xref: /linux/mm/shmem.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * This file is released under the GPL.
18  */
19 
20 /*
21  * This virtual memory filesystem is heavily based on the ramfs. It
22  * extends ramfs by the ability to use swap and honor resource limits
23  * which makes it a completely usable filesystem.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
32 #include <linux/mm.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
52 #include <linux/seq_file.h>
53 #include <linux/magic.h>
54 
55 #include <asm/uaccess.h>
56 #include <asm/div64.h>
57 #include <asm/pgtable.h>
58 
59 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
60 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
61 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
62 
63 #define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
64 #define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
65 
66 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
67 
68 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
69 #define SHMEM_PAGEIN	 VM_READ
70 #define SHMEM_TRUNCATE	 VM_WRITE
71 
72 /* Definition to limit shmem_truncate's steps between cond_rescheds */
73 #define LATENCY_LIMIT	 64
74 
75 /* Pretend that each entry is of this size in directory's i_size */
76 #define BOGO_DIRENT_SIZE 20
77 
78 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
79 enum sgp_type {
80 	SGP_READ,	/* don't exceed i_size, don't allocate page */
81 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
82 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
83 	SGP_WRITE,	/* may exceed i_size, may allocate page */
84 };
85 
86 #ifdef CONFIG_TMPFS
87 static unsigned long shmem_default_max_blocks(void)
88 {
89 	return totalram_pages / 2;
90 }
91 
92 static unsigned long shmem_default_max_inodes(void)
93 {
94 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
95 }
96 #endif
97 
98 static int shmem_getpage(struct inode *inode, unsigned long idx,
99 			 struct page **pagep, enum sgp_type sgp, int *type);
100 
101 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
102 {
103 	/*
104 	 * The above definition of ENTRIES_PER_PAGE, and the use of
105 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
106 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
107 	 *
108 	 * Mobility flags are masked out as swap vectors cannot move
109 	 */
110 	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
111 				PAGE_CACHE_SHIFT-PAGE_SHIFT);
112 }
113 
114 static inline void shmem_dir_free(struct page *page)
115 {
116 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
117 }
118 
119 static struct page **shmem_dir_map(struct page *page)
120 {
121 	return (struct page **)kmap_atomic(page, KM_USER0);
122 }
123 
124 static inline void shmem_dir_unmap(struct page **dir)
125 {
126 	kunmap_atomic(dir, KM_USER0);
127 }
128 
129 static swp_entry_t *shmem_swp_map(struct page *page)
130 {
131 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
132 }
133 
134 static inline void shmem_swp_balance_unmap(void)
135 {
136 	/*
137 	 * When passing a pointer to an i_direct entry, to code which
138 	 * also handles indirect entries and so will shmem_swp_unmap,
139 	 * we must arrange for the preempt count to remain in balance.
140 	 * What kmap_atomic of a lowmem page does depends on config
141 	 * and architecture, so pretend to kmap_atomic some lowmem page.
142 	 */
143 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
144 }
145 
146 static inline void shmem_swp_unmap(swp_entry_t *entry)
147 {
148 	kunmap_atomic(entry, KM_USER1);
149 }
150 
151 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
152 {
153 	return sb->s_fs_info;
154 }
155 
156 /*
157  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
158  * for shared memory and for shared anonymous (/dev/zero) mappings
159  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
160  * consistent with the pre-accounting of private mappings ...
161  */
162 static inline int shmem_acct_size(unsigned long flags, loff_t size)
163 {
164 	return (flags & VM_ACCOUNT) ?
165 		security_vm_enough_memory_kern(VM_ACCT(size)) : 0;
166 }
167 
168 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
169 {
170 	if (flags & VM_ACCOUNT)
171 		vm_unacct_memory(VM_ACCT(size));
172 }
173 
174 /*
175  * ... whereas tmpfs objects are accounted incrementally as
176  * pages are allocated, in order to allow huge sparse files.
177  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
178  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
179  */
180 static inline int shmem_acct_block(unsigned long flags)
181 {
182 	return (flags & VM_ACCOUNT) ?
183 		0 : security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE));
184 }
185 
186 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187 {
188 	if (!(flags & VM_ACCOUNT))
189 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
190 }
191 
192 static const struct super_operations shmem_ops;
193 static const struct address_space_operations shmem_aops;
194 static const struct file_operations shmem_file_operations;
195 static const struct inode_operations shmem_inode_operations;
196 static const struct inode_operations shmem_dir_inode_operations;
197 static const struct inode_operations shmem_special_inode_operations;
198 static struct vm_operations_struct shmem_vm_ops;
199 
200 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
201 	.ra_pages	= 0,	/* No readahead */
202 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
203 	.unplug_io_fn	= default_unplug_io_fn,
204 };
205 
206 static LIST_HEAD(shmem_swaplist);
207 static DEFINE_MUTEX(shmem_swaplist_mutex);
208 
209 static void shmem_free_blocks(struct inode *inode, long pages)
210 {
211 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
212 	if (sbinfo->max_blocks) {
213 		spin_lock(&sbinfo->stat_lock);
214 		sbinfo->free_blocks += pages;
215 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
216 		spin_unlock(&sbinfo->stat_lock);
217 	}
218 }
219 
220 static int shmem_reserve_inode(struct super_block *sb)
221 {
222 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
223 	if (sbinfo->max_inodes) {
224 		spin_lock(&sbinfo->stat_lock);
225 		if (!sbinfo->free_inodes) {
226 			spin_unlock(&sbinfo->stat_lock);
227 			return -ENOSPC;
228 		}
229 		sbinfo->free_inodes--;
230 		spin_unlock(&sbinfo->stat_lock);
231 	}
232 	return 0;
233 }
234 
235 static void shmem_free_inode(struct super_block *sb)
236 {
237 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
238 	if (sbinfo->max_inodes) {
239 		spin_lock(&sbinfo->stat_lock);
240 		sbinfo->free_inodes++;
241 		spin_unlock(&sbinfo->stat_lock);
242 	}
243 }
244 
245 /**
246  * shmem_recalc_inode - recalculate the size of an inode
247  * @inode: inode to recalc
248  *
249  * We have to calculate the free blocks since the mm can drop
250  * undirtied hole pages behind our back.
251  *
252  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
253  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
254  *
255  * It has to be called with the spinlock held.
256  */
257 static void shmem_recalc_inode(struct inode *inode)
258 {
259 	struct shmem_inode_info *info = SHMEM_I(inode);
260 	long freed;
261 
262 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
263 	if (freed > 0) {
264 		info->alloced -= freed;
265 		shmem_unacct_blocks(info->flags, freed);
266 		shmem_free_blocks(inode, freed);
267 	}
268 }
269 
270 /**
271  * shmem_swp_entry - find the swap vector position in the info structure
272  * @info:  info structure for the inode
273  * @index: index of the page to find
274  * @page:  optional page to add to the structure. Has to be preset to
275  *         all zeros
276  *
277  * If there is no space allocated yet it will return NULL when
278  * page is NULL, else it will use the page for the needed block,
279  * setting it to NULL on return to indicate that it has been used.
280  *
281  * The swap vector is organized the following way:
282  *
283  * There are SHMEM_NR_DIRECT entries directly stored in the
284  * shmem_inode_info structure. So small files do not need an addional
285  * allocation.
286  *
287  * For pages with index > SHMEM_NR_DIRECT there is the pointer
288  * i_indirect which points to a page which holds in the first half
289  * doubly indirect blocks, in the second half triple indirect blocks:
290  *
291  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
292  * following layout (for SHMEM_NR_DIRECT == 16):
293  *
294  * i_indirect -> dir --> 16-19
295  * 	      |	     +-> 20-23
296  * 	      |
297  * 	      +-->dir2 --> 24-27
298  * 	      |	       +-> 28-31
299  * 	      |	       +-> 32-35
300  * 	      |	       +-> 36-39
301  * 	      |
302  * 	      +-->dir3 --> 40-43
303  * 	       	       +-> 44-47
304  * 	      	       +-> 48-51
305  * 	      	       +-> 52-55
306  */
307 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
308 {
309 	unsigned long offset;
310 	struct page **dir;
311 	struct page *subdir;
312 
313 	if (index < SHMEM_NR_DIRECT) {
314 		shmem_swp_balance_unmap();
315 		return info->i_direct+index;
316 	}
317 	if (!info->i_indirect) {
318 		if (page) {
319 			info->i_indirect = *page;
320 			*page = NULL;
321 		}
322 		return NULL;			/* need another page */
323 	}
324 
325 	index -= SHMEM_NR_DIRECT;
326 	offset = index % ENTRIES_PER_PAGE;
327 	index /= ENTRIES_PER_PAGE;
328 	dir = shmem_dir_map(info->i_indirect);
329 
330 	if (index >= ENTRIES_PER_PAGE/2) {
331 		index -= ENTRIES_PER_PAGE/2;
332 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
333 		index %= ENTRIES_PER_PAGE;
334 		subdir = *dir;
335 		if (!subdir) {
336 			if (page) {
337 				*dir = *page;
338 				*page = NULL;
339 			}
340 			shmem_dir_unmap(dir);
341 			return NULL;		/* need another page */
342 		}
343 		shmem_dir_unmap(dir);
344 		dir = shmem_dir_map(subdir);
345 	}
346 
347 	dir += index;
348 	subdir = *dir;
349 	if (!subdir) {
350 		if (!page || !(subdir = *page)) {
351 			shmem_dir_unmap(dir);
352 			return NULL;		/* need a page */
353 		}
354 		*dir = subdir;
355 		*page = NULL;
356 	}
357 	shmem_dir_unmap(dir);
358 	return shmem_swp_map(subdir) + offset;
359 }
360 
361 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
362 {
363 	long incdec = value? 1: -1;
364 
365 	entry->val = value;
366 	info->swapped += incdec;
367 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
368 		struct page *page = kmap_atomic_to_page(entry);
369 		set_page_private(page, page_private(page) + incdec);
370 	}
371 }
372 
373 /**
374  * shmem_swp_alloc - get the position of the swap entry for the page.
375  * @info:	info structure for the inode
376  * @index:	index of the page to find
377  * @sgp:	check and recheck i_size? skip allocation?
378  *
379  * If the entry does not exist, allocate it.
380  */
381 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
382 {
383 	struct inode *inode = &info->vfs_inode;
384 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
385 	struct page *page = NULL;
386 	swp_entry_t *entry;
387 
388 	if (sgp != SGP_WRITE &&
389 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
390 		return ERR_PTR(-EINVAL);
391 
392 	while (!(entry = shmem_swp_entry(info, index, &page))) {
393 		if (sgp == SGP_READ)
394 			return shmem_swp_map(ZERO_PAGE(0));
395 		/*
396 		 * Test free_blocks against 1 not 0, since we have 1 data
397 		 * page (and perhaps indirect index pages) yet to allocate:
398 		 * a waste to allocate index if we cannot allocate data.
399 		 */
400 		if (sbinfo->max_blocks) {
401 			spin_lock(&sbinfo->stat_lock);
402 			if (sbinfo->free_blocks <= 1) {
403 				spin_unlock(&sbinfo->stat_lock);
404 				return ERR_PTR(-ENOSPC);
405 			}
406 			sbinfo->free_blocks--;
407 			inode->i_blocks += BLOCKS_PER_PAGE;
408 			spin_unlock(&sbinfo->stat_lock);
409 		}
410 
411 		spin_unlock(&info->lock);
412 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
413 		if (page)
414 			set_page_private(page, 0);
415 		spin_lock(&info->lock);
416 
417 		if (!page) {
418 			shmem_free_blocks(inode, 1);
419 			return ERR_PTR(-ENOMEM);
420 		}
421 		if (sgp != SGP_WRITE &&
422 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
423 			entry = ERR_PTR(-EINVAL);
424 			break;
425 		}
426 		if (info->next_index <= index)
427 			info->next_index = index + 1;
428 	}
429 	if (page) {
430 		/* another task gave its page, or truncated the file */
431 		shmem_free_blocks(inode, 1);
432 		shmem_dir_free(page);
433 	}
434 	if (info->next_index <= index && !IS_ERR(entry))
435 		info->next_index = index + 1;
436 	return entry;
437 }
438 
439 /**
440  * shmem_free_swp - free some swap entries in a directory
441  * @dir:        pointer to the directory
442  * @edir:       pointer after last entry of the directory
443  * @punch_lock: pointer to spinlock when needed for the holepunch case
444  */
445 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
446 						spinlock_t *punch_lock)
447 {
448 	spinlock_t *punch_unlock = NULL;
449 	swp_entry_t *ptr;
450 	int freed = 0;
451 
452 	for (ptr = dir; ptr < edir; ptr++) {
453 		if (ptr->val) {
454 			if (unlikely(punch_lock)) {
455 				punch_unlock = punch_lock;
456 				punch_lock = NULL;
457 				spin_lock(punch_unlock);
458 				if (!ptr->val)
459 					continue;
460 			}
461 			free_swap_and_cache(*ptr);
462 			*ptr = (swp_entry_t){0};
463 			freed++;
464 		}
465 	}
466 	if (punch_unlock)
467 		spin_unlock(punch_unlock);
468 	return freed;
469 }
470 
471 static int shmem_map_and_free_swp(struct page *subdir, int offset,
472 		int limit, struct page ***dir, spinlock_t *punch_lock)
473 {
474 	swp_entry_t *ptr;
475 	int freed = 0;
476 
477 	ptr = shmem_swp_map(subdir);
478 	for (; offset < limit; offset += LATENCY_LIMIT) {
479 		int size = limit - offset;
480 		if (size > LATENCY_LIMIT)
481 			size = LATENCY_LIMIT;
482 		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
483 							punch_lock);
484 		if (need_resched()) {
485 			shmem_swp_unmap(ptr);
486 			if (*dir) {
487 				shmem_dir_unmap(*dir);
488 				*dir = NULL;
489 			}
490 			cond_resched();
491 			ptr = shmem_swp_map(subdir);
492 		}
493 	}
494 	shmem_swp_unmap(ptr);
495 	return freed;
496 }
497 
498 static void shmem_free_pages(struct list_head *next)
499 {
500 	struct page *page;
501 	int freed = 0;
502 
503 	do {
504 		page = container_of(next, struct page, lru);
505 		next = next->next;
506 		shmem_dir_free(page);
507 		freed++;
508 		if (freed >= LATENCY_LIMIT) {
509 			cond_resched();
510 			freed = 0;
511 		}
512 	} while (next);
513 }
514 
515 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
516 {
517 	struct shmem_inode_info *info = SHMEM_I(inode);
518 	unsigned long idx;
519 	unsigned long size;
520 	unsigned long limit;
521 	unsigned long stage;
522 	unsigned long diroff;
523 	struct page **dir;
524 	struct page *topdir;
525 	struct page *middir;
526 	struct page *subdir;
527 	swp_entry_t *ptr;
528 	LIST_HEAD(pages_to_free);
529 	long nr_pages_to_free = 0;
530 	long nr_swaps_freed = 0;
531 	int offset;
532 	int freed;
533 	int punch_hole;
534 	spinlock_t *needs_lock;
535 	spinlock_t *punch_lock;
536 	unsigned long upper_limit;
537 
538 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
539 	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
540 	if (idx >= info->next_index)
541 		return;
542 
543 	spin_lock(&info->lock);
544 	info->flags |= SHMEM_TRUNCATE;
545 	if (likely(end == (loff_t) -1)) {
546 		limit = info->next_index;
547 		upper_limit = SHMEM_MAX_INDEX;
548 		info->next_index = idx;
549 		needs_lock = NULL;
550 		punch_hole = 0;
551 	} else {
552 		if (end + 1 >= inode->i_size) {	/* we may free a little more */
553 			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
554 							PAGE_CACHE_SHIFT;
555 			upper_limit = SHMEM_MAX_INDEX;
556 		} else {
557 			limit = (end + 1) >> PAGE_CACHE_SHIFT;
558 			upper_limit = limit;
559 		}
560 		needs_lock = &info->lock;
561 		punch_hole = 1;
562 	}
563 
564 	topdir = info->i_indirect;
565 	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
566 		info->i_indirect = NULL;
567 		nr_pages_to_free++;
568 		list_add(&topdir->lru, &pages_to_free);
569 	}
570 	spin_unlock(&info->lock);
571 
572 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
573 		ptr = info->i_direct;
574 		size = limit;
575 		if (size > SHMEM_NR_DIRECT)
576 			size = SHMEM_NR_DIRECT;
577 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
578 	}
579 
580 	/*
581 	 * If there are no indirect blocks or we are punching a hole
582 	 * below indirect blocks, nothing to be done.
583 	 */
584 	if (!topdir || limit <= SHMEM_NR_DIRECT)
585 		goto done2;
586 
587 	/*
588 	 * The truncation case has already dropped info->lock, and we're safe
589 	 * because i_size and next_index have already been lowered, preventing
590 	 * access beyond.  But in the punch_hole case, we still need to take
591 	 * the lock when updating the swap directory, because there might be
592 	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
593 	 * shmem_writepage.  However, whenever we find we can remove a whole
594 	 * directory page (not at the misaligned start or end of the range),
595 	 * we first NULLify its pointer in the level above, and then have no
596 	 * need to take the lock when updating its contents: needs_lock and
597 	 * punch_lock (either pointing to info->lock or NULL) manage this.
598 	 */
599 
600 	upper_limit -= SHMEM_NR_DIRECT;
601 	limit -= SHMEM_NR_DIRECT;
602 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
603 	offset = idx % ENTRIES_PER_PAGE;
604 	idx -= offset;
605 
606 	dir = shmem_dir_map(topdir);
607 	stage = ENTRIES_PER_PAGEPAGE/2;
608 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
609 		middir = topdir;
610 		diroff = idx/ENTRIES_PER_PAGE;
611 	} else {
612 		dir += ENTRIES_PER_PAGE/2;
613 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
614 		while (stage <= idx)
615 			stage += ENTRIES_PER_PAGEPAGE;
616 		middir = *dir;
617 		if (*dir) {
618 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
619 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
620 			if (!diroff && !offset && upper_limit >= stage) {
621 				if (needs_lock) {
622 					spin_lock(needs_lock);
623 					*dir = NULL;
624 					spin_unlock(needs_lock);
625 					needs_lock = NULL;
626 				} else
627 					*dir = NULL;
628 				nr_pages_to_free++;
629 				list_add(&middir->lru, &pages_to_free);
630 			}
631 			shmem_dir_unmap(dir);
632 			dir = shmem_dir_map(middir);
633 		} else {
634 			diroff = 0;
635 			offset = 0;
636 			idx = stage;
637 		}
638 	}
639 
640 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
641 		if (unlikely(idx == stage)) {
642 			shmem_dir_unmap(dir);
643 			dir = shmem_dir_map(topdir) +
644 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
645 			while (!*dir) {
646 				dir++;
647 				idx += ENTRIES_PER_PAGEPAGE;
648 				if (idx >= limit)
649 					goto done1;
650 			}
651 			stage = idx + ENTRIES_PER_PAGEPAGE;
652 			middir = *dir;
653 			if (punch_hole)
654 				needs_lock = &info->lock;
655 			if (upper_limit >= stage) {
656 				if (needs_lock) {
657 					spin_lock(needs_lock);
658 					*dir = NULL;
659 					spin_unlock(needs_lock);
660 					needs_lock = NULL;
661 				} else
662 					*dir = NULL;
663 				nr_pages_to_free++;
664 				list_add(&middir->lru, &pages_to_free);
665 			}
666 			shmem_dir_unmap(dir);
667 			cond_resched();
668 			dir = shmem_dir_map(middir);
669 			diroff = 0;
670 		}
671 		punch_lock = needs_lock;
672 		subdir = dir[diroff];
673 		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
674 			if (needs_lock) {
675 				spin_lock(needs_lock);
676 				dir[diroff] = NULL;
677 				spin_unlock(needs_lock);
678 				punch_lock = NULL;
679 			} else
680 				dir[diroff] = NULL;
681 			nr_pages_to_free++;
682 			list_add(&subdir->lru, &pages_to_free);
683 		}
684 		if (subdir && page_private(subdir) /* has swap entries */) {
685 			size = limit - idx;
686 			if (size > ENTRIES_PER_PAGE)
687 				size = ENTRIES_PER_PAGE;
688 			freed = shmem_map_and_free_swp(subdir,
689 					offset, size, &dir, punch_lock);
690 			if (!dir)
691 				dir = shmem_dir_map(middir);
692 			nr_swaps_freed += freed;
693 			if (offset || punch_lock) {
694 				spin_lock(&info->lock);
695 				set_page_private(subdir,
696 					page_private(subdir) - freed);
697 				spin_unlock(&info->lock);
698 			} else
699 				BUG_ON(page_private(subdir) != freed);
700 		}
701 		offset = 0;
702 	}
703 done1:
704 	shmem_dir_unmap(dir);
705 done2:
706 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
707 		/*
708 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
709 		 * may have swizzled a page in from swap since vmtruncate or
710 		 * generic_delete_inode did it, before we lowered next_index.
711 		 * Also, though shmem_getpage checks i_size before adding to
712 		 * cache, no recheck after: so fix the narrow window there too.
713 		 *
714 		 * Recalling truncate_inode_pages_range and unmap_mapping_range
715 		 * every time for punch_hole (which never got a chance to clear
716 		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
717 		 * yet hardly ever necessary: try to optimize them out later.
718 		 */
719 		truncate_inode_pages_range(inode->i_mapping, start, end);
720 		if (punch_hole)
721 			unmap_mapping_range(inode->i_mapping, start,
722 							end - start, 1);
723 	}
724 
725 	spin_lock(&info->lock);
726 	info->flags &= ~SHMEM_TRUNCATE;
727 	info->swapped -= nr_swaps_freed;
728 	if (nr_pages_to_free)
729 		shmem_free_blocks(inode, nr_pages_to_free);
730 	shmem_recalc_inode(inode);
731 	spin_unlock(&info->lock);
732 
733 	/*
734 	 * Empty swap vector directory pages to be freed?
735 	 */
736 	if (!list_empty(&pages_to_free)) {
737 		pages_to_free.prev->next = NULL;
738 		shmem_free_pages(pages_to_free.next);
739 	}
740 }
741 
742 static void shmem_truncate(struct inode *inode)
743 {
744 	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
745 }
746 
747 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
748 {
749 	struct inode *inode = dentry->d_inode;
750 	struct page *page = NULL;
751 	int error;
752 
753 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
754 		if (attr->ia_size < inode->i_size) {
755 			/*
756 			 * If truncating down to a partial page, then
757 			 * if that page is already allocated, hold it
758 			 * in memory until the truncation is over, so
759 			 * truncate_partial_page cannnot miss it were
760 			 * it assigned to swap.
761 			 */
762 			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
763 				(void) shmem_getpage(inode,
764 					attr->ia_size>>PAGE_CACHE_SHIFT,
765 						&page, SGP_READ, NULL);
766 				if (page)
767 					unlock_page(page);
768 			}
769 			/*
770 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
771 			 * detect if any pages might have been added to cache
772 			 * after truncate_inode_pages.  But we needn't bother
773 			 * if it's being fully truncated to zero-length: the
774 			 * nrpages check is efficient enough in that case.
775 			 */
776 			if (attr->ia_size) {
777 				struct shmem_inode_info *info = SHMEM_I(inode);
778 				spin_lock(&info->lock);
779 				info->flags &= ~SHMEM_PAGEIN;
780 				spin_unlock(&info->lock);
781 			}
782 		}
783 	}
784 
785 	error = inode_change_ok(inode, attr);
786 	if (!error)
787 		error = inode_setattr(inode, attr);
788 #ifdef CONFIG_TMPFS_POSIX_ACL
789 	if (!error && (attr->ia_valid & ATTR_MODE))
790 		error = generic_acl_chmod(inode, &shmem_acl_ops);
791 #endif
792 	if (page)
793 		page_cache_release(page);
794 	return error;
795 }
796 
797 static void shmem_delete_inode(struct inode *inode)
798 {
799 	struct shmem_inode_info *info = SHMEM_I(inode);
800 
801 	if (inode->i_op->truncate == shmem_truncate) {
802 		truncate_inode_pages(inode->i_mapping, 0);
803 		shmem_unacct_size(info->flags, inode->i_size);
804 		inode->i_size = 0;
805 		shmem_truncate(inode);
806 		if (!list_empty(&info->swaplist)) {
807 			mutex_lock(&shmem_swaplist_mutex);
808 			list_del_init(&info->swaplist);
809 			mutex_unlock(&shmem_swaplist_mutex);
810 		}
811 	}
812 	BUG_ON(inode->i_blocks);
813 	shmem_free_inode(inode->i_sb);
814 	clear_inode(inode);
815 }
816 
817 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
818 {
819 	swp_entry_t *ptr;
820 
821 	for (ptr = dir; ptr < edir; ptr++) {
822 		if (ptr->val == entry.val)
823 			return ptr - dir;
824 	}
825 	return -1;
826 }
827 
828 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
829 {
830 	struct inode *inode;
831 	unsigned long idx;
832 	unsigned long size;
833 	unsigned long limit;
834 	unsigned long stage;
835 	struct page **dir;
836 	struct page *subdir;
837 	swp_entry_t *ptr;
838 	int offset;
839 	int error;
840 
841 	idx = 0;
842 	ptr = info->i_direct;
843 	spin_lock(&info->lock);
844 	if (!info->swapped) {
845 		list_del_init(&info->swaplist);
846 		goto lost2;
847 	}
848 	limit = info->next_index;
849 	size = limit;
850 	if (size > SHMEM_NR_DIRECT)
851 		size = SHMEM_NR_DIRECT;
852 	offset = shmem_find_swp(entry, ptr, ptr+size);
853 	if (offset >= 0)
854 		goto found;
855 	if (!info->i_indirect)
856 		goto lost2;
857 
858 	dir = shmem_dir_map(info->i_indirect);
859 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
860 
861 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
862 		if (unlikely(idx == stage)) {
863 			shmem_dir_unmap(dir-1);
864 			if (cond_resched_lock(&info->lock)) {
865 				/* check it has not been truncated */
866 				if (limit > info->next_index) {
867 					limit = info->next_index;
868 					if (idx >= limit)
869 						goto lost2;
870 				}
871 			}
872 			dir = shmem_dir_map(info->i_indirect) +
873 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
874 			while (!*dir) {
875 				dir++;
876 				idx += ENTRIES_PER_PAGEPAGE;
877 				if (idx >= limit)
878 					goto lost1;
879 			}
880 			stage = idx + ENTRIES_PER_PAGEPAGE;
881 			subdir = *dir;
882 			shmem_dir_unmap(dir);
883 			dir = shmem_dir_map(subdir);
884 		}
885 		subdir = *dir;
886 		if (subdir && page_private(subdir)) {
887 			ptr = shmem_swp_map(subdir);
888 			size = limit - idx;
889 			if (size > ENTRIES_PER_PAGE)
890 				size = ENTRIES_PER_PAGE;
891 			offset = shmem_find_swp(entry, ptr, ptr+size);
892 			shmem_swp_unmap(ptr);
893 			if (offset >= 0) {
894 				shmem_dir_unmap(dir);
895 				goto found;
896 			}
897 		}
898 	}
899 lost1:
900 	shmem_dir_unmap(dir-1);
901 lost2:
902 	spin_unlock(&info->lock);
903 	return 0;
904 found:
905 	idx += offset;
906 	inode = igrab(&info->vfs_inode);
907 	spin_unlock(&info->lock);
908 
909 	/*
910 	 * Move _head_ to start search for next from here.
911 	 * But be careful: shmem_delete_inode checks list_empty without taking
912 	 * mutex, and there's an instant in list_move_tail when info->swaplist
913 	 * would appear empty, if it were the only one on shmem_swaplist.  We
914 	 * could avoid doing it if inode NULL; or use this minor optimization.
915 	 */
916 	if (shmem_swaplist.next != &info->swaplist)
917 		list_move_tail(&shmem_swaplist, &info->swaplist);
918 	mutex_unlock(&shmem_swaplist_mutex);
919 
920 	error = 1;
921 	if (!inode)
922 		goto out;
923 	/* Precharge page using GFP_KERNEL while we can wait */
924 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
925 	if (error)
926 		goto out;
927 	error = radix_tree_preload(GFP_KERNEL);
928 	if (error) {
929 		mem_cgroup_uncharge_cache_page(page);
930 		goto out;
931 	}
932 	error = 1;
933 
934 	spin_lock(&info->lock);
935 	ptr = shmem_swp_entry(info, idx, NULL);
936 	if (ptr && ptr->val == entry.val) {
937 		error = add_to_page_cache_locked(page, inode->i_mapping,
938 						idx, GFP_NOWAIT);
939 		/* does mem_cgroup_uncharge_cache_page on error */
940 	} else	/* we must compensate for our precharge above */
941 		mem_cgroup_uncharge_cache_page(page);
942 
943 	if (error == -EEXIST) {
944 		struct page *filepage = find_get_page(inode->i_mapping, idx);
945 		error = 1;
946 		if (filepage) {
947 			/*
948 			 * There might be a more uptodate page coming down
949 			 * from a stacked writepage: forget our swappage if so.
950 			 */
951 			if (PageUptodate(filepage))
952 				error = 0;
953 			page_cache_release(filepage);
954 		}
955 	}
956 	if (!error) {
957 		delete_from_swap_cache(page);
958 		set_page_dirty(page);
959 		info->flags |= SHMEM_PAGEIN;
960 		shmem_swp_set(info, ptr, 0);
961 		swap_free(entry);
962 		error = 1;	/* not an error, but entry was found */
963 	}
964 	if (ptr)
965 		shmem_swp_unmap(ptr);
966 	spin_unlock(&info->lock);
967 	radix_tree_preload_end();
968 out:
969 	unlock_page(page);
970 	page_cache_release(page);
971 	iput(inode);		/* allows for NULL */
972 	return error;
973 }
974 
975 /*
976  * shmem_unuse() search for an eventually swapped out shmem page.
977  */
978 int shmem_unuse(swp_entry_t entry, struct page *page)
979 {
980 	struct list_head *p, *next;
981 	struct shmem_inode_info *info;
982 	int found = 0;
983 
984 	mutex_lock(&shmem_swaplist_mutex);
985 	list_for_each_safe(p, next, &shmem_swaplist) {
986 		info = list_entry(p, struct shmem_inode_info, swaplist);
987 		found = shmem_unuse_inode(info, entry, page);
988 		cond_resched();
989 		if (found)
990 			goto out;
991 	}
992 	mutex_unlock(&shmem_swaplist_mutex);
993 out:	return found;	/* 0 or 1 or -ENOMEM */
994 }
995 
996 /*
997  * Move the page from the page cache to the swap cache.
998  */
999 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1000 {
1001 	struct shmem_inode_info *info;
1002 	swp_entry_t *entry, swap;
1003 	struct address_space *mapping;
1004 	unsigned long index;
1005 	struct inode *inode;
1006 
1007 	BUG_ON(!PageLocked(page));
1008 	mapping = page->mapping;
1009 	index = page->index;
1010 	inode = mapping->host;
1011 	info = SHMEM_I(inode);
1012 	if (info->flags & VM_LOCKED)
1013 		goto redirty;
1014 	if (!total_swap_pages)
1015 		goto redirty;
1016 
1017 	/*
1018 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1019 	 * sync from ever calling shmem_writepage; but a stacking filesystem
1020 	 * may use the ->writepage of its underlying filesystem, in which case
1021 	 * tmpfs should write out to swap only in response to memory pressure,
1022 	 * and not for pdflush or sync.  However, in those cases, we do still
1023 	 * want to check if there's a redundant swappage to be discarded.
1024 	 */
1025 	if (wbc->for_reclaim)
1026 		swap = get_swap_page();
1027 	else
1028 		swap.val = 0;
1029 
1030 	spin_lock(&info->lock);
1031 	if (index >= info->next_index) {
1032 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1033 		goto unlock;
1034 	}
1035 	entry = shmem_swp_entry(info, index, NULL);
1036 	if (entry->val) {
1037 		/*
1038 		 * The more uptodate page coming down from a stacked
1039 		 * writepage should replace our old swappage.
1040 		 */
1041 		free_swap_and_cache(*entry);
1042 		shmem_swp_set(info, entry, 0);
1043 	}
1044 	shmem_recalc_inode(inode);
1045 
1046 	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1047 		remove_from_page_cache(page);
1048 		shmem_swp_set(info, entry, swap.val);
1049 		shmem_swp_unmap(entry);
1050 		if (list_empty(&info->swaplist))
1051 			inode = igrab(inode);
1052 		else
1053 			inode = NULL;
1054 		spin_unlock(&info->lock);
1055 		swap_duplicate(swap);
1056 		BUG_ON(page_mapped(page));
1057 		page_cache_release(page);	/* pagecache ref */
1058 		set_page_dirty(page);
1059 		unlock_page(page);
1060 		if (inode) {
1061 			mutex_lock(&shmem_swaplist_mutex);
1062 			/* move instead of add in case we're racing */
1063 			list_move_tail(&info->swaplist, &shmem_swaplist);
1064 			mutex_unlock(&shmem_swaplist_mutex);
1065 			iput(inode);
1066 		}
1067 		return 0;
1068 	}
1069 
1070 	shmem_swp_unmap(entry);
1071 unlock:
1072 	spin_unlock(&info->lock);
1073 	swap_free(swap);
1074 redirty:
1075 	set_page_dirty(page);
1076 	if (wbc->for_reclaim)
1077 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1078 	unlock_page(page);
1079 	return 0;
1080 }
1081 
1082 #ifdef CONFIG_NUMA
1083 #ifdef CONFIG_TMPFS
1084 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1085 {
1086 	char buffer[64];
1087 
1088 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1089 		return;		/* show nothing */
1090 
1091 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1092 
1093 	seq_printf(seq, ",mpol=%s", buffer);
1094 }
1095 
1096 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1097 {
1098 	struct mempolicy *mpol = NULL;
1099 	if (sbinfo->mpol) {
1100 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1101 		mpol = sbinfo->mpol;
1102 		mpol_get(mpol);
1103 		spin_unlock(&sbinfo->stat_lock);
1104 	}
1105 	return mpol;
1106 }
1107 #endif /* CONFIG_TMPFS */
1108 
1109 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1110 			struct shmem_inode_info *info, unsigned long idx)
1111 {
1112 	struct mempolicy mpol, *spol;
1113 	struct vm_area_struct pvma;
1114 	struct page *page;
1115 
1116 	spol = mpol_cond_copy(&mpol,
1117 				mpol_shared_policy_lookup(&info->policy, idx));
1118 
1119 	/* Create a pseudo vma that just contains the policy */
1120 	pvma.vm_start = 0;
1121 	pvma.vm_pgoff = idx;
1122 	pvma.vm_ops = NULL;
1123 	pvma.vm_policy = spol;
1124 	page = swapin_readahead(entry, gfp, &pvma, 0);
1125 	return page;
1126 }
1127 
1128 static struct page *shmem_alloc_page(gfp_t gfp,
1129 			struct shmem_inode_info *info, unsigned long idx)
1130 {
1131 	struct vm_area_struct pvma;
1132 
1133 	/* Create a pseudo vma that just contains the policy */
1134 	pvma.vm_start = 0;
1135 	pvma.vm_pgoff = idx;
1136 	pvma.vm_ops = NULL;
1137 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1138 
1139 	/*
1140 	 * alloc_page_vma() will drop the shared policy reference
1141 	 */
1142 	return alloc_page_vma(gfp, &pvma, 0);
1143 }
1144 #else /* !CONFIG_NUMA */
1145 #ifdef CONFIG_TMPFS
1146 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1147 {
1148 }
1149 #endif /* CONFIG_TMPFS */
1150 
1151 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1152 			struct shmem_inode_info *info, unsigned long idx)
1153 {
1154 	return swapin_readahead(entry, gfp, NULL, 0);
1155 }
1156 
1157 static inline struct page *shmem_alloc_page(gfp_t gfp,
1158 			struct shmem_inode_info *info, unsigned long idx)
1159 {
1160 	return alloc_page(gfp);
1161 }
1162 #endif /* CONFIG_NUMA */
1163 
1164 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1165 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1166 {
1167 	return NULL;
1168 }
1169 #endif
1170 
1171 /*
1172  * shmem_getpage - either get the page from swap or allocate a new one
1173  *
1174  * If we allocate a new one we do not mark it dirty. That's up to the
1175  * vm. If we swap it in we mark it dirty since we also free the swap
1176  * entry since a page cannot live in both the swap and page cache
1177  */
1178 static int shmem_getpage(struct inode *inode, unsigned long idx,
1179 			struct page **pagep, enum sgp_type sgp, int *type)
1180 {
1181 	struct address_space *mapping = inode->i_mapping;
1182 	struct shmem_inode_info *info = SHMEM_I(inode);
1183 	struct shmem_sb_info *sbinfo;
1184 	struct page *filepage = *pagep;
1185 	struct page *swappage;
1186 	swp_entry_t *entry;
1187 	swp_entry_t swap;
1188 	gfp_t gfp;
1189 	int error;
1190 
1191 	if (idx >= SHMEM_MAX_INDEX)
1192 		return -EFBIG;
1193 
1194 	if (type)
1195 		*type = 0;
1196 
1197 	/*
1198 	 * Normally, filepage is NULL on entry, and either found
1199 	 * uptodate immediately, or allocated and zeroed, or read
1200 	 * in under swappage, which is then assigned to filepage.
1201 	 * But shmem_readpage (required for splice) passes in a locked
1202 	 * filepage, which may be found not uptodate by other callers
1203 	 * too, and may need to be copied from the swappage read in.
1204 	 */
1205 repeat:
1206 	if (!filepage)
1207 		filepage = find_lock_page(mapping, idx);
1208 	if (filepage && PageUptodate(filepage))
1209 		goto done;
1210 	error = 0;
1211 	gfp = mapping_gfp_mask(mapping);
1212 	if (!filepage) {
1213 		/*
1214 		 * Try to preload while we can wait, to not make a habit of
1215 		 * draining atomic reserves; but don't latch on to this cpu.
1216 		 */
1217 		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1218 		if (error)
1219 			goto failed;
1220 		radix_tree_preload_end();
1221 	}
1222 
1223 	spin_lock(&info->lock);
1224 	shmem_recalc_inode(inode);
1225 	entry = shmem_swp_alloc(info, idx, sgp);
1226 	if (IS_ERR(entry)) {
1227 		spin_unlock(&info->lock);
1228 		error = PTR_ERR(entry);
1229 		goto failed;
1230 	}
1231 	swap = *entry;
1232 
1233 	if (swap.val) {
1234 		/* Look it up and read it in.. */
1235 		swappage = lookup_swap_cache(swap);
1236 		if (!swappage) {
1237 			shmem_swp_unmap(entry);
1238 			/* here we actually do the io */
1239 			if (type && !(*type & VM_FAULT_MAJOR)) {
1240 				__count_vm_event(PGMAJFAULT);
1241 				*type |= VM_FAULT_MAJOR;
1242 			}
1243 			spin_unlock(&info->lock);
1244 			swappage = shmem_swapin(swap, gfp, info, idx);
1245 			if (!swappage) {
1246 				spin_lock(&info->lock);
1247 				entry = shmem_swp_alloc(info, idx, sgp);
1248 				if (IS_ERR(entry))
1249 					error = PTR_ERR(entry);
1250 				else {
1251 					if (entry->val == swap.val)
1252 						error = -ENOMEM;
1253 					shmem_swp_unmap(entry);
1254 				}
1255 				spin_unlock(&info->lock);
1256 				if (error)
1257 					goto failed;
1258 				goto repeat;
1259 			}
1260 			wait_on_page_locked(swappage);
1261 			page_cache_release(swappage);
1262 			goto repeat;
1263 		}
1264 
1265 		/* We have to do this with page locked to prevent races */
1266 		if (!trylock_page(swappage)) {
1267 			shmem_swp_unmap(entry);
1268 			spin_unlock(&info->lock);
1269 			wait_on_page_locked(swappage);
1270 			page_cache_release(swappage);
1271 			goto repeat;
1272 		}
1273 		if (PageWriteback(swappage)) {
1274 			shmem_swp_unmap(entry);
1275 			spin_unlock(&info->lock);
1276 			wait_on_page_writeback(swappage);
1277 			unlock_page(swappage);
1278 			page_cache_release(swappage);
1279 			goto repeat;
1280 		}
1281 		if (!PageUptodate(swappage)) {
1282 			shmem_swp_unmap(entry);
1283 			spin_unlock(&info->lock);
1284 			unlock_page(swappage);
1285 			page_cache_release(swappage);
1286 			error = -EIO;
1287 			goto failed;
1288 		}
1289 
1290 		if (filepage) {
1291 			shmem_swp_set(info, entry, 0);
1292 			shmem_swp_unmap(entry);
1293 			delete_from_swap_cache(swappage);
1294 			spin_unlock(&info->lock);
1295 			copy_highpage(filepage, swappage);
1296 			unlock_page(swappage);
1297 			page_cache_release(swappage);
1298 			flush_dcache_page(filepage);
1299 			SetPageUptodate(filepage);
1300 			set_page_dirty(filepage);
1301 			swap_free(swap);
1302 		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1303 					idx, GFP_NOWAIT))) {
1304 			info->flags |= SHMEM_PAGEIN;
1305 			shmem_swp_set(info, entry, 0);
1306 			shmem_swp_unmap(entry);
1307 			delete_from_swap_cache(swappage);
1308 			spin_unlock(&info->lock);
1309 			filepage = swappage;
1310 			set_page_dirty(filepage);
1311 			swap_free(swap);
1312 		} else {
1313 			shmem_swp_unmap(entry);
1314 			spin_unlock(&info->lock);
1315 			unlock_page(swappage);
1316 			page_cache_release(swappage);
1317 			if (error == -ENOMEM) {
1318 				/* allow reclaim from this memory cgroup */
1319 				error = mem_cgroup_shrink_usage(current->mm,
1320 								gfp);
1321 				if (error)
1322 					goto failed;
1323 			}
1324 			goto repeat;
1325 		}
1326 	} else if (sgp == SGP_READ && !filepage) {
1327 		shmem_swp_unmap(entry);
1328 		filepage = find_get_page(mapping, idx);
1329 		if (filepage &&
1330 		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1331 			spin_unlock(&info->lock);
1332 			wait_on_page_locked(filepage);
1333 			page_cache_release(filepage);
1334 			filepage = NULL;
1335 			goto repeat;
1336 		}
1337 		spin_unlock(&info->lock);
1338 	} else {
1339 		shmem_swp_unmap(entry);
1340 		sbinfo = SHMEM_SB(inode->i_sb);
1341 		if (sbinfo->max_blocks) {
1342 			spin_lock(&sbinfo->stat_lock);
1343 			if (sbinfo->free_blocks == 0 ||
1344 			    shmem_acct_block(info->flags)) {
1345 				spin_unlock(&sbinfo->stat_lock);
1346 				spin_unlock(&info->lock);
1347 				error = -ENOSPC;
1348 				goto failed;
1349 			}
1350 			sbinfo->free_blocks--;
1351 			inode->i_blocks += BLOCKS_PER_PAGE;
1352 			spin_unlock(&sbinfo->stat_lock);
1353 		} else if (shmem_acct_block(info->flags)) {
1354 			spin_unlock(&info->lock);
1355 			error = -ENOSPC;
1356 			goto failed;
1357 		}
1358 
1359 		if (!filepage) {
1360 			int ret;
1361 
1362 			spin_unlock(&info->lock);
1363 			filepage = shmem_alloc_page(gfp, info, idx);
1364 			if (!filepage) {
1365 				shmem_unacct_blocks(info->flags, 1);
1366 				shmem_free_blocks(inode, 1);
1367 				error = -ENOMEM;
1368 				goto failed;
1369 			}
1370 			SetPageSwapBacked(filepage);
1371 
1372 			/* Precharge page while we can wait, compensate after */
1373 			error = mem_cgroup_cache_charge(filepage, current->mm,
1374 							gfp & ~__GFP_HIGHMEM);
1375 			if (error) {
1376 				page_cache_release(filepage);
1377 				shmem_unacct_blocks(info->flags, 1);
1378 				shmem_free_blocks(inode, 1);
1379 				filepage = NULL;
1380 				goto failed;
1381 			}
1382 
1383 			spin_lock(&info->lock);
1384 			entry = shmem_swp_alloc(info, idx, sgp);
1385 			if (IS_ERR(entry))
1386 				error = PTR_ERR(entry);
1387 			else {
1388 				swap = *entry;
1389 				shmem_swp_unmap(entry);
1390 			}
1391 			ret = error || swap.val;
1392 			if (ret)
1393 				mem_cgroup_uncharge_cache_page(filepage);
1394 			else
1395 				ret = add_to_page_cache_lru(filepage, mapping,
1396 						idx, GFP_NOWAIT);
1397 			/*
1398 			 * At add_to_page_cache_lru() failure, uncharge will
1399 			 * be done automatically.
1400 			 */
1401 			if (ret) {
1402 				spin_unlock(&info->lock);
1403 				page_cache_release(filepage);
1404 				shmem_unacct_blocks(info->flags, 1);
1405 				shmem_free_blocks(inode, 1);
1406 				filepage = NULL;
1407 				if (error)
1408 					goto failed;
1409 				goto repeat;
1410 			}
1411 			info->flags |= SHMEM_PAGEIN;
1412 		}
1413 
1414 		info->alloced++;
1415 		spin_unlock(&info->lock);
1416 		clear_highpage(filepage);
1417 		flush_dcache_page(filepage);
1418 		SetPageUptodate(filepage);
1419 		if (sgp == SGP_DIRTY)
1420 			set_page_dirty(filepage);
1421 	}
1422 done:
1423 	*pagep = filepage;
1424 	return 0;
1425 
1426 failed:
1427 	if (*pagep != filepage) {
1428 		unlock_page(filepage);
1429 		page_cache_release(filepage);
1430 	}
1431 	return error;
1432 }
1433 
1434 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1435 {
1436 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1437 	int error;
1438 	int ret;
1439 
1440 	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1441 		return VM_FAULT_SIGBUS;
1442 
1443 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1444 	if (error)
1445 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1446 
1447 	mark_page_accessed(vmf->page);
1448 	return ret | VM_FAULT_LOCKED;
1449 }
1450 
1451 #ifdef CONFIG_NUMA
1452 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1453 {
1454 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1455 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1456 }
1457 
1458 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1459 					  unsigned long addr)
1460 {
1461 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1462 	unsigned long idx;
1463 
1464 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1465 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1466 }
1467 #endif
1468 
1469 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1470 {
1471 	struct inode *inode = file->f_path.dentry->d_inode;
1472 	struct shmem_inode_info *info = SHMEM_I(inode);
1473 	int retval = -ENOMEM;
1474 
1475 	spin_lock(&info->lock);
1476 	if (lock && !(info->flags & VM_LOCKED)) {
1477 		if (!user_shm_lock(inode->i_size, user))
1478 			goto out_nomem;
1479 		info->flags |= VM_LOCKED;
1480 		mapping_set_unevictable(file->f_mapping);
1481 	}
1482 	if (!lock && (info->flags & VM_LOCKED) && user) {
1483 		user_shm_unlock(inode->i_size, user);
1484 		info->flags &= ~VM_LOCKED;
1485 		mapping_clear_unevictable(file->f_mapping);
1486 		scan_mapping_unevictable_pages(file->f_mapping);
1487 	}
1488 	retval = 0;
1489 
1490 out_nomem:
1491 	spin_unlock(&info->lock);
1492 	return retval;
1493 }
1494 
1495 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1496 {
1497 	file_accessed(file);
1498 	vma->vm_ops = &shmem_vm_ops;
1499 	vma->vm_flags |= VM_CAN_NONLINEAR;
1500 	return 0;
1501 }
1502 
1503 static struct inode *
1504 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1505 {
1506 	struct inode *inode;
1507 	struct shmem_inode_info *info;
1508 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1509 
1510 	if (shmem_reserve_inode(sb))
1511 		return NULL;
1512 
1513 	inode = new_inode(sb);
1514 	if (inode) {
1515 		inode->i_mode = mode;
1516 		inode->i_uid = current->fsuid;
1517 		inode->i_gid = current->fsgid;
1518 		inode->i_blocks = 0;
1519 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1520 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1521 		inode->i_generation = get_seconds();
1522 		info = SHMEM_I(inode);
1523 		memset(info, 0, (char *)inode - (char *)info);
1524 		spin_lock_init(&info->lock);
1525 		INIT_LIST_HEAD(&info->swaplist);
1526 
1527 		switch (mode & S_IFMT) {
1528 		default:
1529 			inode->i_op = &shmem_special_inode_operations;
1530 			init_special_inode(inode, mode, dev);
1531 			break;
1532 		case S_IFREG:
1533 			inode->i_mapping->a_ops = &shmem_aops;
1534 			inode->i_op = &shmem_inode_operations;
1535 			inode->i_fop = &shmem_file_operations;
1536 			mpol_shared_policy_init(&info->policy,
1537 						 shmem_get_sbmpol(sbinfo));
1538 			break;
1539 		case S_IFDIR:
1540 			inc_nlink(inode);
1541 			/* Some things misbehave if size == 0 on a directory */
1542 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1543 			inode->i_op = &shmem_dir_inode_operations;
1544 			inode->i_fop = &simple_dir_operations;
1545 			break;
1546 		case S_IFLNK:
1547 			/*
1548 			 * Must not load anything in the rbtree,
1549 			 * mpol_free_shared_policy will not be called.
1550 			 */
1551 			mpol_shared_policy_init(&info->policy, NULL);
1552 			break;
1553 		}
1554 	} else
1555 		shmem_free_inode(sb);
1556 	return inode;
1557 }
1558 
1559 #ifdef CONFIG_TMPFS
1560 static const struct inode_operations shmem_symlink_inode_operations;
1561 static const struct inode_operations shmem_symlink_inline_operations;
1562 
1563 /*
1564  * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1565  * but providing them allows a tmpfs file to be used for splice, sendfile, and
1566  * below the loop driver, in the generic fashion that many filesystems support.
1567  */
1568 static int shmem_readpage(struct file *file, struct page *page)
1569 {
1570 	struct inode *inode = page->mapping->host;
1571 	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1572 	unlock_page(page);
1573 	return error;
1574 }
1575 
1576 static int
1577 shmem_write_begin(struct file *file, struct address_space *mapping,
1578 			loff_t pos, unsigned len, unsigned flags,
1579 			struct page **pagep, void **fsdata)
1580 {
1581 	struct inode *inode = mapping->host;
1582 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1583 	*pagep = NULL;
1584 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1585 }
1586 
1587 static int
1588 shmem_write_end(struct file *file, struct address_space *mapping,
1589 			loff_t pos, unsigned len, unsigned copied,
1590 			struct page *page, void *fsdata)
1591 {
1592 	struct inode *inode = mapping->host;
1593 
1594 	if (pos + copied > inode->i_size)
1595 		i_size_write(inode, pos + copied);
1596 
1597 	unlock_page(page);
1598 	set_page_dirty(page);
1599 	page_cache_release(page);
1600 
1601 	return copied;
1602 }
1603 
1604 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1605 {
1606 	struct inode *inode = filp->f_path.dentry->d_inode;
1607 	struct address_space *mapping = inode->i_mapping;
1608 	unsigned long index, offset;
1609 	enum sgp_type sgp = SGP_READ;
1610 
1611 	/*
1612 	 * Might this read be for a stacking filesystem?  Then when reading
1613 	 * holes of a sparse file, we actually need to allocate those pages,
1614 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1615 	 */
1616 	if (segment_eq(get_fs(), KERNEL_DS))
1617 		sgp = SGP_DIRTY;
1618 
1619 	index = *ppos >> PAGE_CACHE_SHIFT;
1620 	offset = *ppos & ~PAGE_CACHE_MASK;
1621 
1622 	for (;;) {
1623 		struct page *page = NULL;
1624 		unsigned long end_index, nr, ret;
1625 		loff_t i_size = i_size_read(inode);
1626 
1627 		end_index = i_size >> PAGE_CACHE_SHIFT;
1628 		if (index > end_index)
1629 			break;
1630 		if (index == end_index) {
1631 			nr = i_size & ~PAGE_CACHE_MASK;
1632 			if (nr <= offset)
1633 				break;
1634 		}
1635 
1636 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1637 		if (desc->error) {
1638 			if (desc->error == -EINVAL)
1639 				desc->error = 0;
1640 			break;
1641 		}
1642 		if (page)
1643 			unlock_page(page);
1644 
1645 		/*
1646 		 * We must evaluate after, since reads (unlike writes)
1647 		 * are called without i_mutex protection against truncate
1648 		 */
1649 		nr = PAGE_CACHE_SIZE;
1650 		i_size = i_size_read(inode);
1651 		end_index = i_size >> PAGE_CACHE_SHIFT;
1652 		if (index == end_index) {
1653 			nr = i_size & ~PAGE_CACHE_MASK;
1654 			if (nr <= offset) {
1655 				if (page)
1656 					page_cache_release(page);
1657 				break;
1658 			}
1659 		}
1660 		nr -= offset;
1661 
1662 		if (page) {
1663 			/*
1664 			 * If users can be writing to this page using arbitrary
1665 			 * virtual addresses, take care about potential aliasing
1666 			 * before reading the page on the kernel side.
1667 			 */
1668 			if (mapping_writably_mapped(mapping))
1669 				flush_dcache_page(page);
1670 			/*
1671 			 * Mark the page accessed if we read the beginning.
1672 			 */
1673 			if (!offset)
1674 				mark_page_accessed(page);
1675 		} else {
1676 			page = ZERO_PAGE(0);
1677 			page_cache_get(page);
1678 		}
1679 
1680 		/*
1681 		 * Ok, we have the page, and it's up-to-date, so
1682 		 * now we can copy it to user space...
1683 		 *
1684 		 * The actor routine returns how many bytes were actually used..
1685 		 * NOTE! This may not be the same as how much of a user buffer
1686 		 * we filled up (we may be padding etc), so we can only update
1687 		 * "pos" here (the actor routine has to update the user buffer
1688 		 * pointers and the remaining count).
1689 		 */
1690 		ret = actor(desc, page, offset, nr);
1691 		offset += ret;
1692 		index += offset >> PAGE_CACHE_SHIFT;
1693 		offset &= ~PAGE_CACHE_MASK;
1694 
1695 		page_cache_release(page);
1696 		if (ret != nr || !desc->count)
1697 			break;
1698 
1699 		cond_resched();
1700 	}
1701 
1702 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1703 	file_accessed(filp);
1704 }
1705 
1706 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1707 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1708 {
1709 	struct file *filp = iocb->ki_filp;
1710 	ssize_t retval;
1711 	unsigned long seg;
1712 	size_t count;
1713 	loff_t *ppos = &iocb->ki_pos;
1714 
1715 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1716 	if (retval)
1717 		return retval;
1718 
1719 	for (seg = 0; seg < nr_segs; seg++) {
1720 		read_descriptor_t desc;
1721 
1722 		desc.written = 0;
1723 		desc.arg.buf = iov[seg].iov_base;
1724 		desc.count = iov[seg].iov_len;
1725 		if (desc.count == 0)
1726 			continue;
1727 		desc.error = 0;
1728 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1729 		retval += desc.written;
1730 		if (desc.error) {
1731 			retval = retval ?: desc.error;
1732 			break;
1733 		}
1734 		if (desc.count > 0)
1735 			break;
1736 	}
1737 	return retval;
1738 }
1739 
1740 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1741 {
1742 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1743 
1744 	buf->f_type = TMPFS_MAGIC;
1745 	buf->f_bsize = PAGE_CACHE_SIZE;
1746 	buf->f_namelen = NAME_MAX;
1747 	spin_lock(&sbinfo->stat_lock);
1748 	if (sbinfo->max_blocks) {
1749 		buf->f_blocks = sbinfo->max_blocks;
1750 		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1751 	}
1752 	if (sbinfo->max_inodes) {
1753 		buf->f_files = sbinfo->max_inodes;
1754 		buf->f_ffree = sbinfo->free_inodes;
1755 	}
1756 	/* else leave those fields 0 like simple_statfs */
1757 	spin_unlock(&sbinfo->stat_lock);
1758 	return 0;
1759 }
1760 
1761 /*
1762  * File creation. Allocate an inode, and we're done..
1763  */
1764 static int
1765 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1766 {
1767 	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1768 	int error = -ENOSPC;
1769 
1770 	if (inode) {
1771 		error = security_inode_init_security(inode, dir, NULL, NULL,
1772 						     NULL);
1773 		if (error) {
1774 			if (error != -EOPNOTSUPP) {
1775 				iput(inode);
1776 				return error;
1777 			}
1778 		}
1779 		error = shmem_acl_init(inode, dir);
1780 		if (error) {
1781 			iput(inode);
1782 			return error;
1783 		}
1784 		if (dir->i_mode & S_ISGID) {
1785 			inode->i_gid = dir->i_gid;
1786 			if (S_ISDIR(mode))
1787 				inode->i_mode |= S_ISGID;
1788 		}
1789 		dir->i_size += BOGO_DIRENT_SIZE;
1790 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1791 		d_instantiate(dentry, inode);
1792 		dget(dentry); /* Extra count - pin the dentry in core */
1793 	}
1794 	return error;
1795 }
1796 
1797 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1798 {
1799 	int error;
1800 
1801 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1802 		return error;
1803 	inc_nlink(dir);
1804 	return 0;
1805 }
1806 
1807 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1808 		struct nameidata *nd)
1809 {
1810 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1811 }
1812 
1813 /*
1814  * Link a file..
1815  */
1816 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1817 {
1818 	struct inode *inode = old_dentry->d_inode;
1819 	int ret;
1820 
1821 	/*
1822 	 * No ordinary (disk based) filesystem counts links as inodes;
1823 	 * but each new link needs a new dentry, pinning lowmem, and
1824 	 * tmpfs dentries cannot be pruned until they are unlinked.
1825 	 */
1826 	ret = shmem_reserve_inode(inode->i_sb);
1827 	if (ret)
1828 		goto out;
1829 
1830 	dir->i_size += BOGO_DIRENT_SIZE;
1831 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1832 	inc_nlink(inode);
1833 	atomic_inc(&inode->i_count);	/* New dentry reference */
1834 	dget(dentry);		/* Extra pinning count for the created dentry */
1835 	d_instantiate(dentry, inode);
1836 out:
1837 	return ret;
1838 }
1839 
1840 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1841 {
1842 	struct inode *inode = dentry->d_inode;
1843 
1844 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1845 		shmem_free_inode(inode->i_sb);
1846 
1847 	dir->i_size -= BOGO_DIRENT_SIZE;
1848 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1849 	drop_nlink(inode);
1850 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1851 	return 0;
1852 }
1853 
1854 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1855 {
1856 	if (!simple_empty(dentry))
1857 		return -ENOTEMPTY;
1858 
1859 	drop_nlink(dentry->d_inode);
1860 	drop_nlink(dir);
1861 	return shmem_unlink(dir, dentry);
1862 }
1863 
1864 /*
1865  * The VFS layer already does all the dentry stuff for rename,
1866  * we just have to decrement the usage count for the target if
1867  * it exists so that the VFS layer correctly free's it when it
1868  * gets overwritten.
1869  */
1870 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1871 {
1872 	struct inode *inode = old_dentry->d_inode;
1873 	int they_are_dirs = S_ISDIR(inode->i_mode);
1874 
1875 	if (!simple_empty(new_dentry))
1876 		return -ENOTEMPTY;
1877 
1878 	if (new_dentry->d_inode) {
1879 		(void) shmem_unlink(new_dir, new_dentry);
1880 		if (they_are_dirs)
1881 			drop_nlink(old_dir);
1882 	} else if (they_are_dirs) {
1883 		drop_nlink(old_dir);
1884 		inc_nlink(new_dir);
1885 	}
1886 
1887 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1888 	new_dir->i_size += BOGO_DIRENT_SIZE;
1889 	old_dir->i_ctime = old_dir->i_mtime =
1890 	new_dir->i_ctime = new_dir->i_mtime =
1891 	inode->i_ctime = CURRENT_TIME;
1892 	return 0;
1893 }
1894 
1895 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1896 {
1897 	int error;
1898 	int len;
1899 	struct inode *inode;
1900 	struct page *page = NULL;
1901 	char *kaddr;
1902 	struct shmem_inode_info *info;
1903 
1904 	len = strlen(symname) + 1;
1905 	if (len > PAGE_CACHE_SIZE)
1906 		return -ENAMETOOLONG;
1907 
1908 	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1909 	if (!inode)
1910 		return -ENOSPC;
1911 
1912 	error = security_inode_init_security(inode, dir, NULL, NULL,
1913 					     NULL);
1914 	if (error) {
1915 		if (error != -EOPNOTSUPP) {
1916 			iput(inode);
1917 			return error;
1918 		}
1919 		error = 0;
1920 	}
1921 
1922 	info = SHMEM_I(inode);
1923 	inode->i_size = len-1;
1924 	if (len <= (char *)inode - (char *)info) {
1925 		/* do it inline */
1926 		memcpy(info, symname, len);
1927 		inode->i_op = &shmem_symlink_inline_operations;
1928 	} else {
1929 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1930 		if (error) {
1931 			iput(inode);
1932 			return error;
1933 		}
1934 		unlock_page(page);
1935 		inode->i_mapping->a_ops = &shmem_aops;
1936 		inode->i_op = &shmem_symlink_inode_operations;
1937 		kaddr = kmap_atomic(page, KM_USER0);
1938 		memcpy(kaddr, symname, len);
1939 		kunmap_atomic(kaddr, KM_USER0);
1940 		set_page_dirty(page);
1941 		page_cache_release(page);
1942 	}
1943 	if (dir->i_mode & S_ISGID)
1944 		inode->i_gid = dir->i_gid;
1945 	dir->i_size += BOGO_DIRENT_SIZE;
1946 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1947 	d_instantiate(dentry, inode);
1948 	dget(dentry);
1949 	return 0;
1950 }
1951 
1952 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1953 {
1954 	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1955 	return NULL;
1956 }
1957 
1958 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1959 {
1960 	struct page *page = NULL;
1961 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1962 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1963 	if (page)
1964 		unlock_page(page);
1965 	return page;
1966 }
1967 
1968 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1969 {
1970 	if (!IS_ERR(nd_get_link(nd))) {
1971 		struct page *page = cookie;
1972 		kunmap(page);
1973 		mark_page_accessed(page);
1974 		page_cache_release(page);
1975 	}
1976 }
1977 
1978 static const struct inode_operations shmem_symlink_inline_operations = {
1979 	.readlink	= generic_readlink,
1980 	.follow_link	= shmem_follow_link_inline,
1981 };
1982 
1983 static const struct inode_operations shmem_symlink_inode_operations = {
1984 	.truncate	= shmem_truncate,
1985 	.readlink	= generic_readlink,
1986 	.follow_link	= shmem_follow_link,
1987 	.put_link	= shmem_put_link,
1988 };
1989 
1990 #ifdef CONFIG_TMPFS_POSIX_ACL
1991 /*
1992  * Superblocks without xattr inode operations will get security.* xattr
1993  * support from the VFS "for free". As soon as we have any other xattrs
1994  * like ACLs, we also need to implement the security.* handlers at
1995  * filesystem level, though.
1996  */
1997 
1998 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1999 					size_t list_len, const char *name,
2000 					size_t name_len)
2001 {
2002 	return security_inode_listsecurity(inode, list, list_len);
2003 }
2004 
2005 static int shmem_xattr_security_get(struct inode *inode, const char *name,
2006 				    void *buffer, size_t size)
2007 {
2008 	if (strcmp(name, "") == 0)
2009 		return -EINVAL;
2010 	return xattr_getsecurity(inode, name, buffer, size);
2011 }
2012 
2013 static int shmem_xattr_security_set(struct inode *inode, const char *name,
2014 				    const void *value, size_t size, int flags)
2015 {
2016 	if (strcmp(name, "") == 0)
2017 		return -EINVAL;
2018 	return security_inode_setsecurity(inode, name, value, size, flags);
2019 }
2020 
2021 static struct xattr_handler shmem_xattr_security_handler = {
2022 	.prefix = XATTR_SECURITY_PREFIX,
2023 	.list   = shmem_xattr_security_list,
2024 	.get    = shmem_xattr_security_get,
2025 	.set    = shmem_xattr_security_set,
2026 };
2027 
2028 static struct xattr_handler *shmem_xattr_handlers[] = {
2029 	&shmem_xattr_acl_access_handler,
2030 	&shmem_xattr_acl_default_handler,
2031 	&shmem_xattr_security_handler,
2032 	NULL
2033 };
2034 #endif
2035 
2036 static struct dentry *shmem_get_parent(struct dentry *child)
2037 {
2038 	return ERR_PTR(-ESTALE);
2039 }
2040 
2041 static int shmem_match(struct inode *ino, void *vfh)
2042 {
2043 	__u32 *fh = vfh;
2044 	__u64 inum = fh[2];
2045 	inum = (inum << 32) | fh[1];
2046 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2047 }
2048 
2049 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2050 		struct fid *fid, int fh_len, int fh_type)
2051 {
2052 	struct inode *inode;
2053 	struct dentry *dentry = NULL;
2054 	u64 inum = fid->raw[2];
2055 	inum = (inum << 32) | fid->raw[1];
2056 
2057 	if (fh_len < 3)
2058 		return NULL;
2059 
2060 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2061 			shmem_match, fid->raw);
2062 	if (inode) {
2063 		dentry = d_find_alias(inode);
2064 		iput(inode);
2065 	}
2066 
2067 	return dentry;
2068 }
2069 
2070 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2071 				int connectable)
2072 {
2073 	struct inode *inode = dentry->d_inode;
2074 
2075 	if (*len < 3)
2076 		return 255;
2077 
2078 	if (hlist_unhashed(&inode->i_hash)) {
2079 		/* Unfortunately insert_inode_hash is not idempotent,
2080 		 * so as we hash inodes here rather than at creation
2081 		 * time, we need a lock to ensure we only try
2082 		 * to do it once
2083 		 */
2084 		static DEFINE_SPINLOCK(lock);
2085 		spin_lock(&lock);
2086 		if (hlist_unhashed(&inode->i_hash))
2087 			__insert_inode_hash(inode,
2088 					    inode->i_ino + inode->i_generation);
2089 		spin_unlock(&lock);
2090 	}
2091 
2092 	fh[0] = inode->i_generation;
2093 	fh[1] = inode->i_ino;
2094 	fh[2] = ((__u64)inode->i_ino) >> 32;
2095 
2096 	*len = 3;
2097 	return 1;
2098 }
2099 
2100 static const struct export_operations shmem_export_ops = {
2101 	.get_parent     = shmem_get_parent,
2102 	.encode_fh      = shmem_encode_fh,
2103 	.fh_to_dentry	= shmem_fh_to_dentry,
2104 };
2105 
2106 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2107 			       bool remount)
2108 {
2109 	char *this_char, *value, *rest;
2110 
2111 	while (options != NULL) {
2112 		this_char = options;
2113 		for (;;) {
2114 			/*
2115 			 * NUL-terminate this option: unfortunately,
2116 			 * mount options form a comma-separated list,
2117 			 * but mpol's nodelist may also contain commas.
2118 			 */
2119 			options = strchr(options, ',');
2120 			if (options == NULL)
2121 				break;
2122 			options++;
2123 			if (!isdigit(*options)) {
2124 				options[-1] = '\0';
2125 				break;
2126 			}
2127 		}
2128 		if (!*this_char)
2129 			continue;
2130 		if ((value = strchr(this_char,'=')) != NULL) {
2131 			*value++ = 0;
2132 		} else {
2133 			printk(KERN_ERR
2134 			    "tmpfs: No value for mount option '%s'\n",
2135 			    this_char);
2136 			return 1;
2137 		}
2138 
2139 		if (!strcmp(this_char,"size")) {
2140 			unsigned long long size;
2141 			size = memparse(value,&rest);
2142 			if (*rest == '%') {
2143 				size <<= PAGE_SHIFT;
2144 				size *= totalram_pages;
2145 				do_div(size, 100);
2146 				rest++;
2147 			}
2148 			if (*rest)
2149 				goto bad_val;
2150 			sbinfo->max_blocks =
2151 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2152 		} else if (!strcmp(this_char,"nr_blocks")) {
2153 			sbinfo->max_blocks = memparse(value, &rest);
2154 			if (*rest)
2155 				goto bad_val;
2156 		} else if (!strcmp(this_char,"nr_inodes")) {
2157 			sbinfo->max_inodes = memparse(value, &rest);
2158 			if (*rest)
2159 				goto bad_val;
2160 		} else if (!strcmp(this_char,"mode")) {
2161 			if (remount)
2162 				continue;
2163 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2164 			if (*rest)
2165 				goto bad_val;
2166 		} else if (!strcmp(this_char,"uid")) {
2167 			if (remount)
2168 				continue;
2169 			sbinfo->uid = simple_strtoul(value, &rest, 0);
2170 			if (*rest)
2171 				goto bad_val;
2172 		} else if (!strcmp(this_char,"gid")) {
2173 			if (remount)
2174 				continue;
2175 			sbinfo->gid = simple_strtoul(value, &rest, 0);
2176 			if (*rest)
2177 				goto bad_val;
2178 		} else if (!strcmp(this_char,"mpol")) {
2179 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2180 				goto bad_val;
2181 		} else {
2182 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2183 			       this_char);
2184 			return 1;
2185 		}
2186 	}
2187 	return 0;
2188 
2189 bad_val:
2190 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2191 	       value, this_char);
2192 	return 1;
2193 
2194 }
2195 
2196 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2197 {
2198 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2199 	struct shmem_sb_info config = *sbinfo;
2200 	unsigned long blocks;
2201 	unsigned long inodes;
2202 	int error = -EINVAL;
2203 
2204 	if (shmem_parse_options(data, &config, true))
2205 		return error;
2206 
2207 	spin_lock(&sbinfo->stat_lock);
2208 	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2209 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2210 	if (config.max_blocks < blocks)
2211 		goto out;
2212 	if (config.max_inodes < inodes)
2213 		goto out;
2214 	/*
2215 	 * Those tests also disallow limited->unlimited while any are in
2216 	 * use, so i_blocks will always be zero when max_blocks is zero;
2217 	 * but we must separately disallow unlimited->limited, because
2218 	 * in that case we have no record of how much is already in use.
2219 	 */
2220 	if (config.max_blocks && !sbinfo->max_blocks)
2221 		goto out;
2222 	if (config.max_inodes && !sbinfo->max_inodes)
2223 		goto out;
2224 
2225 	error = 0;
2226 	sbinfo->max_blocks  = config.max_blocks;
2227 	sbinfo->free_blocks = config.max_blocks - blocks;
2228 	sbinfo->max_inodes  = config.max_inodes;
2229 	sbinfo->free_inodes = config.max_inodes - inodes;
2230 
2231 	mpol_put(sbinfo->mpol);
2232 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2233 out:
2234 	spin_unlock(&sbinfo->stat_lock);
2235 	return error;
2236 }
2237 
2238 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2239 {
2240 	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2241 
2242 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2243 		seq_printf(seq, ",size=%luk",
2244 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2245 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2246 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2247 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2248 		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2249 	if (sbinfo->uid != 0)
2250 		seq_printf(seq, ",uid=%u", sbinfo->uid);
2251 	if (sbinfo->gid != 0)
2252 		seq_printf(seq, ",gid=%u", sbinfo->gid);
2253 	shmem_show_mpol(seq, sbinfo->mpol);
2254 	return 0;
2255 }
2256 #endif /* CONFIG_TMPFS */
2257 
2258 static void shmem_put_super(struct super_block *sb)
2259 {
2260 	kfree(sb->s_fs_info);
2261 	sb->s_fs_info = NULL;
2262 }
2263 
2264 static int shmem_fill_super(struct super_block *sb,
2265 			    void *data, int silent)
2266 {
2267 	struct inode *inode;
2268 	struct dentry *root;
2269 	struct shmem_sb_info *sbinfo;
2270 	int err = -ENOMEM;
2271 
2272 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2273 	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2274 				L1_CACHE_BYTES), GFP_KERNEL);
2275 	if (!sbinfo)
2276 		return -ENOMEM;
2277 
2278 	sbinfo->max_blocks = 0;
2279 	sbinfo->max_inodes = 0;
2280 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2281 	sbinfo->uid = current->fsuid;
2282 	sbinfo->gid = current->fsgid;
2283 	sbinfo->mpol = NULL;
2284 	sb->s_fs_info = sbinfo;
2285 
2286 #ifdef CONFIG_TMPFS
2287 	/*
2288 	 * Per default we only allow half of the physical ram per
2289 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2290 	 * but the internal instance is left unlimited.
2291 	 */
2292 	if (!(sb->s_flags & MS_NOUSER)) {
2293 		sbinfo->max_blocks = shmem_default_max_blocks();
2294 		sbinfo->max_inodes = shmem_default_max_inodes();
2295 		if (shmem_parse_options(data, sbinfo, false)) {
2296 			err = -EINVAL;
2297 			goto failed;
2298 		}
2299 	}
2300 	sb->s_export_op = &shmem_export_ops;
2301 #else
2302 	sb->s_flags |= MS_NOUSER;
2303 #endif
2304 
2305 	spin_lock_init(&sbinfo->stat_lock);
2306 	sbinfo->free_blocks = sbinfo->max_blocks;
2307 	sbinfo->free_inodes = sbinfo->max_inodes;
2308 
2309 	sb->s_maxbytes = SHMEM_MAX_BYTES;
2310 	sb->s_blocksize = PAGE_CACHE_SIZE;
2311 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2312 	sb->s_magic = TMPFS_MAGIC;
2313 	sb->s_op = &shmem_ops;
2314 	sb->s_time_gran = 1;
2315 #ifdef CONFIG_TMPFS_POSIX_ACL
2316 	sb->s_xattr = shmem_xattr_handlers;
2317 	sb->s_flags |= MS_POSIXACL;
2318 #endif
2319 
2320 	inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0);
2321 	if (!inode)
2322 		goto failed;
2323 	inode->i_uid = sbinfo->uid;
2324 	inode->i_gid = sbinfo->gid;
2325 	root = d_alloc_root(inode);
2326 	if (!root)
2327 		goto failed_iput;
2328 	sb->s_root = root;
2329 	return 0;
2330 
2331 failed_iput:
2332 	iput(inode);
2333 failed:
2334 	shmem_put_super(sb);
2335 	return err;
2336 }
2337 
2338 static struct kmem_cache *shmem_inode_cachep;
2339 
2340 static struct inode *shmem_alloc_inode(struct super_block *sb)
2341 {
2342 	struct shmem_inode_info *p;
2343 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2344 	if (!p)
2345 		return NULL;
2346 	return &p->vfs_inode;
2347 }
2348 
2349 static void shmem_destroy_inode(struct inode *inode)
2350 {
2351 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2352 		/* only struct inode is valid if it's an inline symlink */
2353 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2354 	}
2355 	shmem_acl_destroy_inode(inode);
2356 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2357 }
2358 
2359 static void init_once(void *foo)
2360 {
2361 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2362 
2363 	inode_init_once(&p->vfs_inode);
2364 #ifdef CONFIG_TMPFS_POSIX_ACL
2365 	p->i_acl = NULL;
2366 	p->i_default_acl = NULL;
2367 #endif
2368 }
2369 
2370 static int init_inodecache(void)
2371 {
2372 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2373 				sizeof(struct shmem_inode_info),
2374 				0, SLAB_PANIC, init_once);
2375 	return 0;
2376 }
2377 
2378 static void destroy_inodecache(void)
2379 {
2380 	kmem_cache_destroy(shmem_inode_cachep);
2381 }
2382 
2383 static const struct address_space_operations shmem_aops = {
2384 	.writepage	= shmem_writepage,
2385 	.set_page_dirty	= __set_page_dirty_no_writeback,
2386 #ifdef CONFIG_TMPFS
2387 	.readpage	= shmem_readpage,
2388 	.write_begin	= shmem_write_begin,
2389 	.write_end	= shmem_write_end,
2390 #endif
2391 	.migratepage	= migrate_page,
2392 };
2393 
2394 static const struct file_operations shmem_file_operations = {
2395 	.mmap		= shmem_mmap,
2396 #ifdef CONFIG_TMPFS
2397 	.llseek		= generic_file_llseek,
2398 	.read		= do_sync_read,
2399 	.write		= do_sync_write,
2400 	.aio_read	= shmem_file_aio_read,
2401 	.aio_write	= generic_file_aio_write,
2402 	.fsync		= simple_sync_file,
2403 	.splice_read	= generic_file_splice_read,
2404 	.splice_write	= generic_file_splice_write,
2405 #endif
2406 };
2407 
2408 static const struct inode_operations shmem_inode_operations = {
2409 	.truncate	= shmem_truncate,
2410 	.setattr	= shmem_notify_change,
2411 	.truncate_range	= shmem_truncate_range,
2412 #ifdef CONFIG_TMPFS_POSIX_ACL
2413 	.setxattr	= generic_setxattr,
2414 	.getxattr	= generic_getxattr,
2415 	.listxattr	= generic_listxattr,
2416 	.removexattr	= generic_removexattr,
2417 	.permission	= shmem_permission,
2418 #endif
2419 
2420 };
2421 
2422 static const struct inode_operations shmem_dir_inode_operations = {
2423 #ifdef CONFIG_TMPFS
2424 	.create		= shmem_create,
2425 	.lookup		= simple_lookup,
2426 	.link		= shmem_link,
2427 	.unlink		= shmem_unlink,
2428 	.symlink	= shmem_symlink,
2429 	.mkdir		= shmem_mkdir,
2430 	.rmdir		= shmem_rmdir,
2431 	.mknod		= shmem_mknod,
2432 	.rename		= shmem_rename,
2433 #endif
2434 #ifdef CONFIG_TMPFS_POSIX_ACL
2435 	.setattr	= shmem_notify_change,
2436 	.setxattr	= generic_setxattr,
2437 	.getxattr	= generic_getxattr,
2438 	.listxattr	= generic_listxattr,
2439 	.removexattr	= generic_removexattr,
2440 	.permission	= shmem_permission,
2441 #endif
2442 };
2443 
2444 static const struct inode_operations shmem_special_inode_operations = {
2445 #ifdef CONFIG_TMPFS_POSIX_ACL
2446 	.setattr	= shmem_notify_change,
2447 	.setxattr	= generic_setxattr,
2448 	.getxattr	= generic_getxattr,
2449 	.listxattr	= generic_listxattr,
2450 	.removexattr	= generic_removexattr,
2451 	.permission	= shmem_permission,
2452 #endif
2453 };
2454 
2455 static const struct super_operations shmem_ops = {
2456 	.alloc_inode	= shmem_alloc_inode,
2457 	.destroy_inode	= shmem_destroy_inode,
2458 #ifdef CONFIG_TMPFS
2459 	.statfs		= shmem_statfs,
2460 	.remount_fs	= shmem_remount_fs,
2461 	.show_options	= shmem_show_options,
2462 #endif
2463 	.delete_inode	= shmem_delete_inode,
2464 	.drop_inode	= generic_delete_inode,
2465 	.put_super	= shmem_put_super,
2466 };
2467 
2468 static struct vm_operations_struct shmem_vm_ops = {
2469 	.fault		= shmem_fault,
2470 #ifdef CONFIG_NUMA
2471 	.set_policy     = shmem_set_policy,
2472 	.get_policy     = shmem_get_policy,
2473 #endif
2474 };
2475 
2476 
2477 static int shmem_get_sb(struct file_system_type *fs_type,
2478 	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2479 {
2480 	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2481 }
2482 
2483 static struct file_system_type tmpfs_fs_type = {
2484 	.owner		= THIS_MODULE,
2485 	.name		= "tmpfs",
2486 	.get_sb		= shmem_get_sb,
2487 	.kill_sb	= kill_litter_super,
2488 };
2489 static struct vfsmount *shm_mnt;
2490 
2491 static int __init init_tmpfs(void)
2492 {
2493 	int error;
2494 
2495 	error = bdi_init(&shmem_backing_dev_info);
2496 	if (error)
2497 		goto out4;
2498 
2499 	error = init_inodecache();
2500 	if (error)
2501 		goto out3;
2502 
2503 	error = register_filesystem(&tmpfs_fs_type);
2504 	if (error) {
2505 		printk(KERN_ERR "Could not register tmpfs\n");
2506 		goto out2;
2507 	}
2508 
2509 	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2510 				tmpfs_fs_type.name, NULL);
2511 	if (IS_ERR(shm_mnt)) {
2512 		error = PTR_ERR(shm_mnt);
2513 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2514 		goto out1;
2515 	}
2516 	return 0;
2517 
2518 out1:
2519 	unregister_filesystem(&tmpfs_fs_type);
2520 out2:
2521 	destroy_inodecache();
2522 out3:
2523 	bdi_destroy(&shmem_backing_dev_info);
2524 out4:
2525 	shm_mnt = ERR_PTR(error);
2526 	return error;
2527 }
2528 module_init(init_tmpfs)
2529 
2530 /**
2531  * shmem_file_setup - get an unlinked file living in tmpfs
2532  * @name: name for dentry (to be seen in /proc/<pid>/maps
2533  * @size: size to be set for the file
2534  * @flags: vm_flags
2535  */
2536 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2537 {
2538 	int error;
2539 	struct file *file;
2540 	struct inode *inode;
2541 	struct dentry *dentry, *root;
2542 	struct qstr this;
2543 
2544 	if (IS_ERR(shm_mnt))
2545 		return (void *)shm_mnt;
2546 
2547 	if (size < 0 || size > SHMEM_MAX_BYTES)
2548 		return ERR_PTR(-EINVAL);
2549 
2550 	if (shmem_acct_size(flags, size))
2551 		return ERR_PTR(-ENOMEM);
2552 
2553 	error = -ENOMEM;
2554 	this.name = name;
2555 	this.len = strlen(name);
2556 	this.hash = 0; /* will go */
2557 	root = shm_mnt->mnt_root;
2558 	dentry = d_alloc(root, &this);
2559 	if (!dentry)
2560 		goto put_memory;
2561 
2562 	error = -ENFILE;
2563 	file = get_empty_filp();
2564 	if (!file)
2565 		goto put_dentry;
2566 
2567 	error = -ENOSPC;
2568 	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2569 	if (!inode)
2570 		goto close_file;
2571 
2572 	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2573 	d_instantiate(dentry, inode);
2574 	inode->i_size = size;
2575 	inode->i_nlink = 0;	/* It is unlinked */
2576 	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2577 			&shmem_file_operations);
2578 	return file;
2579 
2580 close_file:
2581 	put_filp(file);
2582 put_dentry:
2583 	dput(dentry);
2584 put_memory:
2585 	shmem_unacct_size(flags, size);
2586 	return ERR_PTR(error);
2587 }
2588 EXPORT_SYMBOL_GPL(shmem_file_setup);
2589 
2590 /**
2591  * shmem_zero_setup - setup a shared anonymous mapping
2592  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2593  */
2594 int shmem_zero_setup(struct vm_area_struct *vma)
2595 {
2596 	struct file *file;
2597 	loff_t size = vma->vm_end - vma->vm_start;
2598 
2599 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2600 	if (IS_ERR(file))
2601 		return PTR_ERR(file);
2602 
2603 	if (vma->vm_file)
2604 		fput(vma->vm_file);
2605 	vma->vm_file = file;
2606 	vma->vm_ops = &shmem_vm_ops;
2607 	return 0;
2608 }
2609