xref: /linux/mm/shmem.c (revision 90ab5ee94171b3e28de6bb42ee30b527014e0be7)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33 
34 static struct vfsmount *shm_mnt;
35 
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42 
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/splice.h>
57 #include <linux/security.h>
58 #include <linux/swapops.h>
59 #include <linux/mempolicy.h>
60 #include <linux/namei.h>
61 #include <linux/ctype.h>
62 #include <linux/migrate.h>
63 #include <linux/highmem.h>
64 #include <linux/seq_file.h>
65 #include <linux/magic.h>
66 
67 #include <asm/uaccess.h>
68 #include <asm/pgtable.h>
69 
70 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
71 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
72 
73 /* Pretend that each entry is of this size in directory's i_size */
74 #define BOGO_DIRENT_SIZE 20
75 
76 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
77 #define SHORT_SYMLINK_LEN 128
78 
79 struct shmem_xattr {
80 	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
81 	char *name;		/* xattr name */
82 	size_t size;
83 	char value[0];
84 };
85 
86 /* Flag allocation requirements to shmem_getpage */
87 enum sgp_type {
88 	SGP_READ,	/* don't exceed i_size, don't allocate page */
89 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
90 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
91 	SGP_WRITE,	/* may exceed i_size, may allocate page */
92 };
93 
94 #ifdef CONFIG_TMPFS
95 static unsigned long shmem_default_max_blocks(void)
96 {
97 	return totalram_pages / 2;
98 }
99 
100 static unsigned long shmem_default_max_inodes(void)
101 {
102 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
103 }
104 #endif
105 
106 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
107 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
108 
109 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
110 	struct page **pagep, enum sgp_type sgp, int *fault_type)
111 {
112 	return shmem_getpage_gfp(inode, index, pagep, sgp,
113 			mapping_gfp_mask(inode->i_mapping), fault_type);
114 }
115 
116 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
117 {
118 	return sb->s_fs_info;
119 }
120 
121 /*
122  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
123  * for shared memory and for shared anonymous (/dev/zero) mappings
124  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
125  * consistent with the pre-accounting of private mappings ...
126  */
127 static inline int shmem_acct_size(unsigned long flags, loff_t size)
128 {
129 	return (flags & VM_NORESERVE) ?
130 		0 : security_vm_enough_memory_kern(VM_ACCT(size));
131 }
132 
133 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
134 {
135 	if (!(flags & VM_NORESERVE))
136 		vm_unacct_memory(VM_ACCT(size));
137 }
138 
139 /*
140  * ... whereas tmpfs objects are accounted incrementally as
141  * pages are allocated, in order to allow huge sparse files.
142  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
143  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
144  */
145 static inline int shmem_acct_block(unsigned long flags)
146 {
147 	return (flags & VM_NORESERVE) ?
148 		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
149 }
150 
151 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
152 {
153 	if (flags & VM_NORESERVE)
154 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
155 }
156 
157 static const struct super_operations shmem_ops;
158 static const struct address_space_operations shmem_aops;
159 static const struct file_operations shmem_file_operations;
160 static const struct inode_operations shmem_inode_operations;
161 static const struct inode_operations shmem_dir_inode_operations;
162 static const struct inode_operations shmem_special_inode_operations;
163 static const struct vm_operations_struct shmem_vm_ops;
164 
165 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
166 	.ra_pages	= 0,	/* No readahead */
167 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
168 };
169 
170 static LIST_HEAD(shmem_swaplist);
171 static DEFINE_MUTEX(shmem_swaplist_mutex);
172 
173 static int shmem_reserve_inode(struct super_block *sb)
174 {
175 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
176 	if (sbinfo->max_inodes) {
177 		spin_lock(&sbinfo->stat_lock);
178 		if (!sbinfo->free_inodes) {
179 			spin_unlock(&sbinfo->stat_lock);
180 			return -ENOSPC;
181 		}
182 		sbinfo->free_inodes--;
183 		spin_unlock(&sbinfo->stat_lock);
184 	}
185 	return 0;
186 }
187 
188 static void shmem_free_inode(struct super_block *sb)
189 {
190 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
191 	if (sbinfo->max_inodes) {
192 		spin_lock(&sbinfo->stat_lock);
193 		sbinfo->free_inodes++;
194 		spin_unlock(&sbinfo->stat_lock);
195 	}
196 }
197 
198 /**
199  * shmem_recalc_inode - recalculate the block usage of an inode
200  * @inode: inode to recalc
201  *
202  * We have to calculate the free blocks since the mm can drop
203  * undirtied hole pages behind our back.
204  *
205  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
206  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
207  *
208  * It has to be called with the spinlock held.
209  */
210 static void shmem_recalc_inode(struct inode *inode)
211 {
212 	struct shmem_inode_info *info = SHMEM_I(inode);
213 	long freed;
214 
215 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
216 	if (freed > 0) {
217 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218 		if (sbinfo->max_blocks)
219 			percpu_counter_add(&sbinfo->used_blocks, -freed);
220 		info->alloced -= freed;
221 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
222 		shmem_unacct_blocks(info->flags, freed);
223 	}
224 }
225 
226 /*
227  * Replace item expected in radix tree by a new item, while holding tree lock.
228  */
229 static int shmem_radix_tree_replace(struct address_space *mapping,
230 			pgoff_t index, void *expected, void *replacement)
231 {
232 	void **pslot;
233 	void *item = NULL;
234 
235 	VM_BUG_ON(!expected);
236 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
237 	if (pslot)
238 		item = radix_tree_deref_slot_protected(pslot,
239 							&mapping->tree_lock);
240 	if (item != expected)
241 		return -ENOENT;
242 	if (replacement)
243 		radix_tree_replace_slot(pslot, replacement);
244 	else
245 		radix_tree_delete(&mapping->page_tree, index);
246 	return 0;
247 }
248 
249 /*
250  * Like add_to_page_cache_locked, but error if expected item has gone.
251  */
252 static int shmem_add_to_page_cache(struct page *page,
253 				   struct address_space *mapping,
254 				   pgoff_t index, gfp_t gfp, void *expected)
255 {
256 	int error = 0;
257 
258 	VM_BUG_ON(!PageLocked(page));
259 	VM_BUG_ON(!PageSwapBacked(page));
260 
261 	if (!expected)
262 		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
263 	if (!error) {
264 		page_cache_get(page);
265 		page->mapping = mapping;
266 		page->index = index;
267 
268 		spin_lock_irq(&mapping->tree_lock);
269 		if (!expected)
270 			error = radix_tree_insert(&mapping->page_tree,
271 							index, page);
272 		else
273 			error = shmem_radix_tree_replace(mapping, index,
274 							expected, page);
275 		if (!error) {
276 			mapping->nrpages++;
277 			__inc_zone_page_state(page, NR_FILE_PAGES);
278 			__inc_zone_page_state(page, NR_SHMEM);
279 			spin_unlock_irq(&mapping->tree_lock);
280 		} else {
281 			page->mapping = NULL;
282 			spin_unlock_irq(&mapping->tree_lock);
283 			page_cache_release(page);
284 		}
285 		if (!expected)
286 			radix_tree_preload_end();
287 	}
288 	if (error)
289 		mem_cgroup_uncharge_cache_page(page);
290 	return error;
291 }
292 
293 /*
294  * Like delete_from_page_cache, but substitutes swap for page.
295  */
296 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
297 {
298 	struct address_space *mapping = page->mapping;
299 	int error;
300 
301 	spin_lock_irq(&mapping->tree_lock);
302 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
303 	page->mapping = NULL;
304 	mapping->nrpages--;
305 	__dec_zone_page_state(page, NR_FILE_PAGES);
306 	__dec_zone_page_state(page, NR_SHMEM);
307 	spin_unlock_irq(&mapping->tree_lock);
308 	page_cache_release(page);
309 	BUG_ON(error);
310 }
311 
312 /*
313  * Like find_get_pages, but collecting swap entries as well as pages.
314  */
315 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
316 					pgoff_t start, unsigned int nr_pages,
317 					struct page **pages, pgoff_t *indices)
318 {
319 	unsigned int i;
320 	unsigned int ret;
321 	unsigned int nr_found;
322 
323 	rcu_read_lock();
324 restart:
325 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
326 				(void ***)pages, indices, start, nr_pages);
327 	ret = 0;
328 	for (i = 0; i < nr_found; i++) {
329 		struct page *page;
330 repeat:
331 		page = radix_tree_deref_slot((void **)pages[i]);
332 		if (unlikely(!page))
333 			continue;
334 		if (radix_tree_exception(page)) {
335 			if (radix_tree_deref_retry(page))
336 				goto restart;
337 			/*
338 			 * Otherwise, we must be storing a swap entry
339 			 * here as an exceptional entry: so return it
340 			 * without attempting to raise page count.
341 			 */
342 			goto export;
343 		}
344 		if (!page_cache_get_speculative(page))
345 			goto repeat;
346 
347 		/* Has the page moved? */
348 		if (unlikely(page != *((void **)pages[i]))) {
349 			page_cache_release(page);
350 			goto repeat;
351 		}
352 export:
353 		indices[ret] = indices[i];
354 		pages[ret] = page;
355 		ret++;
356 	}
357 	if (unlikely(!ret && nr_found))
358 		goto restart;
359 	rcu_read_unlock();
360 	return ret;
361 }
362 
363 /*
364  * Remove swap entry from radix tree, free the swap and its page cache.
365  */
366 static int shmem_free_swap(struct address_space *mapping,
367 			   pgoff_t index, void *radswap)
368 {
369 	int error;
370 
371 	spin_lock_irq(&mapping->tree_lock);
372 	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
373 	spin_unlock_irq(&mapping->tree_lock);
374 	if (!error)
375 		free_swap_and_cache(radix_to_swp_entry(radswap));
376 	return error;
377 }
378 
379 /*
380  * Pagevec may contain swap entries, so shuffle up pages before releasing.
381  */
382 static void shmem_pagevec_release(struct pagevec *pvec)
383 {
384 	int i, j;
385 
386 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
387 		struct page *page = pvec->pages[i];
388 		if (!radix_tree_exceptional_entry(page))
389 			pvec->pages[j++] = page;
390 	}
391 	pvec->nr = j;
392 	pagevec_release(pvec);
393 }
394 
395 /*
396  * Remove range of pages and swap entries from radix tree, and free them.
397  */
398 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
399 {
400 	struct address_space *mapping = inode->i_mapping;
401 	struct shmem_inode_info *info = SHMEM_I(inode);
402 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
403 	unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
404 	pgoff_t end = (lend >> PAGE_CACHE_SHIFT);
405 	struct pagevec pvec;
406 	pgoff_t indices[PAGEVEC_SIZE];
407 	long nr_swaps_freed = 0;
408 	pgoff_t index;
409 	int i;
410 
411 	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
412 
413 	pagevec_init(&pvec, 0);
414 	index = start;
415 	while (index <= end) {
416 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
417 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
418 							pvec.pages, indices);
419 		if (!pvec.nr)
420 			break;
421 		mem_cgroup_uncharge_start();
422 		for (i = 0; i < pagevec_count(&pvec); i++) {
423 			struct page *page = pvec.pages[i];
424 
425 			index = indices[i];
426 			if (index > end)
427 				break;
428 
429 			if (radix_tree_exceptional_entry(page)) {
430 				nr_swaps_freed += !shmem_free_swap(mapping,
431 								index, page);
432 				continue;
433 			}
434 
435 			if (!trylock_page(page))
436 				continue;
437 			if (page->mapping == mapping) {
438 				VM_BUG_ON(PageWriteback(page));
439 				truncate_inode_page(mapping, page);
440 			}
441 			unlock_page(page);
442 		}
443 		shmem_pagevec_release(&pvec);
444 		mem_cgroup_uncharge_end();
445 		cond_resched();
446 		index++;
447 	}
448 
449 	if (partial) {
450 		struct page *page = NULL;
451 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
452 		if (page) {
453 			zero_user_segment(page, partial, PAGE_CACHE_SIZE);
454 			set_page_dirty(page);
455 			unlock_page(page);
456 			page_cache_release(page);
457 		}
458 	}
459 
460 	index = start;
461 	for ( ; ; ) {
462 		cond_resched();
463 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
464 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
465 							pvec.pages, indices);
466 		if (!pvec.nr) {
467 			if (index == start)
468 				break;
469 			index = start;
470 			continue;
471 		}
472 		if (index == start && indices[0] > end) {
473 			shmem_pagevec_release(&pvec);
474 			break;
475 		}
476 		mem_cgroup_uncharge_start();
477 		for (i = 0; i < pagevec_count(&pvec); i++) {
478 			struct page *page = pvec.pages[i];
479 
480 			index = indices[i];
481 			if (index > end)
482 				break;
483 
484 			if (radix_tree_exceptional_entry(page)) {
485 				nr_swaps_freed += !shmem_free_swap(mapping,
486 								index, page);
487 				continue;
488 			}
489 
490 			lock_page(page);
491 			if (page->mapping == mapping) {
492 				VM_BUG_ON(PageWriteback(page));
493 				truncate_inode_page(mapping, page);
494 			}
495 			unlock_page(page);
496 		}
497 		shmem_pagevec_release(&pvec);
498 		mem_cgroup_uncharge_end();
499 		index++;
500 	}
501 
502 	spin_lock(&info->lock);
503 	info->swapped -= nr_swaps_freed;
504 	shmem_recalc_inode(inode);
505 	spin_unlock(&info->lock);
506 
507 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
508 }
509 EXPORT_SYMBOL_GPL(shmem_truncate_range);
510 
511 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
512 {
513 	struct inode *inode = dentry->d_inode;
514 	int error;
515 
516 	error = inode_change_ok(inode, attr);
517 	if (error)
518 		return error;
519 
520 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
521 		loff_t oldsize = inode->i_size;
522 		loff_t newsize = attr->ia_size;
523 
524 		if (newsize != oldsize) {
525 			i_size_write(inode, newsize);
526 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
527 		}
528 		if (newsize < oldsize) {
529 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
530 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
531 			shmem_truncate_range(inode, newsize, (loff_t)-1);
532 			/* unmap again to remove racily COWed private pages */
533 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
534 		}
535 	}
536 
537 	setattr_copy(inode, attr);
538 #ifdef CONFIG_TMPFS_POSIX_ACL
539 	if (attr->ia_valid & ATTR_MODE)
540 		error = generic_acl_chmod(inode);
541 #endif
542 	return error;
543 }
544 
545 static void shmem_evict_inode(struct inode *inode)
546 {
547 	struct shmem_inode_info *info = SHMEM_I(inode);
548 	struct shmem_xattr *xattr, *nxattr;
549 
550 	if (inode->i_mapping->a_ops == &shmem_aops) {
551 		shmem_unacct_size(info->flags, inode->i_size);
552 		inode->i_size = 0;
553 		shmem_truncate_range(inode, 0, (loff_t)-1);
554 		if (!list_empty(&info->swaplist)) {
555 			mutex_lock(&shmem_swaplist_mutex);
556 			list_del_init(&info->swaplist);
557 			mutex_unlock(&shmem_swaplist_mutex);
558 		}
559 	} else
560 		kfree(info->symlink);
561 
562 	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
563 		kfree(xattr->name);
564 		kfree(xattr);
565 	}
566 	BUG_ON(inode->i_blocks);
567 	shmem_free_inode(inode->i_sb);
568 	end_writeback(inode);
569 }
570 
571 /*
572  * If swap found in inode, free it and move page from swapcache to filecache.
573  */
574 static int shmem_unuse_inode(struct shmem_inode_info *info,
575 			     swp_entry_t swap, struct page *page)
576 {
577 	struct address_space *mapping = info->vfs_inode.i_mapping;
578 	void *radswap;
579 	pgoff_t index;
580 	int error;
581 
582 	radswap = swp_to_radix_entry(swap);
583 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
584 	if (index == -1)
585 		return 0;
586 
587 	/*
588 	 * Move _head_ to start search for next from here.
589 	 * But be careful: shmem_evict_inode checks list_empty without taking
590 	 * mutex, and there's an instant in list_move_tail when info->swaplist
591 	 * would appear empty, if it were the only one on shmem_swaplist.
592 	 */
593 	if (shmem_swaplist.next != &info->swaplist)
594 		list_move_tail(&shmem_swaplist, &info->swaplist);
595 
596 	/*
597 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
598 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
599 	 * beneath us (pagelock doesn't help until the page is in pagecache).
600 	 */
601 	error = shmem_add_to_page_cache(page, mapping, index,
602 						GFP_NOWAIT, radswap);
603 	/* which does mem_cgroup_uncharge_cache_page on error */
604 
605 	if (error != -ENOMEM) {
606 		/*
607 		 * Truncation and eviction use free_swap_and_cache(), which
608 		 * only does trylock page: if we raced, best clean up here.
609 		 */
610 		delete_from_swap_cache(page);
611 		set_page_dirty(page);
612 		if (!error) {
613 			spin_lock(&info->lock);
614 			info->swapped--;
615 			spin_unlock(&info->lock);
616 			swap_free(swap);
617 		}
618 		error = 1;	/* not an error, but entry was found */
619 	}
620 	return error;
621 }
622 
623 /*
624  * Search through swapped inodes to find and replace swap by page.
625  */
626 int shmem_unuse(swp_entry_t swap, struct page *page)
627 {
628 	struct list_head *this, *next;
629 	struct shmem_inode_info *info;
630 	int found = 0;
631 	int error;
632 
633 	/*
634 	 * Charge page using GFP_KERNEL while we can wait, before taking
635 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
636 	 * Charged back to the user (not to caller) when swap account is used.
637 	 */
638 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
639 	if (error)
640 		goto out;
641 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
642 
643 	mutex_lock(&shmem_swaplist_mutex);
644 	list_for_each_safe(this, next, &shmem_swaplist) {
645 		info = list_entry(this, struct shmem_inode_info, swaplist);
646 		if (info->swapped)
647 			found = shmem_unuse_inode(info, swap, page);
648 		else
649 			list_del_init(&info->swaplist);
650 		cond_resched();
651 		if (found)
652 			break;
653 	}
654 	mutex_unlock(&shmem_swaplist_mutex);
655 
656 	if (!found)
657 		mem_cgroup_uncharge_cache_page(page);
658 	if (found < 0)
659 		error = found;
660 out:
661 	unlock_page(page);
662 	page_cache_release(page);
663 	return error;
664 }
665 
666 /*
667  * Move the page from the page cache to the swap cache.
668  */
669 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
670 {
671 	struct shmem_inode_info *info;
672 	struct address_space *mapping;
673 	struct inode *inode;
674 	swp_entry_t swap;
675 	pgoff_t index;
676 
677 	BUG_ON(!PageLocked(page));
678 	mapping = page->mapping;
679 	index = page->index;
680 	inode = mapping->host;
681 	info = SHMEM_I(inode);
682 	if (info->flags & VM_LOCKED)
683 		goto redirty;
684 	if (!total_swap_pages)
685 		goto redirty;
686 
687 	/*
688 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
689 	 * sync from ever calling shmem_writepage; but a stacking filesystem
690 	 * might use ->writepage of its underlying filesystem, in which case
691 	 * tmpfs should write out to swap only in response to memory pressure,
692 	 * and not for the writeback threads or sync.
693 	 */
694 	if (!wbc->for_reclaim) {
695 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
696 		goto redirty;
697 	}
698 	swap = get_swap_page();
699 	if (!swap.val)
700 		goto redirty;
701 
702 	/*
703 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
704 	 * if it's not already there.  Do it now before the page is
705 	 * moved to swap cache, when its pagelock no longer protects
706 	 * the inode from eviction.  But don't unlock the mutex until
707 	 * we've incremented swapped, because shmem_unuse_inode() will
708 	 * prune a !swapped inode from the swaplist under this mutex.
709 	 */
710 	mutex_lock(&shmem_swaplist_mutex);
711 	if (list_empty(&info->swaplist))
712 		list_add_tail(&info->swaplist, &shmem_swaplist);
713 
714 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
715 		swap_shmem_alloc(swap);
716 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
717 
718 		spin_lock(&info->lock);
719 		info->swapped++;
720 		shmem_recalc_inode(inode);
721 		spin_unlock(&info->lock);
722 
723 		mutex_unlock(&shmem_swaplist_mutex);
724 		BUG_ON(page_mapped(page));
725 		swap_writepage(page, wbc);
726 		return 0;
727 	}
728 
729 	mutex_unlock(&shmem_swaplist_mutex);
730 	swapcache_free(swap, NULL);
731 redirty:
732 	set_page_dirty(page);
733 	if (wbc->for_reclaim)
734 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
735 	unlock_page(page);
736 	return 0;
737 }
738 
739 #ifdef CONFIG_NUMA
740 #ifdef CONFIG_TMPFS
741 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
742 {
743 	char buffer[64];
744 
745 	if (!mpol || mpol->mode == MPOL_DEFAULT)
746 		return;		/* show nothing */
747 
748 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
749 
750 	seq_printf(seq, ",mpol=%s", buffer);
751 }
752 
753 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
754 {
755 	struct mempolicy *mpol = NULL;
756 	if (sbinfo->mpol) {
757 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
758 		mpol = sbinfo->mpol;
759 		mpol_get(mpol);
760 		spin_unlock(&sbinfo->stat_lock);
761 	}
762 	return mpol;
763 }
764 #endif /* CONFIG_TMPFS */
765 
766 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
767 			struct shmem_inode_info *info, pgoff_t index)
768 {
769 	struct mempolicy mpol, *spol;
770 	struct vm_area_struct pvma;
771 
772 	spol = mpol_cond_copy(&mpol,
773 			mpol_shared_policy_lookup(&info->policy, index));
774 
775 	/* Create a pseudo vma that just contains the policy */
776 	pvma.vm_start = 0;
777 	pvma.vm_pgoff = index;
778 	pvma.vm_ops = NULL;
779 	pvma.vm_policy = spol;
780 	return swapin_readahead(swap, gfp, &pvma, 0);
781 }
782 
783 static struct page *shmem_alloc_page(gfp_t gfp,
784 			struct shmem_inode_info *info, pgoff_t index)
785 {
786 	struct vm_area_struct pvma;
787 
788 	/* Create a pseudo vma that just contains the policy */
789 	pvma.vm_start = 0;
790 	pvma.vm_pgoff = index;
791 	pvma.vm_ops = NULL;
792 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
793 
794 	/*
795 	 * alloc_page_vma() will drop the shared policy reference
796 	 */
797 	return alloc_page_vma(gfp, &pvma, 0);
798 }
799 #else /* !CONFIG_NUMA */
800 #ifdef CONFIG_TMPFS
801 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
802 {
803 }
804 #endif /* CONFIG_TMPFS */
805 
806 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
807 			struct shmem_inode_info *info, pgoff_t index)
808 {
809 	return swapin_readahead(swap, gfp, NULL, 0);
810 }
811 
812 static inline struct page *shmem_alloc_page(gfp_t gfp,
813 			struct shmem_inode_info *info, pgoff_t index)
814 {
815 	return alloc_page(gfp);
816 }
817 #endif /* CONFIG_NUMA */
818 
819 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
820 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
821 {
822 	return NULL;
823 }
824 #endif
825 
826 /*
827  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
828  *
829  * If we allocate a new one we do not mark it dirty. That's up to the
830  * vm. If we swap it in we mark it dirty since we also free the swap
831  * entry since a page cannot live in both the swap and page cache
832  */
833 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
834 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
835 {
836 	struct address_space *mapping = inode->i_mapping;
837 	struct shmem_inode_info *info;
838 	struct shmem_sb_info *sbinfo;
839 	struct page *page;
840 	swp_entry_t swap;
841 	int error;
842 	int once = 0;
843 
844 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
845 		return -EFBIG;
846 repeat:
847 	swap.val = 0;
848 	page = find_lock_page(mapping, index);
849 	if (radix_tree_exceptional_entry(page)) {
850 		swap = radix_to_swp_entry(page);
851 		page = NULL;
852 	}
853 
854 	if (sgp != SGP_WRITE &&
855 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
856 		error = -EINVAL;
857 		goto failed;
858 	}
859 
860 	if (page || (sgp == SGP_READ && !swap.val)) {
861 		/*
862 		 * Once we can get the page lock, it must be uptodate:
863 		 * if there were an error in reading back from swap,
864 		 * the page would not be inserted into the filecache.
865 		 */
866 		BUG_ON(page && !PageUptodate(page));
867 		*pagep = page;
868 		return 0;
869 	}
870 
871 	/*
872 	 * Fast cache lookup did not find it:
873 	 * bring it back from swap or allocate.
874 	 */
875 	info = SHMEM_I(inode);
876 	sbinfo = SHMEM_SB(inode->i_sb);
877 
878 	if (swap.val) {
879 		/* Look it up and read it in.. */
880 		page = lookup_swap_cache(swap);
881 		if (!page) {
882 			/* here we actually do the io */
883 			if (fault_type)
884 				*fault_type |= VM_FAULT_MAJOR;
885 			page = shmem_swapin(swap, gfp, info, index);
886 			if (!page) {
887 				error = -ENOMEM;
888 				goto failed;
889 			}
890 		}
891 
892 		/* We have to do this with page locked to prevent races */
893 		lock_page(page);
894 		if (!PageUptodate(page)) {
895 			error = -EIO;
896 			goto failed;
897 		}
898 		wait_on_page_writeback(page);
899 
900 		/* Someone may have already done it for us */
901 		if (page->mapping) {
902 			if (page->mapping == mapping &&
903 			    page->index == index)
904 				goto done;
905 			error = -EEXIST;
906 			goto failed;
907 		}
908 
909 		error = mem_cgroup_cache_charge(page, current->mm,
910 						gfp & GFP_RECLAIM_MASK);
911 		if (!error)
912 			error = shmem_add_to_page_cache(page, mapping, index,
913 						gfp, swp_to_radix_entry(swap));
914 		if (error)
915 			goto failed;
916 
917 		spin_lock(&info->lock);
918 		info->swapped--;
919 		shmem_recalc_inode(inode);
920 		spin_unlock(&info->lock);
921 
922 		delete_from_swap_cache(page);
923 		set_page_dirty(page);
924 		swap_free(swap);
925 
926 	} else {
927 		if (shmem_acct_block(info->flags)) {
928 			error = -ENOSPC;
929 			goto failed;
930 		}
931 		if (sbinfo->max_blocks) {
932 			if (percpu_counter_compare(&sbinfo->used_blocks,
933 						sbinfo->max_blocks) >= 0) {
934 				error = -ENOSPC;
935 				goto unacct;
936 			}
937 			percpu_counter_inc(&sbinfo->used_blocks);
938 		}
939 
940 		page = shmem_alloc_page(gfp, info, index);
941 		if (!page) {
942 			error = -ENOMEM;
943 			goto decused;
944 		}
945 
946 		SetPageSwapBacked(page);
947 		__set_page_locked(page);
948 		error = mem_cgroup_cache_charge(page, current->mm,
949 						gfp & GFP_RECLAIM_MASK);
950 		if (!error)
951 			error = shmem_add_to_page_cache(page, mapping, index,
952 						gfp, NULL);
953 		if (error)
954 			goto decused;
955 		lru_cache_add_anon(page);
956 
957 		spin_lock(&info->lock);
958 		info->alloced++;
959 		inode->i_blocks += BLOCKS_PER_PAGE;
960 		shmem_recalc_inode(inode);
961 		spin_unlock(&info->lock);
962 
963 		clear_highpage(page);
964 		flush_dcache_page(page);
965 		SetPageUptodate(page);
966 		if (sgp == SGP_DIRTY)
967 			set_page_dirty(page);
968 	}
969 done:
970 	/* Perhaps the file has been truncated since we checked */
971 	if (sgp != SGP_WRITE &&
972 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
973 		error = -EINVAL;
974 		goto trunc;
975 	}
976 	*pagep = page;
977 	return 0;
978 
979 	/*
980 	 * Error recovery.
981 	 */
982 trunc:
983 	ClearPageDirty(page);
984 	delete_from_page_cache(page);
985 	spin_lock(&info->lock);
986 	info->alloced--;
987 	inode->i_blocks -= BLOCKS_PER_PAGE;
988 	spin_unlock(&info->lock);
989 decused:
990 	if (sbinfo->max_blocks)
991 		percpu_counter_add(&sbinfo->used_blocks, -1);
992 unacct:
993 	shmem_unacct_blocks(info->flags, 1);
994 failed:
995 	if (swap.val && error != -EINVAL) {
996 		struct page *test = find_get_page(mapping, index);
997 		if (test && !radix_tree_exceptional_entry(test))
998 			page_cache_release(test);
999 		/* Have another try if the entry has changed */
1000 		if (test != swp_to_radix_entry(swap))
1001 			error = -EEXIST;
1002 	}
1003 	if (page) {
1004 		unlock_page(page);
1005 		page_cache_release(page);
1006 	}
1007 	if (error == -ENOSPC && !once++) {
1008 		info = SHMEM_I(inode);
1009 		spin_lock(&info->lock);
1010 		shmem_recalc_inode(inode);
1011 		spin_unlock(&info->lock);
1012 		goto repeat;
1013 	}
1014 	if (error == -EEXIST)
1015 		goto repeat;
1016 	return error;
1017 }
1018 
1019 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1020 {
1021 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1022 	int error;
1023 	int ret = VM_FAULT_LOCKED;
1024 
1025 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1026 	if (error)
1027 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1028 
1029 	if (ret & VM_FAULT_MAJOR) {
1030 		count_vm_event(PGMAJFAULT);
1031 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1032 	}
1033 	return ret;
1034 }
1035 
1036 #ifdef CONFIG_NUMA
1037 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1038 {
1039 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1040 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1041 }
1042 
1043 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1044 					  unsigned long addr)
1045 {
1046 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1047 	pgoff_t index;
1048 
1049 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1050 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1051 }
1052 #endif
1053 
1054 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1055 {
1056 	struct inode *inode = file->f_path.dentry->d_inode;
1057 	struct shmem_inode_info *info = SHMEM_I(inode);
1058 	int retval = -ENOMEM;
1059 
1060 	spin_lock(&info->lock);
1061 	if (lock && !(info->flags & VM_LOCKED)) {
1062 		if (!user_shm_lock(inode->i_size, user))
1063 			goto out_nomem;
1064 		info->flags |= VM_LOCKED;
1065 		mapping_set_unevictable(file->f_mapping);
1066 	}
1067 	if (!lock && (info->flags & VM_LOCKED) && user) {
1068 		user_shm_unlock(inode->i_size, user);
1069 		info->flags &= ~VM_LOCKED;
1070 		mapping_clear_unevictable(file->f_mapping);
1071 		/*
1072 		 * Ensure that a racing putback_lru_page() can see
1073 		 * the pages of this mapping are evictable when we
1074 		 * skip them due to !PageLRU during the scan.
1075 		 */
1076 		smp_mb__after_clear_bit();
1077 		scan_mapping_unevictable_pages(file->f_mapping);
1078 	}
1079 	retval = 0;
1080 
1081 out_nomem:
1082 	spin_unlock(&info->lock);
1083 	return retval;
1084 }
1085 
1086 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1087 {
1088 	file_accessed(file);
1089 	vma->vm_ops = &shmem_vm_ops;
1090 	vma->vm_flags |= VM_CAN_NONLINEAR;
1091 	return 0;
1092 }
1093 
1094 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1095 				     umode_t mode, dev_t dev, unsigned long flags)
1096 {
1097 	struct inode *inode;
1098 	struct shmem_inode_info *info;
1099 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1100 
1101 	if (shmem_reserve_inode(sb))
1102 		return NULL;
1103 
1104 	inode = new_inode(sb);
1105 	if (inode) {
1106 		inode->i_ino = get_next_ino();
1107 		inode_init_owner(inode, dir, mode);
1108 		inode->i_blocks = 0;
1109 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1110 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1111 		inode->i_generation = get_seconds();
1112 		info = SHMEM_I(inode);
1113 		memset(info, 0, (char *)inode - (char *)info);
1114 		spin_lock_init(&info->lock);
1115 		info->flags = flags & VM_NORESERVE;
1116 		INIT_LIST_HEAD(&info->swaplist);
1117 		INIT_LIST_HEAD(&info->xattr_list);
1118 		cache_no_acl(inode);
1119 
1120 		switch (mode & S_IFMT) {
1121 		default:
1122 			inode->i_op = &shmem_special_inode_operations;
1123 			init_special_inode(inode, mode, dev);
1124 			break;
1125 		case S_IFREG:
1126 			inode->i_mapping->a_ops = &shmem_aops;
1127 			inode->i_op = &shmem_inode_operations;
1128 			inode->i_fop = &shmem_file_operations;
1129 			mpol_shared_policy_init(&info->policy,
1130 						 shmem_get_sbmpol(sbinfo));
1131 			break;
1132 		case S_IFDIR:
1133 			inc_nlink(inode);
1134 			/* Some things misbehave if size == 0 on a directory */
1135 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1136 			inode->i_op = &shmem_dir_inode_operations;
1137 			inode->i_fop = &simple_dir_operations;
1138 			break;
1139 		case S_IFLNK:
1140 			/*
1141 			 * Must not load anything in the rbtree,
1142 			 * mpol_free_shared_policy will not be called.
1143 			 */
1144 			mpol_shared_policy_init(&info->policy, NULL);
1145 			break;
1146 		}
1147 	} else
1148 		shmem_free_inode(sb);
1149 	return inode;
1150 }
1151 
1152 #ifdef CONFIG_TMPFS
1153 static const struct inode_operations shmem_symlink_inode_operations;
1154 static const struct inode_operations shmem_short_symlink_operations;
1155 
1156 static int
1157 shmem_write_begin(struct file *file, struct address_space *mapping,
1158 			loff_t pos, unsigned len, unsigned flags,
1159 			struct page **pagep, void **fsdata)
1160 {
1161 	struct inode *inode = mapping->host;
1162 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1163 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1164 }
1165 
1166 static int
1167 shmem_write_end(struct file *file, struct address_space *mapping,
1168 			loff_t pos, unsigned len, unsigned copied,
1169 			struct page *page, void *fsdata)
1170 {
1171 	struct inode *inode = mapping->host;
1172 
1173 	if (pos + copied > inode->i_size)
1174 		i_size_write(inode, pos + copied);
1175 
1176 	set_page_dirty(page);
1177 	unlock_page(page);
1178 	page_cache_release(page);
1179 
1180 	return copied;
1181 }
1182 
1183 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1184 {
1185 	struct inode *inode = filp->f_path.dentry->d_inode;
1186 	struct address_space *mapping = inode->i_mapping;
1187 	pgoff_t index;
1188 	unsigned long offset;
1189 	enum sgp_type sgp = SGP_READ;
1190 
1191 	/*
1192 	 * Might this read be for a stacking filesystem?  Then when reading
1193 	 * holes of a sparse file, we actually need to allocate those pages,
1194 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1195 	 */
1196 	if (segment_eq(get_fs(), KERNEL_DS))
1197 		sgp = SGP_DIRTY;
1198 
1199 	index = *ppos >> PAGE_CACHE_SHIFT;
1200 	offset = *ppos & ~PAGE_CACHE_MASK;
1201 
1202 	for (;;) {
1203 		struct page *page = NULL;
1204 		pgoff_t end_index;
1205 		unsigned long nr, ret;
1206 		loff_t i_size = i_size_read(inode);
1207 
1208 		end_index = i_size >> PAGE_CACHE_SHIFT;
1209 		if (index > end_index)
1210 			break;
1211 		if (index == end_index) {
1212 			nr = i_size & ~PAGE_CACHE_MASK;
1213 			if (nr <= offset)
1214 				break;
1215 		}
1216 
1217 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1218 		if (desc->error) {
1219 			if (desc->error == -EINVAL)
1220 				desc->error = 0;
1221 			break;
1222 		}
1223 		if (page)
1224 			unlock_page(page);
1225 
1226 		/*
1227 		 * We must evaluate after, since reads (unlike writes)
1228 		 * are called without i_mutex protection against truncate
1229 		 */
1230 		nr = PAGE_CACHE_SIZE;
1231 		i_size = i_size_read(inode);
1232 		end_index = i_size >> PAGE_CACHE_SHIFT;
1233 		if (index == end_index) {
1234 			nr = i_size & ~PAGE_CACHE_MASK;
1235 			if (nr <= offset) {
1236 				if (page)
1237 					page_cache_release(page);
1238 				break;
1239 			}
1240 		}
1241 		nr -= offset;
1242 
1243 		if (page) {
1244 			/*
1245 			 * If users can be writing to this page using arbitrary
1246 			 * virtual addresses, take care about potential aliasing
1247 			 * before reading the page on the kernel side.
1248 			 */
1249 			if (mapping_writably_mapped(mapping))
1250 				flush_dcache_page(page);
1251 			/*
1252 			 * Mark the page accessed if we read the beginning.
1253 			 */
1254 			if (!offset)
1255 				mark_page_accessed(page);
1256 		} else {
1257 			page = ZERO_PAGE(0);
1258 			page_cache_get(page);
1259 		}
1260 
1261 		/*
1262 		 * Ok, we have the page, and it's up-to-date, so
1263 		 * now we can copy it to user space...
1264 		 *
1265 		 * The actor routine returns how many bytes were actually used..
1266 		 * NOTE! This may not be the same as how much of a user buffer
1267 		 * we filled up (we may be padding etc), so we can only update
1268 		 * "pos" here (the actor routine has to update the user buffer
1269 		 * pointers and the remaining count).
1270 		 */
1271 		ret = actor(desc, page, offset, nr);
1272 		offset += ret;
1273 		index += offset >> PAGE_CACHE_SHIFT;
1274 		offset &= ~PAGE_CACHE_MASK;
1275 
1276 		page_cache_release(page);
1277 		if (ret != nr || !desc->count)
1278 			break;
1279 
1280 		cond_resched();
1281 	}
1282 
1283 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1284 	file_accessed(filp);
1285 }
1286 
1287 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1288 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1289 {
1290 	struct file *filp = iocb->ki_filp;
1291 	ssize_t retval;
1292 	unsigned long seg;
1293 	size_t count;
1294 	loff_t *ppos = &iocb->ki_pos;
1295 
1296 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1297 	if (retval)
1298 		return retval;
1299 
1300 	for (seg = 0; seg < nr_segs; seg++) {
1301 		read_descriptor_t desc;
1302 
1303 		desc.written = 0;
1304 		desc.arg.buf = iov[seg].iov_base;
1305 		desc.count = iov[seg].iov_len;
1306 		if (desc.count == 0)
1307 			continue;
1308 		desc.error = 0;
1309 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1310 		retval += desc.written;
1311 		if (desc.error) {
1312 			retval = retval ?: desc.error;
1313 			break;
1314 		}
1315 		if (desc.count > 0)
1316 			break;
1317 	}
1318 	return retval;
1319 }
1320 
1321 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1322 				struct pipe_inode_info *pipe, size_t len,
1323 				unsigned int flags)
1324 {
1325 	struct address_space *mapping = in->f_mapping;
1326 	struct inode *inode = mapping->host;
1327 	unsigned int loff, nr_pages, req_pages;
1328 	struct page *pages[PIPE_DEF_BUFFERS];
1329 	struct partial_page partial[PIPE_DEF_BUFFERS];
1330 	struct page *page;
1331 	pgoff_t index, end_index;
1332 	loff_t isize, left;
1333 	int error, page_nr;
1334 	struct splice_pipe_desc spd = {
1335 		.pages = pages,
1336 		.partial = partial,
1337 		.flags = flags,
1338 		.ops = &page_cache_pipe_buf_ops,
1339 		.spd_release = spd_release_page,
1340 	};
1341 
1342 	isize = i_size_read(inode);
1343 	if (unlikely(*ppos >= isize))
1344 		return 0;
1345 
1346 	left = isize - *ppos;
1347 	if (unlikely(left < len))
1348 		len = left;
1349 
1350 	if (splice_grow_spd(pipe, &spd))
1351 		return -ENOMEM;
1352 
1353 	index = *ppos >> PAGE_CACHE_SHIFT;
1354 	loff = *ppos & ~PAGE_CACHE_MASK;
1355 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1356 	nr_pages = min(req_pages, pipe->buffers);
1357 
1358 	spd.nr_pages = find_get_pages_contig(mapping, index,
1359 						nr_pages, spd.pages);
1360 	index += spd.nr_pages;
1361 	error = 0;
1362 
1363 	while (spd.nr_pages < nr_pages) {
1364 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1365 		if (error)
1366 			break;
1367 		unlock_page(page);
1368 		spd.pages[spd.nr_pages++] = page;
1369 		index++;
1370 	}
1371 
1372 	index = *ppos >> PAGE_CACHE_SHIFT;
1373 	nr_pages = spd.nr_pages;
1374 	spd.nr_pages = 0;
1375 
1376 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1377 		unsigned int this_len;
1378 
1379 		if (!len)
1380 			break;
1381 
1382 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1383 		page = spd.pages[page_nr];
1384 
1385 		if (!PageUptodate(page) || page->mapping != mapping) {
1386 			error = shmem_getpage(inode, index, &page,
1387 							SGP_CACHE, NULL);
1388 			if (error)
1389 				break;
1390 			unlock_page(page);
1391 			page_cache_release(spd.pages[page_nr]);
1392 			spd.pages[page_nr] = page;
1393 		}
1394 
1395 		isize = i_size_read(inode);
1396 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1397 		if (unlikely(!isize || index > end_index))
1398 			break;
1399 
1400 		if (end_index == index) {
1401 			unsigned int plen;
1402 
1403 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1404 			if (plen <= loff)
1405 				break;
1406 
1407 			this_len = min(this_len, plen - loff);
1408 			len = this_len;
1409 		}
1410 
1411 		spd.partial[page_nr].offset = loff;
1412 		spd.partial[page_nr].len = this_len;
1413 		len -= this_len;
1414 		loff = 0;
1415 		spd.nr_pages++;
1416 		index++;
1417 	}
1418 
1419 	while (page_nr < nr_pages)
1420 		page_cache_release(spd.pages[page_nr++]);
1421 
1422 	if (spd.nr_pages)
1423 		error = splice_to_pipe(pipe, &spd);
1424 
1425 	splice_shrink_spd(pipe, &spd);
1426 
1427 	if (error > 0) {
1428 		*ppos += error;
1429 		file_accessed(in);
1430 	}
1431 	return error;
1432 }
1433 
1434 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1435 {
1436 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1437 
1438 	buf->f_type = TMPFS_MAGIC;
1439 	buf->f_bsize = PAGE_CACHE_SIZE;
1440 	buf->f_namelen = NAME_MAX;
1441 	if (sbinfo->max_blocks) {
1442 		buf->f_blocks = sbinfo->max_blocks;
1443 		buf->f_bavail =
1444 		buf->f_bfree  = sbinfo->max_blocks -
1445 				percpu_counter_sum(&sbinfo->used_blocks);
1446 	}
1447 	if (sbinfo->max_inodes) {
1448 		buf->f_files = sbinfo->max_inodes;
1449 		buf->f_ffree = sbinfo->free_inodes;
1450 	}
1451 	/* else leave those fields 0 like simple_statfs */
1452 	return 0;
1453 }
1454 
1455 /*
1456  * File creation. Allocate an inode, and we're done..
1457  */
1458 static int
1459 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1460 {
1461 	struct inode *inode;
1462 	int error = -ENOSPC;
1463 
1464 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1465 	if (inode) {
1466 		error = security_inode_init_security(inode, dir,
1467 						     &dentry->d_name,
1468 						     NULL, NULL);
1469 		if (error) {
1470 			if (error != -EOPNOTSUPP) {
1471 				iput(inode);
1472 				return error;
1473 			}
1474 		}
1475 #ifdef CONFIG_TMPFS_POSIX_ACL
1476 		error = generic_acl_init(inode, dir);
1477 		if (error) {
1478 			iput(inode);
1479 			return error;
1480 		}
1481 #else
1482 		error = 0;
1483 #endif
1484 		dir->i_size += BOGO_DIRENT_SIZE;
1485 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1486 		d_instantiate(dentry, inode);
1487 		dget(dentry); /* Extra count - pin the dentry in core */
1488 	}
1489 	return error;
1490 }
1491 
1492 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1493 {
1494 	int error;
1495 
1496 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1497 		return error;
1498 	inc_nlink(dir);
1499 	return 0;
1500 }
1501 
1502 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1503 		struct nameidata *nd)
1504 {
1505 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1506 }
1507 
1508 /*
1509  * Link a file..
1510  */
1511 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1512 {
1513 	struct inode *inode = old_dentry->d_inode;
1514 	int ret;
1515 
1516 	/*
1517 	 * No ordinary (disk based) filesystem counts links as inodes;
1518 	 * but each new link needs a new dentry, pinning lowmem, and
1519 	 * tmpfs dentries cannot be pruned until they are unlinked.
1520 	 */
1521 	ret = shmem_reserve_inode(inode->i_sb);
1522 	if (ret)
1523 		goto out;
1524 
1525 	dir->i_size += BOGO_DIRENT_SIZE;
1526 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1527 	inc_nlink(inode);
1528 	ihold(inode);	/* New dentry reference */
1529 	dget(dentry);		/* Extra pinning count for the created dentry */
1530 	d_instantiate(dentry, inode);
1531 out:
1532 	return ret;
1533 }
1534 
1535 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1536 {
1537 	struct inode *inode = dentry->d_inode;
1538 
1539 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1540 		shmem_free_inode(inode->i_sb);
1541 
1542 	dir->i_size -= BOGO_DIRENT_SIZE;
1543 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1544 	drop_nlink(inode);
1545 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1546 	return 0;
1547 }
1548 
1549 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1550 {
1551 	if (!simple_empty(dentry))
1552 		return -ENOTEMPTY;
1553 
1554 	drop_nlink(dentry->d_inode);
1555 	drop_nlink(dir);
1556 	return shmem_unlink(dir, dentry);
1557 }
1558 
1559 /*
1560  * The VFS layer already does all the dentry stuff for rename,
1561  * we just have to decrement the usage count for the target if
1562  * it exists so that the VFS layer correctly free's it when it
1563  * gets overwritten.
1564  */
1565 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1566 {
1567 	struct inode *inode = old_dentry->d_inode;
1568 	int they_are_dirs = S_ISDIR(inode->i_mode);
1569 
1570 	if (!simple_empty(new_dentry))
1571 		return -ENOTEMPTY;
1572 
1573 	if (new_dentry->d_inode) {
1574 		(void) shmem_unlink(new_dir, new_dentry);
1575 		if (they_are_dirs)
1576 			drop_nlink(old_dir);
1577 	} else if (they_are_dirs) {
1578 		drop_nlink(old_dir);
1579 		inc_nlink(new_dir);
1580 	}
1581 
1582 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1583 	new_dir->i_size += BOGO_DIRENT_SIZE;
1584 	old_dir->i_ctime = old_dir->i_mtime =
1585 	new_dir->i_ctime = new_dir->i_mtime =
1586 	inode->i_ctime = CURRENT_TIME;
1587 	return 0;
1588 }
1589 
1590 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1591 {
1592 	int error;
1593 	int len;
1594 	struct inode *inode;
1595 	struct page *page;
1596 	char *kaddr;
1597 	struct shmem_inode_info *info;
1598 
1599 	len = strlen(symname) + 1;
1600 	if (len > PAGE_CACHE_SIZE)
1601 		return -ENAMETOOLONG;
1602 
1603 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1604 	if (!inode)
1605 		return -ENOSPC;
1606 
1607 	error = security_inode_init_security(inode, dir, &dentry->d_name,
1608 					     NULL, NULL);
1609 	if (error) {
1610 		if (error != -EOPNOTSUPP) {
1611 			iput(inode);
1612 			return error;
1613 		}
1614 		error = 0;
1615 	}
1616 
1617 	info = SHMEM_I(inode);
1618 	inode->i_size = len-1;
1619 	if (len <= SHORT_SYMLINK_LEN) {
1620 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
1621 		if (!info->symlink) {
1622 			iput(inode);
1623 			return -ENOMEM;
1624 		}
1625 		inode->i_op = &shmem_short_symlink_operations;
1626 	} else {
1627 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1628 		if (error) {
1629 			iput(inode);
1630 			return error;
1631 		}
1632 		inode->i_mapping->a_ops = &shmem_aops;
1633 		inode->i_op = &shmem_symlink_inode_operations;
1634 		kaddr = kmap_atomic(page, KM_USER0);
1635 		memcpy(kaddr, symname, len);
1636 		kunmap_atomic(kaddr, KM_USER0);
1637 		set_page_dirty(page);
1638 		unlock_page(page);
1639 		page_cache_release(page);
1640 	}
1641 	dir->i_size += BOGO_DIRENT_SIZE;
1642 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1643 	d_instantiate(dentry, inode);
1644 	dget(dentry);
1645 	return 0;
1646 }
1647 
1648 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1649 {
1650 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
1651 	return NULL;
1652 }
1653 
1654 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1655 {
1656 	struct page *page = NULL;
1657 	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1658 	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1659 	if (page)
1660 		unlock_page(page);
1661 	return page;
1662 }
1663 
1664 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1665 {
1666 	if (!IS_ERR(nd_get_link(nd))) {
1667 		struct page *page = cookie;
1668 		kunmap(page);
1669 		mark_page_accessed(page);
1670 		page_cache_release(page);
1671 	}
1672 }
1673 
1674 #ifdef CONFIG_TMPFS_XATTR
1675 /*
1676  * Superblocks without xattr inode operations may get some security.* xattr
1677  * support from the LSM "for free". As soon as we have any other xattrs
1678  * like ACLs, we also need to implement the security.* handlers at
1679  * filesystem level, though.
1680  */
1681 
1682 static int shmem_xattr_get(struct dentry *dentry, const char *name,
1683 			   void *buffer, size_t size)
1684 {
1685 	struct shmem_inode_info *info;
1686 	struct shmem_xattr *xattr;
1687 	int ret = -ENODATA;
1688 
1689 	info = SHMEM_I(dentry->d_inode);
1690 
1691 	spin_lock(&info->lock);
1692 	list_for_each_entry(xattr, &info->xattr_list, list) {
1693 		if (strcmp(name, xattr->name))
1694 			continue;
1695 
1696 		ret = xattr->size;
1697 		if (buffer) {
1698 			if (size < xattr->size)
1699 				ret = -ERANGE;
1700 			else
1701 				memcpy(buffer, xattr->value, xattr->size);
1702 		}
1703 		break;
1704 	}
1705 	spin_unlock(&info->lock);
1706 	return ret;
1707 }
1708 
1709 static int shmem_xattr_set(struct dentry *dentry, const char *name,
1710 			   const void *value, size_t size, int flags)
1711 {
1712 	struct inode *inode = dentry->d_inode;
1713 	struct shmem_inode_info *info = SHMEM_I(inode);
1714 	struct shmem_xattr *xattr;
1715 	struct shmem_xattr *new_xattr = NULL;
1716 	size_t len;
1717 	int err = 0;
1718 
1719 	/* value == NULL means remove */
1720 	if (value) {
1721 		/* wrap around? */
1722 		len = sizeof(*new_xattr) + size;
1723 		if (len <= sizeof(*new_xattr))
1724 			return -ENOMEM;
1725 
1726 		new_xattr = kmalloc(len, GFP_KERNEL);
1727 		if (!new_xattr)
1728 			return -ENOMEM;
1729 
1730 		new_xattr->name = kstrdup(name, GFP_KERNEL);
1731 		if (!new_xattr->name) {
1732 			kfree(new_xattr);
1733 			return -ENOMEM;
1734 		}
1735 
1736 		new_xattr->size = size;
1737 		memcpy(new_xattr->value, value, size);
1738 	}
1739 
1740 	spin_lock(&info->lock);
1741 	list_for_each_entry(xattr, &info->xattr_list, list) {
1742 		if (!strcmp(name, xattr->name)) {
1743 			if (flags & XATTR_CREATE) {
1744 				xattr = new_xattr;
1745 				err = -EEXIST;
1746 			} else if (new_xattr) {
1747 				list_replace(&xattr->list, &new_xattr->list);
1748 			} else {
1749 				list_del(&xattr->list);
1750 			}
1751 			goto out;
1752 		}
1753 	}
1754 	if (flags & XATTR_REPLACE) {
1755 		xattr = new_xattr;
1756 		err = -ENODATA;
1757 	} else {
1758 		list_add(&new_xattr->list, &info->xattr_list);
1759 		xattr = NULL;
1760 	}
1761 out:
1762 	spin_unlock(&info->lock);
1763 	if (xattr)
1764 		kfree(xattr->name);
1765 	kfree(xattr);
1766 	return err;
1767 }
1768 
1769 static const struct xattr_handler *shmem_xattr_handlers[] = {
1770 #ifdef CONFIG_TMPFS_POSIX_ACL
1771 	&generic_acl_access_handler,
1772 	&generic_acl_default_handler,
1773 #endif
1774 	NULL
1775 };
1776 
1777 static int shmem_xattr_validate(const char *name)
1778 {
1779 	struct { const char *prefix; size_t len; } arr[] = {
1780 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
1781 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
1782 	};
1783 	int i;
1784 
1785 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1786 		size_t preflen = arr[i].len;
1787 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
1788 			if (!name[preflen])
1789 				return -EINVAL;
1790 			return 0;
1791 		}
1792 	}
1793 	return -EOPNOTSUPP;
1794 }
1795 
1796 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
1797 			      void *buffer, size_t size)
1798 {
1799 	int err;
1800 
1801 	/*
1802 	 * If this is a request for a synthetic attribute in the system.*
1803 	 * namespace use the generic infrastructure to resolve a handler
1804 	 * for it via sb->s_xattr.
1805 	 */
1806 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1807 		return generic_getxattr(dentry, name, buffer, size);
1808 
1809 	err = shmem_xattr_validate(name);
1810 	if (err)
1811 		return err;
1812 
1813 	return shmem_xattr_get(dentry, name, buffer, size);
1814 }
1815 
1816 static int shmem_setxattr(struct dentry *dentry, const char *name,
1817 			  const void *value, size_t size, int flags)
1818 {
1819 	int err;
1820 
1821 	/*
1822 	 * If this is a request for a synthetic attribute in the system.*
1823 	 * namespace use the generic infrastructure to resolve a handler
1824 	 * for it via sb->s_xattr.
1825 	 */
1826 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1827 		return generic_setxattr(dentry, name, value, size, flags);
1828 
1829 	err = shmem_xattr_validate(name);
1830 	if (err)
1831 		return err;
1832 
1833 	if (size == 0)
1834 		value = "";  /* empty EA, do not remove */
1835 
1836 	return shmem_xattr_set(dentry, name, value, size, flags);
1837 
1838 }
1839 
1840 static int shmem_removexattr(struct dentry *dentry, const char *name)
1841 {
1842 	int err;
1843 
1844 	/*
1845 	 * If this is a request for a synthetic attribute in the system.*
1846 	 * namespace use the generic infrastructure to resolve a handler
1847 	 * for it via sb->s_xattr.
1848 	 */
1849 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1850 		return generic_removexattr(dentry, name);
1851 
1852 	err = shmem_xattr_validate(name);
1853 	if (err)
1854 		return err;
1855 
1856 	return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
1857 }
1858 
1859 static bool xattr_is_trusted(const char *name)
1860 {
1861 	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
1862 }
1863 
1864 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
1865 {
1866 	bool trusted = capable(CAP_SYS_ADMIN);
1867 	struct shmem_xattr *xattr;
1868 	struct shmem_inode_info *info;
1869 	size_t used = 0;
1870 
1871 	info = SHMEM_I(dentry->d_inode);
1872 
1873 	spin_lock(&info->lock);
1874 	list_for_each_entry(xattr, &info->xattr_list, list) {
1875 		size_t len;
1876 
1877 		/* skip "trusted." attributes for unprivileged callers */
1878 		if (!trusted && xattr_is_trusted(xattr->name))
1879 			continue;
1880 
1881 		len = strlen(xattr->name) + 1;
1882 		used += len;
1883 		if (buffer) {
1884 			if (size < used) {
1885 				used = -ERANGE;
1886 				break;
1887 			}
1888 			memcpy(buffer, xattr->name, len);
1889 			buffer += len;
1890 		}
1891 	}
1892 	spin_unlock(&info->lock);
1893 
1894 	return used;
1895 }
1896 #endif /* CONFIG_TMPFS_XATTR */
1897 
1898 static const struct inode_operations shmem_short_symlink_operations = {
1899 	.readlink	= generic_readlink,
1900 	.follow_link	= shmem_follow_short_symlink,
1901 #ifdef CONFIG_TMPFS_XATTR
1902 	.setxattr	= shmem_setxattr,
1903 	.getxattr	= shmem_getxattr,
1904 	.listxattr	= shmem_listxattr,
1905 	.removexattr	= shmem_removexattr,
1906 #endif
1907 };
1908 
1909 static const struct inode_operations shmem_symlink_inode_operations = {
1910 	.readlink	= generic_readlink,
1911 	.follow_link	= shmem_follow_link,
1912 	.put_link	= shmem_put_link,
1913 #ifdef CONFIG_TMPFS_XATTR
1914 	.setxattr	= shmem_setxattr,
1915 	.getxattr	= shmem_getxattr,
1916 	.listxattr	= shmem_listxattr,
1917 	.removexattr	= shmem_removexattr,
1918 #endif
1919 };
1920 
1921 static struct dentry *shmem_get_parent(struct dentry *child)
1922 {
1923 	return ERR_PTR(-ESTALE);
1924 }
1925 
1926 static int shmem_match(struct inode *ino, void *vfh)
1927 {
1928 	__u32 *fh = vfh;
1929 	__u64 inum = fh[2];
1930 	inum = (inum << 32) | fh[1];
1931 	return ino->i_ino == inum && fh[0] == ino->i_generation;
1932 }
1933 
1934 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1935 		struct fid *fid, int fh_len, int fh_type)
1936 {
1937 	struct inode *inode;
1938 	struct dentry *dentry = NULL;
1939 	u64 inum = fid->raw[2];
1940 	inum = (inum << 32) | fid->raw[1];
1941 
1942 	if (fh_len < 3)
1943 		return NULL;
1944 
1945 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
1946 			shmem_match, fid->raw);
1947 	if (inode) {
1948 		dentry = d_find_alias(inode);
1949 		iput(inode);
1950 	}
1951 
1952 	return dentry;
1953 }
1954 
1955 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
1956 				int connectable)
1957 {
1958 	struct inode *inode = dentry->d_inode;
1959 
1960 	if (*len < 3) {
1961 		*len = 3;
1962 		return 255;
1963 	}
1964 
1965 	if (inode_unhashed(inode)) {
1966 		/* Unfortunately insert_inode_hash is not idempotent,
1967 		 * so as we hash inodes here rather than at creation
1968 		 * time, we need a lock to ensure we only try
1969 		 * to do it once
1970 		 */
1971 		static DEFINE_SPINLOCK(lock);
1972 		spin_lock(&lock);
1973 		if (inode_unhashed(inode))
1974 			__insert_inode_hash(inode,
1975 					    inode->i_ino + inode->i_generation);
1976 		spin_unlock(&lock);
1977 	}
1978 
1979 	fh[0] = inode->i_generation;
1980 	fh[1] = inode->i_ino;
1981 	fh[2] = ((__u64)inode->i_ino) >> 32;
1982 
1983 	*len = 3;
1984 	return 1;
1985 }
1986 
1987 static const struct export_operations shmem_export_ops = {
1988 	.get_parent     = shmem_get_parent,
1989 	.encode_fh      = shmem_encode_fh,
1990 	.fh_to_dentry	= shmem_fh_to_dentry,
1991 };
1992 
1993 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
1994 			       bool remount)
1995 {
1996 	char *this_char, *value, *rest;
1997 
1998 	while (options != NULL) {
1999 		this_char = options;
2000 		for (;;) {
2001 			/*
2002 			 * NUL-terminate this option: unfortunately,
2003 			 * mount options form a comma-separated list,
2004 			 * but mpol's nodelist may also contain commas.
2005 			 */
2006 			options = strchr(options, ',');
2007 			if (options == NULL)
2008 				break;
2009 			options++;
2010 			if (!isdigit(*options)) {
2011 				options[-1] = '\0';
2012 				break;
2013 			}
2014 		}
2015 		if (!*this_char)
2016 			continue;
2017 		if ((value = strchr(this_char,'=')) != NULL) {
2018 			*value++ = 0;
2019 		} else {
2020 			printk(KERN_ERR
2021 			    "tmpfs: No value for mount option '%s'\n",
2022 			    this_char);
2023 			return 1;
2024 		}
2025 
2026 		if (!strcmp(this_char,"size")) {
2027 			unsigned long long size;
2028 			size = memparse(value,&rest);
2029 			if (*rest == '%') {
2030 				size <<= PAGE_SHIFT;
2031 				size *= totalram_pages;
2032 				do_div(size, 100);
2033 				rest++;
2034 			}
2035 			if (*rest)
2036 				goto bad_val;
2037 			sbinfo->max_blocks =
2038 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2039 		} else if (!strcmp(this_char,"nr_blocks")) {
2040 			sbinfo->max_blocks = memparse(value, &rest);
2041 			if (*rest)
2042 				goto bad_val;
2043 		} else if (!strcmp(this_char,"nr_inodes")) {
2044 			sbinfo->max_inodes = memparse(value, &rest);
2045 			if (*rest)
2046 				goto bad_val;
2047 		} else if (!strcmp(this_char,"mode")) {
2048 			if (remount)
2049 				continue;
2050 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2051 			if (*rest)
2052 				goto bad_val;
2053 		} else if (!strcmp(this_char,"uid")) {
2054 			if (remount)
2055 				continue;
2056 			sbinfo->uid = simple_strtoul(value, &rest, 0);
2057 			if (*rest)
2058 				goto bad_val;
2059 		} else if (!strcmp(this_char,"gid")) {
2060 			if (remount)
2061 				continue;
2062 			sbinfo->gid = simple_strtoul(value, &rest, 0);
2063 			if (*rest)
2064 				goto bad_val;
2065 		} else if (!strcmp(this_char,"mpol")) {
2066 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2067 				goto bad_val;
2068 		} else {
2069 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2070 			       this_char);
2071 			return 1;
2072 		}
2073 	}
2074 	return 0;
2075 
2076 bad_val:
2077 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2078 	       value, this_char);
2079 	return 1;
2080 
2081 }
2082 
2083 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2084 {
2085 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2086 	struct shmem_sb_info config = *sbinfo;
2087 	unsigned long inodes;
2088 	int error = -EINVAL;
2089 
2090 	if (shmem_parse_options(data, &config, true))
2091 		return error;
2092 
2093 	spin_lock(&sbinfo->stat_lock);
2094 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2095 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2096 		goto out;
2097 	if (config.max_inodes < inodes)
2098 		goto out;
2099 	/*
2100 	 * Those tests disallow limited->unlimited while any are in use;
2101 	 * but we must separately disallow unlimited->limited, because
2102 	 * in that case we have no record of how much is already in use.
2103 	 */
2104 	if (config.max_blocks && !sbinfo->max_blocks)
2105 		goto out;
2106 	if (config.max_inodes && !sbinfo->max_inodes)
2107 		goto out;
2108 
2109 	error = 0;
2110 	sbinfo->max_blocks  = config.max_blocks;
2111 	sbinfo->max_inodes  = config.max_inodes;
2112 	sbinfo->free_inodes = config.max_inodes - inodes;
2113 
2114 	mpol_put(sbinfo->mpol);
2115 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2116 out:
2117 	spin_unlock(&sbinfo->stat_lock);
2118 	return error;
2119 }
2120 
2121 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2122 {
2123 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2124 
2125 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2126 		seq_printf(seq, ",size=%luk",
2127 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2128 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2129 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2130 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2131 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2132 	if (sbinfo->uid != 0)
2133 		seq_printf(seq, ",uid=%u", sbinfo->uid);
2134 	if (sbinfo->gid != 0)
2135 		seq_printf(seq, ",gid=%u", sbinfo->gid);
2136 	shmem_show_mpol(seq, sbinfo->mpol);
2137 	return 0;
2138 }
2139 #endif /* CONFIG_TMPFS */
2140 
2141 static void shmem_put_super(struct super_block *sb)
2142 {
2143 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2144 
2145 	percpu_counter_destroy(&sbinfo->used_blocks);
2146 	kfree(sbinfo);
2147 	sb->s_fs_info = NULL;
2148 }
2149 
2150 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2151 {
2152 	struct inode *inode;
2153 	struct dentry *root;
2154 	struct shmem_sb_info *sbinfo;
2155 	int err = -ENOMEM;
2156 
2157 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2158 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2159 				L1_CACHE_BYTES), GFP_KERNEL);
2160 	if (!sbinfo)
2161 		return -ENOMEM;
2162 
2163 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2164 	sbinfo->uid = current_fsuid();
2165 	sbinfo->gid = current_fsgid();
2166 	sb->s_fs_info = sbinfo;
2167 
2168 #ifdef CONFIG_TMPFS
2169 	/*
2170 	 * Per default we only allow half of the physical ram per
2171 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2172 	 * but the internal instance is left unlimited.
2173 	 */
2174 	if (!(sb->s_flags & MS_NOUSER)) {
2175 		sbinfo->max_blocks = shmem_default_max_blocks();
2176 		sbinfo->max_inodes = shmem_default_max_inodes();
2177 		if (shmem_parse_options(data, sbinfo, false)) {
2178 			err = -EINVAL;
2179 			goto failed;
2180 		}
2181 	}
2182 	sb->s_export_op = &shmem_export_ops;
2183 #else
2184 	sb->s_flags |= MS_NOUSER;
2185 #endif
2186 
2187 	spin_lock_init(&sbinfo->stat_lock);
2188 	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2189 		goto failed;
2190 	sbinfo->free_inodes = sbinfo->max_inodes;
2191 
2192 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2193 	sb->s_blocksize = PAGE_CACHE_SIZE;
2194 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2195 	sb->s_magic = TMPFS_MAGIC;
2196 	sb->s_op = &shmem_ops;
2197 	sb->s_time_gran = 1;
2198 #ifdef CONFIG_TMPFS_XATTR
2199 	sb->s_xattr = shmem_xattr_handlers;
2200 #endif
2201 #ifdef CONFIG_TMPFS_POSIX_ACL
2202 	sb->s_flags |= MS_POSIXACL;
2203 #endif
2204 
2205 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2206 	if (!inode)
2207 		goto failed;
2208 	inode->i_uid = sbinfo->uid;
2209 	inode->i_gid = sbinfo->gid;
2210 	root = d_alloc_root(inode);
2211 	if (!root)
2212 		goto failed_iput;
2213 	sb->s_root = root;
2214 	return 0;
2215 
2216 failed_iput:
2217 	iput(inode);
2218 failed:
2219 	shmem_put_super(sb);
2220 	return err;
2221 }
2222 
2223 static struct kmem_cache *shmem_inode_cachep;
2224 
2225 static struct inode *shmem_alloc_inode(struct super_block *sb)
2226 {
2227 	struct shmem_inode_info *info;
2228 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2229 	if (!info)
2230 		return NULL;
2231 	return &info->vfs_inode;
2232 }
2233 
2234 static void shmem_destroy_callback(struct rcu_head *head)
2235 {
2236 	struct inode *inode = container_of(head, struct inode, i_rcu);
2237 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2238 }
2239 
2240 static void shmem_destroy_inode(struct inode *inode)
2241 {
2242 	if (S_ISREG(inode->i_mode))
2243 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2244 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2245 }
2246 
2247 static void shmem_init_inode(void *foo)
2248 {
2249 	struct shmem_inode_info *info = foo;
2250 	inode_init_once(&info->vfs_inode);
2251 }
2252 
2253 static int shmem_init_inodecache(void)
2254 {
2255 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2256 				sizeof(struct shmem_inode_info),
2257 				0, SLAB_PANIC, shmem_init_inode);
2258 	return 0;
2259 }
2260 
2261 static void shmem_destroy_inodecache(void)
2262 {
2263 	kmem_cache_destroy(shmem_inode_cachep);
2264 }
2265 
2266 static const struct address_space_operations shmem_aops = {
2267 	.writepage	= shmem_writepage,
2268 	.set_page_dirty	= __set_page_dirty_no_writeback,
2269 #ifdef CONFIG_TMPFS
2270 	.write_begin	= shmem_write_begin,
2271 	.write_end	= shmem_write_end,
2272 #endif
2273 	.migratepage	= migrate_page,
2274 	.error_remove_page = generic_error_remove_page,
2275 };
2276 
2277 static const struct file_operations shmem_file_operations = {
2278 	.mmap		= shmem_mmap,
2279 #ifdef CONFIG_TMPFS
2280 	.llseek		= generic_file_llseek,
2281 	.read		= do_sync_read,
2282 	.write		= do_sync_write,
2283 	.aio_read	= shmem_file_aio_read,
2284 	.aio_write	= generic_file_aio_write,
2285 	.fsync		= noop_fsync,
2286 	.splice_read	= shmem_file_splice_read,
2287 	.splice_write	= generic_file_splice_write,
2288 #endif
2289 };
2290 
2291 static const struct inode_operations shmem_inode_operations = {
2292 	.setattr	= shmem_setattr,
2293 	.truncate_range	= shmem_truncate_range,
2294 #ifdef CONFIG_TMPFS_XATTR
2295 	.setxattr	= shmem_setxattr,
2296 	.getxattr	= shmem_getxattr,
2297 	.listxattr	= shmem_listxattr,
2298 	.removexattr	= shmem_removexattr,
2299 #endif
2300 };
2301 
2302 static const struct inode_operations shmem_dir_inode_operations = {
2303 #ifdef CONFIG_TMPFS
2304 	.create		= shmem_create,
2305 	.lookup		= simple_lookup,
2306 	.link		= shmem_link,
2307 	.unlink		= shmem_unlink,
2308 	.symlink	= shmem_symlink,
2309 	.mkdir		= shmem_mkdir,
2310 	.rmdir		= shmem_rmdir,
2311 	.mknod		= shmem_mknod,
2312 	.rename		= shmem_rename,
2313 #endif
2314 #ifdef CONFIG_TMPFS_XATTR
2315 	.setxattr	= shmem_setxattr,
2316 	.getxattr	= shmem_getxattr,
2317 	.listxattr	= shmem_listxattr,
2318 	.removexattr	= shmem_removexattr,
2319 #endif
2320 #ifdef CONFIG_TMPFS_POSIX_ACL
2321 	.setattr	= shmem_setattr,
2322 #endif
2323 };
2324 
2325 static const struct inode_operations shmem_special_inode_operations = {
2326 #ifdef CONFIG_TMPFS_XATTR
2327 	.setxattr	= shmem_setxattr,
2328 	.getxattr	= shmem_getxattr,
2329 	.listxattr	= shmem_listxattr,
2330 	.removexattr	= shmem_removexattr,
2331 #endif
2332 #ifdef CONFIG_TMPFS_POSIX_ACL
2333 	.setattr	= shmem_setattr,
2334 #endif
2335 };
2336 
2337 static const struct super_operations shmem_ops = {
2338 	.alloc_inode	= shmem_alloc_inode,
2339 	.destroy_inode	= shmem_destroy_inode,
2340 #ifdef CONFIG_TMPFS
2341 	.statfs		= shmem_statfs,
2342 	.remount_fs	= shmem_remount_fs,
2343 	.show_options	= shmem_show_options,
2344 #endif
2345 	.evict_inode	= shmem_evict_inode,
2346 	.drop_inode	= generic_delete_inode,
2347 	.put_super	= shmem_put_super,
2348 };
2349 
2350 static const struct vm_operations_struct shmem_vm_ops = {
2351 	.fault		= shmem_fault,
2352 #ifdef CONFIG_NUMA
2353 	.set_policy     = shmem_set_policy,
2354 	.get_policy     = shmem_get_policy,
2355 #endif
2356 };
2357 
2358 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2359 	int flags, const char *dev_name, void *data)
2360 {
2361 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2362 }
2363 
2364 static struct file_system_type shmem_fs_type = {
2365 	.owner		= THIS_MODULE,
2366 	.name		= "tmpfs",
2367 	.mount		= shmem_mount,
2368 	.kill_sb	= kill_litter_super,
2369 };
2370 
2371 int __init shmem_init(void)
2372 {
2373 	int error;
2374 
2375 	error = bdi_init(&shmem_backing_dev_info);
2376 	if (error)
2377 		goto out4;
2378 
2379 	error = shmem_init_inodecache();
2380 	if (error)
2381 		goto out3;
2382 
2383 	error = register_filesystem(&shmem_fs_type);
2384 	if (error) {
2385 		printk(KERN_ERR "Could not register tmpfs\n");
2386 		goto out2;
2387 	}
2388 
2389 	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2390 				 shmem_fs_type.name, NULL);
2391 	if (IS_ERR(shm_mnt)) {
2392 		error = PTR_ERR(shm_mnt);
2393 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2394 		goto out1;
2395 	}
2396 	return 0;
2397 
2398 out1:
2399 	unregister_filesystem(&shmem_fs_type);
2400 out2:
2401 	shmem_destroy_inodecache();
2402 out3:
2403 	bdi_destroy(&shmem_backing_dev_info);
2404 out4:
2405 	shm_mnt = ERR_PTR(error);
2406 	return error;
2407 }
2408 
2409 #else /* !CONFIG_SHMEM */
2410 
2411 /*
2412  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2413  *
2414  * This is intended for small system where the benefits of the full
2415  * shmem code (swap-backed and resource-limited) are outweighed by
2416  * their complexity. On systems without swap this code should be
2417  * effectively equivalent, but much lighter weight.
2418  */
2419 
2420 #include <linux/ramfs.h>
2421 
2422 static struct file_system_type shmem_fs_type = {
2423 	.name		= "tmpfs",
2424 	.mount		= ramfs_mount,
2425 	.kill_sb	= kill_litter_super,
2426 };
2427 
2428 int __init shmem_init(void)
2429 {
2430 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2431 
2432 	shm_mnt = kern_mount(&shmem_fs_type);
2433 	BUG_ON(IS_ERR(shm_mnt));
2434 
2435 	return 0;
2436 }
2437 
2438 int shmem_unuse(swp_entry_t swap, struct page *page)
2439 {
2440 	return 0;
2441 }
2442 
2443 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2444 {
2445 	return 0;
2446 }
2447 
2448 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2449 {
2450 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2451 }
2452 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2453 
2454 #define shmem_vm_ops				generic_file_vm_ops
2455 #define shmem_file_operations			ramfs_file_operations
2456 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2457 #define shmem_acct_size(flags, size)		0
2458 #define shmem_unacct_size(flags, size)		do {} while (0)
2459 
2460 #endif /* CONFIG_SHMEM */
2461 
2462 /* common code */
2463 
2464 /**
2465  * shmem_file_setup - get an unlinked file living in tmpfs
2466  * @name: name for dentry (to be seen in /proc/<pid>/maps
2467  * @size: size to be set for the file
2468  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2469  */
2470 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2471 {
2472 	int error;
2473 	struct file *file;
2474 	struct inode *inode;
2475 	struct path path;
2476 	struct dentry *root;
2477 	struct qstr this;
2478 
2479 	if (IS_ERR(shm_mnt))
2480 		return (void *)shm_mnt;
2481 
2482 	if (size < 0 || size > MAX_LFS_FILESIZE)
2483 		return ERR_PTR(-EINVAL);
2484 
2485 	if (shmem_acct_size(flags, size))
2486 		return ERR_PTR(-ENOMEM);
2487 
2488 	error = -ENOMEM;
2489 	this.name = name;
2490 	this.len = strlen(name);
2491 	this.hash = 0; /* will go */
2492 	root = shm_mnt->mnt_root;
2493 	path.dentry = d_alloc(root, &this);
2494 	if (!path.dentry)
2495 		goto put_memory;
2496 	path.mnt = mntget(shm_mnt);
2497 
2498 	error = -ENOSPC;
2499 	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2500 	if (!inode)
2501 		goto put_dentry;
2502 
2503 	d_instantiate(path.dentry, inode);
2504 	inode->i_size = size;
2505 	clear_nlink(inode);	/* It is unlinked */
2506 #ifndef CONFIG_MMU
2507 	error = ramfs_nommu_expand_for_mapping(inode, size);
2508 	if (error)
2509 		goto put_dentry;
2510 #endif
2511 
2512 	error = -ENFILE;
2513 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2514 		  &shmem_file_operations);
2515 	if (!file)
2516 		goto put_dentry;
2517 
2518 	return file;
2519 
2520 put_dentry:
2521 	path_put(&path);
2522 put_memory:
2523 	shmem_unacct_size(flags, size);
2524 	return ERR_PTR(error);
2525 }
2526 EXPORT_SYMBOL_GPL(shmem_file_setup);
2527 
2528 /**
2529  * shmem_zero_setup - setup a shared anonymous mapping
2530  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2531  */
2532 int shmem_zero_setup(struct vm_area_struct *vma)
2533 {
2534 	struct file *file;
2535 	loff_t size = vma->vm_end - vma->vm_start;
2536 
2537 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2538 	if (IS_ERR(file))
2539 		return PTR_ERR(file);
2540 
2541 	if (vma->vm_file)
2542 		fput(vma->vm_file);
2543 	vma->vm_file = file;
2544 	vma->vm_ops = &shmem_vm_ops;
2545 	vma->vm_flags |= VM_CAN_NONLINEAR;
2546 	return 0;
2547 }
2548 
2549 /**
2550  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2551  * @mapping:	the page's address_space
2552  * @index:	the page index
2553  * @gfp:	the page allocator flags to use if allocating
2554  *
2555  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2556  * with any new page allocations done using the specified allocation flags.
2557  * But read_cache_page_gfp() uses the ->readpage() method: which does not
2558  * suit tmpfs, since it may have pages in swapcache, and needs to find those
2559  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2560  *
2561  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2562  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2563  */
2564 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2565 					 pgoff_t index, gfp_t gfp)
2566 {
2567 #ifdef CONFIG_SHMEM
2568 	struct inode *inode = mapping->host;
2569 	struct page *page;
2570 	int error;
2571 
2572 	BUG_ON(mapping->a_ops != &shmem_aops);
2573 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2574 	if (error)
2575 		page = ERR_PTR(error);
2576 	else
2577 		unlock_page(page);
2578 	return page;
2579 #else
2580 	/*
2581 	 * The tiny !SHMEM case uses ramfs without swap
2582 	 */
2583 	return read_cache_page_gfp(mapping, index, gfp);
2584 #endif
2585 }
2586 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
2587