847 sbinfo->mpol = mpol; 2848 return 0; 2849 2850 bad_val: 2851 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2852 value, this_char); 2853 error: 2854 mpol_put(mpol); 2855 return 1; 2856 2857 } 2858 2859 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2860 { 2861 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2862 struct shmem_sb_info config = *sbinfo; 2863 unsigned long inodes; 2864 int error = -EINVAL; 2865 2866 config.mpol = NULL; 2867 if (shmem_parse_options(data, &config, true)) 2868 return error; 2869 2870 spin_lock(&sbinfo->stat_lock); 2871 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2872 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 2873 goto out; 2874 if (config.max_inodes < inodes) 2875 goto out; 2876 /* 2877 * Those tests disallow limited->unlimited while any are in use; 2878 * but we must separately disallow unlimited->limited, because 2879 * in that case we have no record of how much is already in use. 2880 */ 2881 if (config.max_blocks && !sbinfo->max_blocks) 2882 goto out; 2883 if (config.max_inodes && !sbinfo->max_inodes) 2884 goto out; 2885 2886 error = 0; 2887 sbinfo->max_blocks = config.max_blocks; 2888 sbinfo->max_inodes = config.max_inodes; 2889 sbinfo->free_inodes = config.max_inodes - inodes; 2890 2891 /* 2892 * Preserve previous mempolicy unless mpol remount option was specified. 2893 */ 2894 if (config.mpol) { 2895 mpol_put(sbinfo->mpol); 2896 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2897 } 2898 out: 2899 spin_unlock(&sbinfo->stat_lock); 2900 return error; 2901 } 2902 2903 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 2904 { 2905 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 2906 2907 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2908 seq_printf(seq, ",size=%luk", 2909 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2910 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2911 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2912 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2913 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 2914 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 2915 seq_printf(seq, ",uid=%u", 2916 from_kuid_munged(&init_user_ns, sbinfo->uid)); 2917 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 2918 seq_printf(seq, ",gid=%u", 2919 from_kgid_munged(&init_user_ns, sbinfo->gid)); 2920 shmem_show_mpol(seq, sbinfo->mpol); 2921 return 0; 2922 } 2923 2924 #define MFD_NAME_PREFIX "memfd:" 2925 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) 2926 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) 2927 2928 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING) 2929 2930 SYSCALL_DEFINE2(memfd_create, 2931 const char __user *, uname, 2932 unsigned int, flags) 2933 { 2934 struct shmem_inode_info *info; 2935 struct file *file; 2936 int fd, error; 2937 char *name; 2938 long len; 2939 2940 if (flags & ~(unsigned int)MFD_ALL_FLAGS) 2941 return -EINVAL; 2942 2943 /* length includes terminating zero */ 2944 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); 2945 if (len <= 0) 2946 return -EFAULT; 2947 if (len > MFD_NAME_MAX_LEN + 1) 2948 return -EINVAL; 2949 2950 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY); 2951 if (!name) 2952 return -ENOMEM; 2953 2954 strcpy(name, MFD_NAME_PREFIX); 2955 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { 2956 error = -EFAULT; 2957 goto err_name; 2958 } 2959 2960 /* terminating-zero may have changed after strnlen_user() returned */ 2961 if (name[len + MFD_NAME_PREFIX_LEN - 1]) { 2962 error = -EFAULT; 2963 goto err_name; 2964 } 2965 2966 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); 2967 if (fd < 0) { 2968 error = fd; 2969 goto err_name; 2970 } 2971 2972 file = shmem_file_setup(name, 0, VM_NORESERVE); 2973 if (IS_ERR(file)) { 2974 error = PTR_ERR(file); 2975 goto err_fd; 2976 } 2977 info = SHMEM_I(file_inode(file)); 2978 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; 2979 file->f_flags |= O_RDWR | O_LARGEFILE; 2980 if (flags & MFD_ALLOW_SEALING) 2981 info->seals &= ~F_SEAL_SEAL; 2982 2983 fd_install(fd, file); 2984 kfree(name); 2985 return fd; 2986 2987 err_fd: 2988 put_unused_fd(fd); 2989 err_name: 2990 kfree(name); 2991 return error; 2992 } 2993 2994 #endif /* CONFIG_TMPFS */ 2995 2996 static void shmem_put_super(struct super_block *sb) 2997 { 2998 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2999 3000 percpu_counter_destroy(&sbinfo->used_blocks); 3001 mpol_put(sbinfo->mpol); 3002 kfree(sbinfo); 3003 sb->s_fs_info = NULL; 3004 } 3005 3006 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3007 { 3008 struct inode *inode; 3009 struct shmem_sb_info *sbinfo; 3010 int err = -ENOMEM; 3011 3012 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3013 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3014 L1_CACHE_BYTES), GFP_KERNEL); 3015 if (!sbinfo) 3016 return -ENOMEM; 3017 3018 sbinfo->mode = S_IRWXUGO | S_ISVTX; 3019 sbinfo->uid = current_fsuid(); 3020 sbinfo->gid = current_fsgid(); 3021 sb->s_fs_info = sbinfo; 3022 3023 #ifdef CONFIG_TMPFS 3024 /* 3025 * Per default we only allow half of the physical ram per 3026 * tmpfs instance, limiting inodes to one per page of lowmem; 3027 * but the internal instance is left unlimited. 3028 */ 3029 if (!(sb->s_flags & MS_KERNMOUNT)) { 3030 sbinfo->max_blocks = shmem_default_max_blocks(); 3031 sbinfo->max_inodes = shmem_default_max_inodes(); 3032 if (shmem_parse_options(data, sbinfo, false)) { 3033 err = -EINVAL; 3034 goto failed; 3035 } 3036 } else { 3037 sb->s_flags |= MS_NOUSER; 3038 } 3039 sb->s_export_op = &shmem_export_ops; 3040 sb->s_flags |= MS_NOSEC; 3041 #else 3042 sb->s_flags |= MS_NOUSER; 3043 #endif 3044 3045 spin_lock_init(&sbinfo->stat_lock); 3046 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3047 goto failed; 3048 sbinfo->free_inodes = sbinfo->max_inodes; 3049 3050 sb->s_maxbytes = MAX_LFS_FILESIZE; 3051 sb->s_blocksize = PAGE_CACHE_SIZE; 3052 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 3053 sb->s_magic = TMPFS_MAGIC; 3054 sb->s_op = &shmem_ops; 3055 sb->s_time_gran = 1; 3056 #ifdef CONFIG_TMPFS_XATTR 3057 sb->s_xattr = shmem_xattr_handlers; 3058 #endif 3059 #ifdef CONFIG_TMPFS_POSIX_ACL 3060 sb->s_flags |= MS_POSIXACL; 3061 #endif 3062 3063 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3064 if (!inode) 3065 goto failed; 3066 inode->i_uid = sbinfo->uid; 3067 inode->i_gid = sbinfo->gid; 3068 sb->s_root = d_make_root(inode); 3069 if (!sb->s_root) 3070 goto failed; 3071 return 0; 3072 3073 failed: 3074 shmem_put_super(sb); 3075 return err; 3076 } 3077 3078 static struct kmem_cache *shmem_inode_cachep; 3079 3080 static struct inode *shmem_alloc_inode(struct super_block *sb) 3081 { 3082 struct shmem_inode_info *info; 3083 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3084 if (!info) 3085 return NULL; 3086 return &info->vfs_inode; 3087 } 3088 3089 static void shmem_destroy_callback(struct rcu_head *head) 3090 { 3091 struct inode *inode = container_of(head, struct inode, i_rcu); 3092 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3093 } 3094 3095 static void shmem_destroy_inode(struct inode *inode) 3096 { 3097 if (S_ISREG(inode->i_mode)) 3098 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3099 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3100 } 3101 3102 static void shmem_init_inode(void *foo) 3103 { 3104 struct shmem_inode_info *info = foo; 3105 inode_init_once(&info->vfs_inode); 3106 } 3107 3108 static int shmem_init_inodecache(void) 3109 { 3110 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3111 sizeof(struct shmem_inode_info), 3112 0, SLAB_PANIC, shmem_init_inode); 3113 return 0; 3114 } 3115 3116 static void shmem_destroy_inodecache(void) 3117 { 3118 kmem_cache_destroy(shmem_inode_cachep); 3119 } 3120 3121 static const struct address_space_operations shmem_aops = { 3122 .writepage = shmem_writepage, 3123 .set_page_dirty = __set_page_dirty_no_writeback, 3124 #ifdef CONFIG_TMPFS 3125 .write_begin = shmem_write_begin, 3126 .write_end = shmem_write_end, 3127 #endif 3128 #ifdef CONFIG_MIGRATION 3129 .migratepage = migrate_page, 3130 #endif 3131 .error_remove_page = generic_error_remove_page, 3132 }; 3133 3134 static const struct file_operations shmem_file_operations = { 3135 .mmap = shmem_mmap, 3136 #ifdef CONFIG_TMPFS 3137 .llseek = shmem_file_llseek, 3138 .read_iter = shmem_file_read_iter, 3139 .write_iter = generic_file_write_iter, 3140 .fsync = noop_fsync, 3141 .splice_read = shmem_file_splice_read, 3142 .splice_write = iter_file_splice_write, 3143 .fallocate = shmem_fallocate, 3144 #endif 3145 }; 3146 3147 static const struct inode_operations shmem_inode_operations = { 3148 .getattr = shmem_getattr, 3149 .setattr = shmem_setattr, 3150 #ifdef CONFIG_TMPFS_XATTR 3151 .setxattr = shmem_setxattr, 3152 .getxattr = shmem_getxattr, 3153 .listxattr = shmem_listxattr, 3154 .removexattr = shmem_removexattr, 3155 .set_acl = simple_set_acl, 3156 #endif 3157 }; 3158 3159 static const struct inode_operations shmem_dir_inode_operations = { 3160 #ifdef CONFIG_TMPFS 3161 .create = shmem_create, 3162 .lookup = simple_lookup, 3163 .link = shmem_link, 3164 .unlink = shmem_unlink, 3165 .symlink = shmem_symlink, 3166 .mkdir = shmem_mkdir, 3167 .rmdir = shmem_rmdir, 3168 .mknod = shmem_mknod, 3169 .rename2 = shmem_rename2, 3170 .tmpfile = shmem_tmpfile, 3171 #endif 3172 #ifdef CONFIG_TMPFS_XATTR 3173 .setxattr = shmem_setxattr, 3174 .getxattr = shmem_getxattr, 3175 .listxattr = shmem_listxattr, 3176 .removexattr = shmem_removexattr, 3177 #endif 3178 #ifdef CONFIG_TMPFS_POSIX_ACL 3179 .setattr = shmem_setattr, 3180 .set_acl = simple_set_acl, 3181 #endif 3182 }; 3183 3184 static const struct inode_operations shmem_special_inode_operations = { 3185 #ifdef CONFIG_TMPFS_XATTR 3186 .setxattr = shmem_setxattr, 3187 .getxattr = shmem_getxattr, 3188 .listxattr = shmem_listxattr, 3189 .removexattr = shmem_removexattr, 3190 #endif 3191 #ifdef CONFIG_TMPFS_POSIX_ACL 3192 .setattr = shmem_setattr, 3193 .set_acl = simple_set_acl, 3194 #endif 3195 }; 3196 3197 static const struct super_operations shmem_ops = { 3198 .alloc_inode = shmem_alloc_inode, 3199 .destroy_inode = shmem_destroy_inode, 3200 #ifdef CONFIG_TMPFS 3201 .statfs = shmem_statfs, 3202 .remount_fs = shmem_remount_fs, 3203 .show_options = shmem_show_options, 3204 #endif 3205 .evict_inode = shmem_evict_inode, 3206 .drop_inode = generic_delete_inode, 3207 .put_super = shmem_put_super, 3208 }; 3209 3210 static const struct vm_operations_struct shmem_vm_ops = { 3211 .fault = shmem_fault, 3212 .map_pages = filemap_map_pages, 3213 #ifdef CONFIG_NUMA 3214 .set_policy = shmem_set_policy, 3215 .get_policy = shmem_get_policy, 3216 #endif 3217 }; 3218 3219 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3220 int flags, const char *dev_name, void *data) 3221 { 3222 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3223 } 3224 3225 static struct file_system_type shmem_fs_type = { 3226 .owner = THIS_MODULE, 3227 .name = "tmpfs", 3228 .mount = shmem_mount, 3229 .kill_sb = kill_litter_super, 3230 .fs_flags = FS_USERNS_MOUNT, 3231 }; 3232 3233 int __init shmem_init(void) 3234 { 3235 int error; 3236 3237 /* If rootfs called this, don't re-init */ 3238 if (shmem_inode_cachep) 3239 return 0; 3240 3241 error = shmem_init_inodecache(); 3242 if (error) 3243 goto out3; 3244 3245 error = register_filesystem(&shmem_fs_type); 3246 if (error) { 3247 printk(KERN_ERR "Could not register tmpfs\n"); 3248 goto out2; 3249 } 3250 3251 shm_mnt = kern_mount(&shmem_fs_type); 3252 if (IS_ERR(shm_mnt)) { 3253 error = PTR_ERR(shm_mnt); 3254 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 3255 goto out1; 3256 } 3257 return 0; 3258 3259 out1: 3260 unregister_filesystem(&shmem_fs_type); 3261 out2: 3262 shmem_destroy_inodecache(); 3263 out3: 3264 shm_mnt = ERR_PTR(error); 3265 return error; 3266 } 3267 3268 #else /* !CONFIG_SHMEM */ 3269 3270 /* 3271 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3272 * 3273 * This is intended for small system where the benefits of the full 3274 * shmem code (swap-backed and resource-limited) are outweighed by 3275 * their complexity. On systems without swap this code should be 3276 * effectively equivalent, but much lighter weight. 3277 */ 3278 3279 static struct file_system_type shmem_fs_type = { 3280 .name = "tmpfs", 3281 .mount = ramfs_mount, 3282 .kill_sb = kill_litter_super, 3283 .fs_flags = FS_USERNS_MOUNT, 3284 }; 3285 3286 int __init shmem_init(void) 3287 { 3288 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3289 3290 shm_mnt = kern_mount(&shmem_fs_type); 3291 BUG_ON(IS_ERR(shm_mnt)); 3292 3293 return 0; 3294 } 3295 3296 int shmem_unuse(swp_entry_t swap, struct page *page) 3297 { 3298 return 0; 3299 } 3300 3301 int shmem_lock(struct file *file, int lock, struct user_struct *user) 3302 { 3303 return 0; 3304 } 3305 3306 void shmem_unlock_mapping(struct address_space *mapping) 3307 { 3308 } 3309 3310 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 3311 { 3312 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 3313 } 3314 EXPORT_SYMBOL_GPL(shmem_truncate_range); 3315 3316 #define shmem_vm_ops generic_file_vm_ops 3317 #define shmem_file_operations ramfs_file_operations 3318 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 3319 #define shmem_acct_size(flags, size) 0 3320 #define shmem_unacct_size(flags, size) do {} while (0) 3321 3322 #endif /* CONFIG_SHMEM */ 3323 3324 /* common code */ 3325 3326 static struct dentry_operations anon_ops = { 3327 .d_dname = simple_dname 3328 }; 3329 3330 static struct file *__shmem_file_setup(const char *name, loff_t size, 3331 unsigned long flags, unsigned int i_flags) 3332 { 3333 struct file *res; 3334 struct inode *inode; 3335 struct path path; 3336 struct super_block *sb; 3337 struct qstr this; 3338 3339 if (IS_ERR(shm_mnt)) 3340 return ERR_CAST(shm_mnt); 3341 3342 if (size < 0 || size > MAX_LFS_FILESIZE) 3343 return ERR_PTR(-EINVAL); 3344 3345 if (shmem_acct_size(flags, size)) 3346 return ERR_PTR(-ENOMEM); 3347 3348 res = ERR_PTR(-ENOMEM); 3349 this.name = name; 3350 this.len = strlen(name); 3351 this.hash = 0; /* will go */ 3352 sb = shm_mnt->mnt_sb; 3353 path.mnt = mntget(shm_mnt); 3354 path.dentry = d_alloc_pseudo(sb, &this); 3355 if (!path.dentry) 3356 goto put_memory; 3357 d_set_d_op(path.dentry, &anon_ops); 3358 3359 res = ERR_PTR(-ENOSPC); 3360 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 3361 if (!inode) 3362 goto put_memory; 3363 3364 inode->i_flags |= i_flags; 3365 d_instantiate(path.dentry, inode); 3366 inode->i_size = size; 3367 clear_nlink(inode); /* It is unlinked */ 3368 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 3369 if (IS_ERR(res)) 3370 goto put_path; 3371 3372 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 3373 &shmem_file_operations); 3374 if (IS_ERR(res)) 3375 goto put_path; 3376 3377 return res; 3378 3379 put_memory: 3380 shmem_unacct_size(flags, size); 3381 put_path: 3382 path_put(&path); 3383 return res; 3384 } 3385 3386 /** 3387 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 3388 * kernel internal. There will be NO LSM permission checks against the 3389 * underlying inode. So users of this interface must do LSM checks at a 3390 * higher layer. The users are the big_key and shm implementations. LSM 3391 * checks are provided at the key or shm level rather than the inode. 3392 * @name: name for dentry (to be seen in /proc/<pid>/maps 3393 * @size: size to be set for the file 3394 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3395 */ 3396 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 3397 { 3398 return __shmem_file_setup(name, size, flags, S_PRIVATE); 3399 } 3400 3401 /** 3402 * shmem_file_setup - get an unlinked file living in tmpfs 3403 * @name: name for dentry (to be seen in /proc/<pid>/maps 3404 * @size: size to be set for the file 3405 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3406 */ 3407 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 3408 { 3409 return __shmem_file_setup(name, size, flags, 0); 3410 } 3411 EXPORT_SYMBOL_GPL(shmem_file_setup); 3412 3413 /** 3414 * shmem_zero_setup - setup a shared anonymous mapping 3415 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 3416 */ 3417 int shmem_zero_setup(struct vm_area_struct *vma) 3418 { 3419 struct file *file; 3420 loff_t size = vma->vm_end - vma->vm_start; 3421 3422 /* 3423 * Cloning a new file under mmap_sem leads to a lock ordering conflict 3424 * between XFS directory reading and selinux: since this file is only 3425 * accessible to the user through its mapping, use S_PRIVATE flag to 3426 * bypass file security, in the same way as shmem_kernel_file_setup(). 3427 */ 3428 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE); 3429 if (IS_ERR(file)) 3430 return PTR_ERR(file); 3431 3432 if (vma->vm_file) 3433 fput(vma->vm_file); 3434 vma->vm_file = file; 3435 vma->vm_ops = &shmem_vm_ops; 3436 return 0; 3437 } 3438 3439 /** 3440 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 3441 * @mapping: the page's address_space 3442 * @index: the page index 3443 * @gfp: the page allocator flags to use if allocating 3444 * 3445 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 3446 * with any new page allocations done using the specified allocation flags. 3447 * But read_cache_page_gfp() uses the ->readpage() method: which does not 3448 * suit tmpfs, since it may have pages in swapcache, and needs to find those 3449 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 3450 * 3451 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 3452 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 3453 */ 3454 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 3455 pgoff_t index, gfp_t gfp) 3456 { 3457 #ifdef CONFIG_SHMEM 3458 struct inode *inode = mapping->host; 3459 struct page *page; 3460 int error; 3461 3462 BUG_ON(mapping->a_ops != &shmem_aops); 3463 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL); 3464 if (error) 3465 page = ERR_PTR(error); 3466 else 3467 unlock_page(page); 3468 return page; 3469 #else 3470 /* 3471 * The tiny !SHMEM case uses ramfs without swap 3472 */ 3473 return read_cache_page_gfp(mapping, index, gfp); 3474 #endif 3475 } 3476 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 3477