xref: /linux/mm/shmem.c (revision 94e48d6aafef23143f92eadd010c505c49487576)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43 
44 static struct vfsmount *shm_mnt;
45 
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52 
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83 
84 #include <linux/uaccess.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96 
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 	pgoff_t start;		/* start of range currently being fallocated */
105 	pgoff_t next;		/* the next page offset to be fallocated */
106 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
107 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
108 };
109 
110 struct shmem_options {
111 	unsigned long long blocks;
112 	unsigned long long inodes;
113 	struct mempolicy *mpol;
114 	kuid_t uid;
115 	kgid_t gid;
116 	umode_t mode;
117 	bool full_inums;
118 	int huge;
119 	int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125 
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129 	return totalram_pages() / 2;
130 }
131 
132 static unsigned long shmem_default_max_inodes(void)
133 {
134 	unsigned long nr_pages = totalram_pages();
135 
136 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139 
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 				struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 			     struct page **pagep, enum sgp_type sgp,
145 			     gfp_t gfp, struct vm_area_struct *vma,
146 			     vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148 		struct page **pagep, enum sgp_type sgp,
149 		gfp_t gfp, struct vm_area_struct *vma,
150 		struct vm_fault *vmf, vm_fault_t *fault_type);
151 
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153 		struct page **pagep, enum sgp_type sgp)
154 {
155 	return shmem_getpage_gfp(inode, index, pagep, sgp,
156 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158 
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161 	return sb->s_fs_info;
162 }
163 
164 /*
165  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166  * for shared memory and for shared anonymous (/dev/zero) mappings
167  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168  * consistent with the pre-accounting of private mappings ...
169  */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172 	return (flags & VM_NORESERVE) ?
173 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175 
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178 	if (!(flags & VM_NORESERVE))
179 		vm_unacct_memory(VM_ACCT(size));
180 }
181 
182 static inline int shmem_reacct_size(unsigned long flags,
183 		loff_t oldsize, loff_t newsize)
184 {
185 	if (!(flags & VM_NORESERVE)) {
186 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 			return security_vm_enough_memory_mm(current->mm,
188 					VM_ACCT(newsize) - VM_ACCT(oldsize));
189 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 	}
192 	return 0;
193 }
194 
195 /*
196  * ... whereas tmpfs objects are accounted incrementally as
197  * pages are allocated, in order to allow large sparse files.
198  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200  */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203 	if (!(flags & VM_NORESERVE))
204 		return 0;
205 
206 	return security_vm_enough_memory_mm(current->mm,
207 			pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 	if (flags & VM_NORESERVE)
213 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215 
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218 	struct shmem_inode_info *info = SHMEM_I(inode);
219 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220 
221 	if (shmem_acct_block(info->flags, pages))
222 		return false;
223 
224 	if (sbinfo->max_blocks) {
225 		if (percpu_counter_compare(&sbinfo->used_blocks,
226 					   sbinfo->max_blocks - pages) > 0)
227 			goto unacct;
228 		percpu_counter_add(&sbinfo->used_blocks, pages);
229 	}
230 
231 	return true;
232 
233 unacct:
234 	shmem_unacct_blocks(info->flags, pages);
235 	return false;
236 }
237 
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240 	struct shmem_inode_info *info = SHMEM_I(inode);
241 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 
243 	if (sbinfo->max_blocks)
244 		percpu_counter_sub(&sbinfo->used_blocks, pages);
245 	shmem_unacct_blocks(info->flags, pages);
246 }
247 
248 static const struct super_operations shmem_ops;
249 const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256 
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259 	return vma->vm_ops == &shmem_vm_ops;
260 }
261 
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264 
265 /*
266  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267  * produces a novel ino for the newly allocated inode.
268  *
269  * It may also be called when making a hard link to permit the space needed by
270  * each dentry. However, in that case, no new inode number is needed since that
271  * internally draws from another pool of inode numbers (currently global
272  * get_next_ino()). This case is indicated by passing NULL as inop.
273  */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278 	ino_t ino;
279 
280 	if (!(sb->s_flags & SB_KERNMOUNT)) {
281 		spin_lock(&sbinfo->stat_lock);
282 		if (sbinfo->max_inodes) {
283 			if (!sbinfo->free_inodes) {
284 				spin_unlock(&sbinfo->stat_lock);
285 				return -ENOSPC;
286 			}
287 			sbinfo->free_inodes--;
288 		}
289 		if (inop) {
290 			ino = sbinfo->next_ino++;
291 			if (unlikely(is_zero_ino(ino)))
292 				ino = sbinfo->next_ino++;
293 			if (unlikely(!sbinfo->full_inums &&
294 				     ino > UINT_MAX)) {
295 				/*
296 				 * Emulate get_next_ino uint wraparound for
297 				 * compatibility
298 				 */
299 				if (IS_ENABLED(CONFIG_64BIT))
300 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301 						__func__, MINOR(sb->s_dev));
302 				sbinfo->next_ino = 1;
303 				ino = sbinfo->next_ino++;
304 			}
305 			*inop = ino;
306 		}
307 		spin_unlock(&sbinfo->stat_lock);
308 	} else if (inop) {
309 		/*
310 		 * __shmem_file_setup, one of our callers, is lock-free: it
311 		 * doesn't hold stat_lock in shmem_reserve_inode since
312 		 * max_inodes is always 0, and is called from potentially
313 		 * unknown contexts. As such, use a per-cpu batched allocator
314 		 * which doesn't require the per-sb stat_lock unless we are at
315 		 * the batch boundary.
316 		 *
317 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318 		 * shmem mounts are not exposed to userspace, so we don't need
319 		 * to worry about things like glibc compatibility.
320 		 */
321 		ino_t *next_ino;
322 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323 		ino = *next_ino;
324 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325 			spin_lock(&sbinfo->stat_lock);
326 			ino = sbinfo->next_ino;
327 			sbinfo->next_ino += SHMEM_INO_BATCH;
328 			spin_unlock(&sbinfo->stat_lock);
329 			if (unlikely(is_zero_ino(ino)))
330 				ino++;
331 		}
332 		*inop = ino;
333 		*next_ino = ++ino;
334 		put_cpu();
335 	}
336 
337 	return 0;
338 }
339 
340 static void shmem_free_inode(struct super_block *sb)
341 {
342 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343 	if (sbinfo->max_inodes) {
344 		spin_lock(&sbinfo->stat_lock);
345 		sbinfo->free_inodes++;
346 		spin_unlock(&sbinfo->stat_lock);
347 	}
348 }
349 
350 /**
351  * shmem_recalc_inode - recalculate the block usage of an inode
352  * @inode: inode to recalc
353  *
354  * We have to calculate the free blocks since the mm can drop
355  * undirtied hole pages behind our back.
356  *
357  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
358  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359  *
360  * It has to be called with the spinlock held.
361  */
362 static void shmem_recalc_inode(struct inode *inode)
363 {
364 	struct shmem_inode_info *info = SHMEM_I(inode);
365 	long freed;
366 
367 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368 	if (freed > 0) {
369 		info->alloced -= freed;
370 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
371 		shmem_inode_unacct_blocks(inode, freed);
372 	}
373 }
374 
375 bool shmem_charge(struct inode *inode, long pages)
376 {
377 	struct shmem_inode_info *info = SHMEM_I(inode);
378 	unsigned long flags;
379 
380 	if (!shmem_inode_acct_block(inode, pages))
381 		return false;
382 
383 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384 	inode->i_mapping->nrpages += pages;
385 
386 	spin_lock_irqsave(&info->lock, flags);
387 	info->alloced += pages;
388 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
389 	shmem_recalc_inode(inode);
390 	spin_unlock_irqrestore(&info->lock, flags);
391 
392 	return true;
393 }
394 
395 void shmem_uncharge(struct inode *inode, long pages)
396 {
397 	struct shmem_inode_info *info = SHMEM_I(inode);
398 	unsigned long flags;
399 
400 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
401 
402 	spin_lock_irqsave(&info->lock, flags);
403 	info->alloced -= pages;
404 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405 	shmem_recalc_inode(inode);
406 	spin_unlock_irqrestore(&info->lock, flags);
407 
408 	shmem_inode_unacct_blocks(inode, pages);
409 }
410 
411 /*
412  * Replace item expected in xarray by a new item, while holding xa_lock.
413  */
414 static int shmem_replace_entry(struct address_space *mapping,
415 			pgoff_t index, void *expected, void *replacement)
416 {
417 	XA_STATE(xas, &mapping->i_pages, index);
418 	void *item;
419 
420 	VM_BUG_ON(!expected);
421 	VM_BUG_ON(!replacement);
422 	item = xas_load(&xas);
423 	if (item != expected)
424 		return -ENOENT;
425 	xas_store(&xas, replacement);
426 	return 0;
427 }
428 
429 /*
430  * Sometimes, before we decide whether to proceed or to fail, we must check
431  * that an entry was not already brought back from swap by a racing thread.
432  *
433  * Checking page is not enough: by the time a SwapCache page is locked, it
434  * might be reused, and again be SwapCache, using the same swap as before.
435  */
436 static bool shmem_confirm_swap(struct address_space *mapping,
437 			       pgoff_t index, swp_entry_t swap)
438 {
439 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
440 }
441 
442 /*
443  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444  *
445  * SHMEM_HUGE_NEVER:
446  *	disables huge pages for the mount;
447  * SHMEM_HUGE_ALWAYS:
448  *	enables huge pages for the mount;
449  * SHMEM_HUGE_WITHIN_SIZE:
450  *	only allocate huge pages if the page will be fully within i_size,
451  *	also respect fadvise()/madvise() hints;
452  * SHMEM_HUGE_ADVISE:
453  *	only allocate huge pages if requested with fadvise()/madvise();
454  */
455 
456 #define SHMEM_HUGE_NEVER	0
457 #define SHMEM_HUGE_ALWAYS	1
458 #define SHMEM_HUGE_WITHIN_SIZE	2
459 #define SHMEM_HUGE_ADVISE	3
460 
461 /*
462  * Special values.
463  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464  *
465  * SHMEM_HUGE_DENY:
466  *	disables huge on shm_mnt and all mounts, for emergency use;
467  * SHMEM_HUGE_FORCE:
468  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469  *
470  */
471 #define SHMEM_HUGE_DENY		(-1)
472 #define SHMEM_HUGE_FORCE	(-2)
473 
474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
475 /* ifdef here to avoid bloating shmem.o when not necessary */
476 
477 static int shmem_huge __read_mostly;
478 
479 #if defined(CONFIG_SYSFS)
480 static int shmem_parse_huge(const char *str)
481 {
482 	if (!strcmp(str, "never"))
483 		return SHMEM_HUGE_NEVER;
484 	if (!strcmp(str, "always"))
485 		return SHMEM_HUGE_ALWAYS;
486 	if (!strcmp(str, "within_size"))
487 		return SHMEM_HUGE_WITHIN_SIZE;
488 	if (!strcmp(str, "advise"))
489 		return SHMEM_HUGE_ADVISE;
490 	if (!strcmp(str, "deny"))
491 		return SHMEM_HUGE_DENY;
492 	if (!strcmp(str, "force"))
493 		return SHMEM_HUGE_FORCE;
494 	return -EINVAL;
495 }
496 #endif
497 
498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
499 static const char *shmem_format_huge(int huge)
500 {
501 	switch (huge) {
502 	case SHMEM_HUGE_NEVER:
503 		return "never";
504 	case SHMEM_HUGE_ALWAYS:
505 		return "always";
506 	case SHMEM_HUGE_WITHIN_SIZE:
507 		return "within_size";
508 	case SHMEM_HUGE_ADVISE:
509 		return "advise";
510 	case SHMEM_HUGE_DENY:
511 		return "deny";
512 	case SHMEM_HUGE_FORCE:
513 		return "force";
514 	default:
515 		VM_BUG_ON(1);
516 		return "bad_val";
517 	}
518 }
519 #endif
520 
521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 		struct shrink_control *sc, unsigned long nr_to_split)
523 {
524 	LIST_HEAD(list), *pos, *next;
525 	LIST_HEAD(to_remove);
526 	struct inode *inode;
527 	struct shmem_inode_info *info;
528 	struct page *page;
529 	unsigned long batch = sc ? sc->nr_to_scan : 128;
530 	int removed = 0, split = 0;
531 
532 	if (list_empty(&sbinfo->shrinklist))
533 		return SHRINK_STOP;
534 
535 	spin_lock(&sbinfo->shrinklist_lock);
536 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
538 
539 		/* pin the inode */
540 		inode = igrab(&info->vfs_inode);
541 
542 		/* inode is about to be evicted */
543 		if (!inode) {
544 			list_del_init(&info->shrinklist);
545 			removed++;
546 			goto next;
547 		}
548 
549 		/* Check if there's anything to gain */
550 		if (round_up(inode->i_size, PAGE_SIZE) ==
551 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
552 			list_move(&info->shrinklist, &to_remove);
553 			removed++;
554 			goto next;
555 		}
556 
557 		list_move(&info->shrinklist, &list);
558 next:
559 		if (!--batch)
560 			break;
561 	}
562 	spin_unlock(&sbinfo->shrinklist_lock);
563 
564 	list_for_each_safe(pos, next, &to_remove) {
565 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 		inode = &info->vfs_inode;
567 		list_del_init(&info->shrinklist);
568 		iput(inode);
569 	}
570 
571 	list_for_each_safe(pos, next, &list) {
572 		int ret;
573 
574 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
575 		inode = &info->vfs_inode;
576 
577 		if (nr_to_split && split >= nr_to_split)
578 			goto leave;
579 
580 		page = find_get_page(inode->i_mapping,
581 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582 		if (!page)
583 			goto drop;
584 
585 		/* No huge page at the end of the file: nothing to split */
586 		if (!PageTransHuge(page)) {
587 			put_page(page);
588 			goto drop;
589 		}
590 
591 		/*
592 		 * Leave the inode on the list if we failed to lock
593 		 * the page at this time.
594 		 *
595 		 * Waiting for the lock may lead to deadlock in the
596 		 * reclaim path.
597 		 */
598 		if (!trylock_page(page)) {
599 			put_page(page);
600 			goto leave;
601 		}
602 
603 		ret = split_huge_page(page);
604 		unlock_page(page);
605 		put_page(page);
606 
607 		/* If split failed leave the inode on the list */
608 		if (ret)
609 			goto leave;
610 
611 		split++;
612 drop:
613 		list_del_init(&info->shrinklist);
614 		removed++;
615 leave:
616 		iput(inode);
617 	}
618 
619 	spin_lock(&sbinfo->shrinklist_lock);
620 	list_splice_tail(&list, &sbinfo->shrinklist);
621 	sbinfo->shrinklist_len -= removed;
622 	spin_unlock(&sbinfo->shrinklist_lock);
623 
624 	return split;
625 }
626 
627 static long shmem_unused_huge_scan(struct super_block *sb,
628 		struct shrink_control *sc)
629 {
630 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
631 
632 	if (!READ_ONCE(sbinfo->shrinklist_len))
633 		return SHRINK_STOP;
634 
635 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
636 }
637 
638 static long shmem_unused_huge_count(struct super_block *sb,
639 		struct shrink_control *sc)
640 {
641 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642 	return READ_ONCE(sbinfo->shrinklist_len);
643 }
644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
645 
646 #define shmem_huge SHMEM_HUGE_DENY
647 
648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649 		struct shrink_control *sc, unsigned long nr_to_split)
650 {
651 	return 0;
652 }
653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
654 
655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
656 {
657 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
658 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659 	    shmem_huge != SHMEM_HUGE_DENY)
660 		return true;
661 	return false;
662 }
663 
664 /*
665  * Like add_to_page_cache_locked, but error if expected item has gone.
666  */
667 static int shmem_add_to_page_cache(struct page *page,
668 				   struct address_space *mapping,
669 				   pgoff_t index, void *expected, gfp_t gfp,
670 				   struct mm_struct *charge_mm)
671 {
672 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
673 	unsigned long i = 0;
674 	unsigned long nr = compound_nr(page);
675 	int error;
676 
677 	VM_BUG_ON_PAGE(PageTail(page), page);
678 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
679 	VM_BUG_ON_PAGE(!PageLocked(page), page);
680 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
681 	VM_BUG_ON(expected && PageTransHuge(page));
682 
683 	page_ref_add(page, nr);
684 	page->mapping = mapping;
685 	page->index = index;
686 
687 	if (!PageSwapCache(page)) {
688 		error = mem_cgroup_charge(page, charge_mm, gfp);
689 		if (error) {
690 			if (PageTransHuge(page)) {
691 				count_vm_event(THP_FILE_FALLBACK);
692 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
693 			}
694 			goto error;
695 		}
696 	}
697 	cgroup_throttle_swaprate(page, gfp);
698 
699 	do {
700 		void *entry;
701 		xas_lock_irq(&xas);
702 		entry = xas_find_conflict(&xas);
703 		if (entry != expected)
704 			xas_set_err(&xas, -EEXIST);
705 		xas_create_range(&xas);
706 		if (xas_error(&xas))
707 			goto unlock;
708 next:
709 		xas_store(&xas, page);
710 		if (++i < nr) {
711 			xas_next(&xas);
712 			goto next;
713 		}
714 		if (PageTransHuge(page)) {
715 			count_vm_event(THP_FILE_ALLOC);
716 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
717 		}
718 		mapping->nrpages += nr;
719 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
720 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
721 unlock:
722 		xas_unlock_irq(&xas);
723 	} while (xas_nomem(&xas, gfp));
724 
725 	if (xas_error(&xas)) {
726 		error = xas_error(&xas);
727 		goto error;
728 	}
729 
730 	return 0;
731 error:
732 	page->mapping = NULL;
733 	page_ref_sub(page, nr);
734 	return error;
735 }
736 
737 /*
738  * Like delete_from_page_cache, but substitutes swap for page.
739  */
740 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
741 {
742 	struct address_space *mapping = page->mapping;
743 	int error;
744 
745 	VM_BUG_ON_PAGE(PageCompound(page), page);
746 
747 	xa_lock_irq(&mapping->i_pages);
748 	error = shmem_replace_entry(mapping, page->index, page, radswap);
749 	page->mapping = NULL;
750 	mapping->nrpages--;
751 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
752 	__dec_lruvec_page_state(page, NR_SHMEM);
753 	xa_unlock_irq(&mapping->i_pages);
754 	put_page(page);
755 	BUG_ON(error);
756 }
757 
758 /*
759  * Remove swap entry from page cache, free the swap and its page cache.
760  */
761 static int shmem_free_swap(struct address_space *mapping,
762 			   pgoff_t index, void *radswap)
763 {
764 	void *old;
765 
766 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
767 	if (old != radswap)
768 		return -ENOENT;
769 	free_swap_and_cache(radix_to_swp_entry(radswap));
770 	return 0;
771 }
772 
773 /*
774  * Determine (in bytes) how many of the shmem object's pages mapped by the
775  * given offsets are swapped out.
776  *
777  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
778  * as long as the inode doesn't go away and racy results are not a problem.
779  */
780 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
781 						pgoff_t start, pgoff_t end)
782 {
783 	XA_STATE(xas, &mapping->i_pages, start);
784 	struct page *page;
785 	unsigned long swapped = 0;
786 
787 	rcu_read_lock();
788 	xas_for_each(&xas, page, end - 1) {
789 		if (xas_retry(&xas, page))
790 			continue;
791 		if (xa_is_value(page))
792 			swapped++;
793 
794 		if (need_resched()) {
795 			xas_pause(&xas);
796 			cond_resched_rcu();
797 		}
798 	}
799 
800 	rcu_read_unlock();
801 
802 	return swapped << PAGE_SHIFT;
803 }
804 
805 /*
806  * Determine (in bytes) how many of the shmem object's pages mapped by the
807  * given vma is swapped out.
808  *
809  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
810  * as long as the inode doesn't go away and racy results are not a problem.
811  */
812 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
813 {
814 	struct inode *inode = file_inode(vma->vm_file);
815 	struct shmem_inode_info *info = SHMEM_I(inode);
816 	struct address_space *mapping = inode->i_mapping;
817 	unsigned long swapped;
818 
819 	/* Be careful as we don't hold info->lock */
820 	swapped = READ_ONCE(info->swapped);
821 
822 	/*
823 	 * The easier cases are when the shmem object has nothing in swap, or
824 	 * the vma maps it whole. Then we can simply use the stats that we
825 	 * already track.
826 	 */
827 	if (!swapped)
828 		return 0;
829 
830 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
831 		return swapped << PAGE_SHIFT;
832 
833 	/* Here comes the more involved part */
834 	return shmem_partial_swap_usage(mapping,
835 			linear_page_index(vma, vma->vm_start),
836 			linear_page_index(vma, vma->vm_end));
837 }
838 
839 /*
840  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
841  */
842 void shmem_unlock_mapping(struct address_space *mapping)
843 {
844 	struct pagevec pvec;
845 	pgoff_t index = 0;
846 
847 	pagevec_init(&pvec);
848 	/*
849 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
850 	 */
851 	while (!mapping_unevictable(mapping)) {
852 		if (!pagevec_lookup(&pvec, mapping, &index))
853 			break;
854 		check_move_unevictable_pages(&pvec);
855 		pagevec_release(&pvec);
856 		cond_resched();
857 	}
858 }
859 
860 /*
861  * Check whether a hole-punch or truncation needs to split a huge page,
862  * returning true if no split was required, or the split has been successful.
863  *
864  * Eviction (or truncation to 0 size) should never need to split a huge page;
865  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
866  * head, and then succeeded to trylock on tail.
867  *
868  * A split can only succeed when there are no additional references on the
869  * huge page: so the split below relies upon find_get_entries() having stopped
870  * when it found a subpage of the huge page, without getting further references.
871  */
872 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
873 {
874 	if (!PageTransCompound(page))
875 		return true;
876 
877 	/* Just proceed to delete a huge page wholly within the range punched */
878 	if (PageHead(page) &&
879 	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
880 		return true;
881 
882 	/* Try to split huge page, so we can truly punch the hole or truncate */
883 	return split_huge_page(page) >= 0;
884 }
885 
886 /*
887  * Remove range of pages and swap entries from page cache, and free them.
888  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
889  */
890 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
891 								 bool unfalloc)
892 {
893 	struct address_space *mapping = inode->i_mapping;
894 	struct shmem_inode_info *info = SHMEM_I(inode);
895 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
896 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
897 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
898 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
899 	struct pagevec pvec;
900 	pgoff_t indices[PAGEVEC_SIZE];
901 	long nr_swaps_freed = 0;
902 	pgoff_t index;
903 	int i;
904 
905 	if (lend == -1)
906 		end = -1;	/* unsigned, so actually very big */
907 
908 	pagevec_init(&pvec);
909 	index = start;
910 	while (index < end && find_lock_entries(mapping, index, end - 1,
911 			&pvec, indices)) {
912 		for (i = 0; i < pagevec_count(&pvec); i++) {
913 			struct page *page = pvec.pages[i];
914 
915 			index = indices[i];
916 
917 			if (xa_is_value(page)) {
918 				if (unfalloc)
919 					continue;
920 				nr_swaps_freed += !shmem_free_swap(mapping,
921 								index, page);
922 				continue;
923 			}
924 			index += thp_nr_pages(page) - 1;
925 
926 			if (!unfalloc || !PageUptodate(page))
927 				truncate_inode_page(mapping, page);
928 			unlock_page(page);
929 		}
930 		pagevec_remove_exceptionals(&pvec);
931 		pagevec_release(&pvec);
932 		cond_resched();
933 		index++;
934 	}
935 
936 	if (partial_start) {
937 		struct page *page = NULL;
938 		shmem_getpage(inode, start - 1, &page, SGP_READ);
939 		if (page) {
940 			unsigned int top = PAGE_SIZE;
941 			if (start > end) {
942 				top = partial_end;
943 				partial_end = 0;
944 			}
945 			zero_user_segment(page, partial_start, top);
946 			set_page_dirty(page);
947 			unlock_page(page);
948 			put_page(page);
949 		}
950 	}
951 	if (partial_end) {
952 		struct page *page = NULL;
953 		shmem_getpage(inode, end, &page, SGP_READ);
954 		if (page) {
955 			zero_user_segment(page, 0, partial_end);
956 			set_page_dirty(page);
957 			unlock_page(page);
958 			put_page(page);
959 		}
960 	}
961 	if (start >= end)
962 		return;
963 
964 	index = start;
965 	while (index < end) {
966 		cond_resched();
967 
968 		if (!find_get_entries(mapping, index, end - 1, &pvec,
969 				indices)) {
970 			/* If all gone or hole-punch or unfalloc, we're done */
971 			if (index == start || end != -1)
972 				break;
973 			/* But if truncating, restart to make sure all gone */
974 			index = start;
975 			continue;
976 		}
977 		for (i = 0; i < pagevec_count(&pvec); i++) {
978 			struct page *page = pvec.pages[i];
979 
980 			index = indices[i];
981 			if (xa_is_value(page)) {
982 				if (unfalloc)
983 					continue;
984 				if (shmem_free_swap(mapping, index, page)) {
985 					/* Swap was replaced by page: retry */
986 					index--;
987 					break;
988 				}
989 				nr_swaps_freed++;
990 				continue;
991 			}
992 
993 			lock_page(page);
994 
995 			if (!unfalloc || !PageUptodate(page)) {
996 				if (page_mapping(page) != mapping) {
997 					/* Page was replaced by swap: retry */
998 					unlock_page(page);
999 					index--;
1000 					break;
1001 				}
1002 				VM_BUG_ON_PAGE(PageWriteback(page), page);
1003 				if (shmem_punch_compound(page, start, end))
1004 					truncate_inode_page(mapping, page);
1005 				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1006 					/* Wipe the page and don't get stuck */
1007 					clear_highpage(page);
1008 					flush_dcache_page(page);
1009 					set_page_dirty(page);
1010 					if (index <
1011 					    round_up(start, HPAGE_PMD_NR))
1012 						start = index + 1;
1013 				}
1014 			}
1015 			unlock_page(page);
1016 		}
1017 		pagevec_remove_exceptionals(&pvec);
1018 		pagevec_release(&pvec);
1019 		index++;
1020 	}
1021 
1022 	spin_lock_irq(&info->lock);
1023 	info->swapped -= nr_swaps_freed;
1024 	shmem_recalc_inode(inode);
1025 	spin_unlock_irq(&info->lock);
1026 }
1027 
1028 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1029 {
1030 	shmem_undo_range(inode, lstart, lend, false);
1031 	inode->i_ctime = inode->i_mtime = current_time(inode);
1032 }
1033 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1034 
1035 static int shmem_getattr(struct user_namespace *mnt_userns,
1036 			 const struct path *path, struct kstat *stat,
1037 			 u32 request_mask, unsigned int query_flags)
1038 {
1039 	struct inode *inode = path->dentry->d_inode;
1040 	struct shmem_inode_info *info = SHMEM_I(inode);
1041 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1042 
1043 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1044 		spin_lock_irq(&info->lock);
1045 		shmem_recalc_inode(inode);
1046 		spin_unlock_irq(&info->lock);
1047 	}
1048 	generic_fillattr(&init_user_ns, inode, stat);
1049 
1050 	if (is_huge_enabled(sb_info))
1051 		stat->blksize = HPAGE_PMD_SIZE;
1052 
1053 	return 0;
1054 }
1055 
1056 static int shmem_setattr(struct user_namespace *mnt_userns,
1057 			 struct dentry *dentry, struct iattr *attr)
1058 {
1059 	struct inode *inode = d_inode(dentry);
1060 	struct shmem_inode_info *info = SHMEM_I(inode);
1061 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1062 	int error;
1063 
1064 	error = setattr_prepare(&init_user_ns, dentry, attr);
1065 	if (error)
1066 		return error;
1067 
1068 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1069 		loff_t oldsize = inode->i_size;
1070 		loff_t newsize = attr->ia_size;
1071 
1072 		/* protected by i_mutex */
1073 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1074 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1075 			return -EPERM;
1076 
1077 		if (newsize != oldsize) {
1078 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1079 					oldsize, newsize);
1080 			if (error)
1081 				return error;
1082 			i_size_write(inode, newsize);
1083 			inode->i_ctime = inode->i_mtime = current_time(inode);
1084 		}
1085 		if (newsize <= oldsize) {
1086 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1087 			if (oldsize > holebegin)
1088 				unmap_mapping_range(inode->i_mapping,
1089 							holebegin, 0, 1);
1090 			if (info->alloced)
1091 				shmem_truncate_range(inode,
1092 							newsize, (loff_t)-1);
1093 			/* unmap again to remove racily COWed private pages */
1094 			if (oldsize > holebegin)
1095 				unmap_mapping_range(inode->i_mapping,
1096 							holebegin, 0, 1);
1097 
1098 			/*
1099 			 * Part of the huge page can be beyond i_size: subject
1100 			 * to shrink under memory pressure.
1101 			 */
1102 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1103 				spin_lock(&sbinfo->shrinklist_lock);
1104 				/*
1105 				 * _careful to defend against unlocked access to
1106 				 * ->shrink_list in shmem_unused_huge_shrink()
1107 				 */
1108 				if (list_empty_careful(&info->shrinklist)) {
1109 					list_add_tail(&info->shrinklist,
1110 							&sbinfo->shrinklist);
1111 					sbinfo->shrinklist_len++;
1112 				}
1113 				spin_unlock(&sbinfo->shrinklist_lock);
1114 			}
1115 		}
1116 	}
1117 
1118 	setattr_copy(&init_user_ns, inode, attr);
1119 	if (attr->ia_valid & ATTR_MODE)
1120 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1121 	return error;
1122 }
1123 
1124 static void shmem_evict_inode(struct inode *inode)
1125 {
1126 	struct shmem_inode_info *info = SHMEM_I(inode);
1127 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1128 
1129 	if (shmem_mapping(inode->i_mapping)) {
1130 		shmem_unacct_size(info->flags, inode->i_size);
1131 		inode->i_size = 0;
1132 		shmem_truncate_range(inode, 0, (loff_t)-1);
1133 		if (!list_empty(&info->shrinklist)) {
1134 			spin_lock(&sbinfo->shrinklist_lock);
1135 			if (!list_empty(&info->shrinklist)) {
1136 				list_del_init(&info->shrinklist);
1137 				sbinfo->shrinklist_len--;
1138 			}
1139 			spin_unlock(&sbinfo->shrinklist_lock);
1140 		}
1141 		while (!list_empty(&info->swaplist)) {
1142 			/* Wait while shmem_unuse() is scanning this inode... */
1143 			wait_var_event(&info->stop_eviction,
1144 				       !atomic_read(&info->stop_eviction));
1145 			mutex_lock(&shmem_swaplist_mutex);
1146 			/* ...but beware of the race if we peeked too early */
1147 			if (!atomic_read(&info->stop_eviction))
1148 				list_del_init(&info->swaplist);
1149 			mutex_unlock(&shmem_swaplist_mutex);
1150 		}
1151 	}
1152 
1153 	simple_xattrs_free(&info->xattrs);
1154 	WARN_ON(inode->i_blocks);
1155 	shmem_free_inode(inode->i_sb);
1156 	clear_inode(inode);
1157 }
1158 
1159 extern struct swap_info_struct *swap_info[];
1160 
1161 static int shmem_find_swap_entries(struct address_space *mapping,
1162 				   pgoff_t start, unsigned int nr_entries,
1163 				   struct page **entries, pgoff_t *indices,
1164 				   unsigned int type, bool frontswap)
1165 {
1166 	XA_STATE(xas, &mapping->i_pages, start);
1167 	struct page *page;
1168 	swp_entry_t entry;
1169 	unsigned int ret = 0;
1170 
1171 	if (!nr_entries)
1172 		return 0;
1173 
1174 	rcu_read_lock();
1175 	xas_for_each(&xas, page, ULONG_MAX) {
1176 		if (xas_retry(&xas, page))
1177 			continue;
1178 
1179 		if (!xa_is_value(page))
1180 			continue;
1181 
1182 		entry = radix_to_swp_entry(page);
1183 		if (swp_type(entry) != type)
1184 			continue;
1185 		if (frontswap &&
1186 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1187 			continue;
1188 
1189 		indices[ret] = xas.xa_index;
1190 		entries[ret] = page;
1191 
1192 		if (need_resched()) {
1193 			xas_pause(&xas);
1194 			cond_resched_rcu();
1195 		}
1196 		if (++ret == nr_entries)
1197 			break;
1198 	}
1199 	rcu_read_unlock();
1200 
1201 	return ret;
1202 }
1203 
1204 /*
1205  * Move the swapped pages for an inode to page cache. Returns the count
1206  * of pages swapped in, or the error in case of failure.
1207  */
1208 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1209 				    pgoff_t *indices)
1210 {
1211 	int i = 0;
1212 	int ret = 0;
1213 	int error = 0;
1214 	struct address_space *mapping = inode->i_mapping;
1215 
1216 	for (i = 0; i < pvec.nr; i++) {
1217 		struct page *page = pvec.pages[i];
1218 
1219 		if (!xa_is_value(page))
1220 			continue;
1221 		error = shmem_swapin_page(inode, indices[i],
1222 					  &page, SGP_CACHE,
1223 					  mapping_gfp_mask(mapping),
1224 					  NULL, NULL);
1225 		if (error == 0) {
1226 			unlock_page(page);
1227 			put_page(page);
1228 			ret++;
1229 		}
1230 		if (error == -ENOMEM)
1231 			break;
1232 		error = 0;
1233 	}
1234 	return error ? error : ret;
1235 }
1236 
1237 /*
1238  * If swap found in inode, free it and move page from swapcache to filecache.
1239  */
1240 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1241 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1242 {
1243 	struct address_space *mapping = inode->i_mapping;
1244 	pgoff_t start = 0;
1245 	struct pagevec pvec;
1246 	pgoff_t indices[PAGEVEC_SIZE];
1247 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1248 	int ret = 0;
1249 
1250 	pagevec_init(&pvec);
1251 	do {
1252 		unsigned int nr_entries = PAGEVEC_SIZE;
1253 
1254 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1255 			nr_entries = *fs_pages_to_unuse;
1256 
1257 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1258 						  pvec.pages, indices,
1259 						  type, frontswap);
1260 		if (pvec.nr == 0) {
1261 			ret = 0;
1262 			break;
1263 		}
1264 
1265 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1266 		if (ret < 0)
1267 			break;
1268 
1269 		if (frontswap_partial) {
1270 			*fs_pages_to_unuse -= ret;
1271 			if (*fs_pages_to_unuse == 0) {
1272 				ret = FRONTSWAP_PAGES_UNUSED;
1273 				break;
1274 			}
1275 		}
1276 
1277 		start = indices[pvec.nr - 1];
1278 	} while (true);
1279 
1280 	return ret;
1281 }
1282 
1283 /*
1284  * Read all the shared memory data that resides in the swap
1285  * device 'type' back into memory, so the swap device can be
1286  * unused.
1287  */
1288 int shmem_unuse(unsigned int type, bool frontswap,
1289 		unsigned long *fs_pages_to_unuse)
1290 {
1291 	struct shmem_inode_info *info, *next;
1292 	int error = 0;
1293 
1294 	if (list_empty(&shmem_swaplist))
1295 		return 0;
1296 
1297 	mutex_lock(&shmem_swaplist_mutex);
1298 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1299 		if (!info->swapped) {
1300 			list_del_init(&info->swaplist);
1301 			continue;
1302 		}
1303 		/*
1304 		 * Drop the swaplist mutex while searching the inode for swap;
1305 		 * but before doing so, make sure shmem_evict_inode() will not
1306 		 * remove placeholder inode from swaplist, nor let it be freed
1307 		 * (igrab() would protect from unlink, but not from unmount).
1308 		 */
1309 		atomic_inc(&info->stop_eviction);
1310 		mutex_unlock(&shmem_swaplist_mutex);
1311 
1312 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1313 					  fs_pages_to_unuse);
1314 		cond_resched();
1315 
1316 		mutex_lock(&shmem_swaplist_mutex);
1317 		next = list_next_entry(info, swaplist);
1318 		if (!info->swapped)
1319 			list_del_init(&info->swaplist);
1320 		if (atomic_dec_and_test(&info->stop_eviction))
1321 			wake_up_var(&info->stop_eviction);
1322 		if (error)
1323 			break;
1324 	}
1325 	mutex_unlock(&shmem_swaplist_mutex);
1326 
1327 	return error;
1328 }
1329 
1330 /*
1331  * Move the page from the page cache to the swap cache.
1332  */
1333 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1334 {
1335 	struct shmem_inode_info *info;
1336 	struct address_space *mapping;
1337 	struct inode *inode;
1338 	swp_entry_t swap;
1339 	pgoff_t index;
1340 
1341 	VM_BUG_ON_PAGE(PageCompound(page), page);
1342 	BUG_ON(!PageLocked(page));
1343 	mapping = page->mapping;
1344 	index = page->index;
1345 	inode = mapping->host;
1346 	info = SHMEM_I(inode);
1347 	if (info->flags & VM_LOCKED)
1348 		goto redirty;
1349 	if (!total_swap_pages)
1350 		goto redirty;
1351 
1352 	/*
1353 	 * Our capabilities prevent regular writeback or sync from ever calling
1354 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1355 	 * its underlying filesystem, in which case tmpfs should write out to
1356 	 * swap only in response to memory pressure, and not for the writeback
1357 	 * threads or sync.
1358 	 */
1359 	if (!wbc->for_reclaim) {
1360 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1361 		goto redirty;
1362 	}
1363 
1364 	/*
1365 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1366 	 * value into swapfile.c, the only way we can correctly account for a
1367 	 * fallocated page arriving here is now to initialize it and write it.
1368 	 *
1369 	 * That's okay for a page already fallocated earlier, but if we have
1370 	 * not yet completed the fallocation, then (a) we want to keep track
1371 	 * of this page in case we have to undo it, and (b) it may not be a
1372 	 * good idea to continue anyway, once we're pushing into swap.  So
1373 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1374 	 */
1375 	if (!PageUptodate(page)) {
1376 		if (inode->i_private) {
1377 			struct shmem_falloc *shmem_falloc;
1378 			spin_lock(&inode->i_lock);
1379 			shmem_falloc = inode->i_private;
1380 			if (shmem_falloc &&
1381 			    !shmem_falloc->waitq &&
1382 			    index >= shmem_falloc->start &&
1383 			    index < shmem_falloc->next)
1384 				shmem_falloc->nr_unswapped++;
1385 			else
1386 				shmem_falloc = NULL;
1387 			spin_unlock(&inode->i_lock);
1388 			if (shmem_falloc)
1389 				goto redirty;
1390 		}
1391 		clear_highpage(page);
1392 		flush_dcache_page(page);
1393 		SetPageUptodate(page);
1394 	}
1395 
1396 	swap = get_swap_page(page);
1397 	if (!swap.val)
1398 		goto redirty;
1399 
1400 	/*
1401 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1402 	 * if it's not already there.  Do it now before the page is
1403 	 * moved to swap cache, when its pagelock no longer protects
1404 	 * the inode from eviction.  But don't unlock the mutex until
1405 	 * we've incremented swapped, because shmem_unuse_inode() will
1406 	 * prune a !swapped inode from the swaplist under this mutex.
1407 	 */
1408 	mutex_lock(&shmem_swaplist_mutex);
1409 	if (list_empty(&info->swaplist))
1410 		list_add(&info->swaplist, &shmem_swaplist);
1411 
1412 	if (add_to_swap_cache(page, swap,
1413 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1414 			NULL) == 0) {
1415 		spin_lock_irq(&info->lock);
1416 		shmem_recalc_inode(inode);
1417 		info->swapped++;
1418 		spin_unlock_irq(&info->lock);
1419 
1420 		swap_shmem_alloc(swap);
1421 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1422 
1423 		mutex_unlock(&shmem_swaplist_mutex);
1424 		BUG_ON(page_mapped(page));
1425 		swap_writepage(page, wbc);
1426 		return 0;
1427 	}
1428 
1429 	mutex_unlock(&shmem_swaplist_mutex);
1430 	put_swap_page(page, swap);
1431 redirty:
1432 	set_page_dirty(page);
1433 	if (wbc->for_reclaim)
1434 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1435 	unlock_page(page);
1436 	return 0;
1437 }
1438 
1439 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1440 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1441 {
1442 	char buffer[64];
1443 
1444 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1445 		return;		/* show nothing */
1446 
1447 	mpol_to_str(buffer, sizeof(buffer), mpol);
1448 
1449 	seq_printf(seq, ",mpol=%s", buffer);
1450 }
1451 
1452 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1453 {
1454 	struct mempolicy *mpol = NULL;
1455 	if (sbinfo->mpol) {
1456 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1457 		mpol = sbinfo->mpol;
1458 		mpol_get(mpol);
1459 		spin_unlock(&sbinfo->stat_lock);
1460 	}
1461 	return mpol;
1462 }
1463 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1464 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1465 {
1466 }
1467 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1468 {
1469 	return NULL;
1470 }
1471 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1472 #ifndef CONFIG_NUMA
1473 #define vm_policy vm_private_data
1474 #endif
1475 
1476 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1477 		struct shmem_inode_info *info, pgoff_t index)
1478 {
1479 	/* Create a pseudo vma that just contains the policy */
1480 	vma_init(vma, NULL);
1481 	/* Bias interleave by inode number to distribute better across nodes */
1482 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1483 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1484 }
1485 
1486 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1487 {
1488 	/* Drop reference taken by mpol_shared_policy_lookup() */
1489 	mpol_cond_put(vma->vm_policy);
1490 }
1491 
1492 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1493 			struct shmem_inode_info *info, pgoff_t index)
1494 {
1495 	struct vm_area_struct pvma;
1496 	struct page *page;
1497 	struct vm_fault vmf = {
1498 		.vma = &pvma,
1499 	};
1500 
1501 	shmem_pseudo_vma_init(&pvma, info, index);
1502 	page = swap_cluster_readahead(swap, gfp, &vmf);
1503 	shmem_pseudo_vma_destroy(&pvma);
1504 
1505 	return page;
1506 }
1507 
1508 /*
1509  * Make sure huge_gfp is always more limited than limit_gfp.
1510  * Some of the flags set permissions, while others set limitations.
1511  */
1512 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1513 {
1514 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1515 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1516 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1517 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1518 
1519 	/* Allow allocations only from the originally specified zones. */
1520 	result |= zoneflags;
1521 
1522 	/*
1523 	 * Minimize the result gfp by taking the union with the deny flags,
1524 	 * and the intersection of the allow flags.
1525 	 */
1526 	result |= (limit_gfp & denyflags);
1527 	result |= (huge_gfp & limit_gfp) & allowflags;
1528 
1529 	return result;
1530 }
1531 
1532 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1533 		struct shmem_inode_info *info, pgoff_t index)
1534 {
1535 	struct vm_area_struct pvma;
1536 	struct address_space *mapping = info->vfs_inode.i_mapping;
1537 	pgoff_t hindex;
1538 	struct page *page;
1539 
1540 	hindex = round_down(index, HPAGE_PMD_NR);
1541 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1542 								XA_PRESENT))
1543 		return NULL;
1544 
1545 	shmem_pseudo_vma_init(&pvma, info, hindex);
1546 	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1547 			       true);
1548 	shmem_pseudo_vma_destroy(&pvma);
1549 	if (page)
1550 		prep_transhuge_page(page);
1551 	else
1552 		count_vm_event(THP_FILE_FALLBACK);
1553 	return page;
1554 }
1555 
1556 static struct page *shmem_alloc_page(gfp_t gfp,
1557 			struct shmem_inode_info *info, pgoff_t index)
1558 {
1559 	struct vm_area_struct pvma;
1560 	struct page *page;
1561 
1562 	shmem_pseudo_vma_init(&pvma, info, index);
1563 	page = alloc_page_vma(gfp, &pvma, 0);
1564 	shmem_pseudo_vma_destroy(&pvma);
1565 
1566 	return page;
1567 }
1568 
1569 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1570 		struct inode *inode,
1571 		pgoff_t index, bool huge)
1572 {
1573 	struct shmem_inode_info *info = SHMEM_I(inode);
1574 	struct page *page;
1575 	int nr;
1576 	int err = -ENOSPC;
1577 
1578 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1579 		huge = false;
1580 	nr = huge ? HPAGE_PMD_NR : 1;
1581 
1582 	if (!shmem_inode_acct_block(inode, nr))
1583 		goto failed;
1584 
1585 	if (huge)
1586 		page = shmem_alloc_hugepage(gfp, info, index);
1587 	else
1588 		page = shmem_alloc_page(gfp, info, index);
1589 	if (page) {
1590 		__SetPageLocked(page);
1591 		__SetPageSwapBacked(page);
1592 		return page;
1593 	}
1594 
1595 	err = -ENOMEM;
1596 	shmem_inode_unacct_blocks(inode, nr);
1597 failed:
1598 	return ERR_PTR(err);
1599 }
1600 
1601 /*
1602  * When a page is moved from swapcache to shmem filecache (either by the
1603  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1604  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1605  * ignorance of the mapping it belongs to.  If that mapping has special
1606  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1607  * we may need to copy to a suitable page before moving to filecache.
1608  *
1609  * In a future release, this may well be extended to respect cpuset and
1610  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1611  * but for now it is a simple matter of zone.
1612  */
1613 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1614 {
1615 	return page_zonenum(page) > gfp_zone(gfp);
1616 }
1617 
1618 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1619 				struct shmem_inode_info *info, pgoff_t index)
1620 {
1621 	struct page *oldpage, *newpage;
1622 	struct address_space *swap_mapping;
1623 	swp_entry_t entry;
1624 	pgoff_t swap_index;
1625 	int error;
1626 
1627 	oldpage = *pagep;
1628 	entry.val = page_private(oldpage);
1629 	swap_index = swp_offset(entry);
1630 	swap_mapping = page_mapping(oldpage);
1631 
1632 	/*
1633 	 * We have arrived here because our zones are constrained, so don't
1634 	 * limit chance of success by further cpuset and node constraints.
1635 	 */
1636 	gfp &= ~GFP_CONSTRAINT_MASK;
1637 	newpage = shmem_alloc_page(gfp, info, index);
1638 	if (!newpage)
1639 		return -ENOMEM;
1640 
1641 	get_page(newpage);
1642 	copy_highpage(newpage, oldpage);
1643 	flush_dcache_page(newpage);
1644 
1645 	__SetPageLocked(newpage);
1646 	__SetPageSwapBacked(newpage);
1647 	SetPageUptodate(newpage);
1648 	set_page_private(newpage, entry.val);
1649 	SetPageSwapCache(newpage);
1650 
1651 	/*
1652 	 * Our caller will very soon move newpage out of swapcache, but it's
1653 	 * a nice clean interface for us to replace oldpage by newpage there.
1654 	 */
1655 	xa_lock_irq(&swap_mapping->i_pages);
1656 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1657 	if (!error) {
1658 		mem_cgroup_migrate(oldpage, newpage);
1659 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1660 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1661 	}
1662 	xa_unlock_irq(&swap_mapping->i_pages);
1663 
1664 	if (unlikely(error)) {
1665 		/*
1666 		 * Is this possible?  I think not, now that our callers check
1667 		 * both PageSwapCache and page_private after getting page lock;
1668 		 * but be defensive.  Reverse old to newpage for clear and free.
1669 		 */
1670 		oldpage = newpage;
1671 	} else {
1672 		lru_cache_add(newpage);
1673 		*pagep = newpage;
1674 	}
1675 
1676 	ClearPageSwapCache(oldpage);
1677 	set_page_private(oldpage, 0);
1678 
1679 	unlock_page(oldpage);
1680 	put_page(oldpage);
1681 	put_page(oldpage);
1682 	return error;
1683 }
1684 
1685 /*
1686  * Swap in the page pointed to by *pagep.
1687  * Caller has to make sure that *pagep contains a valid swapped page.
1688  * Returns 0 and the page in pagep if success. On failure, returns the
1689  * error code and NULL in *pagep.
1690  */
1691 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1692 			     struct page **pagep, enum sgp_type sgp,
1693 			     gfp_t gfp, struct vm_area_struct *vma,
1694 			     vm_fault_t *fault_type)
1695 {
1696 	struct address_space *mapping = inode->i_mapping;
1697 	struct shmem_inode_info *info = SHMEM_I(inode);
1698 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1699 	struct swap_info_struct *si;
1700 	struct page *page = NULL;
1701 	swp_entry_t swap;
1702 	int error;
1703 
1704 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1705 	swap = radix_to_swp_entry(*pagep);
1706 	*pagep = NULL;
1707 
1708 	/* Prevent swapoff from happening to us. */
1709 	si = get_swap_device(swap);
1710 	if (!si) {
1711 		error = EINVAL;
1712 		goto failed;
1713 	}
1714 	/* Look it up and read it in.. */
1715 	page = lookup_swap_cache(swap, NULL, 0);
1716 	if (!page) {
1717 		/* Or update major stats only when swapin succeeds?? */
1718 		if (fault_type) {
1719 			*fault_type |= VM_FAULT_MAJOR;
1720 			count_vm_event(PGMAJFAULT);
1721 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1722 		}
1723 		/* Here we actually start the io */
1724 		page = shmem_swapin(swap, gfp, info, index);
1725 		if (!page) {
1726 			error = -ENOMEM;
1727 			goto failed;
1728 		}
1729 	}
1730 
1731 	/* We have to do this with page locked to prevent races */
1732 	lock_page(page);
1733 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1734 	    !shmem_confirm_swap(mapping, index, swap)) {
1735 		error = -EEXIST;
1736 		goto unlock;
1737 	}
1738 	if (!PageUptodate(page)) {
1739 		error = -EIO;
1740 		goto failed;
1741 	}
1742 	wait_on_page_writeback(page);
1743 
1744 	/*
1745 	 * Some architectures may have to restore extra metadata to the
1746 	 * physical page after reading from swap.
1747 	 */
1748 	arch_swap_restore(swap, page);
1749 
1750 	if (shmem_should_replace_page(page, gfp)) {
1751 		error = shmem_replace_page(&page, gfp, info, index);
1752 		if (error)
1753 			goto failed;
1754 	}
1755 
1756 	error = shmem_add_to_page_cache(page, mapping, index,
1757 					swp_to_radix_entry(swap), gfp,
1758 					charge_mm);
1759 	if (error)
1760 		goto failed;
1761 
1762 	spin_lock_irq(&info->lock);
1763 	info->swapped--;
1764 	shmem_recalc_inode(inode);
1765 	spin_unlock_irq(&info->lock);
1766 
1767 	if (sgp == SGP_WRITE)
1768 		mark_page_accessed(page);
1769 
1770 	delete_from_swap_cache(page);
1771 	set_page_dirty(page);
1772 	swap_free(swap);
1773 
1774 	*pagep = page;
1775 	if (si)
1776 		put_swap_device(si);
1777 	return 0;
1778 failed:
1779 	if (!shmem_confirm_swap(mapping, index, swap))
1780 		error = -EEXIST;
1781 unlock:
1782 	if (page) {
1783 		unlock_page(page);
1784 		put_page(page);
1785 	}
1786 
1787 	if (si)
1788 		put_swap_device(si);
1789 
1790 	return error;
1791 }
1792 
1793 /*
1794  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1795  *
1796  * If we allocate a new one we do not mark it dirty. That's up to the
1797  * vm. If we swap it in we mark it dirty since we also free the swap
1798  * entry since a page cannot live in both the swap and page cache.
1799  *
1800  * vmf and fault_type are only supplied by shmem_fault:
1801  * otherwise they are NULL.
1802  */
1803 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1804 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1805 	struct vm_area_struct *vma, struct vm_fault *vmf,
1806 			vm_fault_t *fault_type)
1807 {
1808 	struct address_space *mapping = inode->i_mapping;
1809 	struct shmem_inode_info *info = SHMEM_I(inode);
1810 	struct shmem_sb_info *sbinfo;
1811 	struct mm_struct *charge_mm;
1812 	struct page *page;
1813 	enum sgp_type sgp_huge = sgp;
1814 	pgoff_t hindex = index;
1815 	gfp_t huge_gfp;
1816 	int error;
1817 	int once = 0;
1818 	int alloced = 0;
1819 
1820 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1821 		return -EFBIG;
1822 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1823 		sgp = SGP_CACHE;
1824 repeat:
1825 	if (sgp <= SGP_CACHE &&
1826 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1827 		return -EINVAL;
1828 	}
1829 
1830 	sbinfo = SHMEM_SB(inode->i_sb);
1831 	charge_mm = vma ? vma->vm_mm : NULL;
1832 
1833 	page = pagecache_get_page(mapping, index,
1834 					FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1835 	if (xa_is_value(page)) {
1836 		error = shmem_swapin_page(inode, index, &page,
1837 					  sgp, gfp, vma, fault_type);
1838 		if (error == -EEXIST)
1839 			goto repeat;
1840 
1841 		*pagep = page;
1842 		return error;
1843 	}
1844 
1845 	if (page)
1846 		hindex = page->index;
1847 	if (page && sgp == SGP_WRITE)
1848 		mark_page_accessed(page);
1849 
1850 	/* fallocated page? */
1851 	if (page && !PageUptodate(page)) {
1852 		if (sgp != SGP_READ)
1853 			goto clear;
1854 		unlock_page(page);
1855 		put_page(page);
1856 		page = NULL;
1857 		hindex = index;
1858 	}
1859 	if (page || sgp == SGP_READ)
1860 		goto out;
1861 
1862 	/*
1863 	 * Fast cache lookup did not find it:
1864 	 * bring it back from swap or allocate.
1865 	 */
1866 
1867 	if (vma && userfaultfd_missing(vma)) {
1868 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1869 		return 0;
1870 	}
1871 
1872 	/* shmem_symlink() */
1873 	if (!shmem_mapping(mapping))
1874 		goto alloc_nohuge;
1875 	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1876 		goto alloc_nohuge;
1877 	if (shmem_huge == SHMEM_HUGE_FORCE)
1878 		goto alloc_huge;
1879 	switch (sbinfo->huge) {
1880 	case SHMEM_HUGE_NEVER:
1881 		goto alloc_nohuge;
1882 	case SHMEM_HUGE_WITHIN_SIZE: {
1883 		loff_t i_size;
1884 		pgoff_t off;
1885 
1886 		off = round_up(index, HPAGE_PMD_NR);
1887 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1888 		if (i_size >= HPAGE_PMD_SIZE &&
1889 		    i_size >> PAGE_SHIFT >= off)
1890 			goto alloc_huge;
1891 
1892 		fallthrough;
1893 	}
1894 	case SHMEM_HUGE_ADVISE:
1895 		if (sgp_huge == SGP_HUGE)
1896 			goto alloc_huge;
1897 		/* TODO: implement fadvise() hints */
1898 		goto alloc_nohuge;
1899 	}
1900 
1901 alloc_huge:
1902 	huge_gfp = vma_thp_gfp_mask(vma);
1903 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1904 	page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1905 	if (IS_ERR(page)) {
1906 alloc_nohuge:
1907 		page = shmem_alloc_and_acct_page(gfp, inode,
1908 						 index, false);
1909 	}
1910 	if (IS_ERR(page)) {
1911 		int retry = 5;
1912 
1913 		error = PTR_ERR(page);
1914 		page = NULL;
1915 		if (error != -ENOSPC)
1916 			goto unlock;
1917 		/*
1918 		 * Try to reclaim some space by splitting a huge page
1919 		 * beyond i_size on the filesystem.
1920 		 */
1921 		while (retry--) {
1922 			int ret;
1923 
1924 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1925 			if (ret == SHRINK_STOP)
1926 				break;
1927 			if (ret)
1928 				goto alloc_nohuge;
1929 		}
1930 		goto unlock;
1931 	}
1932 
1933 	if (PageTransHuge(page))
1934 		hindex = round_down(index, HPAGE_PMD_NR);
1935 	else
1936 		hindex = index;
1937 
1938 	if (sgp == SGP_WRITE)
1939 		__SetPageReferenced(page);
1940 
1941 	error = shmem_add_to_page_cache(page, mapping, hindex,
1942 					NULL, gfp & GFP_RECLAIM_MASK,
1943 					charge_mm);
1944 	if (error)
1945 		goto unacct;
1946 	lru_cache_add(page);
1947 
1948 	spin_lock_irq(&info->lock);
1949 	info->alloced += compound_nr(page);
1950 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1951 	shmem_recalc_inode(inode);
1952 	spin_unlock_irq(&info->lock);
1953 	alloced = true;
1954 
1955 	if (PageTransHuge(page) &&
1956 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1957 			hindex + HPAGE_PMD_NR - 1) {
1958 		/*
1959 		 * Part of the huge page is beyond i_size: subject
1960 		 * to shrink under memory pressure.
1961 		 */
1962 		spin_lock(&sbinfo->shrinklist_lock);
1963 		/*
1964 		 * _careful to defend against unlocked access to
1965 		 * ->shrink_list in shmem_unused_huge_shrink()
1966 		 */
1967 		if (list_empty_careful(&info->shrinklist)) {
1968 			list_add_tail(&info->shrinklist,
1969 				      &sbinfo->shrinklist);
1970 			sbinfo->shrinklist_len++;
1971 		}
1972 		spin_unlock(&sbinfo->shrinklist_lock);
1973 	}
1974 
1975 	/*
1976 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1977 	 */
1978 	if (sgp == SGP_FALLOC)
1979 		sgp = SGP_WRITE;
1980 clear:
1981 	/*
1982 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1983 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1984 	 * it now, lest undo on failure cancel our earlier guarantee.
1985 	 */
1986 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1987 		int i;
1988 
1989 		for (i = 0; i < compound_nr(page); i++) {
1990 			clear_highpage(page + i);
1991 			flush_dcache_page(page + i);
1992 		}
1993 		SetPageUptodate(page);
1994 	}
1995 
1996 	/* Perhaps the file has been truncated since we checked */
1997 	if (sgp <= SGP_CACHE &&
1998 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1999 		if (alloced) {
2000 			ClearPageDirty(page);
2001 			delete_from_page_cache(page);
2002 			spin_lock_irq(&info->lock);
2003 			shmem_recalc_inode(inode);
2004 			spin_unlock_irq(&info->lock);
2005 		}
2006 		error = -EINVAL;
2007 		goto unlock;
2008 	}
2009 out:
2010 	*pagep = page + index - hindex;
2011 	return 0;
2012 
2013 	/*
2014 	 * Error recovery.
2015 	 */
2016 unacct:
2017 	shmem_inode_unacct_blocks(inode, compound_nr(page));
2018 
2019 	if (PageTransHuge(page)) {
2020 		unlock_page(page);
2021 		put_page(page);
2022 		goto alloc_nohuge;
2023 	}
2024 unlock:
2025 	if (page) {
2026 		unlock_page(page);
2027 		put_page(page);
2028 	}
2029 	if (error == -ENOSPC && !once++) {
2030 		spin_lock_irq(&info->lock);
2031 		shmem_recalc_inode(inode);
2032 		spin_unlock_irq(&info->lock);
2033 		goto repeat;
2034 	}
2035 	if (error == -EEXIST)
2036 		goto repeat;
2037 	return error;
2038 }
2039 
2040 /*
2041  * This is like autoremove_wake_function, but it removes the wait queue
2042  * entry unconditionally - even if something else had already woken the
2043  * target.
2044  */
2045 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2046 {
2047 	int ret = default_wake_function(wait, mode, sync, key);
2048 	list_del_init(&wait->entry);
2049 	return ret;
2050 }
2051 
2052 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2053 {
2054 	struct vm_area_struct *vma = vmf->vma;
2055 	struct inode *inode = file_inode(vma->vm_file);
2056 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2057 	enum sgp_type sgp;
2058 	int err;
2059 	vm_fault_t ret = VM_FAULT_LOCKED;
2060 
2061 	/*
2062 	 * Trinity finds that probing a hole which tmpfs is punching can
2063 	 * prevent the hole-punch from ever completing: which in turn
2064 	 * locks writers out with its hold on i_mutex.  So refrain from
2065 	 * faulting pages into the hole while it's being punched.  Although
2066 	 * shmem_undo_range() does remove the additions, it may be unable to
2067 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2068 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2069 	 *
2070 	 * It does not matter if we sometimes reach this check just before the
2071 	 * hole-punch begins, so that one fault then races with the punch:
2072 	 * we just need to make racing faults a rare case.
2073 	 *
2074 	 * The implementation below would be much simpler if we just used a
2075 	 * standard mutex or completion: but we cannot take i_mutex in fault,
2076 	 * and bloating every shmem inode for this unlikely case would be sad.
2077 	 */
2078 	if (unlikely(inode->i_private)) {
2079 		struct shmem_falloc *shmem_falloc;
2080 
2081 		spin_lock(&inode->i_lock);
2082 		shmem_falloc = inode->i_private;
2083 		if (shmem_falloc &&
2084 		    shmem_falloc->waitq &&
2085 		    vmf->pgoff >= shmem_falloc->start &&
2086 		    vmf->pgoff < shmem_falloc->next) {
2087 			struct file *fpin;
2088 			wait_queue_head_t *shmem_falloc_waitq;
2089 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2090 
2091 			ret = VM_FAULT_NOPAGE;
2092 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2093 			if (fpin)
2094 				ret = VM_FAULT_RETRY;
2095 
2096 			shmem_falloc_waitq = shmem_falloc->waitq;
2097 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2098 					TASK_UNINTERRUPTIBLE);
2099 			spin_unlock(&inode->i_lock);
2100 			schedule();
2101 
2102 			/*
2103 			 * shmem_falloc_waitq points into the shmem_fallocate()
2104 			 * stack of the hole-punching task: shmem_falloc_waitq
2105 			 * is usually invalid by the time we reach here, but
2106 			 * finish_wait() does not dereference it in that case;
2107 			 * though i_lock needed lest racing with wake_up_all().
2108 			 */
2109 			spin_lock(&inode->i_lock);
2110 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2111 			spin_unlock(&inode->i_lock);
2112 
2113 			if (fpin)
2114 				fput(fpin);
2115 			return ret;
2116 		}
2117 		spin_unlock(&inode->i_lock);
2118 	}
2119 
2120 	sgp = SGP_CACHE;
2121 
2122 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2123 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2124 		sgp = SGP_NOHUGE;
2125 	else if (vma->vm_flags & VM_HUGEPAGE)
2126 		sgp = SGP_HUGE;
2127 
2128 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2129 				  gfp, vma, vmf, &ret);
2130 	if (err)
2131 		return vmf_error(err);
2132 	return ret;
2133 }
2134 
2135 unsigned long shmem_get_unmapped_area(struct file *file,
2136 				      unsigned long uaddr, unsigned long len,
2137 				      unsigned long pgoff, unsigned long flags)
2138 {
2139 	unsigned long (*get_area)(struct file *,
2140 		unsigned long, unsigned long, unsigned long, unsigned long);
2141 	unsigned long addr;
2142 	unsigned long offset;
2143 	unsigned long inflated_len;
2144 	unsigned long inflated_addr;
2145 	unsigned long inflated_offset;
2146 
2147 	if (len > TASK_SIZE)
2148 		return -ENOMEM;
2149 
2150 	get_area = current->mm->get_unmapped_area;
2151 	addr = get_area(file, uaddr, len, pgoff, flags);
2152 
2153 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2154 		return addr;
2155 	if (IS_ERR_VALUE(addr))
2156 		return addr;
2157 	if (addr & ~PAGE_MASK)
2158 		return addr;
2159 	if (addr > TASK_SIZE - len)
2160 		return addr;
2161 
2162 	if (shmem_huge == SHMEM_HUGE_DENY)
2163 		return addr;
2164 	if (len < HPAGE_PMD_SIZE)
2165 		return addr;
2166 	if (flags & MAP_FIXED)
2167 		return addr;
2168 	/*
2169 	 * Our priority is to support MAP_SHARED mapped hugely;
2170 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2171 	 * But if caller specified an address hint and we allocated area there
2172 	 * successfully, respect that as before.
2173 	 */
2174 	if (uaddr == addr)
2175 		return addr;
2176 
2177 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2178 		struct super_block *sb;
2179 
2180 		if (file) {
2181 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2182 			sb = file_inode(file)->i_sb;
2183 		} else {
2184 			/*
2185 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2186 			 * for "/dev/zero", to create a shared anonymous object.
2187 			 */
2188 			if (IS_ERR(shm_mnt))
2189 				return addr;
2190 			sb = shm_mnt->mnt_sb;
2191 		}
2192 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2193 			return addr;
2194 	}
2195 
2196 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2197 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2198 		return addr;
2199 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2200 		return addr;
2201 
2202 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2203 	if (inflated_len > TASK_SIZE)
2204 		return addr;
2205 	if (inflated_len < len)
2206 		return addr;
2207 
2208 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2209 	if (IS_ERR_VALUE(inflated_addr))
2210 		return addr;
2211 	if (inflated_addr & ~PAGE_MASK)
2212 		return addr;
2213 
2214 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2215 	inflated_addr += offset - inflated_offset;
2216 	if (inflated_offset > offset)
2217 		inflated_addr += HPAGE_PMD_SIZE;
2218 
2219 	if (inflated_addr > TASK_SIZE - len)
2220 		return addr;
2221 	return inflated_addr;
2222 }
2223 
2224 #ifdef CONFIG_NUMA
2225 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2226 {
2227 	struct inode *inode = file_inode(vma->vm_file);
2228 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2229 }
2230 
2231 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2232 					  unsigned long addr)
2233 {
2234 	struct inode *inode = file_inode(vma->vm_file);
2235 	pgoff_t index;
2236 
2237 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2238 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2239 }
2240 #endif
2241 
2242 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2243 {
2244 	struct inode *inode = file_inode(file);
2245 	struct shmem_inode_info *info = SHMEM_I(inode);
2246 	int retval = -ENOMEM;
2247 
2248 	/*
2249 	 * What serializes the accesses to info->flags?
2250 	 * ipc_lock_object() when called from shmctl_do_lock(),
2251 	 * no serialization needed when called from shm_destroy().
2252 	 */
2253 	if (lock && !(info->flags & VM_LOCKED)) {
2254 		if (!user_shm_lock(inode->i_size, ucounts))
2255 			goto out_nomem;
2256 		info->flags |= VM_LOCKED;
2257 		mapping_set_unevictable(file->f_mapping);
2258 	}
2259 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2260 		user_shm_unlock(inode->i_size, ucounts);
2261 		info->flags &= ~VM_LOCKED;
2262 		mapping_clear_unevictable(file->f_mapping);
2263 	}
2264 	retval = 0;
2265 
2266 out_nomem:
2267 	return retval;
2268 }
2269 
2270 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2271 {
2272 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2273 	int ret;
2274 
2275 	ret = seal_check_future_write(info->seals, vma);
2276 	if (ret)
2277 		return ret;
2278 
2279 	/* arm64 - allow memory tagging on RAM-based files */
2280 	vma->vm_flags |= VM_MTE_ALLOWED;
2281 
2282 	file_accessed(file);
2283 	vma->vm_ops = &shmem_vm_ops;
2284 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2285 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2286 			(vma->vm_end & HPAGE_PMD_MASK)) {
2287 		khugepaged_enter(vma, vma->vm_flags);
2288 	}
2289 	return 0;
2290 }
2291 
2292 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2293 				     umode_t mode, dev_t dev, unsigned long flags)
2294 {
2295 	struct inode *inode;
2296 	struct shmem_inode_info *info;
2297 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2298 	ino_t ino;
2299 
2300 	if (shmem_reserve_inode(sb, &ino))
2301 		return NULL;
2302 
2303 	inode = new_inode(sb);
2304 	if (inode) {
2305 		inode->i_ino = ino;
2306 		inode_init_owner(&init_user_ns, inode, dir, mode);
2307 		inode->i_blocks = 0;
2308 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2309 		inode->i_generation = prandom_u32();
2310 		info = SHMEM_I(inode);
2311 		memset(info, 0, (char *)inode - (char *)info);
2312 		spin_lock_init(&info->lock);
2313 		atomic_set(&info->stop_eviction, 0);
2314 		info->seals = F_SEAL_SEAL;
2315 		info->flags = flags & VM_NORESERVE;
2316 		INIT_LIST_HEAD(&info->shrinklist);
2317 		INIT_LIST_HEAD(&info->swaplist);
2318 		simple_xattrs_init(&info->xattrs);
2319 		cache_no_acl(inode);
2320 
2321 		switch (mode & S_IFMT) {
2322 		default:
2323 			inode->i_op = &shmem_special_inode_operations;
2324 			init_special_inode(inode, mode, dev);
2325 			break;
2326 		case S_IFREG:
2327 			inode->i_mapping->a_ops = &shmem_aops;
2328 			inode->i_op = &shmem_inode_operations;
2329 			inode->i_fop = &shmem_file_operations;
2330 			mpol_shared_policy_init(&info->policy,
2331 						 shmem_get_sbmpol(sbinfo));
2332 			break;
2333 		case S_IFDIR:
2334 			inc_nlink(inode);
2335 			/* Some things misbehave if size == 0 on a directory */
2336 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2337 			inode->i_op = &shmem_dir_inode_operations;
2338 			inode->i_fop = &simple_dir_operations;
2339 			break;
2340 		case S_IFLNK:
2341 			/*
2342 			 * Must not load anything in the rbtree,
2343 			 * mpol_free_shared_policy will not be called.
2344 			 */
2345 			mpol_shared_policy_init(&info->policy, NULL);
2346 			break;
2347 		}
2348 
2349 		lockdep_annotate_inode_mutex_key(inode);
2350 	} else
2351 		shmem_free_inode(sb);
2352 	return inode;
2353 }
2354 
2355 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2356 				  pmd_t *dst_pmd,
2357 				  struct vm_area_struct *dst_vma,
2358 				  unsigned long dst_addr,
2359 				  unsigned long src_addr,
2360 				  bool zeropage,
2361 				  struct page **pagep)
2362 {
2363 	struct inode *inode = file_inode(dst_vma->vm_file);
2364 	struct shmem_inode_info *info = SHMEM_I(inode);
2365 	struct address_space *mapping = inode->i_mapping;
2366 	gfp_t gfp = mapping_gfp_mask(mapping);
2367 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2368 	spinlock_t *ptl;
2369 	void *page_kaddr;
2370 	struct page *page;
2371 	pte_t _dst_pte, *dst_pte;
2372 	int ret;
2373 	pgoff_t offset, max_off;
2374 
2375 	ret = -ENOMEM;
2376 	if (!shmem_inode_acct_block(inode, 1)) {
2377 		/*
2378 		 * We may have got a page, returned -ENOENT triggering a retry,
2379 		 * and now we find ourselves with -ENOMEM. Release the page, to
2380 		 * avoid a BUG_ON in our caller.
2381 		 */
2382 		if (unlikely(*pagep)) {
2383 			put_page(*pagep);
2384 			*pagep = NULL;
2385 		}
2386 		goto out;
2387 	}
2388 
2389 	if (!*pagep) {
2390 		page = shmem_alloc_page(gfp, info, pgoff);
2391 		if (!page)
2392 			goto out_unacct_blocks;
2393 
2394 		if (!zeropage) {	/* mcopy_atomic */
2395 			page_kaddr = kmap_atomic(page);
2396 			ret = copy_from_user(page_kaddr,
2397 					     (const void __user *)src_addr,
2398 					     PAGE_SIZE);
2399 			kunmap_atomic(page_kaddr);
2400 
2401 			/* fallback to copy_from_user outside mmap_lock */
2402 			if (unlikely(ret)) {
2403 				*pagep = page;
2404 				shmem_inode_unacct_blocks(inode, 1);
2405 				/* don't free the page */
2406 				return -ENOENT;
2407 			}
2408 		} else {		/* mfill_zeropage_atomic */
2409 			clear_highpage(page);
2410 		}
2411 	} else {
2412 		page = *pagep;
2413 		*pagep = NULL;
2414 	}
2415 
2416 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2417 	__SetPageLocked(page);
2418 	__SetPageSwapBacked(page);
2419 	__SetPageUptodate(page);
2420 
2421 	ret = -EFAULT;
2422 	offset = linear_page_index(dst_vma, dst_addr);
2423 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2424 	if (unlikely(offset >= max_off))
2425 		goto out_release;
2426 
2427 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2428 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2429 	if (ret)
2430 		goto out_release;
2431 
2432 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2433 	if (dst_vma->vm_flags & VM_WRITE)
2434 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2435 	else {
2436 		/*
2437 		 * We don't set the pte dirty if the vma has no
2438 		 * VM_WRITE permission, so mark the page dirty or it
2439 		 * could be freed from under us. We could do it
2440 		 * unconditionally before unlock_page(), but doing it
2441 		 * only if VM_WRITE is not set is faster.
2442 		 */
2443 		set_page_dirty(page);
2444 	}
2445 
2446 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2447 
2448 	ret = -EFAULT;
2449 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2450 	if (unlikely(offset >= max_off))
2451 		goto out_release_unlock;
2452 
2453 	ret = -EEXIST;
2454 	if (!pte_none(*dst_pte))
2455 		goto out_release_unlock;
2456 
2457 	lru_cache_add(page);
2458 
2459 	spin_lock_irq(&info->lock);
2460 	info->alloced++;
2461 	inode->i_blocks += BLOCKS_PER_PAGE;
2462 	shmem_recalc_inode(inode);
2463 	spin_unlock_irq(&info->lock);
2464 
2465 	inc_mm_counter(dst_mm, mm_counter_file(page));
2466 	page_add_file_rmap(page, false);
2467 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2468 
2469 	/* No need to invalidate - it was non-present before */
2470 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2471 	pte_unmap_unlock(dst_pte, ptl);
2472 	unlock_page(page);
2473 	ret = 0;
2474 out:
2475 	return ret;
2476 out_release_unlock:
2477 	pte_unmap_unlock(dst_pte, ptl);
2478 	ClearPageDirty(page);
2479 	delete_from_page_cache(page);
2480 out_release:
2481 	unlock_page(page);
2482 	put_page(page);
2483 out_unacct_blocks:
2484 	shmem_inode_unacct_blocks(inode, 1);
2485 	goto out;
2486 }
2487 
2488 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2489 			   pmd_t *dst_pmd,
2490 			   struct vm_area_struct *dst_vma,
2491 			   unsigned long dst_addr,
2492 			   unsigned long src_addr,
2493 			   struct page **pagep)
2494 {
2495 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2496 				      dst_addr, src_addr, false, pagep);
2497 }
2498 
2499 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2500 			     pmd_t *dst_pmd,
2501 			     struct vm_area_struct *dst_vma,
2502 			     unsigned long dst_addr)
2503 {
2504 	struct page *page = NULL;
2505 
2506 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2507 				      dst_addr, 0, true, &page);
2508 }
2509 
2510 #ifdef CONFIG_TMPFS
2511 static const struct inode_operations shmem_symlink_inode_operations;
2512 static const struct inode_operations shmem_short_symlink_operations;
2513 
2514 #ifdef CONFIG_TMPFS_XATTR
2515 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2516 #else
2517 #define shmem_initxattrs NULL
2518 #endif
2519 
2520 static int
2521 shmem_write_begin(struct file *file, struct address_space *mapping,
2522 			loff_t pos, unsigned len, unsigned flags,
2523 			struct page **pagep, void **fsdata)
2524 {
2525 	struct inode *inode = mapping->host;
2526 	struct shmem_inode_info *info = SHMEM_I(inode);
2527 	pgoff_t index = pos >> PAGE_SHIFT;
2528 
2529 	/* i_mutex is held by caller */
2530 	if (unlikely(info->seals & (F_SEAL_GROW |
2531 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2532 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2533 			return -EPERM;
2534 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2535 			return -EPERM;
2536 	}
2537 
2538 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2539 }
2540 
2541 static int
2542 shmem_write_end(struct file *file, struct address_space *mapping,
2543 			loff_t pos, unsigned len, unsigned copied,
2544 			struct page *page, void *fsdata)
2545 {
2546 	struct inode *inode = mapping->host;
2547 
2548 	if (pos + copied > inode->i_size)
2549 		i_size_write(inode, pos + copied);
2550 
2551 	if (!PageUptodate(page)) {
2552 		struct page *head = compound_head(page);
2553 		if (PageTransCompound(page)) {
2554 			int i;
2555 
2556 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2557 				if (head + i == page)
2558 					continue;
2559 				clear_highpage(head + i);
2560 				flush_dcache_page(head + i);
2561 			}
2562 		}
2563 		if (copied < PAGE_SIZE) {
2564 			unsigned from = pos & (PAGE_SIZE - 1);
2565 			zero_user_segments(page, 0, from,
2566 					from + copied, PAGE_SIZE);
2567 		}
2568 		SetPageUptodate(head);
2569 	}
2570 	set_page_dirty(page);
2571 	unlock_page(page);
2572 	put_page(page);
2573 
2574 	return copied;
2575 }
2576 
2577 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2578 {
2579 	struct file *file = iocb->ki_filp;
2580 	struct inode *inode = file_inode(file);
2581 	struct address_space *mapping = inode->i_mapping;
2582 	pgoff_t index;
2583 	unsigned long offset;
2584 	enum sgp_type sgp = SGP_READ;
2585 	int error = 0;
2586 	ssize_t retval = 0;
2587 	loff_t *ppos = &iocb->ki_pos;
2588 
2589 	/*
2590 	 * Might this read be for a stacking filesystem?  Then when reading
2591 	 * holes of a sparse file, we actually need to allocate those pages,
2592 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2593 	 */
2594 	if (!iter_is_iovec(to))
2595 		sgp = SGP_CACHE;
2596 
2597 	index = *ppos >> PAGE_SHIFT;
2598 	offset = *ppos & ~PAGE_MASK;
2599 
2600 	for (;;) {
2601 		struct page *page = NULL;
2602 		pgoff_t end_index;
2603 		unsigned long nr, ret;
2604 		loff_t i_size = i_size_read(inode);
2605 
2606 		end_index = i_size >> PAGE_SHIFT;
2607 		if (index > end_index)
2608 			break;
2609 		if (index == end_index) {
2610 			nr = i_size & ~PAGE_MASK;
2611 			if (nr <= offset)
2612 				break;
2613 		}
2614 
2615 		error = shmem_getpage(inode, index, &page, sgp);
2616 		if (error) {
2617 			if (error == -EINVAL)
2618 				error = 0;
2619 			break;
2620 		}
2621 		if (page) {
2622 			if (sgp == SGP_CACHE)
2623 				set_page_dirty(page);
2624 			unlock_page(page);
2625 		}
2626 
2627 		/*
2628 		 * We must evaluate after, since reads (unlike writes)
2629 		 * are called without i_mutex protection against truncate
2630 		 */
2631 		nr = PAGE_SIZE;
2632 		i_size = i_size_read(inode);
2633 		end_index = i_size >> PAGE_SHIFT;
2634 		if (index == end_index) {
2635 			nr = i_size & ~PAGE_MASK;
2636 			if (nr <= offset) {
2637 				if (page)
2638 					put_page(page);
2639 				break;
2640 			}
2641 		}
2642 		nr -= offset;
2643 
2644 		if (page) {
2645 			/*
2646 			 * If users can be writing to this page using arbitrary
2647 			 * virtual addresses, take care about potential aliasing
2648 			 * before reading the page on the kernel side.
2649 			 */
2650 			if (mapping_writably_mapped(mapping))
2651 				flush_dcache_page(page);
2652 			/*
2653 			 * Mark the page accessed if we read the beginning.
2654 			 */
2655 			if (!offset)
2656 				mark_page_accessed(page);
2657 		} else {
2658 			page = ZERO_PAGE(0);
2659 			get_page(page);
2660 		}
2661 
2662 		/*
2663 		 * Ok, we have the page, and it's up-to-date, so
2664 		 * now we can copy it to user space...
2665 		 */
2666 		ret = copy_page_to_iter(page, offset, nr, to);
2667 		retval += ret;
2668 		offset += ret;
2669 		index += offset >> PAGE_SHIFT;
2670 		offset &= ~PAGE_MASK;
2671 
2672 		put_page(page);
2673 		if (!iov_iter_count(to))
2674 			break;
2675 		if (ret < nr) {
2676 			error = -EFAULT;
2677 			break;
2678 		}
2679 		cond_resched();
2680 	}
2681 
2682 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2683 	file_accessed(file);
2684 	return retval ? retval : error;
2685 }
2686 
2687 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2688 {
2689 	struct address_space *mapping = file->f_mapping;
2690 	struct inode *inode = mapping->host;
2691 
2692 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2693 		return generic_file_llseek_size(file, offset, whence,
2694 					MAX_LFS_FILESIZE, i_size_read(inode));
2695 	if (offset < 0)
2696 		return -ENXIO;
2697 
2698 	inode_lock(inode);
2699 	/* We're holding i_mutex so we can access i_size directly */
2700 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2701 	if (offset >= 0)
2702 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2703 	inode_unlock(inode);
2704 	return offset;
2705 }
2706 
2707 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2708 							 loff_t len)
2709 {
2710 	struct inode *inode = file_inode(file);
2711 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2712 	struct shmem_inode_info *info = SHMEM_I(inode);
2713 	struct shmem_falloc shmem_falloc;
2714 	pgoff_t start, index, end;
2715 	int error;
2716 
2717 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2718 		return -EOPNOTSUPP;
2719 
2720 	inode_lock(inode);
2721 
2722 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2723 		struct address_space *mapping = file->f_mapping;
2724 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2725 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2726 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2727 
2728 		/* protected by i_mutex */
2729 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2730 			error = -EPERM;
2731 			goto out;
2732 		}
2733 
2734 		shmem_falloc.waitq = &shmem_falloc_waitq;
2735 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2736 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2737 		spin_lock(&inode->i_lock);
2738 		inode->i_private = &shmem_falloc;
2739 		spin_unlock(&inode->i_lock);
2740 
2741 		if ((u64)unmap_end > (u64)unmap_start)
2742 			unmap_mapping_range(mapping, unmap_start,
2743 					    1 + unmap_end - unmap_start, 0);
2744 		shmem_truncate_range(inode, offset, offset + len - 1);
2745 		/* No need to unmap again: hole-punching leaves COWed pages */
2746 
2747 		spin_lock(&inode->i_lock);
2748 		inode->i_private = NULL;
2749 		wake_up_all(&shmem_falloc_waitq);
2750 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2751 		spin_unlock(&inode->i_lock);
2752 		error = 0;
2753 		goto out;
2754 	}
2755 
2756 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2757 	error = inode_newsize_ok(inode, offset + len);
2758 	if (error)
2759 		goto out;
2760 
2761 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2762 		error = -EPERM;
2763 		goto out;
2764 	}
2765 
2766 	start = offset >> PAGE_SHIFT;
2767 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2768 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2769 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2770 		error = -ENOSPC;
2771 		goto out;
2772 	}
2773 
2774 	shmem_falloc.waitq = NULL;
2775 	shmem_falloc.start = start;
2776 	shmem_falloc.next  = start;
2777 	shmem_falloc.nr_falloced = 0;
2778 	shmem_falloc.nr_unswapped = 0;
2779 	spin_lock(&inode->i_lock);
2780 	inode->i_private = &shmem_falloc;
2781 	spin_unlock(&inode->i_lock);
2782 
2783 	for (index = start; index < end; index++) {
2784 		struct page *page;
2785 
2786 		/*
2787 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2788 		 * been interrupted because we are using up too much memory.
2789 		 */
2790 		if (signal_pending(current))
2791 			error = -EINTR;
2792 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2793 			error = -ENOMEM;
2794 		else
2795 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2796 		if (error) {
2797 			/* Remove the !PageUptodate pages we added */
2798 			if (index > start) {
2799 				shmem_undo_range(inode,
2800 				    (loff_t)start << PAGE_SHIFT,
2801 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2802 			}
2803 			goto undone;
2804 		}
2805 
2806 		/*
2807 		 * Inform shmem_writepage() how far we have reached.
2808 		 * No need for lock or barrier: we have the page lock.
2809 		 */
2810 		shmem_falloc.next++;
2811 		if (!PageUptodate(page))
2812 			shmem_falloc.nr_falloced++;
2813 
2814 		/*
2815 		 * If !PageUptodate, leave it that way so that freeable pages
2816 		 * can be recognized if we need to rollback on error later.
2817 		 * But set_page_dirty so that memory pressure will swap rather
2818 		 * than free the pages we are allocating (and SGP_CACHE pages
2819 		 * might still be clean: we now need to mark those dirty too).
2820 		 */
2821 		set_page_dirty(page);
2822 		unlock_page(page);
2823 		put_page(page);
2824 		cond_resched();
2825 	}
2826 
2827 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2828 		i_size_write(inode, offset + len);
2829 	inode->i_ctime = current_time(inode);
2830 undone:
2831 	spin_lock(&inode->i_lock);
2832 	inode->i_private = NULL;
2833 	spin_unlock(&inode->i_lock);
2834 out:
2835 	inode_unlock(inode);
2836 	return error;
2837 }
2838 
2839 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2840 {
2841 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2842 
2843 	buf->f_type = TMPFS_MAGIC;
2844 	buf->f_bsize = PAGE_SIZE;
2845 	buf->f_namelen = NAME_MAX;
2846 	if (sbinfo->max_blocks) {
2847 		buf->f_blocks = sbinfo->max_blocks;
2848 		buf->f_bavail =
2849 		buf->f_bfree  = sbinfo->max_blocks -
2850 				percpu_counter_sum(&sbinfo->used_blocks);
2851 	}
2852 	if (sbinfo->max_inodes) {
2853 		buf->f_files = sbinfo->max_inodes;
2854 		buf->f_ffree = sbinfo->free_inodes;
2855 	}
2856 	/* else leave those fields 0 like simple_statfs */
2857 
2858 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2859 
2860 	return 0;
2861 }
2862 
2863 /*
2864  * File creation. Allocate an inode, and we're done..
2865  */
2866 static int
2867 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2868 	    struct dentry *dentry, umode_t mode, dev_t dev)
2869 {
2870 	struct inode *inode;
2871 	int error = -ENOSPC;
2872 
2873 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2874 	if (inode) {
2875 		error = simple_acl_create(dir, inode);
2876 		if (error)
2877 			goto out_iput;
2878 		error = security_inode_init_security(inode, dir,
2879 						     &dentry->d_name,
2880 						     shmem_initxattrs, NULL);
2881 		if (error && error != -EOPNOTSUPP)
2882 			goto out_iput;
2883 
2884 		error = 0;
2885 		dir->i_size += BOGO_DIRENT_SIZE;
2886 		dir->i_ctime = dir->i_mtime = current_time(dir);
2887 		d_instantiate(dentry, inode);
2888 		dget(dentry); /* Extra count - pin the dentry in core */
2889 	}
2890 	return error;
2891 out_iput:
2892 	iput(inode);
2893 	return error;
2894 }
2895 
2896 static int
2897 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2898 	      struct dentry *dentry, umode_t mode)
2899 {
2900 	struct inode *inode;
2901 	int error = -ENOSPC;
2902 
2903 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2904 	if (inode) {
2905 		error = security_inode_init_security(inode, dir,
2906 						     NULL,
2907 						     shmem_initxattrs, NULL);
2908 		if (error && error != -EOPNOTSUPP)
2909 			goto out_iput;
2910 		error = simple_acl_create(dir, inode);
2911 		if (error)
2912 			goto out_iput;
2913 		d_tmpfile(dentry, inode);
2914 	}
2915 	return error;
2916 out_iput:
2917 	iput(inode);
2918 	return error;
2919 }
2920 
2921 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2922 		       struct dentry *dentry, umode_t mode)
2923 {
2924 	int error;
2925 
2926 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2927 				 mode | S_IFDIR, 0)))
2928 		return error;
2929 	inc_nlink(dir);
2930 	return 0;
2931 }
2932 
2933 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2934 			struct dentry *dentry, umode_t mode, bool excl)
2935 {
2936 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2937 }
2938 
2939 /*
2940  * Link a file..
2941  */
2942 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2943 {
2944 	struct inode *inode = d_inode(old_dentry);
2945 	int ret = 0;
2946 
2947 	/*
2948 	 * No ordinary (disk based) filesystem counts links as inodes;
2949 	 * but each new link needs a new dentry, pinning lowmem, and
2950 	 * tmpfs dentries cannot be pruned until they are unlinked.
2951 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2952 	 * first link must skip that, to get the accounting right.
2953 	 */
2954 	if (inode->i_nlink) {
2955 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2956 		if (ret)
2957 			goto out;
2958 	}
2959 
2960 	dir->i_size += BOGO_DIRENT_SIZE;
2961 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2962 	inc_nlink(inode);
2963 	ihold(inode);	/* New dentry reference */
2964 	dget(dentry);		/* Extra pinning count for the created dentry */
2965 	d_instantiate(dentry, inode);
2966 out:
2967 	return ret;
2968 }
2969 
2970 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2971 {
2972 	struct inode *inode = d_inode(dentry);
2973 
2974 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2975 		shmem_free_inode(inode->i_sb);
2976 
2977 	dir->i_size -= BOGO_DIRENT_SIZE;
2978 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2979 	drop_nlink(inode);
2980 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2981 	return 0;
2982 }
2983 
2984 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2985 {
2986 	if (!simple_empty(dentry))
2987 		return -ENOTEMPTY;
2988 
2989 	drop_nlink(d_inode(dentry));
2990 	drop_nlink(dir);
2991 	return shmem_unlink(dir, dentry);
2992 }
2993 
2994 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2995 {
2996 	bool old_is_dir = d_is_dir(old_dentry);
2997 	bool new_is_dir = d_is_dir(new_dentry);
2998 
2999 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3000 		if (old_is_dir) {
3001 			drop_nlink(old_dir);
3002 			inc_nlink(new_dir);
3003 		} else {
3004 			drop_nlink(new_dir);
3005 			inc_nlink(old_dir);
3006 		}
3007 	}
3008 	old_dir->i_ctime = old_dir->i_mtime =
3009 	new_dir->i_ctime = new_dir->i_mtime =
3010 	d_inode(old_dentry)->i_ctime =
3011 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3012 
3013 	return 0;
3014 }
3015 
3016 static int shmem_whiteout(struct user_namespace *mnt_userns,
3017 			  struct inode *old_dir, struct dentry *old_dentry)
3018 {
3019 	struct dentry *whiteout;
3020 	int error;
3021 
3022 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3023 	if (!whiteout)
3024 		return -ENOMEM;
3025 
3026 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3027 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3028 	dput(whiteout);
3029 	if (error)
3030 		return error;
3031 
3032 	/*
3033 	 * Cheat and hash the whiteout while the old dentry is still in
3034 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3035 	 *
3036 	 * d_lookup() will consistently find one of them at this point,
3037 	 * not sure which one, but that isn't even important.
3038 	 */
3039 	d_rehash(whiteout);
3040 	return 0;
3041 }
3042 
3043 /*
3044  * The VFS layer already does all the dentry stuff for rename,
3045  * we just have to decrement the usage count for the target if
3046  * it exists so that the VFS layer correctly free's it when it
3047  * gets overwritten.
3048  */
3049 static int shmem_rename2(struct user_namespace *mnt_userns,
3050 			 struct inode *old_dir, struct dentry *old_dentry,
3051 			 struct inode *new_dir, struct dentry *new_dentry,
3052 			 unsigned int flags)
3053 {
3054 	struct inode *inode = d_inode(old_dentry);
3055 	int they_are_dirs = S_ISDIR(inode->i_mode);
3056 
3057 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3058 		return -EINVAL;
3059 
3060 	if (flags & RENAME_EXCHANGE)
3061 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3062 
3063 	if (!simple_empty(new_dentry))
3064 		return -ENOTEMPTY;
3065 
3066 	if (flags & RENAME_WHITEOUT) {
3067 		int error;
3068 
3069 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3070 		if (error)
3071 			return error;
3072 	}
3073 
3074 	if (d_really_is_positive(new_dentry)) {
3075 		(void) shmem_unlink(new_dir, new_dentry);
3076 		if (they_are_dirs) {
3077 			drop_nlink(d_inode(new_dentry));
3078 			drop_nlink(old_dir);
3079 		}
3080 	} else if (they_are_dirs) {
3081 		drop_nlink(old_dir);
3082 		inc_nlink(new_dir);
3083 	}
3084 
3085 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3086 	new_dir->i_size += BOGO_DIRENT_SIZE;
3087 	old_dir->i_ctime = old_dir->i_mtime =
3088 	new_dir->i_ctime = new_dir->i_mtime =
3089 	inode->i_ctime = current_time(old_dir);
3090 	return 0;
3091 }
3092 
3093 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3094 			 struct dentry *dentry, const char *symname)
3095 {
3096 	int error;
3097 	int len;
3098 	struct inode *inode;
3099 	struct page *page;
3100 
3101 	len = strlen(symname) + 1;
3102 	if (len > PAGE_SIZE)
3103 		return -ENAMETOOLONG;
3104 
3105 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3106 				VM_NORESERVE);
3107 	if (!inode)
3108 		return -ENOSPC;
3109 
3110 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3111 					     shmem_initxattrs, NULL);
3112 	if (error && error != -EOPNOTSUPP) {
3113 		iput(inode);
3114 		return error;
3115 	}
3116 
3117 	inode->i_size = len-1;
3118 	if (len <= SHORT_SYMLINK_LEN) {
3119 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3120 		if (!inode->i_link) {
3121 			iput(inode);
3122 			return -ENOMEM;
3123 		}
3124 		inode->i_op = &shmem_short_symlink_operations;
3125 	} else {
3126 		inode_nohighmem(inode);
3127 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3128 		if (error) {
3129 			iput(inode);
3130 			return error;
3131 		}
3132 		inode->i_mapping->a_ops = &shmem_aops;
3133 		inode->i_op = &shmem_symlink_inode_operations;
3134 		memcpy(page_address(page), symname, len);
3135 		SetPageUptodate(page);
3136 		set_page_dirty(page);
3137 		unlock_page(page);
3138 		put_page(page);
3139 	}
3140 	dir->i_size += BOGO_DIRENT_SIZE;
3141 	dir->i_ctime = dir->i_mtime = current_time(dir);
3142 	d_instantiate(dentry, inode);
3143 	dget(dentry);
3144 	return 0;
3145 }
3146 
3147 static void shmem_put_link(void *arg)
3148 {
3149 	mark_page_accessed(arg);
3150 	put_page(arg);
3151 }
3152 
3153 static const char *shmem_get_link(struct dentry *dentry,
3154 				  struct inode *inode,
3155 				  struct delayed_call *done)
3156 {
3157 	struct page *page = NULL;
3158 	int error;
3159 	if (!dentry) {
3160 		page = find_get_page(inode->i_mapping, 0);
3161 		if (!page)
3162 			return ERR_PTR(-ECHILD);
3163 		if (!PageUptodate(page)) {
3164 			put_page(page);
3165 			return ERR_PTR(-ECHILD);
3166 		}
3167 	} else {
3168 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3169 		if (error)
3170 			return ERR_PTR(error);
3171 		unlock_page(page);
3172 	}
3173 	set_delayed_call(done, shmem_put_link, page);
3174 	return page_address(page);
3175 }
3176 
3177 #ifdef CONFIG_TMPFS_XATTR
3178 /*
3179  * Superblocks without xattr inode operations may get some security.* xattr
3180  * support from the LSM "for free". As soon as we have any other xattrs
3181  * like ACLs, we also need to implement the security.* handlers at
3182  * filesystem level, though.
3183  */
3184 
3185 /*
3186  * Callback for security_inode_init_security() for acquiring xattrs.
3187  */
3188 static int shmem_initxattrs(struct inode *inode,
3189 			    const struct xattr *xattr_array,
3190 			    void *fs_info)
3191 {
3192 	struct shmem_inode_info *info = SHMEM_I(inode);
3193 	const struct xattr *xattr;
3194 	struct simple_xattr *new_xattr;
3195 	size_t len;
3196 
3197 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3198 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3199 		if (!new_xattr)
3200 			return -ENOMEM;
3201 
3202 		len = strlen(xattr->name) + 1;
3203 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3204 					  GFP_KERNEL);
3205 		if (!new_xattr->name) {
3206 			kvfree(new_xattr);
3207 			return -ENOMEM;
3208 		}
3209 
3210 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3211 		       XATTR_SECURITY_PREFIX_LEN);
3212 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3213 		       xattr->name, len);
3214 
3215 		simple_xattr_list_add(&info->xattrs, new_xattr);
3216 	}
3217 
3218 	return 0;
3219 }
3220 
3221 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3222 				   struct dentry *unused, struct inode *inode,
3223 				   const char *name, void *buffer, size_t size)
3224 {
3225 	struct shmem_inode_info *info = SHMEM_I(inode);
3226 
3227 	name = xattr_full_name(handler, name);
3228 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3229 }
3230 
3231 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3232 				   struct user_namespace *mnt_userns,
3233 				   struct dentry *unused, struct inode *inode,
3234 				   const char *name, const void *value,
3235 				   size_t size, int flags)
3236 {
3237 	struct shmem_inode_info *info = SHMEM_I(inode);
3238 
3239 	name = xattr_full_name(handler, name);
3240 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3241 }
3242 
3243 static const struct xattr_handler shmem_security_xattr_handler = {
3244 	.prefix = XATTR_SECURITY_PREFIX,
3245 	.get = shmem_xattr_handler_get,
3246 	.set = shmem_xattr_handler_set,
3247 };
3248 
3249 static const struct xattr_handler shmem_trusted_xattr_handler = {
3250 	.prefix = XATTR_TRUSTED_PREFIX,
3251 	.get = shmem_xattr_handler_get,
3252 	.set = shmem_xattr_handler_set,
3253 };
3254 
3255 static const struct xattr_handler *shmem_xattr_handlers[] = {
3256 #ifdef CONFIG_TMPFS_POSIX_ACL
3257 	&posix_acl_access_xattr_handler,
3258 	&posix_acl_default_xattr_handler,
3259 #endif
3260 	&shmem_security_xattr_handler,
3261 	&shmem_trusted_xattr_handler,
3262 	NULL
3263 };
3264 
3265 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3266 {
3267 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3268 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3269 }
3270 #endif /* CONFIG_TMPFS_XATTR */
3271 
3272 static const struct inode_operations shmem_short_symlink_operations = {
3273 	.get_link	= simple_get_link,
3274 #ifdef CONFIG_TMPFS_XATTR
3275 	.listxattr	= shmem_listxattr,
3276 #endif
3277 };
3278 
3279 static const struct inode_operations shmem_symlink_inode_operations = {
3280 	.get_link	= shmem_get_link,
3281 #ifdef CONFIG_TMPFS_XATTR
3282 	.listxattr	= shmem_listxattr,
3283 #endif
3284 };
3285 
3286 static struct dentry *shmem_get_parent(struct dentry *child)
3287 {
3288 	return ERR_PTR(-ESTALE);
3289 }
3290 
3291 static int shmem_match(struct inode *ino, void *vfh)
3292 {
3293 	__u32 *fh = vfh;
3294 	__u64 inum = fh[2];
3295 	inum = (inum << 32) | fh[1];
3296 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3297 }
3298 
3299 /* Find any alias of inode, but prefer a hashed alias */
3300 static struct dentry *shmem_find_alias(struct inode *inode)
3301 {
3302 	struct dentry *alias = d_find_alias(inode);
3303 
3304 	return alias ?: d_find_any_alias(inode);
3305 }
3306 
3307 
3308 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3309 		struct fid *fid, int fh_len, int fh_type)
3310 {
3311 	struct inode *inode;
3312 	struct dentry *dentry = NULL;
3313 	u64 inum;
3314 
3315 	if (fh_len < 3)
3316 		return NULL;
3317 
3318 	inum = fid->raw[2];
3319 	inum = (inum << 32) | fid->raw[1];
3320 
3321 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3322 			shmem_match, fid->raw);
3323 	if (inode) {
3324 		dentry = shmem_find_alias(inode);
3325 		iput(inode);
3326 	}
3327 
3328 	return dentry;
3329 }
3330 
3331 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3332 				struct inode *parent)
3333 {
3334 	if (*len < 3) {
3335 		*len = 3;
3336 		return FILEID_INVALID;
3337 	}
3338 
3339 	if (inode_unhashed(inode)) {
3340 		/* Unfortunately insert_inode_hash is not idempotent,
3341 		 * so as we hash inodes here rather than at creation
3342 		 * time, we need a lock to ensure we only try
3343 		 * to do it once
3344 		 */
3345 		static DEFINE_SPINLOCK(lock);
3346 		spin_lock(&lock);
3347 		if (inode_unhashed(inode))
3348 			__insert_inode_hash(inode,
3349 					    inode->i_ino + inode->i_generation);
3350 		spin_unlock(&lock);
3351 	}
3352 
3353 	fh[0] = inode->i_generation;
3354 	fh[1] = inode->i_ino;
3355 	fh[2] = ((__u64)inode->i_ino) >> 32;
3356 
3357 	*len = 3;
3358 	return 1;
3359 }
3360 
3361 static const struct export_operations shmem_export_ops = {
3362 	.get_parent     = shmem_get_parent,
3363 	.encode_fh      = shmem_encode_fh,
3364 	.fh_to_dentry	= shmem_fh_to_dentry,
3365 };
3366 
3367 enum shmem_param {
3368 	Opt_gid,
3369 	Opt_huge,
3370 	Opt_mode,
3371 	Opt_mpol,
3372 	Opt_nr_blocks,
3373 	Opt_nr_inodes,
3374 	Opt_size,
3375 	Opt_uid,
3376 	Opt_inode32,
3377 	Opt_inode64,
3378 };
3379 
3380 static const struct constant_table shmem_param_enums_huge[] = {
3381 	{"never",	SHMEM_HUGE_NEVER },
3382 	{"always",	SHMEM_HUGE_ALWAYS },
3383 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3384 	{"advise",	SHMEM_HUGE_ADVISE },
3385 	{}
3386 };
3387 
3388 const struct fs_parameter_spec shmem_fs_parameters[] = {
3389 	fsparam_u32   ("gid",		Opt_gid),
3390 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3391 	fsparam_u32oct("mode",		Opt_mode),
3392 	fsparam_string("mpol",		Opt_mpol),
3393 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3394 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3395 	fsparam_string("size",		Opt_size),
3396 	fsparam_u32   ("uid",		Opt_uid),
3397 	fsparam_flag  ("inode32",	Opt_inode32),
3398 	fsparam_flag  ("inode64",	Opt_inode64),
3399 	{}
3400 };
3401 
3402 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3403 {
3404 	struct shmem_options *ctx = fc->fs_private;
3405 	struct fs_parse_result result;
3406 	unsigned long long size;
3407 	char *rest;
3408 	int opt;
3409 
3410 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3411 	if (opt < 0)
3412 		return opt;
3413 
3414 	switch (opt) {
3415 	case Opt_size:
3416 		size = memparse(param->string, &rest);
3417 		if (*rest == '%') {
3418 			size <<= PAGE_SHIFT;
3419 			size *= totalram_pages();
3420 			do_div(size, 100);
3421 			rest++;
3422 		}
3423 		if (*rest)
3424 			goto bad_value;
3425 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3426 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3427 		break;
3428 	case Opt_nr_blocks:
3429 		ctx->blocks = memparse(param->string, &rest);
3430 		if (*rest)
3431 			goto bad_value;
3432 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3433 		break;
3434 	case Opt_nr_inodes:
3435 		ctx->inodes = memparse(param->string, &rest);
3436 		if (*rest)
3437 			goto bad_value;
3438 		ctx->seen |= SHMEM_SEEN_INODES;
3439 		break;
3440 	case Opt_mode:
3441 		ctx->mode = result.uint_32 & 07777;
3442 		break;
3443 	case Opt_uid:
3444 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3445 		if (!uid_valid(ctx->uid))
3446 			goto bad_value;
3447 		break;
3448 	case Opt_gid:
3449 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3450 		if (!gid_valid(ctx->gid))
3451 			goto bad_value;
3452 		break;
3453 	case Opt_huge:
3454 		ctx->huge = result.uint_32;
3455 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3456 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3457 		      has_transparent_hugepage()))
3458 			goto unsupported_parameter;
3459 		ctx->seen |= SHMEM_SEEN_HUGE;
3460 		break;
3461 	case Opt_mpol:
3462 		if (IS_ENABLED(CONFIG_NUMA)) {
3463 			mpol_put(ctx->mpol);
3464 			ctx->mpol = NULL;
3465 			if (mpol_parse_str(param->string, &ctx->mpol))
3466 				goto bad_value;
3467 			break;
3468 		}
3469 		goto unsupported_parameter;
3470 	case Opt_inode32:
3471 		ctx->full_inums = false;
3472 		ctx->seen |= SHMEM_SEEN_INUMS;
3473 		break;
3474 	case Opt_inode64:
3475 		if (sizeof(ino_t) < 8) {
3476 			return invalfc(fc,
3477 				       "Cannot use inode64 with <64bit inums in kernel\n");
3478 		}
3479 		ctx->full_inums = true;
3480 		ctx->seen |= SHMEM_SEEN_INUMS;
3481 		break;
3482 	}
3483 	return 0;
3484 
3485 unsupported_parameter:
3486 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3487 bad_value:
3488 	return invalfc(fc, "Bad value for '%s'", param->key);
3489 }
3490 
3491 static int shmem_parse_options(struct fs_context *fc, void *data)
3492 {
3493 	char *options = data;
3494 
3495 	if (options) {
3496 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3497 		if (err)
3498 			return err;
3499 	}
3500 
3501 	while (options != NULL) {
3502 		char *this_char = options;
3503 		for (;;) {
3504 			/*
3505 			 * NUL-terminate this option: unfortunately,
3506 			 * mount options form a comma-separated list,
3507 			 * but mpol's nodelist may also contain commas.
3508 			 */
3509 			options = strchr(options, ',');
3510 			if (options == NULL)
3511 				break;
3512 			options++;
3513 			if (!isdigit(*options)) {
3514 				options[-1] = '\0';
3515 				break;
3516 			}
3517 		}
3518 		if (*this_char) {
3519 			char *value = strchr(this_char, '=');
3520 			size_t len = 0;
3521 			int err;
3522 
3523 			if (value) {
3524 				*value++ = '\0';
3525 				len = strlen(value);
3526 			}
3527 			err = vfs_parse_fs_string(fc, this_char, value, len);
3528 			if (err < 0)
3529 				return err;
3530 		}
3531 	}
3532 	return 0;
3533 }
3534 
3535 /*
3536  * Reconfigure a shmem filesystem.
3537  *
3538  * Note that we disallow change from limited->unlimited blocks/inodes while any
3539  * are in use; but we must separately disallow unlimited->limited, because in
3540  * that case we have no record of how much is already in use.
3541  */
3542 static int shmem_reconfigure(struct fs_context *fc)
3543 {
3544 	struct shmem_options *ctx = fc->fs_private;
3545 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3546 	unsigned long inodes;
3547 	const char *err;
3548 
3549 	spin_lock(&sbinfo->stat_lock);
3550 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3551 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3552 		if (!sbinfo->max_blocks) {
3553 			err = "Cannot retroactively limit size";
3554 			goto out;
3555 		}
3556 		if (percpu_counter_compare(&sbinfo->used_blocks,
3557 					   ctx->blocks) > 0) {
3558 			err = "Too small a size for current use";
3559 			goto out;
3560 		}
3561 	}
3562 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3563 		if (!sbinfo->max_inodes) {
3564 			err = "Cannot retroactively limit inodes";
3565 			goto out;
3566 		}
3567 		if (ctx->inodes < inodes) {
3568 			err = "Too few inodes for current use";
3569 			goto out;
3570 		}
3571 	}
3572 
3573 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3574 	    sbinfo->next_ino > UINT_MAX) {
3575 		err = "Current inum too high to switch to 32-bit inums";
3576 		goto out;
3577 	}
3578 
3579 	if (ctx->seen & SHMEM_SEEN_HUGE)
3580 		sbinfo->huge = ctx->huge;
3581 	if (ctx->seen & SHMEM_SEEN_INUMS)
3582 		sbinfo->full_inums = ctx->full_inums;
3583 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3584 		sbinfo->max_blocks  = ctx->blocks;
3585 	if (ctx->seen & SHMEM_SEEN_INODES) {
3586 		sbinfo->max_inodes  = ctx->inodes;
3587 		sbinfo->free_inodes = ctx->inodes - inodes;
3588 	}
3589 
3590 	/*
3591 	 * Preserve previous mempolicy unless mpol remount option was specified.
3592 	 */
3593 	if (ctx->mpol) {
3594 		mpol_put(sbinfo->mpol);
3595 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3596 		ctx->mpol = NULL;
3597 	}
3598 	spin_unlock(&sbinfo->stat_lock);
3599 	return 0;
3600 out:
3601 	spin_unlock(&sbinfo->stat_lock);
3602 	return invalfc(fc, "%s", err);
3603 }
3604 
3605 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3606 {
3607 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3608 
3609 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3610 		seq_printf(seq, ",size=%luk",
3611 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3612 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3613 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3614 	if (sbinfo->mode != (0777 | S_ISVTX))
3615 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3616 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3617 		seq_printf(seq, ",uid=%u",
3618 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3619 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3620 		seq_printf(seq, ",gid=%u",
3621 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3622 
3623 	/*
3624 	 * Showing inode{64,32} might be useful even if it's the system default,
3625 	 * since then people don't have to resort to checking both here and
3626 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3627 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3628 	 *
3629 	 * We hide it when inode64 isn't the default and we are using 32-bit
3630 	 * inodes, since that probably just means the feature isn't even under
3631 	 * consideration.
3632 	 *
3633 	 * As such:
3634 	 *
3635 	 *                     +-----------------+-----------------+
3636 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3637 	 *  +------------------+-----------------+-----------------+
3638 	 *  | full_inums=true  | show            | show            |
3639 	 *  | full_inums=false | show            | hide            |
3640 	 *  +------------------+-----------------+-----------------+
3641 	 *
3642 	 */
3643 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3644 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3645 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3646 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3647 	if (sbinfo->huge)
3648 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3649 #endif
3650 	shmem_show_mpol(seq, sbinfo->mpol);
3651 	return 0;
3652 }
3653 
3654 #endif /* CONFIG_TMPFS */
3655 
3656 static void shmem_put_super(struct super_block *sb)
3657 {
3658 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3659 
3660 	free_percpu(sbinfo->ino_batch);
3661 	percpu_counter_destroy(&sbinfo->used_blocks);
3662 	mpol_put(sbinfo->mpol);
3663 	kfree(sbinfo);
3664 	sb->s_fs_info = NULL;
3665 }
3666 
3667 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3668 {
3669 	struct shmem_options *ctx = fc->fs_private;
3670 	struct inode *inode;
3671 	struct shmem_sb_info *sbinfo;
3672 	int err = -ENOMEM;
3673 
3674 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3675 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3676 				L1_CACHE_BYTES), GFP_KERNEL);
3677 	if (!sbinfo)
3678 		return -ENOMEM;
3679 
3680 	sb->s_fs_info = sbinfo;
3681 
3682 #ifdef CONFIG_TMPFS
3683 	/*
3684 	 * Per default we only allow half of the physical ram per
3685 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3686 	 * but the internal instance is left unlimited.
3687 	 */
3688 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3689 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3690 			ctx->blocks = shmem_default_max_blocks();
3691 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3692 			ctx->inodes = shmem_default_max_inodes();
3693 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3694 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3695 	} else {
3696 		sb->s_flags |= SB_NOUSER;
3697 	}
3698 	sb->s_export_op = &shmem_export_ops;
3699 	sb->s_flags |= SB_NOSEC;
3700 #else
3701 	sb->s_flags |= SB_NOUSER;
3702 #endif
3703 	sbinfo->max_blocks = ctx->blocks;
3704 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3705 	if (sb->s_flags & SB_KERNMOUNT) {
3706 		sbinfo->ino_batch = alloc_percpu(ino_t);
3707 		if (!sbinfo->ino_batch)
3708 			goto failed;
3709 	}
3710 	sbinfo->uid = ctx->uid;
3711 	sbinfo->gid = ctx->gid;
3712 	sbinfo->full_inums = ctx->full_inums;
3713 	sbinfo->mode = ctx->mode;
3714 	sbinfo->huge = ctx->huge;
3715 	sbinfo->mpol = ctx->mpol;
3716 	ctx->mpol = NULL;
3717 
3718 	spin_lock_init(&sbinfo->stat_lock);
3719 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3720 		goto failed;
3721 	spin_lock_init(&sbinfo->shrinklist_lock);
3722 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3723 
3724 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3725 	sb->s_blocksize = PAGE_SIZE;
3726 	sb->s_blocksize_bits = PAGE_SHIFT;
3727 	sb->s_magic = TMPFS_MAGIC;
3728 	sb->s_op = &shmem_ops;
3729 	sb->s_time_gran = 1;
3730 #ifdef CONFIG_TMPFS_XATTR
3731 	sb->s_xattr = shmem_xattr_handlers;
3732 #endif
3733 #ifdef CONFIG_TMPFS_POSIX_ACL
3734 	sb->s_flags |= SB_POSIXACL;
3735 #endif
3736 	uuid_gen(&sb->s_uuid);
3737 
3738 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3739 	if (!inode)
3740 		goto failed;
3741 	inode->i_uid = sbinfo->uid;
3742 	inode->i_gid = sbinfo->gid;
3743 	sb->s_root = d_make_root(inode);
3744 	if (!sb->s_root)
3745 		goto failed;
3746 	return 0;
3747 
3748 failed:
3749 	shmem_put_super(sb);
3750 	return err;
3751 }
3752 
3753 static int shmem_get_tree(struct fs_context *fc)
3754 {
3755 	return get_tree_nodev(fc, shmem_fill_super);
3756 }
3757 
3758 static void shmem_free_fc(struct fs_context *fc)
3759 {
3760 	struct shmem_options *ctx = fc->fs_private;
3761 
3762 	if (ctx) {
3763 		mpol_put(ctx->mpol);
3764 		kfree(ctx);
3765 	}
3766 }
3767 
3768 static const struct fs_context_operations shmem_fs_context_ops = {
3769 	.free			= shmem_free_fc,
3770 	.get_tree		= shmem_get_tree,
3771 #ifdef CONFIG_TMPFS
3772 	.parse_monolithic	= shmem_parse_options,
3773 	.parse_param		= shmem_parse_one,
3774 	.reconfigure		= shmem_reconfigure,
3775 #endif
3776 };
3777 
3778 static struct kmem_cache *shmem_inode_cachep;
3779 
3780 static struct inode *shmem_alloc_inode(struct super_block *sb)
3781 {
3782 	struct shmem_inode_info *info;
3783 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3784 	if (!info)
3785 		return NULL;
3786 	return &info->vfs_inode;
3787 }
3788 
3789 static void shmem_free_in_core_inode(struct inode *inode)
3790 {
3791 	if (S_ISLNK(inode->i_mode))
3792 		kfree(inode->i_link);
3793 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3794 }
3795 
3796 static void shmem_destroy_inode(struct inode *inode)
3797 {
3798 	if (S_ISREG(inode->i_mode))
3799 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3800 }
3801 
3802 static void shmem_init_inode(void *foo)
3803 {
3804 	struct shmem_inode_info *info = foo;
3805 	inode_init_once(&info->vfs_inode);
3806 }
3807 
3808 static void shmem_init_inodecache(void)
3809 {
3810 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3811 				sizeof(struct shmem_inode_info),
3812 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3813 }
3814 
3815 static void shmem_destroy_inodecache(void)
3816 {
3817 	kmem_cache_destroy(shmem_inode_cachep);
3818 }
3819 
3820 const struct address_space_operations shmem_aops = {
3821 	.writepage	= shmem_writepage,
3822 	.set_page_dirty	= __set_page_dirty_no_writeback,
3823 #ifdef CONFIG_TMPFS
3824 	.write_begin	= shmem_write_begin,
3825 	.write_end	= shmem_write_end,
3826 #endif
3827 #ifdef CONFIG_MIGRATION
3828 	.migratepage	= migrate_page,
3829 #endif
3830 	.error_remove_page = generic_error_remove_page,
3831 };
3832 EXPORT_SYMBOL(shmem_aops);
3833 
3834 static const struct file_operations shmem_file_operations = {
3835 	.mmap		= shmem_mmap,
3836 	.get_unmapped_area = shmem_get_unmapped_area,
3837 #ifdef CONFIG_TMPFS
3838 	.llseek		= shmem_file_llseek,
3839 	.read_iter	= shmem_file_read_iter,
3840 	.write_iter	= generic_file_write_iter,
3841 	.fsync		= noop_fsync,
3842 	.splice_read	= generic_file_splice_read,
3843 	.splice_write	= iter_file_splice_write,
3844 	.fallocate	= shmem_fallocate,
3845 #endif
3846 };
3847 
3848 static const struct inode_operations shmem_inode_operations = {
3849 	.getattr	= shmem_getattr,
3850 	.setattr	= shmem_setattr,
3851 #ifdef CONFIG_TMPFS_XATTR
3852 	.listxattr	= shmem_listxattr,
3853 	.set_acl	= simple_set_acl,
3854 #endif
3855 };
3856 
3857 static const struct inode_operations shmem_dir_inode_operations = {
3858 #ifdef CONFIG_TMPFS
3859 	.create		= shmem_create,
3860 	.lookup		= simple_lookup,
3861 	.link		= shmem_link,
3862 	.unlink		= shmem_unlink,
3863 	.symlink	= shmem_symlink,
3864 	.mkdir		= shmem_mkdir,
3865 	.rmdir		= shmem_rmdir,
3866 	.mknod		= shmem_mknod,
3867 	.rename		= shmem_rename2,
3868 	.tmpfile	= shmem_tmpfile,
3869 #endif
3870 #ifdef CONFIG_TMPFS_XATTR
3871 	.listxattr	= shmem_listxattr,
3872 #endif
3873 #ifdef CONFIG_TMPFS_POSIX_ACL
3874 	.setattr	= shmem_setattr,
3875 	.set_acl	= simple_set_acl,
3876 #endif
3877 };
3878 
3879 static const struct inode_operations shmem_special_inode_operations = {
3880 #ifdef CONFIG_TMPFS_XATTR
3881 	.listxattr	= shmem_listxattr,
3882 #endif
3883 #ifdef CONFIG_TMPFS_POSIX_ACL
3884 	.setattr	= shmem_setattr,
3885 	.set_acl	= simple_set_acl,
3886 #endif
3887 };
3888 
3889 static const struct super_operations shmem_ops = {
3890 	.alloc_inode	= shmem_alloc_inode,
3891 	.free_inode	= shmem_free_in_core_inode,
3892 	.destroy_inode	= shmem_destroy_inode,
3893 #ifdef CONFIG_TMPFS
3894 	.statfs		= shmem_statfs,
3895 	.show_options	= shmem_show_options,
3896 #endif
3897 	.evict_inode	= shmem_evict_inode,
3898 	.drop_inode	= generic_delete_inode,
3899 	.put_super	= shmem_put_super,
3900 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3901 	.nr_cached_objects	= shmem_unused_huge_count,
3902 	.free_cached_objects	= shmem_unused_huge_scan,
3903 #endif
3904 };
3905 
3906 static const struct vm_operations_struct shmem_vm_ops = {
3907 	.fault		= shmem_fault,
3908 	.map_pages	= filemap_map_pages,
3909 #ifdef CONFIG_NUMA
3910 	.set_policy     = shmem_set_policy,
3911 	.get_policy     = shmem_get_policy,
3912 #endif
3913 };
3914 
3915 int shmem_init_fs_context(struct fs_context *fc)
3916 {
3917 	struct shmem_options *ctx;
3918 
3919 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3920 	if (!ctx)
3921 		return -ENOMEM;
3922 
3923 	ctx->mode = 0777 | S_ISVTX;
3924 	ctx->uid = current_fsuid();
3925 	ctx->gid = current_fsgid();
3926 
3927 	fc->fs_private = ctx;
3928 	fc->ops = &shmem_fs_context_ops;
3929 	return 0;
3930 }
3931 
3932 static struct file_system_type shmem_fs_type = {
3933 	.owner		= THIS_MODULE,
3934 	.name		= "tmpfs",
3935 	.init_fs_context = shmem_init_fs_context,
3936 #ifdef CONFIG_TMPFS
3937 	.parameters	= shmem_fs_parameters,
3938 #endif
3939 	.kill_sb	= kill_litter_super,
3940 	.fs_flags	= FS_USERNS_MOUNT | FS_THP_SUPPORT,
3941 };
3942 
3943 int __init shmem_init(void)
3944 {
3945 	int error;
3946 
3947 	shmem_init_inodecache();
3948 
3949 	error = register_filesystem(&shmem_fs_type);
3950 	if (error) {
3951 		pr_err("Could not register tmpfs\n");
3952 		goto out2;
3953 	}
3954 
3955 	shm_mnt = kern_mount(&shmem_fs_type);
3956 	if (IS_ERR(shm_mnt)) {
3957 		error = PTR_ERR(shm_mnt);
3958 		pr_err("Could not kern_mount tmpfs\n");
3959 		goto out1;
3960 	}
3961 
3962 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3963 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3964 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3965 	else
3966 		shmem_huge = 0; /* just in case it was patched */
3967 #endif
3968 	return 0;
3969 
3970 out1:
3971 	unregister_filesystem(&shmem_fs_type);
3972 out2:
3973 	shmem_destroy_inodecache();
3974 	shm_mnt = ERR_PTR(error);
3975 	return error;
3976 }
3977 
3978 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3979 static ssize_t shmem_enabled_show(struct kobject *kobj,
3980 				  struct kobj_attribute *attr, char *buf)
3981 {
3982 	static const int values[] = {
3983 		SHMEM_HUGE_ALWAYS,
3984 		SHMEM_HUGE_WITHIN_SIZE,
3985 		SHMEM_HUGE_ADVISE,
3986 		SHMEM_HUGE_NEVER,
3987 		SHMEM_HUGE_DENY,
3988 		SHMEM_HUGE_FORCE,
3989 	};
3990 	int len = 0;
3991 	int i;
3992 
3993 	for (i = 0; i < ARRAY_SIZE(values); i++) {
3994 		len += sysfs_emit_at(buf, len,
3995 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3996 				     i ? " " : "",
3997 				     shmem_format_huge(values[i]));
3998 	}
3999 
4000 	len += sysfs_emit_at(buf, len, "\n");
4001 
4002 	return len;
4003 }
4004 
4005 static ssize_t shmem_enabled_store(struct kobject *kobj,
4006 		struct kobj_attribute *attr, const char *buf, size_t count)
4007 {
4008 	char tmp[16];
4009 	int huge;
4010 
4011 	if (count + 1 > sizeof(tmp))
4012 		return -EINVAL;
4013 	memcpy(tmp, buf, count);
4014 	tmp[count] = '\0';
4015 	if (count && tmp[count - 1] == '\n')
4016 		tmp[count - 1] = '\0';
4017 
4018 	huge = shmem_parse_huge(tmp);
4019 	if (huge == -EINVAL)
4020 		return -EINVAL;
4021 	if (!has_transparent_hugepage() &&
4022 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4023 		return -EINVAL;
4024 
4025 	shmem_huge = huge;
4026 	if (shmem_huge > SHMEM_HUGE_DENY)
4027 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4028 	return count;
4029 }
4030 
4031 struct kobj_attribute shmem_enabled_attr =
4032 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4033 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4034 
4035 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4036 bool shmem_huge_enabled(struct vm_area_struct *vma)
4037 {
4038 	struct inode *inode = file_inode(vma->vm_file);
4039 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4040 	loff_t i_size;
4041 	pgoff_t off;
4042 
4043 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4044 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4045 		return false;
4046 	if (shmem_huge == SHMEM_HUGE_FORCE)
4047 		return true;
4048 	if (shmem_huge == SHMEM_HUGE_DENY)
4049 		return false;
4050 	switch (sbinfo->huge) {
4051 		case SHMEM_HUGE_NEVER:
4052 			return false;
4053 		case SHMEM_HUGE_ALWAYS:
4054 			return true;
4055 		case SHMEM_HUGE_WITHIN_SIZE:
4056 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4057 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4058 			if (i_size >= HPAGE_PMD_SIZE &&
4059 					i_size >> PAGE_SHIFT >= off)
4060 				return true;
4061 			fallthrough;
4062 		case SHMEM_HUGE_ADVISE:
4063 			/* TODO: implement fadvise() hints */
4064 			return (vma->vm_flags & VM_HUGEPAGE);
4065 		default:
4066 			VM_BUG_ON(1);
4067 			return false;
4068 	}
4069 }
4070 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4071 
4072 #else /* !CONFIG_SHMEM */
4073 
4074 /*
4075  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4076  *
4077  * This is intended for small system where the benefits of the full
4078  * shmem code (swap-backed and resource-limited) are outweighed by
4079  * their complexity. On systems without swap this code should be
4080  * effectively equivalent, but much lighter weight.
4081  */
4082 
4083 static struct file_system_type shmem_fs_type = {
4084 	.name		= "tmpfs",
4085 	.init_fs_context = ramfs_init_fs_context,
4086 	.parameters	= ramfs_fs_parameters,
4087 	.kill_sb	= kill_litter_super,
4088 	.fs_flags	= FS_USERNS_MOUNT,
4089 };
4090 
4091 int __init shmem_init(void)
4092 {
4093 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4094 
4095 	shm_mnt = kern_mount(&shmem_fs_type);
4096 	BUG_ON(IS_ERR(shm_mnt));
4097 
4098 	return 0;
4099 }
4100 
4101 int shmem_unuse(unsigned int type, bool frontswap,
4102 		unsigned long *fs_pages_to_unuse)
4103 {
4104 	return 0;
4105 }
4106 
4107 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4108 {
4109 	return 0;
4110 }
4111 
4112 void shmem_unlock_mapping(struct address_space *mapping)
4113 {
4114 }
4115 
4116 #ifdef CONFIG_MMU
4117 unsigned long shmem_get_unmapped_area(struct file *file,
4118 				      unsigned long addr, unsigned long len,
4119 				      unsigned long pgoff, unsigned long flags)
4120 {
4121 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4122 }
4123 #endif
4124 
4125 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4126 {
4127 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4128 }
4129 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4130 
4131 #define shmem_vm_ops				generic_file_vm_ops
4132 #define shmem_file_operations			ramfs_file_operations
4133 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4134 #define shmem_acct_size(flags, size)		0
4135 #define shmem_unacct_size(flags, size)		do {} while (0)
4136 
4137 #endif /* CONFIG_SHMEM */
4138 
4139 /* common code */
4140 
4141 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4142 				       unsigned long flags, unsigned int i_flags)
4143 {
4144 	struct inode *inode;
4145 	struct file *res;
4146 
4147 	if (IS_ERR(mnt))
4148 		return ERR_CAST(mnt);
4149 
4150 	if (size < 0 || size > MAX_LFS_FILESIZE)
4151 		return ERR_PTR(-EINVAL);
4152 
4153 	if (shmem_acct_size(flags, size))
4154 		return ERR_PTR(-ENOMEM);
4155 
4156 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4157 				flags);
4158 	if (unlikely(!inode)) {
4159 		shmem_unacct_size(flags, size);
4160 		return ERR_PTR(-ENOSPC);
4161 	}
4162 	inode->i_flags |= i_flags;
4163 	inode->i_size = size;
4164 	clear_nlink(inode);	/* It is unlinked */
4165 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4166 	if (!IS_ERR(res))
4167 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4168 				&shmem_file_operations);
4169 	if (IS_ERR(res))
4170 		iput(inode);
4171 	return res;
4172 }
4173 
4174 /**
4175  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4176  * 	kernel internal.  There will be NO LSM permission checks against the
4177  * 	underlying inode.  So users of this interface must do LSM checks at a
4178  *	higher layer.  The users are the big_key and shm implementations.  LSM
4179  *	checks are provided at the key or shm level rather than the inode.
4180  * @name: name for dentry (to be seen in /proc/<pid>/maps
4181  * @size: size to be set for the file
4182  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4183  */
4184 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4185 {
4186 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4187 }
4188 
4189 /**
4190  * shmem_file_setup - get an unlinked file living in tmpfs
4191  * @name: name for dentry (to be seen in /proc/<pid>/maps
4192  * @size: size to be set for the file
4193  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4194  */
4195 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4196 {
4197 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4198 }
4199 EXPORT_SYMBOL_GPL(shmem_file_setup);
4200 
4201 /**
4202  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4203  * @mnt: the tmpfs mount where the file will be created
4204  * @name: name for dentry (to be seen in /proc/<pid>/maps
4205  * @size: size to be set for the file
4206  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4207  */
4208 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4209 				       loff_t size, unsigned long flags)
4210 {
4211 	return __shmem_file_setup(mnt, name, size, flags, 0);
4212 }
4213 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4214 
4215 /**
4216  * shmem_zero_setup - setup a shared anonymous mapping
4217  * @vma: the vma to be mmapped is prepared by do_mmap
4218  */
4219 int shmem_zero_setup(struct vm_area_struct *vma)
4220 {
4221 	struct file *file;
4222 	loff_t size = vma->vm_end - vma->vm_start;
4223 
4224 	/*
4225 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4226 	 * between XFS directory reading and selinux: since this file is only
4227 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4228 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4229 	 */
4230 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4231 	if (IS_ERR(file))
4232 		return PTR_ERR(file);
4233 
4234 	if (vma->vm_file)
4235 		fput(vma->vm_file);
4236 	vma->vm_file = file;
4237 	vma->vm_ops = &shmem_vm_ops;
4238 
4239 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4240 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4241 			(vma->vm_end & HPAGE_PMD_MASK)) {
4242 		khugepaged_enter(vma, vma->vm_flags);
4243 	}
4244 
4245 	return 0;
4246 }
4247 
4248 /**
4249  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4250  * @mapping:	the page's address_space
4251  * @index:	the page index
4252  * @gfp:	the page allocator flags to use if allocating
4253  *
4254  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4255  * with any new page allocations done using the specified allocation flags.
4256  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4257  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4258  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4259  *
4260  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4261  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4262  */
4263 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4264 					 pgoff_t index, gfp_t gfp)
4265 {
4266 #ifdef CONFIG_SHMEM
4267 	struct inode *inode = mapping->host;
4268 	struct page *page;
4269 	int error;
4270 
4271 	BUG_ON(!shmem_mapping(mapping));
4272 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4273 				  gfp, NULL, NULL, NULL);
4274 	if (error)
4275 		page = ERR_PTR(error);
4276 	else
4277 		unlock_page(page);
4278 	return page;
4279 #else
4280 	/*
4281 	 * The tiny !SHMEM case uses ramfs without swap
4282 	 */
4283 	return read_cache_page_gfp(mapping, index, gfp);
4284 #endif
4285 }
4286 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4287