1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include "swap.h" 44 45 static struct vfsmount *shm_mnt __ro_after_init; 46 47 #ifdef CONFIG_SHMEM 48 /* 49 * This virtual memory filesystem is heavily based on the ramfs. It 50 * extends ramfs by the ability to use swap and honor resource limits 51 * which makes it a completely usable filesystem. 52 */ 53 54 #include <linux/xattr.h> 55 #include <linux/exportfs.h> 56 #include <linux/posix_acl.h> 57 #include <linux/posix_acl_xattr.h> 58 #include <linux/mman.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/backing-dev.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 #include <linux/quotaops.h> 82 #include <linux/rcupdate_wait.h> 83 84 #include <linux/uaccess.h> 85 86 #include "internal.h" 87 88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Pretend that one inode + its dentry occupy this much memory */ 95 #define BOGO_INODE_SIZE 1024 96 97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 98 #define SHORT_SYMLINK_LEN 128 99 100 /* 101 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 102 * inode->i_private (with i_rwsem making sure that it has only one user at 103 * a time): we would prefer not to enlarge the shmem inode just for that. 104 */ 105 struct shmem_falloc { 106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 107 pgoff_t start; /* start of range currently being fallocated */ 108 pgoff_t next; /* the next page offset to be fallocated */ 109 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 110 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 111 }; 112 113 struct shmem_options { 114 unsigned long long blocks; 115 unsigned long long inodes; 116 struct mempolicy *mpol; 117 kuid_t uid; 118 kgid_t gid; 119 umode_t mode; 120 bool full_inums; 121 int huge; 122 int seen; 123 bool noswap; 124 unsigned short quota_types; 125 struct shmem_quota_limits qlimits; 126 #define SHMEM_SEEN_BLOCKS 1 127 #define SHMEM_SEEN_INODES 2 128 #define SHMEM_SEEN_HUGE 4 129 #define SHMEM_SEEN_INUMS 8 130 #define SHMEM_SEEN_NOSWAP 16 131 #define SHMEM_SEEN_QUOTA 32 132 }; 133 134 #ifdef CONFIG_TMPFS 135 static unsigned long shmem_default_max_blocks(void) 136 { 137 return totalram_pages() / 2; 138 } 139 140 static unsigned long shmem_default_max_inodes(void) 141 { 142 unsigned long nr_pages = totalram_pages(); 143 144 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 145 ULONG_MAX / BOGO_INODE_SIZE); 146 } 147 #endif 148 149 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 150 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 151 struct mm_struct *fault_mm, vm_fault_t *fault_type); 152 153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 154 { 155 return sb->s_fs_info; 156 } 157 158 /* 159 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 160 * for shared memory and for shared anonymous (/dev/zero) mappings 161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 162 * consistent with the pre-accounting of private mappings ... 163 */ 164 static inline int shmem_acct_size(unsigned long flags, loff_t size) 165 { 166 return (flags & VM_NORESERVE) ? 167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 168 } 169 170 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 171 { 172 if (!(flags & VM_NORESERVE)) 173 vm_unacct_memory(VM_ACCT(size)); 174 } 175 176 static inline int shmem_reacct_size(unsigned long flags, 177 loff_t oldsize, loff_t newsize) 178 { 179 if (!(flags & VM_NORESERVE)) { 180 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 181 return security_vm_enough_memory_mm(current->mm, 182 VM_ACCT(newsize) - VM_ACCT(oldsize)); 183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 185 } 186 return 0; 187 } 188 189 /* 190 * ... whereas tmpfs objects are accounted incrementally as 191 * pages are allocated, in order to allow large sparse files. 192 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 194 */ 195 static inline int shmem_acct_blocks(unsigned long flags, long pages) 196 { 197 if (!(flags & VM_NORESERVE)) 198 return 0; 199 200 return security_vm_enough_memory_mm(current->mm, 201 pages * VM_ACCT(PAGE_SIZE)); 202 } 203 204 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 205 { 206 if (flags & VM_NORESERVE) 207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static int shmem_inode_acct_blocks(struct inode *inode, long pages) 211 { 212 struct shmem_inode_info *info = SHMEM_I(inode); 213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 214 int err = -ENOSPC; 215 216 if (shmem_acct_blocks(info->flags, pages)) 217 return err; 218 219 might_sleep(); /* when quotas */ 220 if (sbinfo->max_blocks) { 221 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 222 sbinfo->max_blocks, pages)) 223 goto unacct; 224 225 err = dquot_alloc_block_nodirty(inode, pages); 226 if (err) { 227 percpu_counter_sub(&sbinfo->used_blocks, pages); 228 goto unacct; 229 } 230 } else { 231 err = dquot_alloc_block_nodirty(inode, pages); 232 if (err) 233 goto unacct; 234 } 235 236 return 0; 237 238 unacct: 239 shmem_unacct_blocks(info->flags, pages); 240 return err; 241 } 242 243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 244 { 245 struct shmem_inode_info *info = SHMEM_I(inode); 246 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 247 248 might_sleep(); /* when quotas */ 249 dquot_free_block_nodirty(inode, pages); 250 251 if (sbinfo->max_blocks) 252 percpu_counter_sub(&sbinfo->used_blocks, pages); 253 shmem_unacct_blocks(info->flags, pages); 254 } 255 256 static const struct super_operations shmem_ops; 257 static const struct address_space_operations shmem_aops; 258 static const struct file_operations shmem_file_operations; 259 static const struct inode_operations shmem_inode_operations; 260 static const struct inode_operations shmem_dir_inode_operations; 261 static const struct inode_operations shmem_special_inode_operations; 262 static const struct vm_operations_struct shmem_vm_ops; 263 static const struct vm_operations_struct shmem_anon_vm_ops; 264 static struct file_system_type shmem_fs_type; 265 266 bool shmem_mapping(struct address_space *mapping) 267 { 268 return mapping->a_ops == &shmem_aops; 269 } 270 EXPORT_SYMBOL_GPL(shmem_mapping); 271 272 bool vma_is_anon_shmem(struct vm_area_struct *vma) 273 { 274 return vma->vm_ops == &shmem_anon_vm_ops; 275 } 276 277 bool vma_is_shmem(struct vm_area_struct *vma) 278 { 279 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 280 } 281 282 static LIST_HEAD(shmem_swaplist); 283 static DEFINE_MUTEX(shmem_swaplist_mutex); 284 285 #ifdef CONFIG_TMPFS_QUOTA 286 287 static int shmem_enable_quotas(struct super_block *sb, 288 unsigned short quota_types) 289 { 290 int type, err = 0; 291 292 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 293 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 294 if (!(quota_types & (1 << type))) 295 continue; 296 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 297 DQUOT_USAGE_ENABLED | 298 DQUOT_LIMITS_ENABLED); 299 if (err) 300 goto out_err; 301 } 302 return 0; 303 304 out_err: 305 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 306 type, err); 307 for (type--; type >= 0; type--) 308 dquot_quota_off(sb, type); 309 return err; 310 } 311 312 static void shmem_disable_quotas(struct super_block *sb) 313 { 314 int type; 315 316 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 317 dquot_quota_off(sb, type); 318 } 319 320 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 321 { 322 return SHMEM_I(inode)->i_dquot; 323 } 324 #endif /* CONFIG_TMPFS_QUOTA */ 325 326 /* 327 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 328 * produces a novel ino for the newly allocated inode. 329 * 330 * It may also be called when making a hard link to permit the space needed by 331 * each dentry. However, in that case, no new inode number is needed since that 332 * internally draws from another pool of inode numbers (currently global 333 * get_next_ino()). This case is indicated by passing NULL as inop. 334 */ 335 #define SHMEM_INO_BATCH 1024 336 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 337 { 338 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 339 ino_t ino; 340 341 if (!(sb->s_flags & SB_KERNMOUNT)) { 342 raw_spin_lock(&sbinfo->stat_lock); 343 if (sbinfo->max_inodes) { 344 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 345 raw_spin_unlock(&sbinfo->stat_lock); 346 return -ENOSPC; 347 } 348 sbinfo->free_ispace -= BOGO_INODE_SIZE; 349 } 350 if (inop) { 351 ino = sbinfo->next_ino++; 352 if (unlikely(is_zero_ino(ino))) 353 ino = sbinfo->next_ino++; 354 if (unlikely(!sbinfo->full_inums && 355 ino > UINT_MAX)) { 356 /* 357 * Emulate get_next_ino uint wraparound for 358 * compatibility 359 */ 360 if (IS_ENABLED(CONFIG_64BIT)) 361 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 362 __func__, MINOR(sb->s_dev)); 363 sbinfo->next_ino = 1; 364 ino = sbinfo->next_ino++; 365 } 366 *inop = ino; 367 } 368 raw_spin_unlock(&sbinfo->stat_lock); 369 } else if (inop) { 370 /* 371 * __shmem_file_setup, one of our callers, is lock-free: it 372 * doesn't hold stat_lock in shmem_reserve_inode since 373 * max_inodes is always 0, and is called from potentially 374 * unknown contexts. As such, use a per-cpu batched allocator 375 * which doesn't require the per-sb stat_lock unless we are at 376 * the batch boundary. 377 * 378 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 379 * shmem mounts are not exposed to userspace, so we don't need 380 * to worry about things like glibc compatibility. 381 */ 382 ino_t *next_ino; 383 384 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 385 ino = *next_ino; 386 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 387 raw_spin_lock(&sbinfo->stat_lock); 388 ino = sbinfo->next_ino; 389 sbinfo->next_ino += SHMEM_INO_BATCH; 390 raw_spin_unlock(&sbinfo->stat_lock); 391 if (unlikely(is_zero_ino(ino))) 392 ino++; 393 } 394 *inop = ino; 395 *next_ino = ++ino; 396 put_cpu(); 397 } 398 399 return 0; 400 } 401 402 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 403 { 404 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 405 if (sbinfo->max_inodes) { 406 raw_spin_lock(&sbinfo->stat_lock); 407 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 408 raw_spin_unlock(&sbinfo->stat_lock); 409 } 410 } 411 412 /** 413 * shmem_recalc_inode - recalculate the block usage of an inode 414 * @inode: inode to recalc 415 * @alloced: the change in number of pages allocated to inode 416 * @swapped: the change in number of pages swapped from inode 417 * 418 * We have to calculate the free blocks since the mm can drop 419 * undirtied hole pages behind our back. 420 * 421 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 422 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 423 */ 424 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 425 { 426 struct shmem_inode_info *info = SHMEM_I(inode); 427 long freed; 428 429 spin_lock(&info->lock); 430 info->alloced += alloced; 431 info->swapped += swapped; 432 freed = info->alloced - info->swapped - 433 READ_ONCE(inode->i_mapping->nrpages); 434 /* 435 * Special case: whereas normally shmem_recalc_inode() is called 436 * after i_mapping->nrpages has already been adjusted (up or down), 437 * shmem_writepage() has to raise swapped before nrpages is lowered - 438 * to stop a racing shmem_recalc_inode() from thinking that a page has 439 * been freed. Compensate here, to avoid the need for a followup call. 440 */ 441 if (swapped > 0) 442 freed += swapped; 443 if (freed > 0) 444 info->alloced -= freed; 445 spin_unlock(&info->lock); 446 447 /* The quota case may block */ 448 if (freed > 0) 449 shmem_inode_unacct_blocks(inode, freed); 450 } 451 452 bool shmem_charge(struct inode *inode, long pages) 453 { 454 struct address_space *mapping = inode->i_mapping; 455 456 if (shmem_inode_acct_blocks(inode, pages)) 457 return false; 458 459 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 460 xa_lock_irq(&mapping->i_pages); 461 mapping->nrpages += pages; 462 xa_unlock_irq(&mapping->i_pages); 463 464 shmem_recalc_inode(inode, pages, 0); 465 return true; 466 } 467 468 void shmem_uncharge(struct inode *inode, long pages) 469 { 470 /* pages argument is currently unused: keep it to help debugging */ 471 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 472 473 shmem_recalc_inode(inode, 0, 0); 474 } 475 476 /* 477 * Replace item expected in xarray by a new item, while holding xa_lock. 478 */ 479 static int shmem_replace_entry(struct address_space *mapping, 480 pgoff_t index, void *expected, void *replacement) 481 { 482 XA_STATE(xas, &mapping->i_pages, index); 483 void *item; 484 485 VM_BUG_ON(!expected); 486 VM_BUG_ON(!replacement); 487 item = xas_load(&xas); 488 if (item != expected) 489 return -ENOENT; 490 xas_store(&xas, replacement); 491 return 0; 492 } 493 494 /* 495 * Sometimes, before we decide whether to proceed or to fail, we must check 496 * that an entry was not already brought back from swap by a racing thread. 497 * 498 * Checking page is not enough: by the time a SwapCache page is locked, it 499 * might be reused, and again be SwapCache, using the same swap as before. 500 */ 501 static bool shmem_confirm_swap(struct address_space *mapping, 502 pgoff_t index, swp_entry_t swap) 503 { 504 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 505 } 506 507 /* 508 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 509 * 510 * SHMEM_HUGE_NEVER: 511 * disables huge pages for the mount; 512 * SHMEM_HUGE_ALWAYS: 513 * enables huge pages for the mount; 514 * SHMEM_HUGE_WITHIN_SIZE: 515 * only allocate huge pages if the page will be fully within i_size, 516 * also respect fadvise()/madvise() hints; 517 * SHMEM_HUGE_ADVISE: 518 * only allocate huge pages if requested with fadvise()/madvise(); 519 */ 520 521 #define SHMEM_HUGE_NEVER 0 522 #define SHMEM_HUGE_ALWAYS 1 523 #define SHMEM_HUGE_WITHIN_SIZE 2 524 #define SHMEM_HUGE_ADVISE 3 525 526 /* 527 * Special values. 528 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 529 * 530 * SHMEM_HUGE_DENY: 531 * disables huge on shm_mnt and all mounts, for emergency use; 532 * SHMEM_HUGE_FORCE: 533 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 534 * 535 */ 536 #define SHMEM_HUGE_DENY (-1) 537 #define SHMEM_HUGE_FORCE (-2) 538 539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 540 /* ifdef here to avoid bloating shmem.o when not necessary */ 541 542 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 543 544 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force, 545 struct mm_struct *mm, unsigned long vm_flags) 546 { 547 loff_t i_size; 548 549 if (!S_ISREG(inode->i_mode)) 550 return false; 551 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags))) 552 return false; 553 if (shmem_huge == SHMEM_HUGE_DENY) 554 return false; 555 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 556 return true; 557 558 switch (SHMEM_SB(inode->i_sb)->huge) { 559 case SHMEM_HUGE_ALWAYS: 560 return true; 561 case SHMEM_HUGE_WITHIN_SIZE: 562 index = round_up(index + 1, HPAGE_PMD_NR); 563 i_size = round_up(i_size_read(inode), PAGE_SIZE); 564 if (i_size >> PAGE_SHIFT >= index) 565 return true; 566 fallthrough; 567 case SHMEM_HUGE_ADVISE: 568 if (mm && (vm_flags & VM_HUGEPAGE)) 569 return true; 570 fallthrough; 571 default: 572 return false; 573 } 574 } 575 576 #if defined(CONFIG_SYSFS) 577 static int shmem_parse_huge(const char *str) 578 { 579 if (!strcmp(str, "never")) 580 return SHMEM_HUGE_NEVER; 581 if (!strcmp(str, "always")) 582 return SHMEM_HUGE_ALWAYS; 583 if (!strcmp(str, "within_size")) 584 return SHMEM_HUGE_WITHIN_SIZE; 585 if (!strcmp(str, "advise")) 586 return SHMEM_HUGE_ADVISE; 587 if (!strcmp(str, "deny")) 588 return SHMEM_HUGE_DENY; 589 if (!strcmp(str, "force")) 590 return SHMEM_HUGE_FORCE; 591 return -EINVAL; 592 } 593 #endif 594 595 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 596 static const char *shmem_format_huge(int huge) 597 { 598 switch (huge) { 599 case SHMEM_HUGE_NEVER: 600 return "never"; 601 case SHMEM_HUGE_ALWAYS: 602 return "always"; 603 case SHMEM_HUGE_WITHIN_SIZE: 604 return "within_size"; 605 case SHMEM_HUGE_ADVISE: 606 return "advise"; 607 case SHMEM_HUGE_DENY: 608 return "deny"; 609 case SHMEM_HUGE_FORCE: 610 return "force"; 611 default: 612 VM_BUG_ON(1); 613 return "bad_val"; 614 } 615 } 616 #endif 617 618 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 619 struct shrink_control *sc, unsigned long nr_to_split) 620 { 621 LIST_HEAD(list), *pos, *next; 622 LIST_HEAD(to_remove); 623 struct inode *inode; 624 struct shmem_inode_info *info; 625 struct folio *folio; 626 unsigned long batch = sc ? sc->nr_to_scan : 128; 627 int split = 0; 628 629 if (list_empty(&sbinfo->shrinklist)) 630 return SHRINK_STOP; 631 632 spin_lock(&sbinfo->shrinklist_lock); 633 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 634 info = list_entry(pos, struct shmem_inode_info, shrinklist); 635 636 /* pin the inode */ 637 inode = igrab(&info->vfs_inode); 638 639 /* inode is about to be evicted */ 640 if (!inode) { 641 list_del_init(&info->shrinklist); 642 goto next; 643 } 644 645 /* Check if there's anything to gain */ 646 if (round_up(inode->i_size, PAGE_SIZE) == 647 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 648 list_move(&info->shrinklist, &to_remove); 649 goto next; 650 } 651 652 list_move(&info->shrinklist, &list); 653 next: 654 sbinfo->shrinklist_len--; 655 if (!--batch) 656 break; 657 } 658 spin_unlock(&sbinfo->shrinklist_lock); 659 660 list_for_each_safe(pos, next, &to_remove) { 661 info = list_entry(pos, struct shmem_inode_info, shrinklist); 662 inode = &info->vfs_inode; 663 list_del_init(&info->shrinklist); 664 iput(inode); 665 } 666 667 list_for_each_safe(pos, next, &list) { 668 int ret; 669 pgoff_t index; 670 671 info = list_entry(pos, struct shmem_inode_info, shrinklist); 672 inode = &info->vfs_inode; 673 674 if (nr_to_split && split >= nr_to_split) 675 goto move_back; 676 677 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 678 folio = filemap_get_folio(inode->i_mapping, index); 679 if (IS_ERR(folio)) 680 goto drop; 681 682 /* No huge page at the end of the file: nothing to split */ 683 if (!folio_test_large(folio)) { 684 folio_put(folio); 685 goto drop; 686 } 687 688 /* 689 * Move the inode on the list back to shrinklist if we failed 690 * to lock the page at this time. 691 * 692 * Waiting for the lock may lead to deadlock in the 693 * reclaim path. 694 */ 695 if (!folio_trylock(folio)) { 696 folio_put(folio); 697 goto move_back; 698 } 699 700 ret = split_folio(folio); 701 folio_unlock(folio); 702 folio_put(folio); 703 704 /* If split failed move the inode on the list back to shrinklist */ 705 if (ret) 706 goto move_back; 707 708 split++; 709 drop: 710 list_del_init(&info->shrinklist); 711 goto put; 712 move_back: 713 /* 714 * Make sure the inode is either on the global list or deleted 715 * from any local list before iput() since it could be deleted 716 * in another thread once we put the inode (then the local list 717 * is corrupted). 718 */ 719 spin_lock(&sbinfo->shrinklist_lock); 720 list_move(&info->shrinklist, &sbinfo->shrinklist); 721 sbinfo->shrinklist_len++; 722 spin_unlock(&sbinfo->shrinklist_lock); 723 put: 724 iput(inode); 725 } 726 727 return split; 728 } 729 730 static long shmem_unused_huge_scan(struct super_block *sb, 731 struct shrink_control *sc) 732 { 733 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 734 735 if (!READ_ONCE(sbinfo->shrinklist_len)) 736 return SHRINK_STOP; 737 738 return shmem_unused_huge_shrink(sbinfo, sc, 0); 739 } 740 741 static long shmem_unused_huge_count(struct super_block *sb, 742 struct shrink_control *sc) 743 { 744 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 745 return READ_ONCE(sbinfo->shrinklist_len); 746 } 747 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 748 749 #define shmem_huge SHMEM_HUGE_DENY 750 751 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 752 struct shrink_control *sc, unsigned long nr_to_split) 753 { 754 return 0; 755 } 756 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 757 758 /* 759 * Somewhat like filemap_add_folio, but error if expected item has gone. 760 */ 761 static int shmem_add_to_page_cache(struct folio *folio, 762 struct address_space *mapping, 763 pgoff_t index, void *expected, gfp_t gfp) 764 { 765 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 766 long nr = folio_nr_pages(folio); 767 768 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 769 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 770 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 771 VM_BUG_ON(expected && folio_test_large(folio)); 772 773 folio_ref_add(folio, nr); 774 folio->mapping = mapping; 775 folio->index = index; 776 777 gfp &= GFP_RECLAIM_MASK; 778 folio_throttle_swaprate(folio, gfp); 779 780 do { 781 xas_lock_irq(&xas); 782 if (expected != xas_find_conflict(&xas)) { 783 xas_set_err(&xas, -EEXIST); 784 goto unlock; 785 } 786 if (expected && xas_find_conflict(&xas)) { 787 xas_set_err(&xas, -EEXIST); 788 goto unlock; 789 } 790 xas_store(&xas, folio); 791 if (xas_error(&xas)) 792 goto unlock; 793 if (folio_test_pmd_mappable(folio)) 794 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 795 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 796 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 797 mapping->nrpages += nr; 798 unlock: 799 xas_unlock_irq(&xas); 800 } while (xas_nomem(&xas, gfp)); 801 802 if (xas_error(&xas)) { 803 folio->mapping = NULL; 804 folio_ref_sub(folio, nr); 805 return xas_error(&xas); 806 } 807 808 return 0; 809 } 810 811 /* 812 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 813 */ 814 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 815 { 816 struct address_space *mapping = folio->mapping; 817 long nr = folio_nr_pages(folio); 818 int error; 819 820 xa_lock_irq(&mapping->i_pages); 821 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 822 folio->mapping = NULL; 823 mapping->nrpages -= nr; 824 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 825 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 826 xa_unlock_irq(&mapping->i_pages); 827 folio_put(folio); 828 BUG_ON(error); 829 } 830 831 /* 832 * Remove swap entry from page cache, free the swap and its page cache. 833 */ 834 static int shmem_free_swap(struct address_space *mapping, 835 pgoff_t index, void *radswap) 836 { 837 void *old; 838 839 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 840 if (old != radswap) 841 return -ENOENT; 842 free_swap_and_cache(radix_to_swp_entry(radswap)); 843 return 0; 844 } 845 846 /* 847 * Determine (in bytes) how many of the shmem object's pages mapped by the 848 * given offsets are swapped out. 849 * 850 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 851 * as long as the inode doesn't go away and racy results are not a problem. 852 */ 853 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 854 pgoff_t start, pgoff_t end) 855 { 856 XA_STATE(xas, &mapping->i_pages, start); 857 struct page *page; 858 unsigned long swapped = 0; 859 unsigned long max = end - 1; 860 861 rcu_read_lock(); 862 xas_for_each(&xas, page, max) { 863 if (xas_retry(&xas, page)) 864 continue; 865 if (xa_is_value(page)) 866 swapped++; 867 if (xas.xa_index == max) 868 break; 869 if (need_resched()) { 870 xas_pause(&xas); 871 cond_resched_rcu(); 872 } 873 } 874 rcu_read_unlock(); 875 876 return swapped << PAGE_SHIFT; 877 } 878 879 /* 880 * Determine (in bytes) how many of the shmem object's pages mapped by the 881 * given vma is swapped out. 882 * 883 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 884 * as long as the inode doesn't go away and racy results are not a problem. 885 */ 886 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 887 { 888 struct inode *inode = file_inode(vma->vm_file); 889 struct shmem_inode_info *info = SHMEM_I(inode); 890 struct address_space *mapping = inode->i_mapping; 891 unsigned long swapped; 892 893 /* Be careful as we don't hold info->lock */ 894 swapped = READ_ONCE(info->swapped); 895 896 /* 897 * The easier cases are when the shmem object has nothing in swap, or 898 * the vma maps it whole. Then we can simply use the stats that we 899 * already track. 900 */ 901 if (!swapped) 902 return 0; 903 904 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 905 return swapped << PAGE_SHIFT; 906 907 /* Here comes the more involved part */ 908 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 909 vma->vm_pgoff + vma_pages(vma)); 910 } 911 912 /* 913 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 914 */ 915 void shmem_unlock_mapping(struct address_space *mapping) 916 { 917 struct folio_batch fbatch; 918 pgoff_t index = 0; 919 920 folio_batch_init(&fbatch); 921 /* 922 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 923 */ 924 while (!mapping_unevictable(mapping) && 925 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 926 check_move_unevictable_folios(&fbatch); 927 folio_batch_release(&fbatch); 928 cond_resched(); 929 } 930 } 931 932 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 933 { 934 struct folio *folio; 935 936 /* 937 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 938 * beyond i_size, and reports fallocated folios as holes. 939 */ 940 folio = filemap_get_entry(inode->i_mapping, index); 941 if (!folio) 942 return folio; 943 if (!xa_is_value(folio)) { 944 folio_lock(folio); 945 if (folio->mapping == inode->i_mapping) 946 return folio; 947 /* The folio has been swapped out */ 948 folio_unlock(folio); 949 folio_put(folio); 950 } 951 /* 952 * But read a folio back from swap if any of it is within i_size 953 * (although in some cases this is just a waste of time). 954 */ 955 folio = NULL; 956 shmem_get_folio(inode, index, &folio, SGP_READ); 957 return folio; 958 } 959 960 /* 961 * Remove range of pages and swap entries from page cache, and free them. 962 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 963 */ 964 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 965 bool unfalloc) 966 { 967 struct address_space *mapping = inode->i_mapping; 968 struct shmem_inode_info *info = SHMEM_I(inode); 969 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 970 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 971 struct folio_batch fbatch; 972 pgoff_t indices[PAGEVEC_SIZE]; 973 struct folio *folio; 974 bool same_folio; 975 long nr_swaps_freed = 0; 976 pgoff_t index; 977 int i; 978 979 if (lend == -1) 980 end = -1; /* unsigned, so actually very big */ 981 982 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 983 info->fallocend = start; 984 985 folio_batch_init(&fbatch); 986 index = start; 987 while (index < end && find_lock_entries(mapping, &index, end - 1, 988 &fbatch, indices)) { 989 for (i = 0; i < folio_batch_count(&fbatch); i++) { 990 folio = fbatch.folios[i]; 991 992 if (xa_is_value(folio)) { 993 if (unfalloc) 994 continue; 995 nr_swaps_freed += !shmem_free_swap(mapping, 996 indices[i], folio); 997 continue; 998 } 999 1000 if (!unfalloc || !folio_test_uptodate(folio)) 1001 truncate_inode_folio(mapping, folio); 1002 folio_unlock(folio); 1003 } 1004 folio_batch_remove_exceptionals(&fbatch); 1005 folio_batch_release(&fbatch); 1006 cond_resched(); 1007 } 1008 1009 /* 1010 * When undoing a failed fallocate, we want none of the partial folio 1011 * zeroing and splitting below, but shall want to truncate the whole 1012 * folio when !uptodate indicates that it was added by this fallocate, 1013 * even when [lstart, lend] covers only a part of the folio. 1014 */ 1015 if (unfalloc) 1016 goto whole_folios; 1017 1018 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1019 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1020 if (folio) { 1021 same_folio = lend < folio_pos(folio) + folio_size(folio); 1022 folio_mark_dirty(folio); 1023 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1024 start = folio_next_index(folio); 1025 if (same_folio) 1026 end = folio->index; 1027 } 1028 folio_unlock(folio); 1029 folio_put(folio); 1030 folio = NULL; 1031 } 1032 1033 if (!same_folio) 1034 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1035 if (folio) { 1036 folio_mark_dirty(folio); 1037 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1038 end = folio->index; 1039 folio_unlock(folio); 1040 folio_put(folio); 1041 } 1042 1043 whole_folios: 1044 1045 index = start; 1046 while (index < end) { 1047 cond_resched(); 1048 1049 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1050 indices)) { 1051 /* If all gone or hole-punch or unfalloc, we're done */ 1052 if (index == start || end != -1) 1053 break; 1054 /* But if truncating, restart to make sure all gone */ 1055 index = start; 1056 continue; 1057 } 1058 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1059 folio = fbatch.folios[i]; 1060 1061 if (xa_is_value(folio)) { 1062 if (unfalloc) 1063 continue; 1064 if (shmem_free_swap(mapping, indices[i], folio)) { 1065 /* Swap was replaced by page: retry */ 1066 index = indices[i]; 1067 break; 1068 } 1069 nr_swaps_freed++; 1070 continue; 1071 } 1072 1073 folio_lock(folio); 1074 1075 if (!unfalloc || !folio_test_uptodate(folio)) { 1076 if (folio_mapping(folio) != mapping) { 1077 /* Page was replaced by swap: retry */ 1078 folio_unlock(folio); 1079 index = indices[i]; 1080 break; 1081 } 1082 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1083 folio); 1084 1085 if (!folio_test_large(folio)) { 1086 truncate_inode_folio(mapping, folio); 1087 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1088 /* 1089 * If we split a page, reset the loop so 1090 * that we pick up the new sub pages. 1091 * Otherwise the THP was entirely 1092 * dropped or the target range was 1093 * zeroed, so just continue the loop as 1094 * is. 1095 */ 1096 if (!folio_test_large(folio)) { 1097 folio_unlock(folio); 1098 index = start; 1099 break; 1100 } 1101 } 1102 } 1103 folio_unlock(folio); 1104 } 1105 folio_batch_remove_exceptionals(&fbatch); 1106 folio_batch_release(&fbatch); 1107 } 1108 1109 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1110 } 1111 1112 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1113 { 1114 shmem_undo_range(inode, lstart, lend, false); 1115 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1116 inode_inc_iversion(inode); 1117 } 1118 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1119 1120 static int shmem_getattr(struct mnt_idmap *idmap, 1121 const struct path *path, struct kstat *stat, 1122 u32 request_mask, unsigned int query_flags) 1123 { 1124 struct inode *inode = path->dentry->d_inode; 1125 struct shmem_inode_info *info = SHMEM_I(inode); 1126 1127 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1128 shmem_recalc_inode(inode, 0, 0); 1129 1130 if (info->fsflags & FS_APPEND_FL) 1131 stat->attributes |= STATX_ATTR_APPEND; 1132 if (info->fsflags & FS_IMMUTABLE_FL) 1133 stat->attributes |= STATX_ATTR_IMMUTABLE; 1134 if (info->fsflags & FS_NODUMP_FL) 1135 stat->attributes |= STATX_ATTR_NODUMP; 1136 stat->attributes_mask |= (STATX_ATTR_APPEND | 1137 STATX_ATTR_IMMUTABLE | 1138 STATX_ATTR_NODUMP); 1139 generic_fillattr(idmap, request_mask, inode, stat); 1140 1141 if (shmem_is_huge(inode, 0, false, NULL, 0)) 1142 stat->blksize = HPAGE_PMD_SIZE; 1143 1144 if (request_mask & STATX_BTIME) { 1145 stat->result_mask |= STATX_BTIME; 1146 stat->btime.tv_sec = info->i_crtime.tv_sec; 1147 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1148 } 1149 1150 return 0; 1151 } 1152 1153 static int shmem_setattr(struct mnt_idmap *idmap, 1154 struct dentry *dentry, struct iattr *attr) 1155 { 1156 struct inode *inode = d_inode(dentry); 1157 struct shmem_inode_info *info = SHMEM_I(inode); 1158 int error; 1159 bool update_mtime = false; 1160 bool update_ctime = true; 1161 1162 error = setattr_prepare(idmap, dentry, attr); 1163 if (error) 1164 return error; 1165 1166 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1167 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1168 return -EPERM; 1169 } 1170 } 1171 1172 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1173 loff_t oldsize = inode->i_size; 1174 loff_t newsize = attr->ia_size; 1175 1176 /* protected by i_rwsem */ 1177 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1178 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1179 return -EPERM; 1180 1181 if (newsize != oldsize) { 1182 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1183 oldsize, newsize); 1184 if (error) 1185 return error; 1186 i_size_write(inode, newsize); 1187 update_mtime = true; 1188 } else { 1189 update_ctime = false; 1190 } 1191 if (newsize <= oldsize) { 1192 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1193 if (oldsize > holebegin) 1194 unmap_mapping_range(inode->i_mapping, 1195 holebegin, 0, 1); 1196 if (info->alloced) 1197 shmem_truncate_range(inode, 1198 newsize, (loff_t)-1); 1199 /* unmap again to remove racily COWed private pages */ 1200 if (oldsize > holebegin) 1201 unmap_mapping_range(inode->i_mapping, 1202 holebegin, 0, 1); 1203 } 1204 } 1205 1206 if (is_quota_modification(idmap, inode, attr)) { 1207 error = dquot_initialize(inode); 1208 if (error) 1209 return error; 1210 } 1211 1212 /* Transfer quota accounting */ 1213 if (i_uid_needs_update(idmap, attr, inode) || 1214 i_gid_needs_update(idmap, attr, inode)) { 1215 error = dquot_transfer(idmap, inode, attr); 1216 if (error) 1217 return error; 1218 } 1219 1220 setattr_copy(idmap, inode, attr); 1221 if (attr->ia_valid & ATTR_MODE) 1222 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1223 if (!error && update_ctime) { 1224 inode_set_ctime_current(inode); 1225 if (update_mtime) 1226 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1227 inode_inc_iversion(inode); 1228 } 1229 return error; 1230 } 1231 1232 static void shmem_evict_inode(struct inode *inode) 1233 { 1234 struct shmem_inode_info *info = SHMEM_I(inode); 1235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1236 size_t freed = 0; 1237 1238 if (shmem_mapping(inode->i_mapping)) { 1239 shmem_unacct_size(info->flags, inode->i_size); 1240 inode->i_size = 0; 1241 mapping_set_exiting(inode->i_mapping); 1242 shmem_truncate_range(inode, 0, (loff_t)-1); 1243 if (!list_empty(&info->shrinklist)) { 1244 spin_lock(&sbinfo->shrinklist_lock); 1245 if (!list_empty(&info->shrinklist)) { 1246 list_del_init(&info->shrinklist); 1247 sbinfo->shrinklist_len--; 1248 } 1249 spin_unlock(&sbinfo->shrinklist_lock); 1250 } 1251 while (!list_empty(&info->swaplist)) { 1252 /* Wait while shmem_unuse() is scanning this inode... */ 1253 wait_var_event(&info->stop_eviction, 1254 !atomic_read(&info->stop_eviction)); 1255 mutex_lock(&shmem_swaplist_mutex); 1256 /* ...but beware of the race if we peeked too early */ 1257 if (!atomic_read(&info->stop_eviction)) 1258 list_del_init(&info->swaplist); 1259 mutex_unlock(&shmem_swaplist_mutex); 1260 } 1261 } 1262 1263 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1264 shmem_free_inode(inode->i_sb, freed); 1265 WARN_ON(inode->i_blocks); 1266 clear_inode(inode); 1267 #ifdef CONFIG_TMPFS_QUOTA 1268 dquot_free_inode(inode); 1269 dquot_drop(inode); 1270 #endif 1271 } 1272 1273 static int shmem_find_swap_entries(struct address_space *mapping, 1274 pgoff_t start, struct folio_batch *fbatch, 1275 pgoff_t *indices, unsigned int type) 1276 { 1277 XA_STATE(xas, &mapping->i_pages, start); 1278 struct folio *folio; 1279 swp_entry_t entry; 1280 1281 rcu_read_lock(); 1282 xas_for_each(&xas, folio, ULONG_MAX) { 1283 if (xas_retry(&xas, folio)) 1284 continue; 1285 1286 if (!xa_is_value(folio)) 1287 continue; 1288 1289 entry = radix_to_swp_entry(folio); 1290 /* 1291 * swapin error entries can be found in the mapping. But they're 1292 * deliberately ignored here as we've done everything we can do. 1293 */ 1294 if (swp_type(entry) != type) 1295 continue; 1296 1297 indices[folio_batch_count(fbatch)] = xas.xa_index; 1298 if (!folio_batch_add(fbatch, folio)) 1299 break; 1300 1301 if (need_resched()) { 1302 xas_pause(&xas); 1303 cond_resched_rcu(); 1304 } 1305 } 1306 rcu_read_unlock(); 1307 1308 return xas.xa_index; 1309 } 1310 1311 /* 1312 * Move the swapped pages for an inode to page cache. Returns the count 1313 * of pages swapped in, or the error in case of failure. 1314 */ 1315 static int shmem_unuse_swap_entries(struct inode *inode, 1316 struct folio_batch *fbatch, pgoff_t *indices) 1317 { 1318 int i = 0; 1319 int ret = 0; 1320 int error = 0; 1321 struct address_space *mapping = inode->i_mapping; 1322 1323 for (i = 0; i < folio_batch_count(fbatch); i++) { 1324 struct folio *folio = fbatch->folios[i]; 1325 1326 if (!xa_is_value(folio)) 1327 continue; 1328 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1329 mapping_gfp_mask(mapping), NULL, NULL); 1330 if (error == 0) { 1331 folio_unlock(folio); 1332 folio_put(folio); 1333 ret++; 1334 } 1335 if (error == -ENOMEM) 1336 break; 1337 error = 0; 1338 } 1339 return error ? error : ret; 1340 } 1341 1342 /* 1343 * If swap found in inode, free it and move page from swapcache to filecache. 1344 */ 1345 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1346 { 1347 struct address_space *mapping = inode->i_mapping; 1348 pgoff_t start = 0; 1349 struct folio_batch fbatch; 1350 pgoff_t indices[PAGEVEC_SIZE]; 1351 int ret = 0; 1352 1353 do { 1354 folio_batch_init(&fbatch); 1355 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1356 if (folio_batch_count(&fbatch) == 0) { 1357 ret = 0; 1358 break; 1359 } 1360 1361 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1362 if (ret < 0) 1363 break; 1364 1365 start = indices[folio_batch_count(&fbatch) - 1]; 1366 } while (true); 1367 1368 return ret; 1369 } 1370 1371 /* 1372 * Read all the shared memory data that resides in the swap 1373 * device 'type' back into memory, so the swap device can be 1374 * unused. 1375 */ 1376 int shmem_unuse(unsigned int type) 1377 { 1378 struct shmem_inode_info *info, *next; 1379 int error = 0; 1380 1381 if (list_empty(&shmem_swaplist)) 1382 return 0; 1383 1384 mutex_lock(&shmem_swaplist_mutex); 1385 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1386 if (!info->swapped) { 1387 list_del_init(&info->swaplist); 1388 continue; 1389 } 1390 /* 1391 * Drop the swaplist mutex while searching the inode for swap; 1392 * but before doing so, make sure shmem_evict_inode() will not 1393 * remove placeholder inode from swaplist, nor let it be freed 1394 * (igrab() would protect from unlink, but not from unmount). 1395 */ 1396 atomic_inc(&info->stop_eviction); 1397 mutex_unlock(&shmem_swaplist_mutex); 1398 1399 error = shmem_unuse_inode(&info->vfs_inode, type); 1400 cond_resched(); 1401 1402 mutex_lock(&shmem_swaplist_mutex); 1403 next = list_next_entry(info, swaplist); 1404 if (!info->swapped) 1405 list_del_init(&info->swaplist); 1406 if (atomic_dec_and_test(&info->stop_eviction)) 1407 wake_up_var(&info->stop_eviction); 1408 if (error) 1409 break; 1410 } 1411 mutex_unlock(&shmem_swaplist_mutex); 1412 1413 return error; 1414 } 1415 1416 /* 1417 * Move the page from the page cache to the swap cache. 1418 */ 1419 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1420 { 1421 struct folio *folio = page_folio(page); 1422 struct address_space *mapping = folio->mapping; 1423 struct inode *inode = mapping->host; 1424 struct shmem_inode_info *info = SHMEM_I(inode); 1425 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1426 swp_entry_t swap; 1427 pgoff_t index; 1428 1429 /* 1430 * Our capabilities prevent regular writeback or sync from ever calling 1431 * shmem_writepage; but a stacking filesystem might use ->writepage of 1432 * its underlying filesystem, in which case tmpfs should write out to 1433 * swap only in response to memory pressure, and not for the writeback 1434 * threads or sync. 1435 */ 1436 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1437 goto redirty; 1438 1439 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap)) 1440 goto redirty; 1441 1442 if (!total_swap_pages) 1443 goto redirty; 1444 1445 /* 1446 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1447 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1448 * and its shmem_writeback() needs them to be split when swapping. 1449 */ 1450 if (folio_test_large(folio)) { 1451 /* Ensure the subpages are still dirty */ 1452 folio_test_set_dirty(folio); 1453 if (split_huge_page(page) < 0) 1454 goto redirty; 1455 folio = page_folio(page); 1456 folio_clear_dirty(folio); 1457 } 1458 1459 index = folio->index; 1460 1461 /* 1462 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1463 * value into swapfile.c, the only way we can correctly account for a 1464 * fallocated folio arriving here is now to initialize it and write it. 1465 * 1466 * That's okay for a folio already fallocated earlier, but if we have 1467 * not yet completed the fallocation, then (a) we want to keep track 1468 * of this folio in case we have to undo it, and (b) it may not be a 1469 * good idea to continue anyway, once we're pushing into swap. So 1470 * reactivate the folio, and let shmem_fallocate() quit when too many. 1471 */ 1472 if (!folio_test_uptodate(folio)) { 1473 if (inode->i_private) { 1474 struct shmem_falloc *shmem_falloc; 1475 spin_lock(&inode->i_lock); 1476 shmem_falloc = inode->i_private; 1477 if (shmem_falloc && 1478 !shmem_falloc->waitq && 1479 index >= shmem_falloc->start && 1480 index < shmem_falloc->next) 1481 shmem_falloc->nr_unswapped++; 1482 else 1483 shmem_falloc = NULL; 1484 spin_unlock(&inode->i_lock); 1485 if (shmem_falloc) 1486 goto redirty; 1487 } 1488 folio_zero_range(folio, 0, folio_size(folio)); 1489 flush_dcache_folio(folio); 1490 folio_mark_uptodate(folio); 1491 } 1492 1493 swap = folio_alloc_swap(folio); 1494 if (!swap.val) 1495 goto redirty; 1496 1497 /* 1498 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1499 * if it's not already there. Do it now before the folio is 1500 * moved to swap cache, when its pagelock no longer protects 1501 * the inode from eviction. But don't unlock the mutex until 1502 * we've incremented swapped, because shmem_unuse_inode() will 1503 * prune a !swapped inode from the swaplist under this mutex. 1504 */ 1505 mutex_lock(&shmem_swaplist_mutex); 1506 if (list_empty(&info->swaplist)) 1507 list_add(&info->swaplist, &shmem_swaplist); 1508 1509 if (add_to_swap_cache(folio, swap, 1510 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1511 NULL) == 0) { 1512 shmem_recalc_inode(inode, 0, 1); 1513 swap_shmem_alloc(swap); 1514 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1515 1516 mutex_unlock(&shmem_swaplist_mutex); 1517 BUG_ON(folio_mapped(folio)); 1518 return swap_writepage(&folio->page, wbc); 1519 } 1520 1521 mutex_unlock(&shmem_swaplist_mutex); 1522 put_swap_folio(folio, swap); 1523 redirty: 1524 folio_mark_dirty(folio); 1525 if (wbc->for_reclaim) 1526 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1527 folio_unlock(folio); 1528 return 0; 1529 } 1530 1531 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1532 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1533 { 1534 char buffer[64]; 1535 1536 if (!mpol || mpol->mode == MPOL_DEFAULT) 1537 return; /* show nothing */ 1538 1539 mpol_to_str(buffer, sizeof(buffer), mpol); 1540 1541 seq_printf(seq, ",mpol=%s", buffer); 1542 } 1543 1544 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1545 { 1546 struct mempolicy *mpol = NULL; 1547 if (sbinfo->mpol) { 1548 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1549 mpol = sbinfo->mpol; 1550 mpol_get(mpol); 1551 raw_spin_unlock(&sbinfo->stat_lock); 1552 } 1553 return mpol; 1554 } 1555 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1556 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1557 { 1558 } 1559 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1560 { 1561 return NULL; 1562 } 1563 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1564 1565 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1566 pgoff_t index, unsigned int order, pgoff_t *ilx); 1567 1568 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1569 struct shmem_inode_info *info, pgoff_t index) 1570 { 1571 struct mempolicy *mpol; 1572 pgoff_t ilx; 1573 struct folio *folio; 1574 1575 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1576 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1577 mpol_cond_put(mpol); 1578 1579 return folio; 1580 } 1581 1582 /* 1583 * Make sure huge_gfp is always more limited than limit_gfp. 1584 * Some of the flags set permissions, while others set limitations. 1585 */ 1586 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1587 { 1588 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1589 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1590 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1591 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1592 1593 /* Allow allocations only from the originally specified zones. */ 1594 result |= zoneflags; 1595 1596 /* 1597 * Minimize the result gfp by taking the union with the deny flags, 1598 * and the intersection of the allow flags. 1599 */ 1600 result |= (limit_gfp & denyflags); 1601 result |= (huge_gfp & limit_gfp) & allowflags; 1602 1603 return result; 1604 } 1605 1606 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1607 struct shmem_inode_info *info, pgoff_t index) 1608 { 1609 struct mempolicy *mpol; 1610 pgoff_t ilx; 1611 struct page *page; 1612 1613 mpol = shmem_get_pgoff_policy(info, index, HPAGE_PMD_ORDER, &ilx); 1614 page = alloc_pages_mpol(gfp, HPAGE_PMD_ORDER, mpol, ilx, numa_node_id()); 1615 mpol_cond_put(mpol); 1616 1617 return page_rmappable_folio(page); 1618 } 1619 1620 static struct folio *shmem_alloc_folio(gfp_t gfp, 1621 struct shmem_inode_info *info, pgoff_t index) 1622 { 1623 struct mempolicy *mpol; 1624 pgoff_t ilx; 1625 struct page *page; 1626 1627 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1628 page = alloc_pages_mpol(gfp, 0, mpol, ilx, numa_node_id()); 1629 mpol_cond_put(mpol); 1630 1631 return (struct folio *)page; 1632 } 1633 1634 static struct folio *shmem_alloc_and_add_folio(gfp_t gfp, 1635 struct inode *inode, pgoff_t index, 1636 struct mm_struct *fault_mm, bool huge) 1637 { 1638 struct address_space *mapping = inode->i_mapping; 1639 struct shmem_inode_info *info = SHMEM_I(inode); 1640 struct folio *folio; 1641 long pages; 1642 int error; 1643 1644 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1645 huge = false; 1646 1647 if (huge) { 1648 pages = HPAGE_PMD_NR; 1649 index = round_down(index, HPAGE_PMD_NR); 1650 1651 /* 1652 * Check for conflict before waiting on a huge allocation. 1653 * Conflict might be that a huge page has just been allocated 1654 * and added to page cache by a racing thread, or that there 1655 * is already at least one small page in the huge extent. 1656 * Be careful to retry when appropriate, but not forever! 1657 * Elsewhere -EEXIST would be the right code, but not here. 1658 */ 1659 if (xa_find(&mapping->i_pages, &index, 1660 index + HPAGE_PMD_NR - 1, XA_PRESENT)) 1661 return ERR_PTR(-E2BIG); 1662 1663 folio = shmem_alloc_hugefolio(gfp, info, index); 1664 if (!folio) 1665 count_vm_event(THP_FILE_FALLBACK); 1666 } else { 1667 pages = 1; 1668 folio = shmem_alloc_folio(gfp, info, index); 1669 } 1670 if (!folio) 1671 return ERR_PTR(-ENOMEM); 1672 1673 __folio_set_locked(folio); 1674 __folio_set_swapbacked(folio); 1675 1676 gfp &= GFP_RECLAIM_MASK; 1677 error = mem_cgroup_charge(folio, fault_mm, gfp); 1678 if (error) { 1679 if (xa_find(&mapping->i_pages, &index, 1680 index + pages - 1, XA_PRESENT)) { 1681 error = -EEXIST; 1682 } else if (huge) { 1683 count_vm_event(THP_FILE_FALLBACK); 1684 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1685 } 1686 goto unlock; 1687 } 1688 1689 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1690 if (error) 1691 goto unlock; 1692 1693 error = shmem_inode_acct_blocks(inode, pages); 1694 if (error) { 1695 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1696 long freed; 1697 /* 1698 * Try to reclaim some space by splitting a few 1699 * large folios beyond i_size on the filesystem. 1700 */ 1701 shmem_unused_huge_shrink(sbinfo, NULL, 2); 1702 /* 1703 * And do a shmem_recalc_inode() to account for freed pages: 1704 * except our folio is there in cache, so not quite balanced. 1705 */ 1706 spin_lock(&info->lock); 1707 freed = pages + info->alloced - info->swapped - 1708 READ_ONCE(mapping->nrpages); 1709 if (freed > 0) 1710 info->alloced -= freed; 1711 spin_unlock(&info->lock); 1712 if (freed > 0) 1713 shmem_inode_unacct_blocks(inode, freed); 1714 error = shmem_inode_acct_blocks(inode, pages); 1715 if (error) { 1716 filemap_remove_folio(folio); 1717 goto unlock; 1718 } 1719 } 1720 1721 shmem_recalc_inode(inode, pages, 0); 1722 folio_add_lru(folio); 1723 return folio; 1724 1725 unlock: 1726 folio_unlock(folio); 1727 folio_put(folio); 1728 return ERR_PTR(error); 1729 } 1730 1731 /* 1732 * When a page is moved from swapcache to shmem filecache (either by the 1733 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1734 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1735 * ignorance of the mapping it belongs to. If that mapping has special 1736 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1737 * we may need to copy to a suitable page before moving to filecache. 1738 * 1739 * In a future release, this may well be extended to respect cpuset and 1740 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1741 * but for now it is a simple matter of zone. 1742 */ 1743 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1744 { 1745 return folio_zonenum(folio) > gfp_zone(gfp); 1746 } 1747 1748 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1749 struct shmem_inode_info *info, pgoff_t index) 1750 { 1751 struct folio *old, *new; 1752 struct address_space *swap_mapping; 1753 swp_entry_t entry; 1754 pgoff_t swap_index; 1755 int error; 1756 1757 old = *foliop; 1758 entry = old->swap; 1759 swap_index = swp_offset(entry); 1760 swap_mapping = swap_address_space(entry); 1761 1762 /* 1763 * We have arrived here because our zones are constrained, so don't 1764 * limit chance of success by further cpuset and node constraints. 1765 */ 1766 gfp &= ~GFP_CONSTRAINT_MASK; 1767 VM_BUG_ON_FOLIO(folio_test_large(old), old); 1768 new = shmem_alloc_folio(gfp, info, index); 1769 if (!new) 1770 return -ENOMEM; 1771 1772 folio_get(new); 1773 folio_copy(new, old); 1774 flush_dcache_folio(new); 1775 1776 __folio_set_locked(new); 1777 __folio_set_swapbacked(new); 1778 folio_mark_uptodate(new); 1779 new->swap = entry; 1780 folio_set_swapcache(new); 1781 1782 /* 1783 * Our caller will very soon move newpage out of swapcache, but it's 1784 * a nice clean interface for us to replace oldpage by newpage there. 1785 */ 1786 xa_lock_irq(&swap_mapping->i_pages); 1787 error = shmem_replace_entry(swap_mapping, swap_index, old, new); 1788 if (!error) { 1789 mem_cgroup_migrate(old, new); 1790 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1); 1791 __lruvec_stat_mod_folio(new, NR_SHMEM, 1); 1792 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1); 1793 __lruvec_stat_mod_folio(old, NR_SHMEM, -1); 1794 } 1795 xa_unlock_irq(&swap_mapping->i_pages); 1796 1797 if (unlikely(error)) { 1798 /* 1799 * Is this possible? I think not, now that our callers check 1800 * both PageSwapCache and page_private after getting page lock; 1801 * but be defensive. Reverse old to newpage for clear and free. 1802 */ 1803 old = new; 1804 } else { 1805 folio_add_lru(new); 1806 *foliop = new; 1807 } 1808 1809 folio_clear_swapcache(old); 1810 old->private = NULL; 1811 1812 folio_unlock(old); 1813 folio_put_refs(old, 2); 1814 return error; 1815 } 1816 1817 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1818 struct folio *folio, swp_entry_t swap) 1819 { 1820 struct address_space *mapping = inode->i_mapping; 1821 swp_entry_t swapin_error; 1822 void *old; 1823 1824 swapin_error = make_poisoned_swp_entry(); 1825 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1826 swp_to_radix_entry(swap), 1827 swp_to_radix_entry(swapin_error), 0); 1828 if (old != swp_to_radix_entry(swap)) 1829 return; 1830 1831 folio_wait_writeback(folio); 1832 delete_from_swap_cache(folio); 1833 /* 1834 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 1835 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 1836 * in shmem_evict_inode(). 1837 */ 1838 shmem_recalc_inode(inode, -1, -1); 1839 swap_free(swap); 1840 } 1841 1842 /* 1843 * Swap in the folio pointed to by *foliop. 1844 * Caller has to make sure that *foliop contains a valid swapped folio. 1845 * Returns 0 and the folio in foliop if success. On failure, returns the 1846 * error code and NULL in *foliop. 1847 */ 1848 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1849 struct folio **foliop, enum sgp_type sgp, 1850 gfp_t gfp, struct mm_struct *fault_mm, 1851 vm_fault_t *fault_type) 1852 { 1853 struct address_space *mapping = inode->i_mapping; 1854 struct shmem_inode_info *info = SHMEM_I(inode); 1855 struct swap_info_struct *si; 1856 struct folio *folio = NULL; 1857 swp_entry_t swap; 1858 int error; 1859 1860 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1861 swap = radix_to_swp_entry(*foliop); 1862 *foliop = NULL; 1863 1864 if (is_poisoned_swp_entry(swap)) 1865 return -EIO; 1866 1867 si = get_swap_device(swap); 1868 if (!si) { 1869 if (!shmem_confirm_swap(mapping, index, swap)) 1870 return -EEXIST; 1871 else 1872 return -EINVAL; 1873 } 1874 1875 /* Look it up and read it in.. */ 1876 folio = swap_cache_get_folio(swap, NULL, 0); 1877 if (!folio) { 1878 /* Or update major stats only when swapin succeeds?? */ 1879 if (fault_type) { 1880 *fault_type |= VM_FAULT_MAJOR; 1881 count_vm_event(PGMAJFAULT); 1882 count_memcg_event_mm(fault_mm, PGMAJFAULT); 1883 } 1884 /* Here we actually start the io */ 1885 folio = shmem_swapin_cluster(swap, gfp, info, index); 1886 if (!folio) { 1887 error = -ENOMEM; 1888 goto failed; 1889 } 1890 } 1891 1892 /* We have to do this with folio locked to prevent races */ 1893 folio_lock(folio); 1894 if (!folio_test_swapcache(folio) || 1895 folio->swap.val != swap.val || 1896 !shmem_confirm_swap(mapping, index, swap)) { 1897 error = -EEXIST; 1898 goto unlock; 1899 } 1900 if (!folio_test_uptodate(folio)) { 1901 error = -EIO; 1902 goto failed; 1903 } 1904 folio_wait_writeback(folio); 1905 1906 /* 1907 * Some architectures may have to restore extra metadata to the 1908 * folio after reading from swap. 1909 */ 1910 arch_swap_restore(swap, folio); 1911 1912 if (shmem_should_replace_folio(folio, gfp)) { 1913 error = shmem_replace_folio(&folio, gfp, info, index); 1914 if (error) 1915 goto failed; 1916 } 1917 1918 error = shmem_add_to_page_cache(folio, mapping, index, 1919 swp_to_radix_entry(swap), gfp); 1920 if (error) 1921 goto failed; 1922 1923 shmem_recalc_inode(inode, 0, -1); 1924 1925 if (sgp == SGP_WRITE) 1926 folio_mark_accessed(folio); 1927 1928 delete_from_swap_cache(folio); 1929 folio_mark_dirty(folio); 1930 swap_free(swap); 1931 put_swap_device(si); 1932 1933 *foliop = folio; 1934 return 0; 1935 failed: 1936 if (!shmem_confirm_swap(mapping, index, swap)) 1937 error = -EEXIST; 1938 if (error == -EIO) 1939 shmem_set_folio_swapin_error(inode, index, folio, swap); 1940 unlock: 1941 if (folio) { 1942 folio_unlock(folio); 1943 folio_put(folio); 1944 } 1945 put_swap_device(si); 1946 1947 return error; 1948 } 1949 1950 /* 1951 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 1952 * 1953 * If we allocate a new one we do not mark it dirty. That's up to the 1954 * vm. If we swap it in we mark it dirty since we also free the swap 1955 * entry since a page cannot live in both the swap and page cache. 1956 * 1957 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 1958 */ 1959 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 1960 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 1961 struct vm_fault *vmf, vm_fault_t *fault_type) 1962 { 1963 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1964 struct mm_struct *fault_mm; 1965 struct folio *folio; 1966 int error; 1967 bool alloced; 1968 1969 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 1970 return -EINVAL; 1971 1972 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1973 return -EFBIG; 1974 repeat: 1975 if (sgp <= SGP_CACHE && 1976 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 1977 return -EINVAL; 1978 1979 alloced = false; 1980 fault_mm = vma ? vma->vm_mm : NULL; 1981 1982 folio = filemap_get_entry(inode->i_mapping, index); 1983 if (folio && vma && userfaultfd_minor(vma)) { 1984 if (!xa_is_value(folio)) 1985 folio_put(folio); 1986 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1987 return 0; 1988 } 1989 1990 if (xa_is_value(folio)) { 1991 error = shmem_swapin_folio(inode, index, &folio, 1992 sgp, gfp, fault_mm, fault_type); 1993 if (error == -EEXIST) 1994 goto repeat; 1995 1996 *foliop = folio; 1997 return error; 1998 } 1999 2000 if (folio) { 2001 folio_lock(folio); 2002 2003 /* Has the folio been truncated or swapped out? */ 2004 if (unlikely(folio->mapping != inode->i_mapping)) { 2005 folio_unlock(folio); 2006 folio_put(folio); 2007 goto repeat; 2008 } 2009 if (sgp == SGP_WRITE) 2010 folio_mark_accessed(folio); 2011 if (folio_test_uptodate(folio)) 2012 goto out; 2013 /* fallocated folio */ 2014 if (sgp != SGP_READ) 2015 goto clear; 2016 folio_unlock(folio); 2017 folio_put(folio); 2018 } 2019 2020 /* 2021 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2022 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2023 */ 2024 *foliop = NULL; 2025 if (sgp == SGP_READ) 2026 return 0; 2027 if (sgp == SGP_NOALLOC) 2028 return -ENOENT; 2029 2030 /* 2031 * Fast cache lookup and swap lookup did not find it: allocate. 2032 */ 2033 2034 if (vma && userfaultfd_missing(vma)) { 2035 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2036 return 0; 2037 } 2038 2039 if (shmem_is_huge(inode, index, false, fault_mm, 2040 vma ? vma->vm_flags : 0)) { 2041 gfp_t huge_gfp; 2042 2043 huge_gfp = vma_thp_gfp_mask(vma); 2044 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2045 folio = shmem_alloc_and_add_folio(huge_gfp, 2046 inode, index, fault_mm, true); 2047 if (!IS_ERR(folio)) { 2048 count_vm_event(THP_FILE_ALLOC); 2049 goto alloced; 2050 } 2051 if (PTR_ERR(folio) == -EEXIST) 2052 goto repeat; 2053 } 2054 2055 folio = shmem_alloc_and_add_folio(gfp, inode, index, fault_mm, false); 2056 if (IS_ERR(folio)) { 2057 error = PTR_ERR(folio); 2058 if (error == -EEXIST) 2059 goto repeat; 2060 folio = NULL; 2061 goto unlock; 2062 } 2063 2064 alloced: 2065 alloced = true; 2066 if (folio_test_pmd_mappable(folio) && 2067 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2068 folio_next_index(folio) - 1) { 2069 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2070 struct shmem_inode_info *info = SHMEM_I(inode); 2071 /* 2072 * Part of the large folio is beyond i_size: subject 2073 * to shrink under memory pressure. 2074 */ 2075 spin_lock(&sbinfo->shrinklist_lock); 2076 /* 2077 * _careful to defend against unlocked access to 2078 * ->shrink_list in shmem_unused_huge_shrink() 2079 */ 2080 if (list_empty_careful(&info->shrinklist)) { 2081 list_add_tail(&info->shrinklist, 2082 &sbinfo->shrinklist); 2083 sbinfo->shrinklist_len++; 2084 } 2085 spin_unlock(&sbinfo->shrinklist_lock); 2086 } 2087 2088 if (sgp == SGP_WRITE) 2089 folio_set_referenced(folio); 2090 /* 2091 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2092 */ 2093 if (sgp == SGP_FALLOC) 2094 sgp = SGP_WRITE; 2095 clear: 2096 /* 2097 * Let SGP_WRITE caller clear ends if write does not fill folio; 2098 * but SGP_FALLOC on a folio fallocated earlier must initialize 2099 * it now, lest undo on failure cancel our earlier guarantee. 2100 */ 2101 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2102 long i, n = folio_nr_pages(folio); 2103 2104 for (i = 0; i < n; i++) 2105 clear_highpage(folio_page(folio, i)); 2106 flush_dcache_folio(folio); 2107 folio_mark_uptodate(folio); 2108 } 2109 2110 /* Perhaps the file has been truncated since we checked */ 2111 if (sgp <= SGP_CACHE && 2112 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2113 error = -EINVAL; 2114 goto unlock; 2115 } 2116 out: 2117 *foliop = folio; 2118 return 0; 2119 2120 /* 2121 * Error recovery. 2122 */ 2123 unlock: 2124 if (alloced) 2125 filemap_remove_folio(folio); 2126 shmem_recalc_inode(inode, 0, 0); 2127 if (folio) { 2128 folio_unlock(folio); 2129 folio_put(folio); 2130 } 2131 return error; 2132 } 2133 2134 /** 2135 * shmem_get_folio - find, and lock a shmem folio. 2136 * @inode: inode to search 2137 * @index: the page index. 2138 * @foliop: pointer to the folio if found 2139 * @sgp: SGP_* flags to control behavior 2140 * 2141 * Looks up the page cache entry at @inode & @index. If a folio is 2142 * present, it is returned locked with an increased refcount. 2143 * 2144 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2145 * before unlocking the folio to ensure that the folio is not reclaimed. 2146 * There is no need to reserve space before calling folio_mark_dirty(). 2147 * 2148 * When no folio is found, the behavior depends on @sgp: 2149 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2150 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2151 * - for all other flags a new folio is allocated, inserted into the 2152 * page cache and returned locked in @foliop. 2153 * 2154 * Context: May sleep. 2155 * Return: 0 if successful, else a negative error code. 2156 */ 2157 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop, 2158 enum sgp_type sgp) 2159 { 2160 return shmem_get_folio_gfp(inode, index, foliop, sgp, 2161 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2162 } 2163 EXPORT_SYMBOL_GPL(shmem_get_folio); 2164 2165 /* 2166 * This is like autoremove_wake_function, but it removes the wait queue 2167 * entry unconditionally - even if something else had already woken the 2168 * target. 2169 */ 2170 static int synchronous_wake_function(wait_queue_entry_t *wait, 2171 unsigned int mode, int sync, void *key) 2172 { 2173 int ret = default_wake_function(wait, mode, sync, key); 2174 list_del_init(&wait->entry); 2175 return ret; 2176 } 2177 2178 /* 2179 * Trinity finds that probing a hole which tmpfs is punching can 2180 * prevent the hole-punch from ever completing: which in turn 2181 * locks writers out with its hold on i_rwsem. So refrain from 2182 * faulting pages into the hole while it's being punched. Although 2183 * shmem_undo_range() does remove the additions, it may be unable to 2184 * keep up, as each new page needs its own unmap_mapping_range() call, 2185 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2186 * 2187 * It does not matter if we sometimes reach this check just before the 2188 * hole-punch begins, so that one fault then races with the punch: 2189 * we just need to make racing faults a rare case. 2190 * 2191 * The implementation below would be much simpler if we just used a 2192 * standard mutex or completion: but we cannot take i_rwsem in fault, 2193 * and bloating every shmem inode for this unlikely case would be sad. 2194 */ 2195 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2196 { 2197 struct shmem_falloc *shmem_falloc; 2198 struct file *fpin = NULL; 2199 vm_fault_t ret = 0; 2200 2201 spin_lock(&inode->i_lock); 2202 shmem_falloc = inode->i_private; 2203 if (shmem_falloc && 2204 shmem_falloc->waitq && 2205 vmf->pgoff >= shmem_falloc->start && 2206 vmf->pgoff < shmem_falloc->next) { 2207 wait_queue_head_t *shmem_falloc_waitq; 2208 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2209 2210 ret = VM_FAULT_NOPAGE; 2211 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2212 shmem_falloc_waitq = shmem_falloc->waitq; 2213 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2214 TASK_UNINTERRUPTIBLE); 2215 spin_unlock(&inode->i_lock); 2216 schedule(); 2217 2218 /* 2219 * shmem_falloc_waitq points into the shmem_fallocate() 2220 * stack of the hole-punching task: shmem_falloc_waitq 2221 * is usually invalid by the time we reach here, but 2222 * finish_wait() does not dereference it in that case; 2223 * though i_lock needed lest racing with wake_up_all(). 2224 */ 2225 spin_lock(&inode->i_lock); 2226 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2227 } 2228 spin_unlock(&inode->i_lock); 2229 if (fpin) { 2230 fput(fpin); 2231 ret = VM_FAULT_RETRY; 2232 } 2233 return ret; 2234 } 2235 2236 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2237 { 2238 struct inode *inode = file_inode(vmf->vma->vm_file); 2239 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2240 struct folio *folio = NULL; 2241 vm_fault_t ret = 0; 2242 int err; 2243 2244 /* 2245 * Trinity finds that probing a hole which tmpfs is punching can 2246 * prevent the hole-punch from ever completing: noted in i_private. 2247 */ 2248 if (unlikely(inode->i_private)) { 2249 ret = shmem_falloc_wait(vmf, inode); 2250 if (ret) 2251 return ret; 2252 } 2253 2254 WARN_ON_ONCE(vmf->page != NULL); 2255 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, 2256 gfp, vmf, &ret); 2257 if (err) 2258 return vmf_error(err); 2259 if (folio) { 2260 vmf->page = folio_file_page(folio, vmf->pgoff); 2261 ret |= VM_FAULT_LOCKED; 2262 } 2263 return ret; 2264 } 2265 2266 unsigned long shmem_get_unmapped_area(struct file *file, 2267 unsigned long uaddr, unsigned long len, 2268 unsigned long pgoff, unsigned long flags) 2269 { 2270 unsigned long (*get_area)(struct file *, 2271 unsigned long, unsigned long, unsigned long, unsigned long); 2272 unsigned long addr; 2273 unsigned long offset; 2274 unsigned long inflated_len; 2275 unsigned long inflated_addr; 2276 unsigned long inflated_offset; 2277 2278 if (len > TASK_SIZE) 2279 return -ENOMEM; 2280 2281 get_area = current->mm->get_unmapped_area; 2282 addr = get_area(file, uaddr, len, pgoff, flags); 2283 2284 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2285 return addr; 2286 if (IS_ERR_VALUE(addr)) 2287 return addr; 2288 if (addr & ~PAGE_MASK) 2289 return addr; 2290 if (addr > TASK_SIZE - len) 2291 return addr; 2292 2293 if (shmem_huge == SHMEM_HUGE_DENY) 2294 return addr; 2295 if (len < HPAGE_PMD_SIZE) 2296 return addr; 2297 if (flags & MAP_FIXED) 2298 return addr; 2299 /* 2300 * Our priority is to support MAP_SHARED mapped hugely; 2301 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2302 * But if caller specified an address hint and we allocated area there 2303 * successfully, respect that as before. 2304 */ 2305 if (uaddr == addr) 2306 return addr; 2307 2308 if (shmem_huge != SHMEM_HUGE_FORCE) { 2309 struct super_block *sb; 2310 2311 if (file) { 2312 VM_BUG_ON(file->f_op != &shmem_file_operations); 2313 sb = file_inode(file)->i_sb; 2314 } else { 2315 /* 2316 * Called directly from mm/mmap.c, or drivers/char/mem.c 2317 * for "/dev/zero", to create a shared anonymous object. 2318 */ 2319 if (IS_ERR(shm_mnt)) 2320 return addr; 2321 sb = shm_mnt->mnt_sb; 2322 } 2323 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2324 return addr; 2325 } 2326 2327 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2328 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2329 return addr; 2330 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2331 return addr; 2332 2333 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2334 if (inflated_len > TASK_SIZE) 2335 return addr; 2336 if (inflated_len < len) 2337 return addr; 2338 2339 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2340 if (IS_ERR_VALUE(inflated_addr)) 2341 return addr; 2342 if (inflated_addr & ~PAGE_MASK) 2343 return addr; 2344 2345 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2346 inflated_addr += offset - inflated_offset; 2347 if (inflated_offset > offset) 2348 inflated_addr += HPAGE_PMD_SIZE; 2349 2350 if (inflated_addr > TASK_SIZE - len) 2351 return addr; 2352 return inflated_addr; 2353 } 2354 2355 #ifdef CONFIG_NUMA 2356 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2357 { 2358 struct inode *inode = file_inode(vma->vm_file); 2359 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2360 } 2361 2362 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2363 unsigned long addr, pgoff_t *ilx) 2364 { 2365 struct inode *inode = file_inode(vma->vm_file); 2366 pgoff_t index; 2367 2368 /* 2369 * Bias interleave by inode number to distribute better across nodes; 2370 * but this interface is independent of which page order is used, so 2371 * supplies only that bias, letting caller apply the offset (adjusted 2372 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2373 */ 2374 *ilx = inode->i_ino; 2375 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2376 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2377 } 2378 2379 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2380 pgoff_t index, unsigned int order, pgoff_t *ilx) 2381 { 2382 struct mempolicy *mpol; 2383 2384 /* Bias interleave by inode number to distribute better across nodes */ 2385 *ilx = info->vfs_inode.i_ino + (index >> order); 2386 2387 mpol = mpol_shared_policy_lookup(&info->policy, index); 2388 return mpol ? mpol : get_task_policy(current); 2389 } 2390 #else 2391 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2392 pgoff_t index, unsigned int order, pgoff_t *ilx) 2393 { 2394 *ilx = 0; 2395 return NULL; 2396 } 2397 #endif /* CONFIG_NUMA */ 2398 2399 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2400 { 2401 struct inode *inode = file_inode(file); 2402 struct shmem_inode_info *info = SHMEM_I(inode); 2403 int retval = -ENOMEM; 2404 2405 /* 2406 * What serializes the accesses to info->flags? 2407 * ipc_lock_object() when called from shmctl_do_lock(), 2408 * no serialization needed when called from shm_destroy(). 2409 */ 2410 if (lock && !(info->flags & VM_LOCKED)) { 2411 if (!user_shm_lock(inode->i_size, ucounts)) 2412 goto out_nomem; 2413 info->flags |= VM_LOCKED; 2414 mapping_set_unevictable(file->f_mapping); 2415 } 2416 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2417 user_shm_unlock(inode->i_size, ucounts); 2418 info->flags &= ~VM_LOCKED; 2419 mapping_clear_unevictable(file->f_mapping); 2420 } 2421 retval = 0; 2422 2423 out_nomem: 2424 return retval; 2425 } 2426 2427 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2428 { 2429 struct inode *inode = file_inode(file); 2430 struct shmem_inode_info *info = SHMEM_I(inode); 2431 int ret; 2432 2433 ret = seal_check_write(info->seals, vma); 2434 if (ret) 2435 return ret; 2436 2437 /* arm64 - allow memory tagging on RAM-based files */ 2438 vm_flags_set(vma, VM_MTE_ALLOWED); 2439 2440 file_accessed(file); 2441 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2442 if (inode->i_nlink) 2443 vma->vm_ops = &shmem_vm_ops; 2444 else 2445 vma->vm_ops = &shmem_anon_vm_ops; 2446 return 0; 2447 } 2448 2449 static int shmem_file_open(struct inode *inode, struct file *file) 2450 { 2451 file->f_mode |= FMODE_CAN_ODIRECT; 2452 return generic_file_open(inode, file); 2453 } 2454 2455 #ifdef CONFIG_TMPFS_XATTR 2456 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2457 2458 /* 2459 * chattr's fsflags are unrelated to extended attributes, 2460 * but tmpfs has chosen to enable them under the same config option. 2461 */ 2462 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2463 { 2464 unsigned int i_flags = 0; 2465 2466 if (fsflags & FS_NOATIME_FL) 2467 i_flags |= S_NOATIME; 2468 if (fsflags & FS_APPEND_FL) 2469 i_flags |= S_APPEND; 2470 if (fsflags & FS_IMMUTABLE_FL) 2471 i_flags |= S_IMMUTABLE; 2472 /* 2473 * But FS_NODUMP_FL does not require any action in i_flags. 2474 */ 2475 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2476 } 2477 #else 2478 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2479 { 2480 } 2481 #define shmem_initxattrs NULL 2482 #endif 2483 2484 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 2485 { 2486 return &SHMEM_I(inode)->dir_offsets; 2487 } 2488 2489 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 2490 struct super_block *sb, 2491 struct inode *dir, umode_t mode, 2492 dev_t dev, unsigned long flags) 2493 { 2494 struct inode *inode; 2495 struct shmem_inode_info *info; 2496 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2497 ino_t ino; 2498 int err; 2499 2500 err = shmem_reserve_inode(sb, &ino); 2501 if (err) 2502 return ERR_PTR(err); 2503 2504 inode = new_inode(sb); 2505 if (!inode) { 2506 shmem_free_inode(sb, 0); 2507 return ERR_PTR(-ENOSPC); 2508 } 2509 2510 inode->i_ino = ino; 2511 inode_init_owner(idmap, inode, dir, mode); 2512 inode->i_blocks = 0; 2513 simple_inode_init_ts(inode); 2514 inode->i_generation = get_random_u32(); 2515 info = SHMEM_I(inode); 2516 memset(info, 0, (char *)inode - (char *)info); 2517 spin_lock_init(&info->lock); 2518 atomic_set(&info->stop_eviction, 0); 2519 info->seals = F_SEAL_SEAL; 2520 info->flags = flags & VM_NORESERVE; 2521 info->i_crtime = inode_get_mtime(inode); 2522 info->fsflags = (dir == NULL) ? 0 : 2523 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2524 if (info->fsflags) 2525 shmem_set_inode_flags(inode, info->fsflags); 2526 INIT_LIST_HEAD(&info->shrinklist); 2527 INIT_LIST_HEAD(&info->swaplist); 2528 simple_xattrs_init(&info->xattrs); 2529 cache_no_acl(inode); 2530 if (sbinfo->noswap) 2531 mapping_set_unevictable(inode->i_mapping); 2532 mapping_set_large_folios(inode->i_mapping); 2533 2534 switch (mode & S_IFMT) { 2535 default: 2536 inode->i_op = &shmem_special_inode_operations; 2537 init_special_inode(inode, mode, dev); 2538 break; 2539 case S_IFREG: 2540 inode->i_mapping->a_ops = &shmem_aops; 2541 inode->i_op = &shmem_inode_operations; 2542 inode->i_fop = &shmem_file_operations; 2543 mpol_shared_policy_init(&info->policy, 2544 shmem_get_sbmpol(sbinfo)); 2545 break; 2546 case S_IFDIR: 2547 inc_nlink(inode); 2548 /* Some things misbehave if size == 0 on a directory */ 2549 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2550 inode->i_op = &shmem_dir_inode_operations; 2551 inode->i_fop = &simple_offset_dir_operations; 2552 simple_offset_init(shmem_get_offset_ctx(inode)); 2553 break; 2554 case S_IFLNK: 2555 /* 2556 * Must not load anything in the rbtree, 2557 * mpol_free_shared_policy will not be called. 2558 */ 2559 mpol_shared_policy_init(&info->policy, NULL); 2560 break; 2561 } 2562 2563 lockdep_annotate_inode_mutex_key(inode); 2564 return inode; 2565 } 2566 2567 #ifdef CONFIG_TMPFS_QUOTA 2568 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2569 struct super_block *sb, struct inode *dir, 2570 umode_t mode, dev_t dev, unsigned long flags) 2571 { 2572 int err; 2573 struct inode *inode; 2574 2575 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2576 if (IS_ERR(inode)) 2577 return inode; 2578 2579 err = dquot_initialize(inode); 2580 if (err) 2581 goto errout; 2582 2583 err = dquot_alloc_inode(inode); 2584 if (err) { 2585 dquot_drop(inode); 2586 goto errout; 2587 } 2588 return inode; 2589 2590 errout: 2591 inode->i_flags |= S_NOQUOTA; 2592 iput(inode); 2593 return ERR_PTR(err); 2594 } 2595 #else 2596 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2597 struct super_block *sb, struct inode *dir, 2598 umode_t mode, dev_t dev, unsigned long flags) 2599 { 2600 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2601 } 2602 #endif /* CONFIG_TMPFS_QUOTA */ 2603 2604 #ifdef CONFIG_USERFAULTFD 2605 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 2606 struct vm_area_struct *dst_vma, 2607 unsigned long dst_addr, 2608 unsigned long src_addr, 2609 uffd_flags_t flags, 2610 struct folio **foliop) 2611 { 2612 struct inode *inode = file_inode(dst_vma->vm_file); 2613 struct shmem_inode_info *info = SHMEM_I(inode); 2614 struct address_space *mapping = inode->i_mapping; 2615 gfp_t gfp = mapping_gfp_mask(mapping); 2616 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2617 void *page_kaddr; 2618 struct folio *folio; 2619 int ret; 2620 pgoff_t max_off; 2621 2622 if (shmem_inode_acct_blocks(inode, 1)) { 2623 /* 2624 * We may have got a page, returned -ENOENT triggering a retry, 2625 * and now we find ourselves with -ENOMEM. Release the page, to 2626 * avoid a BUG_ON in our caller. 2627 */ 2628 if (unlikely(*foliop)) { 2629 folio_put(*foliop); 2630 *foliop = NULL; 2631 } 2632 return -ENOMEM; 2633 } 2634 2635 if (!*foliop) { 2636 ret = -ENOMEM; 2637 folio = shmem_alloc_folio(gfp, info, pgoff); 2638 if (!folio) 2639 goto out_unacct_blocks; 2640 2641 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 2642 page_kaddr = kmap_local_folio(folio, 0); 2643 /* 2644 * The read mmap_lock is held here. Despite the 2645 * mmap_lock being read recursive a deadlock is still 2646 * possible if a writer has taken a lock. For example: 2647 * 2648 * process A thread 1 takes read lock on own mmap_lock 2649 * process A thread 2 calls mmap, blocks taking write lock 2650 * process B thread 1 takes page fault, read lock on own mmap lock 2651 * process B thread 2 calls mmap, blocks taking write lock 2652 * process A thread 1 blocks taking read lock on process B 2653 * process B thread 1 blocks taking read lock on process A 2654 * 2655 * Disable page faults to prevent potential deadlock 2656 * and retry the copy outside the mmap_lock. 2657 */ 2658 pagefault_disable(); 2659 ret = copy_from_user(page_kaddr, 2660 (const void __user *)src_addr, 2661 PAGE_SIZE); 2662 pagefault_enable(); 2663 kunmap_local(page_kaddr); 2664 2665 /* fallback to copy_from_user outside mmap_lock */ 2666 if (unlikely(ret)) { 2667 *foliop = folio; 2668 ret = -ENOENT; 2669 /* don't free the page */ 2670 goto out_unacct_blocks; 2671 } 2672 2673 flush_dcache_folio(folio); 2674 } else { /* ZEROPAGE */ 2675 clear_user_highpage(&folio->page, dst_addr); 2676 } 2677 } else { 2678 folio = *foliop; 2679 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2680 *foliop = NULL; 2681 } 2682 2683 VM_BUG_ON(folio_test_locked(folio)); 2684 VM_BUG_ON(folio_test_swapbacked(folio)); 2685 __folio_set_locked(folio); 2686 __folio_set_swapbacked(folio); 2687 __folio_mark_uptodate(folio); 2688 2689 ret = -EFAULT; 2690 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2691 if (unlikely(pgoff >= max_off)) 2692 goto out_release; 2693 2694 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 2695 if (ret) 2696 goto out_release; 2697 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 2698 if (ret) 2699 goto out_release; 2700 2701 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 2702 &folio->page, true, flags); 2703 if (ret) 2704 goto out_delete_from_cache; 2705 2706 shmem_recalc_inode(inode, 1, 0); 2707 folio_unlock(folio); 2708 return 0; 2709 out_delete_from_cache: 2710 filemap_remove_folio(folio); 2711 out_release: 2712 folio_unlock(folio); 2713 folio_put(folio); 2714 out_unacct_blocks: 2715 shmem_inode_unacct_blocks(inode, 1); 2716 return ret; 2717 } 2718 #endif /* CONFIG_USERFAULTFD */ 2719 2720 #ifdef CONFIG_TMPFS 2721 static const struct inode_operations shmem_symlink_inode_operations; 2722 static const struct inode_operations shmem_short_symlink_operations; 2723 2724 static int 2725 shmem_write_begin(struct file *file, struct address_space *mapping, 2726 loff_t pos, unsigned len, 2727 struct page **pagep, void **fsdata) 2728 { 2729 struct inode *inode = mapping->host; 2730 struct shmem_inode_info *info = SHMEM_I(inode); 2731 pgoff_t index = pos >> PAGE_SHIFT; 2732 struct folio *folio; 2733 int ret = 0; 2734 2735 /* i_rwsem is held by caller */ 2736 if (unlikely(info->seals & (F_SEAL_GROW | 2737 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2738 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2739 return -EPERM; 2740 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2741 return -EPERM; 2742 } 2743 2744 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE); 2745 if (ret) 2746 return ret; 2747 2748 *pagep = folio_file_page(folio, index); 2749 if (PageHWPoison(*pagep)) { 2750 folio_unlock(folio); 2751 folio_put(folio); 2752 *pagep = NULL; 2753 return -EIO; 2754 } 2755 2756 return 0; 2757 } 2758 2759 static int 2760 shmem_write_end(struct file *file, struct address_space *mapping, 2761 loff_t pos, unsigned len, unsigned copied, 2762 struct page *page, void *fsdata) 2763 { 2764 struct folio *folio = page_folio(page); 2765 struct inode *inode = mapping->host; 2766 2767 if (pos + copied > inode->i_size) 2768 i_size_write(inode, pos + copied); 2769 2770 if (!folio_test_uptodate(folio)) { 2771 if (copied < folio_size(folio)) { 2772 size_t from = offset_in_folio(folio, pos); 2773 folio_zero_segments(folio, 0, from, 2774 from + copied, folio_size(folio)); 2775 } 2776 folio_mark_uptodate(folio); 2777 } 2778 folio_mark_dirty(folio); 2779 folio_unlock(folio); 2780 folio_put(folio); 2781 2782 return copied; 2783 } 2784 2785 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2786 { 2787 struct file *file = iocb->ki_filp; 2788 struct inode *inode = file_inode(file); 2789 struct address_space *mapping = inode->i_mapping; 2790 pgoff_t index; 2791 unsigned long offset; 2792 int error = 0; 2793 ssize_t retval = 0; 2794 loff_t *ppos = &iocb->ki_pos; 2795 2796 index = *ppos >> PAGE_SHIFT; 2797 offset = *ppos & ~PAGE_MASK; 2798 2799 for (;;) { 2800 struct folio *folio = NULL; 2801 struct page *page = NULL; 2802 pgoff_t end_index; 2803 unsigned long nr, ret; 2804 loff_t i_size = i_size_read(inode); 2805 2806 end_index = i_size >> PAGE_SHIFT; 2807 if (index > end_index) 2808 break; 2809 if (index == end_index) { 2810 nr = i_size & ~PAGE_MASK; 2811 if (nr <= offset) 2812 break; 2813 } 2814 2815 error = shmem_get_folio(inode, index, &folio, SGP_READ); 2816 if (error) { 2817 if (error == -EINVAL) 2818 error = 0; 2819 break; 2820 } 2821 if (folio) { 2822 folio_unlock(folio); 2823 2824 page = folio_file_page(folio, index); 2825 if (PageHWPoison(page)) { 2826 folio_put(folio); 2827 error = -EIO; 2828 break; 2829 } 2830 } 2831 2832 /* 2833 * We must evaluate after, since reads (unlike writes) 2834 * are called without i_rwsem protection against truncate 2835 */ 2836 nr = PAGE_SIZE; 2837 i_size = i_size_read(inode); 2838 end_index = i_size >> PAGE_SHIFT; 2839 if (index == end_index) { 2840 nr = i_size & ~PAGE_MASK; 2841 if (nr <= offset) { 2842 if (folio) 2843 folio_put(folio); 2844 break; 2845 } 2846 } 2847 nr -= offset; 2848 2849 if (folio) { 2850 /* 2851 * If users can be writing to this page using arbitrary 2852 * virtual addresses, take care about potential aliasing 2853 * before reading the page on the kernel side. 2854 */ 2855 if (mapping_writably_mapped(mapping)) 2856 flush_dcache_page(page); 2857 /* 2858 * Mark the page accessed if we read the beginning. 2859 */ 2860 if (!offset) 2861 folio_mark_accessed(folio); 2862 /* 2863 * Ok, we have the page, and it's up-to-date, so 2864 * now we can copy it to user space... 2865 */ 2866 ret = copy_page_to_iter(page, offset, nr, to); 2867 folio_put(folio); 2868 2869 } else if (user_backed_iter(to)) { 2870 /* 2871 * Copy to user tends to be so well optimized, but 2872 * clear_user() not so much, that it is noticeably 2873 * faster to copy the zero page instead of clearing. 2874 */ 2875 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2876 } else { 2877 /* 2878 * But submitting the same page twice in a row to 2879 * splice() - or others? - can result in confusion: 2880 * so don't attempt that optimization on pipes etc. 2881 */ 2882 ret = iov_iter_zero(nr, to); 2883 } 2884 2885 retval += ret; 2886 offset += ret; 2887 index += offset >> PAGE_SHIFT; 2888 offset &= ~PAGE_MASK; 2889 2890 if (!iov_iter_count(to)) 2891 break; 2892 if (ret < nr) { 2893 error = -EFAULT; 2894 break; 2895 } 2896 cond_resched(); 2897 } 2898 2899 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2900 file_accessed(file); 2901 return retval ? retval : error; 2902 } 2903 2904 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2905 { 2906 struct file *file = iocb->ki_filp; 2907 struct inode *inode = file->f_mapping->host; 2908 ssize_t ret; 2909 2910 inode_lock(inode); 2911 ret = generic_write_checks(iocb, from); 2912 if (ret <= 0) 2913 goto unlock; 2914 ret = file_remove_privs(file); 2915 if (ret) 2916 goto unlock; 2917 ret = file_update_time(file); 2918 if (ret) 2919 goto unlock; 2920 ret = generic_perform_write(iocb, from); 2921 unlock: 2922 inode_unlock(inode); 2923 return ret; 2924 } 2925 2926 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 2927 struct pipe_buffer *buf) 2928 { 2929 return true; 2930 } 2931 2932 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 2933 struct pipe_buffer *buf) 2934 { 2935 } 2936 2937 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 2938 struct pipe_buffer *buf) 2939 { 2940 return false; 2941 } 2942 2943 static const struct pipe_buf_operations zero_pipe_buf_ops = { 2944 .release = zero_pipe_buf_release, 2945 .try_steal = zero_pipe_buf_try_steal, 2946 .get = zero_pipe_buf_get, 2947 }; 2948 2949 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 2950 loff_t fpos, size_t size) 2951 { 2952 size_t offset = fpos & ~PAGE_MASK; 2953 2954 size = min_t(size_t, size, PAGE_SIZE - offset); 2955 2956 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2957 struct pipe_buffer *buf = pipe_head_buf(pipe); 2958 2959 *buf = (struct pipe_buffer) { 2960 .ops = &zero_pipe_buf_ops, 2961 .page = ZERO_PAGE(0), 2962 .offset = offset, 2963 .len = size, 2964 }; 2965 pipe->head++; 2966 } 2967 2968 return size; 2969 } 2970 2971 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 2972 struct pipe_inode_info *pipe, 2973 size_t len, unsigned int flags) 2974 { 2975 struct inode *inode = file_inode(in); 2976 struct address_space *mapping = inode->i_mapping; 2977 struct folio *folio = NULL; 2978 size_t total_spliced = 0, used, npages, n, part; 2979 loff_t isize; 2980 int error = 0; 2981 2982 /* Work out how much data we can actually add into the pipe */ 2983 used = pipe_occupancy(pipe->head, pipe->tail); 2984 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2985 len = min_t(size_t, len, npages * PAGE_SIZE); 2986 2987 do { 2988 if (*ppos >= i_size_read(inode)) 2989 break; 2990 2991 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio, 2992 SGP_READ); 2993 if (error) { 2994 if (error == -EINVAL) 2995 error = 0; 2996 break; 2997 } 2998 if (folio) { 2999 folio_unlock(folio); 3000 3001 if (folio_test_hwpoison(folio) || 3002 (folio_test_large(folio) && 3003 folio_test_has_hwpoisoned(folio))) { 3004 error = -EIO; 3005 break; 3006 } 3007 } 3008 3009 /* 3010 * i_size must be checked after we know the pages are Uptodate. 3011 * 3012 * Checking i_size after the check allows us to calculate 3013 * the correct value for "nr", which means the zero-filled 3014 * part of the page is not copied back to userspace (unless 3015 * another truncate extends the file - this is desired though). 3016 */ 3017 isize = i_size_read(inode); 3018 if (unlikely(*ppos >= isize)) 3019 break; 3020 part = min_t(loff_t, isize - *ppos, len); 3021 3022 if (folio) { 3023 /* 3024 * If users can be writing to this page using arbitrary 3025 * virtual addresses, take care about potential aliasing 3026 * before reading the page on the kernel side. 3027 */ 3028 if (mapping_writably_mapped(mapping)) 3029 flush_dcache_folio(folio); 3030 folio_mark_accessed(folio); 3031 /* 3032 * Ok, we have the page, and it's up-to-date, so we can 3033 * now splice it into the pipe. 3034 */ 3035 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3036 folio_put(folio); 3037 folio = NULL; 3038 } else { 3039 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3040 } 3041 3042 if (!n) 3043 break; 3044 len -= n; 3045 total_spliced += n; 3046 *ppos += n; 3047 in->f_ra.prev_pos = *ppos; 3048 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 3049 break; 3050 3051 cond_resched(); 3052 } while (len); 3053 3054 if (folio) 3055 folio_put(folio); 3056 3057 file_accessed(in); 3058 return total_spliced ? total_spliced : error; 3059 } 3060 3061 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3062 { 3063 struct address_space *mapping = file->f_mapping; 3064 struct inode *inode = mapping->host; 3065 3066 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3067 return generic_file_llseek_size(file, offset, whence, 3068 MAX_LFS_FILESIZE, i_size_read(inode)); 3069 if (offset < 0) 3070 return -ENXIO; 3071 3072 inode_lock(inode); 3073 /* We're holding i_rwsem so we can access i_size directly */ 3074 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3075 if (offset >= 0) 3076 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3077 inode_unlock(inode); 3078 return offset; 3079 } 3080 3081 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3082 loff_t len) 3083 { 3084 struct inode *inode = file_inode(file); 3085 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3086 struct shmem_inode_info *info = SHMEM_I(inode); 3087 struct shmem_falloc shmem_falloc; 3088 pgoff_t start, index, end, undo_fallocend; 3089 int error; 3090 3091 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3092 return -EOPNOTSUPP; 3093 3094 inode_lock(inode); 3095 3096 if (mode & FALLOC_FL_PUNCH_HOLE) { 3097 struct address_space *mapping = file->f_mapping; 3098 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3099 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3100 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3101 3102 /* protected by i_rwsem */ 3103 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3104 error = -EPERM; 3105 goto out; 3106 } 3107 3108 shmem_falloc.waitq = &shmem_falloc_waitq; 3109 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3110 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3111 spin_lock(&inode->i_lock); 3112 inode->i_private = &shmem_falloc; 3113 spin_unlock(&inode->i_lock); 3114 3115 if ((u64)unmap_end > (u64)unmap_start) 3116 unmap_mapping_range(mapping, unmap_start, 3117 1 + unmap_end - unmap_start, 0); 3118 shmem_truncate_range(inode, offset, offset + len - 1); 3119 /* No need to unmap again: hole-punching leaves COWed pages */ 3120 3121 spin_lock(&inode->i_lock); 3122 inode->i_private = NULL; 3123 wake_up_all(&shmem_falloc_waitq); 3124 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3125 spin_unlock(&inode->i_lock); 3126 error = 0; 3127 goto out; 3128 } 3129 3130 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3131 error = inode_newsize_ok(inode, offset + len); 3132 if (error) 3133 goto out; 3134 3135 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3136 error = -EPERM; 3137 goto out; 3138 } 3139 3140 start = offset >> PAGE_SHIFT; 3141 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3142 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3143 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3144 error = -ENOSPC; 3145 goto out; 3146 } 3147 3148 shmem_falloc.waitq = NULL; 3149 shmem_falloc.start = start; 3150 shmem_falloc.next = start; 3151 shmem_falloc.nr_falloced = 0; 3152 shmem_falloc.nr_unswapped = 0; 3153 spin_lock(&inode->i_lock); 3154 inode->i_private = &shmem_falloc; 3155 spin_unlock(&inode->i_lock); 3156 3157 /* 3158 * info->fallocend is only relevant when huge pages might be 3159 * involved: to prevent split_huge_page() freeing fallocated 3160 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3161 */ 3162 undo_fallocend = info->fallocend; 3163 if (info->fallocend < end) 3164 info->fallocend = end; 3165 3166 for (index = start; index < end; ) { 3167 struct folio *folio; 3168 3169 /* 3170 * Good, the fallocate(2) manpage permits EINTR: we may have 3171 * been interrupted because we are using up too much memory. 3172 */ 3173 if (signal_pending(current)) 3174 error = -EINTR; 3175 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3176 error = -ENOMEM; 3177 else 3178 error = shmem_get_folio(inode, index, &folio, 3179 SGP_FALLOC); 3180 if (error) { 3181 info->fallocend = undo_fallocend; 3182 /* Remove the !uptodate folios we added */ 3183 if (index > start) { 3184 shmem_undo_range(inode, 3185 (loff_t)start << PAGE_SHIFT, 3186 ((loff_t)index << PAGE_SHIFT) - 1, true); 3187 } 3188 goto undone; 3189 } 3190 3191 /* 3192 * Here is a more important optimization than it appears: 3193 * a second SGP_FALLOC on the same large folio will clear it, 3194 * making it uptodate and un-undoable if we fail later. 3195 */ 3196 index = folio_next_index(folio); 3197 /* Beware 32-bit wraparound */ 3198 if (!index) 3199 index--; 3200 3201 /* 3202 * Inform shmem_writepage() how far we have reached. 3203 * No need for lock or barrier: we have the page lock. 3204 */ 3205 if (!folio_test_uptodate(folio)) 3206 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3207 shmem_falloc.next = index; 3208 3209 /* 3210 * If !uptodate, leave it that way so that freeable folios 3211 * can be recognized if we need to rollback on error later. 3212 * But mark it dirty so that memory pressure will swap rather 3213 * than free the folios we are allocating (and SGP_CACHE folios 3214 * might still be clean: we now need to mark those dirty too). 3215 */ 3216 folio_mark_dirty(folio); 3217 folio_unlock(folio); 3218 folio_put(folio); 3219 cond_resched(); 3220 } 3221 3222 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3223 i_size_write(inode, offset + len); 3224 undone: 3225 spin_lock(&inode->i_lock); 3226 inode->i_private = NULL; 3227 spin_unlock(&inode->i_lock); 3228 out: 3229 if (!error) 3230 file_modified(file); 3231 inode_unlock(inode); 3232 return error; 3233 } 3234 3235 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3236 { 3237 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3238 3239 buf->f_type = TMPFS_MAGIC; 3240 buf->f_bsize = PAGE_SIZE; 3241 buf->f_namelen = NAME_MAX; 3242 if (sbinfo->max_blocks) { 3243 buf->f_blocks = sbinfo->max_blocks; 3244 buf->f_bavail = 3245 buf->f_bfree = sbinfo->max_blocks - 3246 percpu_counter_sum(&sbinfo->used_blocks); 3247 } 3248 if (sbinfo->max_inodes) { 3249 buf->f_files = sbinfo->max_inodes; 3250 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3251 } 3252 /* else leave those fields 0 like simple_statfs */ 3253 3254 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3255 3256 return 0; 3257 } 3258 3259 /* 3260 * File creation. Allocate an inode, and we're done.. 3261 */ 3262 static int 3263 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3264 struct dentry *dentry, umode_t mode, dev_t dev) 3265 { 3266 struct inode *inode; 3267 int error; 3268 3269 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3270 if (IS_ERR(inode)) 3271 return PTR_ERR(inode); 3272 3273 error = simple_acl_create(dir, inode); 3274 if (error) 3275 goto out_iput; 3276 error = security_inode_init_security(inode, dir, &dentry->d_name, 3277 shmem_initxattrs, NULL); 3278 if (error && error != -EOPNOTSUPP) 3279 goto out_iput; 3280 3281 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3282 if (error) 3283 goto out_iput; 3284 3285 dir->i_size += BOGO_DIRENT_SIZE; 3286 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3287 inode_inc_iversion(dir); 3288 d_instantiate(dentry, inode); 3289 dget(dentry); /* Extra count - pin the dentry in core */ 3290 return error; 3291 3292 out_iput: 3293 iput(inode); 3294 return error; 3295 } 3296 3297 static int 3298 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3299 struct file *file, umode_t mode) 3300 { 3301 struct inode *inode; 3302 int error; 3303 3304 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3305 if (IS_ERR(inode)) { 3306 error = PTR_ERR(inode); 3307 goto err_out; 3308 } 3309 error = security_inode_init_security(inode, dir, NULL, 3310 shmem_initxattrs, NULL); 3311 if (error && error != -EOPNOTSUPP) 3312 goto out_iput; 3313 error = simple_acl_create(dir, inode); 3314 if (error) 3315 goto out_iput; 3316 d_tmpfile(file, inode); 3317 3318 err_out: 3319 return finish_open_simple(file, error); 3320 out_iput: 3321 iput(inode); 3322 return error; 3323 } 3324 3325 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3326 struct dentry *dentry, umode_t mode) 3327 { 3328 int error; 3329 3330 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3331 if (error) 3332 return error; 3333 inc_nlink(dir); 3334 return 0; 3335 } 3336 3337 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3338 struct dentry *dentry, umode_t mode, bool excl) 3339 { 3340 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3341 } 3342 3343 /* 3344 * Link a file.. 3345 */ 3346 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3347 struct dentry *dentry) 3348 { 3349 struct inode *inode = d_inode(old_dentry); 3350 int ret = 0; 3351 3352 /* 3353 * No ordinary (disk based) filesystem counts links as inodes; 3354 * but each new link needs a new dentry, pinning lowmem, and 3355 * tmpfs dentries cannot be pruned until they are unlinked. 3356 * But if an O_TMPFILE file is linked into the tmpfs, the 3357 * first link must skip that, to get the accounting right. 3358 */ 3359 if (inode->i_nlink) { 3360 ret = shmem_reserve_inode(inode->i_sb, NULL); 3361 if (ret) 3362 goto out; 3363 } 3364 3365 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3366 if (ret) { 3367 if (inode->i_nlink) 3368 shmem_free_inode(inode->i_sb, 0); 3369 goto out; 3370 } 3371 3372 dir->i_size += BOGO_DIRENT_SIZE; 3373 inode_set_mtime_to_ts(dir, 3374 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3375 inode_inc_iversion(dir); 3376 inc_nlink(inode); 3377 ihold(inode); /* New dentry reference */ 3378 dget(dentry); /* Extra pinning count for the created dentry */ 3379 d_instantiate(dentry, inode); 3380 out: 3381 return ret; 3382 } 3383 3384 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3385 { 3386 struct inode *inode = d_inode(dentry); 3387 3388 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3389 shmem_free_inode(inode->i_sb, 0); 3390 3391 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3392 3393 dir->i_size -= BOGO_DIRENT_SIZE; 3394 inode_set_mtime_to_ts(dir, 3395 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3396 inode_inc_iversion(dir); 3397 drop_nlink(inode); 3398 dput(dentry); /* Undo the count from "create" - does all the work */ 3399 return 0; 3400 } 3401 3402 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3403 { 3404 if (!simple_offset_empty(dentry)) 3405 return -ENOTEMPTY; 3406 3407 drop_nlink(d_inode(dentry)); 3408 drop_nlink(dir); 3409 return shmem_unlink(dir, dentry); 3410 } 3411 3412 static int shmem_whiteout(struct mnt_idmap *idmap, 3413 struct inode *old_dir, struct dentry *old_dentry) 3414 { 3415 struct dentry *whiteout; 3416 int error; 3417 3418 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3419 if (!whiteout) 3420 return -ENOMEM; 3421 3422 error = shmem_mknod(idmap, old_dir, whiteout, 3423 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3424 dput(whiteout); 3425 if (error) 3426 return error; 3427 3428 /* 3429 * Cheat and hash the whiteout while the old dentry is still in 3430 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3431 * 3432 * d_lookup() will consistently find one of them at this point, 3433 * not sure which one, but that isn't even important. 3434 */ 3435 d_rehash(whiteout); 3436 return 0; 3437 } 3438 3439 /* 3440 * The VFS layer already does all the dentry stuff for rename, 3441 * we just have to decrement the usage count for the target if 3442 * it exists so that the VFS layer correctly free's it when it 3443 * gets overwritten. 3444 */ 3445 static int shmem_rename2(struct mnt_idmap *idmap, 3446 struct inode *old_dir, struct dentry *old_dentry, 3447 struct inode *new_dir, struct dentry *new_dentry, 3448 unsigned int flags) 3449 { 3450 struct inode *inode = d_inode(old_dentry); 3451 int they_are_dirs = S_ISDIR(inode->i_mode); 3452 int error; 3453 3454 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3455 return -EINVAL; 3456 3457 if (flags & RENAME_EXCHANGE) 3458 return simple_offset_rename_exchange(old_dir, old_dentry, 3459 new_dir, new_dentry); 3460 3461 if (!simple_offset_empty(new_dentry)) 3462 return -ENOTEMPTY; 3463 3464 if (flags & RENAME_WHITEOUT) { 3465 error = shmem_whiteout(idmap, old_dir, old_dentry); 3466 if (error) 3467 return error; 3468 } 3469 3470 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 3471 if (error) 3472 return error; 3473 3474 if (d_really_is_positive(new_dentry)) { 3475 (void) shmem_unlink(new_dir, new_dentry); 3476 if (they_are_dirs) { 3477 drop_nlink(d_inode(new_dentry)); 3478 drop_nlink(old_dir); 3479 } 3480 } else if (they_are_dirs) { 3481 drop_nlink(old_dir); 3482 inc_nlink(new_dir); 3483 } 3484 3485 old_dir->i_size -= BOGO_DIRENT_SIZE; 3486 new_dir->i_size += BOGO_DIRENT_SIZE; 3487 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 3488 inode_inc_iversion(old_dir); 3489 inode_inc_iversion(new_dir); 3490 return 0; 3491 } 3492 3493 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3494 struct dentry *dentry, const char *symname) 3495 { 3496 int error; 3497 int len; 3498 struct inode *inode; 3499 struct folio *folio; 3500 3501 len = strlen(symname) + 1; 3502 if (len > PAGE_SIZE) 3503 return -ENAMETOOLONG; 3504 3505 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3506 VM_NORESERVE); 3507 if (IS_ERR(inode)) 3508 return PTR_ERR(inode); 3509 3510 error = security_inode_init_security(inode, dir, &dentry->d_name, 3511 shmem_initxattrs, NULL); 3512 if (error && error != -EOPNOTSUPP) 3513 goto out_iput; 3514 3515 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3516 if (error) 3517 goto out_iput; 3518 3519 inode->i_size = len-1; 3520 if (len <= SHORT_SYMLINK_LEN) { 3521 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3522 if (!inode->i_link) { 3523 error = -ENOMEM; 3524 goto out_remove_offset; 3525 } 3526 inode->i_op = &shmem_short_symlink_operations; 3527 } else { 3528 inode_nohighmem(inode); 3529 inode->i_mapping->a_ops = &shmem_aops; 3530 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE); 3531 if (error) 3532 goto out_remove_offset; 3533 inode->i_op = &shmem_symlink_inode_operations; 3534 memcpy(folio_address(folio), symname, len); 3535 folio_mark_uptodate(folio); 3536 folio_mark_dirty(folio); 3537 folio_unlock(folio); 3538 folio_put(folio); 3539 } 3540 dir->i_size += BOGO_DIRENT_SIZE; 3541 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3542 inode_inc_iversion(dir); 3543 d_instantiate(dentry, inode); 3544 dget(dentry); 3545 return 0; 3546 3547 out_remove_offset: 3548 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3549 out_iput: 3550 iput(inode); 3551 return error; 3552 } 3553 3554 static void shmem_put_link(void *arg) 3555 { 3556 folio_mark_accessed(arg); 3557 folio_put(arg); 3558 } 3559 3560 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 3561 struct delayed_call *done) 3562 { 3563 struct folio *folio = NULL; 3564 int error; 3565 3566 if (!dentry) { 3567 folio = filemap_get_folio(inode->i_mapping, 0); 3568 if (IS_ERR(folio)) 3569 return ERR_PTR(-ECHILD); 3570 if (PageHWPoison(folio_page(folio, 0)) || 3571 !folio_test_uptodate(folio)) { 3572 folio_put(folio); 3573 return ERR_PTR(-ECHILD); 3574 } 3575 } else { 3576 error = shmem_get_folio(inode, 0, &folio, SGP_READ); 3577 if (error) 3578 return ERR_PTR(error); 3579 if (!folio) 3580 return ERR_PTR(-ECHILD); 3581 if (PageHWPoison(folio_page(folio, 0))) { 3582 folio_unlock(folio); 3583 folio_put(folio); 3584 return ERR_PTR(-ECHILD); 3585 } 3586 folio_unlock(folio); 3587 } 3588 set_delayed_call(done, shmem_put_link, folio); 3589 return folio_address(folio); 3590 } 3591 3592 #ifdef CONFIG_TMPFS_XATTR 3593 3594 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3595 { 3596 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3597 3598 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3599 3600 return 0; 3601 } 3602 3603 static int shmem_fileattr_set(struct mnt_idmap *idmap, 3604 struct dentry *dentry, struct fileattr *fa) 3605 { 3606 struct inode *inode = d_inode(dentry); 3607 struct shmem_inode_info *info = SHMEM_I(inode); 3608 3609 if (fileattr_has_fsx(fa)) 3610 return -EOPNOTSUPP; 3611 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3612 return -EOPNOTSUPP; 3613 3614 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3615 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3616 3617 shmem_set_inode_flags(inode, info->fsflags); 3618 inode_set_ctime_current(inode); 3619 inode_inc_iversion(inode); 3620 return 0; 3621 } 3622 3623 /* 3624 * Superblocks without xattr inode operations may get some security.* xattr 3625 * support from the LSM "for free". As soon as we have any other xattrs 3626 * like ACLs, we also need to implement the security.* handlers at 3627 * filesystem level, though. 3628 */ 3629 3630 /* 3631 * Callback for security_inode_init_security() for acquiring xattrs. 3632 */ 3633 static int shmem_initxattrs(struct inode *inode, 3634 const struct xattr *xattr_array, void *fs_info) 3635 { 3636 struct shmem_inode_info *info = SHMEM_I(inode); 3637 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3638 const struct xattr *xattr; 3639 struct simple_xattr *new_xattr; 3640 size_t ispace = 0; 3641 size_t len; 3642 3643 if (sbinfo->max_inodes) { 3644 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3645 ispace += simple_xattr_space(xattr->name, 3646 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 3647 } 3648 if (ispace) { 3649 raw_spin_lock(&sbinfo->stat_lock); 3650 if (sbinfo->free_ispace < ispace) 3651 ispace = 0; 3652 else 3653 sbinfo->free_ispace -= ispace; 3654 raw_spin_unlock(&sbinfo->stat_lock); 3655 if (!ispace) 3656 return -ENOSPC; 3657 } 3658 } 3659 3660 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3661 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3662 if (!new_xattr) 3663 break; 3664 3665 len = strlen(xattr->name) + 1; 3666 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3667 GFP_KERNEL_ACCOUNT); 3668 if (!new_xattr->name) { 3669 kvfree(new_xattr); 3670 break; 3671 } 3672 3673 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3674 XATTR_SECURITY_PREFIX_LEN); 3675 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3676 xattr->name, len); 3677 3678 simple_xattr_add(&info->xattrs, new_xattr); 3679 } 3680 3681 if (xattr->name != NULL) { 3682 if (ispace) { 3683 raw_spin_lock(&sbinfo->stat_lock); 3684 sbinfo->free_ispace += ispace; 3685 raw_spin_unlock(&sbinfo->stat_lock); 3686 } 3687 simple_xattrs_free(&info->xattrs, NULL); 3688 return -ENOMEM; 3689 } 3690 3691 return 0; 3692 } 3693 3694 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3695 struct dentry *unused, struct inode *inode, 3696 const char *name, void *buffer, size_t size) 3697 { 3698 struct shmem_inode_info *info = SHMEM_I(inode); 3699 3700 name = xattr_full_name(handler, name); 3701 return simple_xattr_get(&info->xattrs, name, buffer, size); 3702 } 3703 3704 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3705 struct mnt_idmap *idmap, 3706 struct dentry *unused, struct inode *inode, 3707 const char *name, const void *value, 3708 size_t size, int flags) 3709 { 3710 struct shmem_inode_info *info = SHMEM_I(inode); 3711 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3712 struct simple_xattr *old_xattr; 3713 size_t ispace = 0; 3714 3715 name = xattr_full_name(handler, name); 3716 if (value && sbinfo->max_inodes) { 3717 ispace = simple_xattr_space(name, size); 3718 raw_spin_lock(&sbinfo->stat_lock); 3719 if (sbinfo->free_ispace < ispace) 3720 ispace = 0; 3721 else 3722 sbinfo->free_ispace -= ispace; 3723 raw_spin_unlock(&sbinfo->stat_lock); 3724 if (!ispace) 3725 return -ENOSPC; 3726 } 3727 3728 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 3729 if (!IS_ERR(old_xattr)) { 3730 ispace = 0; 3731 if (old_xattr && sbinfo->max_inodes) 3732 ispace = simple_xattr_space(old_xattr->name, 3733 old_xattr->size); 3734 simple_xattr_free(old_xattr); 3735 old_xattr = NULL; 3736 inode_set_ctime_current(inode); 3737 inode_inc_iversion(inode); 3738 } 3739 if (ispace) { 3740 raw_spin_lock(&sbinfo->stat_lock); 3741 sbinfo->free_ispace += ispace; 3742 raw_spin_unlock(&sbinfo->stat_lock); 3743 } 3744 return PTR_ERR(old_xattr); 3745 } 3746 3747 static const struct xattr_handler shmem_security_xattr_handler = { 3748 .prefix = XATTR_SECURITY_PREFIX, 3749 .get = shmem_xattr_handler_get, 3750 .set = shmem_xattr_handler_set, 3751 }; 3752 3753 static const struct xattr_handler shmem_trusted_xattr_handler = { 3754 .prefix = XATTR_TRUSTED_PREFIX, 3755 .get = shmem_xattr_handler_get, 3756 .set = shmem_xattr_handler_set, 3757 }; 3758 3759 static const struct xattr_handler shmem_user_xattr_handler = { 3760 .prefix = XATTR_USER_PREFIX, 3761 .get = shmem_xattr_handler_get, 3762 .set = shmem_xattr_handler_set, 3763 }; 3764 3765 static const struct xattr_handler * const shmem_xattr_handlers[] = { 3766 &shmem_security_xattr_handler, 3767 &shmem_trusted_xattr_handler, 3768 &shmem_user_xattr_handler, 3769 NULL 3770 }; 3771 3772 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3773 { 3774 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3775 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3776 } 3777 #endif /* CONFIG_TMPFS_XATTR */ 3778 3779 static const struct inode_operations shmem_short_symlink_operations = { 3780 .getattr = shmem_getattr, 3781 .setattr = shmem_setattr, 3782 .get_link = simple_get_link, 3783 #ifdef CONFIG_TMPFS_XATTR 3784 .listxattr = shmem_listxattr, 3785 #endif 3786 }; 3787 3788 static const struct inode_operations shmem_symlink_inode_operations = { 3789 .getattr = shmem_getattr, 3790 .setattr = shmem_setattr, 3791 .get_link = shmem_get_link, 3792 #ifdef CONFIG_TMPFS_XATTR 3793 .listxattr = shmem_listxattr, 3794 #endif 3795 }; 3796 3797 static struct dentry *shmem_get_parent(struct dentry *child) 3798 { 3799 return ERR_PTR(-ESTALE); 3800 } 3801 3802 static int shmem_match(struct inode *ino, void *vfh) 3803 { 3804 __u32 *fh = vfh; 3805 __u64 inum = fh[2]; 3806 inum = (inum << 32) | fh[1]; 3807 return ino->i_ino == inum && fh[0] == ino->i_generation; 3808 } 3809 3810 /* Find any alias of inode, but prefer a hashed alias */ 3811 static struct dentry *shmem_find_alias(struct inode *inode) 3812 { 3813 struct dentry *alias = d_find_alias(inode); 3814 3815 return alias ?: d_find_any_alias(inode); 3816 } 3817 3818 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3819 struct fid *fid, int fh_len, int fh_type) 3820 { 3821 struct inode *inode; 3822 struct dentry *dentry = NULL; 3823 u64 inum; 3824 3825 if (fh_len < 3) 3826 return NULL; 3827 3828 inum = fid->raw[2]; 3829 inum = (inum << 32) | fid->raw[1]; 3830 3831 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3832 shmem_match, fid->raw); 3833 if (inode) { 3834 dentry = shmem_find_alias(inode); 3835 iput(inode); 3836 } 3837 3838 return dentry; 3839 } 3840 3841 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3842 struct inode *parent) 3843 { 3844 if (*len < 3) { 3845 *len = 3; 3846 return FILEID_INVALID; 3847 } 3848 3849 if (inode_unhashed(inode)) { 3850 /* Unfortunately insert_inode_hash is not idempotent, 3851 * so as we hash inodes here rather than at creation 3852 * time, we need a lock to ensure we only try 3853 * to do it once 3854 */ 3855 static DEFINE_SPINLOCK(lock); 3856 spin_lock(&lock); 3857 if (inode_unhashed(inode)) 3858 __insert_inode_hash(inode, 3859 inode->i_ino + inode->i_generation); 3860 spin_unlock(&lock); 3861 } 3862 3863 fh[0] = inode->i_generation; 3864 fh[1] = inode->i_ino; 3865 fh[2] = ((__u64)inode->i_ino) >> 32; 3866 3867 *len = 3; 3868 return 1; 3869 } 3870 3871 static const struct export_operations shmem_export_ops = { 3872 .get_parent = shmem_get_parent, 3873 .encode_fh = shmem_encode_fh, 3874 .fh_to_dentry = shmem_fh_to_dentry, 3875 }; 3876 3877 enum shmem_param { 3878 Opt_gid, 3879 Opt_huge, 3880 Opt_mode, 3881 Opt_mpol, 3882 Opt_nr_blocks, 3883 Opt_nr_inodes, 3884 Opt_size, 3885 Opt_uid, 3886 Opt_inode32, 3887 Opt_inode64, 3888 Opt_noswap, 3889 Opt_quota, 3890 Opt_usrquota, 3891 Opt_grpquota, 3892 Opt_usrquota_block_hardlimit, 3893 Opt_usrquota_inode_hardlimit, 3894 Opt_grpquota_block_hardlimit, 3895 Opt_grpquota_inode_hardlimit, 3896 }; 3897 3898 static const struct constant_table shmem_param_enums_huge[] = { 3899 {"never", SHMEM_HUGE_NEVER }, 3900 {"always", SHMEM_HUGE_ALWAYS }, 3901 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3902 {"advise", SHMEM_HUGE_ADVISE }, 3903 {} 3904 }; 3905 3906 const struct fs_parameter_spec shmem_fs_parameters[] = { 3907 fsparam_u32 ("gid", Opt_gid), 3908 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3909 fsparam_u32oct("mode", Opt_mode), 3910 fsparam_string("mpol", Opt_mpol), 3911 fsparam_string("nr_blocks", Opt_nr_blocks), 3912 fsparam_string("nr_inodes", Opt_nr_inodes), 3913 fsparam_string("size", Opt_size), 3914 fsparam_u32 ("uid", Opt_uid), 3915 fsparam_flag ("inode32", Opt_inode32), 3916 fsparam_flag ("inode64", Opt_inode64), 3917 fsparam_flag ("noswap", Opt_noswap), 3918 #ifdef CONFIG_TMPFS_QUOTA 3919 fsparam_flag ("quota", Opt_quota), 3920 fsparam_flag ("usrquota", Opt_usrquota), 3921 fsparam_flag ("grpquota", Opt_grpquota), 3922 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 3923 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 3924 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 3925 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 3926 #endif 3927 {} 3928 }; 3929 3930 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3931 { 3932 struct shmem_options *ctx = fc->fs_private; 3933 struct fs_parse_result result; 3934 unsigned long long size; 3935 char *rest; 3936 int opt; 3937 kuid_t kuid; 3938 kgid_t kgid; 3939 3940 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3941 if (opt < 0) 3942 return opt; 3943 3944 switch (opt) { 3945 case Opt_size: 3946 size = memparse(param->string, &rest); 3947 if (*rest == '%') { 3948 size <<= PAGE_SHIFT; 3949 size *= totalram_pages(); 3950 do_div(size, 100); 3951 rest++; 3952 } 3953 if (*rest) 3954 goto bad_value; 3955 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3956 ctx->seen |= SHMEM_SEEN_BLOCKS; 3957 break; 3958 case Opt_nr_blocks: 3959 ctx->blocks = memparse(param->string, &rest); 3960 if (*rest || ctx->blocks > LONG_MAX) 3961 goto bad_value; 3962 ctx->seen |= SHMEM_SEEN_BLOCKS; 3963 break; 3964 case Opt_nr_inodes: 3965 ctx->inodes = memparse(param->string, &rest); 3966 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 3967 goto bad_value; 3968 ctx->seen |= SHMEM_SEEN_INODES; 3969 break; 3970 case Opt_mode: 3971 ctx->mode = result.uint_32 & 07777; 3972 break; 3973 case Opt_uid: 3974 kuid = make_kuid(current_user_ns(), result.uint_32); 3975 if (!uid_valid(kuid)) 3976 goto bad_value; 3977 3978 /* 3979 * The requested uid must be representable in the 3980 * filesystem's idmapping. 3981 */ 3982 if (!kuid_has_mapping(fc->user_ns, kuid)) 3983 goto bad_value; 3984 3985 ctx->uid = kuid; 3986 break; 3987 case Opt_gid: 3988 kgid = make_kgid(current_user_ns(), result.uint_32); 3989 if (!gid_valid(kgid)) 3990 goto bad_value; 3991 3992 /* 3993 * The requested gid must be representable in the 3994 * filesystem's idmapping. 3995 */ 3996 if (!kgid_has_mapping(fc->user_ns, kgid)) 3997 goto bad_value; 3998 3999 ctx->gid = kgid; 4000 break; 4001 case Opt_huge: 4002 ctx->huge = result.uint_32; 4003 if (ctx->huge != SHMEM_HUGE_NEVER && 4004 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4005 has_transparent_hugepage())) 4006 goto unsupported_parameter; 4007 ctx->seen |= SHMEM_SEEN_HUGE; 4008 break; 4009 case Opt_mpol: 4010 if (IS_ENABLED(CONFIG_NUMA)) { 4011 mpol_put(ctx->mpol); 4012 ctx->mpol = NULL; 4013 if (mpol_parse_str(param->string, &ctx->mpol)) 4014 goto bad_value; 4015 break; 4016 } 4017 goto unsupported_parameter; 4018 case Opt_inode32: 4019 ctx->full_inums = false; 4020 ctx->seen |= SHMEM_SEEN_INUMS; 4021 break; 4022 case Opt_inode64: 4023 if (sizeof(ino_t) < 8) { 4024 return invalfc(fc, 4025 "Cannot use inode64 with <64bit inums in kernel\n"); 4026 } 4027 ctx->full_inums = true; 4028 ctx->seen |= SHMEM_SEEN_INUMS; 4029 break; 4030 case Opt_noswap: 4031 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4032 return invalfc(fc, 4033 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4034 } 4035 ctx->noswap = true; 4036 ctx->seen |= SHMEM_SEEN_NOSWAP; 4037 break; 4038 case Opt_quota: 4039 if (fc->user_ns != &init_user_ns) 4040 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4041 ctx->seen |= SHMEM_SEEN_QUOTA; 4042 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4043 break; 4044 case Opt_usrquota: 4045 if (fc->user_ns != &init_user_ns) 4046 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4047 ctx->seen |= SHMEM_SEEN_QUOTA; 4048 ctx->quota_types |= QTYPE_MASK_USR; 4049 break; 4050 case Opt_grpquota: 4051 if (fc->user_ns != &init_user_ns) 4052 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4053 ctx->seen |= SHMEM_SEEN_QUOTA; 4054 ctx->quota_types |= QTYPE_MASK_GRP; 4055 break; 4056 case Opt_usrquota_block_hardlimit: 4057 size = memparse(param->string, &rest); 4058 if (*rest || !size) 4059 goto bad_value; 4060 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4061 return invalfc(fc, 4062 "User quota block hardlimit too large."); 4063 ctx->qlimits.usrquota_bhardlimit = size; 4064 break; 4065 case Opt_grpquota_block_hardlimit: 4066 size = memparse(param->string, &rest); 4067 if (*rest || !size) 4068 goto bad_value; 4069 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4070 return invalfc(fc, 4071 "Group quota block hardlimit too large."); 4072 ctx->qlimits.grpquota_bhardlimit = size; 4073 break; 4074 case Opt_usrquota_inode_hardlimit: 4075 size = memparse(param->string, &rest); 4076 if (*rest || !size) 4077 goto bad_value; 4078 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4079 return invalfc(fc, 4080 "User quota inode hardlimit too large."); 4081 ctx->qlimits.usrquota_ihardlimit = size; 4082 break; 4083 case Opt_grpquota_inode_hardlimit: 4084 size = memparse(param->string, &rest); 4085 if (*rest || !size) 4086 goto bad_value; 4087 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4088 return invalfc(fc, 4089 "Group quota inode hardlimit too large."); 4090 ctx->qlimits.grpquota_ihardlimit = size; 4091 break; 4092 } 4093 return 0; 4094 4095 unsupported_parameter: 4096 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4097 bad_value: 4098 return invalfc(fc, "Bad value for '%s'", param->key); 4099 } 4100 4101 static int shmem_parse_options(struct fs_context *fc, void *data) 4102 { 4103 char *options = data; 4104 4105 if (options) { 4106 int err = security_sb_eat_lsm_opts(options, &fc->security); 4107 if (err) 4108 return err; 4109 } 4110 4111 while (options != NULL) { 4112 char *this_char = options; 4113 for (;;) { 4114 /* 4115 * NUL-terminate this option: unfortunately, 4116 * mount options form a comma-separated list, 4117 * but mpol's nodelist may also contain commas. 4118 */ 4119 options = strchr(options, ','); 4120 if (options == NULL) 4121 break; 4122 options++; 4123 if (!isdigit(*options)) { 4124 options[-1] = '\0'; 4125 break; 4126 } 4127 } 4128 if (*this_char) { 4129 char *value = strchr(this_char, '='); 4130 size_t len = 0; 4131 int err; 4132 4133 if (value) { 4134 *value++ = '\0'; 4135 len = strlen(value); 4136 } 4137 err = vfs_parse_fs_string(fc, this_char, value, len); 4138 if (err < 0) 4139 return err; 4140 } 4141 } 4142 return 0; 4143 } 4144 4145 /* 4146 * Reconfigure a shmem filesystem. 4147 */ 4148 static int shmem_reconfigure(struct fs_context *fc) 4149 { 4150 struct shmem_options *ctx = fc->fs_private; 4151 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4152 unsigned long used_isp; 4153 struct mempolicy *mpol = NULL; 4154 const char *err; 4155 4156 raw_spin_lock(&sbinfo->stat_lock); 4157 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4158 4159 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4160 if (!sbinfo->max_blocks) { 4161 err = "Cannot retroactively limit size"; 4162 goto out; 4163 } 4164 if (percpu_counter_compare(&sbinfo->used_blocks, 4165 ctx->blocks) > 0) { 4166 err = "Too small a size for current use"; 4167 goto out; 4168 } 4169 } 4170 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4171 if (!sbinfo->max_inodes) { 4172 err = "Cannot retroactively limit inodes"; 4173 goto out; 4174 } 4175 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4176 err = "Too few inodes for current use"; 4177 goto out; 4178 } 4179 } 4180 4181 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4182 sbinfo->next_ino > UINT_MAX) { 4183 err = "Current inum too high to switch to 32-bit inums"; 4184 goto out; 4185 } 4186 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4187 err = "Cannot disable swap on remount"; 4188 goto out; 4189 } 4190 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4191 err = "Cannot enable swap on remount if it was disabled on first mount"; 4192 goto out; 4193 } 4194 4195 if (ctx->seen & SHMEM_SEEN_QUOTA && 4196 !sb_any_quota_loaded(fc->root->d_sb)) { 4197 err = "Cannot enable quota on remount"; 4198 goto out; 4199 } 4200 4201 #ifdef CONFIG_TMPFS_QUOTA 4202 #define CHANGED_LIMIT(name) \ 4203 (ctx->qlimits.name## hardlimit && \ 4204 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4205 4206 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4207 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4208 err = "Cannot change global quota limit on remount"; 4209 goto out; 4210 } 4211 #endif /* CONFIG_TMPFS_QUOTA */ 4212 4213 if (ctx->seen & SHMEM_SEEN_HUGE) 4214 sbinfo->huge = ctx->huge; 4215 if (ctx->seen & SHMEM_SEEN_INUMS) 4216 sbinfo->full_inums = ctx->full_inums; 4217 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4218 sbinfo->max_blocks = ctx->blocks; 4219 if (ctx->seen & SHMEM_SEEN_INODES) { 4220 sbinfo->max_inodes = ctx->inodes; 4221 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4222 } 4223 4224 /* 4225 * Preserve previous mempolicy unless mpol remount option was specified. 4226 */ 4227 if (ctx->mpol) { 4228 mpol = sbinfo->mpol; 4229 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4230 ctx->mpol = NULL; 4231 } 4232 4233 if (ctx->noswap) 4234 sbinfo->noswap = true; 4235 4236 raw_spin_unlock(&sbinfo->stat_lock); 4237 mpol_put(mpol); 4238 return 0; 4239 out: 4240 raw_spin_unlock(&sbinfo->stat_lock); 4241 return invalfc(fc, "%s", err); 4242 } 4243 4244 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4245 { 4246 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4247 struct mempolicy *mpol; 4248 4249 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4250 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4251 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4252 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4253 if (sbinfo->mode != (0777 | S_ISVTX)) 4254 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4255 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4256 seq_printf(seq, ",uid=%u", 4257 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4258 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4259 seq_printf(seq, ",gid=%u", 4260 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4261 4262 /* 4263 * Showing inode{64,32} might be useful even if it's the system default, 4264 * since then people don't have to resort to checking both here and 4265 * /proc/config.gz to confirm 64-bit inums were successfully applied 4266 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4267 * 4268 * We hide it when inode64 isn't the default and we are using 32-bit 4269 * inodes, since that probably just means the feature isn't even under 4270 * consideration. 4271 * 4272 * As such: 4273 * 4274 * +-----------------+-----------------+ 4275 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4276 * +------------------+-----------------+-----------------+ 4277 * | full_inums=true | show | show | 4278 * | full_inums=false | show | hide | 4279 * +------------------+-----------------+-----------------+ 4280 * 4281 */ 4282 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4283 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4284 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4285 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4286 if (sbinfo->huge) 4287 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4288 #endif 4289 mpol = shmem_get_sbmpol(sbinfo); 4290 shmem_show_mpol(seq, mpol); 4291 mpol_put(mpol); 4292 if (sbinfo->noswap) 4293 seq_printf(seq, ",noswap"); 4294 #ifdef CONFIG_TMPFS_QUOTA 4295 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4296 seq_printf(seq, ",usrquota"); 4297 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4298 seq_printf(seq, ",grpquota"); 4299 if (sbinfo->qlimits.usrquota_bhardlimit) 4300 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4301 sbinfo->qlimits.usrquota_bhardlimit); 4302 if (sbinfo->qlimits.grpquota_bhardlimit) 4303 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4304 sbinfo->qlimits.grpquota_bhardlimit); 4305 if (sbinfo->qlimits.usrquota_ihardlimit) 4306 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4307 sbinfo->qlimits.usrquota_ihardlimit); 4308 if (sbinfo->qlimits.grpquota_ihardlimit) 4309 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4310 sbinfo->qlimits.grpquota_ihardlimit); 4311 #endif 4312 return 0; 4313 } 4314 4315 #endif /* CONFIG_TMPFS */ 4316 4317 static void shmem_put_super(struct super_block *sb) 4318 { 4319 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4320 4321 #ifdef CONFIG_TMPFS_QUOTA 4322 shmem_disable_quotas(sb); 4323 #endif 4324 free_percpu(sbinfo->ino_batch); 4325 percpu_counter_destroy(&sbinfo->used_blocks); 4326 mpol_put(sbinfo->mpol); 4327 kfree(sbinfo); 4328 sb->s_fs_info = NULL; 4329 } 4330 4331 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4332 { 4333 struct shmem_options *ctx = fc->fs_private; 4334 struct inode *inode; 4335 struct shmem_sb_info *sbinfo; 4336 int error = -ENOMEM; 4337 4338 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4339 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4340 L1_CACHE_BYTES), GFP_KERNEL); 4341 if (!sbinfo) 4342 return error; 4343 4344 sb->s_fs_info = sbinfo; 4345 4346 #ifdef CONFIG_TMPFS 4347 /* 4348 * Per default we only allow half of the physical ram per 4349 * tmpfs instance, limiting inodes to one per page of lowmem; 4350 * but the internal instance is left unlimited. 4351 */ 4352 if (!(sb->s_flags & SB_KERNMOUNT)) { 4353 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 4354 ctx->blocks = shmem_default_max_blocks(); 4355 if (!(ctx->seen & SHMEM_SEEN_INODES)) 4356 ctx->inodes = shmem_default_max_inodes(); 4357 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 4358 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 4359 sbinfo->noswap = ctx->noswap; 4360 } else { 4361 sb->s_flags |= SB_NOUSER; 4362 } 4363 sb->s_export_op = &shmem_export_ops; 4364 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 4365 #else 4366 sb->s_flags |= SB_NOUSER; 4367 #endif 4368 sbinfo->max_blocks = ctx->blocks; 4369 sbinfo->max_inodes = ctx->inodes; 4370 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 4371 if (sb->s_flags & SB_KERNMOUNT) { 4372 sbinfo->ino_batch = alloc_percpu(ino_t); 4373 if (!sbinfo->ino_batch) 4374 goto failed; 4375 } 4376 sbinfo->uid = ctx->uid; 4377 sbinfo->gid = ctx->gid; 4378 sbinfo->full_inums = ctx->full_inums; 4379 sbinfo->mode = ctx->mode; 4380 sbinfo->huge = ctx->huge; 4381 sbinfo->mpol = ctx->mpol; 4382 ctx->mpol = NULL; 4383 4384 raw_spin_lock_init(&sbinfo->stat_lock); 4385 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 4386 goto failed; 4387 spin_lock_init(&sbinfo->shrinklist_lock); 4388 INIT_LIST_HEAD(&sbinfo->shrinklist); 4389 4390 sb->s_maxbytes = MAX_LFS_FILESIZE; 4391 sb->s_blocksize = PAGE_SIZE; 4392 sb->s_blocksize_bits = PAGE_SHIFT; 4393 sb->s_magic = TMPFS_MAGIC; 4394 sb->s_op = &shmem_ops; 4395 sb->s_time_gran = 1; 4396 #ifdef CONFIG_TMPFS_XATTR 4397 sb->s_xattr = shmem_xattr_handlers; 4398 #endif 4399 #ifdef CONFIG_TMPFS_POSIX_ACL 4400 sb->s_flags |= SB_POSIXACL; 4401 #endif 4402 uuid_t uuid; 4403 uuid_gen(&uuid); 4404 super_set_uuid(sb, uuid.b, sizeof(uuid)); 4405 4406 #ifdef CONFIG_TMPFS_QUOTA 4407 if (ctx->seen & SHMEM_SEEN_QUOTA) { 4408 sb->dq_op = &shmem_quota_operations; 4409 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4410 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4411 4412 /* Copy the default limits from ctx into sbinfo */ 4413 memcpy(&sbinfo->qlimits, &ctx->qlimits, 4414 sizeof(struct shmem_quota_limits)); 4415 4416 if (shmem_enable_quotas(sb, ctx->quota_types)) 4417 goto failed; 4418 } 4419 #endif /* CONFIG_TMPFS_QUOTA */ 4420 4421 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 4422 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 4423 if (IS_ERR(inode)) { 4424 error = PTR_ERR(inode); 4425 goto failed; 4426 } 4427 inode->i_uid = sbinfo->uid; 4428 inode->i_gid = sbinfo->gid; 4429 sb->s_root = d_make_root(inode); 4430 if (!sb->s_root) 4431 goto failed; 4432 return 0; 4433 4434 failed: 4435 shmem_put_super(sb); 4436 return error; 4437 } 4438 4439 static int shmem_get_tree(struct fs_context *fc) 4440 { 4441 return get_tree_nodev(fc, shmem_fill_super); 4442 } 4443 4444 static void shmem_free_fc(struct fs_context *fc) 4445 { 4446 struct shmem_options *ctx = fc->fs_private; 4447 4448 if (ctx) { 4449 mpol_put(ctx->mpol); 4450 kfree(ctx); 4451 } 4452 } 4453 4454 static const struct fs_context_operations shmem_fs_context_ops = { 4455 .free = shmem_free_fc, 4456 .get_tree = shmem_get_tree, 4457 #ifdef CONFIG_TMPFS 4458 .parse_monolithic = shmem_parse_options, 4459 .parse_param = shmem_parse_one, 4460 .reconfigure = shmem_reconfigure, 4461 #endif 4462 }; 4463 4464 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 4465 4466 static struct inode *shmem_alloc_inode(struct super_block *sb) 4467 { 4468 struct shmem_inode_info *info; 4469 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 4470 if (!info) 4471 return NULL; 4472 return &info->vfs_inode; 4473 } 4474 4475 static void shmem_free_in_core_inode(struct inode *inode) 4476 { 4477 if (S_ISLNK(inode->i_mode)) 4478 kfree(inode->i_link); 4479 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 4480 } 4481 4482 static void shmem_destroy_inode(struct inode *inode) 4483 { 4484 if (S_ISREG(inode->i_mode)) 4485 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 4486 if (S_ISDIR(inode->i_mode)) 4487 simple_offset_destroy(shmem_get_offset_ctx(inode)); 4488 } 4489 4490 static void shmem_init_inode(void *foo) 4491 { 4492 struct shmem_inode_info *info = foo; 4493 inode_init_once(&info->vfs_inode); 4494 } 4495 4496 static void __init shmem_init_inodecache(void) 4497 { 4498 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 4499 sizeof(struct shmem_inode_info), 4500 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 4501 } 4502 4503 static void __init shmem_destroy_inodecache(void) 4504 { 4505 kmem_cache_destroy(shmem_inode_cachep); 4506 } 4507 4508 /* Keep the page in page cache instead of truncating it */ 4509 static int shmem_error_remove_folio(struct address_space *mapping, 4510 struct folio *folio) 4511 { 4512 return 0; 4513 } 4514 4515 static const struct address_space_operations shmem_aops = { 4516 .writepage = shmem_writepage, 4517 .dirty_folio = noop_dirty_folio, 4518 #ifdef CONFIG_TMPFS 4519 .write_begin = shmem_write_begin, 4520 .write_end = shmem_write_end, 4521 #endif 4522 #ifdef CONFIG_MIGRATION 4523 .migrate_folio = migrate_folio, 4524 #endif 4525 .error_remove_folio = shmem_error_remove_folio, 4526 }; 4527 4528 static const struct file_operations shmem_file_operations = { 4529 .mmap = shmem_mmap, 4530 .open = shmem_file_open, 4531 .get_unmapped_area = shmem_get_unmapped_area, 4532 #ifdef CONFIG_TMPFS 4533 .llseek = shmem_file_llseek, 4534 .read_iter = shmem_file_read_iter, 4535 .write_iter = shmem_file_write_iter, 4536 .fsync = noop_fsync, 4537 .splice_read = shmem_file_splice_read, 4538 .splice_write = iter_file_splice_write, 4539 .fallocate = shmem_fallocate, 4540 #endif 4541 }; 4542 4543 static const struct inode_operations shmem_inode_operations = { 4544 .getattr = shmem_getattr, 4545 .setattr = shmem_setattr, 4546 #ifdef CONFIG_TMPFS_XATTR 4547 .listxattr = shmem_listxattr, 4548 .set_acl = simple_set_acl, 4549 .fileattr_get = shmem_fileattr_get, 4550 .fileattr_set = shmem_fileattr_set, 4551 #endif 4552 }; 4553 4554 static const struct inode_operations shmem_dir_inode_operations = { 4555 #ifdef CONFIG_TMPFS 4556 .getattr = shmem_getattr, 4557 .create = shmem_create, 4558 .lookup = simple_lookup, 4559 .link = shmem_link, 4560 .unlink = shmem_unlink, 4561 .symlink = shmem_symlink, 4562 .mkdir = shmem_mkdir, 4563 .rmdir = shmem_rmdir, 4564 .mknod = shmem_mknod, 4565 .rename = shmem_rename2, 4566 .tmpfile = shmem_tmpfile, 4567 .get_offset_ctx = shmem_get_offset_ctx, 4568 #endif 4569 #ifdef CONFIG_TMPFS_XATTR 4570 .listxattr = shmem_listxattr, 4571 .fileattr_get = shmem_fileattr_get, 4572 .fileattr_set = shmem_fileattr_set, 4573 #endif 4574 #ifdef CONFIG_TMPFS_POSIX_ACL 4575 .setattr = shmem_setattr, 4576 .set_acl = simple_set_acl, 4577 #endif 4578 }; 4579 4580 static const struct inode_operations shmem_special_inode_operations = { 4581 .getattr = shmem_getattr, 4582 #ifdef CONFIG_TMPFS_XATTR 4583 .listxattr = shmem_listxattr, 4584 #endif 4585 #ifdef CONFIG_TMPFS_POSIX_ACL 4586 .setattr = shmem_setattr, 4587 .set_acl = simple_set_acl, 4588 #endif 4589 }; 4590 4591 static const struct super_operations shmem_ops = { 4592 .alloc_inode = shmem_alloc_inode, 4593 .free_inode = shmem_free_in_core_inode, 4594 .destroy_inode = shmem_destroy_inode, 4595 #ifdef CONFIG_TMPFS 4596 .statfs = shmem_statfs, 4597 .show_options = shmem_show_options, 4598 #endif 4599 #ifdef CONFIG_TMPFS_QUOTA 4600 .get_dquots = shmem_get_dquots, 4601 #endif 4602 .evict_inode = shmem_evict_inode, 4603 .drop_inode = generic_delete_inode, 4604 .put_super = shmem_put_super, 4605 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4606 .nr_cached_objects = shmem_unused_huge_count, 4607 .free_cached_objects = shmem_unused_huge_scan, 4608 #endif 4609 }; 4610 4611 static const struct vm_operations_struct shmem_vm_ops = { 4612 .fault = shmem_fault, 4613 .map_pages = filemap_map_pages, 4614 #ifdef CONFIG_NUMA 4615 .set_policy = shmem_set_policy, 4616 .get_policy = shmem_get_policy, 4617 #endif 4618 }; 4619 4620 static const struct vm_operations_struct shmem_anon_vm_ops = { 4621 .fault = shmem_fault, 4622 .map_pages = filemap_map_pages, 4623 #ifdef CONFIG_NUMA 4624 .set_policy = shmem_set_policy, 4625 .get_policy = shmem_get_policy, 4626 #endif 4627 }; 4628 4629 int shmem_init_fs_context(struct fs_context *fc) 4630 { 4631 struct shmem_options *ctx; 4632 4633 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4634 if (!ctx) 4635 return -ENOMEM; 4636 4637 ctx->mode = 0777 | S_ISVTX; 4638 ctx->uid = current_fsuid(); 4639 ctx->gid = current_fsgid(); 4640 4641 fc->fs_private = ctx; 4642 fc->ops = &shmem_fs_context_ops; 4643 return 0; 4644 } 4645 4646 static struct file_system_type shmem_fs_type = { 4647 .owner = THIS_MODULE, 4648 .name = "tmpfs", 4649 .init_fs_context = shmem_init_fs_context, 4650 #ifdef CONFIG_TMPFS 4651 .parameters = shmem_fs_parameters, 4652 #endif 4653 .kill_sb = kill_litter_super, 4654 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP, 4655 }; 4656 4657 void __init shmem_init(void) 4658 { 4659 int error; 4660 4661 shmem_init_inodecache(); 4662 4663 #ifdef CONFIG_TMPFS_QUOTA 4664 error = register_quota_format(&shmem_quota_format); 4665 if (error < 0) { 4666 pr_err("Could not register quota format\n"); 4667 goto out3; 4668 } 4669 #endif 4670 4671 error = register_filesystem(&shmem_fs_type); 4672 if (error) { 4673 pr_err("Could not register tmpfs\n"); 4674 goto out2; 4675 } 4676 4677 shm_mnt = kern_mount(&shmem_fs_type); 4678 if (IS_ERR(shm_mnt)) { 4679 error = PTR_ERR(shm_mnt); 4680 pr_err("Could not kern_mount tmpfs\n"); 4681 goto out1; 4682 } 4683 4684 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4685 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4686 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4687 else 4688 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4689 #endif 4690 return; 4691 4692 out1: 4693 unregister_filesystem(&shmem_fs_type); 4694 out2: 4695 #ifdef CONFIG_TMPFS_QUOTA 4696 unregister_quota_format(&shmem_quota_format); 4697 out3: 4698 #endif 4699 shmem_destroy_inodecache(); 4700 shm_mnt = ERR_PTR(error); 4701 } 4702 4703 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4704 static ssize_t shmem_enabled_show(struct kobject *kobj, 4705 struct kobj_attribute *attr, char *buf) 4706 { 4707 static const int values[] = { 4708 SHMEM_HUGE_ALWAYS, 4709 SHMEM_HUGE_WITHIN_SIZE, 4710 SHMEM_HUGE_ADVISE, 4711 SHMEM_HUGE_NEVER, 4712 SHMEM_HUGE_DENY, 4713 SHMEM_HUGE_FORCE, 4714 }; 4715 int len = 0; 4716 int i; 4717 4718 for (i = 0; i < ARRAY_SIZE(values); i++) { 4719 len += sysfs_emit_at(buf, len, 4720 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4721 i ? " " : "", shmem_format_huge(values[i])); 4722 } 4723 len += sysfs_emit_at(buf, len, "\n"); 4724 4725 return len; 4726 } 4727 4728 static ssize_t shmem_enabled_store(struct kobject *kobj, 4729 struct kobj_attribute *attr, const char *buf, size_t count) 4730 { 4731 char tmp[16]; 4732 int huge; 4733 4734 if (count + 1 > sizeof(tmp)) 4735 return -EINVAL; 4736 memcpy(tmp, buf, count); 4737 tmp[count] = '\0'; 4738 if (count && tmp[count - 1] == '\n') 4739 tmp[count - 1] = '\0'; 4740 4741 huge = shmem_parse_huge(tmp); 4742 if (huge == -EINVAL) 4743 return -EINVAL; 4744 if (!has_transparent_hugepage() && 4745 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4746 return -EINVAL; 4747 4748 shmem_huge = huge; 4749 if (shmem_huge > SHMEM_HUGE_DENY) 4750 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4751 return count; 4752 } 4753 4754 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4755 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4756 4757 #else /* !CONFIG_SHMEM */ 4758 4759 /* 4760 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4761 * 4762 * This is intended for small system where the benefits of the full 4763 * shmem code (swap-backed and resource-limited) are outweighed by 4764 * their complexity. On systems without swap this code should be 4765 * effectively equivalent, but much lighter weight. 4766 */ 4767 4768 static struct file_system_type shmem_fs_type = { 4769 .name = "tmpfs", 4770 .init_fs_context = ramfs_init_fs_context, 4771 .parameters = ramfs_fs_parameters, 4772 .kill_sb = ramfs_kill_sb, 4773 .fs_flags = FS_USERNS_MOUNT, 4774 }; 4775 4776 void __init shmem_init(void) 4777 { 4778 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4779 4780 shm_mnt = kern_mount(&shmem_fs_type); 4781 BUG_ON(IS_ERR(shm_mnt)); 4782 } 4783 4784 int shmem_unuse(unsigned int type) 4785 { 4786 return 0; 4787 } 4788 4789 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4790 { 4791 return 0; 4792 } 4793 4794 void shmem_unlock_mapping(struct address_space *mapping) 4795 { 4796 } 4797 4798 #ifdef CONFIG_MMU 4799 unsigned long shmem_get_unmapped_area(struct file *file, 4800 unsigned long addr, unsigned long len, 4801 unsigned long pgoff, unsigned long flags) 4802 { 4803 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4804 } 4805 #endif 4806 4807 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4808 { 4809 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4810 } 4811 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4812 4813 #define shmem_vm_ops generic_file_vm_ops 4814 #define shmem_anon_vm_ops generic_file_vm_ops 4815 #define shmem_file_operations ramfs_file_operations 4816 #define shmem_acct_size(flags, size) 0 4817 #define shmem_unacct_size(flags, size) do {} while (0) 4818 4819 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 4820 struct super_block *sb, struct inode *dir, 4821 umode_t mode, dev_t dev, unsigned long flags) 4822 { 4823 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 4824 return inode ? inode : ERR_PTR(-ENOSPC); 4825 } 4826 4827 #endif /* CONFIG_SHMEM */ 4828 4829 /* common code */ 4830 4831 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 4832 loff_t size, unsigned long flags, unsigned int i_flags) 4833 { 4834 struct inode *inode; 4835 struct file *res; 4836 4837 if (IS_ERR(mnt)) 4838 return ERR_CAST(mnt); 4839 4840 if (size < 0 || size > MAX_LFS_FILESIZE) 4841 return ERR_PTR(-EINVAL); 4842 4843 if (shmem_acct_size(flags, size)) 4844 return ERR_PTR(-ENOMEM); 4845 4846 if (is_idmapped_mnt(mnt)) 4847 return ERR_PTR(-EINVAL); 4848 4849 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 4850 S_IFREG | S_IRWXUGO, 0, flags); 4851 if (IS_ERR(inode)) { 4852 shmem_unacct_size(flags, size); 4853 return ERR_CAST(inode); 4854 } 4855 inode->i_flags |= i_flags; 4856 inode->i_size = size; 4857 clear_nlink(inode); /* It is unlinked */ 4858 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4859 if (!IS_ERR(res)) 4860 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4861 &shmem_file_operations); 4862 if (IS_ERR(res)) 4863 iput(inode); 4864 return res; 4865 } 4866 4867 /** 4868 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4869 * kernel internal. There will be NO LSM permission checks against the 4870 * underlying inode. So users of this interface must do LSM checks at a 4871 * higher layer. The users are the big_key and shm implementations. LSM 4872 * checks are provided at the key or shm level rather than the inode. 4873 * @name: name for dentry (to be seen in /proc/<pid>/maps 4874 * @size: size to be set for the file 4875 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4876 */ 4877 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4878 { 4879 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4880 } 4881 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 4882 4883 /** 4884 * shmem_file_setup - get an unlinked file living in tmpfs 4885 * @name: name for dentry (to be seen in /proc/<pid>/maps 4886 * @size: size to be set for the file 4887 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4888 */ 4889 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4890 { 4891 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4892 } 4893 EXPORT_SYMBOL_GPL(shmem_file_setup); 4894 4895 /** 4896 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4897 * @mnt: the tmpfs mount where the file will be created 4898 * @name: name for dentry (to be seen in /proc/<pid>/maps 4899 * @size: size to be set for the file 4900 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4901 */ 4902 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4903 loff_t size, unsigned long flags) 4904 { 4905 return __shmem_file_setup(mnt, name, size, flags, 0); 4906 } 4907 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4908 4909 /** 4910 * shmem_zero_setup - setup a shared anonymous mapping 4911 * @vma: the vma to be mmapped is prepared by do_mmap 4912 */ 4913 int shmem_zero_setup(struct vm_area_struct *vma) 4914 { 4915 struct file *file; 4916 loff_t size = vma->vm_end - vma->vm_start; 4917 4918 /* 4919 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4920 * between XFS directory reading and selinux: since this file is only 4921 * accessible to the user through its mapping, use S_PRIVATE flag to 4922 * bypass file security, in the same way as shmem_kernel_file_setup(). 4923 */ 4924 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4925 if (IS_ERR(file)) 4926 return PTR_ERR(file); 4927 4928 if (vma->vm_file) 4929 fput(vma->vm_file); 4930 vma->vm_file = file; 4931 vma->vm_ops = &shmem_anon_vm_ops; 4932 4933 return 0; 4934 } 4935 4936 /** 4937 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 4938 * @mapping: the folio's address_space 4939 * @index: the folio index 4940 * @gfp: the page allocator flags to use if allocating 4941 * 4942 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4943 * with any new page allocations done using the specified allocation flags. 4944 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4945 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4946 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4947 * 4948 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4949 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4950 */ 4951 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 4952 pgoff_t index, gfp_t gfp) 4953 { 4954 #ifdef CONFIG_SHMEM 4955 struct inode *inode = mapping->host; 4956 struct folio *folio; 4957 int error; 4958 4959 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE, 4960 gfp, NULL, NULL); 4961 if (error) 4962 return ERR_PTR(error); 4963 4964 folio_unlock(folio); 4965 return folio; 4966 #else 4967 /* 4968 * The tiny !SHMEM case uses ramfs without swap 4969 */ 4970 return mapping_read_folio_gfp(mapping, index, gfp); 4971 #endif 4972 } 4973 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 4974 4975 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4976 pgoff_t index, gfp_t gfp) 4977 { 4978 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 4979 struct page *page; 4980 4981 if (IS_ERR(folio)) 4982 return &folio->page; 4983 4984 page = folio_file_page(folio, index); 4985 if (PageHWPoison(page)) { 4986 folio_put(folio); 4987 return ERR_PTR(-EIO); 4988 } 4989 4990 return page; 4991 } 4992 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4993