xref: /linux/mm/shmem.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 
36 static struct vfsmount *shm_mnt;
37 
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44 
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72 
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75 
76 #include "internal.h"
77 
78 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
79 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
80 
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83 
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86 
87 /*
88  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89  * inode->i_private (with i_mutex making sure that it has only one user at
90  * a time): we would prefer not to enlarge the shmem inode just for that.
91  */
92 struct shmem_falloc {
93 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94 	pgoff_t start;		/* start of range currently being fallocated */
95 	pgoff_t next;		/* the next page offset to be fallocated */
96 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
97 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
98 };
99 
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102 	SGP_READ,	/* don't exceed i_size, don't allocate page */
103 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
104 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
105 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
106 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
107 };
108 
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112 	return totalram_pages / 2;
113 }
114 
115 static unsigned long shmem_default_max_inodes(void)
116 {
117 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120 
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 				struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126 
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128 	struct page **pagep, enum sgp_type sgp, int *fault_type)
129 {
130 	return shmem_getpage_gfp(inode, index, pagep, sgp,
131 			mapping_gfp_mask(inode->i_mapping), fault_type);
132 }
133 
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136 	return sb->s_fs_info;
137 }
138 
139 /*
140  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141  * for shared memory and for shared anonymous (/dev/zero) mappings
142  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143  * consistent with the pre-accounting of private mappings ...
144  */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147 	return (flags & VM_NORESERVE) ?
148 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150 
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153 	if (!(flags & VM_NORESERVE))
154 		vm_unacct_memory(VM_ACCT(size));
155 }
156 
157 static inline int shmem_reacct_size(unsigned long flags,
158 		loff_t oldsize, loff_t newsize)
159 {
160 	if (!(flags & VM_NORESERVE)) {
161 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 			return security_vm_enough_memory_mm(current->mm,
163 					VM_ACCT(newsize) - VM_ACCT(oldsize));
164 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 	}
167 	return 0;
168 }
169 
170 /*
171  * ... whereas tmpfs objects are accounted incrementally as
172  * pages are allocated, in order to allow huge sparse files.
173  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175  */
176 static inline int shmem_acct_block(unsigned long flags)
177 {
178 	return (flags & VM_NORESERVE) ?
179 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
180 }
181 
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 {
184 	if (flags & VM_NORESERVE)
185 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
186 }
187 
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
195 
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198 
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 	if (sbinfo->max_inodes) {
203 		spin_lock(&sbinfo->stat_lock);
204 		if (!sbinfo->free_inodes) {
205 			spin_unlock(&sbinfo->stat_lock);
206 			return -ENOSPC;
207 		}
208 		sbinfo->free_inodes--;
209 		spin_unlock(&sbinfo->stat_lock);
210 	}
211 	return 0;
212 }
213 
214 static void shmem_free_inode(struct super_block *sb)
215 {
216 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 	if (sbinfo->max_inodes) {
218 		spin_lock(&sbinfo->stat_lock);
219 		sbinfo->free_inodes++;
220 		spin_unlock(&sbinfo->stat_lock);
221 	}
222 }
223 
224 /**
225  * shmem_recalc_inode - recalculate the block usage of an inode
226  * @inode: inode to recalc
227  *
228  * We have to calculate the free blocks since the mm can drop
229  * undirtied hole pages behind our back.
230  *
231  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
232  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233  *
234  * It has to be called with the spinlock held.
235  */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238 	struct shmem_inode_info *info = SHMEM_I(inode);
239 	long freed;
240 
241 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 	if (freed > 0) {
243 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 		if (sbinfo->max_blocks)
245 			percpu_counter_add(&sbinfo->used_blocks, -freed);
246 		info->alloced -= freed;
247 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248 		shmem_unacct_blocks(info->flags, freed);
249 	}
250 }
251 
252 /*
253  * Replace item expected in radix tree by a new item, while holding tree lock.
254  */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256 			pgoff_t index, void *expected, void *replacement)
257 {
258 	void **pslot;
259 	void *item;
260 
261 	VM_BUG_ON(!expected);
262 	VM_BUG_ON(!replacement);
263 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264 	if (!pslot)
265 		return -ENOENT;
266 	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267 	if (item != expected)
268 		return -ENOENT;
269 	radix_tree_replace_slot(pslot, replacement);
270 	return 0;
271 }
272 
273 /*
274  * Sometimes, before we decide whether to proceed or to fail, we must check
275  * that an entry was not already brought back from swap by a racing thread.
276  *
277  * Checking page is not enough: by the time a SwapCache page is locked, it
278  * might be reused, and again be SwapCache, using the same swap as before.
279  */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281 			       pgoff_t index, swp_entry_t swap)
282 {
283 	void *item;
284 
285 	rcu_read_lock();
286 	item = radix_tree_lookup(&mapping->page_tree, index);
287 	rcu_read_unlock();
288 	return item == swp_to_radix_entry(swap);
289 }
290 
291 /*
292  * Like add_to_page_cache_locked, but error if expected item has gone.
293  */
294 static int shmem_add_to_page_cache(struct page *page,
295 				   struct address_space *mapping,
296 				   pgoff_t index, void *expected)
297 {
298 	int error;
299 
300 	VM_BUG_ON_PAGE(!PageLocked(page), page);
301 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302 
303 	page_cache_get(page);
304 	page->mapping = mapping;
305 	page->index = index;
306 
307 	spin_lock_irq(&mapping->tree_lock);
308 	if (!expected)
309 		error = radix_tree_insert(&mapping->page_tree, index, page);
310 	else
311 		error = shmem_radix_tree_replace(mapping, index, expected,
312 								 page);
313 	if (!error) {
314 		mapping->nrpages++;
315 		__inc_zone_page_state(page, NR_FILE_PAGES);
316 		__inc_zone_page_state(page, NR_SHMEM);
317 		spin_unlock_irq(&mapping->tree_lock);
318 	} else {
319 		page->mapping = NULL;
320 		spin_unlock_irq(&mapping->tree_lock);
321 		page_cache_release(page);
322 	}
323 	return error;
324 }
325 
326 /*
327  * Like delete_from_page_cache, but substitutes swap for page.
328  */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331 	struct address_space *mapping = page->mapping;
332 	int error;
333 
334 	spin_lock_irq(&mapping->tree_lock);
335 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 	page->mapping = NULL;
337 	mapping->nrpages--;
338 	__dec_zone_page_state(page, NR_FILE_PAGES);
339 	__dec_zone_page_state(page, NR_SHMEM);
340 	spin_unlock_irq(&mapping->tree_lock);
341 	page_cache_release(page);
342 	BUG_ON(error);
343 }
344 
345 /*
346  * Remove swap entry from radix tree, free the swap and its page cache.
347  */
348 static int shmem_free_swap(struct address_space *mapping,
349 			   pgoff_t index, void *radswap)
350 {
351 	void *old;
352 
353 	spin_lock_irq(&mapping->tree_lock);
354 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355 	spin_unlock_irq(&mapping->tree_lock);
356 	if (old != radswap)
357 		return -ENOENT;
358 	free_swap_and_cache(radix_to_swp_entry(radswap));
359 	return 0;
360 }
361 
362 /*
363  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
364  */
365 void shmem_unlock_mapping(struct address_space *mapping)
366 {
367 	struct pagevec pvec;
368 	pgoff_t indices[PAGEVEC_SIZE];
369 	pgoff_t index = 0;
370 
371 	pagevec_init(&pvec, 0);
372 	/*
373 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
374 	 */
375 	while (!mapping_unevictable(mapping)) {
376 		/*
377 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
378 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
379 		 */
380 		pvec.nr = find_get_entries(mapping, index,
381 					   PAGEVEC_SIZE, pvec.pages, indices);
382 		if (!pvec.nr)
383 			break;
384 		index = indices[pvec.nr - 1] + 1;
385 		pagevec_remove_exceptionals(&pvec);
386 		check_move_unevictable_pages(pvec.pages, pvec.nr);
387 		pagevec_release(&pvec);
388 		cond_resched();
389 	}
390 }
391 
392 /*
393  * Remove range of pages and swap entries from radix tree, and free them.
394  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
395  */
396 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
397 								 bool unfalloc)
398 {
399 	struct address_space *mapping = inode->i_mapping;
400 	struct shmem_inode_info *info = SHMEM_I(inode);
401 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
402 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
403 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
404 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
405 	struct pagevec pvec;
406 	pgoff_t indices[PAGEVEC_SIZE];
407 	long nr_swaps_freed = 0;
408 	pgoff_t index;
409 	int i;
410 
411 	if (lend == -1)
412 		end = -1;	/* unsigned, so actually very big */
413 
414 	pagevec_init(&pvec, 0);
415 	index = start;
416 	while (index < end) {
417 		pvec.nr = find_get_entries(mapping, index,
418 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
419 			pvec.pages, indices);
420 		if (!pvec.nr)
421 			break;
422 		for (i = 0; i < pagevec_count(&pvec); i++) {
423 			struct page *page = pvec.pages[i];
424 
425 			index = indices[i];
426 			if (index >= end)
427 				break;
428 
429 			if (radix_tree_exceptional_entry(page)) {
430 				if (unfalloc)
431 					continue;
432 				nr_swaps_freed += !shmem_free_swap(mapping,
433 								index, page);
434 				continue;
435 			}
436 
437 			if (!trylock_page(page))
438 				continue;
439 			if (!unfalloc || !PageUptodate(page)) {
440 				if (page->mapping == mapping) {
441 					VM_BUG_ON_PAGE(PageWriteback(page), page);
442 					truncate_inode_page(mapping, page);
443 				}
444 			}
445 			unlock_page(page);
446 		}
447 		pagevec_remove_exceptionals(&pvec);
448 		pagevec_release(&pvec);
449 		cond_resched();
450 		index++;
451 	}
452 
453 	if (partial_start) {
454 		struct page *page = NULL;
455 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
456 		if (page) {
457 			unsigned int top = PAGE_CACHE_SIZE;
458 			if (start > end) {
459 				top = partial_end;
460 				partial_end = 0;
461 			}
462 			zero_user_segment(page, partial_start, top);
463 			set_page_dirty(page);
464 			unlock_page(page);
465 			page_cache_release(page);
466 		}
467 	}
468 	if (partial_end) {
469 		struct page *page = NULL;
470 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
471 		if (page) {
472 			zero_user_segment(page, 0, partial_end);
473 			set_page_dirty(page);
474 			unlock_page(page);
475 			page_cache_release(page);
476 		}
477 	}
478 	if (start >= end)
479 		return;
480 
481 	index = start;
482 	while (index < end) {
483 		cond_resched();
484 
485 		pvec.nr = find_get_entries(mapping, index,
486 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
487 				pvec.pages, indices);
488 		if (!pvec.nr) {
489 			/* If all gone or hole-punch or unfalloc, we're done */
490 			if (index == start || end != -1)
491 				break;
492 			/* But if truncating, restart to make sure all gone */
493 			index = start;
494 			continue;
495 		}
496 		for (i = 0; i < pagevec_count(&pvec); i++) {
497 			struct page *page = pvec.pages[i];
498 
499 			index = indices[i];
500 			if (index >= end)
501 				break;
502 
503 			if (radix_tree_exceptional_entry(page)) {
504 				if (unfalloc)
505 					continue;
506 				if (shmem_free_swap(mapping, index, page)) {
507 					/* Swap was replaced by page: retry */
508 					index--;
509 					break;
510 				}
511 				nr_swaps_freed++;
512 				continue;
513 			}
514 
515 			lock_page(page);
516 			if (!unfalloc || !PageUptodate(page)) {
517 				if (page->mapping == mapping) {
518 					VM_BUG_ON_PAGE(PageWriteback(page), page);
519 					truncate_inode_page(mapping, page);
520 				} else {
521 					/* Page was replaced by swap: retry */
522 					unlock_page(page);
523 					index--;
524 					break;
525 				}
526 			}
527 			unlock_page(page);
528 		}
529 		pagevec_remove_exceptionals(&pvec);
530 		pagevec_release(&pvec);
531 		index++;
532 	}
533 
534 	spin_lock(&info->lock);
535 	info->swapped -= nr_swaps_freed;
536 	shmem_recalc_inode(inode);
537 	spin_unlock(&info->lock);
538 }
539 
540 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
541 {
542 	shmem_undo_range(inode, lstart, lend, false);
543 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
544 }
545 EXPORT_SYMBOL_GPL(shmem_truncate_range);
546 
547 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
548 			 struct kstat *stat)
549 {
550 	struct inode *inode = dentry->d_inode;
551 	struct shmem_inode_info *info = SHMEM_I(inode);
552 
553 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
554 		spin_lock(&info->lock);
555 		shmem_recalc_inode(inode);
556 		spin_unlock(&info->lock);
557 	}
558 	generic_fillattr(inode, stat);
559 	return 0;
560 }
561 
562 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
563 {
564 	struct inode *inode = d_inode(dentry);
565 	struct shmem_inode_info *info = SHMEM_I(inode);
566 	int error;
567 
568 	error = inode_change_ok(inode, attr);
569 	if (error)
570 		return error;
571 
572 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
573 		loff_t oldsize = inode->i_size;
574 		loff_t newsize = attr->ia_size;
575 
576 		/* protected by i_mutex */
577 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
578 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
579 			return -EPERM;
580 
581 		if (newsize != oldsize) {
582 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
583 					oldsize, newsize);
584 			if (error)
585 				return error;
586 			i_size_write(inode, newsize);
587 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
588 		}
589 		if (newsize <= oldsize) {
590 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
591 			if (oldsize > holebegin)
592 				unmap_mapping_range(inode->i_mapping,
593 							holebegin, 0, 1);
594 			if (info->alloced)
595 				shmem_truncate_range(inode,
596 							newsize, (loff_t)-1);
597 			/* unmap again to remove racily COWed private pages */
598 			if (oldsize > holebegin)
599 				unmap_mapping_range(inode->i_mapping,
600 							holebegin, 0, 1);
601 		}
602 	}
603 
604 	setattr_copy(inode, attr);
605 	if (attr->ia_valid & ATTR_MODE)
606 		error = posix_acl_chmod(inode, inode->i_mode);
607 	return error;
608 }
609 
610 static void shmem_evict_inode(struct inode *inode)
611 {
612 	struct shmem_inode_info *info = SHMEM_I(inode);
613 
614 	if (inode->i_mapping->a_ops == &shmem_aops) {
615 		shmem_unacct_size(info->flags, inode->i_size);
616 		inode->i_size = 0;
617 		shmem_truncate_range(inode, 0, (loff_t)-1);
618 		if (!list_empty(&info->swaplist)) {
619 			mutex_lock(&shmem_swaplist_mutex);
620 			list_del_init(&info->swaplist);
621 			mutex_unlock(&shmem_swaplist_mutex);
622 		}
623 	} else
624 		kfree(info->symlink);
625 
626 	simple_xattrs_free(&info->xattrs);
627 	WARN_ON(inode->i_blocks);
628 	shmem_free_inode(inode->i_sb);
629 	clear_inode(inode);
630 }
631 
632 /*
633  * If swap found in inode, free it and move page from swapcache to filecache.
634  */
635 static int shmem_unuse_inode(struct shmem_inode_info *info,
636 			     swp_entry_t swap, struct page **pagep)
637 {
638 	struct address_space *mapping = info->vfs_inode.i_mapping;
639 	void *radswap;
640 	pgoff_t index;
641 	gfp_t gfp;
642 	int error = 0;
643 
644 	radswap = swp_to_radix_entry(swap);
645 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
646 	if (index == -1)
647 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
648 
649 	/*
650 	 * Move _head_ to start search for next from here.
651 	 * But be careful: shmem_evict_inode checks list_empty without taking
652 	 * mutex, and there's an instant in list_move_tail when info->swaplist
653 	 * would appear empty, if it were the only one on shmem_swaplist.
654 	 */
655 	if (shmem_swaplist.next != &info->swaplist)
656 		list_move_tail(&shmem_swaplist, &info->swaplist);
657 
658 	gfp = mapping_gfp_mask(mapping);
659 	if (shmem_should_replace_page(*pagep, gfp)) {
660 		mutex_unlock(&shmem_swaplist_mutex);
661 		error = shmem_replace_page(pagep, gfp, info, index);
662 		mutex_lock(&shmem_swaplist_mutex);
663 		/*
664 		 * We needed to drop mutex to make that restrictive page
665 		 * allocation, but the inode might have been freed while we
666 		 * dropped it: although a racing shmem_evict_inode() cannot
667 		 * complete without emptying the radix_tree, our page lock
668 		 * on this swapcache page is not enough to prevent that -
669 		 * free_swap_and_cache() of our swap entry will only
670 		 * trylock_page(), removing swap from radix_tree whatever.
671 		 *
672 		 * We must not proceed to shmem_add_to_page_cache() if the
673 		 * inode has been freed, but of course we cannot rely on
674 		 * inode or mapping or info to check that.  However, we can
675 		 * safely check if our swap entry is still in use (and here
676 		 * it can't have got reused for another page): if it's still
677 		 * in use, then the inode cannot have been freed yet, and we
678 		 * can safely proceed (if it's no longer in use, that tells
679 		 * nothing about the inode, but we don't need to unuse swap).
680 		 */
681 		if (!page_swapcount(*pagep))
682 			error = -ENOENT;
683 	}
684 
685 	/*
686 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
687 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
688 	 * beneath us (pagelock doesn't help until the page is in pagecache).
689 	 */
690 	if (!error)
691 		error = shmem_add_to_page_cache(*pagep, mapping, index,
692 						radswap);
693 	if (error != -ENOMEM) {
694 		/*
695 		 * Truncation and eviction use free_swap_and_cache(), which
696 		 * only does trylock page: if we raced, best clean up here.
697 		 */
698 		delete_from_swap_cache(*pagep);
699 		set_page_dirty(*pagep);
700 		if (!error) {
701 			spin_lock(&info->lock);
702 			info->swapped--;
703 			spin_unlock(&info->lock);
704 			swap_free(swap);
705 		}
706 	}
707 	return error;
708 }
709 
710 /*
711  * Search through swapped inodes to find and replace swap by page.
712  */
713 int shmem_unuse(swp_entry_t swap, struct page *page)
714 {
715 	struct list_head *this, *next;
716 	struct shmem_inode_info *info;
717 	struct mem_cgroup *memcg;
718 	int error = 0;
719 
720 	/*
721 	 * There's a faint possibility that swap page was replaced before
722 	 * caller locked it: caller will come back later with the right page.
723 	 */
724 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
725 		goto out;
726 
727 	/*
728 	 * Charge page using GFP_KERNEL while we can wait, before taking
729 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
730 	 * Charged back to the user (not to caller) when swap account is used.
731 	 */
732 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
733 	if (error)
734 		goto out;
735 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
736 	error = -EAGAIN;
737 
738 	mutex_lock(&shmem_swaplist_mutex);
739 	list_for_each_safe(this, next, &shmem_swaplist) {
740 		info = list_entry(this, struct shmem_inode_info, swaplist);
741 		if (info->swapped)
742 			error = shmem_unuse_inode(info, swap, &page);
743 		else
744 			list_del_init(&info->swaplist);
745 		cond_resched();
746 		if (error != -EAGAIN)
747 			break;
748 		/* found nothing in this: move on to search the next */
749 	}
750 	mutex_unlock(&shmem_swaplist_mutex);
751 
752 	if (error) {
753 		if (error != -ENOMEM)
754 			error = 0;
755 		mem_cgroup_cancel_charge(page, memcg);
756 	} else
757 		mem_cgroup_commit_charge(page, memcg, true);
758 out:
759 	unlock_page(page);
760 	page_cache_release(page);
761 	return error;
762 }
763 
764 /*
765  * Move the page from the page cache to the swap cache.
766  */
767 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
768 {
769 	struct shmem_inode_info *info;
770 	struct address_space *mapping;
771 	struct inode *inode;
772 	swp_entry_t swap;
773 	pgoff_t index;
774 
775 	BUG_ON(!PageLocked(page));
776 	mapping = page->mapping;
777 	index = page->index;
778 	inode = mapping->host;
779 	info = SHMEM_I(inode);
780 	if (info->flags & VM_LOCKED)
781 		goto redirty;
782 	if (!total_swap_pages)
783 		goto redirty;
784 
785 	/*
786 	 * Our capabilities prevent regular writeback or sync from ever calling
787 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
788 	 * its underlying filesystem, in which case tmpfs should write out to
789 	 * swap only in response to memory pressure, and not for the writeback
790 	 * threads or sync.
791 	 */
792 	if (!wbc->for_reclaim) {
793 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
794 		goto redirty;
795 	}
796 
797 	/*
798 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
799 	 * value into swapfile.c, the only way we can correctly account for a
800 	 * fallocated page arriving here is now to initialize it and write it.
801 	 *
802 	 * That's okay for a page already fallocated earlier, but if we have
803 	 * not yet completed the fallocation, then (a) we want to keep track
804 	 * of this page in case we have to undo it, and (b) it may not be a
805 	 * good idea to continue anyway, once we're pushing into swap.  So
806 	 * reactivate the page, and let shmem_fallocate() quit when too many.
807 	 */
808 	if (!PageUptodate(page)) {
809 		if (inode->i_private) {
810 			struct shmem_falloc *shmem_falloc;
811 			spin_lock(&inode->i_lock);
812 			shmem_falloc = inode->i_private;
813 			if (shmem_falloc &&
814 			    !shmem_falloc->waitq &&
815 			    index >= shmem_falloc->start &&
816 			    index < shmem_falloc->next)
817 				shmem_falloc->nr_unswapped++;
818 			else
819 				shmem_falloc = NULL;
820 			spin_unlock(&inode->i_lock);
821 			if (shmem_falloc)
822 				goto redirty;
823 		}
824 		clear_highpage(page);
825 		flush_dcache_page(page);
826 		SetPageUptodate(page);
827 	}
828 
829 	swap = get_swap_page();
830 	if (!swap.val)
831 		goto redirty;
832 
833 	/*
834 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
835 	 * if it's not already there.  Do it now before the page is
836 	 * moved to swap cache, when its pagelock no longer protects
837 	 * the inode from eviction.  But don't unlock the mutex until
838 	 * we've incremented swapped, because shmem_unuse_inode() will
839 	 * prune a !swapped inode from the swaplist under this mutex.
840 	 */
841 	mutex_lock(&shmem_swaplist_mutex);
842 	if (list_empty(&info->swaplist))
843 		list_add_tail(&info->swaplist, &shmem_swaplist);
844 
845 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
846 		swap_shmem_alloc(swap);
847 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
848 
849 		spin_lock(&info->lock);
850 		info->swapped++;
851 		shmem_recalc_inode(inode);
852 		spin_unlock(&info->lock);
853 
854 		mutex_unlock(&shmem_swaplist_mutex);
855 		BUG_ON(page_mapped(page));
856 		swap_writepage(page, wbc);
857 		return 0;
858 	}
859 
860 	mutex_unlock(&shmem_swaplist_mutex);
861 	swapcache_free(swap);
862 redirty:
863 	set_page_dirty(page);
864 	if (wbc->for_reclaim)
865 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
866 	unlock_page(page);
867 	return 0;
868 }
869 
870 #ifdef CONFIG_NUMA
871 #ifdef CONFIG_TMPFS
872 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
873 {
874 	char buffer[64];
875 
876 	if (!mpol || mpol->mode == MPOL_DEFAULT)
877 		return;		/* show nothing */
878 
879 	mpol_to_str(buffer, sizeof(buffer), mpol);
880 
881 	seq_printf(seq, ",mpol=%s", buffer);
882 }
883 
884 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
885 {
886 	struct mempolicy *mpol = NULL;
887 	if (sbinfo->mpol) {
888 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
889 		mpol = sbinfo->mpol;
890 		mpol_get(mpol);
891 		spin_unlock(&sbinfo->stat_lock);
892 	}
893 	return mpol;
894 }
895 #endif /* CONFIG_TMPFS */
896 
897 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
898 			struct shmem_inode_info *info, pgoff_t index)
899 {
900 	struct vm_area_struct pvma;
901 	struct page *page;
902 
903 	/* Create a pseudo vma that just contains the policy */
904 	pvma.vm_start = 0;
905 	/* Bias interleave by inode number to distribute better across nodes */
906 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
907 	pvma.vm_ops = NULL;
908 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
909 
910 	page = swapin_readahead(swap, gfp, &pvma, 0);
911 
912 	/* Drop reference taken by mpol_shared_policy_lookup() */
913 	mpol_cond_put(pvma.vm_policy);
914 
915 	return page;
916 }
917 
918 static struct page *shmem_alloc_page(gfp_t gfp,
919 			struct shmem_inode_info *info, pgoff_t index)
920 {
921 	struct vm_area_struct pvma;
922 	struct page *page;
923 
924 	/* Create a pseudo vma that just contains the policy */
925 	pvma.vm_start = 0;
926 	/* Bias interleave by inode number to distribute better across nodes */
927 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
928 	pvma.vm_ops = NULL;
929 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
930 
931 	page = alloc_page_vma(gfp, &pvma, 0);
932 
933 	/* Drop reference taken by mpol_shared_policy_lookup() */
934 	mpol_cond_put(pvma.vm_policy);
935 
936 	return page;
937 }
938 #else /* !CONFIG_NUMA */
939 #ifdef CONFIG_TMPFS
940 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
941 {
942 }
943 #endif /* CONFIG_TMPFS */
944 
945 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
946 			struct shmem_inode_info *info, pgoff_t index)
947 {
948 	return swapin_readahead(swap, gfp, NULL, 0);
949 }
950 
951 static inline struct page *shmem_alloc_page(gfp_t gfp,
952 			struct shmem_inode_info *info, pgoff_t index)
953 {
954 	return alloc_page(gfp);
955 }
956 #endif /* CONFIG_NUMA */
957 
958 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
959 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
960 {
961 	return NULL;
962 }
963 #endif
964 
965 /*
966  * When a page is moved from swapcache to shmem filecache (either by the
967  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
968  * shmem_unuse_inode()), it may have been read in earlier from swap, in
969  * ignorance of the mapping it belongs to.  If that mapping has special
970  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
971  * we may need to copy to a suitable page before moving to filecache.
972  *
973  * In a future release, this may well be extended to respect cpuset and
974  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
975  * but for now it is a simple matter of zone.
976  */
977 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
978 {
979 	return page_zonenum(page) > gfp_zone(gfp);
980 }
981 
982 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
983 				struct shmem_inode_info *info, pgoff_t index)
984 {
985 	struct page *oldpage, *newpage;
986 	struct address_space *swap_mapping;
987 	pgoff_t swap_index;
988 	int error;
989 
990 	oldpage = *pagep;
991 	swap_index = page_private(oldpage);
992 	swap_mapping = page_mapping(oldpage);
993 
994 	/*
995 	 * We have arrived here because our zones are constrained, so don't
996 	 * limit chance of success by further cpuset and node constraints.
997 	 */
998 	gfp &= ~GFP_CONSTRAINT_MASK;
999 	newpage = shmem_alloc_page(gfp, info, index);
1000 	if (!newpage)
1001 		return -ENOMEM;
1002 
1003 	page_cache_get(newpage);
1004 	copy_highpage(newpage, oldpage);
1005 	flush_dcache_page(newpage);
1006 
1007 	__set_page_locked(newpage);
1008 	SetPageUptodate(newpage);
1009 	SetPageSwapBacked(newpage);
1010 	set_page_private(newpage, swap_index);
1011 	SetPageSwapCache(newpage);
1012 
1013 	/*
1014 	 * Our caller will very soon move newpage out of swapcache, but it's
1015 	 * a nice clean interface for us to replace oldpage by newpage there.
1016 	 */
1017 	spin_lock_irq(&swap_mapping->tree_lock);
1018 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1019 								   newpage);
1020 	if (!error) {
1021 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1022 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1023 	}
1024 	spin_unlock_irq(&swap_mapping->tree_lock);
1025 
1026 	if (unlikely(error)) {
1027 		/*
1028 		 * Is this possible?  I think not, now that our callers check
1029 		 * both PageSwapCache and page_private after getting page lock;
1030 		 * but be defensive.  Reverse old to newpage for clear and free.
1031 		 */
1032 		oldpage = newpage;
1033 	} else {
1034 		mem_cgroup_replace_page(oldpage, newpage);
1035 		lru_cache_add_anon(newpage);
1036 		*pagep = newpage;
1037 	}
1038 
1039 	ClearPageSwapCache(oldpage);
1040 	set_page_private(oldpage, 0);
1041 
1042 	unlock_page(oldpage);
1043 	page_cache_release(oldpage);
1044 	page_cache_release(oldpage);
1045 	return error;
1046 }
1047 
1048 /*
1049  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1050  *
1051  * If we allocate a new one we do not mark it dirty. That's up to the
1052  * vm. If we swap it in we mark it dirty since we also free the swap
1053  * entry since a page cannot live in both the swap and page cache
1054  */
1055 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1056 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1057 {
1058 	struct address_space *mapping = inode->i_mapping;
1059 	struct shmem_inode_info *info;
1060 	struct shmem_sb_info *sbinfo;
1061 	struct mem_cgroup *memcg;
1062 	struct page *page;
1063 	swp_entry_t swap;
1064 	int error;
1065 	int once = 0;
1066 	int alloced = 0;
1067 
1068 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1069 		return -EFBIG;
1070 repeat:
1071 	swap.val = 0;
1072 	page = find_lock_entry(mapping, index);
1073 	if (radix_tree_exceptional_entry(page)) {
1074 		swap = radix_to_swp_entry(page);
1075 		page = NULL;
1076 	}
1077 
1078 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1079 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1080 		error = -EINVAL;
1081 		goto failed;
1082 	}
1083 
1084 	if (page && sgp == SGP_WRITE)
1085 		mark_page_accessed(page);
1086 
1087 	/* fallocated page? */
1088 	if (page && !PageUptodate(page)) {
1089 		if (sgp != SGP_READ)
1090 			goto clear;
1091 		unlock_page(page);
1092 		page_cache_release(page);
1093 		page = NULL;
1094 	}
1095 	if (page || (sgp == SGP_READ && !swap.val)) {
1096 		*pagep = page;
1097 		return 0;
1098 	}
1099 
1100 	/*
1101 	 * Fast cache lookup did not find it:
1102 	 * bring it back from swap or allocate.
1103 	 */
1104 	info = SHMEM_I(inode);
1105 	sbinfo = SHMEM_SB(inode->i_sb);
1106 
1107 	if (swap.val) {
1108 		/* Look it up and read it in.. */
1109 		page = lookup_swap_cache(swap);
1110 		if (!page) {
1111 			/* here we actually do the io */
1112 			if (fault_type)
1113 				*fault_type |= VM_FAULT_MAJOR;
1114 			page = shmem_swapin(swap, gfp, info, index);
1115 			if (!page) {
1116 				error = -ENOMEM;
1117 				goto failed;
1118 			}
1119 		}
1120 
1121 		/* We have to do this with page locked to prevent races */
1122 		lock_page(page);
1123 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1124 		    !shmem_confirm_swap(mapping, index, swap)) {
1125 			error = -EEXIST;	/* try again */
1126 			goto unlock;
1127 		}
1128 		if (!PageUptodate(page)) {
1129 			error = -EIO;
1130 			goto failed;
1131 		}
1132 		wait_on_page_writeback(page);
1133 
1134 		if (shmem_should_replace_page(page, gfp)) {
1135 			error = shmem_replace_page(&page, gfp, info, index);
1136 			if (error)
1137 				goto failed;
1138 		}
1139 
1140 		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1141 		if (!error) {
1142 			error = shmem_add_to_page_cache(page, mapping, index,
1143 						swp_to_radix_entry(swap));
1144 			/*
1145 			 * We already confirmed swap under page lock, and make
1146 			 * no memory allocation here, so usually no possibility
1147 			 * of error; but free_swap_and_cache() only trylocks a
1148 			 * page, so it is just possible that the entry has been
1149 			 * truncated or holepunched since swap was confirmed.
1150 			 * shmem_undo_range() will have done some of the
1151 			 * unaccounting, now delete_from_swap_cache() will do
1152 			 * the rest.
1153 			 * Reset swap.val? No, leave it so "failed" goes back to
1154 			 * "repeat": reading a hole and writing should succeed.
1155 			 */
1156 			if (error) {
1157 				mem_cgroup_cancel_charge(page, memcg);
1158 				delete_from_swap_cache(page);
1159 			}
1160 		}
1161 		if (error)
1162 			goto failed;
1163 
1164 		mem_cgroup_commit_charge(page, memcg, true);
1165 
1166 		spin_lock(&info->lock);
1167 		info->swapped--;
1168 		shmem_recalc_inode(inode);
1169 		spin_unlock(&info->lock);
1170 
1171 		if (sgp == SGP_WRITE)
1172 			mark_page_accessed(page);
1173 
1174 		delete_from_swap_cache(page);
1175 		set_page_dirty(page);
1176 		swap_free(swap);
1177 
1178 	} else {
1179 		if (shmem_acct_block(info->flags)) {
1180 			error = -ENOSPC;
1181 			goto failed;
1182 		}
1183 		if (sbinfo->max_blocks) {
1184 			if (percpu_counter_compare(&sbinfo->used_blocks,
1185 						sbinfo->max_blocks) >= 0) {
1186 				error = -ENOSPC;
1187 				goto unacct;
1188 			}
1189 			percpu_counter_inc(&sbinfo->used_blocks);
1190 		}
1191 
1192 		page = shmem_alloc_page(gfp, info, index);
1193 		if (!page) {
1194 			error = -ENOMEM;
1195 			goto decused;
1196 		}
1197 
1198 		__SetPageSwapBacked(page);
1199 		__set_page_locked(page);
1200 		if (sgp == SGP_WRITE)
1201 			__SetPageReferenced(page);
1202 
1203 		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1204 		if (error)
1205 			goto decused;
1206 		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1207 		if (!error) {
1208 			error = shmem_add_to_page_cache(page, mapping, index,
1209 							NULL);
1210 			radix_tree_preload_end();
1211 		}
1212 		if (error) {
1213 			mem_cgroup_cancel_charge(page, memcg);
1214 			goto decused;
1215 		}
1216 		mem_cgroup_commit_charge(page, memcg, false);
1217 		lru_cache_add_anon(page);
1218 
1219 		spin_lock(&info->lock);
1220 		info->alloced++;
1221 		inode->i_blocks += BLOCKS_PER_PAGE;
1222 		shmem_recalc_inode(inode);
1223 		spin_unlock(&info->lock);
1224 		alloced = true;
1225 
1226 		/*
1227 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1228 		 */
1229 		if (sgp == SGP_FALLOC)
1230 			sgp = SGP_WRITE;
1231 clear:
1232 		/*
1233 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1234 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1235 		 * it now, lest undo on failure cancel our earlier guarantee.
1236 		 */
1237 		if (sgp != SGP_WRITE) {
1238 			clear_highpage(page);
1239 			flush_dcache_page(page);
1240 			SetPageUptodate(page);
1241 		}
1242 		if (sgp == SGP_DIRTY)
1243 			set_page_dirty(page);
1244 	}
1245 
1246 	/* Perhaps the file has been truncated since we checked */
1247 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1248 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1249 		error = -EINVAL;
1250 		if (alloced)
1251 			goto trunc;
1252 		else
1253 			goto failed;
1254 	}
1255 	*pagep = page;
1256 	return 0;
1257 
1258 	/*
1259 	 * Error recovery.
1260 	 */
1261 trunc:
1262 	info = SHMEM_I(inode);
1263 	ClearPageDirty(page);
1264 	delete_from_page_cache(page);
1265 	spin_lock(&info->lock);
1266 	info->alloced--;
1267 	inode->i_blocks -= BLOCKS_PER_PAGE;
1268 	spin_unlock(&info->lock);
1269 decused:
1270 	sbinfo = SHMEM_SB(inode->i_sb);
1271 	if (sbinfo->max_blocks)
1272 		percpu_counter_add(&sbinfo->used_blocks, -1);
1273 unacct:
1274 	shmem_unacct_blocks(info->flags, 1);
1275 failed:
1276 	if (swap.val && error != -EINVAL &&
1277 	    !shmem_confirm_swap(mapping, index, swap))
1278 		error = -EEXIST;
1279 unlock:
1280 	if (page) {
1281 		unlock_page(page);
1282 		page_cache_release(page);
1283 	}
1284 	if (error == -ENOSPC && !once++) {
1285 		info = SHMEM_I(inode);
1286 		spin_lock(&info->lock);
1287 		shmem_recalc_inode(inode);
1288 		spin_unlock(&info->lock);
1289 		goto repeat;
1290 	}
1291 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1292 		goto repeat;
1293 	return error;
1294 }
1295 
1296 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1297 {
1298 	struct inode *inode = file_inode(vma->vm_file);
1299 	int error;
1300 	int ret = VM_FAULT_LOCKED;
1301 
1302 	/*
1303 	 * Trinity finds that probing a hole which tmpfs is punching can
1304 	 * prevent the hole-punch from ever completing: which in turn
1305 	 * locks writers out with its hold on i_mutex.  So refrain from
1306 	 * faulting pages into the hole while it's being punched.  Although
1307 	 * shmem_undo_range() does remove the additions, it may be unable to
1308 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1309 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1310 	 *
1311 	 * It does not matter if we sometimes reach this check just before the
1312 	 * hole-punch begins, so that one fault then races with the punch:
1313 	 * we just need to make racing faults a rare case.
1314 	 *
1315 	 * The implementation below would be much simpler if we just used a
1316 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1317 	 * and bloating every shmem inode for this unlikely case would be sad.
1318 	 */
1319 	if (unlikely(inode->i_private)) {
1320 		struct shmem_falloc *shmem_falloc;
1321 
1322 		spin_lock(&inode->i_lock);
1323 		shmem_falloc = inode->i_private;
1324 		if (shmem_falloc &&
1325 		    shmem_falloc->waitq &&
1326 		    vmf->pgoff >= shmem_falloc->start &&
1327 		    vmf->pgoff < shmem_falloc->next) {
1328 			wait_queue_head_t *shmem_falloc_waitq;
1329 			DEFINE_WAIT(shmem_fault_wait);
1330 
1331 			ret = VM_FAULT_NOPAGE;
1332 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1333 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1334 				/* It's polite to up mmap_sem if we can */
1335 				up_read(&vma->vm_mm->mmap_sem);
1336 				ret = VM_FAULT_RETRY;
1337 			}
1338 
1339 			shmem_falloc_waitq = shmem_falloc->waitq;
1340 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1341 					TASK_UNINTERRUPTIBLE);
1342 			spin_unlock(&inode->i_lock);
1343 			schedule();
1344 
1345 			/*
1346 			 * shmem_falloc_waitq points into the shmem_fallocate()
1347 			 * stack of the hole-punching task: shmem_falloc_waitq
1348 			 * is usually invalid by the time we reach here, but
1349 			 * finish_wait() does not dereference it in that case;
1350 			 * though i_lock needed lest racing with wake_up_all().
1351 			 */
1352 			spin_lock(&inode->i_lock);
1353 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1354 			spin_unlock(&inode->i_lock);
1355 			return ret;
1356 		}
1357 		spin_unlock(&inode->i_lock);
1358 	}
1359 
1360 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1361 	if (error)
1362 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1363 
1364 	if (ret & VM_FAULT_MAJOR) {
1365 		count_vm_event(PGMAJFAULT);
1366 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1367 	}
1368 	return ret;
1369 }
1370 
1371 #ifdef CONFIG_NUMA
1372 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1373 {
1374 	struct inode *inode = file_inode(vma->vm_file);
1375 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1376 }
1377 
1378 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1379 					  unsigned long addr)
1380 {
1381 	struct inode *inode = file_inode(vma->vm_file);
1382 	pgoff_t index;
1383 
1384 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1385 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1386 }
1387 #endif
1388 
1389 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1390 {
1391 	struct inode *inode = file_inode(file);
1392 	struct shmem_inode_info *info = SHMEM_I(inode);
1393 	int retval = -ENOMEM;
1394 
1395 	spin_lock(&info->lock);
1396 	if (lock && !(info->flags & VM_LOCKED)) {
1397 		if (!user_shm_lock(inode->i_size, user))
1398 			goto out_nomem;
1399 		info->flags |= VM_LOCKED;
1400 		mapping_set_unevictable(file->f_mapping);
1401 	}
1402 	if (!lock && (info->flags & VM_LOCKED) && user) {
1403 		user_shm_unlock(inode->i_size, user);
1404 		info->flags &= ~VM_LOCKED;
1405 		mapping_clear_unevictable(file->f_mapping);
1406 	}
1407 	retval = 0;
1408 
1409 out_nomem:
1410 	spin_unlock(&info->lock);
1411 	return retval;
1412 }
1413 
1414 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1415 {
1416 	file_accessed(file);
1417 	vma->vm_ops = &shmem_vm_ops;
1418 	return 0;
1419 }
1420 
1421 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1422 				     umode_t mode, dev_t dev, unsigned long flags)
1423 {
1424 	struct inode *inode;
1425 	struct shmem_inode_info *info;
1426 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1427 
1428 	if (shmem_reserve_inode(sb))
1429 		return NULL;
1430 
1431 	inode = new_inode(sb);
1432 	if (inode) {
1433 		inode->i_ino = get_next_ino();
1434 		inode_init_owner(inode, dir, mode);
1435 		inode->i_blocks = 0;
1436 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1437 		inode->i_generation = get_seconds();
1438 		info = SHMEM_I(inode);
1439 		memset(info, 0, (char *)inode - (char *)info);
1440 		spin_lock_init(&info->lock);
1441 		info->seals = F_SEAL_SEAL;
1442 		info->flags = flags & VM_NORESERVE;
1443 		INIT_LIST_HEAD(&info->swaplist);
1444 		simple_xattrs_init(&info->xattrs);
1445 		cache_no_acl(inode);
1446 
1447 		switch (mode & S_IFMT) {
1448 		default:
1449 			inode->i_op = &shmem_special_inode_operations;
1450 			init_special_inode(inode, mode, dev);
1451 			break;
1452 		case S_IFREG:
1453 			inode->i_mapping->a_ops = &shmem_aops;
1454 			inode->i_op = &shmem_inode_operations;
1455 			inode->i_fop = &shmem_file_operations;
1456 			mpol_shared_policy_init(&info->policy,
1457 						 shmem_get_sbmpol(sbinfo));
1458 			break;
1459 		case S_IFDIR:
1460 			inc_nlink(inode);
1461 			/* Some things misbehave if size == 0 on a directory */
1462 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1463 			inode->i_op = &shmem_dir_inode_operations;
1464 			inode->i_fop = &simple_dir_operations;
1465 			break;
1466 		case S_IFLNK:
1467 			/*
1468 			 * Must not load anything in the rbtree,
1469 			 * mpol_free_shared_policy will not be called.
1470 			 */
1471 			mpol_shared_policy_init(&info->policy, NULL);
1472 			break;
1473 		}
1474 	} else
1475 		shmem_free_inode(sb);
1476 	return inode;
1477 }
1478 
1479 bool shmem_mapping(struct address_space *mapping)
1480 {
1481 	if (!mapping->host)
1482 		return false;
1483 
1484 	return mapping->host->i_sb->s_op == &shmem_ops;
1485 }
1486 
1487 #ifdef CONFIG_TMPFS
1488 static const struct inode_operations shmem_symlink_inode_operations;
1489 static const struct inode_operations shmem_short_symlink_operations;
1490 
1491 #ifdef CONFIG_TMPFS_XATTR
1492 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1493 #else
1494 #define shmem_initxattrs NULL
1495 #endif
1496 
1497 static int
1498 shmem_write_begin(struct file *file, struct address_space *mapping,
1499 			loff_t pos, unsigned len, unsigned flags,
1500 			struct page **pagep, void **fsdata)
1501 {
1502 	struct inode *inode = mapping->host;
1503 	struct shmem_inode_info *info = SHMEM_I(inode);
1504 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1505 
1506 	/* i_mutex is held by caller */
1507 	if (unlikely(info->seals)) {
1508 		if (info->seals & F_SEAL_WRITE)
1509 			return -EPERM;
1510 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1511 			return -EPERM;
1512 	}
1513 
1514 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1515 }
1516 
1517 static int
1518 shmem_write_end(struct file *file, struct address_space *mapping,
1519 			loff_t pos, unsigned len, unsigned copied,
1520 			struct page *page, void *fsdata)
1521 {
1522 	struct inode *inode = mapping->host;
1523 
1524 	if (pos + copied > inode->i_size)
1525 		i_size_write(inode, pos + copied);
1526 
1527 	if (!PageUptodate(page)) {
1528 		if (copied < PAGE_CACHE_SIZE) {
1529 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1530 			zero_user_segments(page, 0, from,
1531 					from + copied, PAGE_CACHE_SIZE);
1532 		}
1533 		SetPageUptodate(page);
1534 	}
1535 	set_page_dirty(page);
1536 	unlock_page(page);
1537 	page_cache_release(page);
1538 
1539 	return copied;
1540 }
1541 
1542 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1543 {
1544 	struct file *file = iocb->ki_filp;
1545 	struct inode *inode = file_inode(file);
1546 	struct address_space *mapping = inode->i_mapping;
1547 	pgoff_t index;
1548 	unsigned long offset;
1549 	enum sgp_type sgp = SGP_READ;
1550 	int error = 0;
1551 	ssize_t retval = 0;
1552 	loff_t *ppos = &iocb->ki_pos;
1553 
1554 	/*
1555 	 * Might this read be for a stacking filesystem?  Then when reading
1556 	 * holes of a sparse file, we actually need to allocate those pages,
1557 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1558 	 */
1559 	if (!iter_is_iovec(to))
1560 		sgp = SGP_DIRTY;
1561 
1562 	index = *ppos >> PAGE_CACHE_SHIFT;
1563 	offset = *ppos & ~PAGE_CACHE_MASK;
1564 
1565 	for (;;) {
1566 		struct page *page = NULL;
1567 		pgoff_t end_index;
1568 		unsigned long nr, ret;
1569 		loff_t i_size = i_size_read(inode);
1570 
1571 		end_index = i_size >> PAGE_CACHE_SHIFT;
1572 		if (index > end_index)
1573 			break;
1574 		if (index == end_index) {
1575 			nr = i_size & ~PAGE_CACHE_MASK;
1576 			if (nr <= offset)
1577 				break;
1578 		}
1579 
1580 		error = shmem_getpage(inode, index, &page, sgp, NULL);
1581 		if (error) {
1582 			if (error == -EINVAL)
1583 				error = 0;
1584 			break;
1585 		}
1586 		if (page)
1587 			unlock_page(page);
1588 
1589 		/*
1590 		 * We must evaluate after, since reads (unlike writes)
1591 		 * are called without i_mutex protection against truncate
1592 		 */
1593 		nr = PAGE_CACHE_SIZE;
1594 		i_size = i_size_read(inode);
1595 		end_index = i_size >> PAGE_CACHE_SHIFT;
1596 		if (index == end_index) {
1597 			nr = i_size & ~PAGE_CACHE_MASK;
1598 			if (nr <= offset) {
1599 				if (page)
1600 					page_cache_release(page);
1601 				break;
1602 			}
1603 		}
1604 		nr -= offset;
1605 
1606 		if (page) {
1607 			/*
1608 			 * If users can be writing to this page using arbitrary
1609 			 * virtual addresses, take care about potential aliasing
1610 			 * before reading the page on the kernel side.
1611 			 */
1612 			if (mapping_writably_mapped(mapping))
1613 				flush_dcache_page(page);
1614 			/*
1615 			 * Mark the page accessed if we read the beginning.
1616 			 */
1617 			if (!offset)
1618 				mark_page_accessed(page);
1619 		} else {
1620 			page = ZERO_PAGE(0);
1621 			page_cache_get(page);
1622 		}
1623 
1624 		/*
1625 		 * Ok, we have the page, and it's up-to-date, so
1626 		 * now we can copy it to user space...
1627 		 */
1628 		ret = copy_page_to_iter(page, offset, nr, to);
1629 		retval += ret;
1630 		offset += ret;
1631 		index += offset >> PAGE_CACHE_SHIFT;
1632 		offset &= ~PAGE_CACHE_MASK;
1633 
1634 		page_cache_release(page);
1635 		if (!iov_iter_count(to))
1636 			break;
1637 		if (ret < nr) {
1638 			error = -EFAULT;
1639 			break;
1640 		}
1641 		cond_resched();
1642 	}
1643 
1644 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1645 	file_accessed(file);
1646 	return retval ? retval : error;
1647 }
1648 
1649 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1650 				struct pipe_inode_info *pipe, size_t len,
1651 				unsigned int flags)
1652 {
1653 	struct address_space *mapping = in->f_mapping;
1654 	struct inode *inode = mapping->host;
1655 	unsigned int loff, nr_pages, req_pages;
1656 	struct page *pages[PIPE_DEF_BUFFERS];
1657 	struct partial_page partial[PIPE_DEF_BUFFERS];
1658 	struct page *page;
1659 	pgoff_t index, end_index;
1660 	loff_t isize, left;
1661 	int error, page_nr;
1662 	struct splice_pipe_desc spd = {
1663 		.pages = pages,
1664 		.partial = partial,
1665 		.nr_pages_max = PIPE_DEF_BUFFERS,
1666 		.flags = flags,
1667 		.ops = &page_cache_pipe_buf_ops,
1668 		.spd_release = spd_release_page,
1669 	};
1670 
1671 	isize = i_size_read(inode);
1672 	if (unlikely(*ppos >= isize))
1673 		return 0;
1674 
1675 	left = isize - *ppos;
1676 	if (unlikely(left < len))
1677 		len = left;
1678 
1679 	if (splice_grow_spd(pipe, &spd))
1680 		return -ENOMEM;
1681 
1682 	index = *ppos >> PAGE_CACHE_SHIFT;
1683 	loff = *ppos & ~PAGE_CACHE_MASK;
1684 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1685 	nr_pages = min(req_pages, spd.nr_pages_max);
1686 
1687 	spd.nr_pages = find_get_pages_contig(mapping, index,
1688 						nr_pages, spd.pages);
1689 	index += spd.nr_pages;
1690 	error = 0;
1691 
1692 	while (spd.nr_pages < nr_pages) {
1693 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1694 		if (error)
1695 			break;
1696 		unlock_page(page);
1697 		spd.pages[spd.nr_pages++] = page;
1698 		index++;
1699 	}
1700 
1701 	index = *ppos >> PAGE_CACHE_SHIFT;
1702 	nr_pages = spd.nr_pages;
1703 	spd.nr_pages = 0;
1704 
1705 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1706 		unsigned int this_len;
1707 
1708 		if (!len)
1709 			break;
1710 
1711 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1712 		page = spd.pages[page_nr];
1713 
1714 		if (!PageUptodate(page) || page->mapping != mapping) {
1715 			error = shmem_getpage(inode, index, &page,
1716 							SGP_CACHE, NULL);
1717 			if (error)
1718 				break;
1719 			unlock_page(page);
1720 			page_cache_release(spd.pages[page_nr]);
1721 			spd.pages[page_nr] = page;
1722 		}
1723 
1724 		isize = i_size_read(inode);
1725 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1726 		if (unlikely(!isize || index > end_index))
1727 			break;
1728 
1729 		if (end_index == index) {
1730 			unsigned int plen;
1731 
1732 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1733 			if (plen <= loff)
1734 				break;
1735 
1736 			this_len = min(this_len, plen - loff);
1737 			len = this_len;
1738 		}
1739 
1740 		spd.partial[page_nr].offset = loff;
1741 		spd.partial[page_nr].len = this_len;
1742 		len -= this_len;
1743 		loff = 0;
1744 		spd.nr_pages++;
1745 		index++;
1746 	}
1747 
1748 	while (page_nr < nr_pages)
1749 		page_cache_release(spd.pages[page_nr++]);
1750 
1751 	if (spd.nr_pages)
1752 		error = splice_to_pipe(pipe, &spd);
1753 
1754 	splice_shrink_spd(&spd);
1755 
1756 	if (error > 0) {
1757 		*ppos += error;
1758 		file_accessed(in);
1759 	}
1760 	return error;
1761 }
1762 
1763 /*
1764  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1765  */
1766 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1767 				    pgoff_t index, pgoff_t end, int whence)
1768 {
1769 	struct page *page;
1770 	struct pagevec pvec;
1771 	pgoff_t indices[PAGEVEC_SIZE];
1772 	bool done = false;
1773 	int i;
1774 
1775 	pagevec_init(&pvec, 0);
1776 	pvec.nr = 1;		/* start small: we may be there already */
1777 	while (!done) {
1778 		pvec.nr = find_get_entries(mapping, index,
1779 					pvec.nr, pvec.pages, indices);
1780 		if (!pvec.nr) {
1781 			if (whence == SEEK_DATA)
1782 				index = end;
1783 			break;
1784 		}
1785 		for (i = 0; i < pvec.nr; i++, index++) {
1786 			if (index < indices[i]) {
1787 				if (whence == SEEK_HOLE) {
1788 					done = true;
1789 					break;
1790 				}
1791 				index = indices[i];
1792 			}
1793 			page = pvec.pages[i];
1794 			if (page && !radix_tree_exceptional_entry(page)) {
1795 				if (!PageUptodate(page))
1796 					page = NULL;
1797 			}
1798 			if (index >= end ||
1799 			    (page && whence == SEEK_DATA) ||
1800 			    (!page && whence == SEEK_HOLE)) {
1801 				done = true;
1802 				break;
1803 			}
1804 		}
1805 		pagevec_remove_exceptionals(&pvec);
1806 		pagevec_release(&pvec);
1807 		pvec.nr = PAGEVEC_SIZE;
1808 		cond_resched();
1809 	}
1810 	return index;
1811 }
1812 
1813 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1814 {
1815 	struct address_space *mapping = file->f_mapping;
1816 	struct inode *inode = mapping->host;
1817 	pgoff_t start, end;
1818 	loff_t new_offset;
1819 
1820 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1821 		return generic_file_llseek_size(file, offset, whence,
1822 					MAX_LFS_FILESIZE, i_size_read(inode));
1823 	mutex_lock(&inode->i_mutex);
1824 	/* We're holding i_mutex so we can access i_size directly */
1825 
1826 	if (offset < 0)
1827 		offset = -EINVAL;
1828 	else if (offset >= inode->i_size)
1829 		offset = -ENXIO;
1830 	else {
1831 		start = offset >> PAGE_CACHE_SHIFT;
1832 		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1833 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1834 		new_offset <<= PAGE_CACHE_SHIFT;
1835 		if (new_offset > offset) {
1836 			if (new_offset < inode->i_size)
1837 				offset = new_offset;
1838 			else if (whence == SEEK_DATA)
1839 				offset = -ENXIO;
1840 			else
1841 				offset = inode->i_size;
1842 		}
1843 	}
1844 
1845 	if (offset >= 0)
1846 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1847 	mutex_unlock(&inode->i_mutex);
1848 	return offset;
1849 }
1850 
1851 /*
1852  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1853  * so reuse a tag which we firmly believe is never set or cleared on shmem.
1854  */
1855 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1856 #define LAST_SCAN               4       /* about 150ms max */
1857 
1858 static void shmem_tag_pins(struct address_space *mapping)
1859 {
1860 	struct radix_tree_iter iter;
1861 	void **slot;
1862 	pgoff_t start;
1863 	struct page *page;
1864 
1865 	lru_add_drain();
1866 	start = 0;
1867 	rcu_read_lock();
1868 
1869 restart:
1870 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1871 		page = radix_tree_deref_slot(slot);
1872 		if (!page || radix_tree_exception(page)) {
1873 			if (radix_tree_deref_retry(page))
1874 				goto restart;
1875 		} else if (page_count(page) - page_mapcount(page) > 1) {
1876 			spin_lock_irq(&mapping->tree_lock);
1877 			radix_tree_tag_set(&mapping->page_tree, iter.index,
1878 					   SHMEM_TAG_PINNED);
1879 			spin_unlock_irq(&mapping->tree_lock);
1880 		}
1881 
1882 		if (need_resched()) {
1883 			cond_resched_rcu();
1884 			start = iter.index + 1;
1885 			goto restart;
1886 		}
1887 	}
1888 	rcu_read_unlock();
1889 }
1890 
1891 /*
1892  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1893  * via get_user_pages(), drivers might have some pending I/O without any active
1894  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1895  * and see whether it has an elevated ref-count. If so, we tag them and wait for
1896  * them to be dropped.
1897  * The caller must guarantee that no new user will acquire writable references
1898  * to those pages to avoid races.
1899  */
1900 static int shmem_wait_for_pins(struct address_space *mapping)
1901 {
1902 	struct radix_tree_iter iter;
1903 	void **slot;
1904 	pgoff_t start;
1905 	struct page *page;
1906 	int error, scan;
1907 
1908 	shmem_tag_pins(mapping);
1909 
1910 	error = 0;
1911 	for (scan = 0; scan <= LAST_SCAN; scan++) {
1912 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1913 			break;
1914 
1915 		if (!scan)
1916 			lru_add_drain_all();
1917 		else if (schedule_timeout_killable((HZ << scan) / 200))
1918 			scan = LAST_SCAN;
1919 
1920 		start = 0;
1921 		rcu_read_lock();
1922 restart:
1923 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1924 					   start, SHMEM_TAG_PINNED) {
1925 
1926 			page = radix_tree_deref_slot(slot);
1927 			if (radix_tree_exception(page)) {
1928 				if (radix_tree_deref_retry(page))
1929 					goto restart;
1930 
1931 				page = NULL;
1932 			}
1933 
1934 			if (page &&
1935 			    page_count(page) - page_mapcount(page) != 1) {
1936 				if (scan < LAST_SCAN)
1937 					goto continue_resched;
1938 
1939 				/*
1940 				 * On the last scan, we clean up all those tags
1941 				 * we inserted; but make a note that we still
1942 				 * found pages pinned.
1943 				 */
1944 				error = -EBUSY;
1945 			}
1946 
1947 			spin_lock_irq(&mapping->tree_lock);
1948 			radix_tree_tag_clear(&mapping->page_tree,
1949 					     iter.index, SHMEM_TAG_PINNED);
1950 			spin_unlock_irq(&mapping->tree_lock);
1951 continue_resched:
1952 			if (need_resched()) {
1953 				cond_resched_rcu();
1954 				start = iter.index + 1;
1955 				goto restart;
1956 			}
1957 		}
1958 		rcu_read_unlock();
1959 	}
1960 
1961 	return error;
1962 }
1963 
1964 #define F_ALL_SEALS (F_SEAL_SEAL | \
1965 		     F_SEAL_SHRINK | \
1966 		     F_SEAL_GROW | \
1967 		     F_SEAL_WRITE)
1968 
1969 int shmem_add_seals(struct file *file, unsigned int seals)
1970 {
1971 	struct inode *inode = file_inode(file);
1972 	struct shmem_inode_info *info = SHMEM_I(inode);
1973 	int error;
1974 
1975 	/*
1976 	 * SEALING
1977 	 * Sealing allows multiple parties to share a shmem-file but restrict
1978 	 * access to a specific subset of file operations. Seals can only be
1979 	 * added, but never removed. This way, mutually untrusted parties can
1980 	 * share common memory regions with a well-defined policy. A malicious
1981 	 * peer can thus never perform unwanted operations on a shared object.
1982 	 *
1983 	 * Seals are only supported on special shmem-files and always affect
1984 	 * the whole underlying inode. Once a seal is set, it may prevent some
1985 	 * kinds of access to the file. Currently, the following seals are
1986 	 * defined:
1987 	 *   SEAL_SEAL: Prevent further seals from being set on this file
1988 	 *   SEAL_SHRINK: Prevent the file from shrinking
1989 	 *   SEAL_GROW: Prevent the file from growing
1990 	 *   SEAL_WRITE: Prevent write access to the file
1991 	 *
1992 	 * As we don't require any trust relationship between two parties, we
1993 	 * must prevent seals from being removed. Therefore, sealing a file
1994 	 * only adds a given set of seals to the file, it never touches
1995 	 * existing seals. Furthermore, the "setting seals"-operation can be
1996 	 * sealed itself, which basically prevents any further seal from being
1997 	 * added.
1998 	 *
1999 	 * Semantics of sealing are only defined on volatile files. Only
2000 	 * anonymous shmem files support sealing. More importantly, seals are
2001 	 * never written to disk. Therefore, there's no plan to support it on
2002 	 * other file types.
2003 	 */
2004 
2005 	if (file->f_op != &shmem_file_operations)
2006 		return -EINVAL;
2007 	if (!(file->f_mode & FMODE_WRITE))
2008 		return -EPERM;
2009 	if (seals & ~(unsigned int)F_ALL_SEALS)
2010 		return -EINVAL;
2011 
2012 	mutex_lock(&inode->i_mutex);
2013 
2014 	if (info->seals & F_SEAL_SEAL) {
2015 		error = -EPERM;
2016 		goto unlock;
2017 	}
2018 
2019 	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2020 		error = mapping_deny_writable(file->f_mapping);
2021 		if (error)
2022 			goto unlock;
2023 
2024 		error = shmem_wait_for_pins(file->f_mapping);
2025 		if (error) {
2026 			mapping_allow_writable(file->f_mapping);
2027 			goto unlock;
2028 		}
2029 	}
2030 
2031 	info->seals |= seals;
2032 	error = 0;
2033 
2034 unlock:
2035 	mutex_unlock(&inode->i_mutex);
2036 	return error;
2037 }
2038 EXPORT_SYMBOL_GPL(shmem_add_seals);
2039 
2040 int shmem_get_seals(struct file *file)
2041 {
2042 	if (file->f_op != &shmem_file_operations)
2043 		return -EINVAL;
2044 
2045 	return SHMEM_I(file_inode(file))->seals;
2046 }
2047 EXPORT_SYMBOL_GPL(shmem_get_seals);
2048 
2049 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2050 {
2051 	long error;
2052 
2053 	switch (cmd) {
2054 	case F_ADD_SEALS:
2055 		/* disallow upper 32bit */
2056 		if (arg > UINT_MAX)
2057 			return -EINVAL;
2058 
2059 		error = shmem_add_seals(file, arg);
2060 		break;
2061 	case F_GET_SEALS:
2062 		error = shmem_get_seals(file);
2063 		break;
2064 	default:
2065 		error = -EINVAL;
2066 		break;
2067 	}
2068 
2069 	return error;
2070 }
2071 
2072 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2073 							 loff_t len)
2074 {
2075 	struct inode *inode = file_inode(file);
2076 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2077 	struct shmem_inode_info *info = SHMEM_I(inode);
2078 	struct shmem_falloc shmem_falloc;
2079 	pgoff_t start, index, end;
2080 	int error;
2081 
2082 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2083 		return -EOPNOTSUPP;
2084 
2085 	mutex_lock(&inode->i_mutex);
2086 
2087 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2088 		struct address_space *mapping = file->f_mapping;
2089 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2090 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2091 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2092 
2093 		/* protected by i_mutex */
2094 		if (info->seals & F_SEAL_WRITE) {
2095 			error = -EPERM;
2096 			goto out;
2097 		}
2098 
2099 		shmem_falloc.waitq = &shmem_falloc_waitq;
2100 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2101 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2102 		spin_lock(&inode->i_lock);
2103 		inode->i_private = &shmem_falloc;
2104 		spin_unlock(&inode->i_lock);
2105 
2106 		if ((u64)unmap_end > (u64)unmap_start)
2107 			unmap_mapping_range(mapping, unmap_start,
2108 					    1 + unmap_end - unmap_start, 0);
2109 		shmem_truncate_range(inode, offset, offset + len - 1);
2110 		/* No need to unmap again: hole-punching leaves COWed pages */
2111 
2112 		spin_lock(&inode->i_lock);
2113 		inode->i_private = NULL;
2114 		wake_up_all(&shmem_falloc_waitq);
2115 		spin_unlock(&inode->i_lock);
2116 		error = 0;
2117 		goto out;
2118 	}
2119 
2120 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2121 	error = inode_newsize_ok(inode, offset + len);
2122 	if (error)
2123 		goto out;
2124 
2125 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2126 		error = -EPERM;
2127 		goto out;
2128 	}
2129 
2130 	start = offset >> PAGE_CACHE_SHIFT;
2131 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2132 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2133 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2134 		error = -ENOSPC;
2135 		goto out;
2136 	}
2137 
2138 	shmem_falloc.waitq = NULL;
2139 	shmem_falloc.start = start;
2140 	shmem_falloc.next  = start;
2141 	shmem_falloc.nr_falloced = 0;
2142 	shmem_falloc.nr_unswapped = 0;
2143 	spin_lock(&inode->i_lock);
2144 	inode->i_private = &shmem_falloc;
2145 	spin_unlock(&inode->i_lock);
2146 
2147 	for (index = start; index < end; index++) {
2148 		struct page *page;
2149 
2150 		/*
2151 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2152 		 * been interrupted because we are using up too much memory.
2153 		 */
2154 		if (signal_pending(current))
2155 			error = -EINTR;
2156 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2157 			error = -ENOMEM;
2158 		else
2159 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2160 									NULL);
2161 		if (error) {
2162 			/* Remove the !PageUptodate pages we added */
2163 			shmem_undo_range(inode,
2164 				(loff_t)start << PAGE_CACHE_SHIFT,
2165 				(loff_t)index << PAGE_CACHE_SHIFT, true);
2166 			goto undone;
2167 		}
2168 
2169 		/*
2170 		 * Inform shmem_writepage() how far we have reached.
2171 		 * No need for lock or barrier: we have the page lock.
2172 		 */
2173 		shmem_falloc.next++;
2174 		if (!PageUptodate(page))
2175 			shmem_falloc.nr_falloced++;
2176 
2177 		/*
2178 		 * If !PageUptodate, leave it that way so that freeable pages
2179 		 * can be recognized if we need to rollback on error later.
2180 		 * But set_page_dirty so that memory pressure will swap rather
2181 		 * than free the pages we are allocating (and SGP_CACHE pages
2182 		 * might still be clean: we now need to mark those dirty too).
2183 		 */
2184 		set_page_dirty(page);
2185 		unlock_page(page);
2186 		page_cache_release(page);
2187 		cond_resched();
2188 	}
2189 
2190 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2191 		i_size_write(inode, offset + len);
2192 	inode->i_ctime = CURRENT_TIME;
2193 undone:
2194 	spin_lock(&inode->i_lock);
2195 	inode->i_private = NULL;
2196 	spin_unlock(&inode->i_lock);
2197 out:
2198 	mutex_unlock(&inode->i_mutex);
2199 	return error;
2200 }
2201 
2202 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2203 {
2204 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2205 
2206 	buf->f_type = TMPFS_MAGIC;
2207 	buf->f_bsize = PAGE_CACHE_SIZE;
2208 	buf->f_namelen = NAME_MAX;
2209 	if (sbinfo->max_blocks) {
2210 		buf->f_blocks = sbinfo->max_blocks;
2211 		buf->f_bavail =
2212 		buf->f_bfree  = sbinfo->max_blocks -
2213 				percpu_counter_sum(&sbinfo->used_blocks);
2214 	}
2215 	if (sbinfo->max_inodes) {
2216 		buf->f_files = sbinfo->max_inodes;
2217 		buf->f_ffree = sbinfo->free_inodes;
2218 	}
2219 	/* else leave those fields 0 like simple_statfs */
2220 	return 0;
2221 }
2222 
2223 /*
2224  * File creation. Allocate an inode, and we're done..
2225  */
2226 static int
2227 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2228 {
2229 	struct inode *inode;
2230 	int error = -ENOSPC;
2231 
2232 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2233 	if (inode) {
2234 		error = simple_acl_create(dir, inode);
2235 		if (error)
2236 			goto out_iput;
2237 		error = security_inode_init_security(inode, dir,
2238 						     &dentry->d_name,
2239 						     shmem_initxattrs, NULL);
2240 		if (error && error != -EOPNOTSUPP)
2241 			goto out_iput;
2242 
2243 		error = 0;
2244 		dir->i_size += BOGO_DIRENT_SIZE;
2245 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2246 		d_instantiate(dentry, inode);
2247 		dget(dentry); /* Extra count - pin the dentry in core */
2248 	}
2249 	return error;
2250 out_iput:
2251 	iput(inode);
2252 	return error;
2253 }
2254 
2255 static int
2256 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2257 {
2258 	struct inode *inode;
2259 	int error = -ENOSPC;
2260 
2261 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2262 	if (inode) {
2263 		error = security_inode_init_security(inode, dir,
2264 						     NULL,
2265 						     shmem_initxattrs, NULL);
2266 		if (error && error != -EOPNOTSUPP)
2267 			goto out_iput;
2268 		error = simple_acl_create(dir, inode);
2269 		if (error)
2270 			goto out_iput;
2271 		d_tmpfile(dentry, inode);
2272 	}
2273 	return error;
2274 out_iput:
2275 	iput(inode);
2276 	return error;
2277 }
2278 
2279 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2280 {
2281 	int error;
2282 
2283 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2284 		return error;
2285 	inc_nlink(dir);
2286 	return 0;
2287 }
2288 
2289 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2290 		bool excl)
2291 {
2292 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2293 }
2294 
2295 /*
2296  * Link a file..
2297  */
2298 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2299 {
2300 	struct inode *inode = d_inode(old_dentry);
2301 	int ret;
2302 
2303 	/*
2304 	 * No ordinary (disk based) filesystem counts links as inodes;
2305 	 * but each new link needs a new dentry, pinning lowmem, and
2306 	 * tmpfs dentries cannot be pruned until they are unlinked.
2307 	 */
2308 	ret = shmem_reserve_inode(inode->i_sb);
2309 	if (ret)
2310 		goto out;
2311 
2312 	dir->i_size += BOGO_DIRENT_SIZE;
2313 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2314 	inc_nlink(inode);
2315 	ihold(inode);	/* New dentry reference */
2316 	dget(dentry);		/* Extra pinning count for the created dentry */
2317 	d_instantiate(dentry, inode);
2318 out:
2319 	return ret;
2320 }
2321 
2322 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2323 {
2324 	struct inode *inode = d_inode(dentry);
2325 
2326 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2327 		shmem_free_inode(inode->i_sb);
2328 
2329 	dir->i_size -= BOGO_DIRENT_SIZE;
2330 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2331 	drop_nlink(inode);
2332 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2333 	return 0;
2334 }
2335 
2336 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2337 {
2338 	if (!simple_empty(dentry))
2339 		return -ENOTEMPTY;
2340 
2341 	drop_nlink(d_inode(dentry));
2342 	drop_nlink(dir);
2343 	return shmem_unlink(dir, dentry);
2344 }
2345 
2346 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2347 {
2348 	bool old_is_dir = d_is_dir(old_dentry);
2349 	bool new_is_dir = d_is_dir(new_dentry);
2350 
2351 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2352 		if (old_is_dir) {
2353 			drop_nlink(old_dir);
2354 			inc_nlink(new_dir);
2355 		} else {
2356 			drop_nlink(new_dir);
2357 			inc_nlink(old_dir);
2358 		}
2359 	}
2360 	old_dir->i_ctime = old_dir->i_mtime =
2361 	new_dir->i_ctime = new_dir->i_mtime =
2362 	d_inode(old_dentry)->i_ctime =
2363 	d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2364 
2365 	return 0;
2366 }
2367 
2368 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2369 {
2370 	struct dentry *whiteout;
2371 	int error;
2372 
2373 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2374 	if (!whiteout)
2375 		return -ENOMEM;
2376 
2377 	error = shmem_mknod(old_dir, whiteout,
2378 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2379 	dput(whiteout);
2380 	if (error)
2381 		return error;
2382 
2383 	/*
2384 	 * Cheat and hash the whiteout while the old dentry is still in
2385 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2386 	 *
2387 	 * d_lookup() will consistently find one of them at this point,
2388 	 * not sure which one, but that isn't even important.
2389 	 */
2390 	d_rehash(whiteout);
2391 	return 0;
2392 }
2393 
2394 /*
2395  * The VFS layer already does all the dentry stuff for rename,
2396  * we just have to decrement the usage count for the target if
2397  * it exists so that the VFS layer correctly free's it when it
2398  * gets overwritten.
2399  */
2400 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2401 {
2402 	struct inode *inode = d_inode(old_dentry);
2403 	int they_are_dirs = S_ISDIR(inode->i_mode);
2404 
2405 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2406 		return -EINVAL;
2407 
2408 	if (flags & RENAME_EXCHANGE)
2409 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2410 
2411 	if (!simple_empty(new_dentry))
2412 		return -ENOTEMPTY;
2413 
2414 	if (flags & RENAME_WHITEOUT) {
2415 		int error;
2416 
2417 		error = shmem_whiteout(old_dir, old_dentry);
2418 		if (error)
2419 			return error;
2420 	}
2421 
2422 	if (d_really_is_positive(new_dentry)) {
2423 		(void) shmem_unlink(new_dir, new_dentry);
2424 		if (they_are_dirs) {
2425 			drop_nlink(d_inode(new_dentry));
2426 			drop_nlink(old_dir);
2427 		}
2428 	} else if (they_are_dirs) {
2429 		drop_nlink(old_dir);
2430 		inc_nlink(new_dir);
2431 	}
2432 
2433 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2434 	new_dir->i_size += BOGO_DIRENT_SIZE;
2435 	old_dir->i_ctime = old_dir->i_mtime =
2436 	new_dir->i_ctime = new_dir->i_mtime =
2437 	inode->i_ctime = CURRENT_TIME;
2438 	return 0;
2439 }
2440 
2441 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2442 {
2443 	int error;
2444 	int len;
2445 	struct inode *inode;
2446 	struct page *page;
2447 	char *kaddr;
2448 	struct shmem_inode_info *info;
2449 
2450 	len = strlen(symname) + 1;
2451 	if (len > PAGE_CACHE_SIZE)
2452 		return -ENAMETOOLONG;
2453 
2454 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2455 	if (!inode)
2456 		return -ENOSPC;
2457 
2458 	error = security_inode_init_security(inode, dir, &dentry->d_name,
2459 					     shmem_initxattrs, NULL);
2460 	if (error) {
2461 		if (error != -EOPNOTSUPP) {
2462 			iput(inode);
2463 			return error;
2464 		}
2465 		error = 0;
2466 	}
2467 
2468 	info = SHMEM_I(inode);
2469 	inode->i_size = len-1;
2470 	if (len <= SHORT_SYMLINK_LEN) {
2471 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2472 		if (!info->symlink) {
2473 			iput(inode);
2474 			return -ENOMEM;
2475 		}
2476 		inode->i_op = &shmem_short_symlink_operations;
2477 		inode->i_link = info->symlink;
2478 	} else {
2479 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2480 		if (error) {
2481 			iput(inode);
2482 			return error;
2483 		}
2484 		inode->i_mapping->a_ops = &shmem_aops;
2485 		inode->i_op = &shmem_symlink_inode_operations;
2486 		kaddr = kmap_atomic(page);
2487 		memcpy(kaddr, symname, len);
2488 		kunmap_atomic(kaddr);
2489 		SetPageUptodate(page);
2490 		set_page_dirty(page);
2491 		unlock_page(page);
2492 		page_cache_release(page);
2493 	}
2494 	dir->i_size += BOGO_DIRENT_SIZE;
2495 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2496 	d_instantiate(dentry, inode);
2497 	dget(dentry);
2498 	return 0;
2499 }
2500 
2501 static const char *shmem_follow_link(struct dentry *dentry, void **cookie)
2502 {
2503 	struct page *page = NULL;
2504 	int error = shmem_getpage(d_inode(dentry), 0, &page, SGP_READ, NULL);
2505 	if (error)
2506 		return ERR_PTR(error);
2507 	unlock_page(page);
2508 	*cookie = page;
2509 	return kmap(page);
2510 }
2511 
2512 static void shmem_put_link(struct inode *unused, void *cookie)
2513 {
2514 	struct page *page = cookie;
2515 	kunmap(page);
2516 	mark_page_accessed(page);
2517 	page_cache_release(page);
2518 }
2519 
2520 #ifdef CONFIG_TMPFS_XATTR
2521 /*
2522  * Superblocks without xattr inode operations may get some security.* xattr
2523  * support from the LSM "for free". As soon as we have any other xattrs
2524  * like ACLs, we also need to implement the security.* handlers at
2525  * filesystem level, though.
2526  */
2527 
2528 /*
2529  * Callback for security_inode_init_security() for acquiring xattrs.
2530  */
2531 static int shmem_initxattrs(struct inode *inode,
2532 			    const struct xattr *xattr_array,
2533 			    void *fs_info)
2534 {
2535 	struct shmem_inode_info *info = SHMEM_I(inode);
2536 	const struct xattr *xattr;
2537 	struct simple_xattr *new_xattr;
2538 	size_t len;
2539 
2540 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2541 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2542 		if (!new_xattr)
2543 			return -ENOMEM;
2544 
2545 		len = strlen(xattr->name) + 1;
2546 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2547 					  GFP_KERNEL);
2548 		if (!new_xattr->name) {
2549 			kfree(new_xattr);
2550 			return -ENOMEM;
2551 		}
2552 
2553 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2554 		       XATTR_SECURITY_PREFIX_LEN);
2555 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2556 		       xattr->name, len);
2557 
2558 		simple_xattr_list_add(&info->xattrs, new_xattr);
2559 	}
2560 
2561 	return 0;
2562 }
2563 
2564 static const struct xattr_handler *shmem_xattr_handlers[] = {
2565 #ifdef CONFIG_TMPFS_POSIX_ACL
2566 	&posix_acl_access_xattr_handler,
2567 	&posix_acl_default_xattr_handler,
2568 #endif
2569 	NULL
2570 };
2571 
2572 static int shmem_xattr_validate(const char *name)
2573 {
2574 	struct { const char *prefix; size_t len; } arr[] = {
2575 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2576 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2577 	};
2578 	int i;
2579 
2580 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2581 		size_t preflen = arr[i].len;
2582 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2583 			if (!name[preflen])
2584 				return -EINVAL;
2585 			return 0;
2586 		}
2587 	}
2588 	return -EOPNOTSUPP;
2589 }
2590 
2591 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2592 			      void *buffer, size_t size)
2593 {
2594 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2595 	int err;
2596 
2597 	/*
2598 	 * If this is a request for a synthetic attribute in the system.*
2599 	 * namespace use the generic infrastructure to resolve a handler
2600 	 * for it via sb->s_xattr.
2601 	 */
2602 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2603 		return generic_getxattr(dentry, name, buffer, size);
2604 
2605 	err = shmem_xattr_validate(name);
2606 	if (err)
2607 		return err;
2608 
2609 	return simple_xattr_get(&info->xattrs, name, buffer, size);
2610 }
2611 
2612 static int shmem_setxattr(struct dentry *dentry, const char *name,
2613 			  const void *value, size_t size, int flags)
2614 {
2615 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2616 	int err;
2617 
2618 	/*
2619 	 * If this is a request for a synthetic attribute in the system.*
2620 	 * namespace use the generic infrastructure to resolve a handler
2621 	 * for it via sb->s_xattr.
2622 	 */
2623 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2624 		return generic_setxattr(dentry, name, value, size, flags);
2625 
2626 	err = shmem_xattr_validate(name);
2627 	if (err)
2628 		return err;
2629 
2630 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2631 }
2632 
2633 static int shmem_removexattr(struct dentry *dentry, const char *name)
2634 {
2635 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2636 	int err;
2637 
2638 	/*
2639 	 * If this is a request for a synthetic attribute in the system.*
2640 	 * namespace use the generic infrastructure to resolve a handler
2641 	 * for it via sb->s_xattr.
2642 	 */
2643 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2644 		return generic_removexattr(dentry, name);
2645 
2646 	err = shmem_xattr_validate(name);
2647 	if (err)
2648 		return err;
2649 
2650 	return simple_xattr_remove(&info->xattrs, name);
2651 }
2652 
2653 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2654 {
2655 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2656 	return simple_xattr_list(&info->xattrs, buffer, size);
2657 }
2658 #endif /* CONFIG_TMPFS_XATTR */
2659 
2660 static const struct inode_operations shmem_short_symlink_operations = {
2661 	.readlink	= generic_readlink,
2662 	.follow_link	= simple_follow_link,
2663 #ifdef CONFIG_TMPFS_XATTR
2664 	.setxattr	= shmem_setxattr,
2665 	.getxattr	= shmem_getxattr,
2666 	.listxattr	= shmem_listxattr,
2667 	.removexattr	= shmem_removexattr,
2668 #endif
2669 };
2670 
2671 static const struct inode_operations shmem_symlink_inode_operations = {
2672 	.readlink	= generic_readlink,
2673 	.follow_link	= shmem_follow_link,
2674 	.put_link	= shmem_put_link,
2675 #ifdef CONFIG_TMPFS_XATTR
2676 	.setxattr	= shmem_setxattr,
2677 	.getxattr	= shmem_getxattr,
2678 	.listxattr	= shmem_listxattr,
2679 	.removexattr	= shmem_removexattr,
2680 #endif
2681 };
2682 
2683 static struct dentry *shmem_get_parent(struct dentry *child)
2684 {
2685 	return ERR_PTR(-ESTALE);
2686 }
2687 
2688 static int shmem_match(struct inode *ino, void *vfh)
2689 {
2690 	__u32 *fh = vfh;
2691 	__u64 inum = fh[2];
2692 	inum = (inum << 32) | fh[1];
2693 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2694 }
2695 
2696 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2697 		struct fid *fid, int fh_len, int fh_type)
2698 {
2699 	struct inode *inode;
2700 	struct dentry *dentry = NULL;
2701 	u64 inum;
2702 
2703 	if (fh_len < 3)
2704 		return NULL;
2705 
2706 	inum = fid->raw[2];
2707 	inum = (inum << 32) | fid->raw[1];
2708 
2709 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2710 			shmem_match, fid->raw);
2711 	if (inode) {
2712 		dentry = d_find_alias(inode);
2713 		iput(inode);
2714 	}
2715 
2716 	return dentry;
2717 }
2718 
2719 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2720 				struct inode *parent)
2721 {
2722 	if (*len < 3) {
2723 		*len = 3;
2724 		return FILEID_INVALID;
2725 	}
2726 
2727 	if (inode_unhashed(inode)) {
2728 		/* Unfortunately insert_inode_hash is not idempotent,
2729 		 * so as we hash inodes here rather than at creation
2730 		 * time, we need a lock to ensure we only try
2731 		 * to do it once
2732 		 */
2733 		static DEFINE_SPINLOCK(lock);
2734 		spin_lock(&lock);
2735 		if (inode_unhashed(inode))
2736 			__insert_inode_hash(inode,
2737 					    inode->i_ino + inode->i_generation);
2738 		spin_unlock(&lock);
2739 	}
2740 
2741 	fh[0] = inode->i_generation;
2742 	fh[1] = inode->i_ino;
2743 	fh[2] = ((__u64)inode->i_ino) >> 32;
2744 
2745 	*len = 3;
2746 	return 1;
2747 }
2748 
2749 static const struct export_operations shmem_export_ops = {
2750 	.get_parent     = shmem_get_parent,
2751 	.encode_fh      = shmem_encode_fh,
2752 	.fh_to_dentry	= shmem_fh_to_dentry,
2753 };
2754 
2755 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2756 			       bool remount)
2757 {
2758 	char *this_char, *value, *rest;
2759 	struct mempolicy *mpol = NULL;
2760 	uid_t uid;
2761 	gid_t gid;
2762 
2763 	while (options != NULL) {
2764 		this_char = options;
2765 		for (;;) {
2766 			/*
2767 			 * NUL-terminate this option: unfortunately,
2768 			 * mount options form a comma-separated list,
2769 			 * but mpol's nodelist may also contain commas.
2770 			 */
2771 			options = strchr(options, ',');
2772 			if (options == NULL)
2773 				break;
2774 			options++;
2775 			if (!isdigit(*options)) {
2776 				options[-1] = '\0';
2777 				break;
2778 			}
2779 		}
2780 		if (!*this_char)
2781 			continue;
2782 		if ((value = strchr(this_char,'=')) != NULL) {
2783 			*value++ = 0;
2784 		} else {
2785 			printk(KERN_ERR
2786 			    "tmpfs: No value for mount option '%s'\n",
2787 			    this_char);
2788 			goto error;
2789 		}
2790 
2791 		if (!strcmp(this_char,"size")) {
2792 			unsigned long long size;
2793 			size = memparse(value,&rest);
2794 			if (*rest == '%') {
2795 				size <<= PAGE_SHIFT;
2796 				size *= totalram_pages;
2797 				do_div(size, 100);
2798 				rest++;
2799 			}
2800 			if (*rest)
2801 				goto bad_val;
2802 			sbinfo->max_blocks =
2803 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2804 		} else if (!strcmp(this_char,"nr_blocks")) {
2805 			sbinfo->max_blocks = memparse(value, &rest);
2806 			if (*rest)
2807 				goto bad_val;
2808 		} else if (!strcmp(this_char,"nr_inodes")) {
2809 			sbinfo->max_inodes = memparse(value, &rest);
2810 			if (*rest)
2811 				goto bad_val;
2812 		} else if (!strcmp(this_char,"mode")) {
2813 			if (remount)
2814 				continue;
2815 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2816 			if (*rest)
2817 				goto bad_val;
2818 		} else if (!strcmp(this_char,"uid")) {
2819 			if (remount)
2820 				continue;
2821 			uid = simple_strtoul(value, &rest, 0);
2822 			if (*rest)
2823 				goto bad_val;
2824 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2825 			if (!uid_valid(sbinfo->uid))
2826 				goto bad_val;
2827 		} else if (!strcmp(this_char,"gid")) {
2828 			if (remount)
2829 				continue;
2830 			gid = simple_strtoul(value, &rest, 0);
2831 			if (*rest)
2832 				goto bad_val;
2833 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2834 			if (!gid_valid(sbinfo->gid))
2835 				goto bad_val;
2836 		} else if (!strcmp(this_char,"mpol")) {
2837 			mpol_put(mpol);
2838 			mpol = NULL;
2839 			if (mpol_parse_str(value, &mpol))
2840 				goto bad_val;
2841 		} else {
2842 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2843 			       this_char);
2844 			goto error;
2845 		}
2846 	}
2847 	sbinfo->mpol = mpol;
2848 	return 0;
2849 
2850 bad_val:
2851 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2852 	       value, this_char);
2853 error:
2854 	mpol_put(mpol);
2855 	return 1;
2856 
2857 }
2858 
2859 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2860 {
2861 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2862 	struct shmem_sb_info config = *sbinfo;
2863 	unsigned long inodes;
2864 	int error = -EINVAL;
2865 
2866 	config.mpol = NULL;
2867 	if (shmem_parse_options(data, &config, true))
2868 		return error;
2869 
2870 	spin_lock(&sbinfo->stat_lock);
2871 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2872 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2873 		goto out;
2874 	if (config.max_inodes < inodes)
2875 		goto out;
2876 	/*
2877 	 * Those tests disallow limited->unlimited while any are in use;
2878 	 * but we must separately disallow unlimited->limited, because
2879 	 * in that case we have no record of how much is already in use.
2880 	 */
2881 	if (config.max_blocks && !sbinfo->max_blocks)
2882 		goto out;
2883 	if (config.max_inodes && !sbinfo->max_inodes)
2884 		goto out;
2885 
2886 	error = 0;
2887 	sbinfo->max_blocks  = config.max_blocks;
2888 	sbinfo->max_inodes  = config.max_inodes;
2889 	sbinfo->free_inodes = config.max_inodes - inodes;
2890 
2891 	/*
2892 	 * Preserve previous mempolicy unless mpol remount option was specified.
2893 	 */
2894 	if (config.mpol) {
2895 		mpol_put(sbinfo->mpol);
2896 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2897 	}
2898 out:
2899 	spin_unlock(&sbinfo->stat_lock);
2900 	return error;
2901 }
2902 
2903 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2904 {
2905 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2906 
2907 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2908 		seq_printf(seq, ",size=%luk",
2909 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2910 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2911 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2912 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2913 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2914 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2915 		seq_printf(seq, ",uid=%u",
2916 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2917 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2918 		seq_printf(seq, ",gid=%u",
2919 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2920 	shmem_show_mpol(seq, sbinfo->mpol);
2921 	return 0;
2922 }
2923 
2924 #define MFD_NAME_PREFIX "memfd:"
2925 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2926 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2927 
2928 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2929 
2930 SYSCALL_DEFINE2(memfd_create,
2931 		const char __user *, uname,
2932 		unsigned int, flags)
2933 {
2934 	struct shmem_inode_info *info;
2935 	struct file *file;
2936 	int fd, error;
2937 	char *name;
2938 	long len;
2939 
2940 	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2941 		return -EINVAL;
2942 
2943 	/* length includes terminating zero */
2944 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2945 	if (len <= 0)
2946 		return -EFAULT;
2947 	if (len > MFD_NAME_MAX_LEN + 1)
2948 		return -EINVAL;
2949 
2950 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2951 	if (!name)
2952 		return -ENOMEM;
2953 
2954 	strcpy(name, MFD_NAME_PREFIX);
2955 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2956 		error = -EFAULT;
2957 		goto err_name;
2958 	}
2959 
2960 	/* terminating-zero may have changed after strnlen_user() returned */
2961 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2962 		error = -EFAULT;
2963 		goto err_name;
2964 	}
2965 
2966 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2967 	if (fd < 0) {
2968 		error = fd;
2969 		goto err_name;
2970 	}
2971 
2972 	file = shmem_file_setup(name, 0, VM_NORESERVE);
2973 	if (IS_ERR(file)) {
2974 		error = PTR_ERR(file);
2975 		goto err_fd;
2976 	}
2977 	info = SHMEM_I(file_inode(file));
2978 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2979 	file->f_flags |= O_RDWR | O_LARGEFILE;
2980 	if (flags & MFD_ALLOW_SEALING)
2981 		info->seals &= ~F_SEAL_SEAL;
2982 
2983 	fd_install(fd, file);
2984 	kfree(name);
2985 	return fd;
2986 
2987 err_fd:
2988 	put_unused_fd(fd);
2989 err_name:
2990 	kfree(name);
2991 	return error;
2992 }
2993 
2994 #endif /* CONFIG_TMPFS */
2995 
2996 static void shmem_put_super(struct super_block *sb)
2997 {
2998 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2999 
3000 	percpu_counter_destroy(&sbinfo->used_blocks);
3001 	mpol_put(sbinfo->mpol);
3002 	kfree(sbinfo);
3003 	sb->s_fs_info = NULL;
3004 }
3005 
3006 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3007 {
3008 	struct inode *inode;
3009 	struct shmem_sb_info *sbinfo;
3010 	int err = -ENOMEM;
3011 
3012 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3013 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3014 				L1_CACHE_BYTES), GFP_KERNEL);
3015 	if (!sbinfo)
3016 		return -ENOMEM;
3017 
3018 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3019 	sbinfo->uid = current_fsuid();
3020 	sbinfo->gid = current_fsgid();
3021 	sb->s_fs_info = sbinfo;
3022 
3023 #ifdef CONFIG_TMPFS
3024 	/*
3025 	 * Per default we only allow half of the physical ram per
3026 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3027 	 * but the internal instance is left unlimited.
3028 	 */
3029 	if (!(sb->s_flags & MS_KERNMOUNT)) {
3030 		sbinfo->max_blocks = shmem_default_max_blocks();
3031 		sbinfo->max_inodes = shmem_default_max_inodes();
3032 		if (shmem_parse_options(data, sbinfo, false)) {
3033 			err = -EINVAL;
3034 			goto failed;
3035 		}
3036 	} else {
3037 		sb->s_flags |= MS_NOUSER;
3038 	}
3039 	sb->s_export_op = &shmem_export_ops;
3040 	sb->s_flags |= MS_NOSEC;
3041 #else
3042 	sb->s_flags |= MS_NOUSER;
3043 #endif
3044 
3045 	spin_lock_init(&sbinfo->stat_lock);
3046 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3047 		goto failed;
3048 	sbinfo->free_inodes = sbinfo->max_inodes;
3049 
3050 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3051 	sb->s_blocksize = PAGE_CACHE_SIZE;
3052 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3053 	sb->s_magic = TMPFS_MAGIC;
3054 	sb->s_op = &shmem_ops;
3055 	sb->s_time_gran = 1;
3056 #ifdef CONFIG_TMPFS_XATTR
3057 	sb->s_xattr = shmem_xattr_handlers;
3058 #endif
3059 #ifdef CONFIG_TMPFS_POSIX_ACL
3060 	sb->s_flags |= MS_POSIXACL;
3061 #endif
3062 
3063 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3064 	if (!inode)
3065 		goto failed;
3066 	inode->i_uid = sbinfo->uid;
3067 	inode->i_gid = sbinfo->gid;
3068 	sb->s_root = d_make_root(inode);
3069 	if (!sb->s_root)
3070 		goto failed;
3071 	return 0;
3072 
3073 failed:
3074 	shmem_put_super(sb);
3075 	return err;
3076 }
3077 
3078 static struct kmem_cache *shmem_inode_cachep;
3079 
3080 static struct inode *shmem_alloc_inode(struct super_block *sb)
3081 {
3082 	struct shmem_inode_info *info;
3083 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3084 	if (!info)
3085 		return NULL;
3086 	return &info->vfs_inode;
3087 }
3088 
3089 static void shmem_destroy_callback(struct rcu_head *head)
3090 {
3091 	struct inode *inode = container_of(head, struct inode, i_rcu);
3092 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3093 }
3094 
3095 static void shmem_destroy_inode(struct inode *inode)
3096 {
3097 	if (S_ISREG(inode->i_mode))
3098 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3099 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3100 }
3101 
3102 static void shmem_init_inode(void *foo)
3103 {
3104 	struct shmem_inode_info *info = foo;
3105 	inode_init_once(&info->vfs_inode);
3106 }
3107 
3108 static int shmem_init_inodecache(void)
3109 {
3110 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3111 				sizeof(struct shmem_inode_info),
3112 				0, SLAB_PANIC, shmem_init_inode);
3113 	return 0;
3114 }
3115 
3116 static void shmem_destroy_inodecache(void)
3117 {
3118 	kmem_cache_destroy(shmem_inode_cachep);
3119 }
3120 
3121 static const struct address_space_operations shmem_aops = {
3122 	.writepage	= shmem_writepage,
3123 	.set_page_dirty	= __set_page_dirty_no_writeback,
3124 #ifdef CONFIG_TMPFS
3125 	.write_begin	= shmem_write_begin,
3126 	.write_end	= shmem_write_end,
3127 #endif
3128 #ifdef CONFIG_MIGRATION
3129 	.migratepage	= migrate_page,
3130 #endif
3131 	.error_remove_page = generic_error_remove_page,
3132 };
3133 
3134 static const struct file_operations shmem_file_operations = {
3135 	.mmap		= shmem_mmap,
3136 #ifdef CONFIG_TMPFS
3137 	.llseek		= shmem_file_llseek,
3138 	.read_iter	= shmem_file_read_iter,
3139 	.write_iter	= generic_file_write_iter,
3140 	.fsync		= noop_fsync,
3141 	.splice_read	= shmem_file_splice_read,
3142 	.splice_write	= iter_file_splice_write,
3143 	.fallocate	= shmem_fallocate,
3144 #endif
3145 };
3146 
3147 static const struct inode_operations shmem_inode_operations = {
3148 	.getattr	= shmem_getattr,
3149 	.setattr	= shmem_setattr,
3150 #ifdef CONFIG_TMPFS_XATTR
3151 	.setxattr	= shmem_setxattr,
3152 	.getxattr	= shmem_getxattr,
3153 	.listxattr	= shmem_listxattr,
3154 	.removexattr	= shmem_removexattr,
3155 	.set_acl	= simple_set_acl,
3156 #endif
3157 };
3158 
3159 static const struct inode_operations shmem_dir_inode_operations = {
3160 #ifdef CONFIG_TMPFS
3161 	.create		= shmem_create,
3162 	.lookup		= simple_lookup,
3163 	.link		= shmem_link,
3164 	.unlink		= shmem_unlink,
3165 	.symlink	= shmem_symlink,
3166 	.mkdir		= shmem_mkdir,
3167 	.rmdir		= shmem_rmdir,
3168 	.mknod		= shmem_mknod,
3169 	.rename2	= shmem_rename2,
3170 	.tmpfile	= shmem_tmpfile,
3171 #endif
3172 #ifdef CONFIG_TMPFS_XATTR
3173 	.setxattr	= shmem_setxattr,
3174 	.getxattr	= shmem_getxattr,
3175 	.listxattr	= shmem_listxattr,
3176 	.removexattr	= shmem_removexattr,
3177 #endif
3178 #ifdef CONFIG_TMPFS_POSIX_ACL
3179 	.setattr	= shmem_setattr,
3180 	.set_acl	= simple_set_acl,
3181 #endif
3182 };
3183 
3184 static const struct inode_operations shmem_special_inode_operations = {
3185 #ifdef CONFIG_TMPFS_XATTR
3186 	.setxattr	= shmem_setxattr,
3187 	.getxattr	= shmem_getxattr,
3188 	.listxattr	= shmem_listxattr,
3189 	.removexattr	= shmem_removexattr,
3190 #endif
3191 #ifdef CONFIG_TMPFS_POSIX_ACL
3192 	.setattr	= shmem_setattr,
3193 	.set_acl	= simple_set_acl,
3194 #endif
3195 };
3196 
3197 static const struct super_operations shmem_ops = {
3198 	.alloc_inode	= shmem_alloc_inode,
3199 	.destroy_inode	= shmem_destroy_inode,
3200 #ifdef CONFIG_TMPFS
3201 	.statfs		= shmem_statfs,
3202 	.remount_fs	= shmem_remount_fs,
3203 	.show_options	= shmem_show_options,
3204 #endif
3205 	.evict_inode	= shmem_evict_inode,
3206 	.drop_inode	= generic_delete_inode,
3207 	.put_super	= shmem_put_super,
3208 };
3209 
3210 static const struct vm_operations_struct shmem_vm_ops = {
3211 	.fault		= shmem_fault,
3212 	.map_pages	= filemap_map_pages,
3213 #ifdef CONFIG_NUMA
3214 	.set_policy     = shmem_set_policy,
3215 	.get_policy     = shmem_get_policy,
3216 #endif
3217 };
3218 
3219 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3220 	int flags, const char *dev_name, void *data)
3221 {
3222 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3223 }
3224 
3225 static struct file_system_type shmem_fs_type = {
3226 	.owner		= THIS_MODULE,
3227 	.name		= "tmpfs",
3228 	.mount		= shmem_mount,
3229 	.kill_sb	= kill_litter_super,
3230 	.fs_flags	= FS_USERNS_MOUNT,
3231 };
3232 
3233 int __init shmem_init(void)
3234 {
3235 	int error;
3236 
3237 	/* If rootfs called this, don't re-init */
3238 	if (shmem_inode_cachep)
3239 		return 0;
3240 
3241 	error = shmem_init_inodecache();
3242 	if (error)
3243 		goto out3;
3244 
3245 	error = register_filesystem(&shmem_fs_type);
3246 	if (error) {
3247 		printk(KERN_ERR "Could not register tmpfs\n");
3248 		goto out2;
3249 	}
3250 
3251 	shm_mnt = kern_mount(&shmem_fs_type);
3252 	if (IS_ERR(shm_mnt)) {
3253 		error = PTR_ERR(shm_mnt);
3254 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
3255 		goto out1;
3256 	}
3257 	return 0;
3258 
3259 out1:
3260 	unregister_filesystem(&shmem_fs_type);
3261 out2:
3262 	shmem_destroy_inodecache();
3263 out3:
3264 	shm_mnt = ERR_PTR(error);
3265 	return error;
3266 }
3267 
3268 #else /* !CONFIG_SHMEM */
3269 
3270 /*
3271  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3272  *
3273  * This is intended for small system where the benefits of the full
3274  * shmem code (swap-backed and resource-limited) are outweighed by
3275  * their complexity. On systems without swap this code should be
3276  * effectively equivalent, but much lighter weight.
3277  */
3278 
3279 static struct file_system_type shmem_fs_type = {
3280 	.name		= "tmpfs",
3281 	.mount		= ramfs_mount,
3282 	.kill_sb	= kill_litter_super,
3283 	.fs_flags	= FS_USERNS_MOUNT,
3284 };
3285 
3286 int __init shmem_init(void)
3287 {
3288 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3289 
3290 	shm_mnt = kern_mount(&shmem_fs_type);
3291 	BUG_ON(IS_ERR(shm_mnt));
3292 
3293 	return 0;
3294 }
3295 
3296 int shmem_unuse(swp_entry_t swap, struct page *page)
3297 {
3298 	return 0;
3299 }
3300 
3301 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3302 {
3303 	return 0;
3304 }
3305 
3306 void shmem_unlock_mapping(struct address_space *mapping)
3307 {
3308 }
3309 
3310 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3311 {
3312 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3313 }
3314 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3315 
3316 #define shmem_vm_ops				generic_file_vm_ops
3317 #define shmem_file_operations			ramfs_file_operations
3318 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3319 #define shmem_acct_size(flags, size)		0
3320 #define shmem_unacct_size(flags, size)		do {} while (0)
3321 
3322 #endif /* CONFIG_SHMEM */
3323 
3324 /* common code */
3325 
3326 static struct dentry_operations anon_ops = {
3327 	.d_dname = simple_dname
3328 };
3329 
3330 static struct file *__shmem_file_setup(const char *name, loff_t size,
3331 				       unsigned long flags, unsigned int i_flags)
3332 {
3333 	struct file *res;
3334 	struct inode *inode;
3335 	struct path path;
3336 	struct super_block *sb;
3337 	struct qstr this;
3338 
3339 	if (IS_ERR(shm_mnt))
3340 		return ERR_CAST(shm_mnt);
3341 
3342 	if (size < 0 || size > MAX_LFS_FILESIZE)
3343 		return ERR_PTR(-EINVAL);
3344 
3345 	if (shmem_acct_size(flags, size))
3346 		return ERR_PTR(-ENOMEM);
3347 
3348 	res = ERR_PTR(-ENOMEM);
3349 	this.name = name;
3350 	this.len = strlen(name);
3351 	this.hash = 0; /* will go */
3352 	sb = shm_mnt->mnt_sb;
3353 	path.mnt = mntget(shm_mnt);
3354 	path.dentry = d_alloc_pseudo(sb, &this);
3355 	if (!path.dentry)
3356 		goto put_memory;
3357 	d_set_d_op(path.dentry, &anon_ops);
3358 
3359 	res = ERR_PTR(-ENOSPC);
3360 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3361 	if (!inode)
3362 		goto put_memory;
3363 
3364 	inode->i_flags |= i_flags;
3365 	d_instantiate(path.dentry, inode);
3366 	inode->i_size = size;
3367 	clear_nlink(inode);	/* It is unlinked */
3368 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3369 	if (IS_ERR(res))
3370 		goto put_path;
3371 
3372 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3373 		  &shmem_file_operations);
3374 	if (IS_ERR(res))
3375 		goto put_path;
3376 
3377 	return res;
3378 
3379 put_memory:
3380 	shmem_unacct_size(flags, size);
3381 put_path:
3382 	path_put(&path);
3383 	return res;
3384 }
3385 
3386 /**
3387  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3388  * 	kernel internal.  There will be NO LSM permission checks against the
3389  * 	underlying inode.  So users of this interface must do LSM checks at a
3390  *	higher layer.  The users are the big_key and shm implementations.  LSM
3391  *	checks are provided at the key or shm level rather than the inode.
3392  * @name: name for dentry (to be seen in /proc/<pid>/maps
3393  * @size: size to be set for the file
3394  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3395  */
3396 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3397 {
3398 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
3399 }
3400 
3401 /**
3402  * shmem_file_setup - get an unlinked file living in tmpfs
3403  * @name: name for dentry (to be seen in /proc/<pid>/maps
3404  * @size: size to be set for the file
3405  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3406  */
3407 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3408 {
3409 	return __shmem_file_setup(name, size, flags, 0);
3410 }
3411 EXPORT_SYMBOL_GPL(shmem_file_setup);
3412 
3413 /**
3414  * shmem_zero_setup - setup a shared anonymous mapping
3415  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3416  */
3417 int shmem_zero_setup(struct vm_area_struct *vma)
3418 {
3419 	struct file *file;
3420 	loff_t size = vma->vm_end - vma->vm_start;
3421 
3422 	/*
3423 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3424 	 * between XFS directory reading and selinux: since this file is only
3425 	 * accessible to the user through its mapping, use S_PRIVATE flag to
3426 	 * bypass file security, in the same way as shmem_kernel_file_setup().
3427 	 */
3428 	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3429 	if (IS_ERR(file))
3430 		return PTR_ERR(file);
3431 
3432 	if (vma->vm_file)
3433 		fput(vma->vm_file);
3434 	vma->vm_file = file;
3435 	vma->vm_ops = &shmem_vm_ops;
3436 	return 0;
3437 }
3438 
3439 /**
3440  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3441  * @mapping:	the page's address_space
3442  * @index:	the page index
3443  * @gfp:	the page allocator flags to use if allocating
3444  *
3445  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3446  * with any new page allocations done using the specified allocation flags.
3447  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3448  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3449  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3450  *
3451  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3452  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3453  */
3454 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3455 					 pgoff_t index, gfp_t gfp)
3456 {
3457 #ifdef CONFIG_SHMEM
3458 	struct inode *inode = mapping->host;
3459 	struct page *page;
3460 	int error;
3461 
3462 	BUG_ON(mapping->a_ops != &shmem_aops);
3463 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3464 	if (error)
3465 		page = ERR_PTR(error);
3466 	else
3467 		unlock_page(page);
3468 	return page;
3469 #else
3470 	/*
3471 	 * The tiny !SHMEM case uses ramfs without swap
3472 	 */
3473 	return read_cache_page_gfp(mapping, index, gfp);
3474 #endif
3475 }
3476 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3477