xref: /linux/mm/shmem.c (revision 8b4a40809e5330c9da5d20107d693d92d73b31dc)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * This file is released under the GPL.
18  */
19 
20 /*
21  * This virtual memory filesystem is heavily based on the ramfs. It
22  * extends ramfs by the ability to use swap and honor resource limits
23  * which makes it a completely usable filesystem.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
32 #include <linux/mm.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
52 #include <linux/backing-dev.h>
53 
54 #include <asm/uaccess.h>
55 #include <asm/div64.h>
56 #include <asm/pgtable.h>
57 
58 /* This magic number is used in glibc for posix shared memory */
59 #define TMPFS_MAGIC	0x01021994
60 
61 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
62 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
63 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
64 
65 #define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
66 #define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
67 
68 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
69 
70 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
71 #define SHMEM_PAGEIN	 VM_READ
72 #define SHMEM_TRUNCATE	 VM_WRITE
73 
74 /* Definition to limit shmem_truncate's steps between cond_rescheds */
75 #define LATENCY_LIMIT	 64
76 
77 /* Pretend that each entry is of this size in directory's i_size */
78 #define BOGO_DIRENT_SIZE 20
79 
80 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
81 enum sgp_type {
82 	SGP_QUICK,	/* don't try more than file page cache lookup */
83 	SGP_READ,	/* don't exceed i_size, don't allocate page */
84 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
85 	SGP_WRITE,	/* may exceed i_size, may allocate page */
86 };
87 
88 static int shmem_getpage(struct inode *inode, unsigned long idx,
89 			 struct page **pagep, enum sgp_type sgp, int *type);
90 
91 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
92 {
93 	/*
94 	 * The above definition of ENTRIES_PER_PAGE, and the use of
95 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
96 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
97 	 *
98 	 * __GFP_MOVABLE is masked out as swap vectors cannot move
99 	 */
100 	return alloc_pages((gfp_mask & ~__GFP_MOVABLE) | __GFP_ZERO,
101 				PAGE_CACHE_SHIFT-PAGE_SHIFT);
102 }
103 
104 static inline void shmem_dir_free(struct page *page)
105 {
106 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
107 }
108 
109 static struct page **shmem_dir_map(struct page *page)
110 {
111 	return (struct page **)kmap_atomic(page, KM_USER0);
112 }
113 
114 static inline void shmem_dir_unmap(struct page **dir)
115 {
116 	kunmap_atomic(dir, KM_USER0);
117 }
118 
119 static swp_entry_t *shmem_swp_map(struct page *page)
120 {
121 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
122 }
123 
124 static inline void shmem_swp_balance_unmap(void)
125 {
126 	/*
127 	 * When passing a pointer to an i_direct entry, to code which
128 	 * also handles indirect entries and so will shmem_swp_unmap,
129 	 * we must arrange for the preempt count to remain in balance.
130 	 * What kmap_atomic of a lowmem page does depends on config
131 	 * and architecture, so pretend to kmap_atomic some lowmem page.
132 	 */
133 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
134 }
135 
136 static inline void shmem_swp_unmap(swp_entry_t *entry)
137 {
138 	kunmap_atomic(entry, KM_USER1);
139 }
140 
141 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
142 {
143 	return sb->s_fs_info;
144 }
145 
146 /*
147  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
148  * for shared memory and for shared anonymous (/dev/zero) mappings
149  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
150  * consistent with the pre-accounting of private mappings ...
151  */
152 static inline int shmem_acct_size(unsigned long flags, loff_t size)
153 {
154 	return (flags & VM_ACCOUNT)?
155 		security_vm_enough_memory(VM_ACCT(size)): 0;
156 }
157 
158 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
159 {
160 	if (flags & VM_ACCOUNT)
161 		vm_unacct_memory(VM_ACCT(size));
162 }
163 
164 /*
165  * ... whereas tmpfs objects are accounted incrementally as
166  * pages are allocated, in order to allow huge sparse files.
167  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
168  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
169  */
170 static inline int shmem_acct_block(unsigned long flags)
171 {
172 	return (flags & VM_ACCOUNT)?
173 		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
174 }
175 
176 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
177 {
178 	if (!(flags & VM_ACCOUNT))
179 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
180 }
181 
182 static const struct super_operations shmem_ops;
183 static const struct address_space_operations shmem_aops;
184 static const struct file_operations shmem_file_operations;
185 static const struct inode_operations shmem_inode_operations;
186 static const struct inode_operations shmem_dir_inode_operations;
187 static const struct inode_operations shmem_special_inode_operations;
188 static struct vm_operations_struct shmem_vm_ops;
189 
190 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
191 	.ra_pages	= 0,	/* No readahead */
192 	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
193 	.unplug_io_fn	= default_unplug_io_fn,
194 };
195 
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_SPINLOCK(shmem_swaplist_lock);
198 
199 static void shmem_free_blocks(struct inode *inode, long pages)
200 {
201 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
202 	if (sbinfo->max_blocks) {
203 		spin_lock(&sbinfo->stat_lock);
204 		sbinfo->free_blocks += pages;
205 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
206 		spin_unlock(&sbinfo->stat_lock);
207 	}
208 }
209 
210 /*
211  * shmem_recalc_inode - recalculate the size of an inode
212  *
213  * @inode: inode to recalc
214  *
215  * We have to calculate the free blocks since the mm can drop
216  * undirtied hole pages behind our back.
217  *
218  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
219  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220  *
221  * It has to be called with the spinlock held.
222  */
223 static void shmem_recalc_inode(struct inode *inode)
224 {
225 	struct shmem_inode_info *info = SHMEM_I(inode);
226 	long freed;
227 
228 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229 	if (freed > 0) {
230 		info->alloced -= freed;
231 		shmem_unacct_blocks(info->flags, freed);
232 		shmem_free_blocks(inode, freed);
233 	}
234 }
235 
236 /*
237  * shmem_swp_entry - find the swap vector position in the info structure
238  *
239  * @info:  info structure for the inode
240  * @index: index of the page to find
241  * @page:  optional page to add to the structure. Has to be preset to
242  *         all zeros
243  *
244  * If there is no space allocated yet it will return NULL when
245  * page is NULL, else it will use the page for the needed block,
246  * setting it to NULL on return to indicate that it has been used.
247  *
248  * The swap vector is organized the following way:
249  *
250  * There are SHMEM_NR_DIRECT entries directly stored in the
251  * shmem_inode_info structure. So small files do not need an addional
252  * allocation.
253  *
254  * For pages with index > SHMEM_NR_DIRECT there is the pointer
255  * i_indirect which points to a page which holds in the first half
256  * doubly indirect blocks, in the second half triple indirect blocks:
257  *
258  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
259  * following layout (for SHMEM_NR_DIRECT == 16):
260  *
261  * i_indirect -> dir --> 16-19
262  * 	      |	     +-> 20-23
263  * 	      |
264  * 	      +-->dir2 --> 24-27
265  * 	      |	       +-> 28-31
266  * 	      |	       +-> 32-35
267  * 	      |	       +-> 36-39
268  * 	      |
269  * 	      +-->dir3 --> 40-43
270  * 	       	       +-> 44-47
271  * 	      	       +-> 48-51
272  * 	      	       +-> 52-55
273  */
274 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
275 {
276 	unsigned long offset;
277 	struct page **dir;
278 	struct page *subdir;
279 
280 	if (index < SHMEM_NR_DIRECT) {
281 		shmem_swp_balance_unmap();
282 		return info->i_direct+index;
283 	}
284 	if (!info->i_indirect) {
285 		if (page) {
286 			info->i_indirect = *page;
287 			*page = NULL;
288 		}
289 		return NULL;			/* need another page */
290 	}
291 
292 	index -= SHMEM_NR_DIRECT;
293 	offset = index % ENTRIES_PER_PAGE;
294 	index /= ENTRIES_PER_PAGE;
295 	dir = shmem_dir_map(info->i_indirect);
296 
297 	if (index >= ENTRIES_PER_PAGE/2) {
298 		index -= ENTRIES_PER_PAGE/2;
299 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
300 		index %= ENTRIES_PER_PAGE;
301 		subdir = *dir;
302 		if (!subdir) {
303 			if (page) {
304 				*dir = *page;
305 				*page = NULL;
306 			}
307 			shmem_dir_unmap(dir);
308 			return NULL;		/* need another page */
309 		}
310 		shmem_dir_unmap(dir);
311 		dir = shmem_dir_map(subdir);
312 	}
313 
314 	dir += index;
315 	subdir = *dir;
316 	if (!subdir) {
317 		if (!page || !(subdir = *page)) {
318 			shmem_dir_unmap(dir);
319 			return NULL;		/* need a page */
320 		}
321 		*dir = subdir;
322 		*page = NULL;
323 	}
324 	shmem_dir_unmap(dir);
325 	return shmem_swp_map(subdir) + offset;
326 }
327 
328 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
329 {
330 	long incdec = value? 1: -1;
331 
332 	entry->val = value;
333 	info->swapped += incdec;
334 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
335 		struct page *page = kmap_atomic_to_page(entry);
336 		set_page_private(page, page_private(page) + incdec);
337 	}
338 }
339 
340 /*
341  * shmem_swp_alloc - get the position of the swap entry for the page.
342  *                   If it does not exist allocate the entry.
343  *
344  * @info:	info structure for the inode
345  * @index:	index of the page to find
346  * @sgp:	check and recheck i_size? skip allocation?
347  */
348 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
349 {
350 	struct inode *inode = &info->vfs_inode;
351 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
352 	struct page *page = NULL;
353 	swp_entry_t *entry;
354 
355 	if (sgp != SGP_WRITE &&
356 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
357 		return ERR_PTR(-EINVAL);
358 
359 	while (!(entry = shmem_swp_entry(info, index, &page))) {
360 		if (sgp == SGP_READ)
361 			return shmem_swp_map(ZERO_PAGE(0));
362 		/*
363 		 * Test free_blocks against 1 not 0, since we have 1 data
364 		 * page (and perhaps indirect index pages) yet to allocate:
365 		 * a waste to allocate index if we cannot allocate data.
366 		 */
367 		if (sbinfo->max_blocks) {
368 			spin_lock(&sbinfo->stat_lock);
369 			if (sbinfo->free_blocks <= 1) {
370 				spin_unlock(&sbinfo->stat_lock);
371 				return ERR_PTR(-ENOSPC);
372 			}
373 			sbinfo->free_blocks--;
374 			inode->i_blocks += BLOCKS_PER_PAGE;
375 			spin_unlock(&sbinfo->stat_lock);
376 		}
377 
378 		spin_unlock(&info->lock);
379 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
380 		if (page)
381 			set_page_private(page, 0);
382 		spin_lock(&info->lock);
383 
384 		if (!page) {
385 			shmem_free_blocks(inode, 1);
386 			return ERR_PTR(-ENOMEM);
387 		}
388 		if (sgp != SGP_WRITE &&
389 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
390 			entry = ERR_PTR(-EINVAL);
391 			break;
392 		}
393 		if (info->next_index <= index)
394 			info->next_index = index + 1;
395 	}
396 	if (page) {
397 		/* another task gave its page, or truncated the file */
398 		shmem_free_blocks(inode, 1);
399 		shmem_dir_free(page);
400 	}
401 	if (info->next_index <= index && !IS_ERR(entry))
402 		info->next_index = index + 1;
403 	return entry;
404 }
405 
406 /*
407  * shmem_free_swp - free some swap entries in a directory
408  *
409  * @dir:        pointer to the directory
410  * @edir:       pointer after last entry of the directory
411  * @punch_lock: pointer to spinlock when needed for the holepunch case
412  */
413 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
414 						spinlock_t *punch_lock)
415 {
416 	spinlock_t *punch_unlock = NULL;
417 	swp_entry_t *ptr;
418 	int freed = 0;
419 
420 	for (ptr = dir; ptr < edir; ptr++) {
421 		if (ptr->val) {
422 			if (unlikely(punch_lock)) {
423 				punch_unlock = punch_lock;
424 				punch_lock = NULL;
425 				spin_lock(punch_unlock);
426 				if (!ptr->val)
427 					continue;
428 			}
429 			free_swap_and_cache(*ptr);
430 			*ptr = (swp_entry_t){0};
431 			freed++;
432 		}
433 	}
434 	if (punch_unlock)
435 		spin_unlock(punch_unlock);
436 	return freed;
437 }
438 
439 static int shmem_map_and_free_swp(struct page *subdir, int offset,
440 		int limit, struct page ***dir, spinlock_t *punch_lock)
441 {
442 	swp_entry_t *ptr;
443 	int freed = 0;
444 
445 	ptr = shmem_swp_map(subdir);
446 	for (; offset < limit; offset += LATENCY_LIMIT) {
447 		int size = limit - offset;
448 		if (size > LATENCY_LIMIT)
449 			size = LATENCY_LIMIT;
450 		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
451 							punch_lock);
452 		if (need_resched()) {
453 			shmem_swp_unmap(ptr);
454 			if (*dir) {
455 				shmem_dir_unmap(*dir);
456 				*dir = NULL;
457 			}
458 			cond_resched();
459 			ptr = shmem_swp_map(subdir);
460 		}
461 	}
462 	shmem_swp_unmap(ptr);
463 	return freed;
464 }
465 
466 static void shmem_free_pages(struct list_head *next)
467 {
468 	struct page *page;
469 	int freed = 0;
470 
471 	do {
472 		page = container_of(next, struct page, lru);
473 		next = next->next;
474 		shmem_dir_free(page);
475 		freed++;
476 		if (freed >= LATENCY_LIMIT) {
477 			cond_resched();
478 			freed = 0;
479 		}
480 	} while (next);
481 }
482 
483 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
484 {
485 	struct shmem_inode_info *info = SHMEM_I(inode);
486 	unsigned long idx;
487 	unsigned long size;
488 	unsigned long limit;
489 	unsigned long stage;
490 	unsigned long diroff;
491 	struct page **dir;
492 	struct page *topdir;
493 	struct page *middir;
494 	struct page *subdir;
495 	swp_entry_t *ptr;
496 	LIST_HEAD(pages_to_free);
497 	long nr_pages_to_free = 0;
498 	long nr_swaps_freed = 0;
499 	int offset;
500 	int freed;
501 	int punch_hole;
502 	spinlock_t *needs_lock;
503 	spinlock_t *punch_lock;
504 	unsigned long upper_limit;
505 
506 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
507 	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
508 	if (idx >= info->next_index)
509 		return;
510 
511 	spin_lock(&info->lock);
512 	info->flags |= SHMEM_TRUNCATE;
513 	if (likely(end == (loff_t) -1)) {
514 		limit = info->next_index;
515 		upper_limit = SHMEM_MAX_INDEX;
516 		info->next_index = idx;
517 		needs_lock = NULL;
518 		punch_hole = 0;
519 	} else {
520 		if (end + 1 >= inode->i_size) {	/* we may free a little more */
521 			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
522 							PAGE_CACHE_SHIFT;
523 			upper_limit = SHMEM_MAX_INDEX;
524 		} else {
525 			limit = (end + 1) >> PAGE_CACHE_SHIFT;
526 			upper_limit = limit;
527 		}
528 		needs_lock = &info->lock;
529 		punch_hole = 1;
530 	}
531 
532 	topdir = info->i_indirect;
533 	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
534 		info->i_indirect = NULL;
535 		nr_pages_to_free++;
536 		list_add(&topdir->lru, &pages_to_free);
537 	}
538 	spin_unlock(&info->lock);
539 
540 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
541 		ptr = info->i_direct;
542 		size = limit;
543 		if (size > SHMEM_NR_DIRECT)
544 			size = SHMEM_NR_DIRECT;
545 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
546 	}
547 
548 	/*
549 	 * If there are no indirect blocks or we are punching a hole
550 	 * below indirect blocks, nothing to be done.
551 	 */
552 	if (!topdir || limit <= SHMEM_NR_DIRECT)
553 		goto done2;
554 
555 	/*
556 	 * The truncation case has already dropped info->lock, and we're safe
557 	 * because i_size and next_index have already been lowered, preventing
558 	 * access beyond.  But in the punch_hole case, we still need to take
559 	 * the lock when updating the swap directory, because there might be
560 	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
561 	 * shmem_writepage.  However, whenever we find we can remove a whole
562 	 * directory page (not at the misaligned start or end of the range),
563 	 * we first NULLify its pointer in the level above, and then have no
564 	 * need to take the lock when updating its contents: needs_lock and
565 	 * punch_lock (either pointing to info->lock or NULL) manage this.
566 	 */
567 
568 	upper_limit -= SHMEM_NR_DIRECT;
569 	limit -= SHMEM_NR_DIRECT;
570 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
571 	offset = idx % ENTRIES_PER_PAGE;
572 	idx -= offset;
573 
574 	dir = shmem_dir_map(topdir);
575 	stage = ENTRIES_PER_PAGEPAGE/2;
576 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
577 		middir = topdir;
578 		diroff = idx/ENTRIES_PER_PAGE;
579 	} else {
580 		dir += ENTRIES_PER_PAGE/2;
581 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
582 		while (stage <= idx)
583 			stage += ENTRIES_PER_PAGEPAGE;
584 		middir = *dir;
585 		if (*dir) {
586 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
587 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
588 			if (!diroff && !offset && upper_limit >= stage) {
589 				if (needs_lock) {
590 					spin_lock(needs_lock);
591 					*dir = NULL;
592 					spin_unlock(needs_lock);
593 					needs_lock = NULL;
594 				} else
595 					*dir = NULL;
596 				nr_pages_to_free++;
597 				list_add(&middir->lru, &pages_to_free);
598 			}
599 			shmem_dir_unmap(dir);
600 			dir = shmem_dir_map(middir);
601 		} else {
602 			diroff = 0;
603 			offset = 0;
604 			idx = stage;
605 		}
606 	}
607 
608 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
609 		if (unlikely(idx == stage)) {
610 			shmem_dir_unmap(dir);
611 			dir = shmem_dir_map(topdir) +
612 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
613 			while (!*dir) {
614 				dir++;
615 				idx += ENTRIES_PER_PAGEPAGE;
616 				if (idx >= limit)
617 					goto done1;
618 			}
619 			stage = idx + ENTRIES_PER_PAGEPAGE;
620 			middir = *dir;
621 			if (punch_hole)
622 				needs_lock = &info->lock;
623 			if (upper_limit >= stage) {
624 				if (needs_lock) {
625 					spin_lock(needs_lock);
626 					*dir = NULL;
627 					spin_unlock(needs_lock);
628 					needs_lock = NULL;
629 				} else
630 					*dir = NULL;
631 				nr_pages_to_free++;
632 				list_add(&middir->lru, &pages_to_free);
633 			}
634 			shmem_dir_unmap(dir);
635 			cond_resched();
636 			dir = shmem_dir_map(middir);
637 			diroff = 0;
638 		}
639 		punch_lock = needs_lock;
640 		subdir = dir[diroff];
641 		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
642 			if (needs_lock) {
643 				spin_lock(needs_lock);
644 				dir[diroff] = NULL;
645 				spin_unlock(needs_lock);
646 				punch_lock = NULL;
647 			} else
648 				dir[diroff] = NULL;
649 			nr_pages_to_free++;
650 			list_add(&subdir->lru, &pages_to_free);
651 		}
652 		if (subdir && page_private(subdir) /* has swap entries */) {
653 			size = limit - idx;
654 			if (size > ENTRIES_PER_PAGE)
655 				size = ENTRIES_PER_PAGE;
656 			freed = shmem_map_and_free_swp(subdir,
657 					offset, size, &dir, punch_lock);
658 			if (!dir)
659 				dir = shmem_dir_map(middir);
660 			nr_swaps_freed += freed;
661 			if (offset || punch_lock) {
662 				spin_lock(&info->lock);
663 				set_page_private(subdir,
664 					page_private(subdir) - freed);
665 				spin_unlock(&info->lock);
666 			} else
667 				BUG_ON(page_private(subdir) != freed);
668 		}
669 		offset = 0;
670 	}
671 done1:
672 	shmem_dir_unmap(dir);
673 done2:
674 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
675 		/*
676 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
677 		 * may have swizzled a page in from swap since vmtruncate or
678 		 * generic_delete_inode did it, before we lowered next_index.
679 		 * Also, though shmem_getpage checks i_size before adding to
680 		 * cache, no recheck after: so fix the narrow window there too.
681 		 *
682 		 * Recalling truncate_inode_pages_range and unmap_mapping_range
683 		 * every time for punch_hole (which never got a chance to clear
684 		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
685 		 * yet hardly ever necessary: try to optimize them out later.
686 		 */
687 		truncate_inode_pages_range(inode->i_mapping, start, end);
688 		if (punch_hole)
689 			unmap_mapping_range(inode->i_mapping, start,
690 							end - start, 1);
691 	}
692 
693 	spin_lock(&info->lock);
694 	info->flags &= ~SHMEM_TRUNCATE;
695 	info->swapped -= nr_swaps_freed;
696 	if (nr_pages_to_free)
697 		shmem_free_blocks(inode, nr_pages_to_free);
698 	shmem_recalc_inode(inode);
699 	spin_unlock(&info->lock);
700 
701 	/*
702 	 * Empty swap vector directory pages to be freed?
703 	 */
704 	if (!list_empty(&pages_to_free)) {
705 		pages_to_free.prev->next = NULL;
706 		shmem_free_pages(pages_to_free.next);
707 	}
708 }
709 
710 static void shmem_truncate(struct inode *inode)
711 {
712 	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
713 }
714 
715 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
716 {
717 	struct inode *inode = dentry->d_inode;
718 	struct page *page = NULL;
719 	int error;
720 
721 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
722 		if (attr->ia_size < inode->i_size) {
723 			/*
724 			 * If truncating down to a partial page, then
725 			 * if that page is already allocated, hold it
726 			 * in memory until the truncation is over, so
727 			 * truncate_partial_page cannnot miss it were
728 			 * it assigned to swap.
729 			 */
730 			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
731 				(void) shmem_getpage(inode,
732 					attr->ia_size>>PAGE_CACHE_SHIFT,
733 						&page, SGP_READ, NULL);
734 			}
735 			/*
736 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
737 			 * detect if any pages might have been added to cache
738 			 * after truncate_inode_pages.  But we needn't bother
739 			 * if it's being fully truncated to zero-length: the
740 			 * nrpages check is efficient enough in that case.
741 			 */
742 			if (attr->ia_size) {
743 				struct shmem_inode_info *info = SHMEM_I(inode);
744 				spin_lock(&info->lock);
745 				info->flags &= ~SHMEM_PAGEIN;
746 				spin_unlock(&info->lock);
747 			}
748 		}
749 	}
750 
751 	error = inode_change_ok(inode, attr);
752 	if (!error)
753 		error = inode_setattr(inode, attr);
754 #ifdef CONFIG_TMPFS_POSIX_ACL
755 	if (!error && (attr->ia_valid & ATTR_MODE))
756 		error = generic_acl_chmod(inode, &shmem_acl_ops);
757 #endif
758 	if (page)
759 		page_cache_release(page);
760 	return error;
761 }
762 
763 static void shmem_delete_inode(struct inode *inode)
764 {
765 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
766 	struct shmem_inode_info *info = SHMEM_I(inode);
767 
768 	if (inode->i_op->truncate == shmem_truncate) {
769 		truncate_inode_pages(inode->i_mapping, 0);
770 		shmem_unacct_size(info->flags, inode->i_size);
771 		inode->i_size = 0;
772 		shmem_truncate(inode);
773 		if (!list_empty(&info->swaplist)) {
774 			spin_lock(&shmem_swaplist_lock);
775 			list_del_init(&info->swaplist);
776 			spin_unlock(&shmem_swaplist_lock);
777 		}
778 	}
779 	BUG_ON(inode->i_blocks);
780 	if (sbinfo->max_inodes) {
781 		spin_lock(&sbinfo->stat_lock);
782 		sbinfo->free_inodes++;
783 		spin_unlock(&sbinfo->stat_lock);
784 	}
785 	clear_inode(inode);
786 }
787 
788 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
789 {
790 	swp_entry_t *ptr;
791 
792 	for (ptr = dir; ptr < edir; ptr++) {
793 		if (ptr->val == entry.val)
794 			return ptr - dir;
795 	}
796 	return -1;
797 }
798 
799 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
800 {
801 	struct inode *inode;
802 	unsigned long idx;
803 	unsigned long size;
804 	unsigned long limit;
805 	unsigned long stage;
806 	struct page **dir;
807 	struct page *subdir;
808 	swp_entry_t *ptr;
809 	int offset;
810 
811 	idx = 0;
812 	ptr = info->i_direct;
813 	spin_lock(&info->lock);
814 	limit = info->next_index;
815 	size = limit;
816 	if (size > SHMEM_NR_DIRECT)
817 		size = SHMEM_NR_DIRECT;
818 	offset = shmem_find_swp(entry, ptr, ptr+size);
819 	if (offset >= 0) {
820 		shmem_swp_balance_unmap();
821 		goto found;
822 	}
823 	if (!info->i_indirect)
824 		goto lost2;
825 
826 	dir = shmem_dir_map(info->i_indirect);
827 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
828 
829 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
830 		if (unlikely(idx == stage)) {
831 			shmem_dir_unmap(dir-1);
832 			dir = shmem_dir_map(info->i_indirect) +
833 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
834 			while (!*dir) {
835 				dir++;
836 				idx += ENTRIES_PER_PAGEPAGE;
837 				if (idx >= limit)
838 					goto lost1;
839 			}
840 			stage = idx + ENTRIES_PER_PAGEPAGE;
841 			subdir = *dir;
842 			shmem_dir_unmap(dir);
843 			dir = shmem_dir_map(subdir);
844 		}
845 		subdir = *dir;
846 		if (subdir && page_private(subdir)) {
847 			ptr = shmem_swp_map(subdir);
848 			size = limit - idx;
849 			if (size > ENTRIES_PER_PAGE)
850 				size = ENTRIES_PER_PAGE;
851 			offset = shmem_find_swp(entry, ptr, ptr+size);
852 			if (offset >= 0) {
853 				shmem_dir_unmap(dir);
854 				goto found;
855 			}
856 			shmem_swp_unmap(ptr);
857 		}
858 	}
859 lost1:
860 	shmem_dir_unmap(dir-1);
861 lost2:
862 	spin_unlock(&info->lock);
863 	return 0;
864 found:
865 	idx += offset;
866 	inode = &info->vfs_inode;
867 	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
868 		info->flags |= SHMEM_PAGEIN;
869 		shmem_swp_set(info, ptr + offset, 0);
870 	}
871 	shmem_swp_unmap(ptr);
872 	spin_unlock(&info->lock);
873 	/*
874 	 * Decrement swap count even when the entry is left behind:
875 	 * try_to_unuse will skip over mms, then reincrement count.
876 	 */
877 	swap_free(entry);
878 	return 1;
879 }
880 
881 /*
882  * shmem_unuse() search for an eventually swapped out shmem page.
883  */
884 int shmem_unuse(swp_entry_t entry, struct page *page)
885 {
886 	struct list_head *p, *next;
887 	struct shmem_inode_info *info;
888 	int found = 0;
889 
890 	spin_lock(&shmem_swaplist_lock);
891 	list_for_each_safe(p, next, &shmem_swaplist) {
892 		info = list_entry(p, struct shmem_inode_info, swaplist);
893 		if (!info->swapped)
894 			list_del_init(&info->swaplist);
895 		else if (shmem_unuse_inode(info, entry, page)) {
896 			/* move head to start search for next from here */
897 			list_move_tail(&shmem_swaplist, &info->swaplist);
898 			found = 1;
899 			break;
900 		}
901 	}
902 	spin_unlock(&shmem_swaplist_lock);
903 	return found;
904 }
905 
906 /*
907  * Move the page from the page cache to the swap cache.
908  */
909 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
910 {
911 	struct shmem_inode_info *info;
912 	swp_entry_t *entry, swap;
913 	struct address_space *mapping;
914 	unsigned long index;
915 	struct inode *inode;
916 
917 	BUG_ON(!PageLocked(page));
918 	BUG_ON(page_mapped(page));
919 
920 	mapping = page->mapping;
921 	index = page->index;
922 	inode = mapping->host;
923 	info = SHMEM_I(inode);
924 	if (info->flags & VM_LOCKED)
925 		goto redirty;
926 	swap = get_swap_page();
927 	if (!swap.val)
928 		goto redirty;
929 
930 	spin_lock(&info->lock);
931 	shmem_recalc_inode(inode);
932 	if (index >= info->next_index) {
933 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
934 		goto unlock;
935 	}
936 	entry = shmem_swp_entry(info, index, NULL);
937 	BUG_ON(!entry);
938 	BUG_ON(entry->val);
939 
940 	if (move_to_swap_cache(page, swap) == 0) {
941 		shmem_swp_set(info, entry, swap.val);
942 		shmem_swp_unmap(entry);
943 		spin_unlock(&info->lock);
944 		if (list_empty(&info->swaplist)) {
945 			spin_lock(&shmem_swaplist_lock);
946 			/* move instead of add in case we're racing */
947 			list_move_tail(&info->swaplist, &shmem_swaplist);
948 			spin_unlock(&shmem_swaplist_lock);
949 		}
950 		unlock_page(page);
951 		return 0;
952 	}
953 
954 	shmem_swp_unmap(entry);
955 unlock:
956 	spin_unlock(&info->lock);
957 	swap_free(swap);
958 redirty:
959 	set_page_dirty(page);
960 	return AOP_WRITEPAGE_ACTIVATE;	/* Return with the page locked */
961 }
962 
963 #ifdef CONFIG_NUMA
964 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
965 {
966 	char *nodelist = strchr(value, ':');
967 	int err = 1;
968 
969 	if (nodelist) {
970 		/* NUL-terminate policy string */
971 		*nodelist++ = '\0';
972 		if (nodelist_parse(nodelist, *policy_nodes))
973 			goto out;
974 		if (!nodes_subset(*policy_nodes, node_online_map))
975 			goto out;
976 	}
977 	if (!strcmp(value, "default")) {
978 		*policy = MPOL_DEFAULT;
979 		/* Don't allow a nodelist */
980 		if (!nodelist)
981 			err = 0;
982 	} else if (!strcmp(value, "prefer")) {
983 		*policy = MPOL_PREFERRED;
984 		/* Insist on a nodelist of one node only */
985 		if (nodelist) {
986 			char *rest = nodelist;
987 			while (isdigit(*rest))
988 				rest++;
989 			if (!*rest)
990 				err = 0;
991 		}
992 	} else if (!strcmp(value, "bind")) {
993 		*policy = MPOL_BIND;
994 		/* Insist on a nodelist */
995 		if (nodelist)
996 			err = 0;
997 	} else if (!strcmp(value, "interleave")) {
998 		*policy = MPOL_INTERLEAVE;
999 		/* Default to nodes online if no nodelist */
1000 		if (!nodelist)
1001 			*policy_nodes = node_online_map;
1002 		err = 0;
1003 	}
1004 out:
1005 	/* Restore string for error message */
1006 	if (nodelist)
1007 		*--nodelist = ':';
1008 	return err;
1009 }
1010 
1011 static struct page *shmem_swapin_async(struct shared_policy *p,
1012 				       swp_entry_t entry, unsigned long idx)
1013 {
1014 	struct page *page;
1015 	struct vm_area_struct pvma;
1016 
1017 	/* Create a pseudo vma that just contains the policy */
1018 	memset(&pvma, 0, sizeof(struct vm_area_struct));
1019 	pvma.vm_end = PAGE_SIZE;
1020 	pvma.vm_pgoff = idx;
1021 	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
1022 	page = read_swap_cache_async(entry, &pvma, 0);
1023 	mpol_free(pvma.vm_policy);
1024 	return page;
1025 }
1026 
1027 struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
1028 			  unsigned long idx)
1029 {
1030 	struct shared_policy *p = &info->policy;
1031 	int i, num;
1032 	struct page *page;
1033 	unsigned long offset;
1034 
1035 	num = valid_swaphandles(entry, &offset);
1036 	for (i = 0; i < num; offset++, i++) {
1037 		page = shmem_swapin_async(p,
1038 				swp_entry(swp_type(entry), offset), idx);
1039 		if (!page)
1040 			break;
1041 		page_cache_release(page);
1042 	}
1043 	lru_add_drain();	/* Push any new pages onto the LRU now */
1044 	return shmem_swapin_async(p, entry, idx);
1045 }
1046 
1047 static struct page *
1048 shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
1049 		 unsigned long idx)
1050 {
1051 	struct vm_area_struct pvma;
1052 	struct page *page;
1053 
1054 	memset(&pvma, 0, sizeof(struct vm_area_struct));
1055 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1056 	pvma.vm_pgoff = idx;
1057 	pvma.vm_end = PAGE_SIZE;
1058 	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
1059 	mpol_free(pvma.vm_policy);
1060 	return page;
1061 }
1062 #else
1063 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1064 {
1065 	return 1;
1066 }
1067 
1068 static inline struct page *
1069 shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
1070 {
1071 	swapin_readahead(entry, 0, NULL);
1072 	return read_swap_cache_async(entry, NULL, 0);
1073 }
1074 
1075 static inline struct page *
1076 shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
1077 {
1078 	return alloc_page(gfp | __GFP_ZERO);
1079 }
1080 #endif
1081 
1082 /*
1083  * shmem_getpage - either get the page from swap or allocate a new one
1084  *
1085  * If we allocate a new one we do not mark it dirty. That's up to the
1086  * vm. If we swap it in we mark it dirty since we also free the swap
1087  * entry since a page cannot live in both the swap and page cache
1088  */
1089 static int shmem_getpage(struct inode *inode, unsigned long idx,
1090 			struct page **pagep, enum sgp_type sgp, int *type)
1091 {
1092 	struct address_space *mapping = inode->i_mapping;
1093 	struct shmem_inode_info *info = SHMEM_I(inode);
1094 	struct shmem_sb_info *sbinfo;
1095 	struct page *filepage = *pagep;
1096 	struct page *swappage;
1097 	swp_entry_t *entry;
1098 	swp_entry_t swap;
1099 	int error;
1100 
1101 	if (idx >= SHMEM_MAX_INDEX)
1102 		return -EFBIG;
1103 	/*
1104 	 * Normally, filepage is NULL on entry, and either found
1105 	 * uptodate immediately, or allocated and zeroed, or read
1106 	 * in under swappage, which is then assigned to filepage.
1107 	 * But shmem_readpage and shmem_prepare_write pass in a locked
1108 	 * filepage, which may be found not uptodate by other callers
1109 	 * too, and may need to be copied from the swappage read in.
1110 	 */
1111 repeat:
1112 	if (!filepage)
1113 		filepage = find_lock_page(mapping, idx);
1114 	if (filepage && PageUptodate(filepage))
1115 		goto done;
1116 	error = 0;
1117 	if (sgp == SGP_QUICK)
1118 		goto failed;
1119 
1120 	spin_lock(&info->lock);
1121 	shmem_recalc_inode(inode);
1122 	entry = shmem_swp_alloc(info, idx, sgp);
1123 	if (IS_ERR(entry)) {
1124 		spin_unlock(&info->lock);
1125 		error = PTR_ERR(entry);
1126 		goto failed;
1127 	}
1128 	swap = *entry;
1129 
1130 	if (swap.val) {
1131 		/* Look it up and read it in.. */
1132 		swappage = lookup_swap_cache(swap);
1133 		if (!swappage) {
1134 			shmem_swp_unmap(entry);
1135 			/* here we actually do the io */
1136 			if (type && *type == VM_FAULT_MINOR) {
1137 				__count_vm_event(PGMAJFAULT);
1138 				*type = VM_FAULT_MAJOR;
1139 			}
1140 			spin_unlock(&info->lock);
1141 			swappage = shmem_swapin(info, swap, idx);
1142 			if (!swappage) {
1143 				spin_lock(&info->lock);
1144 				entry = shmem_swp_alloc(info, idx, sgp);
1145 				if (IS_ERR(entry))
1146 					error = PTR_ERR(entry);
1147 				else {
1148 					if (entry->val == swap.val)
1149 						error = -ENOMEM;
1150 					shmem_swp_unmap(entry);
1151 				}
1152 				spin_unlock(&info->lock);
1153 				if (error)
1154 					goto failed;
1155 				goto repeat;
1156 			}
1157 			wait_on_page_locked(swappage);
1158 			page_cache_release(swappage);
1159 			goto repeat;
1160 		}
1161 
1162 		/* We have to do this with page locked to prevent races */
1163 		if (TestSetPageLocked(swappage)) {
1164 			shmem_swp_unmap(entry);
1165 			spin_unlock(&info->lock);
1166 			wait_on_page_locked(swappage);
1167 			page_cache_release(swappage);
1168 			goto repeat;
1169 		}
1170 		if (PageWriteback(swappage)) {
1171 			shmem_swp_unmap(entry);
1172 			spin_unlock(&info->lock);
1173 			wait_on_page_writeback(swappage);
1174 			unlock_page(swappage);
1175 			page_cache_release(swappage);
1176 			goto repeat;
1177 		}
1178 		if (!PageUptodate(swappage)) {
1179 			shmem_swp_unmap(entry);
1180 			spin_unlock(&info->lock);
1181 			unlock_page(swappage);
1182 			page_cache_release(swappage);
1183 			error = -EIO;
1184 			goto failed;
1185 		}
1186 
1187 		if (filepage) {
1188 			shmem_swp_set(info, entry, 0);
1189 			shmem_swp_unmap(entry);
1190 			delete_from_swap_cache(swappage);
1191 			spin_unlock(&info->lock);
1192 			copy_highpage(filepage, swappage);
1193 			unlock_page(swappage);
1194 			page_cache_release(swappage);
1195 			flush_dcache_page(filepage);
1196 			SetPageUptodate(filepage);
1197 			set_page_dirty(filepage);
1198 			swap_free(swap);
1199 		} else if (!(error = move_from_swap_cache(
1200 				swappage, idx, mapping))) {
1201 			info->flags |= SHMEM_PAGEIN;
1202 			shmem_swp_set(info, entry, 0);
1203 			shmem_swp_unmap(entry);
1204 			spin_unlock(&info->lock);
1205 			filepage = swappage;
1206 			swap_free(swap);
1207 		} else {
1208 			shmem_swp_unmap(entry);
1209 			spin_unlock(&info->lock);
1210 			unlock_page(swappage);
1211 			page_cache_release(swappage);
1212 			if (error == -ENOMEM) {
1213 				/* let kswapd refresh zone for GFP_ATOMICs */
1214 				congestion_wait(WRITE, HZ/50);
1215 			}
1216 			goto repeat;
1217 		}
1218 	} else if (sgp == SGP_READ && !filepage) {
1219 		shmem_swp_unmap(entry);
1220 		filepage = find_get_page(mapping, idx);
1221 		if (filepage &&
1222 		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1223 			spin_unlock(&info->lock);
1224 			wait_on_page_locked(filepage);
1225 			page_cache_release(filepage);
1226 			filepage = NULL;
1227 			goto repeat;
1228 		}
1229 		spin_unlock(&info->lock);
1230 	} else {
1231 		shmem_swp_unmap(entry);
1232 		sbinfo = SHMEM_SB(inode->i_sb);
1233 		if (sbinfo->max_blocks) {
1234 			spin_lock(&sbinfo->stat_lock);
1235 			if (sbinfo->free_blocks == 0 ||
1236 			    shmem_acct_block(info->flags)) {
1237 				spin_unlock(&sbinfo->stat_lock);
1238 				spin_unlock(&info->lock);
1239 				error = -ENOSPC;
1240 				goto failed;
1241 			}
1242 			sbinfo->free_blocks--;
1243 			inode->i_blocks += BLOCKS_PER_PAGE;
1244 			spin_unlock(&sbinfo->stat_lock);
1245 		} else if (shmem_acct_block(info->flags)) {
1246 			spin_unlock(&info->lock);
1247 			error = -ENOSPC;
1248 			goto failed;
1249 		}
1250 
1251 		if (!filepage) {
1252 			spin_unlock(&info->lock);
1253 			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1254 						    info,
1255 						    idx);
1256 			if (!filepage) {
1257 				shmem_unacct_blocks(info->flags, 1);
1258 				shmem_free_blocks(inode, 1);
1259 				error = -ENOMEM;
1260 				goto failed;
1261 			}
1262 
1263 			spin_lock(&info->lock);
1264 			entry = shmem_swp_alloc(info, idx, sgp);
1265 			if (IS_ERR(entry))
1266 				error = PTR_ERR(entry);
1267 			else {
1268 				swap = *entry;
1269 				shmem_swp_unmap(entry);
1270 			}
1271 			if (error || swap.val || 0 != add_to_page_cache_lru(
1272 					filepage, mapping, idx, GFP_ATOMIC)) {
1273 				spin_unlock(&info->lock);
1274 				page_cache_release(filepage);
1275 				shmem_unacct_blocks(info->flags, 1);
1276 				shmem_free_blocks(inode, 1);
1277 				filepage = NULL;
1278 				if (error)
1279 					goto failed;
1280 				goto repeat;
1281 			}
1282 			info->flags |= SHMEM_PAGEIN;
1283 		}
1284 
1285 		info->alloced++;
1286 		spin_unlock(&info->lock);
1287 		flush_dcache_page(filepage);
1288 		SetPageUptodate(filepage);
1289 	}
1290 done:
1291 	if (*pagep != filepage) {
1292 		unlock_page(filepage);
1293 		*pagep = filepage;
1294 	}
1295 	return 0;
1296 
1297 failed:
1298 	if (*pagep != filepage) {
1299 		unlock_page(filepage);
1300 		page_cache_release(filepage);
1301 	}
1302 	return error;
1303 }
1304 
1305 static struct page *shmem_nopage(struct vm_area_struct *vma,
1306 				 unsigned long address, int *type)
1307 {
1308 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1309 	struct page *page = NULL;
1310 	unsigned long idx;
1311 	int error;
1312 
1313 	idx = (address - vma->vm_start) >> PAGE_SHIFT;
1314 	idx += vma->vm_pgoff;
1315 	idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
1316 	if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1317 		return NOPAGE_SIGBUS;
1318 
1319 	error = shmem_getpage(inode, idx, &page, SGP_CACHE, type);
1320 	if (error)
1321 		return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
1322 
1323 	mark_page_accessed(page);
1324 	return page;
1325 }
1326 
1327 static int shmem_populate(struct vm_area_struct *vma,
1328 	unsigned long addr, unsigned long len,
1329 	pgprot_t prot, unsigned long pgoff, int nonblock)
1330 {
1331 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1332 	struct mm_struct *mm = vma->vm_mm;
1333 	enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE;
1334 	unsigned long size;
1335 
1336 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1337 	if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size)
1338 		return -EINVAL;
1339 
1340 	while ((long) len > 0) {
1341 		struct page *page = NULL;
1342 		int err;
1343 		/*
1344 		 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1345 		 */
1346 		err = shmem_getpage(inode, pgoff, &page, sgp, NULL);
1347 		if (err)
1348 			return err;
1349 		/* Page may still be null, but only if nonblock was set. */
1350 		if (page) {
1351 			mark_page_accessed(page);
1352 			err = install_page(mm, vma, addr, page, prot);
1353 			if (err) {
1354 				page_cache_release(page);
1355 				return err;
1356 			}
1357 		} else if (vma->vm_flags & VM_NONLINEAR) {
1358 			/* No page was found just because we can't read it in
1359 			 * now (being here implies nonblock != 0), but the page
1360 			 * may exist, so set the PTE to fault it in later. */
1361     			err = install_file_pte(mm, vma, addr, pgoff, prot);
1362 			if (err)
1363 	    			return err;
1364 		}
1365 
1366 		len -= PAGE_SIZE;
1367 		addr += PAGE_SIZE;
1368 		pgoff++;
1369 	}
1370 	return 0;
1371 }
1372 
1373 #ifdef CONFIG_NUMA
1374 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1375 {
1376 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1377 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1378 }
1379 
1380 struct mempolicy *
1381 shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1382 {
1383 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1384 	unsigned long idx;
1385 
1386 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1387 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1388 }
1389 #endif
1390 
1391 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1392 {
1393 	struct inode *inode = file->f_path.dentry->d_inode;
1394 	struct shmem_inode_info *info = SHMEM_I(inode);
1395 	int retval = -ENOMEM;
1396 
1397 	spin_lock(&info->lock);
1398 	if (lock && !(info->flags & VM_LOCKED)) {
1399 		if (!user_shm_lock(inode->i_size, user))
1400 			goto out_nomem;
1401 		info->flags |= VM_LOCKED;
1402 	}
1403 	if (!lock && (info->flags & VM_LOCKED) && user) {
1404 		user_shm_unlock(inode->i_size, user);
1405 		info->flags &= ~VM_LOCKED;
1406 	}
1407 	retval = 0;
1408 out_nomem:
1409 	spin_unlock(&info->lock);
1410 	return retval;
1411 }
1412 
1413 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1414 {
1415 	file_accessed(file);
1416 	vma->vm_ops = &shmem_vm_ops;
1417 	return 0;
1418 }
1419 
1420 static struct inode *
1421 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1422 {
1423 	struct inode *inode;
1424 	struct shmem_inode_info *info;
1425 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1426 
1427 	if (sbinfo->max_inodes) {
1428 		spin_lock(&sbinfo->stat_lock);
1429 		if (!sbinfo->free_inodes) {
1430 			spin_unlock(&sbinfo->stat_lock);
1431 			return NULL;
1432 		}
1433 		sbinfo->free_inodes--;
1434 		spin_unlock(&sbinfo->stat_lock);
1435 	}
1436 
1437 	inode = new_inode(sb);
1438 	if (inode) {
1439 		inode->i_mode = mode;
1440 		inode->i_uid = current->fsuid;
1441 		inode->i_gid = current->fsgid;
1442 		inode->i_blocks = 0;
1443 		inode->i_mapping->a_ops = &shmem_aops;
1444 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1445 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1446 		inode->i_generation = get_seconds();
1447 		info = SHMEM_I(inode);
1448 		memset(info, 0, (char *)inode - (char *)info);
1449 		spin_lock_init(&info->lock);
1450 		INIT_LIST_HEAD(&info->swaplist);
1451 
1452 		switch (mode & S_IFMT) {
1453 		default:
1454 			inode->i_op = &shmem_special_inode_operations;
1455 			init_special_inode(inode, mode, dev);
1456 			break;
1457 		case S_IFREG:
1458 			inode->i_op = &shmem_inode_operations;
1459 			inode->i_fop = &shmem_file_operations;
1460 			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1461 							&sbinfo->policy_nodes);
1462 			break;
1463 		case S_IFDIR:
1464 			inc_nlink(inode);
1465 			/* Some things misbehave if size == 0 on a directory */
1466 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1467 			inode->i_op = &shmem_dir_inode_operations;
1468 			inode->i_fop = &simple_dir_operations;
1469 			break;
1470 		case S_IFLNK:
1471 			/*
1472 			 * Must not load anything in the rbtree,
1473 			 * mpol_free_shared_policy will not be called.
1474 			 */
1475 			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1476 						NULL);
1477 			break;
1478 		}
1479 	} else if (sbinfo->max_inodes) {
1480 		spin_lock(&sbinfo->stat_lock);
1481 		sbinfo->free_inodes++;
1482 		spin_unlock(&sbinfo->stat_lock);
1483 	}
1484 	return inode;
1485 }
1486 
1487 #ifdef CONFIG_TMPFS
1488 static const struct inode_operations shmem_symlink_inode_operations;
1489 static const struct inode_operations shmem_symlink_inline_operations;
1490 
1491 /*
1492  * Normally tmpfs avoids the use of shmem_readpage and shmem_prepare_write;
1493  * but providing them allows a tmpfs file to be used for splice, sendfile, and
1494  * below the loop driver, in the generic fashion that many filesystems support.
1495  */
1496 static int shmem_readpage(struct file *file, struct page *page)
1497 {
1498 	struct inode *inode = page->mapping->host;
1499 	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1500 	unlock_page(page);
1501 	return error;
1502 }
1503 
1504 static int
1505 shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1506 {
1507 	struct inode *inode = page->mapping->host;
1508 	return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1509 }
1510 
1511 static ssize_t
1512 shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1513 {
1514 	struct inode	*inode = file->f_path.dentry->d_inode;
1515 	loff_t		pos;
1516 	unsigned long	written;
1517 	ssize_t		err;
1518 
1519 	if ((ssize_t) count < 0)
1520 		return -EINVAL;
1521 
1522 	if (!access_ok(VERIFY_READ, buf, count))
1523 		return -EFAULT;
1524 
1525 	mutex_lock(&inode->i_mutex);
1526 
1527 	pos = *ppos;
1528 	written = 0;
1529 
1530 	err = generic_write_checks(file, &pos, &count, 0);
1531 	if (err || !count)
1532 		goto out;
1533 
1534 	err = remove_suid(file->f_path.dentry);
1535 	if (err)
1536 		goto out;
1537 
1538 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1539 
1540 	do {
1541 		struct page *page = NULL;
1542 		unsigned long bytes, index, offset;
1543 		char *kaddr;
1544 		int left;
1545 
1546 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1547 		index = pos >> PAGE_CACHE_SHIFT;
1548 		bytes = PAGE_CACHE_SIZE - offset;
1549 		if (bytes > count)
1550 			bytes = count;
1551 
1552 		/*
1553 		 * We don't hold page lock across copy from user -
1554 		 * what would it guard against? - so no deadlock here.
1555 		 * But it still may be a good idea to prefault below.
1556 		 */
1557 
1558 		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1559 		if (err)
1560 			break;
1561 
1562 		left = bytes;
1563 		if (PageHighMem(page)) {
1564 			volatile unsigned char dummy;
1565 			__get_user(dummy, buf);
1566 			__get_user(dummy, buf + bytes - 1);
1567 
1568 			kaddr = kmap_atomic(page, KM_USER0);
1569 			left = __copy_from_user_inatomic(kaddr + offset,
1570 							buf, bytes);
1571 			kunmap_atomic(kaddr, KM_USER0);
1572 		}
1573 		if (left) {
1574 			kaddr = kmap(page);
1575 			left = __copy_from_user(kaddr + offset, buf, bytes);
1576 			kunmap(page);
1577 		}
1578 
1579 		written += bytes;
1580 		count -= bytes;
1581 		pos += bytes;
1582 		buf += bytes;
1583 		if (pos > inode->i_size)
1584 			i_size_write(inode, pos);
1585 
1586 		flush_dcache_page(page);
1587 		set_page_dirty(page);
1588 		mark_page_accessed(page);
1589 		page_cache_release(page);
1590 
1591 		if (left) {
1592 			pos -= left;
1593 			written -= left;
1594 			err = -EFAULT;
1595 			break;
1596 		}
1597 
1598 		/*
1599 		 * Our dirty pages are not counted in nr_dirty,
1600 		 * and we do not attempt to balance dirty pages.
1601 		 */
1602 
1603 		cond_resched();
1604 	} while (count);
1605 
1606 	*ppos = pos;
1607 	if (written)
1608 		err = written;
1609 out:
1610 	mutex_unlock(&inode->i_mutex);
1611 	return err;
1612 }
1613 
1614 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1615 {
1616 	struct inode *inode = filp->f_path.dentry->d_inode;
1617 	struct address_space *mapping = inode->i_mapping;
1618 	unsigned long index, offset;
1619 
1620 	index = *ppos >> PAGE_CACHE_SHIFT;
1621 	offset = *ppos & ~PAGE_CACHE_MASK;
1622 
1623 	for (;;) {
1624 		struct page *page = NULL;
1625 		unsigned long end_index, nr, ret;
1626 		loff_t i_size = i_size_read(inode);
1627 
1628 		end_index = i_size >> PAGE_CACHE_SHIFT;
1629 		if (index > end_index)
1630 			break;
1631 		if (index == end_index) {
1632 			nr = i_size & ~PAGE_CACHE_MASK;
1633 			if (nr <= offset)
1634 				break;
1635 		}
1636 
1637 		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1638 		if (desc->error) {
1639 			if (desc->error == -EINVAL)
1640 				desc->error = 0;
1641 			break;
1642 		}
1643 
1644 		/*
1645 		 * We must evaluate after, since reads (unlike writes)
1646 		 * are called without i_mutex protection against truncate
1647 		 */
1648 		nr = PAGE_CACHE_SIZE;
1649 		i_size = i_size_read(inode);
1650 		end_index = i_size >> PAGE_CACHE_SHIFT;
1651 		if (index == end_index) {
1652 			nr = i_size & ~PAGE_CACHE_MASK;
1653 			if (nr <= offset) {
1654 				if (page)
1655 					page_cache_release(page);
1656 				break;
1657 			}
1658 		}
1659 		nr -= offset;
1660 
1661 		if (page) {
1662 			/*
1663 			 * If users can be writing to this page using arbitrary
1664 			 * virtual addresses, take care about potential aliasing
1665 			 * before reading the page on the kernel side.
1666 			 */
1667 			if (mapping_writably_mapped(mapping))
1668 				flush_dcache_page(page);
1669 			/*
1670 			 * Mark the page accessed if we read the beginning.
1671 			 */
1672 			if (!offset)
1673 				mark_page_accessed(page);
1674 		} else {
1675 			page = ZERO_PAGE(0);
1676 			page_cache_get(page);
1677 		}
1678 
1679 		/*
1680 		 * Ok, we have the page, and it's up-to-date, so
1681 		 * now we can copy it to user space...
1682 		 *
1683 		 * The actor routine returns how many bytes were actually used..
1684 		 * NOTE! This may not be the same as how much of a user buffer
1685 		 * we filled up (we may be padding etc), so we can only update
1686 		 * "pos" here (the actor routine has to update the user buffer
1687 		 * pointers and the remaining count).
1688 		 */
1689 		ret = actor(desc, page, offset, nr);
1690 		offset += ret;
1691 		index += offset >> PAGE_CACHE_SHIFT;
1692 		offset &= ~PAGE_CACHE_MASK;
1693 
1694 		page_cache_release(page);
1695 		if (ret != nr || !desc->count)
1696 			break;
1697 
1698 		cond_resched();
1699 	}
1700 
1701 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1702 	file_accessed(filp);
1703 }
1704 
1705 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1706 {
1707 	read_descriptor_t desc;
1708 
1709 	if ((ssize_t) count < 0)
1710 		return -EINVAL;
1711 	if (!access_ok(VERIFY_WRITE, buf, count))
1712 		return -EFAULT;
1713 	if (!count)
1714 		return 0;
1715 
1716 	desc.written = 0;
1717 	desc.count = count;
1718 	desc.arg.buf = buf;
1719 	desc.error = 0;
1720 
1721 	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1722 	if (desc.written)
1723 		return desc.written;
1724 	return desc.error;
1725 }
1726 
1727 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1728 {
1729 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1730 
1731 	buf->f_type = TMPFS_MAGIC;
1732 	buf->f_bsize = PAGE_CACHE_SIZE;
1733 	buf->f_namelen = NAME_MAX;
1734 	spin_lock(&sbinfo->stat_lock);
1735 	if (sbinfo->max_blocks) {
1736 		buf->f_blocks = sbinfo->max_blocks;
1737 		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1738 	}
1739 	if (sbinfo->max_inodes) {
1740 		buf->f_files = sbinfo->max_inodes;
1741 		buf->f_ffree = sbinfo->free_inodes;
1742 	}
1743 	/* else leave those fields 0 like simple_statfs */
1744 	spin_unlock(&sbinfo->stat_lock);
1745 	return 0;
1746 }
1747 
1748 /*
1749  * File creation. Allocate an inode, and we're done..
1750  */
1751 static int
1752 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1753 {
1754 	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1755 	int error = -ENOSPC;
1756 
1757 	if (inode) {
1758 		error = security_inode_init_security(inode, dir, NULL, NULL,
1759 						     NULL);
1760 		if (error) {
1761 			if (error != -EOPNOTSUPP) {
1762 				iput(inode);
1763 				return error;
1764 			}
1765 		}
1766 		error = shmem_acl_init(inode, dir);
1767 		if (error) {
1768 			iput(inode);
1769 			return error;
1770 		}
1771 		if (dir->i_mode & S_ISGID) {
1772 			inode->i_gid = dir->i_gid;
1773 			if (S_ISDIR(mode))
1774 				inode->i_mode |= S_ISGID;
1775 		}
1776 		dir->i_size += BOGO_DIRENT_SIZE;
1777 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1778 		d_instantiate(dentry, inode);
1779 		dget(dentry); /* Extra count - pin the dentry in core */
1780 	}
1781 	return error;
1782 }
1783 
1784 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1785 {
1786 	int error;
1787 
1788 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1789 		return error;
1790 	inc_nlink(dir);
1791 	return 0;
1792 }
1793 
1794 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1795 		struct nameidata *nd)
1796 {
1797 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1798 }
1799 
1800 /*
1801  * Link a file..
1802  */
1803 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1804 {
1805 	struct inode *inode = old_dentry->d_inode;
1806 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1807 
1808 	/*
1809 	 * No ordinary (disk based) filesystem counts links as inodes;
1810 	 * but each new link needs a new dentry, pinning lowmem, and
1811 	 * tmpfs dentries cannot be pruned until they are unlinked.
1812 	 */
1813 	if (sbinfo->max_inodes) {
1814 		spin_lock(&sbinfo->stat_lock);
1815 		if (!sbinfo->free_inodes) {
1816 			spin_unlock(&sbinfo->stat_lock);
1817 			return -ENOSPC;
1818 		}
1819 		sbinfo->free_inodes--;
1820 		spin_unlock(&sbinfo->stat_lock);
1821 	}
1822 
1823 	dir->i_size += BOGO_DIRENT_SIZE;
1824 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1825 	inc_nlink(inode);
1826 	atomic_inc(&inode->i_count);	/* New dentry reference */
1827 	dget(dentry);		/* Extra pinning count for the created dentry */
1828 	d_instantiate(dentry, inode);
1829 	return 0;
1830 }
1831 
1832 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1833 {
1834 	struct inode *inode = dentry->d_inode;
1835 
1836 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1837 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1838 		if (sbinfo->max_inodes) {
1839 			spin_lock(&sbinfo->stat_lock);
1840 			sbinfo->free_inodes++;
1841 			spin_unlock(&sbinfo->stat_lock);
1842 		}
1843 	}
1844 
1845 	dir->i_size -= BOGO_DIRENT_SIZE;
1846 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1847 	drop_nlink(inode);
1848 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1849 	return 0;
1850 }
1851 
1852 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1853 {
1854 	if (!simple_empty(dentry))
1855 		return -ENOTEMPTY;
1856 
1857 	drop_nlink(dentry->d_inode);
1858 	drop_nlink(dir);
1859 	return shmem_unlink(dir, dentry);
1860 }
1861 
1862 /*
1863  * The VFS layer already does all the dentry stuff for rename,
1864  * we just have to decrement the usage count for the target if
1865  * it exists so that the VFS layer correctly free's it when it
1866  * gets overwritten.
1867  */
1868 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1869 {
1870 	struct inode *inode = old_dentry->d_inode;
1871 	int they_are_dirs = S_ISDIR(inode->i_mode);
1872 
1873 	if (!simple_empty(new_dentry))
1874 		return -ENOTEMPTY;
1875 
1876 	if (new_dentry->d_inode) {
1877 		(void) shmem_unlink(new_dir, new_dentry);
1878 		if (they_are_dirs)
1879 			drop_nlink(old_dir);
1880 	} else if (they_are_dirs) {
1881 		drop_nlink(old_dir);
1882 		inc_nlink(new_dir);
1883 	}
1884 
1885 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1886 	new_dir->i_size += BOGO_DIRENT_SIZE;
1887 	old_dir->i_ctime = old_dir->i_mtime =
1888 	new_dir->i_ctime = new_dir->i_mtime =
1889 	inode->i_ctime = CURRENT_TIME;
1890 	return 0;
1891 }
1892 
1893 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1894 {
1895 	int error;
1896 	int len;
1897 	struct inode *inode;
1898 	struct page *page = NULL;
1899 	char *kaddr;
1900 	struct shmem_inode_info *info;
1901 
1902 	len = strlen(symname) + 1;
1903 	if (len > PAGE_CACHE_SIZE)
1904 		return -ENAMETOOLONG;
1905 
1906 	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1907 	if (!inode)
1908 		return -ENOSPC;
1909 
1910 	error = security_inode_init_security(inode, dir, NULL, NULL,
1911 					     NULL);
1912 	if (error) {
1913 		if (error != -EOPNOTSUPP) {
1914 			iput(inode);
1915 			return error;
1916 		}
1917 		error = 0;
1918 	}
1919 
1920 	info = SHMEM_I(inode);
1921 	inode->i_size = len-1;
1922 	if (len <= (char *)inode - (char *)info) {
1923 		/* do it inline */
1924 		memcpy(info, symname, len);
1925 		inode->i_op = &shmem_symlink_inline_operations;
1926 	} else {
1927 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1928 		if (error) {
1929 			iput(inode);
1930 			return error;
1931 		}
1932 		inode->i_op = &shmem_symlink_inode_operations;
1933 		kaddr = kmap_atomic(page, KM_USER0);
1934 		memcpy(kaddr, symname, len);
1935 		kunmap_atomic(kaddr, KM_USER0);
1936 		set_page_dirty(page);
1937 		page_cache_release(page);
1938 	}
1939 	if (dir->i_mode & S_ISGID)
1940 		inode->i_gid = dir->i_gid;
1941 	dir->i_size += BOGO_DIRENT_SIZE;
1942 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1943 	d_instantiate(dentry, inode);
1944 	dget(dentry);
1945 	return 0;
1946 }
1947 
1948 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1949 {
1950 	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1951 	return NULL;
1952 }
1953 
1954 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1955 {
1956 	struct page *page = NULL;
1957 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1958 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1959 	return page;
1960 }
1961 
1962 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1963 {
1964 	if (!IS_ERR(nd_get_link(nd))) {
1965 		struct page *page = cookie;
1966 		kunmap(page);
1967 		mark_page_accessed(page);
1968 		page_cache_release(page);
1969 	}
1970 }
1971 
1972 static const struct inode_operations shmem_symlink_inline_operations = {
1973 	.readlink	= generic_readlink,
1974 	.follow_link	= shmem_follow_link_inline,
1975 };
1976 
1977 static const struct inode_operations shmem_symlink_inode_operations = {
1978 	.truncate	= shmem_truncate,
1979 	.readlink	= generic_readlink,
1980 	.follow_link	= shmem_follow_link,
1981 	.put_link	= shmem_put_link,
1982 };
1983 
1984 #ifdef CONFIG_TMPFS_POSIX_ACL
1985 /**
1986  * Superblocks without xattr inode operations will get security.* xattr
1987  * support from the VFS "for free". As soon as we have any other xattrs
1988  * like ACLs, we also need to implement the security.* handlers at
1989  * filesystem level, though.
1990  */
1991 
1992 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1993 					size_t list_len, const char *name,
1994 					size_t name_len)
1995 {
1996 	return security_inode_listsecurity(inode, list, list_len);
1997 }
1998 
1999 static int shmem_xattr_security_get(struct inode *inode, const char *name,
2000 				    void *buffer, size_t size)
2001 {
2002 	if (strcmp(name, "") == 0)
2003 		return -EINVAL;
2004 	return security_inode_getsecurity(inode, name, buffer, size,
2005 					  -EOPNOTSUPP);
2006 }
2007 
2008 static int shmem_xattr_security_set(struct inode *inode, const char *name,
2009 				    const void *value, size_t size, int flags)
2010 {
2011 	if (strcmp(name, "") == 0)
2012 		return -EINVAL;
2013 	return security_inode_setsecurity(inode, name, value, size, flags);
2014 }
2015 
2016 static struct xattr_handler shmem_xattr_security_handler = {
2017 	.prefix = XATTR_SECURITY_PREFIX,
2018 	.list   = shmem_xattr_security_list,
2019 	.get    = shmem_xattr_security_get,
2020 	.set    = shmem_xattr_security_set,
2021 };
2022 
2023 static struct xattr_handler *shmem_xattr_handlers[] = {
2024 	&shmem_xattr_acl_access_handler,
2025 	&shmem_xattr_acl_default_handler,
2026 	&shmem_xattr_security_handler,
2027 	NULL
2028 };
2029 #endif
2030 
2031 static struct dentry *shmem_get_parent(struct dentry *child)
2032 {
2033 	return ERR_PTR(-ESTALE);
2034 }
2035 
2036 static int shmem_match(struct inode *ino, void *vfh)
2037 {
2038 	__u32 *fh = vfh;
2039 	__u64 inum = fh[2];
2040 	inum = (inum << 32) | fh[1];
2041 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2042 }
2043 
2044 static struct dentry *shmem_get_dentry(struct super_block *sb, void *vfh)
2045 {
2046 	struct dentry *de = NULL;
2047 	struct inode *inode;
2048 	__u32 *fh = vfh;
2049 	__u64 inum = fh[2];
2050 	inum = (inum << 32) | fh[1];
2051 
2052 	inode = ilookup5(sb, (unsigned long)(inum+fh[0]), shmem_match, vfh);
2053 	if (inode) {
2054 		de = d_find_alias(inode);
2055 		iput(inode);
2056 	}
2057 
2058 	return de? de: ERR_PTR(-ESTALE);
2059 }
2060 
2061 static struct dentry *shmem_decode_fh(struct super_block *sb, __u32 *fh,
2062 		int len, int type,
2063 		int (*acceptable)(void *context, struct dentry *de),
2064 		void *context)
2065 {
2066 	if (len < 3)
2067 		return ERR_PTR(-ESTALE);
2068 
2069 	return sb->s_export_op->find_exported_dentry(sb, fh, NULL, acceptable,
2070 							context);
2071 }
2072 
2073 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2074 				int connectable)
2075 {
2076 	struct inode *inode = dentry->d_inode;
2077 
2078 	if (*len < 3)
2079 		return 255;
2080 
2081 	if (hlist_unhashed(&inode->i_hash)) {
2082 		/* Unfortunately insert_inode_hash is not idempotent,
2083 		 * so as we hash inodes here rather than at creation
2084 		 * time, we need a lock to ensure we only try
2085 		 * to do it once
2086 		 */
2087 		static DEFINE_SPINLOCK(lock);
2088 		spin_lock(&lock);
2089 		if (hlist_unhashed(&inode->i_hash))
2090 			__insert_inode_hash(inode,
2091 					    inode->i_ino + inode->i_generation);
2092 		spin_unlock(&lock);
2093 	}
2094 
2095 	fh[0] = inode->i_generation;
2096 	fh[1] = inode->i_ino;
2097 	fh[2] = ((__u64)inode->i_ino) >> 32;
2098 
2099 	*len = 3;
2100 	return 1;
2101 }
2102 
2103 static struct export_operations shmem_export_ops = {
2104 	.get_parent     = shmem_get_parent,
2105 	.get_dentry     = shmem_get_dentry,
2106 	.encode_fh      = shmem_encode_fh,
2107 	.decode_fh      = shmem_decode_fh,
2108 };
2109 
2110 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2111 	gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2112 	int *policy, nodemask_t *policy_nodes)
2113 {
2114 	char *this_char, *value, *rest;
2115 
2116 	while (options != NULL) {
2117 		this_char = options;
2118 		for (;;) {
2119 			/*
2120 			 * NUL-terminate this option: unfortunately,
2121 			 * mount options form a comma-separated list,
2122 			 * but mpol's nodelist may also contain commas.
2123 			 */
2124 			options = strchr(options, ',');
2125 			if (options == NULL)
2126 				break;
2127 			options++;
2128 			if (!isdigit(*options)) {
2129 				options[-1] = '\0';
2130 				break;
2131 			}
2132 		}
2133 		if (!*this_char)
2134 			continue;
2135 		if ((value = strchr(this_char,'=')) != NULL) {
2136 			*value++ = 0;
2137 		} else {
2138 			printk(KERN_ERR
2139 			    "tmpfs: No value for mount option '%s'\n",
2140 			    this_char);
2141 			return 1;
2142 		}
2143 
2144 		if (!strcmp(this_char,"size")) {
2145 			unsigned long long size;
2146 			size = memparse(value,&rest);
2147 			if (*rest == '%') {
2148 				size <<= PAGE_SHIFT;
2149 				size *= totalram_pages;
2150 				do_div(size, 100);
2151 				rest++;
2152 			}
2153 			if (*rest)
2154 				goto bad_val;
2155 			*blocks = size >> PAGE_CACHE_SHIFT;
2156 		} else if (!strcmp(this_char,"nr_blocks")) {
2157 			*blocks = memparse(value,&rest);
2158 			if (*rest)
2159 				goto bad_val;
2160 		} else if (!strcmp(this_char,"nr_inodes")) {
2161 			*inodes = memparse(value,&rest);
2162 			if (*rest)
2163 				goto bad_val;
2164 		} else if (!strcmp(this_char,"mode")) {
2165 			if (!mode)
2166 				continue;
2167 			*mode = simple_strtoul(value,&rest,8);
2168 			if (*rest)
2169 				goto bad_val;
2170 		} else if (!strcmp(this_char,"uid")) {
2171 			if (!uid)
2172 				continue;
2173 			*uid = simple_strtoul(value,&rest,0);
2174 			if (*rest)
2175 				goto bad_val;
2176 		} else if (!strcmp(this_char,"gid")) {
2177 			if (!gid)
2178 				continue;
2179 			*gid = simple_strtoul(value,&rest,0);
2180 			if (*rest)
2181 				goto bad_val;
2182 		} else if (!strcmp(this_char,"mpol")) {
2183 			if (shmem_parse_mpol(value,policy,policy_nodes))
2184 				goto bad_val;
2185 		} else {
2186 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2187 			       this_char);
2188 			return 1;
2189 		}
2190 	}
2191 	return 0;
2192 
2193 bad_val:
2194 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2195 	       value, this_char);
2196 	return 1;
2197 
2198 }
2199 
2200 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2201 {
2202 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2203 	unsigned long max_blocks = sbinfo->max_blocks;
2204 	unsigned long max_inodes = sbinfo->max_inodes;
2205 	int policy = sbinfo->policy;
2206 	nodemask_t policy_nodes = sbinfo->policy_nodes;
2207 	unsigned long blocks;
2208 	unsigned long inodes;
2209 	int error = -EINVAL;
2210 
2211 	if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2212 				&max_inodes, &policy, &policy_nodes))
2213 		return error;
2214 
2215 	spin_lock(&sbinfo->stat_lock);
2216 	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2217 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2218 	if (max_blocks < blocks)
2219 		goto out;
2220 	if (max_inodes < inodes)
2221 		goto out;
2222 	/*
2223 	 * Those tests also disallow limited->unlimited while any are in
2224 	 * use, so i_blocks will always be zero when max_blocks is zero;
2225 	 * but we must separately disallow unlimited->limited, because
2226 	 * in that case we have no record of how much is already in use.
2227 	 */
2228 	if (max_blocks && !sbinfo->max_blocks)
2229 		goto out;
2230 	if (max_inodes && !sbinfo->max_inodes)
2231 		goto out;
2232 
2233 	error = 0;
2234 	sbinfo->max_blocks  = max_blocks;
2235 	sbinfo->free_blocks = max_blocks - blocks;
2236 	sbinfo->max_inodes  = max_inodes;
2237 	sbinfo->free_inodes = max_inodes - inodes;
2238 	sbinfo->policy = policy;
2239 	sbinfo->policy_nodes = policy_nodes;
2240 out:
2241 	spin_unlock(&sbinfo->stat_lock);
2242 	return error;
2243 }
2244 #endif
2245 
2246 static void shmem_put_super(struct super_block *sb)
2247 {
2248 	kfree(sb->s_fs_info);
2249 	sb->s_fs_info = NULL;
2250 }
2251 
2252 static int shmem_fill_super(struct super_block *sb,
2253 			    void *data, int silent)
2254 {
2255 	struct inode *inode;
2256 	struct dentry *root;
2257 	int mode   = S_IRWXUGO | S_ISVTX;
2258 	uid_t uid = current->fsuid;
2259 	gid_t gid = current->fsgid;
2260 	int err = -ENOMEM;
2261 	struct shmem_sb_info *sbinfo;
2262 	unsigned long blocks = 0;
2263 	unsigned long inodes = 0;
2264 	int policy = MPOL_DEFAULT;
2265 	nodemask_t policy_nodes = node_online_map;
2266 
2267 #ifdef CONFIG_TMPFS
2268 	/*
2269 	 * Per default we only allow half of the physical ram per
2270 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2271 	 * but the internal instance is left unlimited.
2272 	 */
2273 	if (!(sb->s_flags & MS_NOUSER)) {
2274 		blocks = totalram_pages / 2;
2275 		inodes = totalram_pages - totalhigh_pages;
2276 		if (inodes > blocks)
2277 			inodes = blocks;
2278 		if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2279 					&inodes, &policy, &policy_nodes))
2280 			return -EINVAL;
2281 	}
2282 	sb->s_export_op = &shmem_export_ops;
2283 #else
2284 	sb->s_flags |= MS_NOUSER;
2285 #endif
2286 
2287 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2288 	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2289 				L1_CACHE_BYTES), GFP_KERNEL);
2290 	if (!sbinfo)
2291 		return -ENOMEM;
2292 
2293 	spin_lock_init(&sbinfo->stat_lock);
2294 	sbinfo->max_blocks = blocks;
2295 	sbinfo->free_blocks = blocks;
2296 	sbinfo->max_inodes = inodes;
2297 	sbinfo->free_inodes = inodes;
2298 	sbinfo->policy = policy;
2299 	sbinfo->policy_nodes = policy_nodes;
2300 
2301 	sb->s_fs_info = sbinfo;
2302 	sb->s_maxbytes = SHMEM_MAX_BYTES;
2303 	sb->s_blocksize = PAGE_CACHE_SIZE;
2304 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2305 	sb->s_magic = TMPFS_MAGIC;
2306 	sb->s_op = &shmem_ops;
2307 	sb->s_time_gran = 1;
2308 #ifdef CONFIG_TMPFS_POSIX_ACL
2309 	sb->s_xattr = shmem_xattr_handlers;
2310 	sb->s_flags |= MS_POSIXACL;
2311 #endif
2312 
2313 	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2314 	if (!inode)
2315 		goto failed;
2316 	inode->i_uid = uid;
2317 	inode->i_gid = gid;
2318 	root = d_alloc_root(inode);
2319 	if (!root)
2320 		goto failed_iput;
2321 	sb->s_root = root;
2322 	return 0;
2323 
2324 failed_iput:
2325 	iput(inode);
2326 failed:
2327 	shmem_put_super(sb);
2328 	return err;
2329 }
2330 
2331 static struct kmem_cache *shmem_inode_cachep;
2332 
2333 static struct inode *shmem_alloc_inode(struct super_block *sb)
2334 {
2335 	struct shmem_inode_info *p;
2336 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2337 	if (!p)
2338 		return NULL;
2339 	return &p->vfs_inode;
2340 }
2341 
2342 static void shmem_destroy_inode(struct inode *inode)
2343 {
2344 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2345 		/* only struct inode is valid if it's an inline symlink */
2346 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2347 	}
2348 	shmem_acl_destroy_inode(inode);
2349 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2350 }
2351 
2352 static void init_once(void *foo, struct kmem_cache *cachep,
2353 		      unsigned long flags)
2354 {
2355 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2356 
2357 	inode_init_once(&p->vfs_inode);
2358 #ifdef CONFIG_TMPFS_POSIX_ACL
2359 	p->i_acl = NULL;
2360 	p->i_default_acl = NULL;
2361 #endif
2362 }
2363 
2364 static int init_inodecache(void)
2365 {
2366 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2367 				sizeof(struct shmem_inode_info),
2368 				0, 0, init_once, NULL);
2369 	if (shmem_inode_cachep == NULL)
2370 		return -ENOMEM;
2371 	return 0;
2372 }
2373 
2374 static void destroy_inodecache(void)
2375 {
2376 	kmem_cache_destroy(shmem_inode_cachep);
2377 }
2378 
2379 static const struct address_space_operations shmem_aops = {
2380 	.writepage	= shmem_writepage,
2381 	.set_page_dirty	= __set_page_dirty_no_writeback,
2382 #ifdef CONFIG_TMPFS
2383 	.readpage	= shmem_readpage,
2384 	.prepare_write	= shmem_prepare_write,
2385 	.commit_write	= simple_commit_write,
2386 #endif
2387 	.migratepage	= migrate_page,
2388 };
2389 
2390 static const struct file_operations shmem_file_operations = {
2391 	.mmap		= shmem_mmap,
2392 #ifdef CONFIG_TMPFS
2393 	.llseek		= generic_file_llseek,
2394 	.read		= shmem_file_read,
2395 	.write		= shmem_file_write,
2396 	.fsync		= simple_sync_file,
2397 	.splice_read	= generic_file_splice_read,
2398 	.splice_write	= generic_file_splice_write,
2399 #endif
2400 };
2401 
2402 static const struct inode_operations shmem_inode_operations = {
2403 	.truncate	= shmem_truncate,
2404 	.setattr	= shmem_notify_change,
2405 	.truncate_range	= shmem_truncate_range,
2406 #ifdef CONFIG_TMPFS_POSIX_ACL
2407 	.setxattr	= generic_setxattr,
2408 	.getxattr	= generic_getxattr,
2409 	.listxattr	= generic_listxattr,
2410 	.removexattr	= generic_removexattr,
2411 	.permission	= shmem_permission,
2412 #endif
2413 
2414 };
2415 
2416 static const struct inode_operations shmem_dir_inode_operations = {
2417 #ifdef CONFIG_TMPFS
2418 	.create		= shmem_create,
2419 	.lookup		= simple_lookup,
2420 	.link		= shmem_link,
2421 	.unlink		= shmem_unlink,
2422 	.symlink	= shmem_symlink,
2423 	.mkdir		= shmem_mkdir,
2424 	.rmdir		= shmem_rmdir,
2425 	.mknod		= shmem_mknod,
2426 	.rename		= shmem_rename,
2427 #endif
2428 #ifdef CONFIG_TMPFS_POSIX_ACL
2429 	.setattr	= shmem_notify_change,
2430 	.setxattr	= generic_setxattr,
2431 	.getxattr	= generic_getxattr,
2432 	.listxattr	= generic_listxattr,
2433 	.removexattr	= generic_removexattr,
2434 	.permission	= shmem_permission,
2435 #endif
2436 };
2437 
2438 static const struct inode_operations shmem_special_inode_operations = {
2439 #ifdef CONFIG_TMPFS_POSIX_ACL
2440 	.setattr	= shmem_notify_change,
2441 	.setxattr	= generic_setxattr,
2442 	.getxattr	= generic_getxattr,
2443 	.listxattr	= generic_listxattr,
2444 	.removexattr	= generic_removexattr,
2445 	.permission	= shmem_permission,
2446 #endif
2447 };
2448 
2449 static const struct super_operations shmem_ops = {
2450 	.alloc_inode	= shmem_alloc_inode,
2451 	.destroy_inode	= shmem_destroy_inode,
2452 #ifdef CONFIG_TMPFS
2453 	.statfs		= shmem_statfs,
2454 	.remount_fs	= shmem_remount_fs,
2455 #endif
2456 	.delete_inode	= shmem_delete_inode,
2457 	.drop_inode	= generic_delete_inode,
2458 	.put_super	= shmem_put_super,
2459 };
2460 
2461 static struct vm_operations_struct shmem_vm_ops = {
2462 	.nopage		= shmem_nopage,
2463 	.populate	= shmem_populate,
2464 #ifdef CONFIG_NUMA
2465 	.set_policy     = shmem_set_policy,
2466 	.get_policy     = shmem_get_policy,
2467 #endif
2468 };
2469 
2470 
2471 static int shmem_get_sb(struct file_system_type *fs_type,
2472 	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2473 {
2474 	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2475 }
2476 
2477 static struct file_system_type tmpfs_fs_type = {
2478 	.owner		= THIS_MODULE,
2479 	.name		= "tmpfs",
2480 	.get_sb		= shmem_get_sb,
2481 	.kill_sb	= kill_litter_super,
2482 };
2483 static struct vfsmount *shm_mnt;
2484 
2485 static int __init init_tmpfs(void)
2486 {
2487 	int error;
2488 
2489 	error = init_inodecache();
2490 	if (error)
2491 		goto out3;
2492 
2493 	error = register_filesystem(&tmpfs_fs_type);
2494 	if (error) {
2495 		printk(KERN_ERR "Could not register tmpfs\n");
2496 		goto out2;
2497 	}
2498 
2499 	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2500 				tmpfs_fs_type.name, NULL);
2501 	if (IS_ERR(shm_mnt)) {
2502 		error = PTR_ERR(shm_mnt);
2503 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2504 		goto out1;
2505 	}
2506 	return 0;
2507 
2508 out1:
2509 	unregister_filesystem(&tmpfs_fs_type);
2510 out2:
2511 	destroy_inodecache();
2512 out3:
2513 	shm_mnt = ERR_PTR(error);
2514 	return error;
2515 }
2516 module_init(init_tmpfs)
2517 
2518 /*
2519  * shmem_file_setup - get an unlinked file living in tmpfs
2520  *
2521  * @name: name for dentry (to be seen in /proc/<pid>/maps
2522  * @size: size to be set for the file
2523  *
2524  */
2525 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2526 {
2527 	int error;
2528 	struct file *file;
2529 	struct inode *inode;
2530 	struct dentry *dentry, *root;
2531 	struct qstr this;
2532 
2533 	if (IS_ERR(shm_mnt))
2534 		return (void *)shm_mnt;
2535 
2536 	if (size < 0 || size > SHMEM_MAX_BYTES)
2537 		return ERR_PTR(-EINVAL);
2538 
2539 	if (shmem_acct_size(flags, size))
2540 		return ERR_PTR(-ENOMEM);
2541 
2542 	error = -ENOMEM;
2543 	this.name = name;
2544 	this.len = strlen(name);
2545 	this.hash = 0; /* will go */
2546 	root = shm_mnt->mnt_root;
2547 	dentry = d_alloc(root, &this);
2548 	if (!dentry)
2549 		goto put_memory;
2550 
2551 	error = -ENFILE;
2552 	file = get_empty_filp();
2553 	if (!file)
2554 		goto put_dentry;
2555 
2556 	error = -ENOSPC;
2557 	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2558 	if (!inode)
2559 		goto close_file;
2560 
2561 	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2562 	d_instantiate(dentry, inode);
2563 	inode->i_size = size;
2564 	inode->i_nlink = 0;	/* It is unlinked */
2565 	file->f_path.mnt = mntget(shm_mnt);
2566 	file->f_path.dentry = dentry;
2567 	file->f_mapping = inode->i_mapping;
2568 	file->f_op = &shmem_file_operations;
2569 	file->f_mode = FMODE_WRITE | FMODE_READ;
2570 	return file;
2571 
2572 close_file:
2573 	put_filp(file);
2574 put_dentry:
2575 	dput(dentry);
2576 put_memory:
2577 	shmem_unacct_size(flags, size);
2578 	return ERR_PTR(error);
2579 }
2580 
2581 /*
2582  * shmem_zero_setup - setup a shared anonymous mapping
2583  *
2584  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2585  */
2586 int shmem_zero_setup(struct vm_area_struct *vma)
2587 {
2588 	struct file *file;
2589 	loff_t size = vma->vm_end - vma->vm_start;
2590 
2591 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2592 	if (IS_ERR(file))
2593 		return PTR_ERR(file);
2594 
2595 	if (vma->vm_file)
2596 		fput(vma->vm_file);
2597 	vma->vm_file = file;
2598 	vma->vm_ops = &shmem_vm_ops;
2599 	return 0;
2600 }
2601