1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include "swap.h" 44 45 static struct vfsmount *shm_mnt __ro_after_init; 46 47 #ifdef CONFIG_SHMEM 48 /* 49 * This virtual memory filesystem is heavily based on the ramfs. It 50 * extends ramfs by the ability to use swap and honor resource limits 51 * which makes it a completely usable filesystem. 52 */ 53 54 #include <linux/xattr.h> 55 #include <linux/exportfs.h> 56 #include <linux/posix_acl.h> 57 #include <linux/posix_acl_xattr.h> 58 #include <linux/mman.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/backing-dev.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 #include <linux/quotaops.h> 82 #include <linux/rcupdate_wait.h> 83 84 #include <linux/uaccess.h> 85 86 #include "internal.h" 87 88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Pretend that one inode + its dentry occupy this much memory */ 95 #define BOGO_INODE_SIZE 1024 96 97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 98 #define SHORT_SYMLINK_LEN 128 99 100 /* 101 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 102 * inode->i_private (with i_rwsem making sure that it has only one user at 103 * a time): we would prefer not to enlarge the shmem inode just for that. 104 */ 105 struct shmem_falloc { 106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 107 pgoff_t start; /* start of range currently being fallocated */ 108 pgoff_t next; /* the next page offset to be fallocated */ 109 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 110 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 111 }; 112 113 struct shmem_options { 114 unsigned long long blocks; 115 unsigned long long inodes; 116 struct mempolicy *mpol; 117 kuid_t uid; 118 kgid_t gid; 119 umode_t mode; 120 bool full_inums; 121 int huge; 122 int seen; 123 bool noswap; 124 unsigned short quota_types; 125 struct shmem_quota_limits qlimits; 126 #define SHMEM_SEEN_BLOCKS 1 127 #define SHMEM_SEEN_INODES 2 128 #define SHMEM_SEEN_HUGE 4 129 #define SHMEM_SEEN_INUMS 8 130 #define SHMEM_SEEN_NOSWAP 16 131 #define SHMEM_SEEN_QUOTA 32 132 }; 133 134 #ifdef CONFIG_TMPFS 135 static unsigned long shmem_default_max_blocks(void) 136 { 137 return totalram_pages() / 2; 138 } 139 140 static unsigned long shmem_default_max_inodes(void) 141 { 142 unsigned long nr_pages = totalram_pages(); 143 144 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 145 ULONG_MAX / BOGO_INODE_SIZE); 146 } 147 #endif 148 149 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 150 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 151 struct mm_struct *fault_mm, vm_fault_t *fault_type); 152 153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 154 { 155 return sb->s_fs_info; 156 } 157 158 /* 159 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 160 * for shared memory and for shared anonymous (/dev/zero) mappings 161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 162 * consistent with the pre-accounting of private mappings ... 163 */ 164 static inline int shmem_acct_size(unsigned long flags, loff_t size) 165 { 166 return (flags & VM_NORESERVE) ? 167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 168 } 169 170 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 171 { 172 if (!(flags & VM_NORESERVE)) 173 vm_unacct_memory(VM_ACCT(size)); 174 } 175 176 static inline int shmem_reacct_size(unsigned long flags, 177 loff_t oldsize, loff_t newsize) 178 { 179 if (!(flags & VM_NORESERVE)) { 180 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 181 return security_vm_enough_memory_mm(current->mm, 182 VM_ACCT(newsize) - VM_ACCT(oldsize)); 183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 185 } 186 return 0; 187 } 188 189 /* 190 * ... whereas tmpfs objects are accounted incrementally as 191 * pages are allocated, in order to allow large sparse files. 192 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 194 */ 195 static inline int shmem_acct_blocks(unsigned long flags, long pages) 196 { 197 if (!(flags & VM_NORESERVE)) 198 return 0; 199 200 return security_vm_enough_memory_mm(current->mm, 201 pages * VM_ACCT(PAGE_SIZE)); 202 } 203 204 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 205 { 206 if (flags & VM_NORESERVE) 207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static int shmem_inode_acct_blocks(struct inode *inode, long pages) 211 { 212 struct shmem_inode_info *info = SHMEM_I(inode); 213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 214 int err = -ENOSPC; 215 216 if (shmem_acct_blocks(info->flags, pages)) 217 return err; 218 219 might_sleep(); /* when quotas */ 220 if (sbinfo->max_blocks) { 221 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 222 sbinfo->max_blocks, pages)) 223 goto unacct; 224 225 err = dquot_alloc_block_nodirty(inode, pages); 226 if (err) { 227 percpu_counter_sub(&sbinfo->used_blocks, pages); 228 goto unacct; 229 } 230 } else { 231 err = dquot_alloc_block_nodirty(inode, pages); 232 if (err) 233 goto unacct; 234 } 235 236 return 0; 237 238 unacct: 239 shmem_unacct_blocks(info->flags, pages); 240 return err; 241 } 242 243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 244 { 245 struct shmem_inode_info *info = SHMEM_I(inode); 246 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 247 248 might_sleep(); /* when quotas */ 249 dquot_free_block_nodirty(inode, pages); 250 251 if (sbinfo->max_blocks) 252 percpu_counter_sub(&sbinfo->used_blocks, pages); 253 shmem_unacct_blocks(info->flags, pages); 254 } 255 256 static const struct super_operations shmem_ops; 257 const struct address_space_operations shmem_aops; 258 static const struct file_operations shmem_file_operations; 259 static const struct inode_operations shmem_inode_operations; 260 static const struct inode_operations shmem_dir_inode_operations; 261 static const struct inode_operations shmem_special_inode_operations; 262 static const struct vm_operations_struct shmem_vm_ops; 263 static const struct vm_operations_struct shmem_anon_vm_ops; 264 static struct file_system_type shmem_fs_type; 265 266 bool vma_is_anon_shmem(struct vm_area_struct *vma) 267 { 268 return vma->vm_ops == &shmem_anon_vm_ops; 269 } 270 271 bool vma_is_shmem(struct vm_area_struct *vma) 272 { 273 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 274 } 275 276 static LIST_HEAD(shmem_swaplist); 277 static DEFINE_MUTEX(shmem_swaplist_mutex); 278 279 #ifdef CONFIG_TMPFS_QUOTA 280 281 static int shmem_enable_quotas(struct super_block *sb, 282 unsigned short quota_types) 283 { 284 int type, err = 0; 285 286 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 287 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 288 if (!(quota_types & (1 << type))) 289 continue; 290 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 291 DQUOT_USAGE_ENABLED | 292 DQUOT_LIMITS_ENABLED); 293 if (err) 294 goto out_err; 295 } 296 return 0; 297 298 out_err: 299 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 300 type, err); 301 for (type--; type >= 0; type--) 302 dquot_quota_off(sb, type); 303 return err; 304 } 305 306 static void shmem_disable_quotas(struct super_block *sb) 307 { 308 int type; 309 310 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 311 dquot_quota_off(sb, type); 312 } 313 314 static struct dquot **shmem_get_dquots(struct inode *inode) 315 { 316 return SHMEM_I(inode)->i_dquot; 317 } 318 #endif /* CONFIG_TMPFS_QUOTA */ 319 320 /* 321 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 322 * produces a novel ino for the newly allocated inode. 323 * 324 * It may also be called when making a hard link to permit the space needed by 325 * each dentry. However, in that case, no new inode number is needed since that 326 * internally draws from another pool of inode numbers (currently global 327 * get_next_ino()). This case is indicated by passing NULL as inop. 328 */ 329 #define SHMEM_INO_BATCH 1024 330 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 331 { 332 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 333 ino_t ino; 334 335 if (!(sb->s_flags & SB_KERNMOUNT)) { 336 raw_spin_lock(&sbinfo->stat_lock); 337 if (sbinfo->max_inodes) { 338 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 339 raw_spin_unlock(&sbinfo->stat_lock); 340 return -ENOSPC; 341 } 342 sbinfo->free_ispace -= BOGO_INODE_SIZE; 343 } 344 if (inop) { 345 ino = sbinfo->next_ino++; 346 if (unlikely(is_zero_ino(ino))) 347 ino = sbinfo->next_ino++; 348 if (unlikely(!sbinfo->full_inums && 349 ino > UINT_MAX)) { 350 /* 351 * Emulate get_next_ino uint wraparound for 352 * compatibility 353 */ 354 if (IS_ENABLED(CONFIG_64BIT)) 355 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 356 __func__, MINOR(sb->s_dev)); 357 sbinfo->next_ino = 1; 358 ino = sbinfo->next_ino++; 359 } 360 *inop = ino; 361 } 362 raw_spin_unlock(&sbinfo->stat_lock); 363 } else if (inop) { 364 /* 365 * __shmem_file_setup, one of our callers, is lock-free: it 366 * doesn't hold stat_lock in shmem_reserve_inode since 367 * max_inodes is always 0, and is called from potentially 368 * unknown contexts. As such, use a per-cpu batched allocator 369 * which doesn't require the per-sb stat_lock unless we are at 370 * the batch boundary. 371 * 372 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 373 * shmem mounts are not exposed to userspace, so we don't need 374 * to worry about things like glibc compatibility. 375 */ 376 ino_t *next_ino; 377 378 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 379 ino = *next_ino; 380 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 381 raw_spin_lock(&sbinfo->stat_lock); 382 ino = sbinfo->next_ino; 383 sbinfo->next_ino += SHMEM_INO_BATCH; 384 raw_spin_unlock(&sbinfo->stat_lock); 385 if (unlikely(is_zero_ino(ino))) 386 ino++; 387 } 388 *inop = ino; 389 *next_ino = ++ino; 390 put_cpu(); 391 } 392 393 return 0; 394 } 395 396 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 397 { 398 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 399 if (sbinfo->max_inodes) { 400 raw_spin_lock(&sbinfo->stat_lock); 401 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 402 raw_spin_unlock(&sbinfo->stat_lock); 403 } 404 } 405 406 /** 407 * shmem_recalc_inode - recalculate the block usage of an inode 408 * @inode: inode to recalc 409 * @alloced: the change in number of pages allocated to inode 410 * @swapped: the change in number of pages swapped from inode 411 * 412 * We have to calculate the free blocks since the mm can drop 413 * undirtied hole pages behind our back. 414 * 415 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 416 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 417 */ 418 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 419 { 420 struct shmem_inode_info *info = SHMEM_I(inode); 421 long freed; 422 423 spin_lock(&info->lock); 424 info->alloced += alloced; 425 info->swapped += swapped; 426 freed = info->alloced - info->swapped - 427 READ_ONCE(inode->i_mapping->nrpages); 428 /* 429 * Special case: whereas normally shmem_recalc_inode() is called 430 * after i_mapping->nrpages has already been adjusted (up or down), 431 * shmem_writepage() has to raise swapped before nrpages is lowered - 432 * to stop a racing shmem_recalc_inode() from thinking that a page has 433 * been freed. Compensate here, to avoid the need for a followup call. 434 */ 435 if (swapped > 0) 436 freed += swapped; 437 if (freed > 0) 438 info->alloced -= freed; 439 spin_unlock(&info->lock); 440 441 /* The quota case may block */ 442 if (freed > 0) 443 shmem_inode_unacct_blocks(inode, freed); 444 } 445 446 bool shmem_charge(struct inode *inode, long pages) 447 { 448 struct address_space *mapping = inode->i_mapping; 449 450 if (shmem_inode_acct_blocks(inode, pages)) 451 return false; 452 453 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 454 xa_lock_irq(&mapping->i_pages); 455 mapping->nrpages += pages; 456 xa_unlock_irq(&mapping->i_pages); 457 458 shmem_recalc_inode(inode, pages, 0); 459 return true; 460 } 461 462 void shmem_uncharge(struct inode *inode, long pages) 463 { 464 /* pages argument is currently unused: keep it to help debugging */ 465 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 466 467 shmem_recalc_inode(inode, 0, 0); 468 } 469 470 /* 471 * Replace item expected in xarray by a new item, while holding xa_lock. 472 */ 473 static int shmem_replace_entry(struct address_space *mapping, 474 pgoff_t index, void *expected, void *replacement) 475 { 476 XA_STATE(xas, &mapping->i_pages, index); 477 void *item; 478 479 VM_BUG_ON(!expected); 480 VM_BUG_ON(!replacement); 481 item = xas_load(&xas); 482 if (item != expected) 483 return -ENOENT; 484 xas_store(&xas, replacement); 485 return 0; 486 } 487 488 /* 489 * Sometimes, before we decide whether to proceed or to fail, we must check 490 * that an entry was not already brought back from swap by a racing thread. 491 * 492 * Checking page is not enough: by the time a SwapCache page is locked, it 493 * might be reused, and again be SwapCache, using the same swap as before. 494 */ 495 static bool shmem_confirm_swap(struct address_space *mapping, 496 pgoff_t index, swp_entry_t swap) 497 { 498 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 499 } 500 501 /* 502 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 503 * 504 * SHMEM_HUGE_NEVER: 505 * disables huge pages for the mount; 506 * SHMEM_HUGE_ALWAYS: 507 * enables huge pages for the mount; 508 * SHMEM_HUGE_WITHIN_SIZE: 509 * only allocate huge pages if the page will be fully within i_size, 510 * also respect fadvise()/madvise() hints; 511 * SHMEM_HUGE_ADVISE: 512 * only allocate huge pages if requested with fadvise()/madvise(); 513 */ 514 515 #define SHMEM_HUGE_NEVER 0 516 #define SHMEM_HUGE_ALWAYS 1 517 #define SHMEM_HUGE_WITHIN_SIZE 2 518 #define SHMEM_HUGE_ADVISE 3 519 520 /* 521 * Special values. 522 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 523 * 524 * SHMEM_HUGE_DENY: 525 * disables huge on shm_mnt and all mounts, for emergency use; 526 * SHMEM_HUGE_FORCE: 527 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 528 * 529 */ 530 #define SHMEM_HUGE_DENY (-1) 531 #define SHMEM_HUGE_FORCE (-2) 532 533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 534 /* ifdef here to avoid bloating shmem.o when not necessary */ 535 536 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 537 538 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force, 539 struct mm_struct *mm, unsigned long vm_flags) 540 { 541 loff_t i_size; 542 543 if (!S_ISREG(inode->i_mode)) 544 return false; 545 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags))) 546 return false; 547 if (shmem_huge == SHMEM_HUGE_DENY) 548 return false; 549 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 550 return true; 551 552 switch (SHMEM_SB(inode->i_sb)->huge) { 553 case SHMEM_HUGE_ALWAYS: 554 return true; 555 case SHMEM_HUGE_WITHIN_SIZE: 556 index = round_up(index + 1, HPAGE_PMD_NR); 557 i_size = round_up(i_size_read(inode), PAGE_SIZE); 558 if (i_size >> PAGE_SHIFT >= index) 559 return true; 560 fallthrough; 561 case SHMEM_HUGE_ADVISE: 562 if (mm && (vm_flags & VM_HUGEPAGE)) 563 return true; 564 fallthrough; 565 default: 566 return false; 567 } 568 } 569 570 #if defined(CONFIG_SYSFS) 571 static int shmem_parse_huge(const char *str) 572 { 573 if (!strcmp(str, "never")) 574 return SHMEM_HUGE_NEVER; 575 if (!strcmp(str, "always")) 576 return SHMEM_HUGE_ALWAYS; 577 if (!strcmp(str, "within_size")) 578 return SHMEM_HUGE_WITHIN_SIZE; 579 if (!strcmp(str, "advise")) 580 return SHMEM_HUGE_ADVISE; 581 if (!strcmp(str, "deny")) 582 return SHMEM_HUGE_DENY; 583 if (!strcmp(str, "force")) 584 return SHMEM_HUGE_FORCE; 585 return -EINVAL; 586 } 587 #endif 588 589 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 590 static const char *shmem_format_huge(int huge) 591 { 592 switch (huge) { 593 case SHMEM_HUGE_NEVER: 594 return "never"; 595 case SHMEM_HUGE_ALWAYS: 596 return "always"; 597 case SHMEM_HUGE_WITHIN_SIZE: 598 return "within_size"; 599 case SHMEM_HUGE_ADVISE: 600 return "advise"; 601 case SHMEM_HUGE_DENY: 602 return "deny"; 603 case SHMEM_HUGE_FORCE: 604 return "force"; 605 default: 606 VM_BUG_ON(1); 607 return "bad_val"; 608 } 609 } 610 #endif 611 612 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 613 struct shrink_control *sc, unsigned long nr_to_split) 614 { 615 LIST_HEAD(list), *pos, *next; 616 LIST_HEAD(to_remove); 617 struct inode *inode; 618 struct shmem_inode_info *info; 619 struct folio *folio; 620 unsigned long batch = sc ? sc->nr_to_scan : 128; 621 int split = 0; 622 623 if (list_empty(&sbinfo->shrinklist)) 624 return SHRINK_STOP; 625 626 spin_lock(&sbinfo->shrinklist_lock); 627 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 628 info = list_entry(pos, struct shmem_inode_info, shrinklist); 629 630 /* pin the inode */ 631 inode = igrab(&info->vfs_inode); 632 633 /* inode is about to be evicted */ 634 if (!inode) { 635 list_del_init(&info->shrinklist); 636 goto next; 637 } 638 639 /* Check if there's anything to gain */ 640 if (round_up(inode->i_size, PAGE_SIZE) == 641 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 642 list_move(&info->shrinklist, &to_remove); 643 goto next; 644 } 645 646 list_move(&info->shrinklist, &list); 647 next: 648 sbinfo->shrinklist_len--; 649 if (!--batch) 650 break; 651 } 652 spin_unlock(&sbinfo->shrinklist_lock); 653 654 list_for_each_safe(pos, next, &to_remove) { 655 info = list_entry(pos, struct shmem_inode_info, shrinklist); 656 inode = &info->vfs_inode; 657 list_del_init(&info->shrinklist); 658 iput(inode); 659 } 660 661 list_for_each_safe(pos, next, &list) { 662 int ret; 663 pgoff_t index; 664 665 info = list_entry(pos, struct shmem_inode_info, shrinklist); 666 inode = &info->vfs_inode; 667 668 if (nr_to_split && split >= nr_to_split) 669 goto move_back; 670 671 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 672 folio = filemap_get_folio(inode->i_mapping, index); 673 if (IS_ERR(folio)) 674 goto drop; 675 676 /* No huge page at the end of the file: nothing to split */ 677 if (!folio_test_large(folio)) { 678 folio_put(folio); 679 goto drop; 680 } 681 682 /* 683 * Move the inode on the list back to shrinklist if we failed 684 * to lock the page at this time. 685 * 686 * Waiting for the lock may lead to deadlock in the 687 * reclaim path. 688 */ 689 if (!folio_trylock(folio)) { 690 folio_put(folio); 691 goto move_back; 692 } 693 694 ret = split_folio(folio); 695 folio_unlock(folio); 696 folio_put(folio); 697 698 /* If split failed move the inode on the list back to shrinklist */ 699 if (ret) 700 goto move_back; 701 702 split++; 703 drop: 704 list_del_init(&info->shrinklist); 705 goto put; 706 move_back: 707 /* 708 * Make sure the inode is either on the global list or deleted 709 * from any local list before iput() since it could be deleted 710 * in another thread once we put the inode (then the local list 711 * is corrupted). 712 */ 713 spin_lock(&sbinfo->shrinklist_lock); 714 list_move(&info->shrinklist, &sbinfo->shrinklist); 715 sbinfo->shrinklist_len++; 716 spin_unlock(&sbinfo->shrinklist_lock); 717 put: 718 iput(inode); 719 } 720 721 return split; 722 } 723 724 static long shmem_unused_huge_scan(struct super_block *sb, 725 struct shrink_control *sc) 726 { 727 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 728 729 if (!READ_ONCE(sbinfo->shrinklist_len)) 730 return SHRINK_STOP; 731 732 return shmem_unused_huge_shrink(sbinfo, sc, 0); 733 } 734 735 static long shmem_unused_huge_count(struct super_block *sb, 736 struct shrink_control *sc) 737 { 738 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 739 return READ_ONCE(sbinfo->shrinklist_len); 740 } 741 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 742 743 #define shmem_huge SHMEM_HUGE_DENY 744 745 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force, 746 struct mm_struct *mm, unsigned long vm_flags) 747 { 748 return false; 749 } 750 751 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 752 struct shrink_control *sc, unsigned long nr_to_split) 753 { 754 return 0; 755 } 756 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 757 758 /* 759 * Somewhat like filemap_add_folio, but error if expected item has gone. 760 */ 761 static int shmem_add_to_page_cache(struct folio *folio, 762 struct address_space *mapping, 763 pgoff_t index, void *expected, gfp_t gfp) 764 { 765 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 766 long nr = folio_nr_pages(folio); 767 768 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 769 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 770 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 771 VM_BUG_ON(expected && folio_test_large(folio)); 772 773 folio_ref_add(folio, nr); 774 folio->mapping = mapping; 775 folio->index = index; 776 777 gfp &= GFP_RECLAIM_MASK; 778 folio_throttle_swaprate(folio, gfp); 779 780 do { 781 xas_lock_irq(&xas); 782 if (expected != xas_find_conflict(&xas)) { 783 xas_set_err(&xas, -EEXIST); 784 goto unlock; 785 } 786 if (expected && xas_find_conflict(&xas)) { 787 xas_set_err(&xas, -EEXIST); 788 goto unlock; 789 } 790 xas_store(&xas, folio); 791 if (xas_error(&xas)) 792 goto unlock; 793 if (folio_test_pmd_mappable(folio)) 794 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 795 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 796 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 797 mapping->nrpages += nr; 798 unlock: 799 xas_unlock_irq(&xas); 800 } while (xas_nomem(&xas, gfp)); 801 802 if (xas_error(&xas)) { 803 folio->mapping = NULL; 804 folio_ref_sub(folio, nr); 805 return xas_error(&xas); 806 } 807 808 return 0; 809 } 810 811 /* 812 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 813 */ 814 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 815 { 816 struct address_space *mapping = folio->mapping; 817 long nr = folio_nr_pages(folio); 818 int error; 819 820 xa_lock_irq(&mapping->i_pages); 821 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 822 folio->mapping = NULL; 823 mapping->nrpages -= nr; 824 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 825 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 826 xa_unlock_irq(&mapping->i_pages); 827 folio_put(folio); 828 BUG_ON(error); 829 } 830 831 /* 832 * Remove swap entry from page cache, free the swap and its page cache. 833 */ 834 static int shmem_free_swap(struct address_space *mapping, 835 pgoff_t index, void *radswap) 836 { 837 void *old; 838 839 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 840 if (old != radswap) 841 return -ENOENT; 842 free_swap_and_cache(radix_to_swp_entry(radswap)); 843 return 0; 844 } 845 846 /* 847 * Determine (in bytes) how many of the shmem object's pages mapped by the 848 * given offsets are swapped out. 849 * 850 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 851 * as long as the inode doesn't go away and racy results are not a problem. 852 */ 853 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 854 pgoff_t start, pgoff_t end) 855 { 856 XA_STATE(xas, &mapping->i_pages, start); 857 struct page *page; 858 unsigned long swapped = 0; 859 unsigned long max = end - 1; 860 861 rcu_read_lock(); 862 xas_for_each(&xas, page, max) { 863 if (xas_retry(&xas, page)) 864 continue; 865 if (xa_is_value(page)) 866 swapped++; 867 if (xas.xa_index == max) 868 break; 869 if (need_resched()) { 870 xas_pause(&xas); 871 cond_resched_rcu(); 872 } 873 } 874 rcu_read_unlock(); 875 876 return swapped << PAGE_SHIFT; 877 } 878 879 /* 880 * Determine (in bytes) how many of the shmem object's pages mapped by the 881 * given vma is swapped out. 882 * 883 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 884 * as long as the inode doesn't go away and racy results are not a problem. 885 */ 886 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 887 { 888 struct inode *inode = file_inode(vma->vm_file); 889 struct shmem_inode_info *info = SHMEM_I(inode); 890 struct address_space *mapping = inode->i_mapping; 891 unsigned long swapped; 892 893 /* Be careful as we don't hold info->lock */ 894 swapped = READ_ONCE(info->swapped); 895 896 /* 897 * The easier cases are when the shmem object has nothing in swap, or 898 * the vma maps it whole. Then we can simply use the stats that we 899 * already track. 900 */ 901 if (!swapped) 902 return 0; 903 904 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 905 return swapped << PAGE_SHIFT; 906 907 /* Here comes the more involved part */ 908 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 909 vma->vm_pgoff + vma_pages(vma)); 910 } 911 912 /* 913 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 914 */ 915 void shmem_unlock_mapping(struct address_space *mapping) 916 { 917 struct folio_batch fbatch; 918 pgoff_t index = 0; 919 920 folio_batch_init(&fbatch); 921 /* 922 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 923 */ 924 while (!mapping_unevictable(mapping) && 925 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 926 check_move_unevictable_folios(&fbatch); 927 folio_batch_release(&fbatch); 928 cond_resched(); 929 } 930 } 931 932 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 933 { 934 struct folio *folio; 935 936 /* 937 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 938 * beyond i_size, and reports fallocated folios as holes. 939 */ 940 folio = filemap_get_entry(inode->i_mapping, index); 941 if (!folio) 942 return folio; 943 if (!xa_is_value(folio)) { 944 folio_lock(folio); 945 if (folio->mapping == inode->i_mapping) 946 return folio; 947 /* The folio has been swapped out */ 948 folio_unlock(folio); 949 folio_put(folio); 950 } 951 /* 952 * But read a folio back from swap if any of it is within i_size 953 * (although in some cases this is just a waste of time). 954 */ 955 folio = NULL; 956 shmem_get_folio(inode, index, &folio, SGP_READ); 957 return folio; 958 } 959 960 /* 961 * Remove range of pages and swap entries from page cache, and free them. 962 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 963 */ 964 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 965 bool unfalloc) 966 { 967 struct address_space *mapping = inode->i_mapping; 968 struct shmem_inode_info *info = SHMEM_I(inode); 969 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 970 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 971 struct folio_batch fbatch; 972 pgoff_t indices[PAGEVEC_SIZE]; 973 struct folio *folio; 974 bool same_folio; 975 long nr_swaps_freed = 0; 976 pgoff_t index; 977 int i; 978 979 if (lend == -1) 980 end = -1; /* unsigned, so actually very big */ 981 982 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 983 info->fallocend = start; 984 985 folio_batch_init(&fbatch); 986 index = start; 987 while (index < end && find_lock_entries(mapping, &index, end - 1, 988 &fbatch, indices)) { 989 for (i = 0; i < folio_batch_count(&fbatch); i++) { 990 folio = fbatch.folios[i]; 991 992 if (xa_is_value(folio)) { 993 if (unfalloc) 994 continue; 995 nr_swaps_freed += !shmem_free_swap(mapping, 996 indices[i], folio); 997 continue; 998 } 999 1000 if (!unfalloc || !folio_test_uptodate(folio)) 1001 truncate_inode_folio(mapping, folio); 1002 folio_unlock(folio); 1003 } 1004 folio_batch_remove_exceptionals(&fbatch); 1005 folio_batch_release(&fbatch); 1006 cond_resched(); 1007 } 1008 1009 /* 1010 * When undoing a failed fallocate, we want none of the partial folio 1011 * zeroing and splitting below, but shall want to truncate the whole 1012 * folio when !uptodate indicates that it was added by this fallocate, 1013 * even when [lstart, lend] covers only a part of the folio. 1014 */ 1015 if (unfalloc) 1016 goto whole_folios; 1017 1018 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1019 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1020 if (folio) { 1021 same_folio = lend < folio_pos(folio) + folio_size(folio); 1022 folio_mark_dirty(folio); 1023 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1024 start = folio_next_index(folio); 1025 if (same_folio) 1026 end = folio->index; 1027 } 1028 folio_unlock(folio); 1029 folio_put(folio); 1030 folio = NULL; 1031 } 1032 1033 if (!same_folio) 1034 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1035 if (folio) { 1036 folio_mark_dirty(folio); 1037 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1038 end = folio->index; 1039 folio_unlock(folio); 1040 folio_put(folio); 1041 } 1042 1043 whole_folios: 1044 1045 index = start; 1046 while (index < end) { 1047 cond_resched(); 1048 1049 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1050 indices)) { 1051 /* If all gone or hole-punch or unfalloc, we're done */ 1052 if (index == start || end != -1) 1053 break; 1054 /* But if truncating, restart to make sure all gone */ 1055 index = start; 1056 continue; 1057 } 1058 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1059 folio = fbatch.folios[i]; 1060 1061 if (xa_is_value(folio)) { 1062 if (unfalloc) 1063 continue; 1064 if (shmem_free_swap(mapping, indices[i], folio)) { 1065 /* Swap was replaced by page: retry */ 1066 index = indices[i]; 1067 break; 1068 } 1069 nr_swaps_freed++; 1070 continue; 1071 } 1072 1073 folio_lock(folio); 1074 1075 if (!unfalloc || !folio_test_uptodate(folio)) { 1076 if (folio_mapping(folio) != mapping) { 1077 /* Page was replaced by swap: retry */ 1078 folio_unlock(folio); 1079 index = indices[i]; 1080 break; 1081 } 1082 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1083 folio); 1084 1085 if (!folio_test_large(folio)) { 1086 truncate_inode_folio(mapping, folio); 1087 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1088 /* 1089 * If we split a page, reset the loop so 1090 * that we pick up the new sub pages. 1091 * Otherwise the THP was entirely 1092 * dropped or the target range was 1093 * zeroed, so just continue the loop as 1094 * is. 1095 */ 1096 if (!folio_test_large(folio)) { 1097 folio_unlock(folio); 1098 index = start; 1099 break; 1100 } 1101 } 1102 } 1103 folio_unlock(folio); 1104 } 1105 folio_batch_remove_exceptionals(&fbatch); 1106 folio_batch_release(&fbatch); 1107 } 1108 1109 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1110 } 1111 1112 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1113 { 1114 shmem_undo_range(inode, lstart, lend, false); 1115 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1116 inode_inc_iversion(inode); 1117 } 1118 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1119 1120 static int shmem_getattr(struct mnt_idmap *idmap, 1121 const struct path *path, struct kstat *stat, 1122 u32 request_mask, unsigned int query_flags) 1123 { 1124 struct inode *inode = path->dentry->d_inode; 1125 struct shmem_inode_info *info = SHMEM_I(inode); 1126 1127 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1128 shmem_recalc_inode(inode, 0, 0); 1129 1130 if (info->fsflags & FS_APPEND_FL) 1131 stat->attributes |= STATX_ATTR_APPEND; 1132 if (info->fsflags & FS_IMMUTABLE_FL) 1133 stat->attributes |= STATX_ATTR_IMMUTABLE; 1134 if (info->fsflags & FS_NODUMP_FL) 1135 stat->attributes |= STATX_ATTR_NODUMP; 1136 stat->attributes_mask |= (STATX_ATTR_APPEND | 1137 STATX_ATTR_IMMUTABLE | 1138 STATX_ATTR_NODUMP); 1139 generic_fillattr(idmap, request_mask, inode, stat); 1140 1141 if (shmem_is_huge(inode, 0, false, NULL, 0)) 1142 stat->blksize = HPAGE_PMD_SIZE; 1143 1144 if (request_mask & STATX_BTIME) { 1145 stat->result_mask |= STATX_BTIME; 1146 stat->btime.tv_sec = info->i_crtime.tv_sec; 1147 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1148 } 1149 1150 return 0; 1151 } 1152 1153 static int shmem_setattr(struct mnt_idmap *idmap, 1154 struct dentry *dentry, struct iattr *attr) 1155 { 1156 struct inode *inode = d_inode(dentry); 1157 struct shmem_inode_info *info = SHMEM_I(inode); 1158 int error; 1159 bool update_mtime = false; 1160 bool update_ctime = true; 1161 1162 error = setattr_prepare(idmap, dentry, attr); 1163 if (error) 1164 return error; 1165 1166 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1167 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1168 return -EPERM; 1169 } 1170 } 1171 1172 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1173 loff_t oldsize = inode->i_size; 1174 loff_t newsize = attr->ia_size; 1175 1176 /* protected by i_rwsem */ 1177 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1178 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1179 return -EPERM; 1180 1181 if (newsize != oldsize) { 1182 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1183 oldsize, newsize); 1184 if (error) 1185 return error; 1186 i_size_write(inode, newsize); 1187 update_mtime = true; 1188 } else { 1189 update_ctime = false; 1190 } 1191 if (newsize <= oldsize) { 1192 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1193 if (oldsize > holebegin) 1194 unmap_mapping_range(inode->i_mapping, 1195 holebegin, 0, 1); 1196 if (info->alloced) 1197 shmem_truncate_range(inode, 1198 newsize, (loff_t)-1); 1199 /* unmap again to remove racily COWed private pages */ 1200 if (oldsize > holebegin) 1201 unmap_mapping_range(inode->i_mapping, 1202 holebegin, 0, 1); 1203 } 1204 } 1205 1206 if (is_quota_modification(idmap, inode, attr)) { 1207 error = dquot_initialize(inode); 1208 if (error) 1209 return error; 1210 } 1211 1212 /* Transfer quota accounting */ 1213 if (i_uid_needs_update(idmap, attr, inode) || 1214 i_gid_needs_update(idmap, attr, inode)) { 1215 error = dquot_transfer(idmap, inode, attr); 1216 if (error) 1217 return error; 1218 } 1219 1220 setattr_copy(idmap, inode, attr); 1221 if (attr->ia_valid & ATTR_MODE) 1222 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1223 if (!error && update_ctime) { 1224 inode_set_ctime_current(inode); 1225 if (update_mtime) 1226 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1227 inode_inc_iversion(inode); 1228 } 1229 return error; 1230 } 1231 1232 static void shmem_evict_inode(struct inode *inode) 1233 { 1234 struct shmem_inode_info *info = SHMEM_I(inode); 1235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1236 size_t freed = 0; 1237 1238 if (shmem_mapping(inode->i_mapping)) { 1239 shmem_unacct_size(info->flags, inode->i_size); 1240 inode->i_size = 0; 1241 mapping_set_exiting(inode->i_mapping); 1242 shmem_truncate_range(inode, 0, (loff_t)-1); 1243 if (!list_empty(&info->shrinklist)) { 1244 spin_lock(&sbinfo->shrinklist_lock); 1245 if (!list_empty(&info->shrinklist)) { 1246 list_del_init(&info->shrinklist); 1247 sbinfo->shrinklist_len--; 1248 } 1249 spin_unlock(&sbinfo->shrinklist_lock); 1250 } 1251 while (!list_empty(&info->swaplist)) { 1252 /* Wait while shmem_unuse() is scanning this inode... */ 1253 wait_var_event(&info->stop_eviction, 1254 !atomic_read(&info->stop_eviction)); 1255 mutex_lock(&shmem_swaplist_mutex); 1256 /* ...but beware of the race if we peeked too early */ 1257 if (!atomic_read(&info->stop_eviction)) 1258 list_del_init(&info->swaplist); 1259 mutex_unlock(&shmem_swaplist_mutex); 1260 } 1261 } 1262 1263 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1264 shmem_free_inode(inode->i_sb, freed); 1265 WARN_ON(inode->i_blocks); 1266 clear_inode(inode); 1267 #ifdef CONFIG_TMPFS_QUOTA 1268 dquot_free_inode(inode); 1269 dquot_drop(inode); 1270 #endif 1271 } 1272 1273 static int shmem_find_swap_entries(struct address_space *mapping, 1274 pgoff_t start, struct folio_batch *fbatch, 1275 pgoff_t *indices, unsigned int type) 1276 { 1277 XA_STATE(xas, &mapping->i_pages, start); 1278 struct folio *folio; 1279 swp_entry_t entry; 1280 1281 rcu_read_lock(); 1282 xas_for_each(&xas, folio, ULONG_MAX) { 1283 if (xas_retry(&xas, folio)) 1284 continue; 1285 1286 if (!xa_is_value(folio)) 1287 continue; 1288 1289 entry = radix_to_swp_entry(folio); 1290 /* 1291 * swapin error entries can be found in the mapping. But they're 1292 * deliberately ignored here as we've done everything we can do. 1293 */ 1294 if (swp_type(entry) != type) 1295 continue; 1296 1297 indices[folio_batch_count(fbatch)] = xas.xa_index; 1298 if (!folio_batch_add(fbatch, folio)) 1299 break; 1300 1301 if (need_resched()) { 1302 xas_pause(&xas); 1303 cond_resched_rcu(); 1304 } 1305 } 1306 rcu_read_unlock(); 1307 1308 return xas.xa_index; 1309 } 1310 1311 /* 1312 * Move the swapped pages for an inode to page cache. Returns the count 1313 * of pages swapped in, or the error in case of failure. 1314 */ 1315 static int shmem_unuse_swap_entries(struct inode *inode, 1316 struct folio_batch *fbatch, pgoff_t *indices) 1317 { 1318 int i = 0; 1319 int ret = 0; 1320 int error = 0; 1321 struct address_space *mapping = inode->i_mapping; 1322 1323 for (i = 0; i < folio_batch_count(fbatch); i++) { 1324 struct folio *folio = fbatch->folios[i]; 1325 1326 if (!xa_is_value(folio)) 1327 continue; 1328 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1329 mapping_gfp_mask(mapping), NULL, NULL); 1330 if (error == 0) { 1331 folio_unlock(folio); 1332 folio_put(folio); 1333 ret++; 1334 } 1335 if (error == -ENOMEM) 1336 break; 1337 error = 0; 1338 } 1339 return error ? error : ret; 1340 } 1341 1342 /* 1343 * If swap found in inode, free it and move page from swapcache to filecache. 1344 */ 1345 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1346 { 1347 struct address_space *mapping = inode->i_mapping; 1348 pgoff_t start = 0; 1349 struct folio_batch fbatch; 1350 pgoff_t indices[PAGEVEC_SIZE]; 1351 int ret = 0; 1352 1353 do { 1354 folio_batch_init(&fbatch); 1355 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1356 if (folio_batch_count(&fbatch) == 0) { 1357 ret = 0; 1358 break; 1359 } 1360 1361 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1362 if (ret < 0) 1363 break; 1364 1365 start = indices[folio_batch_count(&fbatch) - 1]; 1366 } while (true); 1367 1368 return ret; 1369 } 1370 1371 /* 1372 * Read all the shared memory data that resides in the swap 1373 * device 'type' back into memory, so the swap device can be 1374 * unused. 1375 */ 1376 int shmem_unuse(unsigned int type) 1377 { 1378 struct shmem_inode_info *info, *next; 1379 int error = 0; 1380 1381 if (list_empty(&shmem_swaplist)) 1382 return 0; 1383 1384 mutex_lock(&shmem_swaplist_mutex); 1385 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1386 if (!info->swapped) { 1387 list_del_init(&info->swaplist); 1388 continue; 1389 } 1390 /* 1391 * Drop the swaplist mutex while searching the inode for swap; 1392 * but before doing so, make sure shmem_evict_inode() will not 1393 * remove placeholder inode from swaplist, nor let it be freed 1394 * (igrab() would protect from unlink, but not from unmount). 1395 */ 1396 atomic_inc(&info->stop_eviction); 1397 mutex_unlock(&shmem_swaplist_mutex); 1398 1399 error = shmem_unuse_inode(&info->vfs_inode, type); 1400 cond_resched(); 1401 1402 mutex_lock(&shmem_swaplist_mutex); 1403 next = list_next_entry(info, swaplist); 1404 if (!info->swapped) 1405 list_del_init(&info->swaplist); 1406 if (atomic_dec_and_test(&info->stop_eviction)) 1407 wake_up_var(&info->stop_eviction); 1408 if (error) 1409 break; 1410 } 1411 mutex_unlock(&shmem_swaplist_mutex); 1412 1413 return error; 1414 } 1415 1416 /* 1417 * Move the page from the page cache to the swap cache. 1418 */ 1419 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1420 { 1421 struct folio *folio = page_folio(page); 1422 struct address_space *mapping = folio->mapping; 1423 struct inode *inode = mapping->host; 1424 struct shmem_inode_info *info = SHMEM_I(inode); 1425 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1426 swp_entry_t swap; 1427 pgoff_t index; 1428 1429 /* 1430 * Our capabilities prevent regular writeback or sync from ever calling 1431 * shmem_writepage; but a stacking filesystem might use ->writepage of 1432 * its underlying filesystem, in which case tmpfs should write out to 1433 * swap only in response to memory pressure, and not for the writeback 1434 * threads or sync. 1435 */ 1436 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1437 goto redirty; 1438 1439 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap)) 1440 goto redirty; 1441 1442 if (!total_swap_pages) 1443 goto redirty; 1444 1445 /* 1446 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1447 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1448 * and its shmem_writeback() needs them to be split when swapping. 1449 */ 1450 if (folio_test_large(folio)) { 1451 /* Ensure the subpages are still dirty */ 1452 folio_test_set_dirty(folio); 1453 if (split_huge_page(page) < 0) 1454 goto redirty; 1455 folio = page_folio(page); 1456 folio_clear_dirty(folio); 1457 } 1458 1459 index = folio->index; 1460 1461 /* 1462 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1463 * value into swapfile.c, the only way we can correctly account for a 1464 * fallocated folio arriving here is now to initialize it and write it. 1465 * 1466 * That's okay for a folio already fallocated earlier, but if we have 1467 * not yet completed the fallocation, then (a) we want to keep track 1468 * of this folio in case we have to undo it, and (b) it may not be a 1469 * good idea to continue anyway, once we're pushing into swap. So 1470 * reactivate the folio, and let shmem_fallocate() quit when too many. 1471 */ 1472 if (!folio_test_uptodate(folio)) { 1473 if (inode->i_private) { 1474 struct shmem_falloc *shmem_falloc; 1475 spin_lock(&inode->i_lock); 1476 shmem_falloc = inode->i_private; 1477 if (shmem_falloc && 1478 !shmem_falloc->waitq && 1479 index >= shmem_falloc->start && 1480 index < shmem_falloc->next) 1481 shmem_falloc->nr_unswapped++; 1482 else 1483 shmem_falloc = NULL; 1484 spin_unlock(&inode->i_lock); 1485 if (shmem_falloc) 1486 goto redirty; 1487 } 1488 folio_zero_range(folio, 0, folio_size(folio)); 1489 flush_dcache_folio(folio); 1490 folio_mark_uptodate(folio); 1491 } 1492 1493 swap = folio_alloc_swap(folio); 1494 if (!swap.val) 1495 goto redirty; 1496 1497 /* 1498 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1499 * if it's not already there. Do it now before the folio is 1500 * moved to swap cache, when its pagelock no longer protects 1501 * the inode from eviction. But don't unlock the mutex until 1502 * we've incremented swapped, because shmem_unuse_inode() will 1503 * prune a !swapped inode from the swaplist under this mutex. 1504 */ 1505 mutex_lock(&shmem_swaplist_mutex); 1506 if (list_empty(&info->swaplist)) 1507 list_add(&info->swaplist, &shmem_swaplist); 1508 1509 if (add_to_swap_cache(folio, swap, 1510 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1511 NULL) == 0) { 1512 shmem_recalc_inode(inode, 0, 1); 1513 swap_shmem_alloc(swap); 1514 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1515 1516 mutex_unlock(&shmem_swaplist_mutex); 1517 BUG_ON(folio_mapped(folio)); 1518 return swap_writepage(&folio->page, wbc); 1519 } 1520 1521 mutex_unlock(&shmem_swaplist_mutex); 1522 put_swap_folio(folio, swap); 1523 redirty: 1524 folio_mark_dirty(folio); 1525 if (wbc->for_reclaim) 1526 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1527 folio_unlock(folio); 1528 return 0; 1529 } 1530 1531 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1532 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1533 { 1534 char buffer[64]; 1535 1536 if (!mpol || mpol->mode == MPOL_DEFAULT) 1537 return; /* show nothing */ 1538 1539 mpol_to_str(buffer, sizeof(buffer), mpol); 1540 1541 seq_printf(seq, ",mpol=%s", buffer); 1542 } 1543 1544 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1545 { 1546 struct mempolicy *mpol = NULL; 1547 if (sbinfo->mpol) { 1548 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1549 mpol = sbinfo->mpol; 1550 mpol_get(mpol); 1551 raw_spin_unlock(&sbinfo->stat_lock); 1552 } 1553 return mpol; 1554 } 1555 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1556 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1557 { 1558 } 1559 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1560 { 1561 return NULL; 1562 } 1563 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1564 1565 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1566 pgoff_t index, unsigned int order, pgoff_t *ilx); 1567 1568 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1569 struct shmem_inode_info *info, pgoff_t index) 1570 { 1571 struct mempolicy *mpol; 1572 pgoff_t ilx; 1573 struct folio *folio; 1574 1575 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1576 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1577 mpol_cond_put(mpol); 1578 1579 return folio; 1580 } 1581 1582 /* 1583 * Make sure huge_gfp is always more limited than limit_gfp. 1584 * Some of the flags set permissions, while others set limitations. 1585 */ 1586 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1587 { 1588 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1589 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1590 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1591 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1592 1593 /* Allow allocations only from the originally specified zones. */ 1594 result |= zoneflags; 1595 1596 /* 1597 * Minimize the result gfp by taking the union with the deny flags, 1598 * and the intersection of the allow flags. 1599 */ 1600 result |= (limit_gfp & denyflags); 1601 result |= (huge_gfp & limit_gfp) & allowflags; 1602 1603 return result; 1604 } 1605 1606 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1607 struct shmem_inode_info *info, pgoff_t index) 1608 { 1609 struct mempolicy *mpol; 1610 pgoff_t ilx; 1611 struct page *page; 1612 1613 mpol = shmem_get_pgoff_policy(info, index, HPAGE_PMD_ORDER, &ilx); 1614 page = alloc_pages_mpol(gfp, HPAGE_PMD_ORDER, mpol, ilx, numa_node_id()); 1615 mpol_cond_put(mpol); 1616 1617 return page_rmappable_folio(page); 1618 } 1619 1620 static struct folio *shmem_alloc_folio(gfp_t gfp, 1621 struct shmem_inode_info *info, pgoff_t index) 1622 { 1623 struct mempolicy *mpol; 1624 pgoff_t ilx; 1625 struct page *page; 1626 1627 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1628 page = alloc_pages_mpol(gfp, 0, mpol, ilx, numa_node_id()); 1629 mpol_cond_put(mpol); 1630 1631 return (struct folio *)page; 1632 } 1633 1634 static struct folio *shmem_alloc_and_add_folio(gfp_t gfp, 1635 struct inode *inode, pgoff_t index, 1636 struct mm_struct *fault_mm, bool huge) 1637 { 1638 struct address_space *mapping = inode->i_mapping; 1639 struct shmem_inode_info *info = SHMEM_I(inode); 1640 struct folio *folio; 1641 long pages; 1642 int error; 1643 1644 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1645 huge = false; 1646 1647 if (huge) { 1648 pages = HPAGE_PMD_NR; 1649 index = round_down(index, HPAGE_PMD_NR); 1650 1651 /* 1652 * Check for conflict before waiting on a huge allocation. 1653 * Conflict might be that a huge page has just been allocated 1654 * and added to page cache by a racing thread, or that there 1655 * is already at least one small page in the huge extent. 1656 * Be careful to retry when appropriate, but not forever! 1657 * Elsewhere -EEXIST would be the right code, but not here. 1658 */ 1659 if (xa_find(&mapping->i_pages, &index, 1660 index + HPAGE_PMD_NR - 1, XA_PRESENT)) 1661 return ERR_PTR(-E2BIG); 1662 1663 folio = shmem_alloc_hugefolio(gfp, info, index); 1664 if (!folio) 1665 count_vm_event(THP_FILE_FALLBACK); 1666 } else { 1667 pages = 1; 1668 folio = shmem_alloc_folio(gfp, info, index); 1669 } 1670 if (!folio) 1671 return ERR_PTR(-ENOMEM); 1672 1673 __folio_set_locked(folio); 1674 __folio_set_swapbacked(folio); 1675 1676 gfp &= GFP_RECLAIM_MASK; 1677 error = mem_cgroup_charge(folio, fault_mm, gfp); 1678 if (error) { 1679 if (xa_find(&mapping->i_pages, &index, 1680 index + pages - 1, XA_PRESENT)) { 1681 error = -EEXIST; 1682 } else if (huge) { 1683 count_vm_event(THP_FILE_FALLBACK); 1684 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1685 } 1686 goto unlock; 1687 } 1688 1689 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1690 if (error) 1691 goto unlock; 1692 1693 error = shmem_inode_acct_blocks(inode, pages); 1694 if (error) { 1695 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1696 long freed; 1697 /* 1698 * Try to reclaim some space by splitting a few 1699 * large folios beyond i_size on the filesystem. 1700 */ 1701 shmem_unused_huge_shrink(sbinfo, NULL, 2); 1702 /* 1703 * And do a shmem_recalc_inode() to account for freed pages: 1704 * except our folio is there in cache, so not quite balanced. 1705 */ 1706 spin_lock(&info->lock); 1707 freed = pages + info->alloced - info->swapped - 1708 READ_ONCE(mapping->nrpages); 1709 if (freed > 0) 1710 info->alloced -= freed; 1711 spin_unlock(&info->lock); 1712 if (freed > 0) 1713 shmem_inode_unacct_blocks(inode, freed); 1714 error = shmem_inode_acct_blocks(inode, pages); 1715 if (error) { 1716 filemap_remove_folio(folio); 1717 goto unlock; 1718 } 1719 } 1720 1721 shmem_recalc_inode(inode, pages, 0); 1722 folio_add_lru(folio); 1723 return folio; 1724 1725 unlock: 1726 folio_unlock(folio); 1727 folio_put(folio); 1728 return ERR_PTR(error); 1729 } 1730 1731 /* 1732 * When a page is moved from swapcache to shmem filecache (either by the 1733 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1734 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1735 * ignorance of the mapping it belongs to. If that mapping has special 1736 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1737 * we may need to copy to a suitable page before moving to filecache. 1738 * 1739 * In a future release, this may well be extended to respect cpuset and 1740 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1741 * but for now it is a simple matter of zone. 1742 */ 1743 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1744 { 1745 return folio_zonenum(folio) > gfp_zone(gfp); 1746 } 1747 1748 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1749 struct shmem_inode_info *info, pgoff_t index) 1750 { 1751 struct folio *old, *new; 1752 struct address_space *swap_mapping; 1753 swp_entry_t entry; 1754 pgoff_t swap_index; 1755 int error; 1756 1757 old = *foliop; 1758 entry = old->swap; 1759 swap_index = swp_offset(entry); 1760 swap_mapping = swap_address_space(entry); 1761 1762 /* 1763 * We have arrived here because our zones are constrained, so don't 1764 * limit chance of success by further cpuset and node constraints. 1765 */ 1766 gfp &= ~GFP_CONSTRAINT_MASK; 1767 VM_BUG_ON_FOLIO(folio_test_large(old), old); 1768 new = shmem_alloc_folio(gfp, info, index); 1769 if (!new) 1770 return -ENOMEM; 1771 1772 folio_get(new); 1773 folio_copy(new, old); 1774 flush_dcache_folio(new); 1775 1776 __folio_set_locked(new); 1777 __folio_set_swapbacked(new); 1778 folio_mark_uptodate(new); 1779 new->swap = entry; 1780 folio_set_swapcache(new); 1781 1782 /* 1783 * Our caller will very soon move newpage out of swapcache, but it's 1784 * a nice clean interface for us to replace oldpage by newpage there. 1785 */ 1786 xa_lock_irq(&swap_mapping->i_pages); 1787 error = shmem_replace_entry(swap_mapping, swap_index, old, new); 1788 if (!error) { 1789 mem_cgroup_migrate(old, new); 1790 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1); 1791 __lruvec_stat_mod_folio(new, NR_SHMEM, 1); 1792 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1); 1793 __lruvec_stat_mod_folio(old, NR_SHMEM, -1); 1794 } 1795 xa_unlock_irq(&swap_mapping->i_pages); 1796 1797 if (unlikely(error)) { 1798 /* 1799 * Is this possible? I think not, now that our callers check 1800 * both PageSwapCache and page_private after getting page lock; 1801 * but be defensive. Reverse old to newpage for clear and free. 1802 */ 1803 old = new; 1804 } else { 1805 folio_add_lru(new); 1806 *foliop = new; 1807 } 1808 1809 folio_clear_swapcache(old); 1810 old->private = NULL; 1811 1812 folio_unlock(old); 1813 folio_put_refs(old, 2); 1814 return error; 1815 } 1816 1817 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1818 struct folio *folio, swp_entry_t swap) 1819 { 1820 struct address_space *mapping = inode->i_mapping; 1821 swp_entry_t swapin_error; 1822 void *old; 1823 1824 swapin_error = make_poisoned_swp_entry(); 1825 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1826 swp_to_radix_entry(swap), 1827 swp_to_radix_entry(swapin_error), 0); 1828 if (old != swp_to_radix_entry(swap)) 1829 return; 1830 1831 folio_wait_writeback(folio); 1832 delete_from_swap_cache(folio); 1833 /* 1834 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 1835 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 1836 * in shmem_evict_inode(). 1837 */ 1838 shmem_recalc_inode(inode, -1, -1); 1839 swap_free(swap); 1840 } 1841 1842 /* 1843 * Swap in the folio pointed to by *foliop. 1844 * Caller has to make sure that *foliop contains a valid swapped folio. 1845 * Returns 0 and the folio in foliop if success. On failure, returns the 1846 * error code and NULL in *foliop. 1847 */ 1848 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1849 struct folio **foliop, enum sgp_type sgp, 1850 gfp_t gfp, struct mm_struct *fault_mm, 1851 vm_fault_t *fault_type) 1852 { 1853 struct address_space *mapping = inode->i_mapping; 1854 struct shmem_inode_info *info = SHMEM_I(inode); 1855 struct swap_info_struct *si; 1856 struct folio *folio = NULL; 1857 swp_entry_t swap; 1858 int error; 1859 1860 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1861 swap = radix_to_swp_entry(*foliop); 1862 *foliop = NULL; 1863 1864 if (is_poisoned_swp_entry(swap)) 1865 return -EIO; 1866 1867 si = get_swap_device(swap); 1868 if (!si) { 1869 if (!shmem_confirm_swap(mapping, index, swap)) 1870 return -EEXIST; 1871 else 1872 return -EINVAL; 1873 } 1874 1875 /* Look it up and read it in.. */ 1876 folio = swap_cache_get_folio(swap, NULL, 0); 1877 if (!folio) { 1878 /* Or update major stats only when swapin succeeds?? */ 1879 if (fault_type) { 1880 *fault_type |= VM_FAULT_MAJOR; 1881 count_vm_event(PGMAJFAULT); 1882 count_memcg_event_mm(fault_mm, PGMAJFAULT); 1883 } 1884 /* Here we actually start the io */ 1885 folio = shmem_swapin_cluster(swap, gfp, info, index); 1886 if (!folio) { 1887 error = -ENOMEM; 1888 goto failed; 1889 } 1890 } 1891 1892 /* We have to do this with folio locked to prevent races */ 1893 folio_lock(folio); 1894 if (!folio_test_swapcache(folio) || 1895 folio->swap.val != swap.val || 1896 !shmem_confirm_swap(mapping, index, swap)) { 1897 error = -EEXIST; 1898 goto unlock; 1899 } 1900 if (!folio_test_uptodate(folio)) { 1901 error = -EIO; 1902 goto failed; 1903 } 1904 folio_wait_writeback(folio); 1905 1906 /* 1907 * Some architectures may have to restore extra metadata to the 1908 * folio after reading from swap. 1909 */ 1910 arch_swap_restore(swap, folio); 1911 1912 if (shmem_should_replace_folio(folio, gfp)) { 1913 error = shmem_replace_folio(&folio, gfp, info, index); 1914 if (error) 1915 goto failed; 1916 } 1917 1918 error = shmem_add_to_page_cache(folio, mapping, index, 1919 swp_to_radix_entry(swap), gfp); 1920 if (error) 1921 goto failed; 1922 1923 shmem_recalc_inode(inode, 0, -1); 1924 1925 if (sgp == SGP_WRITE) 1926 folio_mark_accessed(folio); 1927 1928 delete_from_swap_cache(folio); 1929 folio_mark_dirty(folio); 1930 swap_free(swap); 1931 put_swap_device(si); 1932 1933 *foliop = folio; 1934 return 0; 1935 failed: 1936 if (!shmem_confirm_swap(mapping, index, swap)) 1937 error = -EEXIST; 1938 if (error == -EIO) 1939 shmem_set_folio_swapin_error(inode, index, folio, swap); 1940 unlock: 1941 if (folio) { 1942 folio_unlock(folio); 1943 folio_put(folio); 1944 } 1945 put_swap_device(si); 1946 1947 return error; 1948 } 1949 1950 /* 1951 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 1952 * 1953 * If we allocate a new one we do not mark it dirty. That's up to the 1954 * vm. If we swap it in we mark it dirty since we also free the swap 1955 * entry since a page cannot live in both the swap and page cache. 1956 * 1957 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 1958 */ 1959 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 1960 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 1961 struct vm_fault *vmf, vm_fault_t *fault_type) 1962 { 1963 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1964 struct mm_struct *fault_mm; 1965 struct folio *folio; 1966 int error; 1967 bool alloced; 1968 1969 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1970 return -EFBIG; 1971 repeat: 1972 if (sgp <= SGP_CACHE && 1973 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 1974 return -EINVAL; 1975 1976 alloced = false; 1977 fault_mm = vma ? vma->vm_mm : NULL; 1978 1979 folio = filemap_get_entry(inode->i_mapping, index); 1980 if (folio && vma && userfaultfd_minor(vma)) { 1981 if (!xa_is_value(folio)) 1982 folio_put(folio); 1983 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1984 return 0; 1985 } 1986 1987 if (xa_is_value(folio)) { 1988 error = shmem_swapin_folio(inode, index, &folio, 1989 sgp, gfp, fault_mm, fault_type); 1990 if (error == -EEXIST) 1991 goto repeat; 1992 1993 *foliop = folio; 1994 return error; 1995 } 1996 1997 if (folio) { 1998 folio_lock(folio); 1999 2000 /* Has the folio been truncated or swapped out? */ 2001 if (unlikely(folio->mapping != inode->i_mapping)) { 2002 folio_unlock(folio); 2003 folio_put(folio); 2004 goto repeat; 2005 } 2006 if (sgp == SGP_WRITE) 2007 folio_mark_accessed(folio); 2008 if (folio_test_uptodate(folio)) 2009 goto out; 2010 /* fallocated folio */ 2011 if (sgp != SGP_READ) 2012 goto clear; 2013 folio_unlock(folio); 2014 folio_put(folio); 2015 } 2016 2017 /* 2018 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2019 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2020 */ 2021 *foliop = NULL; 2022 if (sgp == SGP_READ) 2023 return 0; 2024 if (sgp == SGP_NOALLOC) 2025 return -ENOENT; 2026 2027 /* 2028 * Fast cache lookup and swap lookup did not find it: allocate. 2029 */ 2030 2031 if (vma && userfaultfd_missing(vma)) { 2032 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2033 return 0; 2034 } 2035 2036 if (shmem_is_huge(inode, index, false, fault_mm, 2037 vma ? vma->vm_flags : 0)) { 2038 gfp_t huge_gfp; 2039 2040 huge_gfp = vma_thp_gfp_mask(vma); 2041 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2042 folio = shmem_alloc_and_add_folio(huge_gfp, 2043 inode, index, fault_mm, true); 2044 if (!IS_ERR(folio)) { 2045 count_vm_event(THP_FILE_ALLOC); 2046 goto alloced; 2047 } 2048 if (PTR_ERR(folio) == -EEXIST) 2049 goto repeat; 2050 } 2051 2052 folio = shmem_alloc_and_add_folio(gfp, inode, index, fault_mm, false); 2053 if (IS_ERR(folio)) { 2054 error = PTR_ERR(folio); 2055 if (error == -EEXIST) 2056 goto repeat; 2057 folio = NULL; 2058 goto unlock; 2059 } 2060 2061 alloced: 2062 alloced = true; 2063 if (folio_test_pmd_mappable(folio) && 2064 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2065 folio_next_index(folio) - 1) { 2066 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2067 struct shmem_inode_info *info = SHMEM_I(inode); 2068 /* 2069 * Part of the large folio is beyond i_size: subject 2070 * to shrink under memory pressure. 2071 */ 2072 spin_lock(&sbinfo->shrinklist_lock); 2073 /* 2074 * _careful to defend against unlocked access to 2075 * ->shrink_list in shmem_unused_huge_shrink() 2076 */ 2077 if (list_empty_careful(&info->shrinklist)) { 2078 list_add_tail(&info->shrinklist, 2079 &sbinfo->shrinklist); 2080 sbinfo->shrinklist_len++; 2081 } 2082 spin_unlock(&sbinfo->shrinklist_lock); 2083 } 2084 2085 if (sgp == SGP_WRITE) 2086 folio_set_referenced(folio); 2087 /* 2088 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2089 */ 2090 if (sgp == SGP_FALLOC) 2091 sgp = SGP_WRITE; 2092 clear: 2093 /* 2094 * Let SGP_WRITE caller clear ends if write does not fill folio; 2095 * but SGP_FALLOC on a folio fallocated earlier must initialize 2096 * it now, lest undo on failure cancel our earlier guarantee. 2097 */ 2098 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2099 long i, n = folio_nr_pages(folio); 2100 2101 for (i = 0; i < n; i++) 2102 clear_highpage(folio_page(folio, i)); 2103 flush_dcache_folio(folio); 2104 folio_mark_uptodate(folio); 2105 } 2106 2107 /* Perhaps the file has been truncated since we checked */ 2108 if (sgp <= SGP_CACHE && 2109 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2110 error = -EINVAL; 2111 goto unlock; 2112 } 2113 out: 2114 *foliop = folio; 2115 return 0; 2116 2117 /* 2118 * Error recovery. 2119 */ 2120 unlock: 2121 if (alloced) 2122 filemap_remove_folio(folio); 2123 shmem_recalc_inode(inode, 0, 0); 2124 if (folio) { 2125 folio_unlock(folio); 2126 folio_put(folio); 2127 } 2128 return error; 2129 } 2130 2131 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop, 2132 enum sgp_type sgp) 2133 { 2134 return shmem_get_folio_gfp(inode, index, foliop, sgp, 2135 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2136 } 2137 2138 /* 2139 * This is like autoremove_wake_function, but it removes the wait queue 2140 * entry unconditionally - even if something else had already woken the 2141 * target. 2142 */ 2143 static int synchronous_wake_function(wait_queue_entry_t *wait, 2144 unsigned int mode, int sync, void *key) 2145 { 2146 int ret = default_wake_function(wait, mode, sync, key); 2147 list_del_init(&wait->entry); 2148 return ret; 2149 } 2150 2151 /* 2152 * Trinity finds that probing a hole which tmpfs is punching can 2153 * prevent the hole-punch from ever completing: which in turn 2154 * locks writers out with its hold on i_rwsem. So refrain from 2155 * faulting pages into the hole while it's being punched. Although 2156 * shmem_undo_range() does remove the additions, it may be unable to 2157 * keep up, as each new page needs its own unmap_mapping_range() call, 2158 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2159 * 2160 * It does not matter if we sometimes reach this check just before the 2161 * hole-punch begins, so that one fault then races with the punch: 2162 * we just need to make racing faults a rare case. 2163 * 2164 * The implementation below would be much simpler if we just used a 2165 * standard mutex or completion: but we cannot take i_rwsem in fault, 2166 * and bloating every shmem inode for this unlikely case would be sad. 2167 */ 2168 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2169 { 2170 struct shmem_falloc *shmem_falloc; 2171 struct file *fpin = NULL; 2172 vm_fault_t ret = 0; 2173 2174 spin_lock(&inode->i_lock); 2175 shmem_falloc = inode->i_private; 2176 if (shmem_falloc && 2177 shmem_falloc->waitq && 2178 vmf->pgoff >= shmem_falloc->start && 2179 vmf->pgoff < shmem_falloc->next) { 2180 wait_queue_head_t *shmem_falloc_waitq; 2181 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2182 2183 ret = VM_FAULT_NOPAGE; 2184 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2185 shmem_falloc_waitq = shmem_falloc->waitq; 2186 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2187 TASK_UNINTERRUPTIBLE); 2188 spin_unlock(&inode->i_lock); 2189 schedule(); 2190 2191 /* 2192 * shmem_falloc_waitq points into the shmem_fallocate() 2193 * stack of the hole-punching task: shmem_falloc_waitq 2194 * is usually invalid by the time we reach here, but 2195 * finish_wait() does not dereference it in that case; 2196 * though i_lock needed lest racing with wake_up_all(). 2197 */ 2198 spin_lock(&inode->i_lock); 2199 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2200 } 2201 spin_unlock(&inode->i_lock); 2202 if (fpin) { 2203 fput(fpin); 2204 ret = VM_FAULT_RETRY; 2205 } 2206 return ret; 2207 } 2208 2209 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2210 { 2211 struct inode *inode = file_inode(vmf->vma->vm_file); 2212 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2213 struct folio *folio = NULL; 2214 vm_fault_t ret = 0; 2215 int err; 2216 2217 /* 2218 * Trinity finds that probing a hole which tmpfs is punching can 2219 * prevent the hole-punch from ever completing: noted in i_private. 2220 */ 2221 if (unlikely(inode->i_private)) { 2222 ret = shmem_falloc_wait(vmf, inode); 2223 if (ret) 2224 return ret; 2225 } 2226 2227 WARN_ON_ONCE(vmf->page != NULL); 2228 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, 2229 gfp, vmf, &ret); 2230 if (err) 2231 return vmf_error(err); 2232 if (folio) { 2233 vmf->page = folio_file_page(folio, vmf->pgoff); 2234 ret |= VM_FAULT_LOCKED; 2235 } 2236 return ret; 2237 } 2238 2239 unsigned long shmem_get_unmapped_area(struct file *file, 2240 unsigned long uaddr, unsigned long len, 2241 unsigned long pgoff, unsigned long flags) 2242 { 2243 unsigned long (*get_area)(struct file *, 2244 unsigned long, unsigned long, unsigned long, unsigned long); 2245 unsigned long addr; 2246 unsigned long offset; 2247 unsigned long inflated_len; 2248 unsigned long inflated_addr; 2249 unsigned long inflated_offset; 2250 2251 if (len > TASK_SIZE) 2252 return -ENOMEM; 2253 2254 get_area = current->mm->get_unmapped_area; 2255 addr = get_area(file, uaddr, len, pgoff, flags); 2256 2257 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2258 return addr; 2259 if (IS_ERR_VALUE(addr)) 2260 return addr; 2261 if (addr & ~PAGE_MASK) 2262 return addr; 2263 if (addr > TASK_SIZE - len) 2264 return addr; 2265 2266 if (shmem_huge == SHMEM_HUGE_DENY) 2267 return addr; 2268 if (len < HPAGE_PMD_SIZE) 2269 return addr; 2270 if (flags & MAP_FIXED) 2271 return addr; 2272 /* 2273 * Our priority is to support MAP_SHARED mapped hugely; 2274 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2275 * But if caller specified an address hint and we allocated area there 2276 * successfully, respect that as before. 2277 */ 2278 if (uaddr == addr) 2279 return addr; 2280 2281 if (shmem_huge != SHMEM_HUGE_FORCE) { 2282 struct super_block *sb; 2283 2284 if (file) { 2285 VM_BUG_ON(file->f_op != &shmem_file_operations); 2286 sb = file_inode(file)->i_sb; 2287 } else { 2288 /* 2289 * Called directly from mm/mmap.c, or drivers/char/mem.c 2290 * for "/dev/zero", to create a shared anonymous object. 2291 */ 2292 if (IS_ERR(shm_mnt)) 2293 return addr; 2294 sb = shm_mnt->mnt_sb; 2295 } 2296 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2297 return addr; 2298 } 2299 2300 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2301 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2302 return addr; 2303 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2304 return addr; 2305 2306 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2307 if (inflated_len > TASK_SIZE) 2308 return addr; 2309 if (inflated_len < len) 2310 return addr; 2311 2312 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2313 if (IS_ERR_VALUE(inflated_addr)) 2314 return addr; 2315 if (inflated_addr & ~PAGE_MASK) 2316 return addr; 2317 2318 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2319 inflated_addr += offset - inflated_offset; 2320 if (inflated_offset > offset) 2321 inflated_addr += HPAGE_PMD_SIZE; 2322 2323 if (inflated_addr > TASK_SIZE - len) 2324 return addr; 2325 return inflated_addr; 2326 } 2327 2328 #ifdef CONFIG_NUMA 2329 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2330 { 2331 struct inode *inode = file_inode(vma->vm_file); 2332 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2333 } 2334 2335 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2336 unsigned long addr, pgoff_t *ilx) 2337 { 2338 struct inode *inode = file_inode(vma->vm_file); 2339 pgoff_t index; 2340 2341 /* 2342 * Bias interleave by inode number to distribute better across nodes; 2343 * but this interface is independent of which page order is used, so 2344 * supplies only that bias, letting caller apply the offset (adjusted 2345 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2346 */ 2347 *ilx = inode->i_ino; 2348 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2349 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2350 } 2351 2352 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2353 pgoff_t index, unsigned int order, pgoff_t *ilx) 2354 { 2355 struct mempolicy *mpol; 2356 2357 /* Bias interleave by inode number to distribute better across nodes */ 2358 *ilx = info->vfs_inode.i_ino + (index >> order); 2359 2360 mpol = mpol_shared_policy_lookup(&info->policy, index); 2361 return mpol ? mpol : get_task_policy(current); 2362 } 2363 #else 2364 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2365 pgoff_t index, unsigned int order, pgoff_t *ilx) 2366 { 2367 *ilx = 0; 2368 return NULL; 2369 } 2370 #endif /* CONFIG_NUMA */ 2371 2372 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2373 { 2374 struct inode *inode = file_inode(file); 2375 struct shmem_inode_info *info = SHMEM_I(inode); 2376 int retval = -ENOMEM; 2377 2378 /* 2379 * What serializes the accesses to info->flags? 2380 * ipc_lock_object() when called from shmctl_do_lock(), 2381 * no serialization needed when called from shm_destroy(). 2382 */ 2383 if (lock && !(info->flags & VM_LOCKED)) { 2384 if (!user_shm_lock(inode->i_size, ucounts)) 2385 goto out_nomem; 2386 info->flags |= VM_LOCKED; 2387 mapping_set_unevictable(file->f_mapping); 2388 } 2389 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2390 user_shm_unlock(inode->i_size, ucounts); 2391 info->flags &= ~VM_LOCKED; 2392 mapping_clear_unevictable(file->f_mapping); 2393 } 2394 retval = 0; 2395 2396 out_nomem: 2397 return retval; 2398 } 2399 2400 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2401 { 2402 struct inode *inode = file_inode(file); 2403 struct shmem_inode_info *info = SHMEM_I(inode); 2404 int ret; 2405 2406 ret = seal_check_write(info->seals, vma); 2407 if (ret) 2408 return ret; 2409 2410 /* arm64 - allow memory tagging on RAM-based files */ 2411 vm_flags_set(vma, VM_MTE_ALLOWED); 2412 2413 file_accessed(file); 2414 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2415 if (inode->i_nlink) 2416 vma->vm_ops = &shmem_vm_ops; 2417 else 2418 vma->vm_ops = &shmem_anon_vm_ops; 2419 return 0; 2420 } 2421 2422 static int shmem_file_open(struct inode *inode, struct file *file) 2423 { 2424 file->f_mode |= FMODE_CAN_ODIRECT; 2425 return generic_file_open(inode, file); 2426 } 2427 2428 #ifdef CONFIG_TMPFS_XATTR 2429 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2430 2431 /* 2432 * chattr's fsflags are unrelated to extended attributes, 2433 * but tmpfs has chosen to enable them under the same config option. 2434 */ 2435 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2436 { 2437 unsigned int i_flags = 0; 2438 2439 if (fsflags & FS_NOATIME_FL) 2440 i_flags |= S_NOATIME; 2441 if (fsflags & FS_APPEND_FL) 2442 i_flags |= S_APPEND; 2443 if (fsflags & FS_IMMUTABLE_FL) 2444 i_flags |= S_IMMUTABLE; 2445 /* 2446 * But FS_NODUMP_FL does not require any action in i_flags. 2447 */ 2448 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2449 } 2450 #else 2451 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2452 { 2453 } 2454 #define shmem_initxattrs NULL 2455 #endif 2456 2457 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 2458 { 2459 return &SHMEM_I(inode)->dir_offsets; 2460 } 2461 2462 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 2463 struct super_block *sb, 2464 struct inode *dir, umode_t mode, 2465 dev_t dev, unsigned long flags) 2466 { 2467 struct inode *inode; 2468 struct shmem_inode_info *info; 2469 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2470 ino_t ino; 2471 int err; 2472 2473 err = shmem_reserve_inode(sb, &ino); 2474 if (err) 2475 return ERR_PTR(err); 2476 2477 inode = new_inode(sb); 2478 if (!inode) { 2479 shmem_free_inode(sb, 0); 2480 return ERR_PTR(-ENOSPC); 2481 } 2482 2483 inode->i_ino = ino; 2484 inode_init_owner(idmap, inode, dir, mode); 2485 inode->i_blocks = 0; 2486 simple_inode_init_ts(inode); 2487 inode->i_generation = get_random_u32(); 2488 info = SHMEM_I(inode); 2489 memset(info, 0, (char *)inode - (char *)info); 2490 spin_lock_init(&info->lock); 2491 atomic_set(&info->stop_eviction, 0); 2492 info->seals = F_SEAL_SEAL; 2493 info->flags = flags & VM_NORESERVE; 2494 info->i_crtime = inode_get_mtime(inode); 2495 info->fsflags = (dir == NULL) ? 0 : 2496 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2497 if (info->fsflags) 2498 shmem_set_inode_flags(inode, info->fsflags); 2499 INIT_LIST_HEAD(&info->shrinklist); 2500 INIT_LIST_HEAD(&info->swaplist); 2501 simple_xattrs_init(&info->xattrs); 2502 cache_no_acl(inode); 2503 if (sbinfo->noswap) 2504 mapping_set_unevictable(inode->i_mapping); 2505 mapping_set_large_folios(inode->i_mapping); 2506 2507 switch (mode & S_IFMT) { 2508 default: 2509 inode->i_op = &shmem_special_inode_operations; 2510 init_special_inode(inode, mode, dev); 2511 break; 2512 case S_IFREG: 2513 inode->i_mapping->a_ops = &shmem_aops; 2514 inode->i_op = &shmem_inode_operations; 2515 inode->i_fop = &shmem_file_operations; 2516 mpol_shared_policy_init(&info->policy, 2517 shmem_get_sbmpol(sbinfo)); 2518 break; 2519 case S_IFDIR: 2520 inc_nlink(inode); 2521 /* Some things misbehave if size == 0 on a directory */ 2522 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2523 inode->i_op = &shmem_dir_inode_operations; 2524 inode->i_fop = &simple_offset_dir_operations; 2525 simple_offset_init(shmem_get_offset_ctx(inode)); 2526 break; 2527 case S_IFLNK: 2528 /* 2529 * Must not load anything in the rbtree, 2530 * mpol_free_shared_policy will not be called. 2531 */ 2532 mpol_shared_policy_init(&info->policy, NULL); 2533 break; 2534 } 2535 2536 lockdep_annotate_inode_mutex_key(inode); 2537 return inode; 2538 } 2539 2540 #ifdef CONFIG_TMPFS_QUOTA 2541 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2542 struct super_block *sb, struct inode *dir, 2543 umode_t mode, dev_t dev, unsigned long flags) 2544 { 2545 int err; 2546 struct inode *inode; 2547 2548 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2549 if (IS_ERR(inode)) 2550 return inode; 2551 2552 err = dquot_initialize(inode); 2553 if (err) 2554 goto errout; 2555 2556 err = dquot_alloc_inode(inode); 2557 if (err) { 2558 dquot_drop(inode); 2559 goto errout; 2560 } 2561 return inode; 2562 2563 errout: 2564 inode->i_flags |= S_NOQUOTA; 2565 iput(inode); 2566 return ERR_PTR(err); 2567 } 2568 #else 2569 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2570 struct super_block *sb, struct inode *dir, 2571 umode_t mode, dev_t dev, unsigned long flags) 2572 { 2573 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2574 } 2575 #endif /* CONFIG_TMPFS_QUOTA */ 2576 2577 #ifdef CONFIG_USERFAULTFD 2578 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 2579 struct vm_area_struct *dst_vma, 2580 unsigned long dst_addr, 2581 unsigned long src_addr, 2582 uffd_flags_t flags, 2583 struct folio **foliop) 2584 { 2585 struct inode *inode = file_inode(dst_vma->vm_file); 2586 struct shmem_inode_info *info = SHMEM_I(inode); 2587 struct address_space *mapping = inode->i_mapping; 2588 gfp_t gfp = mapping_gfp_mask(mapping); 2589 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2590 void *page_kaddr; 2591 struct folio *folio; 2592 int ret; 2593 pgoff_t max_off; 2594 2595 if (shmem_inode_acct_blocks(inode, 1)) { 2596 /* 2597 * We may have got a page, returned -ENOENT triggering a retry, 2598 * and now we find ourselves with -ENOMEM. Release the page, to 2599 * avoid a BUG_ON in our caller. 2600 */ 2601 if (unlikely(*foliop)) { 2602 folio_put(*foliop); 2603 *foliop = NULL; 2604 } 2605 return -ENOMEM; 2606 } 2607 2608 if (!*foliop) { 2609 ret = -ENOMEM; 2610 folio = shmem_alloc_folio(gfp, info, pgoff); 2611 if (!folio) 2612 goto out_unacct_blocks; 2613 2614 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 2615 page_kaddr = kmap_local_folio(folio, 0); 2616 /* 2617 * The read mmap_lock is held here. Despite the 2618 * mmap_lock being read recursive a deadlock is still 2619 * possible if a writer has taken a lock. For example: 2620 * 2621 * process A thread 1 takes read lock on own mmap_lock 2622 * process A thread 2 calls mmap, blocks taking write lock 2623 * process B thread 1 takes page fault, read lock on own mmap lock 2624 * process B thread 2 calls mmap, blocks taking write lock 2625 * process A thread 1 blocks taking read lock on process B 2626 * process B thread 1 blocks taking read lock on process A 2627 * 2628 * Disable page faults to prevent potential deadlock 2629 * and retry the copy outside the mmap_lock. 2630 */ 2631 pagefault_disable(); 2632 ret = copy_from_user(page_kaddr, 2633 (const void __user *)src_addr, 2634 PAGE_SIZE); 2635 pagefault_enable(); 2636 kunmap_local(page_kaddr); 2637 2638 /* fallback to copy_from_user outside mmap_lock */ 2639 if (unlikely(ret)) { 2640 *foliop = folio; 2641 ret = -ENOENT; 2642 /* don't free the page */ 2643 goto out_unacct_blocks; 2644 } 2645 2646 flush_dcache_folio(folio); 2647 } else { /* ZEROPAGE */ 2648 clear_user_highpage(&folio->page, dst_addr); 2649 } 2650 } else { 2651 folio = *foliop; 2652 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2653 *foliop = NULL; 2654 } 2655 2656 VM_BUG_ON(folio_test_locked(folio)); 2657 VM_BUG_ON(folio_test_swapbacked(folio)); 2658 __folio_set_locked(folio); 2659 __folio_set_swapbacked(folio); 2660 __folio_mark_uptodate(folio); 2661 2662 ret = -EFAULT; 2663 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2664 if (unlikely(pgoff >= max_off)) 2665 goto out_release; 2666 2667 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 2668 if (ret) 2669 goto out_release; 2670 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 2671 if (ret) 2672 goto out_release; 2673 2674 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 2675 &folio->page, true, flags); 2676 if (ret) 2677 goto out_delete_from_cache; 2678 2679 shmem_recalc_inode(inode, 1, 0); 2680 folio_unlock(folio); 2681 return 0; 2682 out_delete_from_cache: 2683 filemap_remove_folio(folio); 2684 out_release: 2685 folio_unlock(folio); 2686 folio_put(folio); 2687 out_unacct_blocks: 2688 shmem_inode_unacct_blocks(inode, 1); 2689 return ret; 2690 } 2691 #endif /* CONFIG_USERFAULTFD */ 2692 2693 #ifdef CONFIG_TMPFS 2694 static const struct inode_operations shmem_symlink_inode_operations; 2695 static const struct inode_operations shmem_short_symlink_operations; 2696 2697 static int 2698 shmem_write_begin(struct file *file, struct address_space *mapping, 2699 loff_t pos, unsigned len, 2700 struct page **pagep, void **fsdata) 2701 { 2702 struct inode *inode = mapping->host; 2703 struct shmem_inode_info *info = SHMEM_I(inode); 2704 pgoff_t index = pos >> PAGE_SHIFT; 2705 struct folio *folio; 2706 int ret = 0; 2707 2708 /* i_rwsem is held by caller */ 2709 if (unlikely(info->seals & (F_SEAL_GROW | 2710 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2711 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2712 return -EPERM; 2713 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2714 return -EPERM; 2715 } 2716 2717 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE); 2718 if (ret) 2719 return ret; 2720 2721 *pagep = folio_file_page(folio, index); 2722 if (PageHWPoison(*pagep)) { 2723 folio_unlock(folio); 2724 folio_put(folio); 2725 *pagep = NULL; 2726 return -EIO; 2727 } 2728 2729 return 0; 2730 } 2731 2732 static int 2733 shmem_write_end(struct file *file, struct address_space *mapping, 2734 loff_t pos, unsigned len, unsigned copied, 2735 struct page *page, void *fsdata) 2736 { 2737 struct folio *folio = page_folio(page); 2738 struct inode *inode = mapping->host; 2739 2740 if (pos + copied > inode->i_size) 2741 i_size_write(inode, pos + copied); 2742 2743 if (!folio_test_uptodate(folio)) { 2744 if (copied < folio_size(folio)) { 2745 size_t from = offset_in_folio(folio, pos); 2746 folio_zero_segments(folio, 0, from, 2747 from + copied, folio_size(folio)); 2748 } 2749 folio_mark_uptodate(folio); 2750 } 2751 folio_mark_dirty(folio); 2752 folio_unlock(folio); 2753 folio_put(folio); 2754 2755 return copied; 2756 } 2757 2758 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2759 { 2760 struct file *file = iocb->ki_filp; 2761 struct inode *inode = file_inode(file); 2762 struct address_space *mapping = inode->i_mapping; 2763 pgoff_t index; 2764 unsigned long offset; 2765 int error = 0; 2766 ssize_t retval = 0; 2767 loff_t *ppos = &iocb->ki_pos; 2768 2769 index = *ppos >> PAGE_SHIFT; 2770 offset = *ppos & ~PAGE_MASK; 2771 2772 for (;;) { 2773 struct folio *folio = NULL; 2774 struct page *page = NULL; 2775 pgoff_t end_index; 2776 unsigned long nr, ret; 2777 loff_t i_size = i_size_read(inode); 2778 2779 end_index = i_size >> PAGE_SHIFT; 2780 if (index > end_index) 2781 break; 2782 if (index == end_index) { 2783 nr = i_size & ~PAGE_MASK; 2784 if (nr <= offset) 2785 break; 2786 } 2787 2788 error = shmem_get_folio(inode, index, &folio, SGP_READ); 2789 if (error) { 2790 if (error == -EINVAL) 2791 error = 0; 2792 break; 2793 } 2794 if (folio) { 2795 folio_unlock(folio); 2796 2797 page = folio_file_page(folio, index); 2798 if (PageHWPoison(page)) { 2799 folio_put(folio); 2800 error = -EIO; 2801 break; 2802 } 2803 } 2804 2805 /* 2806 * We must evaluate after, since reads (unlike writes) 2807 * are called without i_rwsem protection against truncate 2808 */ 2809 nr = PAGE_SIZE; 2810 i_size = i_size_read(inode); 2811 end_index = i_size >> PAGE_SHIFT; 2812 if (index == end_index) { 2813 nr = i_size & ~PAGE_MASK; 2814 if (nr <= offset) { 2815 if (folio) 2816 folio_put(folio); 2817 break; 2818 } 2819 } 2820 nr -= offset; 2821 2822 if (folio) { 2823 /* 2824 * If users can be writing to this page using arbitrary 2825 * virtual addresses, take care about potential aliasing 2826 * before reading the page on the kernel side. 2827 */ 2828 if (mapping_writably_mapped(mapping)) 2829 flush_dcache_page(page); 2830 /* 2831 * Mark the page accessed if we read the beginning. 2832 */ 2833 if (!offset) 2834 folio_mark_accessed(folio); 2835 /* 2836 * Ok, we have the page, and it's up-to-date, so 2837 * now we can copy it to user space... 2838 */ 2839 ret = copy_page_to_iter(page, offset, nr, to); 2840 folio_put(folio); 2841 2842 } else if (user_backed_iter(to)) { 2843 /* 2844 * Copy to user tends to be so well optimized, but 2845 * clear_user() not so much, that it is noticeably 2846 * faster to copy the zero page instead of clearing. 2847 */ 2848 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2849 } else { 2850 /* 2851 * But submitting the same page twice in a row to 2852 * splice() - or others? - can result in confusion: 2853 * so don't attempt that optimization on pipes etc. 2854 */ 2855 ret = iov_iter_zero(nr, to); 2856 } 2857 2858 retval += ret; 2859 offset += ret; 2860 index += offset >> PAGE_SHIFT; 2861 offset &= ~PAGE_MASK; 2862 2863 if (!iov_iter_count(to)) 2864 break; 2865 if (ret < nr) { 2866 error = -EFAULT; 2867 break; 2868 } 2869 cond_resched(); 2870 } 2871 2872 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2873 file_accessed(file); 2874 return retval ? retval : error; 2875 } 2876 2877 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2878 { 2879 struct file *file = iocb->ki_filp; 2880 struct inode *inode = file->f_mapping->host; 2881 ssize_t ret; 2882 2883 inode_lock(inode); 2884 ret = generic_write_checks(iocb, from); 2885 if (ret <= 0) 2886 goto unlock; 2887 ret = file_remove_privs(file); 2888 if (ret) 2889 goto unlock; 2890 ret = file_update_time(file); 2891 if (ret) 2892 goto unlock; 2893 ret = generic_perform_write(iocb, from); 2894 unlock: 2895 inode_unlock(inode); 2896 return ret; 2897 } 2898 2899 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 2900 struct pipe_buffer *buf) 2901 { 2902 return true; 2903 } 2904 2905 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 2906 struct pipe_buffer *buf) 2907 { 2908 } 2909 2910 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 2911 struct pipe_buffer *buf) 2912 { 2913 return false; 2914 } 2915 2916 static const struct pipe_buf_operations zero_pipe_buf_ops = { 2917 .release = zero_pipe_buf_release, 2918 .try_steal = zero_pipe_buf_try_steal, 2919 .get = zero_pipe_buf_get, 2920 }; 2921 2922 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 2923 loff_t fpos, size_t size) 2924 { 2925 size_t offset = fpos & ~PAGE_MASK; 2926 2927 size = min_t(size_t, size, PAGE_SIZE - offset); 2928 2929 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2930 struct pipe_buffer *buf = pipe_head_buf(pipe); 2931 2932 *buf = (struct pipe_buffer) { 2933 .ops = &zero_pipe_buf_ops, 2934 .page = ZERO_PAGE(0), 2935 .offset = offset, 2936 .len = size, 2937 }; 2938 pipe->head++; 2939 } 2940 2941 return size; 2942 } 2943 2944 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 2945 struct pipe_inode_info *pipe, 2946 size_t len, unsigned int flags) 2947 { 2948 struct inode *inode = file_inode(in); 2949 struct address_space *mapping = inode->i_mapping; 2950 struct folio *folio = NULL; 2951 size_t total_spliced = 0, used, npages, n, part; 2952 loff_t isize; 2953 int error = 0; 2954 2955 /* Work out how much data we can actually add into the pipe */ 2956 used = pipe_occupancy(pipe->head, pipe->tail); 2957 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2958 len = min_t(size_t, len, npages * PAGE_SIZE); 2959 2960 do { 2961 if (*ppos >= i_size_read(inode)) 2962 break; 2963 2964 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio, 2965 SGP_READ); 2966 if (error) { 2967 if (error == -EINVAL) 2968 error = 0; 2969 break; 2970 } 2971 if (folio) { 2972 folio_unlock(folio); 2973 2974 if (folio_test_hwpoison(folio) || 2975 (folio_test_large(folio) && 2976 folio_test_has_hwpoisoned(folio))) { 2977 error = -EIO; 2978 break; 2979 } 2980 } 2981 2982 /* 2983 * i_size must be checked after we know the pages are Uptodate. 2984 * 2985 * Checking i_size after the check allows us to calculate 2986 * the correct value for "nr", which means the zero-filled 2987 * part of the page is not copied back to userspace (unless 2988 * another truncate extends the file - this is desired though). 2989 */ 2990 isize = i_size_read(inode); 2991 if (unlikely(*ppos >= isize)) 2992 break; 2993 part = min_t(loff_t, isize - *ppos, len); 2994 2995 if (folio) { 2996 /* 2997 * If users can be writing to this page using arbitrary 2998 * virtual addresses, take care about potential aliasing 2999 * before reading the page on the kernel side. 3000 */ 3001 if (mapping_writably_mapped(mapping)) 3002 flush_dcache_folio(folio); 3003 folio_mark_accessed(folio); 3004 /* 3005 * Ok, we have the page, and it's up-to-date, so we can 3006 * now splice it into the pipe. 3007 */ 3008 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3009 folio_put(folio); 3010 folio = NULL; 3011 } else { 3012 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3013 } 3014 3015 if (!n) 3016 break; 3017 len -= n; 3018 total_spliced += n; 3019 *ppos += n; 3020 in->f_ra.prev_pos = *ppos; 3021 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 3022 break; 3023 3024 cond_resched(); 3025 } while (len); 3026 3027 if (folio) 3028 folio_put(folio); 3029 3030 file_accessed(in); 3031 return total_spliced ? total_spliced : error; 3032 } 3033 3034 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3035 { 3036 struct address_space *mapping = file->f_mapping; 3037 struct inode *inode = mapping->host; 3038 3039 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3040 return generic_file_llseek_size(file, offset, whence, 3041 MAX_LFS_FILESIZE, i_size_read(inode)); 3042 if (offset < 0) 3043 return -ENXIO; 3044 3045 inode_lock(inode); 3046 /* We're holding i_rwsem so we can access i_size directly */ 3047 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3048 if (offset >= 0) 3049 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3050 inode_unlock(inode); 3051 return offset; 3052 } 3053 3054 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3055 loff_t len) 3056 { 3057 struct inode *inode = file_inode(file); 3058 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3059 struct shmem_inode_info *info = SHMEM_I(inode); 3060 struct shmem_falloc shmem_falloc; 3061 pgoff_t start, index, end, undo_fallocend; 3062 int error; 3063 3064 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3065 return -EOPNOTSUPP; 3066 3067 inode_lock(inode); 3068 3069 if (mode & FALLOC_FL_PUNCH_HOLE) { 3070 struct address_space *mapping = file->f_mapping; 3071 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3072 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3073 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3074 3075 /* protected by i_rwsem */ 3076 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3077 error = -EPERM; 3078 goto out; 3079 } 3080 3081 shmem_falloc.waitq = &shmem_falloc_waitq; 3082 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3083 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3084 spin_lock(&inode->i_lock); 3085 inode->i_private = &shmem_falloc; 3086 spin_unlock(&inode->i_lock); 3087 3088 if ((u64)unmap_end > (u64)unmap_start) 3089 unmap_mapping_range(mapping, unmap_start, 3090 1 + unmap_end - unmap_start, 0); 3091 shmem_truncate_range(inode, offset, offset + len - 1); 3092 /* No need to unmap again: hole-punching leaves COWed pages */ 3093 3094 spin_lock(&inode->i_lock); 3095 inode->i_private = NULL; 3096 wake_up_all(&shmem_falloc_waitq); 3097 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3098 spin_unlock(&inode->i_lock); 3099 error = 0; 3100 goto out; 3101 } 3102 3103 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3104 error = inode_newsize_ok(inode, offset + len); 3105 if (error) 3106 goto out; 3107 3108 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3109 error = -EPERM; 3110 goto out; 3111 } 3112 3113 start = offset >> PAGE_SHIFT; 3114 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3115 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3116 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3117 error = -ENOSPC; 3118 goto out; 3119 } 3120 3121 shmem_falloc.waitq = NULL; 3122 shmem_falloc.start = start; 3123 shmem_falloc.next = start; 3124 shmem_falloc.nr_falloced = 0; 3125 shmem_falloc.nr_unswapped = 0; 3126 spin_lock(&inode->i_lock); 3127 inode->i_private = &shmem_falloc; 3128 spin_unlock(&inode->i_lock); 3129 3130 /* 3131 * info->fallocend is only relevant when huge pages might be 3132 * involved: to prevent split_huge_page() freeing fallocated 3133 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3134 */ 3135 undo_fallocend = info->fallocend; 3136 if (info->fallocend < end) 3137 info->fallocend = end; 3138 3139 for (index = start; index < end; ) { 3140 struct folio *folio; 3141 3142 /* 3143 * Good, the fallocate(2) manpage permits EINTR: we may have 3144 * been interrupted because we are using up too much memory. 3145 */ 3146 if (signal_pending(current)) 3147 error = -EINTR; 3148 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3149 error = -ENOMEM; 3150 else 3151 error = shmem_get_folio(inode, index, &folio, 3152 SGP_FALLOC); 3153 if (error) { 3154 info->fallocend = undo_fallocend; 3155 /* Remove the !uptodate folios we added */ 3156 if (index > start) { 3157 shmem_undo_range(inode, 3158 (loff_t)start << PAGE_SHIFT, 3159 ((loff_t)index << PAGE_SHIFT) - 1, true); 3160 } 3161 goto undone; 3162 } 3163 3164 /* 3165 * Here is a more important optimization than it appears: 3166 * a second SGP_FALLOC on the same large folio will clear it, 3167 * making it uptodate and un-undoable if we fail later. 3168 */ 3169 index = folio_next_index(folio); 3170 /* Beware 32-bit wraparound */ 3171 if (!index) 3172 index--; 3173 3174 /* 3175 * Inform shmem_writepage() how far we have reached. 3176 * No need for lock or barrier: we have the page lock. 3177 */ 3178 if (!folio_test_uptodate(folio)) 3179 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3180 shmem_falloc.next = index; 3181 3182 /* 3183 * If !uptodate, leave it that way so that freeable folios 3184 * can be recognized if we need to rollback on error later. 3185 * But mark it dirty so that memory pressure will swap rather 3186 * than free the folios we are allocating (and SGP_CACHE folios 3187 * might still be clean: we now need to mark those dirty too). 3188 */ 3189 folio_mark_dirty(folio); 3190 folio_unlock(folio); 3191 folio_put(folio); 3192 cond_resched(); 3193 } 3194 3195 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3196 i_size_write(inode, offset + len); 3197 undone: 3198 spin_lock(&inode->i_lock); 3199 inode->i_private = NULL; 3200 spin_unlock(&inode->i_lock); 3201 out: 3202 if (!error) 3203 file_modified(file); 3204 inode_unlock(inode); 3205 return error; 3206 } 3207 3208 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3209 { 3210 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3211 3212 buf->f_type = TMPFS_MAGIC; 3213 buf->f_bsize = PAGE_SIZE; 3214 buf->f_namelen = NAME_MAX; 3215 if (sbinfo->max_blocks) { 3216 buf->f_blocks = sbinfo->max_blocks; 3217 buf->f_bavail = 3218 buf->f_bfree = sbinfo->max_blocks - 3219 percpu_counter_sum(&sbinfo->used_blocks); 3220 } 3221 if (sbinfo->max_inodes) { 3222 buf->f_files = sbinfo->max_inodes; 3223 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3224 } 3225 /* else leave those fields 0 like simple_statfs */ 3226 3227 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3228 3229 return 0; 3230 } 3231 3232 /* 3233 * File creation. Allocate an inode, and we're done.. 3234 */ 3235 static int 3236 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3237 struct dentry *dentry, umode_t mode, dev_t dev) 3238 { 3239 struct inode *inode; 3240 int error; 3241 3242 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3243 if (IS_ERR(inode)) 3244 return PTR_ERR(inode); 3245 3246 error = simple_acl_create(dir, inode); 3247 if (error) 3248 goto out_iput; 3249 error = security_inode_init_security(inode, dir, &dentry->d_name, 3250 shmem_initxattrs, NULL); 3251 if (error && error != -EOPNOTSUPP) 3252 goto out_iput; 3253 3254 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3255 if (error) 3256 goto out_iput; 3257 3258 dir->i_size += BOGO_DIRENT_SIZE; 3259 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3260 inode_inc_iversion(dir); 3261 d_instantiate(dentry, inode); 3262 dget(dentry); /* Extra count - pin the dentry in core */ 3263 return error; 3264 3265 out_iput: 3266 iput(inode); 3267 return error; 3268 } 3269 3270 static int 3271 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3272 struct file *file, umode_t mode) 3273 { 3274 struct inode *inode; 3275 int error; 3276 3277 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3278 if (IS_ERR(inode)) { 3279 error = PTR_ERR(inode); 3280 goto err_out; 3281 } 3282 error = security_inode_init_security(inode, dir, NULL, 3283 shmem_initxattrs, NULL); 3284 if (error && error != -EOPNOTSUPP) 3285 goto out_iput; 3286 error = simple_acl_create(dir, inode); 3287 if (error) 3288 goto out_iput; 3289 d_tmpfile(file, inode); 3290 3291 err_out: 3292 return finish_open_simple(file, error); 3293 out_iput: 3294 iput(inode); 3295 return error; 3296 } 3297 3298 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3299 struct dentry *dentry, umode_t mode) 3300 { 3301 int error; 3302 3303 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3304 if (error) 3305 return error; 3306 inc_nlink(dir); 3307 return 0; 3308 } 3309 3310 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3311 struct dentry *dentry, umode_t mode, bool excl) 3312 { 3313 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3314 } 3315 3316 /* 3317 * Link a file.. 3318 */ 3319 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3320 struct dentry *dentry) 3321 { 3322 struct inode *inode = d_inode(old_dentry); 3323 int ret = 0; 3324 3325 /* 3326 * No ordinary (disk based) filesystem counts links as inodes; 3327 * but each new link needs a new dentry, pinning lowmem, and 3328 * tmpfs dentries cannot be pruned until they are unlinked. 3329 * But if an O_TMPFILE file is linked into the tmpfs, the 3330 * first link must skip that, to get the accounting right. 3331 */ 3332 if (inode->i_nlink) { 3333 ret = shmem_reserve_inode(inode->i_sb, NULL); 3334 if (ret) 3335 goto out; 3336 } 3337 3338 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3339 if (ret) { 3340 if (inode->i_nlink) 3341 shmem_free_inode(inode->i_sb, 0); 3342 goto out; 3343 } 3344 3345 dir->i_size += BOGO_DIRENT_SIZE; 3346 inode_set_mtime_to_ts(dir, 3347 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3348 inode_inc_iversion(dir); 3349 inc_nlink(inode); 3350 ihold(inode); /* New dentry reference */ 3351 dget(dentry); /* Extra pinning count for the created dentry */ 3352 d_instantiate(dentry, inode); 3353 out: 3354 return ret; 3355 } 3356 3357 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3358 { 3359 struct inode *inode = d_inode(dentry); 3360 3361 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3362 shmem_free_inode(inode->i_sb, 0); 3363 3364 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3365 3366 dir->i_size -= BOGO_DIRENT_SIZE; 3367 inode_set_mtime_to_ts(dir, 3368 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3369 inode_inc_iversion(dir); 3370 drop_nlink(inode); 3371 dput(dentry); /* Undo the count from "create" - does all the work */ 3372 return 0; 3373 } 3374 3375 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3376 { 3377 if (!simple_empty(dentry)) 3378 return -ENOTEMPTY; 3379 3380 drop_nlink(d_inode(dentry)); 3381 drop_nlink(dir); 3382 return shmem_unlink(dir, dentry); 3383 } 3384 3385 static int shmem_whiteout(struct mnt_idmap *idmap, 3386 struct inode *old_dir, struct dentry *old_dentry) 3387 { 3388 struct dentry *whiteout; 3389 int error; 3390 3391 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3392 if (!whiteout) 3393 return -ENOMEM; 3394 3395 error = shmem_mknod(idmap, old_dir, whiteout, 3396 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3397 dput(whiteout); 3398 if (error) 3399 return error; 3400 3401 /* 3402 * Cheat and hash the whiteout while the old dentry is still in 3403 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3404 * 3405 * d_lookup() will consistently find one of them at this point, 3406 * not sure which one, but that isn't even important. 3407 */ 3408 d_rehash(whiteout); 3409 return 0; 3410 } 3411 3412 /* 3413 * The VFS layer already does all the dentry stuff for rename, 3414 * we just have to decrement the usage count for the target if 3415 * it exists so that the VFS layer correctly free's it when it 3416 * gets overwritten. 3417 */ 3418 static int shmem_rename2(struct mnt_idmap *idmap, 3419 struct inode *old_dir, struct dentry *old_dentry, 3420 struct inode *new_dir, struct dentry *new_dentry, 3421 unsigned int flags) 3422 { 3423 struct inode *inode = d_inode(old_dentry); 3424 int they_are_dirs = S_ISDIR(inode->i_mode); 3425 int error; 3426 3427 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3428 return -EINVAL; 3429 3430 if (flags & RENAME_EXCHANGE) 3431 return simple_offset_rename_exchange(old_dir, old_dentry, 3432 new_dir, new_dentry); 3433 3434 if (!simple_empty(new_dentry)) 3435 return -ENOTEMPTY; 3436 3437 if (flags & RENAME_WHITEOUT) { 3438 error = shmem_whiteout(idmap, old_dir, old_dentry); 3439 if (error) 3440 return error; 3441 } 3442 3443 simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry); 3444 error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry); 3445 if (error) 3446 return error; 3447 3448 if (d_really_is_positive(new_dentry)) { 3449 (void) shmem_unlink(new_dir, new_dentry); 3450 if (they_are_dirs) { 3451 drop_nlink(d_inode(new_dentry)); 3452 drop_nlink(old_dir); 3453 } 3454 } else if (they_are_dirs) { 3455 drop_nlink(old_dir); 3456 inc_nlink(new_dir); 3457 } 3458 3459 old_dir->i_size -= BOGO_DIRENT_SIZE; 3460 new_dir->i_size += BOGO_DIRENT_SIZE; 3461 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 3462 inode_inc_iversion(old_dir); 3463 inode_inc_iversion(new_dir); 3464 return 0; 3465 } 3466 3467 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3468 struct dentry *dentry, const char *symname) 3469 { 3470 int error; 3471 int len; 3472 struct inode *inode; 3473 struct folio *folio; 3474 3475 len = strlen(symname) + 1; 3476 if (len > PAGE_SIZE) 3477 return -ENAMETOOLONG; 3478 3479 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3480 VM_NORESERVE); 3481 if (IS_ERR(inode)) 3482 return PTR_ERR(inode); 3483 3484 error = security_inode_init_security(inode, dir, &dentry->d_name, 3485 shmem_initxattrs, NULL); 3486 if (error && error != -EOPNOTSUPP) 3487 goto out_iput; 3488 3489 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3490 if (error) 3491 goto out_iput; 3492 3493 inode->i_size = len-1; 3494 if (len <= SHORT_SYMLINK_LEN) { 3495 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3496 if (!inode->i_link) { 3497 error = -ENOMEM; 3498 goto out_remove_offset; 3499 } 3500 inode->i_op = &shmem_short_symlink_operations; 3501 } else { 3502 inode_nohighmem(inode); 3503 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE); 3504 if (error) 3505 goto out_remove_offset; 3506 inode->i_mapping->a_ops = &shmem_aops; 3507 inode->i_op = &shmem_symlink_inode_operations; 3508 memcpy(folio_address(folio), symname, len); 3509 folio_mark_uptodate(folio); 3510 folio_mark_dirty(folio); 3511 folio_unlock(folio); 3512 folio_put(folio); 3513 } 3514 dir->i_size += BOGO_DIRENT_SIZE; 3515 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3516 inode_inc_iversion(dir); 3517 d_instantiate(dentry, inode); 3518 dget(dentry); 3519 return 0; 3520 3521 out_remove_offset: 3522 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3523 out_iput: 3524 iput(inode); 3525 return error; 3526 } 3527 3528 static void shmem_put_link(void *arg) 3529 { 3530 folio_mark_accessed(arg); 3531 folio_put(arg); 3532 } 3533 3534 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 3535 struct delayed_call *done) 3536 { 3537 struct folio *folio = NULL; 3538 int error; 3539 3540 if (!dentry) { 3541 folio = filemap_get_folio(inode->i_mapping, 0); 3542 if (IS_ERR(folio)) 3543 return ERR_PTR(-ECHILD); 3544 if (PageHWPoison(folio_page(folio, 0)) || 3545 !folio_test_uptodate(folio)) { 3546 folio_put(folio); 3547 return ERR_PTR(-ECHILD); 3548 } 3549 } else { 3550 error = shmem_get_folio(inode, 0, &folio, SGP_READ); 3551 if (error) 3552 return ERR_PTR(error); 3553 if (!folio) 3554 return ERR_PTR(-ECHILD); 3555 if (PageHWPoison(folio_page(folio, 0))) { 3556 folio_unlock(folio); 3557 folio_put(folio); 3558 return ERR_PTR(-ECHILD); 3559 } 3560 folio_unlock(folio); 3561 } 3562 set_delayed_call(done, shmem_put_link, folio); 3563 return folio_address(folio); 3564 } 3565 3566 #ifdef CONFIG_TMPFS_XATTR 3567 3568 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3569 { 3570 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3571 3572 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3573 3574 return 0; 3575 } 3576 3577 static int shmem_fileattr_set(struct mnt_idmap *idmap, 3578 struct dentry *dentry, struct fileattr *fa) 3579 { 3580 struct inode *inode = d_inode(dentry); 3581 struct shmem_inode_info *info = SHMEM_I(inode); 3582 3583 if (fileattr_has_fsx(fa)) 3584 return -EOPNOTSUPP; 3585 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3586 return -EOPNOTSUPP; 3587 3588 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3589 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3590 3591 shmem_set_inode_flags(inode, info->fsflags); 3592 inode_set_ctime_current(inode); 3593 inode_inc_iversion(inode); 3594 return 0; 3595 } 3596 3597 /* 3598 * Superblocks without xattr inode operations may get some security.* xattr 3599 * support from the LSM "for free". As soon as we have any other xattrs 3600 * like ACLs, we also need to implement the security.* handlers at 3601 * filesystem level, though. 3602 */ 3603 3604 /* 3605 * Callback for security_inode_init_security() for acquiring xattrs. 3606 */ 3607 static int shmem_initxattrs(struct inode *inode, 3608 const struct xattr *xattr_array, void *fs_info) 3609 { 3610 struct shmem_inode_info *info = SHMEM_I(inode); 3611 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3612 const struct xattr *xattr; 3613 struct simple_xattr *new_xattr; 3614 size_t ispace = 0; 3615 size_t len; 3616 3617 if (sbinfo->max_inodes) { 3618 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3619 ispace += simple_xattr_space(xattr->name, 3620 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 3621 } 3622 if (ispace) { 3623 raw_spin_lock(&sbinfo->stat_lock); 3624 if (sbinfo->free_ispace < ispace) 3625 ispace = 0; 3626 else 3627 sbinfo->free_ispace -= ispace; 3628 raw_spin_unlock(&sbinfo->stat_lock); 3629 if (!ispace) 3630 return -ENOSPC; 3631 } 3632 } 3633 3634 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3635 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3636 if (!new_xattr) 3637 break; 3638 3639 len = strlen(xattr->name) + 1; 3640 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3641 GFP_KERNEL_ACCOUNT); 3642 if (!new_xattr->name) { 3643 kvfree(new_xattr); 3644 break; 3645 } 3646 3647 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3648 XATTR_SECURITY_PREFIX_LEN); 3649 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3650 xattr->name, len); 3651 3652 simple_xattr_add(&info->xattrs, new_xattr); 3653 } 3654 3655 if (xattr->name != NULL) { 3656 if (ispace) { 3657 raw_spin_lock(&sbinfo->stat_lock); 3658 sbinfo->free_ispace += ispace; 3659 raw_spin_unlock(&sbinfo->stat_lock); 3660 } 3661 simple_xattrs_free(&info->xattrs, NULL); 3662 return -ENOMEM; 3663 } 3664 3665 return 0; 3666 } 3667 3668 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3669 struct dentry *unused, struct inode *inode, 3670 const char *name, void *buffer, size_t size) 3671 { 3672 struct shmem_inode_info *info = SHMEM_I(inode); 3673 3674 name = xattr_full_name(handler, name); 3675 return simple_xattr_get(&info->xattrs, name, buffer, size); 3676 } 3677 3678 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3679 struct mnt_idmap *idmap, 3680 struct dentry *unused, struct inode *inode, 3681 const char *name, const void *value, 3682 size_t size, int flags) 3683 { 3684 struct shmem_inode_info *info = SHMEM_I(inode); 3685 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3686 struct simple_xattr *old_xattr; 3687 size_t ispace = 0; 3688 3689 name = xattr_full_name(handler, name); 3690 if (value && sbinfo->max_inodes) { 3691 ispace = simple_xattr_space(name, size); 3692 raw_spin_lock(&sbinfo->stat_lock); 3693 if (sbinfo->free_ispace < ispace) 3694 ispace = 0; 3695 else 3696 sbinfo->free_ispace -= ispace; 3697 raw_spin_unlock(&sbinfo->stat_lock); 3698 if (!ispace) 3699 return -ENOSPC; 3700 } 3701 3702 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 3703 if (!IS_ERR(old_xattr)) { 3704 ispace = 0; 3705 if (old_xattr && sbinfo->max_inodes) 3706 ispace = simple_xattr_space(old_xattr->name, 3707 old_xattr->size); 3708 simple_xattr_free(old_xattr); 3709 old_xattr = NULL; 3710 inode_set_ctime_current(inode); 3711 inode_inc_iversion(inode); 3712 } 3713 if (ispace) { 3714 raw_spin_lock(&sbinfo->stat_lock); 3715 sbinfo->free_ispace += ispace; 3716 raw_spin_unlock(&sbinfo->stat_lock); 3717 } 3718 return PTR_ERR(old_xattr); 3719 } 3720 3721 static const struct xattr_handler shmem_security_xattr_handler = { 3722 .prefix = XATTR_SECURITY_PREFIX, 3723 .get = shmem_xattr_handler_get, 3724 .set = shmem_xattr_handler_set, 3725 }; 3726 3727 static const struct xattr_handler shmem_trusted_xattr_handler = { 3728 .prefix = XATTR_TRUSTED_PREFIX, 3729 .get = shmem_xattr_handler_get, 3730 .set = shmem_xattr_handler_set, 3731 }; 3732 3733 static const struct xattr_handler shmem_user_xattr_handler = { 3734 .prefix = XATTR_USER_PREFIX, 3735 .get = shmem_xattr_handler_get, 3736 .set = shmem_xattr_handler_set, 3737 }; 3738 3739 static const struct xattr_handler * const shmem_xattr_handlers[] = { 3740 &shmem_security_xattr_handler, 3741 &shmem_trusted_xattr_handler, 3742 &shmem_user_xattr_handler, 3743 NULL 3744 }; 3745 3746 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3747 { 3748 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3749 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3750 } 3751 #endif /* CONFIG_TMPFS_XATTR */ 3752 3753 static const struct inode_operations shmem_short_symlink_operations = { 3754 .getattr = shmem_getattr, 3755 .setattr = shmem_setattr, 3756 .get_link = simple_get_link, 3757 #ifdef CONFIG_TMPFS_XATTR 3758 .listxattr = shmem_listxattr, 3759 #endif 3760 }; 3761 3762 static const struct inode_operations shmem_symlink_inode_operations = { 3763 .getattr = shmem_getattr, 3764 .setattr = shmem_setattr, 3765 .get_link = shmem_get_link, 3766 #ifdef CONFIG_TMPFS_XATTR 3767 .listxattr = shmem_listxattr, 3768 #endif 3769 }; 3770 3771 static struct dentry *shmem_get_parent(struct dentry *child) 3772 { 3773 return ERR_PTR(-ESTALE); 3774 } 3775 3776 static int shmem_match(struct inode *ino, void *vfh) 3777 { 3778 __u32 *fh = vfh; 3779 __u64 inum = fh[2]; 3780 inum = (inum << 32) | fh[1]; 3781 return ino->i_ino == inum && fh[0] == ino->i_generation; 3782 } 3783 3784 /* Find any alias of inode, but prefer a hashed alias */ 3785 static struct dentry *shmem_find_alias(struct inode *inode) 3786 { 3787 struct dentry *alias = d_find_alias(inode); 3788 3789 return alias ?: d_find_any_alias(inode); 3790 } 3791 3792 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3793 struct fid *fid, int fh_len, int fh_type) 3794 { 3795 struct inode *inode; 3796 struct dentry *dentry = NULL; 3797 u64 inum; 3798 3799 if (fh_len < 3) 3800 return NULL; 3801 3802 inum = fid->raw[2]; 3803 inum = (inum << 32) | fid->raw[1]; 3804 3805 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3806 shmem_match, fid->raw); 3807 if (inode) { 3808 dentry = shmem_find_alias(inode); 3809 iput(inode); 3810 } 3811 3812 return dentry; 3813 } 3814 3815 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3816 struct inode *parent) 3817 { 3818 if (*len < 3) { 3819 *len = 3; 3820 return FILEID_INVALID; 3821 } 3822 3823 if (inode_unhashed(inode)) { 3824 /* Unfortunately insert_inode_hash is not idempotent, 3825 * so as we hash inodes here rather than at creation 3826 * time, we need a lock to ensure we only try 3827 * to do it once 3828 */ 3829 static DEFINE_SPINLOCK(lock); 3830 spin_lock(&lock); 3831 if (inode_unhashed(inode)) 3832 __insert_inode_hash(inode, 3833 inode->i_ino + inode->i_generation); 3834 spin_unlock(&lock); 3835 } 3836 3837 fh[0] = inode->i_generation; 3838 fh[1] = inode->i_ino; 3839 fh[2] = ((__u64)inode->i_ino) >> 32; 3840 3841 *len = 3; 3842 return 1; 3843 } 3844 3845 static const struct export_operations shmem_export_ops = { 3846 .get_parent = shmem_get_parent, 3847 .encode_fh = shmem_encode_fh, 3848 .fh_to_dentry = shmem_fh_to_dentry, 3849 }; 3850 3851 enum shmem_param { 3852 Opt_gid, 3853 Opt_huge, 3854 Opt_mode, 3855 Opt_mpol, 3856 Opt_nr_blocks, 3857 Opt_nr_inodes, 3858 Opt_size, 3859 Opt_uid, 3860 Opt_inode32, 3861 Opt_inode64, 3862 Opt_noswap, 3863 Opt_quota, 3864 Opt_usrquota, 3865 Opt_grpquota, 3866 Opt_usrquota_block_hardlimit, 3867 Opt_usrquota_inode_hardlimit, 3868 Opt_grpquota_block_hardlimit, 3869 Opt_grpquota_inode_hardlimit, 3870 }; 3871 3872 static const struct constant_table shmem_param_enums_huge[] = { 3873 {"never", SHMEM_HUGE_NEVER }, 3874 {"always", SHMEM_HUGE_ALWAYS }, 3875 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3876 {"advise", SHMEM_HUGE_ADVISE }, 3877 {} 3878 }; 3879 3880 const struct fs_parameter_spec shmem_fs_parameters[] = { 3881 fsparam_u32 ("gid", Opt_gid), 3882 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3883 fsparam_u32oct("mode", Opt_mode), 3884 fsparam_string("mpol", Opt_mpol), 3885 fsparam_string("nr_blocks", Opt_nr_blocks), 3886 fsparam_string("nr_inodes", Opt_nr_inodes), 3887 fsparam_string("size", Opt_size), 3888 fsparam_u32 ("uid", Opt_uid), 3889 fsparam_flag ("inode32", Opt_inode32), 3890 fsparam_flag ("inode64", Opt_inode64), 3891 fsparam_flag ("noswap", Opt_noswap), 3892 #ifdef CONFIG_TMPFS_QUOTA 3893 fsparam_flag ("quota", Opt_quota), 3894 fsparam_flag ("usrquota", Opt_usrquota), 3895 fsparam_flag ("grpquota", Opt_grpquota), 3896 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 3897 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 3898 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 3899 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 3900 #endif 3901 {} 3902 }; 3903 3904 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3905 { 3906 struct shmem_options *ctx = fc->fs_private; 3907 struct fs_parse_result result; 3908 unsigned long long size; 3909 char *rest; 3910 int opt; 3911 kuid_t kuid; 3912 kgid_t kgid; 3913 3914 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3915 if (opt < 0) 3916 return opt; 3917 3918 switch (opt) { 3919 case Opt_size: 3920 size = memparse(param->string, &rest); 3921 if (*rest == '%') { 3922 size <<= PAGE_SHIFT; 3923 size *= totalram_pages(); 3924 do_div(size, 100); 3925 rest++; 3926 } 3927 if (*rest) 3928 goto bad_value; 3929 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3930 ctx->seen |= SHMEM_SEEN_BLOCKS; 3931 break; 3932 case Opt_nr_blocks: 3933 ctx->blocks = memparse(param->string, &rest); 3934 if (*rest || ctx->blocks > LONG_MAX) 3935 goto bad_value; 3936 ctx->seen |= SHMEM_SEEN_BLOCKS; 3937 break; 3938 case Opt_nr_inodes: 3939 ctx->inodes = memparse(param->string, &rest); 3940 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 3941 goto bad_value; 3942 ctx->seen |= SHMEM_SEEN_INODES; 3943 break; 3944 case Opt_mode: 3945 ctx->mode = result.uint_32 & 07777; 3946 break; 3947 case Opt_uid: 3948 kuid = make_kuid(current_user_ns(), result.uint_32); 3949 if (!uid_valid(kuid)) 3950 goto bad_value; 3951 3952 /* 3953 * The requested uid must be representable in the 3954 * filesystem's idmapping. 3955 */ 3956 if (!kuid_has_mapping(fc->user_ns, kuid)) 3957 goto bad_value; 3958 3959 ctx->uid = kuid; 3960 break; 3961 case Opt_gid: 3962 kgid = make_kgid(current_user_ns(), result.uint_32); 3963 if (!gid_valid(kgid)) 3964 goto bad_value; 3965 3966 /* 3967 * The requested gid must be representable in the 3968 * filesystem's idmapping. 3969 */ 3970 if (!kgid_has_mapping(fc->user_ns, kgid)) 3971 goto bad_value; 3972 3973 ctx->gid = kgid; 3974 break; 3975 case Opt_huge: 3976 ctx->huge = result.uint_32; 3977 if (ctx->huge != SHMEM_HUGE_NEVER && 3978 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3979 has_transparent_hugepage())) 3980 goto unsupported_parameter; 3981 ctx->seen |= SHMEM_SEEN_HUGE; 3982 break; 3983 case Opt_mpol: 3984 if (IS_ENABLED(CONFIG_NUMA)) { 3985 mpol_put(ctx->mpol); 3986 ctx->mpol = NULL; 3987 if (mpol_parse_str(param->string, &ctx->mpol)) 3988 goto bad_value; 3989 break; 3990 } 3991 goto unsupported_parameter; 3992 case Opt_inode32: 3993 ctx->full_inums = false; 3994 ctx->seen |= SHMEM_SEEN_INUMS; 3995 break; 3996 case Opt_inode64: 3997 if (sizeof(ino_t) < 8) { 3998 return invalfc(fc, 3999 "Cannot use inode64 with <64bit inums in kernel\n"); 4000 } 4001 ctx->full_inums = true; 4002 ctx->seen |= SHMEM_SEEN_INUMS; 4003 break; 4004 case Opt_noswap: 4005 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4006 return invalfc(fc, 4007 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4008 } 4009 ctx->noswap = true; 4010 ctx->seen |= SHMEM_SEEN_NOSWAP; 4011 break; 4012 case Opt_quota: 4013 if (fc->user_ns != &init_user_ns) 4014 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4015 ctx->seen |= SHMEM_SEEN_QUOTA; 4016 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4017 break; 4018 case Opt_usrquota: 4019 if (fc->user_ns != &init_user_ns) 4020 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4021 ctx->seen |= SHMEM_SEEN_QUOTA; 4022 ctx->quota_types |= QTYPE_MASK_USR; 4023 break; 4024 case Opt_grpquota: 4025 if (fc->user_ns != &init_user_ns) 4026 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4027 ctx->seen |= SHMEM_SEEN_QUOTA; 4028 ctx->quota_types |= QTYPE_MASK_GRP; 4029 break; 4030 case Opt_usrquota_block_hardlimit: 4031 size = memparse(param->string, &rest); 4032 if (*rest || !size) 4033 goto bad_value; 4034 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4035 return invalfc(fc, 4036 "User quota block hardlimit too large."); 4037 ctx->qlimits.usrquota_bhardlimit = size; 4038 break; 4039 case Opt_grpquota_block_hardlimit: 4040 size = memparse(param->string, &rest); 4041 if (*rest || !size) 4042 goto bad_value; 4043 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4044 return invalfc(fc, 4045 "Group quota block hardlimit too large."); 4046 ctx->qlimits.grpquota_bhardlimit = size; 4047 break; 4048 case Opt_usrquota_inode_hardlimit: 4049 size = memparse(param->string, &rest); 4050 if (*rest || !size) 4051 goto bad_value; 4052 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4053 return invalfc(fc, 4054 "User quota inode hardlimit too large."); 4055 ctx->qlimits.usrquota_ihardlimit = size; 4056 break; 4057 case Opt_grpquota_inode_hardlimit: 4058 size = memparse(param->string, &rest); 4059 if (*rest || !size) 4060 goto bad_value; 4061 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4062 return invalfc(fc, 4063 "Group quota inode hardlimit too large."); 4064 ctx->qlimits.grpquota_ihardlimit = size; 4065 break; 4066 } 4067 return 0; 4068 4069 unsupported_parameter: 4070 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4071 bad_value: 4072 return invalfc(fc, "Bad value for '%s'", param->key); 4073 } 4074 4075 static int shmem_parse_options(struct fs_context *fc, void *data) 4076 { 4077 char *options = data; 4078 4079 if (options) { 4080 int err = security_sb_eat_lsm_opts(options, &fc->security); 4081 if (err) 4082 return err; 4083 } 4084 4085 while (options != NULL) { 4086 char *this_char = options; 4087 for (;;) { 4088 /* 4089 * NUL-terminate this option: unfortunately, 4090 * mount options form a comma-separated list, 4091 * but mpol's nodelist may also contain commas. 4092 */ 4093 options = strchr(options, ','); 4094 if (options == NULL) 4095 break; 4096 options++; 4097 if (!isdigit(*options)) { 4098 options[-1] = '\0'; 4099 break; 4100 } 4101 } 4102 if (*this_char) { 4103 char *value = strchr(this_char, '='); 4104 size_t len = 0; 4105 int err; 4106 4107 if (value) { 4108 *value++ = '\0'; 4109 len = strlen(value); 4110 } 4111 err = vfs_parse_fs_string(fc, this_char, value, len); 4112 if (err < 0) 4113 return err; 4114 } 4115 } 4116 return 0; 4117 } 4118 4119 /* 4120 * Reconfigure a shmem filesystem. 4121 */ 4122 static int shmem_reconfigure(struct fs_context *fc) 4123 { 4124 struct shmem_options *ctx = fc->fs_private; 4125 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4126 unsigned long used_isp; 4127 struct mempolicy *mpol = NULL; 4128 const char *err; 4129 4130 raw_spin_lock(&sbinfo->stat_lock); 4131 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4132 4133 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4134 if (!sbinfo->max_blocks) { 4135 err = "Cannot retroactively limit size"; 4136 goto out; 4137 } 4138 if (percpu_counter_compare(&sbinfo->used_blocks, 4139 ctx->blocks) > 0) { 4140 err = "Too small a size for current use"; 4141 goto out; 4142 } 4143 } 4144 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4145 if (!sbinfo->max_inodes) { 4146 err = "Cannot retroactively limit inodes"; 4147 goto out; 4148 } 4149 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4150 err = "Too few inodes for current use"; 4151 goto out; 4152 } 4153 } 4154 4155 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4156 sbinfo->next_ino > UINT_MAX) { 4157 err = "Current inum too high to switch to 32-bit inums"; 4158 goto out; 4159 } 4160 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4161 err = "Cannot disable swap on remount"; 4162 goto out; 4163 } 4164 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4165 err = "Cannot enable swap on remount if it was disabled on first mount"; 4166 goto out; 4167 } 4168 4169 if (ctx->seen & SHMEM_SEEN_QUOTA && 4170 !sb_any_quota_loaded(fc->root->d_sb)) { 4171 err = "Cannot enable quota on remount"; 4172 goto out; 4173 } 4174 4175 #ifdef CONFIG_TMPFS_QUOTA 4176 #define CHANGED_LIMIT(name) \ 4177 (ctx->qlimits.name## hardlimit && \ 4178 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4179 4180 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4181 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4182 err = "Cannot change global quota limit on remount"; 4183 goto out; 4184 } 4185 #endif /* CONFIG_TMPFS_QUOTA */ 4186 4187 if (ctx->seen & SHMEM_SEEN_HUGE) 4188 sbinfo->huge = ctx->huge; 4189 if (ctx->seen & SHMEM_SEEN_INUMS) 4190 sbinfo->full_inums = ctx->full_inums; 4191 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4192 sbinfo->max_blocks = ctx->blocks; 4193 if (ctx->seen & SHMEM_SEEN_INODES) { 4194 sbinfo->max_inodes = ctx->inodes; 4195 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4196 } 4197 4198 /* 4199 * Preserve previous mempolicy unless mpol remount option was specified. 4200 */ 4201 if (ctx->mpol) { 4202 mpol = sbinfo->mpol; 4203 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4204 ctx->mpol = NULL; 4205 } 4206 4207 if (ctx->noswap) 4208 sbinfo->noswap = true; 4209 4210 raw_spin_unlock(&sbinfo->stat_lock); 4211 mpol_put(mpol); 4212 return 0; 4213 out: 4214 raw_spin_unlock(&sbinfo->stat_lock); 4215 return invalfc(fc, "%s", err); 4216 } 4217 4218 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4219 { 4220 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4221 struct mempolicy *mpol; 4222 4223 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4224 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4225 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4226 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4227 if (sbinfo->mode != (0777 | S_ISVTX)) 4228 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4229 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4230 seq_printf(seq, ",uid=%u", 4231 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4232 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4233 seq_printf(seq, ",gid=%u", 4234 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4235 4236 /* 4237 * Showing inode{64,32} might be useful even if it's the system default, 4238 * since then people don't have to resort to checking both here and 4239 * /proc/config.gz to confirm 64-bit inums were successfully applied 4240 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4241 * 4242 * We hide it when inode64 isn't the default and we are using 32-bit 4243 * inodes, since that probably just means the feature isn't even under 4244 * consideration. 4245 * 4246 * As such: 4247 * 4248 * +-----------------+-----------------+ 4249 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4250 * +------------------+-----------------+-----------------+ 4251 * | full_inums=true | show | show | 4252 * | full_inums=false | show | hide | 4253 * +------------------+-----------------+-----------------+ 4254 * 4255 */ 4256 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4257 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4259 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4260 if (sbinfo->huge) 4261 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4262 #endif 4263 mpol = shmem_get_sbmpol(sbinfo); 4264 shmem_show_mpol(seq, mpol); 4265 mpol_put(mpol); 4266 if (sbinfo->noswap) 4267 seq_printf(seq, ",noswap"); 4268 return 0; 4269 } 4270 4271 #endif /* CONFIG_TMPFS */ 4272 4273 static void shmem_put_super(struct super_block *sb) 4274 { 4275 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4276 4277 #ifdef CONFIG_TMPFS_QUOTA 4278 shmem_disable_quotas(sb); 4279 #endif 4280 free_percpu(sbinfo->ino_batch); 4281 percpu_counter_destroy(&sbinfo->used_blocks); 4282 mpol_put(sbinfo->mpol); 4283 kfree(sbinfo); 4284 sb->s_fs_info = NULL; 4285 } 4286 4287 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4288 { 4289 struct shmem_options *ctx = fc->fs_private; 4290 struct inode *inode; 4291 struct shmem_sb_info *sbinfo; 4292 int error = -ENOMEM; 4293 4294 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4295 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4296 L1_CACHE_BYTES), GFP_KERNEL); 4297 if (!sbinfo) 4298 return error; 4299 4300 sb->s_fs_info = sbinfo; 4301 4302 #ifdef CONFIG_TMPFS 4303 /* 4304 * Per default we only allow half of the physical ram per 4305 * tmpfs instance, limiting inodes to one per page of lowmem; 4306 * but the internal instance is left unlimited. 4307 */ 4308 if (!(sb->s_flags & SB_KERNMOUNT)) { 4309 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 4310 ctx->blocks = shmem_default_max_blocks(); 4311 if (!(ctx->seen & SHMEM_SEEN_INODES)) 4312 ctx->inodes = shmem_default_max_inodes(); 4313 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 4314 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 4315 sbinfo->noswap = ctx->noswap; 4316 } else { 4317 sb->s_flags |= SB_NOUSER; 4318 } 4319 sb->s_export_op = &shmem_export_ops; 4320 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 4321 #else 4322 sb->s_flags |= SB_NOUSER; 4323 #endif 4324 sbinfo->max_blocks = ctx->blocks; 4325 sbinfo->max_inodes = ctx->inodes; 4326 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 4327 if (sb->s_flags & SB_KERNMOUNT) { 4328 sbinfo->ino_batch = alloc_percpu(ino_t); 4329 if (!sbinfo->ino_batch) 4330 goto failed; 4331 } 4332 sbinfo->uid = ctx->uid; 4333 sbinfo->gid = ctx->gid; 4334 sbinfo->full_inums = ctx->full_inums; 4335 sbinfo->mode = ctx->mode; 4336 sbinfo->huge = ctx->huge; 4337 sbinfo->mpol = ctx->mpol; 4338 ctx->mpol = NULL; 4339 4340 raw_spin_lock_init(&sbinfo->stat_lock); 4341 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 4342 goto failed; 4343 spin_lock_init(&sbinfo->shrinklist_lock); 4344 INIT_LIST_HEAD(&sbinfo->shrinklist); 4345 4346 sb->s_maxbytes = MAX_LFS_FILESIZE; 4347 sb->s_blocksize = PAGE_SIZE; 4348 sb->s_blocksize_bits = PAGE_SHIFT; 4349 sb->s_magic = TMPFS_MAGIC; 4350 sb->s_op = &shmem_ops; 4351 sb->s_time_gran = 1; 4352 #ifdef CONFIG_TMPFS_XATTR 4353 sb->s_xattr = shmem_xattr_handlers; 4354 #endif 4355 #ifdef CONFIG_TMPFS_POSIX_ACL 4356 sb->s_flags |= SB_POSIXACL; 4357 #endif 4358 uuid_gen(&sb->s_uuid); 4359 4360 #ifdef CONFIG_TMPFS_QUOTA 4361 if (ctx->seen & SHMEM_SEEN_QUOTA) { 4362 sb->dq_op = &shmem_quota_operations; 4363 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4364 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4365 4366 /* Copy the default limits from ctx into sbinfo */ 4367 memcpy(&sbinfo->qlimits, &ctx->qlimits, 4368 sizeof(struct shmem_quota_limits)); 4369 4370 if (shmem_enable_quotas(sb, ctx->quota_types)) 4371 goto failed; 4372 } 4373 #endif /* CONFIG_TMPFS_QUOTA */ 4374 4375 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 4376 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 4377 if (IS_ERR(inode)) { 4378 error = PTR_ERR(inode); 4379 goto failed; 4380 } 4381 inode->i_uid = sbinfo->uid; 4382 inode->i_gid = sbinfo->gid; 4383 sb->s_root = d_make_root(inode); 4384 if (!sb->s_root) 4385 goto failed; 4386 return 0; 4387 4388 failed: 4389 shmem_put_super(sb); 4390 return error; 4391 } 4392 4393 static int shmem_get_tree(struct fs_context *fc) 4394 { 4395 return get_tree_nodev(fc, shmem_fill_super); 4396 } 4397 4398 static void shmem_free_fc(struct fs_context *fc) 4399 { 4400 struct shmem_options *ctx = fc->fs_private; 4401 4402 if (ctx) { 4403 mpol_put(ctx->mpol); 4404 kfree(ctx); 4405 } 4406 } 4407 4408 static const struct fs_context_operations shmem_fs_context_ops = { 4409 .free = shmem_free_fc, 4410 .get_tree = shmem_get_tree, 4411 #ifdef CONFIG_TMPFS 4412 .parse_monolithic = shmem_parse_options, 4413 .parse_param = shmem_parse_one, 4414 .reconfigure = shmem_reconfigure, 4415 #endif 4416 }; 4417 4418 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 4419 4420 static struct inode *shmem_alloc_inode(struct super_block *sb) 4421 { 4422 struct shmem_inode_info *info; 4423 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 4424 if (!info) 4425 return NULL; 4426 return &info->vfs_inode; 4427 } 4428 4429 static void shmem_free_in_core_inode(struct inode *inode) 4430 { 4431 if (S_ISLNK(inode->i_mode)) 4432 kfree(inode->i_link); 4433 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 4434 } 4435 4436 static void shmem_destroy_inode(struct inode *inode) 4437 { 4438 if (S_ISREG(inode->i_mode)) 4439 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 4440 if (S_ISDIR(inode->i_mode)) 4441 simple_offset_destroy(shmem_get_offset_ctx(inode)); 4442 } 4443 4444 static void shmem_init_inode(void *foo) 4445 { 4446 struct shmem_inode_info *info = foo; 4447 inode_init_once(&info->vfs_inode); 4448 } 4449 4450 static void __init shmem_init_inodecache(void) 4451 { 4452 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 4453 sizeof(struct shmem_inode_info), 4454 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 4455 } 4456 4457 static void __init shmem_destroy_inodecache(void) 4458 { 4459 kmem_cache_destroy(shmem_inode_cachep); 4460 } 4461 4462 /* Keep the page in page cache instead of truncating it */ 4463 static int shmem_error_remove_folio(struct address_space *mapping, 4464 struct folio *folio) 4465 { 4466 return 0; 4467 } 4468 4469 const struct address_space_operations shmem_aops = { 4470 .writepage = shmem_writepage, 4471 .dirty_folio = noop_dirty_folio, 4472 #ifdef CONFIG_TMPFS 4473 .write_begin = shmem_write_begin, 4474 .write_end = shmem_write_end, 4475 #endif 4476 #ifdef CONFIG_MIGRATION 4477 .migrate_folio = migrate_folio, 4478 #endif 4479 .error_remove_folio = shmem_error_remove_folio, 4480 }; 4481 EXPORT_SYMBOL(shmem_aops); 4482 4483 static const struct file_operations shmem_file_operations = { 4484 .mmap = shmem_mmap, 4485 .open = shmem_file_open, 4486 .get_unmapped_area = shmem_get_unmapped_area, 4487 #ifdef CONFIG_TMPFS 4488 .llseek = shmem_file_llseek, 4489 .read_iter = shmem_file_read_iter, 4490 .write_iter = shmem_file_write_iter, 4491 .fsync = noop_fsync, 4492 .splice_read = shmem_file_splice_read, 4493 .splice_write = iter_file_splice_write, 4494 .fallocate = shmem_fallocate, 4495 #endif 4496 }; 4497 4498 static const struct inode_operations shmem_inode_operations = { 4499 .getattr = shmem_getattr, 4500 .setattr = shmem_setattr, 4501 #ifdef CONFIG_TMPFS_XATTR 4502 .listxattr = shmem_listxattr, 4503 .set_acl = simple_set_acl, 4504 .fileattr_get = shmem_fileattr_get, 4505 .fileattr_set = shmem_fileattr_set, 4506 #endif 4507 }; 4508 4509 static const struct inode_operations shmem_dir_inode_operations = { 4510 #ifdef CONFIG_TMPFS 4511 .getattr = shmem_getattr, 4512 .create = shmem_create, 4513 .lookup = simple_lookup, 4514 .link = shmem_link, 4515 .unlink = shmem_unlink, 4516 .symlink = shmem_symlink, 4517 .mkdir = shmem_mkdir, 4518 .rmdir = shmem_rmdir, 4519 .mknod = shmem_mknod, 4520 .rename = shmem_rename2, 4521 .tmpfile = shmem_tmpfile, 4522 .get_offset_ctx = shmem_get_offset_ctx, 4523 #endif 4524 #ifdef CONFIG_TMPFS_XATTR 4525 .listxattr = shmem_listxattr, 4526 .fileattr_get = shmem_fileattr_get, 4527 .fileattr_set = shmem_fileattr_set, 4528 #endif 4529 #ifdef CONFIG_TMPFS_POSIX_ACL 4530 .setattr = shmem_setattr, 4531 .set_acl = simple_set_acl, 4532 #endif 4533 }; 4534 4535 static const struct inode_operations shmem_special_inode_operations = { 4536 .getattr = shmem_getattr, 4537 #ifdef CONFIG_TMPFS_XATTR 4538 .listxattr = shmem_listxattr, 4539 #endif 4540 #ifdef CONFIG_TMPFS_POSIX_ACL 4541 .setattr = shmem_setattr, 4542 .set_acl = simple_set_acl, 4543 #endif 4544 }; 4545 4546 static const struct super_operations shmem_ops = { 4547 .alloc_inode = shmem_alloc_inode, 4548 .free_inode = shmem_free_in_core_inode, 4549 .destroy_inode = shmem_destroy_inode, 4550 #ifdef CONFIG_TMPFS 4551 .statfs = shmem_statfs, 4552 .show_options = shmem_show_options, 4553 #endif 4554 #ifdef CONFIG_TMPFS_QUOTA 4555 .get_dquots = shmem_get_dquots, 4556 #endif 4557 .evict_inode = shmem_evict_inode, 4558 .drop_inode = generic_delete_inode, 4559 .put_super = shmem_put_super, 4560 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4561 .nr_cached_objects = shmem_unused_huge_count, 4562 .free_cached_objects = shmem_unused_huge_scan, 4563 #endif 4564 }; 4565 4566 static const struct vm_operations_struct shmem_vm_ops = { 4567 .fault = shmem_fault, 4568 .map_pages = filemap_map_pages, 4569 #ifdef CONFIG_NUMA 4570 .set_policy = shmem_set_policy, 4571 .get_policy = shmem_get_policy, 4572 #endif 4573 }; 4574 4575 static const struct vm_operations_struct shmem_anon_vm_ops = { 4576 .fault = shmem_fault, 4577 .map_pages = filemap_map_pages, 4578 #ifdef CONFIG_NUMA 4579 .set_policy = shmem_set_policy, 4580 .get_policy = shmem_get_policy, 4581 #endif 4582 }; 4583 4584 int shmem_init_fs_context(struct fs_context *fc) 4585 { 4586 struct shmem_options *ctx; 4587 4588 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4589 if (!ctx) 4590 return -ENOMEM; 4591 4592 ctx->mode = 0777 | S_ISVTX; 4593 ctx->uid = current_fsuid(); 4594 ctx->gid = current_fsgid(); 4595 4596 fc->fs_private = ctx; 4597 fc->ops = &shmem_fs_context_ops; 4598 return 0; 4599 } 4600 4601 static struct file_system_type shmem_fs_type = { 4602 .owner = THIS_MODULE, 4603 .name = "tmpfs", 4604 .init_fs_context = shmem_init_fs_context, 4605 #ifdef CONFIG_TMPFS 4606 .parameters = shmem_fs_parameters, 4607 #endif 4608 .kill_sb = kill_litter_super, 4609 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP, 4610 }; 4611 4612 void __init shmem_init(void) 4613 { 4614 int error; 4615 4616 shmem_init_inodecache(); 4617 4618 #ifdef CONFIG_TMPFS_QUOTA 4619 error = register_quota_format(&shmem_quota_format); 4620 if (error < 0) { 4621 pr_err("Could not register quota format\n"); 4622 goto out3; 4623 } 4624 #endif 4625 4626 error = register_filesystem(&shmem_fs_type); 4627 if (error) { 4628 pr_err("Could not register tmpfs\n"); 4629 goto out2; 4630 } 4631 4632 shm_mnt = kern_mount(&shmem_fs_type); 4633 if (IS_ERR(shm_mnt)) { 4634 error = PTR_ERR(shm_mnt); 4635 pr_err("Could not kern_mount tmpfs\n"); 4636 goto out1; 4637 } 4638 4639 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4640 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4641 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4642 else 4643 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4644 #endif 4645 return; 4646 4647 out1: 4648 unregister_filesystem(&shmem_fs_type); 4649 out2: 4650 #ifdef CONFIG_TMPFS_QUOTA 4651 unregister_quota_format(&shmem_quota_format); 4652 out3: 4653 #endif 4654 shmem_destroy_inodecache(); 4655 shm_mnt = ERR_PTR(error); 4656 } 4657 4658 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4659 static ssize_t shmem_enabled_show(struct kobject *kobj, 4660 struct kobj_attribute *attr, char *buf) 4661 { 4662 static const int values[] = { 4663 SHMEM_HUGE_ALWAYS, 4664 SHMEM_HUGE_WITHIN_SIZE, 4665 SHMEM_HUGE_ADVISE, 4666 SHMEM_HUGE_NEVER, 4667 SHMEM_HUGE_DENY, 4668 SHMEM_HUGE_FORCE, 4669 }; 4670 int len = 0; 4671 int i; 4672 4673 for (i = 0; i < ARRAY_SIZE(values); i++) { 4674 len += sysfs_emit_at(buf, len, 4675 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4676 i ? " " : "", shmem_format_huge(values[i])); 4677 } 4678 len += sysfs_emit_at(buf, len, "\n"); 4679 4680 return len; 4681 } 4682 4683 static ssize_t shmem_enabled_store(struct kobject *kobj, 4684 struct kobj_attribute *attr, const char *buf, size_t count) 4685 { 4686 char tmp[16]; 4687 int huge; 4688 4689 if (count + 1 > sizeof(tmp)) 4690 return -EINVAL; 4691 memcpy(tmp, buf, count); 4692 tmp[count] = '\0'; 4693 if (count && tmp[count - 1] == '\n') 4694 tmp[count - 1] = '\0'; 4695 4696 huge = shmem_parse_huge(tmp); 4697 if (huge == -EINVAL) 4698 return -EINVAL; 4699 if (!has_transparent_hugepage() && 4700 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4701 return -EINVAL; 4702 4703 shmem_huge = huge; 4704 if (shmem_huge > SHMEM_HUGE_DENY) 4705 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4706 return count; 4707 } 4708 4709 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4710 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4711 4712 #else /* !CONFIG_SHMEM */ 4713 4714 /* 4715 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4716 * 4717 * This is intended for small system where the benefits of the full 4718 * shmem code (swap-backed and resource-limited) are outweighed by 4719 * their complexity. On systems without swap this code should be 4720 * effectively equivalent, but much lighter weight. 4721 */ 4722 4723 static struct file_system_type shmem_fs_type = { 4724 .name = "tmpfs", 4725 .init_fs_context = ramfs_init_fs_context, 4726 .parameters = ramfs_fs_parameters, 4727 .kill_sb = ramfs_kill_sb, 4728 .fs_flags = FS_USERNS_MOUNT, 4729 }; 4730 4731 void __init shmem_init(void) 4732 { 4733 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4734 4735 shm_mnt = kern_mount(&shmem_fs_type); 4736 BUG_ON(IS_ERR(shm_mnt)); 4737 } 4738 4739 int shmem_unuse(unsigned int type) 4740 { 4741 return 0; 4742 } 4743 4744 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4745 { 4746 return 0; 4747 } 4748 4749 void shmem_unlock_mapping(struct address_space *mapping) 4750 { 4751 } 4752 4753 #ifdef CONFIG_MMU 4754 unsigned long shmem_get_unmapped_area(struct file *file, 4755 unsigned long addr, unsigned long len, 4756 unsigned long pgoff, unsigned long flags) 4757 { 4758 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4759 } 4760 #endif 4761 4762 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4763 { 4764 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4765 } 4766 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4767 4768 #define shmem_vm_ops generic_file_vm_ops 4769 #define shmem_anon_vm_ops generic_file_vm_ops 4770 #define shmem_file_operations ramfs_file_operations 4771 #define shmem_acct_size(flags, size) 0 4772 #define shmem_unacct_size(flags, size) do {} while (0) 4773 4774 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 4775 struct super_block *sb, struct inode *dir, 4776 umode_t mode, dev_t dev, unsigned long flags) 4777 { 4778 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 4779 return inode ? inode : ERR_PTR(-ENOSPC); 4780 } 4781 4782 #endif /* CONFIG_SHMEM */ 4783 4784 /* common code */ 4785 4786 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 4787 loff_t size, unsigned long flags, unsigned int i_flags) 4788 { 4789 struct inode *inode; 4790 struct file *res; 4791 4792 if (IS_ERR(mnt)) 4793 return ERR_CAST(mnt); 4794 4795 if (size < 0 || size > MAX_LFS_FILESIZE) 4796 return ERR_PTR(-EINVAL); 4797 4798 if (shmem_acct_size(flags, size)) 4799 return ERR_PTR(-ENOMEM); 4800 4801 if (is_idmapped_mnt(mnt)) 4802 return ERR_PTR(-EINVAL); 4803 4804 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 4805 S_IFREG | S_IRWXUGO, 0, flags); 4806 if (IS_ERR(inode)) { 4807 shmem_unacct_size(flags, size); 4808 return ERR_CAST(inode); 4809 } 4810 inode->i_flags |= i_flags; 4811 inode->i_size = size; 4812 clear_nlink(inode); /* It is unlinked */ 4813 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4814 if (!IS_ERR(res)) 4815 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4816 &shmem_file_operations); 4817 if (IS_ERR(res)) 4818 iput(inode); 4819 return res; 4820 } 4821 4822 /** 4823 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4824 * kernel internal. There will be NO LSM permission checks against the 4825 * underlying inode. So users of this interface must do LSM checks at a 4826 * higher layer. The users are the big_key and shm implementations. LSM 4827 * checks are provided at the key or shm level rather than the inode. 4828 * @name: name for dentry (to be seen in /proc/<pid>/maps 4829 * @size: size to be set for the file 4830 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4831 */ 4832 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4833 { 4834 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4835 } 4836 4837 /** 4838 * shmem_file_setup - get an unlinked file living in tmpfs 4839 * @name: name for dentry (to be seen in /proc/<pid>/maps 4840 * @size: size to be set for the file 4841 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4842 */ 4843 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4844 { 4845 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4846 } 4847 EXPORT_SYMBOL_GPL(shmem_file_setup); 4848 4849 /** 4850 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4851 * @mnt: the tmpfs mount where the file will be created 4852 * @name: name for dentry (to be seen in /proc/<pid>/maps 4853 * @size: size to be set for the file 4854 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4855 */ 4856 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4857 loff_t size, unsigned long flags) 4858 { 4859 return __shmem_file_setup(mnt, name, size, flags, 0); 4860 } 4861 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4862 4863 /** 4864 * shmem_zero_setup - setup a shared anonymous mapping 4865 * @vma: the vma to be mmapped is prepared by do_mmap 4866 */ 4867 int shmem_zero_setup(struct vm_area_struct *vma) 4868 { 4869 struct file *file; 4870 loff_t size = vma->vm_end - vma->vm_start; 4871 4872 /* 4873 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4874 * between XFS directory reading and selinux: since this file is only 4875 * accessible to the user through its mapping, use S_PRIVATE flag to 4876 * bypass file security, in the same way as shmem_kernel_file_setup(). 4877 */ 4878 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4879 if (IS_ERR(file)) 4880 return PTR_ERR(file); 4881 4882 if (vma->vm_file) 4883 fput(vma->vm_file); 4884 vma->vm_file = file; 4885 vma->vm_ops = &shmem_anon_vm_ops; 4886 4887 return 0; 4888 } 4889 4890 /** 4891 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 4892 * @mapping: the folio's address_space 4893 * @index: the folio index 4894 * @gfp: the page allocator flags to use if allocating 4895 * 4896 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4897 * with any new page allocations done using the specified allocation flags. 4898 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4899 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4900 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4901 * 4902 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4903 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4904 */ 4905 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 4906 pgoff_t index, gfp_t gfp) 4907 { 4908 #ifdef CONFIG_SHMEM 4909 struct inode *inode = mapping->host; 4910 struct folio *folio; 4911 int error; 4912 4913 BUG_ON(!shmem_mapping(mapping)); 4914 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE, 4915 gfp, NULL, NULL); 4916 if (error) 4917 return ERR_PTR(error); 4918 4919 folio_unlock(folio); 4920 return folio; 4921 #else 4922 /* 4923 * The tiny !SHMEM case uses ramfs without swap 4924 */ 4925 return mapping_read_folio_gfp(mapping, index, gfp); 4926 #endif 4927 } 4928 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 4929 4930 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4931 pgoff_t index, gfp_t gfp) 4932 { 4933 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 4934 struct page *page; 4935 4936 if (IS_ERR(folio)) 4937 return &folio->page; 4938 4939 page = folio_file_page(folio, index); 4940 if (PageHWPoison(page)) { 4941 folio_put(folio); 4942 return ERR_PTR(-EIO); 4943 } 4944 4945 return page; 4946 } 4947 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4948