xref: /linux/mm/shmem.c (revision 8b6aaf65d3b001ec9b5dcba0992b3b68cbf6057f)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35 
36 static struct vfsmount *shm_mnt;
37 
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44 
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72 
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75 
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78 
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81 
82 /*
83  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84  * inode->i_private (with i_mutex making sure that it has only one user at
85  * a time): we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
89 	pgoff_t start;		/* start of range currently being fallocated */
90 	pgoff_t next;		/* the next page offset to be fallocated */
91 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
92 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
93 };
94 
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97 	SGP_READ,	/* don't exceed i_size, don't allocate page */
98 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
99 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
100 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
101 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
102 };
103 
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107 	return totalram_pages / 2;
108 }
109 
110 static unsigned long shmem_default_max_inodes(void)
111 {
112 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115 
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118 				struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121 
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123 	struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125 	return shmem_getpage_gfp(inode, index, pagep, sgp,
126 			mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128 
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131 	return sb->s_fs_info;
132 }
133 
134 /*
135  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136  * for shared memory and for shared anonymous (/dev/zero) mappings
137  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138  * consistent with the pre-accounting of private mappings ...
139  */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142 	return (flags & VM_NORESERVE) ?
143 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145 
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148 	if (!(flags & VM_NORESERVE))
149 		vm_unacct_memory(VM_ACCT(size));
150 }
151 
152 static inline int shmem_reacct_size(unsigned long flags,
153 		loff_t oldsize, loff_t newsize)
154 {
155 	if (!(flags & VM_NORESERVE)) {
156 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
157 			return security_vm_enough_memory_mm(current->mm,
158 					VM_ACCT(newsize) - VM_ACCT(oldsize));
159 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
160 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
161 	}
162 	return 0;
163 }
164 
165 /*
166  * ... whereas tmpfs objects are accounted incrementally as
167  * pages are allocated, in order to allow huge sparse files.
168  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
169  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
170  */
171 static inline int shmem_acct_block(unsigned long flags)
172 {
173 	return (flags & VM_NORESERVE) ?
174 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
175 }
176 
177 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
178 {
179 	if (flags & VM_NORESERVE)
180 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
181 }
182 
183 static const struct super_operations shmem_ops;
184 static const struct address_space_operations shmem_aops;
185 static const struct file_operations shmem_file_operations;
186 static const struct inode_operations shmem_inode_operations;
187 static const struct inode_operations shmem_dir_inode_operations;
188 static const struct inode_operations shmem_special_inode_operations;
189 static const struct vm_operations_struct shmem_vm_ops;
190 
191 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
192 	.ra_pages	= 0,	/* No readahead */
193 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
194 };
195 
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198 
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 	if (sbinfo->max_inodes) {
203 		spin_lock(&sbinfo->stat_lock);
204 		if (!sbinfo->free_inodes) {
205 			spin_unlock(&sbinfo->stat_lock);
206 			return -ENOSPC;
207 		}
208 		sbinfo->free_inodes--;
209 		spin_unlock(&sbinfo->stat_lock);
210 	}
211 	return 0;
212 }
213 
214 static void shmem_free_inode(struct super_block *sb)
215 {
216 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 	if (sbinfo->max_inodes) {
218 		spin_lock(&sbinfo->stat_lock);
219 		sbinfo->free_inodes++;
220 		spin_unlock(&sbinfo->stat_lock);
221 	}
222 }
223 
224 /**
225  * shmem_recalc_inode - recalculate the block usage of an inode
226  * @inode: inode to recalc
227  *
228  * We have to calculate the free blocks since the mm can drop
229  * undirtied hole pages behind our back.
230  *
231  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
232  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233  *
234  * It has to be called with the spinlock held.
235  */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238 	struct shmem_inode_info *info = SHMEM_I(inode);
239 	long freed;
240 
241 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 	if (freed > 0) {
243 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 		if (sbinfo->max_blocks)
245 			percpu_counter_add(&sbinfo->used_blocks, -freed);
246 		info->alloced -= freed;
247 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248 		shmem_unacct_blocks(info->flags, freed);
249 	}
250 }
251 
252 /*
253  * Replace item expected in radix tree by a new item, while holding tree lock.
254  */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256 			pgoff_t index, void *expected, void *replacement)
257 {
258 	void **pslot;
259 	void *item;
260 
261 	VM_BUG_ON(!expected);
262 	VM_BUG_ON(!replacement);
263 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264 	if (!pslot)
265 		return -ENOENT;
266 	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267 	if (item != expected)
268 		return -ENOENT;
269 	radix_tree_replace_slot(pslot, replacement);
270 	return 0;
271 }
272 
273 /*
274  * Sometimes, before we decide whether to proceed or to fail, we must check
275  * that an entry was not already brought back from swap by a racing thread.
276  *
277  * Checking page is not enough: by the time a SwapCache page is locked, it
278  * might be reused, and again be SwapCache, using the same swap as before.
279  */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281 			       pgoff_t index, swp_entry_t swap)
282 {
283 	void *item;
284 
285 	rcu_read_lock();
286 	item = radix_tree_lookup(&mapping->page_tree, index);
287 	rcu_read_unlock();
288 	return item == swp_to_radix_entry(swap);
289 }
290 
291 /*
292  * Like add_to_page_cache_locked, but error if expected item has gone.
293  */
294 static int shmem_add_to_page_cache(struct page *page,
295 				   struct address_space *mapping,
296 				   pgoff_t index, void *expected)
297 {
298 	int error;
299 
300 	VM_BUG_ON_PAGE(!PageLocked(page), page);
301 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302 
303 	page_cache_get(page);
304 	page->mapping = mapping;
305 	page->index = index;
306 
307 	spin_lock_irq(&mapping->tree_lock);
308 	if (!expected)
309 		error = radix_tree_insert(&mapping->page_tree, index, page);
310 	else
311 		error = shmem_radix_tree_replace(mapping, index, expected,
312 								 page);
313 	if (!error) {
314 		mapping->nrpages++;
315 		__inc_zone_page_state(page, NR_FILE_PAGES);
316 		__inc_zone_page_state(page, NR_SHMEM);
317 		spin_unlock_irq(&mapping->tree_lock);
318 	} else {
319 		page->mapping = NULL;
320 		spin_unlock_irq(&mapping->tree_lock);
321 		page_cache_release(page);
322 	}
323 	return error;
324 }
325 
326 /*
327  * Like delete_from_page_cache, but substitutes swap for page.
328  */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331 	struct address_space *mapping = page->mapping;
332 	int error;
333 
334 	spin_lock_irq(&mapping->tree_lock);
335 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 	page->mapping = NULL;
337 	mapping->nrpages--;
338 	__dec_zone_page_state(page, NR_FILE_PAGES);
339 	__dec_zone_page_state(page, NR_SHMEM);
340 	spin_unlock_irq(&mapping->tree_lock);
341 	page_cache_release(page);
342 	BUG_ON(error);
343 }
344 
345 /*
346  * Remove swap entry from radix tree, free the swap and its page cache.
347  */
348 static int shmem_free_swap(struct address_space *mapping,
349 			   pgoff_t index, void *radswap)
350 {
351 	void *old;
352 
353 	spin_lock_irq(&mapping->tree_lock);
354 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355 	spin_unlock_irq(&mapping->tree_lock);
356 	if (old != radswap)
357 		return -ENOENT;
358 	free_swap_and_cache(radix_to_swp_entry(radswap));
359 	return 0;
360 }
361 
362 /*
363  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
364  */
365 void shmem_unlock_mapping(struct address_space *mapping)
366 {
367 	struct pagevec pvec;
368 	pgoff_t indices[PAGEVEC_SIZE];
369 	pgoff_t index = 0;
370 
371 	pagevec_init(&pvec, 0);
372 	/*
373 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
374 	 */
375 	while (!mapping_unevictable(mapping)) {
376 		/*
377 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
378 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
379 		 */
380 		pvec.nr = find_get_entries(mapping, index,
381 					   PAGEVEC_SIZE, pvec.pages, indices);
382 		if (!pvec.nr)
383 			break;
384 		index = indices[pvec.nr - 1] + 1;
385 		pagevec_remove_exceptionals(&pvec);
386 		check_move_unevictable_pages(pvec.pages, pvec.nr);
387 		pagevec_release(&pvec);
388 		cond_resched();
389 	}
390 }
391 
392 /*
393  * Remove range of pages and swap entries from radix tree, and free them.
394  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
395  */
396 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
397 								 bool unfalloc)
398 {
399 	struct address_space *mapping = inode->i_mapping;
400 	struct shmem_inode_info *info = SHMEM_I(inode);
401 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
402 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
403 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
404 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
405 	struct pagevec pvec;
406 	pgoff_t indices[PAGEVEC_SIZE];
407 	long nr_swaps_freed = 0;
408 	pgoff_t index;
409 	int i;
410 
411 	if (lend == -1)
412 		end = -1;	/* unsigned, so actually very big */
413 
414 	pagevec_init(&pvec, 0);
415 	index = start;
416 	while (index < end) {
417 		pvec.nr = find_get_entries(mapping, index,
418 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
419 			pvec.pages, indices);
420 		if (!pvec.nr)
421 			break;
422 		for (i = 0; i < pagevec_count(&pvec); i++) {
423 			struct page *page = pvec.pages[i];
424 
425 			index = indices[i];
426 			if (index >= end)
427 				break;
428 
429 			if (radix_tree_exceptional_entry(page)) {
430 				if (unfalloc)
431 					continue;
432 				nr_swaps_freed += !shmem_free_swap(mapping,
433 								index, page);
434 				continue;
435 			}
436 
437 			if (!trylock_page(page))
438 				continue;
439 			if (!unfalloc || !PageUptodate(page)) {
440 				if (page->mapping == mapping) {
441 					VM_BUG_ON_PAGE(PageWriteback(page), page);
442 					truncate_inode_page(mapping, page);
443 				}
444 			}
445 			unlock_page(page);
446 		}
447 		pagevec_remove_exceptionals(&pvec);
448 		pagevec_release(&pvec);
449 		cond_resched();
450 		index++;
451 	}
452 
453 	if (partial_start) {
454 		struct page *page = NULL;
455 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
456 		if (page) {
457 			unsigned int top = PAGE_CACHE_SIZE;
458 			if (start > end) {
459 				top = partial_end;
460 				partial_end = 0;
461 			}
462 			zero_user_segment(page, partial_start, top);
463 			set_page_dirty(page);
464 			unlock_page(page);
465 			page_cache_release(page);
466 		}
467 	}
468 	if (partial_end) {
469 		struct page *page = NULL;
470 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
471 		if (page) {
472 			zero_user_segment(page, 0, partial_end);
473 			set_page_dirty(page);
474 			unlock_page(page);
475 			page_cache_release(page);
476 		}
477 	}
478 	if (start >= end)
479 		return;
480 
481 	index = start;
482 	while (index < end) {
483 		cond_resched();
484 
485 		pvec.nr = find_get_entries(mapping, index,
486 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
487 				pvec.pages, indices);
488 		if (!pvec.nr) {
489 			/* If all gone or hole-punch or unfalloc, we're done */
490 			if (index == start || end != -1)
491 				break;
492 			/* But if truncating, restart to make sure all gone */
493 			index = start;
494 			continue;
495 		}
496 		for (i = 0; i < pagevec_count(&pvec); i++) {
497 			struct page *page = pvec.pages[i];
498 
499 			index = indices[i];
500 			if (index >= end)
501 				break;
502 
503 			if (radix_tree_exceptional_entry(page)) {
504 				if (unfalloc)
505 					continue;
506 				if (shmem_free_swap(mapping, index, page)) {
507 					/* Swap was replaced by page: retry */
508 					index--;
509 					break;
510 				}
511 				nr_swaps_freed++;
512 				continue;
513 			}
514 
515 			lock_page(page);
516 			if (!unfalloc || !PageUptodate(page)) {
517 				if (page->mapping == mapping) {
518 					VM_BUG_ON_PAGE(PageWriteback(page), page);
519 					truncate_inode_page(mapping, page);
520 				} else {
521 					/* Page was replaced by swap: retry */
522 					unlock_page(page);
523 					index--;
524 					break;
525 				}
526 			}
527 			unlock_page(page);
528 		}
529 		pagevec_remove_exceptionals(&pvec);
530 		pagevec_release(&pvec);
531 		index++;
532 	}
533 
534 	spin_lock(&info->lock);
535 	info->swapped -= nr_swaps_freed;
536 	shmem_recalc_inode(inode);
537 	spin_unlock(&info->lock);
538 }
539 
540 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
541 {
542 	shmem_undo_range(inode, lstart, lend, false);
543 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
544 }
545 EXPORT_SYMBOL_GPL(shmem_truncate_range);
546 
547 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
548 {
549 	struct inode *inode = dentry->d_inode;
550 	int error;
551 
552 	error = inode_change_ok(inode, attr);
553 	if (error)
554 		return error;
555 
556 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
557 		loff_t oldsize = inode->i_size;
558 		loff_t newsize = attr->ia_size;
559 
560 		if (newsize != oldsize) {
561 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
562 					oldsize, newsize);
563 			if (error)
564 				return error;
565 			i_size_write(inode, newsize);
566 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
567 		}
568 		if (newsize < oldsize) {
569 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
570 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
571 			shmem_truncate_range(inode, newsize, (loff_t)-1);
572 			/* unmap again to remove racily COWed private pages */
573 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
574 		}
575 	}
576 
577 	setattr_copy(inode, attr);
578 	if (attr->ia_valid & ATTR_MODE)
579 		error = posix_acl_chmod(inode, inode->i_mode);
580 	return error;
581 }
582 
583 static void shmem_evict_inode(struct inode *inode)
584 {
585 	struct shmem_inode_info *info = SHMEM_I(inode);
586 
587 	if (inode->i_mapping->a_ops == &shmem_aops) {
588 		shmem_unacct_size(info->flags, inode->i_size);
589 		inode->i_size = 0;
590 		shmem_truncate_range(inode, 0, (loff_t)-1);
591 		if (!list_empty(&info->swaplist)) {
592 			mutex_lock(&shmem_swaplist_mutex);
593 			list_del_init(&info->swaplist);
594 			mutex_unlock(&shmem_swaplist_mutex);
595 		}
596 	} else
597 		kfree(info->symlink);
598 
599 	simple_xattrs_free(&info->xattrs);
600 	WARN_ON(inode->i_blocks);
601 	shmem_free_inode(inode->i_sb);
602 	clear_inode(inode);
603 }
604 
605 /*
606  * If swap found in inode, free it and move page from swapcache to filecache.
607  */
608 static int shmem_unuse_inode(struct shmem_inode_info *info,
609 			     swp_entry_t swap, struct page **pagep)
610 {
611 	struct address_space *mapping = info->vfs_inode.i_mapping;
612 	void *radswap;
613 	pgoff_t index;
614 	gfp_t gfp;
615 	int error = 0;
616 
617 	radswap = swp_to_radix_entry(swap);
618 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
619 	if (index == -1)
620 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
621 
622 	/*
623 	 * Move _head_ to start search for next from here.
624 	 * But be careful: shmem_evict_inode checks list_empty without taking
625 	 * mutex, and there's an instant in list_move_tail when info->swaplist
626 	 * would appear empty, if it were the only one on shmem_swaplist.
627 	 */
628 	if (shmem_swaplist.next != &info->swaplist)
629 		list_move_tail(&shmem_swaplist, &info->swaplist);
630 
631 	gfp = mapping_gfp_mask(mapping);
632 	if (shmem_should_replace_page(*pagep, gfp)) {
633 		mutex_unlock(&shmem_swaplist_mutex);
634 		error = shmem_replace_page(pagep, gfp, info, index);
635 		mutex_lock(&shmem_swaplist_mutex);
636 		/*
637 		 * We needed to drop mutex to make that restrictive page
638 		 * allocation, but the inode might have been freed while we
639 		 * dropped it: although a racing shmem_evict_inode() cannot
640 		 * complete without emptying the radix_tree, our page lock
641 		 * on this swapcache page is not enough to prevent that -
642 		 * free_swap_and_cache() of our swap entry will only
643 		 * trylock_page(), removing swap from radix_tree whatever.
644 		 *
645 		 * We must not proceed to shmem_add_to_page_cache() if the
646 		 * inode has been freed, but of course we cannot rely on
647 		 * inode or mapping or info to check that.  However, we can
648 		 * safely check if our swap entry is still in use (and here
649 		 * it can't have got reused for another page): if it's still
650 		 * in use, then the inode cannot have been freed yet, and we
651 		 * can safely proceed (if it's no longer in use, that tells
652 		 * nothing about the inode, but we don't need to unuse swap).
653 		 */
654 		if (!page_swapcount(*pagep))
655 			error = -ENOENT;
656 	}
657 
658 	/*
659 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
660 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
661 	 * beneath us (pagelock doesn't help until the page is in pagecache).
662 	 */
663 	if (!error)
664 		error = shmem_add_to_page_cache(*pagep, mapping, index,
665 						radswap);
666 	if (error != -ENOMEM) {
667 		/*
668 		 * Truncation and eviction use free_swap_and_cache(), which
669 		 * only does trylock page: if we raced, best clean up here.
670 		 */
671 		delete_from_swap_cache(*pagep);
672 		set_page_dirty(*pagep);
673 		if (!error) {
674 			spin_lock(&info->lock);
675 			info->swapped--;
676 			spin_unlock(&info->lock);
677 			swap_free(swap);
678 		}
679 	}
680 	return error;
681 }
682 
683 /*
684  * Search through swapped inodes to find and replace swap by page.
685  */
686 int shmem_unuse(swp_entry_t swap, struct page *page)
687 {
688 	struct list_head *this, *next;
689 	struct shmem_inode_info *info;
690 	struct mem_cgroup *memcg;
691 	int error = 0;
692 
693 	/*
694 	 * There's a faint possibility that swap page was replaced before
695 	 * caller locked it: caller will come back later with the right page.
696 	 */
697 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
698 		goto out;
699 
700 	/*
701 	 * Charge page using GFP_KERNEL while we can wait, before taking
702 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
703 	 * Charged back to the user (not to caller) when swap account is used.
704 	 */
705 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
706 	if (error)
707 		goto out;
708 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
709 	error = -EAGAIN;
710 
711 	mutex_lock(&shmem_swaplist_mutex);
712 	list_for_each_safe(this, next, &shmem_swaplist) {
713 		info = list_entry(this, struct shmem_inode_info, swaplist);
714 		if (info->swapped)
715 			error = shmem_unuse_inode(info, swap, &page);
716 		else
717 			list_del_init(&info->swaplist);
718 		cond_resched();
719 		if (error != -EAGAIN)
720 			break;
721 		/* found nothing in this: move on to search the next */
722 	}
723 	mutex_unlock(&shmem_swaplist_mutex);
724 
725 	if (error) {
726 		if (error != -ENOMEM)
727 			error = 0;
728 		mem_cgroup_cancel_charge(page, memcg);
729 	} else
730 		mem_cgroup_commit_charge(page, memcg, true);
731 out:
732 	unlock_page(page);
733 	page_cache_release(page);
734 	return error;
735 }
736 
737 /*
738  * Move the page from the page cache to the swap cache.
739  */
740 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
741 {
742 	struct shmem_inode_info *info;
743 	struct address_space *mapping;
744 	struct inode *inode;
745 	swp_entry_t swap;
746 	pgoff_t index;
747 
748 	BUG_ON(!PageLocked(page));
749 	mapping = page->mapping;
750 	index = page->index;
751 	inode = mapping->host;
752 	info = SHMEM_I(inode);
753 	if (info->flags & VM_LOCKED)
754 		goto redirty;
755 	if (!total_swap_pages)
756 		goto redirty;
757 
758 	/*
759 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
760 	 * sync from ever calling shmem_writepage; but a stacking filesystem
761 	 * might use ->writepage of its underlying filesystem, in which case
762 	 * tmpfs should write out to swap only in response to memory pressure,
763 	 * and not for the writeback threads or sync.
764 	 */
765 	if (!wbc->for_reclaim) {
766 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
767 		goto redirty;
768 	}
769 
770 	/*
771 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
772 	 * value into swapfile.c, the only way we can correctly account for a
773 	 * fallocated page arriving here is now to initialize it and write it.
774 	 *
775 	 * That's okay for a page already fallocated earlier, but if we have
776 	 * not yet completed the fallocation, then (a) we want to keep track
777 	 * of this page in case we have to undo it, and (b) it may not be a
778 	 * good idea to continue anyway, once we're pushing into swap.  So
779 	 * reactivate the page, and let shmem_fallocate() quit when too many.
780 	 */
781 	if (!PageUptodate(page)) {
782 		if (inode->i_private) {
783 			struct shmem_falloc *shmem_falloc;
784 			spin_lock(&inode->i_lock);
785 			shmem_falloc = inode->i_private;
786 			if (shmem_falloc &&
787 			    !shmem_falloc->waitq &&
788 			    index >= shmem_falloc->start &&
789 			    index < shmem_falloc->next)
790 				shmem_falloc->nr_unswapped++;
791 			else
792 				shmem_falloc = NULL;
793 			spin_unlock(&inode->i_lock);
794 			if (shmem_falloc)
795 				goto redirty;
796 		}
797 		clear_highpage(page);
798 		flush_dcache_page(page);
799 		SetPageUptodate(page);
800 	}
801 
802 	swap = get_swap_page();
803 	if (!swap.val)
804 		goto redirty;
805 
806 	/*
807 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
808 	 * if it's not already there.  Do it now before the page is
809 	 * moved to swap cache, when its pagelock no longer protects
810 	 * the inode from eviction.  But don't unlock the mutex until
811 	 * we've incremented swapped, because shmem_unuse_inode() will
812 	 * prune a !swapped inode from the swaplist under this mutex.
813 	 */
814 	mutex_lock(&shmem_swaplist_mutex);
815 	if (list_empty(&info->swaplist))
816 		list_add_tail(&info->swaplist, &shmem_swaplist);
817 
818 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
819 		swap_shmem_alloc(swap);
820 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
821 
822 		spin_lock(&info->lock);
823 		info->swapped++;
824 		shmem_recalc_inode(inode);
825 		spin_unlock(&info->lock);
826 
827 		mutex_unlock(&shmem_swaplist_mutex);
828 		BUG_ON(page_mapped(page));
829 		swap_writepage(page, wbc);
830 		return 0;
831 	}
832 
833 	mutex_unlock(&shmem_swaplist_mutex);
834 	swapcache_free(swap);
835 redirty:
836 	set_page_dirty(page);
837 	if (wbc->for_reclaim)
838 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
839 	unlock_page(page);
840 	return 0;
841 }
842 
843 #ifdef CONFIG_NUMA
844 #ifdef CONFIG_TMPFS
845 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
846 {
847 	char buffer[64];
848 
849 	if (!mpol || mpol->mode == MPOL_DEFAULT)
850 		return;		/* show nothing */
851 
852 	mpol_to_str(buffer, sizeof(buffer), mpol);
853 
854 	seq_printf(seq, ",mpol=%s", buffer);
855 }
856 
857 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
858 {
859 	struct mempolicy *mpol = NULL;
860 	if (sbinfo->mpol) {
861 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
862 		mpol = sbinfo->mpol;
863 		mpol_get(mpol);
864 		spin_unlock(&sbinfo->stat_lock);
865 	}
866 	return mpol;
867 }
868 #endif /* CONFIG_TMPFS */
869 
870 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
871 			struct shmem_inode_info *info, pgoff_t index)
872 {
873 	struct vm_area_struct pvma;
874 	struct page *page;
875 
876 	/* Create a pseudo vma that just contains the policy */
877 	pvma.vm_start = 0;
878 	/* Bias interleave by inode number to distribute better across nodes */
879 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
880 	pvma.vm_ops = NULL;
881 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
882 
883 	page = swapin_readahead(swap, gfp, &pvma, 0);
884 
885 	/* Drop reference taken by mpol_shared_policy_lookup() */
886 	mpol_cond_put(pvma.vm_policy);
887 
888 	return page;
889 }
890 
891 static struct page *shmem_alloc_page(gfp_t gfp,
892 			struct shmem_inode_info *info, pgoff_t index)
893 {
894 	struct vm_area_struct pvma;
895 	struct page *page;
896 
897 	/* Create a pseudo vma that just contains the policy */
898 	pvma.vm_start = 0;
899 	/* Bias interleave by inode number to distribute better across nodes */
900 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
901 	pvma.vm_ops = NULL;
902 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
903 
904 	page = alloc_page_vma(gfp, &pvma, 0);
905 
906 	/* Drop reference taken by mpol_shared_policy_lookup() */
907 	mpol_cond_put(pvma.vm_policy);
908 
909 	return page;
910 }
911 #else /* !CONFIG_NUMA */
912 #ifdef CONFIG_TMPFS
913 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
914 {
915 }
916 #endif /* CONFIG_TMPFS */
917 
918 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
919 			struct shmem_inode_info *info, pgoff_t index)
920 {
921 	return swapin_readahead(swap, gfp, NULL, 0);
922 }
923 
924 static inline struct page *shmem_alloc_page(gfp_t gfp,
925 			struct shmem_inode_info *info, pgoff_t index)
926 {
927 	return alloc_page(gfp);
928 }
929 #endif /* CONFIG_NUMA */
930 
931 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
932 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
933 {
934 	return NULL;
935 }
936 #endif
937 
938 /*
939  * When a page is moved from swapcache to shmem filecache (either by the
940  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
941  * shmem_unuse_inode()), it may have been read in earlier from swap, in
942  * ignorance of the mapping it belongs to.  If that mapping has special
943  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
944  * we may need to copy to a suitable page before moving to filecache.
945  *
946  * In a future release, this may well be extended to respect cpuset and
947  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
948  * but for now it is a simple matter of zone.
949  */
950 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
951 {
952 	return page_zonenum(page) > gfp_zone(gfp);
953 }
954 
955 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
956 				struct shmem_inode_info *info, pgoff_t index)
957 {
958 	struct page *oldpage, *newpage;
959 	struct address_space *swap_mapping;
960 	pgoff_t swap_index;
961 	int error;
962 
963 	oldpage = *pagep;
964 	swap_index = page_private(oldpage);
965 	swap_mapping = page_mapping(oldpage);
966 
967 	/*
968 	 * We have arrived here because our zones are constrained, so don't
969 	 * limit chance of success by further cpuset and node constraints.
970 	 */
971 	gfp &= ~GFP_CONSTRAINT_MASK;
972 	newpage = shmem_alloc_page(gfp, info, index);
973 	if (!newpage)
974 		return -ENOMEM;
975 
976 	page_cache_get(newpage);
977 	copy_highpage(newpage, oldpage);
978 	flush_dcache_page(newpage);
979 
980 	__set_page_locked(newpage);
981 	SetPageUptodate(newpage);
982 	SetPageSwapBacked(newpage);
983 	set_page_private(newpage, swap_index);
984 	SetPageSwapCache(newpage);
985 
986 	/*
987 	 * Our caller will very soon move newpage out of swapcache, but it's
988 	 * a nice clean interface for us to replace oldpage by newpage there.
989 	 */
990 	spin_lock_irq(&swap_mapping->tree_lock);
991 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
992 								   newpage);
993 	if (!error) {
994 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
995 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
996 	}
997 	spin_unlock_irq(&swap_mapping->tree_lock);
998 
999 	if (unlikely(error)) {
1000 		/*
1001 		 * Is this possible?  I think not, now that our callers check
1002 		 * both PageSwapCache and page_private after getting page lock;
1003 		 * but be defensive.  Reverse old to newpage for clear and free.
1004 		 */
1005 		oldpage = newpage;
1006 	} else {
1007 		mem_cgroup_migrate(oldpage, newpage, false);
1008 		lru_cache_add_anon(newpage);
1009 		*pagep = newpage;
1010 	}
1011 
1012 	ClearPageSwapCache(oldpage);
1013 	set_page_private(oldpage, 0);
1014 
1015 	unlock_page(oldpage);
1016 	page_cache_release(oldpage);
1017 	page_cache_release(oldpage);
1018 	return error;
1019 }
1020 
1021 /*
1022  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1023  *
1024  * If we allocate a new one we do not mark it dirty. That's up to the
1025  * vm. If we swap it in we mark it dirty since we also free the swap
1026  * entry since a page cannot live in both the swap and page cache
1027  */
1028 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1029 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1030 {
1031 	struct address_space *mapping = inode->i_mapping;
1032 	struct shmem_inode_info *info;
1033 	struct shmem_sb_info *sbinfo;
1034 	struct mem_cgroup *memcg;
1035 	struct page *page;
1036 	swp_entry_t swap;
1037 	int error;
1038 	int once = 0;
1039 	int alloced = 0;
1040 
1041 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1042 		return -EFBIG;
1043 repeat:
1044 	swap.val = 0;
1045 	page = find_lock_entry(mapping, index);
1046 	if (radix_tree_exceptional_entry(page)) {
1047 		swap = radix_to_swp_entry(page);
1048 		page = NULL;
1049 	}
1050 
1051 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1052 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1053 		error = -EINVAL;
1054 		goto failed;
1055 	}
1056 
1057 	if (page && sgp == SGP_WRITE)
1058 		mark_page_accessed(page);
1059 
1060 	/* fallocated page? */
1061 	if (page && !PageUptodate(page)) {
1062 		if (sgp != SGP_READ)
1063 			goto clear;
1064 		unlock_page(page);
1065 		page_cache_release(page);
1066 		page = NULL;
1067 	}
1068 	if (page || (sgp == SGP_READ && !swap.val)) {
1069 		*pagep = page;
1070 		return 0;
1071 	}
1072 
1073 	/*
1074 	 * Fast cache lookup did not find it:
1075 	 * bring it back from swap or allocate.
1076 	 */
1077 	info = SHMEM_I(inode);
1078 	sbinfo = SHMEM_SB(inode->i_sb);
1079 
1080 	if (swap.val) {
1081 		/* Look it up and read it in.. */
1082 		page = lookup_swap_cache(swap);
1083 		if (!page) {
1084 			/* here we actually do the io */
1085 			if (fault_type)
1086 				*fault_type |= VM_FAULT_MAJOR;
1087 			page = shmem_swapin(swap, gfp, info, index);
1088 			if (!page) {
1089 				error = -ENOMEM;
1090 				goto failed;
1091 			}
1092 		}
1093 
1094 		/* We have to do this with page locked to prevent races */
1095 		lock_page(page);
1096 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1097 		    !shmem_confirm_swap(mapping, index, swap)) {
1098 			error = -EEXIST;	/* try again */
1099 			goto unlock;
1100 		}
1101 		if (!PageUptodate(page)) {
1102 			error = -EIO;
1103 			goto failed;
1104 		}
1105 		wait_on_page_writeback(page);
1106 
1107 		if (shmem_should_replace_page(page, gfp)) {
1108 			error = shmem_replace_page(&page, gfp, info, index);
1109 			if (error)
1110 				goto failed;
1111 		}
1112 
1113 		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1114 		if (!error) {
1115 			error = shmem_add_to_page_cache(page, mapping, index,
1116 						swp_to_radix_entry(swap));
1117 			/*
1118 			 * We already confirmed swap under page lock, and make
1119 			 * no memory allocation here, so usually no possibility
1120 			 * of error; but free_swap_and_cache() only trylocks a
1121 			 * page, so it is just possible that the entry has been
1122 			 * truncated or holepunched since swap was confirmed.
1123 			 * shmem_undo_range() will have done some of the
1124 			 * unaccounting, now delete_from_swap_cache() will do
1125 			 * the rest (including mem_cgroup_uncharge_swapcache).
1126 			 * Reset swap.val? No, leave it so "failed" goes back to
1127 			 * "repeat": reading a hole and writing should succeed.
1128 			 */
1129 			if (error) {
1130 				mem_cgroup_cancel_charge(page, memcg);
1131 				delete_from_swap_cache(page);
1132 			}
1133 		}
1134 		if (error)
1135 			goto failed;
1136 
1137 		mem_cgroup_commit_charge(page, memcg, true);
1138 
1139 		spin_lock(&info->lock);
1140 		info->swapped--;
1141 		shmem_recalc_inode(inode);
1142 		spin_unlock(&info->lock);
1143 
1144 		if (sgp == SGP_WRITE)
1145 			mark_page_accessed(page);
1146 
1147 		delete_from_swap_cache(page);
1148 		set_page_dirty(page);
1149 		swap_free(swap);
1150 
1151 	} else {
1152 		if (shmem_acct_block(info->flags)) {
1153 			error = -ENOSPC;
1154 			goto failed;
1155 		}
1156 		if (sbinfo->max_blocks) {
1157 			if (percpu_counter_compare(&sbinfo->used_blocks,
1158 						sbinfo->max_blocks) >= 0) {
1159 				error = -ENOSPC;
1160 				goto unacct;
1161 			}
1162 			percpu_counter_inc(&sbinfo->used_blocks);
1163 		}
1164 
1165 		page = shmem_alloc_page(gfp, info, index);
1166 		if (!page) {
1167 			error = -ENOMEM;
1168 			goto decused;
1169 		}
1170 
1171 		__SetPageSwapBacked(page);
1172 		__set_page_locked(page);
1173 		if (sgp == SGP_WRITE)
1174 			__SetPageReferenced(page);
1175 
1176 		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1177 		if (error)
1178 			goto decused;
1179 		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1180 		if (!error) {
1181 			error = shmem_add_to_page_cache(page, mapping, index,
1182 							NULL);
1183 			radix_tree_preload_end();
1184 		}
1185 		if (error) {
1186 			mem_cgroup_cancel_charge(page, memcg);
1187 			goto decused;
1188 		}
1189 		mem_cgroup_commit_charge(page, memcg, false);
1190 		lru_cache_add_anon(page);
1191 
1192 		spin_lock(&info->lock);
1193 		info->alloced++;
1194 		inode->i_blocks += BLOCKS_PER_PAGE;
1195 		shmem_recalc_inode(inode);
1196 		spin_unlock(&info->lock);
1197 		alloced = true;
1198 
1199 		/*
1200 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1201 		 */
1202 		if (sgp == SGP_FALLOC)
1203 			sgp = SGP_WRITE;
1204 clear:
1205 		/*
1206 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1207 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1208 		 * it now, lest undo on failure cancel our earlier guarantee.
1209 		 */
1210 		if (sgp != SGP_WRITE) {
1211 			clear_highpage(page);
1212 			flush_dcache_page(page);
1213 			SetPageUptodate(page);
1214 		}
1215 		if (sgp == SGP_DIRTY)
1216 			set_page_dirty(page);
1217 	}
1218 
1219 	/* Perhaps the file has been truncated since we checked */
1220 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1221 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1222 		error = -EINVAL;
1223 		if (alloced)
1224 			goto trunc;
1225 		else
1226 			goto failed;
1227 	}
1228 	*pagep = page;
1229 	return 0;
1230 
1231 	/*
1232 	 * Error recovery.
1233 	 */
1234 trunc:
1235 	info = SHMEM_I(inode);
1236 	ClearPageDirty(page);
1237 	delete_from_page_cache(page);
1238 	spin_lock(&info->lock);
1239 	info->alloced--;
1240 	inode->i_blocks -= BLOCKS_PER_PAGE;
1241 	spin_unlock(&info->lock);
1242 decused:
1243 	sbinfo = SHMEM_SB(inode->i_sb);
1244 	if (sbinfo->max_blocks)
1245 		percpu_counter_add(&sbinfo->used_blocks, -1);
1246 unacct:
1247 	shmem_unacct_blocks(info->flags, 1);
1248 failed:
1249 	if (swap.val && error != -EINVAL &&
1250 	    !shmem_confirm_swap(mapping, index, swap))
1251 		error = -EEXIST;
1252 unlock:
1253 	if (page) {
1254 		unlock_page(page);
1255 		page_cache_release(page);
1256 	}
1257 	if (error == -ENOSPC && !once++) {
1258 		info = SHMEM_I(inode);
1259 		spin_lock(&info->lock);
1260 		shmem_recalc_inode(inode);
1261 		spin_unlock(&info->lock);
1262 		goto repeat;
1263 	}
1264 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1265 		goto repeat;
1266 	return error;
1267 }
1268 
1269 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1270 {
1271 	struct inode *inode = file_inode(vma->vm_file);
1272 	int error;
1273 	int ret = VM_FAULT_LOCKED;
1274 
1275 	/*
1276 	 * Trinity finds that probing a hole which tmpfs is punching can
1277 	 * prevent the hole-punch from ever completing: which in turn
1278 	 * locks writers out with its hold on i_mutex.  So refrain from
1279 	 * faulting pages into the hole while it's being punched.  Although
1280 	 * shmem_undo_range() does remove the additions, it may be unable to
1281 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1282 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1283 	 *
1284 	 * It does not matter if we sometimes reach this check just before the
1285 	 * hole-punch begins, so that one fault then races with the punch:
1286 	 * we just need to make racing faults a rare case.
1287 	 *
1288 	 * The implementation below would be much simpler if we just used a
1289 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1290 	 * and bloating every shmem inode for this unlikely case would be sad.
1291 	 */
1292 	if (unlikely(inode->i_private)) {
1293 		struct shmem_falloc *shmem_falloc;
1294 
1295 		spin_lock(&inode->i_lock);
1296 		shmem_falloc = inode->i_private;
1297 		if (shmem_falloc &&
1298 		    shmem_falloc->waitq &&
1299 		    vmf->pgoff >= shmem_falloc->start &&
1300 		    vmf->pgoff < shmem_falloc->next) {
1301 			wait_queue_head_t *shmem_falloc_waitq;
1302 			DEFINE_WAIT(shmem_fault_wait);
1303 
1304 			ret = VM_FAULT_NOPAGE;
1305 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1306 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1307 				/* It's polite to up mmap_sem if we can */
1308 				up_read(&vma->vm_mm->mmap_sem);
1309 				ret = VM_FAULT_RETRY;
1310 			}
1311 
1312 			shmem_falloc_waitq = shmem_falloc->waitq;
1313 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1314 					TASK_UNINTERRUPTIBLE);
1315 			spin_unlock(&inode->i_lock);
1316 			schedule();
1317 
1318 			/*
1319 			 * shmem_falloc_waitq points into the shmem_fallocate()
1320 			 * stack of the hole-punching task: shmem_falloc_waitq
1321 			 * is usually invalid by the time we reach here, but
1322 			 * finish_wait() does not dereference it in that case;
1323 			 * though i_lock needed lest racing with wake_up_all().
1324 			 */
1325 			spin_lock(&inode->i_lock);
1326 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1327 			spin_unlock(&inode->i_lock);
1328 			return ret;
1329 		}
1330 		spin_unlock(&inode->i_lock);
1331 	}
1332 
1333 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1334 	if (error)
1335 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1336 
1337 	if (ret & VM_FAULT_MAJOR) {
1338 		count_vm_event(PGMAJFAULT);
1339 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1340 	}
1341 	return ret;
1342 }
1343 
1344 #ifdef CONFIG_NUMA
1345 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1346 {
1347 	struct inode *inode = file_inode(vma->vm_file);
1348 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1349 }
1350 
1351 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1352 					  unsigned long addr)
1353 {
1354 	struct inode *inode = file_inode(vma->vm_file);
1355 	pgoff_t index;
1356 
1357 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1358 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1359 }
1360 #endif
1361 
1362 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1363 {
1364 	struct inode *inode = file_inode(file);
1365 	struct shmem_inode_info *info = SHMEM_I(inode);
1366 	int retval = -ENOMEM;
1367 
1368 	spin_lock(&info->lock);
1369 	if (lock && !(info->flags & VM_LOCKED)) {
1370 		if (!user_shm_lock(inode->i_size, user))
1371 			goto out_nomem;
1372 		info->flags |= VM_LOCKED;
1373 		mapping_set_unevictable(file->f_mapping);
1374 	}
1375 	if (!lock && (info->flags & VM_LOCKED) && user) {
1376 		user_shm_unlock(inode->i_size, user);
1377 		info->flags &= ~VM_LOCKED;
1378 		mapping_clear_unevictable(file->f_mapping);
1379 	}
1380 	retval = 0;
1381 
1382 out_nomem:
1383 	spin_unlock(&info->lock);
1384 	return retval;
1385 }
1386 
1387 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1388 {
1389 	file_accessed(file);
1390 	vma->vm_ops = &shmem_vm_ops;
1391 	return 0;
1392 }
1393 
1394 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1395 				     umode_t mode, dev_t dev, unsigned long flags)
1396 {
1397 	struct inode *inode;
1398 	struct shmem_inode_info *info;
1399 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1400 
1401 	if (shmem_reserve_inode(sb))
1402 		return NULL;
1403 
1404 	inode = new_inode(sb);
1405 	if (inode) {
1406 		inode->i_ino = get_next_ino();
1407 		inode_init_owner(inode, dir, mode);
1408 		inode->i_blocks = 0;
1409 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1410 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1411 		inode->i_generation = get_seconds();
1412 		info = SHMEM_I(inode);
1413 		memset(info, 0, (char *)inode - (char *)info);
1414 		spin_lock_init(&info->lock);
1415 		info->flags = flags & VM_NORESERVE;
1416 		INIT_LIST_HEAD(&info->swaplist);
1417 		simple_xattrs_init(&info->xattrs);
1418 		cache_no_acl(inode);
1419 
1420 		switch (mode & S_IFMT) {
1421 		default:
1422 			inode->i_op = &shmem_special_inode_operations;
1423 			init_special_inode(inode, mode, dev);
1424 			break;
1425 		case S_IFREG:
1426 			inode->i_mapping->a_ops = &shmem_aops;
1427 			inode->i_op = &shmem_inode_operations;
1428 			inode->i_fop = &shmem_file_operations;
1429 			mpol_shared_policy_init(&info->policy,
1430 						 shmem_get_sbmpol(sbinfo));
1431 			break;
1432 		case S_IFDIR:
1433 			inc_nlink(inode);
1434 			/* Some things misbehave if size == 0 on a directory */
1435 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1436 			inode->i_op = &shmem_dir_inode_operations;
1437 			inode->i_fop = &simple_dir_operations;
1438 			break;
1439 		case S_IFLNK:
1440 			/*
1441 			 * Must not load anything in the rbtree,
1442 			 * mpol_free_shared_policy will not be called.
1443 			 */
1444 			mpol_shared_policy_init(&info->policy, NULL);
1445 			break;
1446 		}
1447 	} else
1448 		shmem_free_inode(sb);
1449 	return inode;
1450 }
1451 
1452 bool shmem_mapping(struct address_space *mapping)
1453 {
1454 	return mapping->backing_dev_info == &shmem_backing_dev_info;
1455 }
1456 
1457 #ifdef CONFIG_TMPFS
1458 static const struct inode_operations shmem_symlink_inode_operations;
1459 static const struct inode_operations shmem_short_symlink_operations;
1460 
1461 #ifdef CONFIG_TMPFS_XATTR
1462 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1463 #else
1464 #define shmem_initxattrs NULL
1465 #endif
1466 
1467 static int
1468 shmem_write_begin(struct file *file, struct address_space *mapping,
1469 			loff_t pos, unsigned len, unsigned flags,
1470 			struct page **pagep, void **fsdata)
1471 {
1472 	struct inode *inode = mapping->host;
1473 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1474 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1475 }
1476 
1477 static int
1478 shmem_write_end(struct file *file, struct address_space *mapping,
1479 			loff_t pos, unsigned len, unsigned copied,
1480 			struct page *page, void *fsdata)
1481 {
1482 	struct inode *inode = mapping->host;
1483 
1484 	if (pos + copied > inode->i_size)
1485 		i_size_write(inode, pos + copied);
1486 
1487 	if (!PageUptodate(page)) {
1488 		if (copied < PAGE_CACHE_SIZE) {
1489 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1490 			zero_user_segments(page, 0, from,
1491 					from + copied, PAGE_CACHE_SIZE);
1492 		}
1493 		SetPageUptodate(page);
1494 	}
1495 	set_page_dirty(page);
1496 	unlock_page(page);
1497 	page_cache_release(page);
1498 
1499 	return copied;
1500 }
1501 
1502 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1503 {
1504 	struct file *file = iocb->ki_filp;
1505 	struct inode *inode = file_inode(file);
1506 	struct address_space *mapping = inode->i_mapping;
1507 	pgoff_t index;
1508 	unsigned long offset;
1509 	enum sgp_type sgp = SGP_READ;
1510 	int error = 0;
1511 	ssize_t retval = 0;
1512 	loff_t *ppos = &iocb->ki_pos;
1513 
1514 	/*
1515 	 * Might this read be for a stacking filesystem?  Then when reading
1516 	 * holes of a sparse file, we actually need to allocate those pages,
1517 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1518 	 */
1519 	if (segment_eq(get_fs(), KERNEL_DS))
1520 		sgp = SGP_DIRTY;
1521 
1522 	index = *ppos >> PAGE_CACHE_SHIFT;
1523 	offset = *ppos & ~PAGE_CACHE_MASK;
1524 
1525 	for (;;) {
1526 		struct page *page = NULL;
1527 		pgoff_t end_index;
1528 		unsigned long nr, ret;
1529 		loff_t i_size = i_size_read(inode);
1530 
1531 		end_index = i_size >> PAGE_CACHE_SHIFT;
1532 		if (index > end_index)
1533 			break;
1534 		if (index == end_index) {
1535 			nr = i_size & ~PAGE_CACHE_MASK;
1536 			if (nr <= offset)
1537 				break;
1538 		}
1539 
1540 		error = shmem_getpage(inode, index, &page, sgp, NULL);
1541 		if (error) {
1542 			if (error == -EINVAL)
1543 				error = 0;
1544 			break;
1545 		}
1546 		if (page)
1547 			unlock_page(page);
1548 
1549 		/*
1550 		 * We must evaluate after, since reads (unlike writes)
1551 		 * are called without i_mutex protection against truncate
1552 		 */
1553 		nr = PAGE_CACHE_SIZE;
1554 		i_size = i_size_read(inode);
1555 		end_index = i_size >> PAGE_CACHE_SHIFT;
1556 		if (index == end_index) {
1557 			nr = i_size & ~PAGE_CACHE_MASK;
1558 			if (nr <= offset) {
1559 				if (page)
1560 					page_cache_release(page);
1561 				break;
1562 			}
1563 		}
1564 		nr -= offset;
1565 
1566 		if (page) {
1567 			/*
1568 			 * If users can be writing to this page using arbitrary
1569 			 * virtual addresses, take care about potential aliasing
1570 			 * before reading the page on the kernel side.
1571 			 */
1572 			if (mapping_writably_mapped(mapping))
1573 				flush_dcache_page(page);
1574 			/*
1575 			 * Mark the page accessed if we read the beginning.
1576 			 */
1577 			if (!offset)
1578 				mark_page_accessed(page);
1579 		} else {
1580 			page = ZERO_PAGE(0);
1581 			page_cache_get(page);
1582 		}
1583 
1584 		/*
1585 		 * Ok, we have the page, and it's up-to-date, so
1586 		 * now we can copy it to user space...
1587 		 */
1588 		ret = copy_page_to_iter(page, offset, nr, to);
1589 		retval += ret;
1590 		offset += ret;
1591 		index += offset >> PAGE_CACHE_SHIFT;
1592 		offset &= ~PAGE_CACHE_MASK;
1593 
1594 		page_cache_release(page);
1595 		if (!iov_iter_count(to))
1596 			break;
1597 		if (ret < nr) {
1598 			error = -EFAULT;
1599 			break;
1600 		}
1601 		cond_resched();
1602 	}
1603 
1604 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1605 	file_accessed(file);
1606 	return retval ? retval : error;
1607 }
1608 
1609 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1610 				struct pipe_inode_info *pipe, size_t len,
1611 				unsigned int flags)
1612 {
1613 	struct address_space *mapping = in->f_mapping;
1614 	struct inode *inode = mapping->host;
1615 	unsigned int loff, nr_pages, req_pages;
1616 	struct page *pages[PIPE_DEF_BUFFERS];
1617 	struct partial_page partial[PIPE_DEF_BUFFERS];
1618 	struct page *page;
1619 	pgoff_t index, end_index;
1620 	loff_t isize, left;
1621 	int error, page_nr;
1622 	struct splice_pipe_desc spd = {
1623 		.pages = pages,
1624 		.partial = partial,
1625 		.nr_pages_max = PIPE_DEF_BUFFERS,
1626 		.flags = flags,
1627 		.ops = &page_cache_pipe_buf_ops,
1628 		.spd_release = spd_release_page,
1629 	};
1630 
1631 	isize = i_size_read(inode);
1632 	if (unlikely(*ppos >= isize))
1633 		return 0;
1634 
1635 	left = isize - *ppos;
1636 	if (unlikely(left < len))
1637 		len = left;
1638 
1639 	if (splice_grow_spd(pipe, &spd))
1640 		return -ENOMEM;
1641 
1642 	index = *ppos >> PAGE_CACHE_SHIFT;
1643 	loff = *ppos & ~PAGE_CACHE_MASK;
1644 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1645 	nr_pages = min(req_pages, spd.nr_pages_max);
1646 
1647 	spd.nr_pages = find_get_pages_contig(mapping, index,
1648 						nr_pages, spd.pages);
1649 	index += spd.nr_pages;
1650 	error = 0;
1651 
1652 	while (spd.nr_pages < nr_pages) {
1653 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1654 		if (error)
1655 			break;
1656 		unlock_page(page);
1657 		spd.pages[spd.nr_pages++] = page;
1658 		index++;
1659 	}
1660 
1661 	index = *ppos >> PAGE_CACHE_SHIFT;
1662 	nr_pages = spd.nr_pages;
1663 	spd.nr_pages = 0;
1664 
1665 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1666 		unsigned int this_len;
1667 
1668 		if (!len)
1669 			break;
1670 
1671 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1672 		page = spd.pages[page_nr];
1673 
1674 		if (!PageUptodate(page) || page->mapping != mapping) {
1675 			error = shmem_getpage(inode, index, &page,
1676 							SGP_CACHE, NULL);
1677 			if (error)
1678 				break;
1679 			unlock_page(page);
1680 			page_cache_release(spd.pages[page_nr]);
1681 			spd.pages[page_nr] = page;
1682 		}
1683 
1684 		isize = i_size_read(inode);
1685 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1686 		if (unlikely(!isize || index > end_index))
1687 			break;
1688 
1689 		if (end_index == index) {
1690 			unsigned int plen;
1691 
1692 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1693 			if (plen <= loff)
1694 				break;
1695 
1696 			this_len = min(this_len, plen - loff);
1697 			len = this_len;
1698 		}
1699 
1700 		spd.partial[page_nr].offset = loff;
1701 		spd.partial[page_nr].len = this_len;
1702 		len -= this_len;
1703 		loff = 0;
1704 		spd.nr_pages++;
1705 		index++;
1706 	}
1707 
1708 	while (page_nr < nr_pages)
1709 		page_cache_release(spd.pages[page_nr++]);
1710 
1711 	if (spd.nr_pages)
1712 		error = splice_to_pipe(pipe, &spd);
1713 
1714 	splice_shrink_spd(&spd);
1715 
1716 	if (error > 0) {
1717 		*ppos += error;
1718 		file_accessed(in);
1719 	}
1720 	return error;
1721 }
1722 
1723 /*
1724  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1725  */
1726 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1727 				    pgoff_t index, pgoff_t end, int whence)
1728 {
1729 	struct page *page;
1730 	struct pagevec pvec;
1731 	pgoff_t indices[PAGEVEC_SIZE];
1732 	bool done = false;
1733 	int i;
1734 
1735 	pagevec_init(&pvec, 0);
1736 	pvec.nr = 1;		/* start small: we may be there already */
1737 	while (!done) {
1738 		pvec.nr = find_get_entries(mapping, index,
1739 					pvec.nr, pvec.pages, indices);
1740 		if (!pvec.nr) {
1741 			if (whence == SEEK_DATA)
1742 				index = end;
1743 			break;
1744 		}
1745 		for (i = 0; i < pvec.nr; i++, index++) {
1746 			if (index < indices[i]) {
1747 				if (whence == SEEK_HOLE) {
1748 					done = true;
1749 					break;
1750 				}
1751 				index = indices[i];
1752 			}
1753 			page = pvec.pages[i];
1754 			if (page && !radix_tree_exceptional_entry(page)) {
1755 				if (!PageUptodate(page))
1756 					page = NULL;
1757 			}
1758 			if (index >= end ||
1759 			    (page && whence == SEEK_DATA) ||
1760 			    (!page && whence == SEEK_HOLE)) {
1761 				done = true;
1762 				break;
1763 			}
1764 		}
1765 		pagevec_remove_exceptionals(&pvec);
1766 		pagevec_release(&pvec);
1767 		pvec.nr = PAGEVEC_SIZE;
1768 		cond_resched();
1769 	}
1770 	return index;
1771 }
1772 
1773 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1774 {
1775 	struct address_space *mapping = file->f_mapping;
1776 	struct inode *inode = mapping->host;
1777 	pgoff_t start, end;
1778 	loff_t new_offset;
1779 
1780 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1781 		return generic_file_llseek_size(file, offset, whence,
1782 					MAX_LFS_FILESIZE, i_size_read(inode));
1783 	mutex_lock(&inode->i_mutex);
1784 	/* We're holding i_mutex so we can access i_size directly */
1785 
1786 	if (offset < 0)
1787 		offset = -EINVAL;
1788 	else if (offset >= inode->i_size)
1789 		offset = -ENXIO;
1790 	else {
1791 		start = offset >> PAGE_CACHE_SHIFT;
1792 		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1793 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1794 		new_offset <<= PAGE_CACHE_SHIFT;
1795 		if (new_offset > offset) {
1796 			if (new_offset < inode->i_size)
1797 				offset = new_offset;
1798 			else if (whence == SEEK_DATA)
1799 				offset = -ENXIO;
1800 			else
1801 				offset = inode->i_size;
1802 		}
1803 	}
1804 
1805 	if (offset >= 0)
1806 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1807 	mutex_unlock(&inode->i_mutex);
1808 	return offset;
1809 }
1810 
1811 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1812 							 loff_t len)
1813 {
1814 	struct inode *inode = file_inode(file);
1815 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1816 	struct shmem_falloc shmem_falloc;
1817 	pgoff_t start, index, end;
1818 	int error;
1819 
1820 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1821 		return -EOPNOTSUPP;
1822 
1823 	mutex_lock(&inode->i_mutex);
1824 
1825 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1826 		struct address_space *mapping = file->f_mapping;
1827 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1828 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1829 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1830 
1831 		shmem_falloc.waitq = &shmem_falloc_waitq;
1832 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1833 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1834 		spin_lock(&inode->i_lock);
1835 		inode->i_private = &shmem_falloc;
1836 		spin_unlock(&inode->i_lock);
1837 
1838 		if ((u64)unmap_end > (u64)unmap_start)
1839 			unmap_mapping_range(mapping, unmap_start,
1840 					    1 + unmap_end - unmap_start, 0);
1841 		shmem_truncate_range(inode, offset, offset + len - 1);
1842 		/* No need to unmap again: hole-punching leaves COWed pages */
1843 
1844 		spin_lock(&inode->i_lock);
1845 		inode->i_private = NULL;
1846 		wake_up_all(&shmem_falloc_waitq);
1847 		spin_unlock(&inode->i_lock);
1848 		error = 0;
1849 		goto out;
1850 	}
1851 
1852 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1853 	error = inode_newsize_ok(inode, offset + len);
1854 	if (error)
1855 		goto out;
1856 
1857 	start = offset >> PAGE_CACHE_SHIFT;
1858 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1859 	/* Try to avoid a swapstorm if len is impossible to satisfy */
1860 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1861 		error = -ENOSPC;
1862 		goto out;
1863 	}
1864 
1865 	shmem_falloc.waitq = NULL;
1866 	shmem_falloc.start = start;
1867 	shmem_falloc.next  = start;
1868 	shmem_falloc.nr_falloced = 0;
1869 	shmem_falloc.nr_unswapped = 0;
1870 	spin_lock(&inode->i_lock);
1871 	inode->i_private = &shmem_falloc;
1872 	spin_unlock(&inode->i_lock);
1873 
1874 	for (index = start; index < end; index++) {
1875 		struct page *page;
1876 
1877 		/*
1878 		 * Good, the fallocate(2) manpage permits EINTR: we may have
1879 		 * been interrupted because we are using up too much memory.
1880 		 */
1881 		if (signal_pending(current))
1882 			error = -EINTR;
1883 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1884 			error = -ENOMEM;
1885 		else
1886 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1887 									NULL);
1888 		if (error) {
1889 			/* Remove the !PageUptodate pages we added */
1890 			shmem_undo_range(inode,
1891 				(loff_t)start << PAGE_CACHE_SHIFT,
1892 				(loff_t)index << PAGE_CACHE_SHIFT, true);
1893 			goto undone;
1894 		}
1895 
1896 		/*
1897 		 * Inform shmem_writepage() how far we have reached.
1898 		 * No need for lock or barrier: we have the page lock.
1899 		 */
1900 		shmem_falloc.next++;
1901 		if (!PageUptodate(page))
1902 			shmem_falloc.nr_falloced++;
1903 
1904 		/*
1905 		 * If !PageUptodate, leave it that way so that freeable pages
1906 		 * can be recognized if we need to rollback on error later.
1907 		 * But set_page_dirty so that memory pressure will swap rather
1908 		 * than free the pages we are allocating (and SGP_CACHE pages
1909 		 * might still be clean: we now need to mark those dirty too).
1910 		 */
1911 		set_page_dirty(page);
1912 		unlock_page(page);
1913 		page_cache_release(page);
1914 		cond_resched();
1915 	}
1916 
1917 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1918 		i_size_write(inode, offset + len);
1919 	inode->i_ctime = CURRENT_TIME;
1920 undone:
1921 	spin_lock(&inode->i_lock);
1922 	inode->i_private = NULL;
1923 	spin_unlock(&inode->i_lock);
1924 out:
1925 	mutex_unlock(&inode->i_mutex);
1926 	return error;
1927 }
1928 
1929 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1930 {
1931 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1932 
1933 	buf->f_type = TMPFS_MAGIC;
1934 	buf->f_bsize = PAGE_CACHE_SIZE;
1935 	buf->f_namelen = NAME_MAX;
1936 	if (sbinfo->max_blocks) {
1937 		buf->f_blocks = sbinfo->max_blocks;
1938 		buf->f_bavail =
1939 		buf->f_bfree  = sbinfo->max_blocks -
1940 				percpu_counter_sum(&sbinfo->used_blocks);
1941 	}
1942 	if (sbinfo->max_inodes) {
1943 		buf->f_files = sbinfo->max_inodes;
1944 		buf->f_ffree = sbinfo->free_inodes;
1945 	}
1946 	/* else leave those fields 0 like simple_statfs */
1947 	return 0;
1948 }
1949 
1950 /*
1951  * File creation. Allocate an inode, and we're done..
1952  */
1953 static int
1954 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1955 {
1956 	struct inode *inode;
1957 	int error = -ENOSPC;
1958 
1959 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1960 	if (inode) {
1961 		error = simple_acl_create(dir, inode);
1962 		if (error)
1963 			goto out_iput;
1964 		error = security_inode_init_security(inode, dir,
1965 						     &dentry->d_name,
1966 						     shmem_initxattrs, NULL);
1967 		if (error && error != -EOPNOTSUPP)
1968 			goto out_iput;
1969 
1970 		error = 0;
1971 		dir->i_size += BOGO_DIRENT_SIZE;
1972 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1973 		d_instantiate(dentry, inode);
1974 		dget(dentry); /* Extra count - pin the dentry in core */
1975 	}
1976 	return error;
1977 out_iput:
1978 	iput(inode);
1979 	return error;
1980 }
1981 
1982 static int
1983 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1984 {
1985 	struct inode *inode;
1986 	int error = -ENOSPC;
1987 
1988 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1989 	if (inode) {
1990 		error = security_inode_init_security(inode, dir,
1991 						     NULL,
1992 						     shmem_initxattrs, NULL);
1993 		if (error && error != -EOPNOTSUPP)
1994 			goto out_iput;
1995 		error = simple_acl_create(dir, inode);
1996 		if (error)
1997 			goto out_iput;
1998 		d_tmpfile(dentry, inode);
1999 	}
2000 	return error;
2001 out_iput:
2002 	iput(inode);
2003 	return error;
2004 }
2005 
2006 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2007 {
2008 	int error;
2009 
2010 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2011 		return error;
2012 	inc_nlink(dir);
2013 	return 0;
2014 }
2015 
2016 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2017 		bool excl)
2018 {
2019 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2020 }
2021 
2022 /*
2023  * Link a file..
2024  */
2025 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2026 {
2027 	struct inode *inode = old_dentry->d_inode;
2028 	int ret;
2029 
2030 	/*
2031 	 * No ordinary (disk based) filesystem counts links as inodes;
2032 	 * but each new link needs a new dentry, pinning lowmem, and
2033 	 * tmpfs dentries cannot be pruned until they are unlinked.
2034 	 */
2035 	ret = shmem_reserve_inode(inode->i_sb);
2036 	if (ret)
2037 		goto out;
2038 
2039 	dir->i_size += BOGO_DIRENT_SIZE;
2040 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2041 	inc_nlink(inode);
2042 	ihold(inode);	/* New dentry reference */
2043 	dget(dentry);		/* Extra pinning count for the created dentry */
2044 	d_instantiate(dentry, inode);
2045 out:
2046 	return ret;
2047 }
2048 
2049 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2050 {
2051 	struct inode *inode = dentry->d_inode;
2052 
2053 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2054 		shmem_free_inode(inode->i_sb);
2055 
2056 	dir->i_size -= BOGO_DIRENT_SIZE;
2057 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2058 	drop_nlink(inode);
2059 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2060 	return 0;
2061 }
2062 
2063 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2064 {
2065 	if (!simple_empty(dentry))
2066 		return -ENOTEMPTY;
2067 
2068 	drop_nlink(dentry->d_inode);
2069 	drop_nlink(dir);
2070 	return shmem_unlink(dir, dentry);
2071 }
2072 
2073 /*
2074  * The VFS layer already does all the dentry stuff for rename,
2075  * we just have to decrement the usage count for the target if
2076  * it exists so that the VFS layer correctly free's it when it
2077  * gets overwritten.
2078  */
2079 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2080 {
2081 	struct inode *inode = old_dentry->d_inode;
2082 	int they_are_dirs = S_ISDIR(inode->i_mode);
2083 
2084 	if (!simple_empty(new_dentry))
2085 		return -ENOTEMPTY;
2086 
2087 	if (new_dentry->d_inode) {
2088 		(void) shmem_unlink(new_dir, new_dentry);
2089 		if (they_are_dirs)
2090 			drop_nlink(old_dir);
2091 	} else if (they_are_dirs) {
2092 		drop_nlink(old_dir);
2093 		inc_nlink(new_dir);
2094 	}
2095 
2096 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2097 	new_dir->i_size += BOGO_DIRENT_SIZE;
2098 	old_dir->i_ctime = old_dir->i_mtime =
2099 	new_dir->i_ctime = new_dir->i_mtime =
2100 	inode->i_ctime = CURRENT_TIME;
2101 	return 0;
2102 }
2103 
2104 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2105 {
2106 	int error;
2107 	int len;
2108 	struct inode *inode;
2109 	struct page *page;
2110 	char *kaddr;
2111 	struct shmem_inode_info *info;
2112 
2113 	len = strlen(symname) + 1;
2114 	if (len > PAGE_CACHE_SIZE)
2115 		return -ENAMETOOLONG;
2116 
2117 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2118 	if (!inode)
2119 		return -ENOSPC;
2120 
2121 	error = security_inode_init_security(inode, dir, &dentry->d_name,
2122 					     shmem_initxattrs, NULL);
2123 	if (error) {
2124 		if (error != -EOPNOTSUPP) {
2125 			iput(inode);
2126 			return error;
2127 		}
2128 		error = 0;
2129 	}
2130 
2131 	info = SHMEM_I(inode);
2132 	inode->i_size = len-1;
2133 	if (len <= SHORT_SYMLINK_LEN) {
2134 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2135 		if (!info->symlink) {
2136 			iput(inode);
2137 			return -ENOMEM;
2138 		}
2139 		inode->i_op = &shmem_short_symlink_operations;
2140 	} else {
2141 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2142 		if (error) {
2143 			iput(inode);
2144 			return error;
2145 		}
2146 		inode->i_mapping->a_ops = &shmem_aops;
2147 		inode->i_op = &shmem_symlink_inode_operations;
2148 		kaddr = kmap_atomic(page);
2149 		memcpy(kaddr, symname, len);
2150 		kunmap_atomic(kaddr);
2151 		SetPageUptodate(page);
2152 		set_page_dirty(page);
2153 		unlock_page(page);
2154 		page_cache_release(page);
2155 	}
2156 	dir->i_size += BOGO_DIRENT_SIZE;
2157 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2158 	d_instantiate(dentry, inode);
2159 	dget(dentry);
2160 	return 0;
2161 }
2162 
2163 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2164 {
2165 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2166 	return NULL;
2167 }
2168 
2169 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2170 {
2171 	struct page *page = NULL;
2172 	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2173 	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2174 	if (page)
2175 		unlock_page(page);
2176 	return page;
2177 }
2178 
2179 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2180 {
2181 	if (!IS_ERR(nd_get_link(nd))) {
2182 		struct page *page = cookie;
2183 		kunmap(page);
2184 		mark_page_accessed(page);
2185 		page_cache_release(page);
2186 	}
2187 }
2188 
2189 #ifdef CONFIG_TMPFS_XATTR
2190 /*
2191  * Superblocks without xattr inode operations may get some security.* xattr
2192  * support from the LSM "for free". As soon as we have any other xattrs
2193  * like ACLs, we also need to implement the security.* handlers at
2194  * filesystem level, though.
2195  */
2196 
2197 /*
2198  * Callback for security_inode_init_security() for acquiring xattrs.
2199  */
2200 static int shmem_initxattrs(struct inode *inode,
2201 			    const struct xattr *xattr_array,
2202 			    void *fs_info)
2203 {
2204 	struct shmem_inode_info *info = SHMEM_I(inode);
2205 	const struct xattr *xattr;
2206 	struct simple_xattr *new_xattr;
2207 	size_t len;
2208 
2209 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2210 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2211 		if (!new_xattr)
2212 			return -ENOMEM;
2213 
2214 		len = strlen(xattr->name) + 1;
2215 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2216 					  GFP_KERNEL);
2217 		if (!new_xattr->name) {
2218 			kfree(new_xattr);
2219 			return -ENOMEM;
2220 		}
2221 
2222 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2223 		       XATTR_SECURITY_PREFIX_LEN);
2224 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2225 		       xattr->name, len);
2226 
2227 		simple_xattr_list_add(&info->xattrs, new_xattr);
2228 	}
2229 
2230 	return 0;
2231 }
2232 
2233 static const struct xattr_handler *shmem_xattr_handlers[] = {
2234 #ifdef CONFIG_TMPFS_POSIX_ACL
2235 	&posix_acl_access_xattr_handler,
2236 	&posix_acl_default_xattr_handler,
2237 #endif
2238 	NULL
2239 };
2240 
2241 static int shmem_xattr_validate(const char *name)
2242 {
2243 	struct { const char *prefix; size_t len; } arr[] = {
2244 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2245 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2246 	};
2247 	int i;
2248 
2249 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2250 		size_t preflen = arr[i].len;
2251 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2252 			if (!name[preflen])
2253 				return -EINVAL;
2254 			return 0;
2255 		}
2256 	}
2257 	return -EOPNOTSUPP;
2258 }
2259 
2260 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2261 			      void *buffer, size_t size)
2262 {
2263 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2264 	int err;
2265 
2266 	/*
2267 	 * If this is a request for a synthetic attribute in the system.*
2268 	 * namespace use the generic infrastructure to resolve a handler
2269 	 * for it via sb->s_xattr.
2270 	 */
2271 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2272 		return generic_getxattr(dentry, name, buffer, size);
2273 
2274 	err = shmem_xattr_validate(name);
2275 	if (err)
2276 		return err;
2277 
2278 	return simple_xattr_get(&info->xattrs, name, buffer, size);
2279 }
2280 
2281 static int shmem_setxattr(struct dentry *dentry, const char *name,
2282 			  const void *value, size_t size, int flags)
2283 {
2284 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2285 	int err;
2286 
2287 	/*
2288 	 * If this is a request for a synthetic attribute in the system.*
2289 	 * namespace use the generic infrastructure to resolve a handler
2290 	 * for it via sb->s_xattr.
2291 	 */
2292 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2293 		return generic_setxattr(dentry, name, value, size, flags);
2294 
2295 	err = shmem_xattr_validate(name);
2296 	if (err)
2297 		return err;
2298 
2299 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2300 }
2301 
2302 static int shmem_removexattr(struct dentry *dentry, const char *name)
2303 {
2304 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2305 	int err;
2306 
2307 	/*
2308 	 * If this is a request for a synthetic attribute in the system.*
2309 	 * namespace use the generic infrastructure to resolve a handler
2310 	 * for it via sb->s_xattr.
2311 	 */
2312 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2313 		return generic_removexattr(dentry, name);
2314 
2315 	err = shmem_xattr_validate(name);
2316 	if (err)
2317 		return err;
2318 
2319 	return simple_xattr_remove(&info->xattrs, name);
2320 }
2321 
2322 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2323 {
2324 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2325 	return simple_xattr_list(&info->xattrs, buffer, size);
2326 }
2327 #endif /* CONFIG_TMPFS_XATTR */
2328 
2329 static const struct inode_operations shmem_short_symlink_operations = {
2330 	.readlink	= generic_readlink,
2331 	.follow_link	= shmem_follow_short_symlink,
2332 #ifdef CONFIG_TMPFS_XATTR
2333 	.setxattr	= shmem_setxattr,
2334 	.getxattr	= shmem_getxattr,
2335 	.listxattr	= shmem_listxattr,
2336 	.removexattr	= shmem_removexattr,
2337 #endif
2338 };
2339 
2340 static const struct inode_operations shmem_symlink_inode_operations = {
2341 	.readlink	= generic_readlink,
2342 	.follow_link	= shmem_follow_link,
2343 	.put_link	= shmem_put_link,
2344 #ifdef CONFIG_TMPFS_XATTR
2345 	.setxattr	= shmem_setxattr,
2346 	.getxattr	= shmem_getxattr,
2347 	.listxattr	= shmem_listxattr,
2348 	.removexattr	= shmem_removexattr,
2349 #endif
2350 };
2351 
2352 static struct dentry *shmem_get_parent(struct dentry *child)
2353 {
2354 	return ERR_PTR(-ESTALE);
2355 }
2356 
2357 static int shmem_match(struct inode *ino, void *vfh)
2358 {
2359 	__u32 *fh = vfh;
2360 	__u64 inum = fh[2];
2361 	inum = (inum << 32) | fh[1];
2362 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2363 }
2364 
2365 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2366 		struct fid *fid, int fh_len, int fh_type)
2367 {
2368 	struct inode *inode;
2369 	struct dentry *dentry = NULL;
2370 	u64 inum;
2371 
2372 	if (fh_len < 3)
2373 		return NULL;
2374 
2375 	inum = fid->raw[2];
2376 	inum = (inum << 32) | fid->raw[1];
2377 
2378 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2379 			shmem_match, fid->raw);
2380 	if (inode) {
2381 		dentry = d_find_alias(inode);
2382 		iput(inode);
2383 	}
2384 
2385 	return dentry;
2386 }
2387 
2388 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2389 				struct inode *parent)
2390 {
2391 	if (*len < 3) {
2392 		*len = 3;
2393 		return FILEID_INVALID;
2394 	}
2395 
2396 	if (inode_unhashed(inode)) {
2397 		/* Unfortunately insert_inode_hash is not idempotent,
2398 		 * so as we hash inodes here rather than at creation
2399 		 * time, we need a lock to ensure we only try
2400 		 * to do it once
2401 		 */
2402 		static DEFINE_SPINLOCK(lock);
2403 		spin_lock(&lock);
2404 		if (inode_unhashed(inode))
2405 			__insert_inode_hash(inode,
2406 					    inode->i_ino + inode->i_generation);
2407 		spin_unlock(&lock);
2408 	}
2409 
2410 	fh[0] = inode->i_generation;
2411 	fh[1] = inode->i_ino;
2412 	fh[2] = ((__u64)inode->i_ino) >> 32;
2413 
2414 	*len = 3;
2415 	return 1;
2416 }
2417 
2418 static const struct export_operations shmem_export_ops = {
2419 	.get_parent     = shmem_get_parent,
2420 	.encode_fh      = shmem_encode_fh,
2421 	.fh_to_dentry	= shmem_fh_to_dentry,
2422 };
2423 
2424 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2425 			       bool remount)
2426 {
2427 	char *this_char, *value, *rest;
2428 	struct mempolicy *mpol = NULL;
2429 	uid_t uid;
2430 	gid_t gid;
2431 
2432 	while (options != NULL) {
2433 		this_char = options;
2434 		for (;;) {
2435 			/*
2436 			 * NUL-terminate this option: unfortunately,
2437 			 * mount options form a comma-separated list,
2438 			 * but mpol's nodelist may also contain commas.
2439 			 */
2440 			options = strchr(options, ',');
2441 			if (options == NULL)
2442 				break;
2443 			options++;
2444 			if (!isdigit(*options)) {
2445 				options[-1] = '\0';
2446 				break;
2447 			}
2448 		}
2449 		if (!*this_char)
2450 			continue;
2451 		if ((value = strchr(this_char,'=')) != NULL) {
2452 			*value++ = 0;
2453 		} else {
2454 			printk(KERN_ERR
2455 			    "tmpfs: No value for mount option '%s'\n",
2456 			    this_char);
2457 			goto error;
2458 		}
2459 
2460 		if (!strcmp(this_char,"size")) {
2461 			unsigned long long size;
2462 			size = memparse(value,&rest);
2463 			if (*rest == '%') {
2464 				size <<= PAGE_SHIFT;
2465 				size *= totalram_pages;
2466 				do_div(size, 100);
2467 				rest++;
2468 			}
2469 			if (*rest)
2470 				goto bad_val;
2471 			sbinfo->max_blocks =
2472 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2473 		} else if (!strcmp(this_char,"nr_blocks")) {
2474 			sbinfo->max_blocks = memparse(value, &rest);
2475 			if (*rest)
2476 				goto bad_val;
2477 		} else if (!strcmp(this_char,"nr_inodes")) {
2478 			sbinfo->max_inodes = memparse(value, &rest);
2479 			if (*rest)
2480 				goto bad_val;
2481 		} else if (!strcmp(this_char,"mode")) {
2482 			if (remount)
2483 				continue;
2484 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2485 			if (*rest)
2486 				goto bad_val;
2487 		} else if (!strcmp(this_char,"uid")) {
2488 			if (remount)
2489 				continue;
2490 			uid = simple_strtoul(value, &rest, 0);
2491 			if (*rest)
2492 				goto bad_val;
2493 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2494 			if (!uid_valid(sbinfo->uid))
2495 				goto bad_val;
2496 		} else if (!strcmp(this_char,"gid")) {
2497 			if (remount)
2498 				continue;
2499 			gid = simple_strtoul(value, &rest, 0);
2500 			if (*rest)
2501 				goto bad_val;
2502 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2503 			if (!gid_valid(sbinfo->gid))
2504 				goto bad_val;
2505 		} else if (!strcmp(this_char,"mpol")) {
2506 			mpol_put(mpol);
2507 			mpol = NULL;
2508 			if (mpol_parse_str(value, &mpol))
2509 				goto bad_val;
2510 		} else {
2511 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2512 			       this_char);
2513 			goto error;
2514 		}
2515 	}
2516 	sbinfo->mpol = mpol;
2517 	return 0;
2518 
2519 bad_val:
2520 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2521 	       value, this_char);
2522 error:
2523 	mpol_put(mpol);
2524 	return 1;
2525 
2526 }
2527 
2528 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2529 {
2530 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2531 	struct shmem_sb_info config = *sbinfo;
2532 	unsigned long inodes;
2533 	int error = -EINVAL;
2534 
2535 	config.mpol = NULL;
2536 	if (shmem_parse_options(data, &config, true))
2537 		return error;
2538 
2539 	spin_lock(&sbinfo->stat_lock);
2540 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2541 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2542 		goto out;
2543 	if (config.max_inodes < inodes)
2544 		goto out;
2545 	/*
2546 	 * Those tests disallow limited->unlimited while any are in use;
2547 	 * but we must separately disallow unlimited->limited, because
2548 	 * in that case we have no record of how much is already in use.
2549 	 */
2550 	if (config.max_blocks && !sbinfo->max_blocks)
2551 		goto out;
2552 	if (config.max_inodes && !sbinfo->max_inodes)
2553 		goto out;
2554 
2555 	error = 0;
2556 	sbinfo->max_blocks  = config.max_blocks;
2557 	sbinfo->max_inodes  = config.max_inodes;
2558 	sbinfo->free_inodes = config.max_inodes - inodes;
2559 
2560 	/*
2561 	 * Preserve previous mempolicy unless mpol remount option was specified.
2562 	 */
2563 	if (config.mpol) {
2564 		mpol_put(sbinfo->mpol);
2565 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2566 	}
2567 out:
2568 	spin_unlock(&sbinfo->stat_lock);
2569 	return error;
2570 }
2571 
2572 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2573 {
2574 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2575 
2576 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2577 		seq_printf(seq, ",size=%luk",
2578 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2579 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2580 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2581 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2582 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2583 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2584 		seq_printf(seq, ",uid=%u",
2585 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2586 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2587 		seq_printf(seq, ",gid=%u",
2588 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2589 	shmem_show_mpol(seq, sbinfo->mpol);
2590 	return 0;
2591 }
2592 #endif /* CONFIG_TMPFS */
2593 
2594 static void shmem_put_super(struct super_block *sb)
2595 {
2596 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2597 
2598 	percpu_counter_destroy(&sbinfo->used_blocks);
2599 	mpol_put(sbinfo->mpol);
2600 	kfree(sbinfo);
2601 	sb->s_fs_info = NULL;
2602 }
2603 
2604 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2605 {
2606 	struct inode *inode;
2607 	struct shmem_sb_info *sbinfo;
2608 	int err = -ENOMEM;
2609 
2610 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2611 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2612 				L1_CACHE_BYTES), GFP_KERNEL);
2613 	if (!sbinfo)
2614 		return -ENOMEM;
2615 
2616 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2617 	sbinfo->uid = current_fsuid();
2618 	sbinfo->gid = current_fsgid();
2619 	sb->s_fs_info = sbinfo;
2620 
2621 #ifdef CONFIG_TMPFS
2622 	/*
2623 	 * Per default we only allow half of the physical ram per
2624 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2625 	 * but the internal instance is left unlimited.
2626 	 */
2627 	if (!(sb->s_flags & MS_KERNMOUNT)) {
2628 		sbinfo->max_blocks = shmem_default_max_blocks();
2629 		sbinfo->max_inodes = shmem_default_max_inodes();
2630 		if (shmem_parse_options(data, sbinfo, false)) {
2631 			err = -EINVAL;
2632 			goto failed;
2633 		}
2634 	} else {
2635 		sb->s_flags |= MS_NOUSER;
2636 	}
2637 	sb->s_export_op = &shmem_export_ops;
2638 	sb->s_flags |= MS_NOSEC;
2639 #else
2640 	sb->s_flags |= MS_NOUSER;
2641 #endif
2642 
2643 	spin_lock_init(&sbinfo->stat_lock);
2644 	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2645 		goto failed;
2646 	sbinfo->free_inodes = sbinfo->max_inodes;
2647 
2648 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2649 	sb->s_blocksize = PAGE_CACHE_SIZE;
2650 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2651 	sb->s_magic = TMPFS_MAGIC;
2652 	sb->s_op = &shmem_ops;
2653 	sb->s_time_gran = 1;
2654 #ifdef CONFIG_TMPFS_XATTR
2655 	sb->s_xattr = shmem_xattr_handlers;
2656 #endif
2657 #ifdef CONFIG_TMPFS_POSIX_ACL
2658 	sb->s_flags |= MS_POSIXACL;
2659 #endif
2660 
2661 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2662 	if (!inode)
2663 		goto failed;
2664 	inode->i_uid = sbinfo->uid;
2665 	inode->i_gid = sbinfo->gid;
2666 	sb->s_root = d_make_root(inode);
2667 	if (!sb->s_root)
2668 		goto failed;
2669 	return 0;
2670 
2671 failed:
2672 	shmem_put_super(sb);
2673 	return err;
2674 }
2675 
2676 static struct kmem_cache *shmem_inode_cachep;
2677 
2678 static struct inode *shmem_alloc_inode(struct super_block *sb)
2679 {
2680 	struct shmem_inode_info *info;
2681 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2682 	if (!info)
2683 		return NULL;
2684 	return &info->vfs_inode;
2685 }
2686 
2687 static void shmem_destroy_callback(struct rcu_head *head)
2688 {
2689 	struct inode *inode = container_of(head, struct inode, i_rcu);
2690 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2691 }
2692 
2693 static void shmem_destroy_inode(struct inode *inode)
2694 {
2695 	if (S_ISREG(inode->i_mode))
2696 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2697 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2698 }
2699 
2700 static void shmem_init_inode(void *foo)
2701 {
2702 	struct shmem_inode_info *info = foo;
2703 	inode_init_once(&info->vfs_inode);
2704 }
2705 
2706 static int shmem_init_inodecache(void)
2707 {
2708 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2709 				sizeof(struct shmem_inode_info),
2710 				0, SLAB_PANIC, shmem_init_inode);
2711 	return 0;
2712 }
2713 
2714 static void shmem_destroy_inodecache(void)
2715 {
2716 	kmem_cache_destroy(shmem_inode_cachep);
2717 }
2718 
2719 static const struct address_space_operations shmem_aops = {
2720 	.writepage	= shmem_writepage,
2721 	.set_page_dirty	= __set_page_dirty_no_writeback,
2722 #ifdef CONFIG_TMPFS
2723 	.write_begin	= shmem_write_begin,
2724 	.write_end	= shmem_write_end,
2725 #endif
2726 	.migratepage	= migrate_page,
2727 	.error_remove_page = generic_error_remove_page,
2728 };
2729 
2730 static const struct file_operations shmem_file_operations = {
2731 	.mmap		= shmem_mmap,
2732 #ifdef CONFIG_TMPFS
2733 	.llseek		= shmem_file_llseek,
2734 	.read		= new_sync_read,
2735 	.write		= new_sync_write,
2736 	.read_iter	= shmem_file_read_iter,
2737 	.write_iter	= generic_file_write_iter,
2738 	.fsync		= noop_fsync,
2739 	.splice_read	= shmem_file_splice_read,
2740 	.splice_write	= iter_file_splice_write,
2741 	.fallocate	= shmem_fallocate,
2742 #endif
2743 };
2744 
2745 static const struct inode_operations shmem_inode_operations = {
2746 	.setattr	= shmem_setattr,
2747 #ifdef CONFIG_TMPFS_XATTR
2748 	.setxattr	= shmem_setxattr,
2749 	.getxattr	= shmem_getxattr,
2750 	.listxattr	= shmem_listxattr,
2751 	.removexattr	= shmem_removexattr,
2752 	.set_acl	= simple_set_acl,
2753 #endif
2754 };
2755 
2756 static const struct inode_operations shmem_dir_inode_operations = {
2757 #ifdef CONFIG_TMPFS
2758 	.create		= shmem_create,
2759 	.lookup		= simple_lookup,
2760 	.link		= shmem_link,
2761 	.unlink		= shmem_unlink,
2762 	.symlink	= shmem_symlink,
2763 	.mkdir		= shmem_mkdir,
2764 	.rmdir		= shmem_rmdir,
2765 	.mknod		= shmem_mknod,
2766 	.rename		= shmem_rename,
2767 	.tmpfile	= shmem_tmpfile,
2768 #endif
2769 #ifdef CONFIG_TMPFS_XATTR
2770 	.setxattr	= shmem_setxattr,
2771 	.getxattr	= shmem_getxattr,
2772 	.listxattr	= shmem_listxattr,
2773 	.removexattr	= shmem_removexattr,
2774 #endif
2775 #ifdef CONFIG_TMPFS_POSIX_ACL
2776 	.setattr	= shmem_setattr,
2777 	.set_acl	= simple_set_acl,
2778 #endif
2779 };
2780 
2781 static const struct inode_operations shmem_special_inode_operations = {
2782 #ifdef CONFIG_TMPFS_XATTR
2783 	.setxattr	= shmem_setxattr,
2784 	.getxattr	= shmem_getxattr,
2785 	.listxattr	= shmem_listxattr,
2786 	.removexattr	= shmem_removexattr,
2787 #endif
2788 #ifdef CONFIG_TMPFS_POSIX_ACL
2789 	.setattr	= shmem_setattr,
2790 	.set_acl	= simple_set_acl,
2791 #endif
2792 };
2793 
2794 static const struct super_operations shmem_ops = {
2795 	.alloc_inode	= shmem_alloc_inode,
2796 	.destroy_inode	= shmem_destroy_inode,
2797 #ifdef CONFIG_TMPFS
2798 	.statfs		= shmem_statfs,
2799 	.remount_fs	= shmem_remount_fs,
2800 	.show_options	= shmem_show_options,
2801 #endif
2802 	.evict_inode	= shmem_evict_inode,
2803 	.drop_inode	= generic_delete_inode,
2804 	.put_super	= shmem_put_super,
2805 };
2806 
2807 static const struct vm_operations_struct shmem_vm_ops = {
2808 	.fault		= shmem_fault,
2809 	.map_pages	= filemap_map_pages,
2810 #ifdef CONFIG_NUMA
2811 	.set_policy     = shmem_set_policy,
2812 	.get_policy     = shmem_get_policy,
2813 #endif
2814 	.remap_pages	= generic_file_remap_pages,
2815 };
2816 
2817 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2818 	int flags, const char *dev_name, void *data)
2819 {
2820 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2821 }
2822 
2823 static struct file_system_type shmem_fs_type = {
2824 	.owner		= THIS_MODULE,
2825 	.name		= "tmpfs",
2826 	.mount		= shmem_mount,
2827 	.kill_sb	= kill_litter_super,
2828 	.fs_flags	= FS_USERNS_MOUNT,
2829 };
2830 
2831 int __init shmem_init(void)
2832 {
2833 	int error;
2834 
2835 	/* If rootfs called this, don't re-init */
2836 	if (shmem_inode_cachep)
2837 		return 0;
2838 
2839 	error = bdi_init(&shmem_backing_dev_info);
2840 	if (error)
2841 		goto out4;
2842 
2843 	error = shmem_init_inodecache();
2844 	if (error)
2845 		goto out3;
2846 
2847 	error = register_filesystem(&shmem_fs_type);
2848 	if (error) {
2849 		printk(KERN_ERR "Could not register tmpfs\n");
2850 		goto out2;
2851 	}
2852 
2853 	shm_mnt = kern_mount(&shmem_fs_type);
2854 	if (IS_ERR(shm_mnt)) {
2855 		error = PTR_ERR(shm_mnt);
2856 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2857 		goto out1;
2858 	}
2859 	return 0;
2860 
2861 out1:
2862 	unregister_filesystem(&shmem_fs_type);
2863 out2:
2864 	shmem_destroy_inodecache();
2865 out3:
2866 	bdi_destroy(&shmem_backing_dev_info);
2867 out4:
2868 	shm_mnt = ERR_PTR(error);
2869 	return error;
2870 }
2871 
2872 #else /* !CONFIG_SHMEM */
2873 
2874 /*
2875  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2876  *
2877  * This is intended for small system where the benefits of the full
2878  * shmem code (swap-backed and resource-limited) are outweighed by
2879  * their complexity. On systems without swap this code should be
2880  * effectively equivalent, but much lighter weight.
2881  */
2882 
2883 static struct file_system_type shmem_fs_type = {
2884 	.name		= "tmpfs",
2885 	.mount		= ramfs_mount,
2886 	.kill_sb	= kill_litter_super,
2887 	.fs_flags	= FS_USERNS_MOUNT,
2888 };
2889 
2890 int __init shmem_init(void)
2891 {
2892 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2893 
2894 	shm_mnt = kern_mount(&shmem_fs_type);
2895 	BUG_ON(IS_ERR(shm_mnt));
2896 
2897 	return 0;
2898 }
2899 
2900 int shmem_unuse(swp_entry_t swap, struct page *page)
2901 {
2902 	return 0;
2903 }
2904 
2905 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2906 {
2907 	return 0;
2908 }
2909 
2910 void shmem_unlock_mapping(struct address_space *mapping)
2911 {
2912 }
2913 
2914 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2915 {
2916 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2917 }
2918 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2919 
2920 #define shmem_vm_ops				generic_file_vm_ops
2921 #define shmem_file_operations			ramfs_file_operations
2922 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2923 #define shmem_acct_size(flags, size)		0
2924 #define shmem_unacct_size(flags, size)		do {} while (0)
2925 
2926 #endif /* CONFIG_SHMEM */
2927 
2928 /* common code */
2929 
2930 static struct dentry_operations anon_ops = {
2931 	.d_dname = simple_dname
2932 };
2933 
2934 static struct file *__shmem_file_setup(const char *name, loff_t size,
2935 				       unsigned long flags, unsigned int i_flags)
2936 {
2937 	struct file *res;
2938 	struct inode *inode;
2939 	struct path path;
2940 	struct super_block *sb;
2941 	struct qstr this;
2942 
2943 	if (IS_ERR(shm_mnt))
2944 		return ERR_CAST(shm_mnt);
2945 
2946 	if (size < 0 || size > MAX_LFS_FILESIZE)
2947 		return ERR_PTR(-EINVAL);
2948 
2949 	if (shmem_acct_size(flags, size))
2950 		return ERR_PTR(-ENOMEM);
2951 
2952 	res = ERR_PTR(-ENOMEM);
2953 	this.name = name;
2954 	this.len = strlen(name);
2955 	this.hash = 0; /* will go */
2956 	sb = shm_mnt->mnt_sb;
2957 	path.mnt = mntget(shm_mnt);
2958 	path.dentry = d_alloc_pseudo(sb, &this);
2959 	if (!path.dentry)
2960 		goto put_memory;
2961 	d_set_d_op(path.dentry, &anon_ops);
2962 
2963 	res = ERR_PTR(-ENOSPC);
2964 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2965 	if (!inode)
2966 		goto put_memory;
2967 
2968 	inode->i_flags |= i_flags;
2969 	d_instantiate(path.dentry, inode);
2970 	inode->i_size = size;
2971 	clear_nlink(inode);	/* It is unlinked */
2972 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2973 	if (IS_ERR(res))
2974 		goto put_path;
2975 
2976 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2977 		  &shmem_file_operations);
2978 	if (IS_ERR(res))
2979 		goto put_path;
2980 
2981 	return res;
2982 
2983 put_memory:
2984 	shmem_unacct_size(flags, size);
2985 put_path:
2986 	path_put(&path);
2987 	return res;
2988 }
2989 
2990 /**
2991  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2992  * 	kernel internal.  There will be NO LSM permission checks against the
2993  * 	underlying inode.  So users of this interface must do LSM checks at a
2994  * 	higher layer.  The one user is the big_key implementation.  LSM checks
2995  * 	are provided at the key level rather than the inode level.
2996  * @name: name for dentry (to be seen in /proc/<pid>/maps
2997  * @size: size to be set for the file
2998  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2999  */
3000 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3001 {
3002 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
3003 }
3004 
3005 /**
3006  * shmem_file_setup - get an unlinked file living in tmpfs
3007  * @name: name for dentry (to be seen in /proc/<pid>/maps
3008  * @size: size to be set for the file
3009  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3010  */
3011 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3012 {
3013 	return __shmem_file_setup(name, size, flags, 0);
3014 }
3015 EXPORT_SYMBOL_GPL(shmem_file_setup);
3016 
3017 /**
3018  * shmem_zero_setup - setup a shared anonymous mapping
3019  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3020  */
3021 int shmem_zero_setup(struct vm_area_struct *vma)
3022 {
3023 	struct file *file;
3024 	loff_t size = vma->vm_end - vma->vm_start;
3025 
3026 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3027 	if (IS_ERR(file))
3028 		return PTR_ERR(file);
3029 
3030 	if (vma->vm_file)
3031 		fput(vma->vm_file);
3032 	vma->vm_file = file;
3033 	vma->vm_ops = &shmem_vm_ops;
3034 	return 0;
3035 }
3036 
3037 /**
3038  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3039  * @mapping:	the page's address_space
3040  * @index:	the page index
3041  * @gfp:	the page allocator flags to use if allocating
3042  *
3043  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3044  * with any new page allocations done using the specified allocation flags.
3045  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3046  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3047  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3048  *
3049  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3050  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3051  */
3052 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3053 					 pgoff_t index, gfp_t gfp)
3054 {
3055 #ifdef CONFIG_SHMEM
3056 	struct inode *inode = mapping->host;
3057 	struct page *page;
3058 	int error;
3059 
3060 	BUG_ON(mapping->a_ops != &shmem_aops);
3061 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3062 	if (error)
3063 		page = ERR_PTR(error);
3064 	else
3065 		unlock_page(page);
3066 	return page;
3067 #else
3068 	/*
3069 	 * The tiny !SHMEM case uses ramfs without swap
3070 	 */
3071 	return read_cache_page_gfp(mapping, index, gfp);
3072 #endif
3073 }
3074 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3075