1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/frontswap.h> 40 41 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 42 43 static struct vfsmount *shm_mnt; 44 45 #ifdef CONFIG_SHMEM 46 /* 47 * This virtual memory filesystem is heavily based on the ramfs. It 48 * extends ramfs by the ability to use swap and honor resource limits 49 * which makes it a completely usable filesystem. 50 */ 51 52 #include <linux/xattr.h> 53 #include <linux/exportfs.h> 54 #include <linux/posix_acl.h> 55 #include <linux/posix_acl_xattr.h> 56 #include <linux/mman.h> 57 #include <linux/string.h> 58 #include <linux/slab.h> 59 #include <linux/backing-dev.h> 60 #include <linux/shmem_fs.h> 61 #include <linux/writeback.h> 62 #include <linux/blkdev.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/userfaultfd_k.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 83 #include <linux/uaccess.h> 84 #include <asm/pgtable.h> 85 86 #include "internal.h" 87 88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 95 #define SHORT_SYMLINK_LEN 128 96 97 /* 98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 99 * inode->i_private (with i_mutex making sure that it has only one user at 100 * a time): we would prefer not to enlarge the shmem inode just for that. 101 */ 102 struct shmem_falloc { 103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 104 pgoff_t start; /* start of range currently being fallocated */ 105 pgoff_t next; /* the next page offset to be fallocated */ 106 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 108 }; 109 110 #ifdef CONFIG_TMPFS 111 static unsigned long shmem_default_max_blocks(void) 112 { 113 return totalram_pages() / 2; 114 } 115 116 static unsigned long shmem_default_max_inodes(void) 117 { 118 unsigned long nr_pages = totalram_pages(); 119 120 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 121 } 122 #endif 123 124 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 125 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 126 struct shmem_inode_info *info, pgoff_t index); 127 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 128 struct page **pagep, enum sgp_type sgp, 129 gfp_t gfp, struct vm_area_struct *vma, 130 vm_fault_t *fault_type); 131 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 132 struct page **pagep, enum sgp_type sgp, 133 gfp_t gfp, struct vm_area_struct *vma, 134 struct vm_fault *vmf, vm_fault_t *fault_type); 135 136 int shmem_getpage(struct inode *inode, pgoff_t index, 137 struct page **pagep, enum sgp_type sgp) 138 { 139 return shmem_getpage_gfp(inode, index, pagep, sgp, 140 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 141 } 142 143 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 144 { 145 return sb->s_fs_info; 146 } 147 148 /* 149 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 150 * for shared memory and for shared anonymous (/dev/zero) mappings 151 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 152 * consistent with the pre-accounting of private mappings ... 153 */ 154 static inline int shmem_acct_size(unsigned long flags, loff_t size) 155 { 156 return (flags & VM_NORESERVE) ? 157 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 158 } 159 160 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 161 { 162 if (!(flags & VM_NORESERVE)) 163 vm_unacct_memory(VM_ACCT(size)); 164 } 165 166 static inline int shmem_reacct_size(unsigned long flags, 167 loff_t oldsize, loff_t newsize) 168 { 169 if (!(flags & VM_NORESERVE)) { 170 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 171 return security_vm_enough_memory_mm(current->mm, 172 VM_ACCT(newsize) - VM_ACCT(oldsize)); 173 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 174 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 175 } 176 return 0; 177 } 178 179 /* 180 * ... whereas tmpfs objects are accounted incrementally as 181 * pages are allocated, in order to allow large sparse files. 182 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 183 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 184 */ 185 static inline int shmem_acct_block(unsigned long flags, long pages) 186 { 187 if (!(flags & VM_NORESERVE)) 188 return 0; 189 190 return security_vm_enough_memory_mm(current->mm, 191 pages * VM_ACCT(PAGE_SIZE)); 192 } 193 194 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 195 { 196 if (flags & VM_NORESERVE) 197 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 198 } 199 200 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 201 { 202 struct shmem_inode_info *info = SHMEM_I(inode); 203 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 204 205 if (shmem_acct_block(info->flags, pages)) 206 return false; 207 208 if (sbinfo->max_blocks) { 209 if (percpu_counter_compare(&sbinfo->used_blocks, 210 sbinfo->max_blocks - pages) > 0) 211 goto unacct; 212 percpu_counter_add(&sbinfo->used_blocks, pages); 213 } 214 215 return true; 216 217 unacct: 218 shmem_unacct_blocks(info->flags, pages); 219 return false; 220 } 221 222 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 223 { 224 struct shmem_inode_info *info = SHMEM_I(inode); 225 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 226 227 if (sbinfo->max_blocks) 228 percpu_counter_sub(&sbinfo->used_blocks, pages); 229 shmem_unacct_blocks(info->flags, pages); 230 } 231 232 static const struct super_operations shmem_ops; 233 static const struct address_space_operations shmem_aops; 234 static const struct file_operations shmem_file_operations; 235 static const struct inode_operations shmem_inode_operations; 236 static const struct inode_operations shmem_dir_inode_operations; 237 static const struct inode_operations shmem_special_inode_operations; 238 static const struct vm_operations_struct shmem_vm_ops; 239 static struct file_system_type shmem_fs_type; 240 241 bool vma_is_shmem(struct vm_area_struct *vma) 242 { 243 return vma->vm_ops == &shmem_vm_ops; 244 } 245 246 static LIST_HEAD(shmem_swaplist); 247 static DEFINE_MUTEX(shmem_swaplist_mutex); 248 249 static int shmem_reserve_inode(struct super_block *sb) 250 { 251 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 252 if (sbinfo->max_inodes) { 253 spin_lock(&sbinfo->stat_lock); 254 if (!sbinfo->free_inodes) { 255 spin_unlock(&sbinfo->stat_lock); 256 return -ENOSPC; 257 } 258 sbinfo->free_inodes--; 259 spin_unlock(&sbinfo->stat_lock); 260 } 261 return 0; 262 } 263 264 static void shmem_free_inode(struct super_block *sb) 265 { 266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 267 if (sbinfo->max_inodes) { 268 spin_lock(&sbinfo->stat_lock); 269 sbinfo->free_inodes++; 270 spin_unlock(&sbinfo->stat_lock); 271 } 272 } 273 274 /** 275 * shmem_recalc_inode - recalculate the block usage of an inode 276 * @inode: inode to recalc 277 * 278 * We have to calculate the free blocks since the mm can drop 279 * undirtied hole pages behind our back. 280 * 281 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 282 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 283 * 284 * It has to be called with the spinlock held. 285 */ 286 static void shmem_recalc_inode(struct inode *inode) 287 { 288 struct shmem_inode_info *info = SHMEM_I(inode); 289 long freed; 290 291 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 292 if (freed > 0) { 293 info->alloced -= freed; 294 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 295 shmem_inode_unacct_blocks(inode, freed); 296 } 297 } 298 299 bool shmem_charge(struct inode *inode, long pages) 300 { 301 struct shmem_inode_info *info = SHMEM_I(inode); 302 unsigned long flags; 303 304 if (!shmem_inode_acct_block(inode, pages)) 305 return false; 306 307 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 308 inode->i_mapping->nrpages += pages; 309 310 spin_lock_irqsave(&info->lock, flags); 311 info->alloced += pages; 312 inode->i_blocks += pages * BLOCKS_PER_PAGE; 313 shmem_recalc_inode(inode); 314 spin_unlock_irqrestore(&info->lock, flags); 315 316 return true; 317 } 318 319 void shmem_uncharge(struct inode *inode, long pages) 320 { 321 struct shmem_inode_info *info = SHMEM_I(inode); 322 unsigned long flags; 323 324 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 325 326 spin_lock_irqsave(&info->lock, flags); 327 info->alloced -= pages; 328 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 329 shmem_recalc_inode(inode); 330 spin_unlock_irqrestore(&info->lock, flags); 331 332 shmem_inode_unacct_blocks(inode, pages); 333 } 334 335 /* 336 * Replace item expected in xarray by a new item, while holding xa_lock. 337 */ 338 static int shmem_replace_entry(struct address_space *mapping, 339 pgoff_t index, void *expected, void *replacement) 340 { 341 XA_STATE(xas, &mapping->i_pages, index); 342 void *item; 343 344 VM_BUG_ON(!expected); 345 VM_BUG_ON(!replacement); 346 item = xas_load(&xas); 347 if (item != expected) 348 return -ENOENT; 349 xas_store(&xas, replacement); 350 return 0; 351 } 352 353 /* 354 * Sometimes, before we decide whether to proceed or to fail, we must check 355 * that an entry was not already brought back from swap by a racing thread. 356 * 357 * Checking page is not enough: by the time a SwapCache page is locked, it 358 * might be reused, and again be SwapCache, using the same swap as before. 359 */ 360 static bool shmem_confirm_swap(struct address_space *mapping, 361 pgoff_t index, swp_entry_t swap) 362 { 363 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 364 } 365 366 /* 367 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 368 * 369 * SHMEM_HUGE_NEVER: 370 * disables huge pages for the mount; 371 * SHMEM_HUGE_ALWAYS: 372 * enables huge pages for the mount; 373 * SHMEM_HUGE_WITHIN_SIZE: 374 * only allocate huge pages if the page will be fully within i_size, 375 * also respect fadvise()/madvise() hints; 376 * SHMEM_HUGE_ADVISE: 377 * only allocate huge pages if requested with fadvise()/madvise(); 378 */ 379 380 #define SHMEM_HUGE_NEVER 0 381 #define SHMEM_HUGE_ALWAYS 1 382 #define SHMEM_HUGE_WITHIN_SIZE 2 383 #define SHMEM_HUGE_ADVISE 3 384 385 /* 386 * Special values. 387 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 388 * 389 * SHMEM_HUGE_DENY: 390 * disables huge on shm_mnt and all mounts, for emergency use; 391 * SHMEM_HUGE_FORCE: 392 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 393 * 394 */ 395 #define SHMEM_HUGE_DENY (-1) 396 #define SHMEM_HUGE_FORCE (-2) 397 398 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 399 /* ifdef here to avoid bloating shmem.o when not necessary */ 400 401 static int shmem_huge __read_mostly; 402 403 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 404 static int shmem_parse_huge(const char *str) 405 { 406 if (!strcmp(str, "never")) 407 return SHMEM_HUGE_NEVER; 408 if (!strcmp(str, "always")) 409 return SHMEM_HUGE_ALWAYS; 410 if (!strcmp(str, "within_size")) 411 return SHMEM_HUGE_WITHIN_SIZE; 412 if (!strcmp(str, "advise")) 413 return SHMEM_HUGE_ADVISE; 414 if (!strcmp(str, "deny")) 415 return SHMEM_HUGE_DENY; 416 if (!strcmp(str, "force")) 417 return SHMEM_HUGE_FORCE; 418 return -EINVAL; 419 } 420 421 static const char *shmem_format_huge(int huge) 422 { 423 switch (huge) { 424 case SHMEM_HUGE_NEVER: 425 return "never"; 426 case SHMEM_HUGE_ALWAYS: 427 return "always"; 428 case SHMEM_HUGE_WITHIN_SIZE: 429 return "within_size"; 430 case SHMEM_HUGE_ADVISE: 431 return "advise"; 432 case SHMEM_HUGE_DENY: 433 return "deny"; 434 case SHMEM_HUGE_FORCE: 435 return "force"; 436 default: 437 VM_BUG_ON(1); 438 return "bad_val"; 439 } 440 } 441 #endif 442 443 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 444 struct shrink_control *sc, unsigned long nr_to_split) 445 { 446 LIST_HEAD(list), *pos, *next; 447 LIST_HEAD(to_remove); 448 struct inode *inode; 449 struct shmem_inode_info *info; 450 struct page *page; 451 unsigned long batch = sc ? sc->nr_to_scan : 128; 452 int removed = 0, split = 0; 453 454 if (list_empty(&sbinfo->shrinklist)) 455 return SHRINK_STOP; 456 457 spin_lock(&sbinfo->shrinklist_lock); 458 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 459 info = list_entry(pos, struct shmem_inode_info, shrinklist); 460 461 /* pin the inode */ 462 inode = igrab(&info->vfs_inode); 463 464 /* inode is about to be evicted */ 465 if (!inode) { 466 list_del_init(&info->shrinklist); 467 removed++; 468 goto next; 469 } 470 471 /* Check if there's anything to gain */ 472 if (round_up(inode->i_size, PAGE_SIZE) == 473 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 474 list_move(&info->shrinklist, &to_remove); 475 removed++; 476 goto next; 477 } 478 479 list_move(&info->shrinklist, &list); 480 next: 481 if (!--batch) 482 break; 483 } 484 spin_unlock(&sbinfo->shrinklist_lock); 485 486 list_for_each_safe(pos, next, &to_remove) { 487 info = list_entry(pos, struct shmem_inode_info, shrinklist); 488 inode = &info->vfs_inode; 489 list_del_init(&info->shrinklist); 490 iput(inode); 491 } 492 493 list_for_each_safe(pos, next, &list) { 494 int ret; 495 496 info = list_entry(pos, struct shmem_inode_info, shrinklist); 497 inode = &info->vfs_inode; 498 499 if (nr_to_split && split >= nr_to_split) 500 goto leave; 501 502 page = find_get_page(inode->i_mapping, 503 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 504 if (!page) 505 goto drop; 506 507 /* No huge page at the end of the file: nothing to split */ 508 if (!PageTransHuge(page)) { 509 put_page(page); 510 goto drop; 511 } 512 513 /* 514 * Leave the inode on the list if we failed to lock 515 * the page at this time. 516 * 517 * Waiting for the lock may lead to deadlock in the 518 * reclaim path. 519 */ 520 if (!trylock_page(page)) { 521 put_page(page); 522 goto leave; 523 } 524 525 ret = split_huge_page(page); 526 unlock_page(page); 527 put_page(page); 528 529 /* If split failed leave the inode on the list */ 530 if (ret) 531 goto leave; 532 533 split++; 534 drop: 535 list_del_init(&info->shrinklist); 536 removed++; 537 leave: 538 iput(inode); 539 } 540 541 spin_lock(&sbinfo->shrinklist_lock); 542 list_splice_tail(&list, &sbinfo->shrinklist); 543 sbinfo->shrinklist_len -= removed; 544 spin_unlock(&sbinfo->shrinklist_lock); 545 546 return split; 547 } 548 549 static long shmem_unused_huge_scan(struct super_block *sb, 550 struct shrink_control *sc) 551 { 552 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 553 554 if (!READ_ONCE(sbinfo->shrinklist_len)) 555 return SHRINK_STOP; 556 557 return shmem_unused_huge_shrink(sbinfo, sc, 0); 558 } 559 560 static long shmem_unused_huge_count(struct super_block *sb, 561 struct shrink_control *sc) 562 { 563 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 564 return READ_ONCE(sbinfo->shrinklist_len); 565 } 566 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 567 568 #define shmem_huge SHMEM_HUGE_DENY 569 570 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 571 struct shrink_control *sc, unsigned long nr_to_split) 572 { 573 return 0; 574 } 575 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 576 577 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) 578 { 579 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 580 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && 581 shmem_huge != SHMEM_HUGE_DENY) 582 return true; 583 return false; 584 } 585 586 /* 587 * Like add_to_page_cache_locked, but error if expected item has gone. 588 */ 589 static int shmem_add_to_page_cache(struct page *page, 590 struct address_space *mapping, 591 pgoff_t index, void *expected, gfp_t gfp) 592 { 593 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 594 unsigned long i = 0; 595 unsigned long nr = 1UL << compound_order(page); 596 597 VM_BUG_ON_PAGE(PageTail(page), page); 598 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 599 VM_BUG_ON_PAGE(!PageLocked(page), page); 600 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 601 VM_BUG_ON(expected && PageTransHuge(page)); 602 603 page_ref_add(page, nr); 604 page->mapping = mapping; 605 page->index = index; 606 607 do { 608 void *entry; 609 xas_lock_irq(&xas); 610 entry = xas_find_conflict(&xas); 611 if (entry != expected) 612 xas_set_err(&xas, -EEXIST); 613 xas_create_range(&xas); 614 if (xas_error(&xas)) 615 goto unlock; 616 next: 617 xas_store(&xas, page); 618 if (++i < nr) { 619 xas_next(&xas); 620 goto next; 621 } 622 if (PageTransHuge(page)) { 623 count_vm_event(THP_FILE_ALLOC); 624 __inc_node_page_state(page, NR_SHMEM_THPS); 625 } 626 mapping->nrpages += nr; 627 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 628 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); 629 unlock: 630 xas_unlock_irq(&xas); 631 } while (xas_nomem(&xas, gfp)); 632 633 if (xas_error(&xas)) { 634 page->mapping = NULL; 635 page_ref_sub(page, nr); 636 return xas_error(&xas); 637 } 638 639 return 0; 640 } 641 642 /* 643 * Like delete_from_page_cache, but substitutes swap for page. 644 */ 645 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 646 { 647 struct address_space *mapping = page->mapping; 648 int error; 649 650 VM_BUG_ON_PAGE(PageCompound(page), page); 651 652 xa_lock_irq(&mapping->i_pages); 653 error = shmem_replace_entry(mapping, page->index, page, radswap); 654 page->mapping = NULL; 655 mapping->nrpages--; 656 __dec_node_page_state(page, NR_FILE_PAGES); 657 __dec_node_page_state(page, NR_SHMEM); 658 xa_unlock_irq(&mapping->i_pages); 659 put_page(page); 660 BUG_ON(error); 661 } 662 663 /* 664 * Remove swap entry from page cache, free the swap and its page cache. 665 */ 666 static int shmem_free_swap(struct address_space *mapping, 667 pgoff_t index, void *radswap) 668 { 669 void *old; 670 671 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 672 if (old != radswap) 673 return -ENOENT; 674 free_swap_and_cache(radix_to_swp_entry(radswap)); 675 return 0; 676 } 677 678 /* 679 * Determine (in bytes) how many of the shmem object's pages mapped by the 680 * given offsets are swapped out. 681 * 682 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 683 * as long as the inode doesn't go away and racy results are not a problem. 684 */ 685 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 686 pgoff_t start, pgoff_t end) 687 { 688 XA_STATE(xas, &mapping->i_pages, start); 689 struct page *page; 690 unsigned long swapped = 0; 691 692 rcu_read_lock(); 693 xas_for_each(&xas, page, end - 1) { 694 if (xas_retry(&xas, page)) 695 continue; 696 if (xa_is_value(page)) 697 swapped++; 698 699 if (need_resched()) { 700 xas_pause(&xas); 701 cond_resched_rcu(); 702 } 703 } 704 705 rcu_read_unlock(); 706 707 return swapped << PAGE_SHIFT; 708 } 709 710 /* 711 * Determine (in bytes) how many of the shmem object's pages mapped by the 712 * given vma is swapped out. 713 * 714 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 715 * as long as the inode doesn't go away and racy results are not a problem. 716 */ 717 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 718 { 719 struct inode *inode = file_inode(vma->vm_file); 720 struct shmem_inode_info *info = SHMEM_I(inode); 721 struct address_space *mapping = inode->i_mapping; 722 unsigned long swapped; 723 724 /* Be careful as we don't hold info->lock */ 725 swapped = READ_ONCE(info->swapped); 726 727 /* 728 * The easier cases are when the shmem object has nothing in swap, or 729 * the vma maps it whole. Then we can simply use the stats that we 730 * already track. 731 */ 732 if (!swapped) 733 return 0; 734 735 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 736 return swapped << PAGE_SHIFT; 737 738 /* Here comes the more involved part */ 739 return shmem_partial_swap_usage(mapping, 740 linear_page_index(vma, vma->vm_start), 741 linear_page_index(vma, vma->vm_end)); 742 } 743 744 /* 745 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 746 */ 747 void shmem_unlock_mapping(struct address_space *mapping) 748 { 749 struct pagevec pvec; 750 pgoff_t indices[PAGEVEC_SIZE]; 751 pgoff_t index = 0; 752 753 pagevec_init(&pvec); 754 /* 755 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 756 */ 757 while (!mapping_unevictable(mapping)) { 758 /* 759 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 760 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 761 */ 762 pvec.nr = find_get_entries(mapping, index, 763 PAGEVEC_SIZE, pvec.pages, indices); 764 if (!pvec.nr) 765 break; 766 index = indices[pvec.nr - 1] + 1; 767 pagevec_remove_exceptionals(&pvec); 768 check_move_unevictable_pages(&pvec); 769 pagevec_release(&pvec); 770 cond_resched(); 771 } 772 } 773 774 /* 775 * Remove range of pages and swap entries from page cache, and free them. 776 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 777 */ 778 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 779 bool unfalloc) 780 { 781 struct address_space *mapping = inode->i_mapping; 782 struct shmem_inode_info *info = SHMEM_I(inode); 783 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 784 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 785 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 786 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 787 struct pagevec pvec; 788 pgoff_t indices[PAGEVEC_SIZE]; 789 long nr_swaps_freed = 0; 790 pgoff_t index; 791 int i; 792 793 if (lend == -1) 794 end = -1; /* unsigned, so actually very big */ 795 796 pagevec_init(&pvec); 797 index = start; 798 while (index < end) { 799 pvec.nr = find_get_entries(mapping, index, 800 min(end - index, (pgoff_t)PAGEVEC_SIZE), 801 pvec.pages, indices); 802 if (!pvec.nr) 803 break; 804 for (i = 0; i < pagevec_count(&pvec); i++) { 805 struct page *page = pvec.pages[i]; 806 807 index = indices[i]; 808 if (index >= end) 809 break; 810 811 if (xa_is_value(page)) { 812 if (unfalloc) 813 continue; 814 nr_swaps_freed += !shmem_free_swap(mapping, 815 index, page); 816 continue; 817 } 818 819 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 820 821 if (!trylock_page(page)) 822 continue; 823 824 if (PageTransTail(page)) { 825 /* Middle of THP: zero out the page */ 826 clear_highpage(page); 827 unlock_page(page); 828 continue; 829 } else if (PageTransHuge(page)) { 830 if (index == round_down(end, HPAGE_PMD_NR)) { 831 /* 832 * Range ends in the middle of THP: 833 * zero out the page 834 */ 835 clear_highpage(page); 836 unlock_page(page); 837 continue; 838 } 839 index += HPAGE_PMD_NR - 1; 840 i += HPAGE_PMD_NR - 1; 841 } 842 843 if (!unfalloc || !PageUptodate(page)) { 844 VM_BUG_ON_PAGE(PageTail(page), page); 845 if (page_mapping(page) == mapping) { 846 VM_BUG_ON_PAGE(PageWriteback(page), page); 847 truncate_inode_page(mapping, page); 848 } 849 } 850 unlock_page(page); 851 } 852 pagevec_remove_exceptionals(&pvec); 853 pagevec_release(&pvec); 854 cond_resched(); 855 index++; 856 } 857 858 if (partial_start) { 859 struct page *page = NULL; 860 shmem_getpage(inode, start - 1, &page, SGP_READ); 861 if (page) { 862 unsigned int top = PAGE_SIZE; 863 if (start > end) { 864 top = partial_end; 865 partial_end = 0; 866 } 867 zero_user_segment(page, partial_start, top); 868 set_page_dirty(page); 869 unlock_page(page); 870 put_page(page); 871 } 872 } 873 if (partial_end) { 874 struct page *page = NULL; 875 shmem_getpage(inode, end, &page, SGP_READ); 876 if (page) { 877 zero_user_segment(page, 0, partial_end); 878 set_page_dirty(page); 879 unlock_page(page); 880 put_page(page); 881 } 882 } 883 if (start >= end) 884 return; 885 886 index = start; 887 while (index < end) { 888 cond_resched(); 889 890 pvec.nr = find_get_entries(mapping, index, 891 min(end - index, (pgoff_t)PAGEVEC_SIZE), 892 pvec.pages, indices); 893 if (!pvec.nr) { 894 /* If all gone or hole-punch or unfalloc, we're done */ 895 if (index == start || end != -1) 896 break; 897 /* But if truncating, restart to make sure all gone */ 898 index = start; 899 continue; 900 } 901 for (i = 0; i < pagevec_count(&pvec); i++) { 902 struct page *page = pvec.pages[i]; 903 904 index = indices[i]; 905 if (index >= end) 906 break; 907 908 if (xa_is_value(page)) { 909 if (unfalloc) 910 continue; 911 if (shmem_free_swap(mapping, index, page)) { 912 /* Swap was replaced by page: retry */ 913 index--; 914 break; 915 } 916 nr_swaps_freed++; 917 continue; 918 } 919 920 lock_page(page); 921 922 if (PageTransTail(page)) { 923 /* Middle of THP: zero out the page */ 924 clear_highpage(page); 925 unlock_page(page); 926 /* 927 * Partial thp truncate due 'start' in middle 928 * of THP: don't need to look on these pages 929 * again on !pvec.nr restart. 930 */ 931 if (index != round_down(end, HPAGE_PMD_NR)) 932 start++; 933 continue; 934 } else if (PageTransHuge(page)) { 935 if (index == round_down(end, HPAGE_PMD_NR)) { 936 /* 937 * Range ends in the middle of THP: 938 * zero out the page 939 */ 940 clear_highpage(page); 941 unlock_page(page); 942 continue; 943 } 944 index += HPAGE_PMD_NR - 1; 945 i += HPAGE_PMD_NR - 1; 946 } 947 948 if (!unfalloc || !PageUptodate(page)) { 949 VM_BUG_ON_PAGE(PageTail(page), page); 950 if (page_mapping(page) == mapping) { 951 VM_BUG_ON_PAGE(PageWriteback(page), page); 952 truncate_inode_page(mapping, page); 953 } else { 954 /* Page was replaced by swap: retry */ 955 unlock_page(page); 956 index--; 957 break; 958 } 959 } 960 unlock_page(page); 961 } 962 pagevec_remove_exceptionals(&pvec); 963 pagevec_release(&pvec); 964 index++; 965 } 966 967 spin_lock_irq(&info->lock); 968 info->swapped -= nr_swaps_freed; 969 shmem_recalc_inode(inode); 970 spin_unlock_irq(&info->lock); 971 } 972 973 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 974 { 975 shmem_undo_range(inode, lstart, lend, false); 976 inode->i_ctime = inode->i_mtime = current_time(inode); 977 } 978 EXPORT_SYMBOL_GPL(shmem_truncate_range); 979 980 static int shmem_getattr(const struct path *path, struct kstat *stat, 981 u32 request_mask, unsigned int query_flags) 982 { 983 struct inode *inode = path->dentry->d_inode; 984 struct shmem_inode_info *info = SHMEM_I(inode); 985 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); 986 987 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 988 spin_lock_irq(&info->lock); 989 shmem_recalc_inode(inode); 990 spin_unlock_irq(&info->lock); 991 } 992 generic_fillattr(inode, stat); 993 994 if (is_huge_enabled(sb_info)) 995 stat->blksize = HPAGE_PMD_SIZE; 996 997 return 0; 998 } 999 1000 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 1001 { 1002 struct inode *inode = d_inode(dentry); 1003 struct shmem_inode_info *info = SHMEM_I(inode); 1004 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1005 int error; 1006 1007 error = setattr_prepare(dentry, attr); 1008 if (error) 1009 return error; 1010 1011 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1012 loff_t oldsize = inode->i_size; 1013 loff_t newsize = attr->ia_size; 1014 1015 /* protected by i_mutex */ 1016 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1017 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1018 return -EPERM; 1019 1020 if (newsize != oldsize) { 1021 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1022 oldsize, newsize); 1023 if (error) 1024 return error; 1025 i_size_write(inode, newsize); 1026 inode->i_ctime = inode->i_mtime = current_time(inode); 1027 } 1028 if (newsize <= oldsize) { 1029 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1030 if (oldsize > holebegin) 1031 unmap_mapping_range(inode->i_mapping, 1032 holebegin, 0, 1); 1033 if (info->alloced) 1034 shmem_truncate_range(inode, 1035 newsize, (loff_t)-1); 1036 /* unmap again to remove racily COWed private pages */ 1037 if (oldsize > holebegin) 1038 unmap_mapping_range(inode->i_mapping, 1039 holebegin, 0, 1); 1040 1041 /* 1042 * Part of the huge page can be beyond i_size: subject 1043 * to shrink under memory pressure. 1044 */ 1045 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 1046 spin_lock(&sbinfo->shrinklist_lock); 1047 /* 1048 * _careful to defend against unlocked access to 1049 * ->shrink_list in shmem_unused_huge_shrink() 1050 */ 1051 if (list_empty_careful(&info->shrinklist)) { 1052 list_add_tail(&info->shrinklist, 1053 &sbinfo->shrinklist); 1054 sbinfo->shrinklist_len++; 1055 } 1056 spin_unlock(&sbinfo->shrinklist_lock); 1057 } 1058 } 1059 } 1060 1061 setattr_copy(inode, attr); 1062 if (attr->ia_valid & ATTR_MODE) 1063 error = posix_acl_chmod(inode, inode->i_mode); 1064 return error; 1065 } 1066 1067 static void shmem_evict_inode(struct inode *inode) 1068 { 1069 struct shmem_inode_info *info = SHMEM_I(inode); 1070 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1071 1072 if (inode->i_mapping->a_ops == &shmem_aops) { 1073 shmem_unacct_size(info->flags, inode->i_size); 1074 inode->i_size = 0; 1075 shmem_truncate_range(inode, 0, (loff_t)-1); 1076 if (!list_empty(&info->shrinklist)) { 1077 spin_lock(&sbinfo->shrinklist_lock); 1078 if (!list_empty(&info->shrinklist)) { 1079 list_del_init(&info->shrinklist); 1080 sbinfo->shrinklist_len--; 1081 } 1082 spin_unlock(&sbinfo->shrinklist_lock); 1083 } 1084 while (!list_empty(&info->swaplist)) { 1085 /* Wait while shmem_unuse() is scanning this inode... */ 1086 wait_var_event(&info->stop_eviction, 1087 !atomic_read(&info->stop_eviction)); 1088 mutex_lock(&shmem_swaplist_mutex); 1089 /* ...but beware of the race if we peeked too early */ 1090 if (!atomic_read(&info->stop_eviction)) 1091 list_del_init(&info->swaplist); 1092 mutex_unlock(&shmem_swaplist_mutex); 1093 } 1094 } 1095 1096 simple_xattrs_free(&info->xattrs); 1097 WARN_ON(inode->i_blocks); 1098 shmem_free_inode(inode->i_sb); 1099 clear_inode(inode); 1100 } 1101 1102 extern struct swap_info_struct *swap_info[]; 1103 1104 static int shmem_find_swap_entries(struct address_space *mapping, 1105 pgoff_t start, unsigned int nr_entries, 1106 struct page **entries, pgoff_t *indices, 1107 unsigned int type, bool frontswap) 1108 { 1109 XA_STATE(xas, &mapping->i_pages, start); 1110 struct page *page; 1111 swp_entry_t entry; 1112 unsigned int ret = 0; 1113 1114 if (!nr_entries) 1115 return 0; 1116 1117 rcu_read_lock(); 1118 xas_for_each(&xas, page, ULONG_MAX) { 1119 if (xas_retry(&xas, page)) 1120 continue; 1121 1122 if (!xa_is_value(page)) 1123 continue; 1124 1125 entry = radix_to_swp_entry(page); 1126 if (swp_type(entry) != type) 1127 continue; 1128 if (frontswap && 1129 !frontswap_test(swap_info[type], swp_offset(entry))) 1130 continue; 1131 1132 indices[ret] = xas.xa_index; 1133 entries[ret] = page; 1134 1135 if (need_resched()) { 1136 xas_pause(&xas); 1137 cond_resched_rcu(); 1138 } 1139 if (++ret == nr_entries) 1140 break; 1141 } 1142 rcu_read_unlock(); 1143 1144 return ret; 1145 } 1146 1147 /* 1148 * Move the swapped pages for an inode to page cache. Returns the count 1149 * of pages swapped in, or the error in case of failure. 1150 */ 1151 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1152 pgoff_t *indices) 1153 { 1154 int i = 0; 1155 int ret = 0; 1156 int error = 0; 1157 struct address_space *mapping = inode->i_mapping; 1158 1159 for (i = 0; i < pvec.nr; i++) { 1160 struct page *page = pvec.pages[i]; 1161 1162 if (!xa_is_value(page)) 1163 continue; 1164 error = shmem_swapin_page(inode, indices[i], 1165 &page, SGP_CACHE, 1166 mapping_gfp_mask(mapping), 1167 NULL, NULL); 1168 if (error == 0) { 1169 unlock_page(page); 1170 put_page(page); 1171 ret++; 1172 } 1173 if (error == -ENOMEM) 1174 break; 1175 error = 0; 1176 } 1177 return error ? error : ret; 1178 } 1179 1180 /* 1181 * If swap found in inode, free it and move page from swapcache to filecache. 1182 */ 1183 static int shmem_unuse_inode(struct inode *inode, unsigned int type, 1184 bool frontswap, unsigned long *fs_pages_to_unuse) 1185 { 1186 struct address_space *mapping = inode->i_mapping; 1187 pgoff_t start = 0; 1188 struct pagevec pvec; 1189 pgoff_t indices[PAGEVEC_SIZE]; 1190 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); 1191 int ret = 0; 1192 1193 pagevec_init(&pvec); 1194 do { 1195 unsigned int nr_entries = PAGEVEC_SIZE; 1196 1197 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) 1198 nr_entries = *fs_pages_to_unuse; 1199 1200 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1201 pvec.pages, indices, 1202 type, frontswap); 1203 if (pvec.nr == 0) { 1204 ret = 0; 1205 break; 1206 } 1207 1208 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1209 if (ret < 0) 1210 break; 1211 1212 if (frontswap_partial) { 1213 *fs_pages_to_unuse -= ret; 1214 if (*fs_pages_to_unuse == 0) { 1215 ret = FRONTSWAP_PAGES_UNUSED; 1216 break; 1217 } 1218 } 1219 1220 start = indices[pvec.nr - 1]; 1221 } while (true); 1222 1223 return ret; 1224 } 1225 1226 /* 1227 * Read all the shared memory data that resides in the swap 1228 * device 'type' back into memory, so the swap device can be 1229 * unused. 1230 */ 1231 int shmem_unuse(unsigned int type, bool frontswap, 1232 unsigned long *fs_pages_to_unuse) 1233 { 1234 struct shmem_inode_info *info, *next; 1235 int error = 0; 1236 1237 if (list_empty(&shmem_swaplist)) 1238 return 0; 1239 1240 mutex_lock(&shmem_swaplist_mutex); 1241 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1242 if (!info->swapped) { 1243 list_del_init(&info->swaplist); 1244 continue; 1245 } 1246 /* 1247 * Drop the swaplist mutex while searching the inode for swap; 1248 * but before doing so, make sure shmem_evict_inode() will not 1249 * remove placeholder inode from swaplist, nor let it be freed 1250 * (igrab() would protect from unlink, but not from unmount). 1251 */ 1252 atomic_inc(&info->stop_eviction); 1253 mutex_unlock(&shmem_swaplist_mutex); 1254 1255 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap, 1256 fs_pages_to_unuse); 1257 cond_resched(); 1258 1259 mutex_lock(&shmem_swaplist_mutex); 1260 next = list_next_entry(info, swaplist); 1261 if (!info->swapped) 1262 list_del_init(&info->swaplist); 1263 if (atomic_dec_and_test(&info->stop_eviction)) 1264 wake_up_var(&info->stop_eviction); 1265 if (error) 1266 break; 1267 } 1268 mutex_unlock(&shmem_swaplist_mutex); 1269 1270 return error; 1271 } 1272 1273 /* 1274 * Move the page from the page cache to the swap cache. 1275 */ 1276 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1277 { 1278 struct shmem_inode_info *info; 1279 struct address_space *mapping; 1280 struct inode *inode; 1281 swp_entry_t swap; 1282 pgoff_t index; 1283 1284 VM_BUG_ON_PAGE(PageCompound(page), page); 1285 BUG_ON(!PageLocked(page)); 1286 mapping = page->mapping; 1287 index = page->index; 1288 inode = mapping->host; 1289 info = SHMEM_I(inode); 1290 if (info->flags & VM_LOCKED) 1291 goto redirty; 1292 if (!total_swap_pages) 1293 goto redirty; 1294 1295 /* 1296 * Our capabilities prevent regular writeback or sync from ever calling 1297 * shmem_writepage; but a stacking filesystem might use ->writepage of 1298 * its underlying filesystem, in which case tmpfs should write out to 1299 * swap only in response to memory pressure, and not for the writeback 1300 * threads or sync. 1301 */ 1302 if (!wbc->for_reclaim) { 1303 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1304 goto redirty; 1305 } 1306 1307 /* 1308 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1309 * value into swapfile.c, the only way we can correctly account for a 1310 * fallocated page arriving here is now to initialize it and write it. 1311 * 1312 * That's okay for a page already fallocated earlier, but if we have 1313 * not yet completed the fallocation, then (a) we want to keep track 1314 * of this page in case we have to undo it, and (b) it may not be a 1315 * good idea to continue anyway, once we're pushing into swap. So 1316 * reactivate the page, and let shmem_fallocate() quit when too many. 1317 */ 1318 if (!PageUptodate(page)) { 1319 if (inode->i_private) { 1320 struct shmem_falloc *shmem_falloc; 1321 spin_lock(&inode->i_lock); 1322 shmem_falloc = inode->i_private; 1323 if (shmem_falloc && 1324 !shmem_falloc->waitq && 1325 index >= shmem_falloc->start && 1326 index < shmem_falloc->next) 1327 shmem_falloc->nr_unswapped++; 1328 else 1329 shmem_falloc = NULL; 1330 spin_unlock(&inode->i_lock); 1331 if (shmem_falloc) 1332 goto redirty; 1333 } 1334 clear_highpage(page); 1335 flush_dcache_page(page); 1336 SetPageUptodate(page); 1337 } 1338 1339 swap = get_swap_page(page); 1340 if (!swap.val) 1341 goto redirty; 1342 1343 /* 1344 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1345 * if it's not already there. Do it now before the page is 1346 * moved to swap cache, when its pagelock no longer protects 1347 * the inode from eviction. But don't unlock the mutex until 1348 * we've incremented swapped, because shmem_unuse_inode() will 1349 * prune a !swapped inode from the swaplist under this mutex. 1350 */ 1351 mutex_lock(&shmem_swaplist_mutex); 1352 if (list_empty(&info->swaplist)) 1353 list_add(&info->swaplist, &shmem_swaplist); 1354 1355 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1356 spin_lock_irq(&info->lock); 1357 shmem_recalc_inode(inode); 1358 info->swapped++; 1359 spin_unlock_irq(&info->lock); 1360 1361 swap_shmem_alloc(swap); 1362 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1363 1364 mutex_unlock(&shmem_swaplist_mutex); 1365 BUG_ON(page_mapped(page)); 1366 swap_writepage(page, wbc); 1367 return 0; 1368 } 1369 1370 mutex_unlock(&shmem_swaplist_mutex); 1371 put_swap_page(page, swap); 1372 redirty: 1373 set_page_dirty(page); 1374 if (wbc->for_reclaim) 1375 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1376 unlock_page(page); 1377 return 0; 1378 } 1379 1380 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1381 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1382 { 1383 char buffer[64]; 1384 1385 if (!mpol || mpol->mode == MPOL_DEFAULT) 1386 return; /* show nothing */ 1387 1388 mpol_to_str(buffer, sizeof(buffer), mpol); 1389 1390 seq_printf(seq, ",mpol=%s", buffer); 1391 } 1392 1393 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1394 { 1395 struct mempolicy *mpol = NULL; 1396 if (sbinfo->mpol) { 1397 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1398 mpol = sbinfo->mpol; 1399 mpol_get(mpol); 1400 spin_unlock(&sbinfo->stat_lock); 1401 } 1402 return mpol; 1403 } 1404 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1405 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1406 { 1407 } 1408 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1409 { 1410 return NULL; 1411 } 1412 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1413 #ifndef CONFIG_NUMA 1414 #define vm_policy vm_private_data 1415 #endif 1416 1417 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1418 struct shmem_inode_info *info, pgoff_t index) 1419 { 1420 /* Create a pseudo vma that just contains the policy */ 1421 vma_init(vma, NULL); 1422 /* Bias interleave by inode number to distribute better across nodes */ 1423 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1424 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1425 } 1426 1427 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1428 { 1429 /* Drop reference taken by mpol_shared_policy_lookup() */ 1430 mpol_cond_put(vma->vm_policy); 1431 } 1432 1433 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1434 struct shmem_inode_info *info, pgoff_t index) 1435 { 1436 struct vm_area_struct pvma; 1437 struct page *page; 1438 struct vm_fault vmf; 1439 1440 shmem_pseudo_vma_init(&pvma, info, index); 1441 vmf.vma = &pvma; 1442 vmf.address = 0; 1443 page = swap_cluster_readahead(swap, gfp, &vmf); 1444 shmem_pseudo_vma_destroy(&pvma); 1445 1446 return page; 1447 } 1448 1449 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1450 struct shmem_inode_info *info, pgoff_t index) 1451 { 1452 struct vm_area_struct pvma; 1453 struct address_space *mapping = info->vfs_inode.i_mapping; 1454 pgoff_t hindex; 1455 struct page *page; 1456 1457 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1458 return NULL; 1459 1460 hindex = round_down(index, HPAGE_PMD_NR); 1461 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1462 XA_PRESENT)) 1463 return NULL; 1464 1465 shmem_pseudo_vma_init(&pvma, info, hindex); 1466 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1467 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1468 shmem_pseudo_vma_destroy(&pvma); 1469 if (page) 1470 prep_transhuge_page(page); 1471 return page; 1472 } 1473 1474 static struct page *shmem_alloc_page(gfp_t gfp, 1475 struct shmem_inode_info *info, pgoff_t index) 1476 { 1477 struct vm_area_struct pvma; 1478 struct page *page; 1479 1480 shmem_pseudo_vma_init(&pvma, info, index); 1481 page = alloc_page_vma(gfp, &pvma, 0); 1482 shmem_pseudo_vma_destroy(&pvma); 1483 1484 return page; 1485 } 1486 1487 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1488 struct inode *inode, 1489 pgoff_t index, bool huge) 1490 { 1491 struct shmem_inode_info *info = SHMEM_I(inode); 1492 struct page *page; 1493 int nr; 1494 int err = -ENOSPC; 1495 1496 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1497 huge = false; 1498 nr = huge ? HPAGE_PMD_NR : 1; 1499 1500 if (!shmem_inode_acct_block(inode, nr)) 1501 goto failed; 1502 1503 if (huge) 1504 page = shmem_alloc_hugepage(gfp, info, index); 1505 else 1506 page = shmem_alloc_page(gfp, info, index); 1507 if (page) { 1508 __SetPageLocked(page); 1509 __SetPageSwapBacked(page); 1510 return page; 1511 } 1512 1513 err = -ENOMEM; 1514 shmem_inode_unacct_blocks(inode, nr); 1515 failed: 1516 return ERR_PTR(err); 1517 } 1518 1519 /* 1520 * When a page is moved from swapcache to shmem filecache (either by the 1521 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1522 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1523 * ignorance of the mapping it belongs to. If that mapping has special 1524 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1525 * we may need to copy to a suitable page before moving to filecache. 1526 * 1527 * In a future release, this may well be extended to respect cpuset and 1528 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1529 * but for now it is a simple matter of zone. 1530 */ 1531 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1532 { 1533 return page_zonenum(page) > gfp_zone(gfp); 1534 } 1535 1536 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1537 struct shmem_inode_info *info, pgoff_t index) 1538 { 1539 struct page *oldpage, *newpage; 1540 struct address_space *swap_mapping; 1541 swp_entry_t entry; 1542 pgoff_t swap_index; 1543 int error; 1544 1545 oldpage = *pagep; 1546 entry.val = page_private(oldpage); 1547 swap_index = swp_offset(entry); 1548 swap_mapping = page_mapping(oldpage); 1549 1550 /* 1551 * We have arrived here because our zones are constrained, so don't 1552 * limit chance of success by further cpuset and node constraints. 1553 */ 1554 gfp &= ~GFP_CONSTRAINT_MASK; 1555 newpage = shmem_alloc_page(gfp, info, index); 1556 if (!newpage) 1557 return -ENOMEM; 1558 1559 get_page(newpage); 1560 copy_highpage(newpage, oldpage); 1561 flush_dcache_page(newpage); 1562 1563 __SetPageLocked(newpage); 1564 __SetPageSwapBacked(newpage); 1565 SetPageUptodate(newpage); 1566 set_page_private(newpage, entry.val); 1567 SetPageSwapCache(newpage); 1568 1569 /* 1570 * Our caller will very soon move newpage out of swapcache, but it's 1571 * a nice clean interface for us to replace oldpage by newpage there. 1572 */ 1573 xa_lock_irq(&swap_mapping->i_pages); 1574 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1575 if (!error) { 1576 __inc_node_page_state(newpage, NR_FILE_PAGES); 1577 __dec_node_page_state(oldpage, NR_FILE_PAGES); 1578 } 1579 xa_unlock_irq(&swap_mapping->i_pages); 1580 1581 if (unlikely(error)) { 1582 /* 1583 * Is this possible? I think not, now that our callers check 1584 * both PageSwapCache and page_private after getting page lock; 1585 * but be defensive. Reverse old to newpage for clear and free. 1586 */ 1587 oldpage = newpage; 1588 } else { 1589 mem_cgroup_migrate(oldpage, newpage); 1590 lru_cache_add_anon(newpage); 1591 *pagep = newpage; 1592 } 1593 1594 ClearPageSwapCache(oldpage); 1595 set_page_private(oldpage, 0); 1596 1597 unlock_page(oldpage); 1598 put_page(oldpage); 1599 put_page(oldpage); 1600 return error; 1601 } 1602 1603 /* 1604 * Swap in the page pointed to by *pagep. 1605 * Caller has to make sure that *pagep contains a valid swapped page. 1606 * Returns 0 and the page in pagep if success. On failure, returns the 1607 * the error code and NULL in *pagep. 1608 */ 1609 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1610 struct page **pagep, enum sgp_type sgp, 1611 gfp_t gfp, struct vm_area_struct *vma, 1612 vm_fault_t *fault_type) 1613 { 1614 struct address_space *mapping = inode->i_mapping; 1615 struct shmem_inode_info *info = SHMEM_I(inode); 1616 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm; 1617 struct mem_cgroup *memcg; 1618 struct page *page; 1619 swp_entry_t swap; 1620 int error; 1621 1622 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1623 swap = radix_to_swp_entry(*pagep); 1624 *pagep = NULL; 1625 1626 /* Look it up and read it in.. */ 1627 page = lookup_swap_cache(swap, NULL, 0); 1628 if (!page) { 1629 /* Or update major stats only when swapin succeeds?? */ 1630 if (fault_type) { 1631 *fault_type |= VM_FAULT_MAJOR; 1632 count_vm_event(PGMAJFAULT); 1633 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1634 } 1635 /* Here we actually start the io */ 1636 page = shmem_swapin(swap, gfp, info, index); 1637 if (!page) { 1638 error = -ENOMEM; 1639 goto failed; 1640 } 1641 } 1642 1643 /* We have to do this with page locked to prevent races */ 1644 lock_page(page); 1645 if (!PageSwapCache(page) || page_private(page) != swap.val || 1646 !shmem_confirm_swap(mapping, index, swap)) { 1647 error = -EEXIST; 1648 goto unlock; 1649 } 1650 if (!PageUptodate(page)) { 1651 error = -EIO; 1652 goto failed; 1653 } 1654 wait_on_page_writeback(page); 1655 1656 if (shmem_should_replace_page(page, gfp)) { 1657 error = shmem_replace_page(&page, gfp, info, index); 1658 if (error) 1659 goto failed; 1660 } 1661 1662 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg, 1663 false); 1664 if (!error) { 1665 error = shmem_add_to_page_cache(page, mapping, index, 1666 swp_to_radix_entry(swap), gfp); 1667 /* 1668 * We already confirmed swap under page lock, and make 1669 * no memory allocation here, so usually no possibility 1670 * of error; but free_swap_and_cache() only trylocks a 1671 * page, so it is just possible that the entry has been 1672 * truncated or holepunched since swap was confirmed. 1673 * shmem_undo_range() will have done some of the 1674 * unaccounting, now delete_from_swap_cache() will do 1675 * the rest. 1676 */ 1677 if (error) { 1678 mem_cgroup_cancel_charge(page, memcg, false); 1679 delete_from_swap_cache(page); 1680 } 1681 } 1682 if (error) 1683 goto failed; 1684 1685 mem_cgroup_commit_charge(page, memcg, true, false); 1686 1687 spin_lock_irq(&info->lock); 1688 info->swapped--; 1689 shmem_recalc_inode(inode); 1690 spin_unlock_irq(&info->lock); 1691 1692 if (sgp == SGP_WRITE) 1693 mark_page_accessed(page); 1694 1695 delete_from_swap_cache(page); 1696 set_page_dirty(page); 1697 swap_free(swap); 1698 1699 *pagep = page; 1700 return 0; 1701 failed: 1702 if (!shmem_confirm_swap(mapping, index, swap)) 1703 error = -EEXIST; 1704 unlock: 1705 if (page) { 1706 unlock_page(page); 1707 put_page(page); 1708 } 1709 1710 return error; 1711 } 1712 1713 /* 1714 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1715 * 1716 * If we allocate a new one we do not mark it dirty. That's up to the 1717 * vm. If we swap it in we mark it dirty since we also free the swap 1718 * entry since a page cannot live in both the swap and page cache. 1719 * 1720 * fault_mm and fault_type are only supplied by shmem_fault: 1721 * otherwise they are NULL. 1722 */ 1723 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1724 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1725 struct vm_area_struct *vma, struct vm_fault *vmf, 1726 vm_fault_t *fault_type) 1727 { 1728 struct address_space *mapping = inode->i_mapping; 1729 struct shmem_inode_info *info = SHMEM_I(inode); 1730 struct shmem_sb_info *sbinfo; 1731 struct mm_struct *charge_mm; 1732 struct mem_cgroup *memcg; 1733 struct page *page; 1734 enum sgp_type sgp_huge = sgp; 1735 pgoff_t hindex = index; 1736 int error; 1737 int once = 0; 1738 int alloced = 0; 1739 1740 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1741 return -EFBIG; 1742 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1743 sgp = SGP_CACHE; 1744 repeat: 1745 if (sgp <= SGP_CACHE && 1746 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1747 return -EINVAL; 1748 } 1749 1750 sbinfo = SHMEM_SB(inode->i_sb); 1751 charge_mm = vma ? vma->vm_mm : current->mm; 1752 1753 page = find_lock_entry(mapping, index); 1754 if (xa_is_value(page)) { 1755 error = shmem_swapin_page(inode, index, &page, 1756 sgp, gfp, vma, fault_type); 1757 if (error == -EEXIST) 1758 goto repeat; 1759 1760 *pagep = page; 1761 return error; 1762 } 1763 1764 if (page && sgp == SGP_WRITE) 1765 mark_page_accessed(page); 1766 1767 /* fallocated page? */ 1768 if (page && !PageUptodate(page)) { 1769 if (sgp != SGP_READ) 1770 goto clear; 1771 unlock_page(page); 1772 put_page(page); 1773 page = NULL; 1774 } 1775 if (page || sgp == SGP_READ) { 1776 *pagep = page; 1777 return 0; 1778 } 1779 1780 /* 1781 * Fast cache lookup did not find it: 1782 * bring it back from swap or allocate. 1783 */ 1784 1785 if (vma && userfaultfd_missing(vma)) { 1786 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1787 return 0; 1788 } 1789 1790 /* shmem_symlink() */ 1791 if (mapping->a_ops != &shmem_aops) 1792 goto alloc_nohuge; 1793 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1794 goto alloc_nohuge; 1795 if (shmem_huge == SHMEM_HUGE_FORCE) 1796 goto alloc_huge; 1797 switch (sbinfo->huge) { 1798 loff_t i_size; 1799 pgoff_t off; 1800 case SHMEM_HUGE_NEVER: 1801 goto alloc_nohuge; 1802 case SHMEM_HUGE_WITHIN_SIZE: 1803 off = round_up(index, HPAGE_PMD_NR); 1804 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1805 if (i_size >= HPAGE_PMD_SIZE && 1806 i_size >> PAGE_SHIFT >= off) 1807 goto alloc_huge; 1808 /* fallthrough */ 1809 case SHMEM_HUGE_ADVISE: 1810 if (sgp_huge == SGP_HUGE) 1811 goto alloc_huge; 1812 /* TODO: implement fadvise() hints */ 1813 goto alloc_nohuge; 1814 } 1815 1816 alloc_huge: 1817 page = shmem_alloc_and_acct_page(gfp, inode, index, true); 1818 if (IS_ERR(page)) { 1819 alloc_nohuge: 1820 page = shmem_alloc_and_acct_page(gfp, inode, 1821 index, false); 1822 } 1823 if (IS_ERR(page)) { 1824 int retry = 5; 1825 1826 error = PTR_ERR(page); 1827 page = NULL; 1828 if (error != -ENOSPC) 1829 goto unlock; 1830 /* 1831 * Try to reclaim some space by splitting a huge page 1832 * beyond i_size on the filesystem. 1833 */ 1834 while (retry--) { 1835 int ret; 1836 1837 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1838 if (ret == SHRINK_STOP) 1839 break; 1840 if (ret) 1841 goto alloc_nohuge; 1842 } 1843 goto unlock; 1844 } 1845 1846 if (PageTransHuge(page)) 1847 hindex = round_down(index, HPAGE_PMD_NR); 1848 else 1849 hindex = index; 1850 1851 if (sgp == SGP_WRITE) 1852 __SetPageReferenced(page); 1853 1854 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg, 1855 PageTransHuge(page)); 1856 if (error) 1857 goto unacct; 1858 error = shmem_add_to_page_cache(page, mapping, hindex, 1859 NULL, gfp & GFP_RECLAIM_MASK); 1860 if (error) { 1861 mem_cgroup_cancel_charge(page, memcg, 1862 PageTransHuge(page)); 1863 goto unacct; 1864 } 1865 mem_cgroup_commit_charge(page, memcg, false, 1866 PageTransHuge(page)); 1867 lru_cache_add_anon(page); 1868 1869 spin_lock_irq(&info->lock); 1870 info->alloced += 1 << compound_order(page); 1871 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1872 shmem_recalc_inode(inode); 1873 spin_unlock_irq(&info->lock); 1874 alloced = true; 1875 1876 if (PageTransHuge(page) && 1877 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1878 hindex + HPAGE_PMD_NR - 1) { 1879 /* 1880 * Part of the huge page is beyond i_size: subject 1881 * to shrink under memory pressure. 1882 */ 1883 spin_lock(&sbinfo->shrinklist_lock); 1884 /* 1885 * _careful to defend against unlocked access to 1886 * ->shrink_list in shmem_unused_huge_shrink() 1887 */ 1888 if (list_empty_careful(&info->shrinklist)) { 1889 list_add_tail(&info->shrinklist, 1890 &sbinfo->shrinklist); 1891 sbinfo->shrinklist_len++; 1892 } 1893 spin_unlock(&sbinfo->shrinklist_lock); 1894 } 1895 1896 /* 1897 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1898 */ 1899 if (sgp == SGP_FALLOC) 1900 sgp = SGP_WRITE; 1901 clear: 1902 /* 1903 * Let SGP_WRITE caller clear ends if write does not fill page; 1904 * but SGP_FALLOC on a page fallocated earlier must initialize 1905 * it now, lest undo on failure cancel our earlier guarantee. 1906 */ 1907 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1908 struct page *head = compound_head(page); 1909 int i; 1910 1911 for (i = 0; i < (1 << compound_order(head)); i++) { 1912 clear_highpage(head + i); 1913 flush_dcache_page(head + i); 1914 } 1915 SetPageUptodate(head); 1916 } 1917 1918 /* Perhaps the file has been truncated since we checked */ 1919 if (sgp <= SGP_CACHE && 1920 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1921 if (alloced) { 1922 ClearPageDirty(page); 1923 delete_from_page_cache(page); 1924 spin_lock_irq(&info->lock); 1925 shmem_recalc_inode(inode); 1926 spin_unlock_irq(&info->lock); 1927 } 1928 error = -EINVAL; 1929 goto unlock; 1930 } 1931 *pagep = page + index - hindex; 1932 return 0; 1933 1934 /* 1935 * Error recovery. 1936 */ 1937 unacct: 1938 shmem_inode_unacct_blocks(inode, 1 << compound_order(page)); 1939 1940 if (PageTransHuge(page)) { 1941 unlock_page(page); 1942 put_page(page); 1943 goto alloc_nohuge; 1944 } 1945 unlock: 1946 if (page) { 1947 unlock_page(page); 1948 put_page(page); 1949 } 1950 if (error == -ENOSPC && !once++) { 1951 spin_lock_irq(&info->lock); 1952 shmem_recalc_inode(inode); 1953 spin_unlock_irq(&info->lock); 1954 goto repeat; 1955 } 1956 if (error == -EEXIST) 1957 goto repeat; 1958 return error; 1959 } 1960 1961 /* 1962 * This is like autoremove_wake_function, but it removes the wait queue 1963 * entry unconditionally - even if something else had already woken the 1964 * target. 1965 */ 1966 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1967 { 1968 int ret = default_wake_function(wait, mode, sync, key); 1969 list_del_init(&wait->entry); 1970 return ret; 1971 } 1972 1973 static vm_fault_t shmem_fault(struct vm_fault *vmf) 1974 { 1975 struct vm_area_struct *vma = vmf->vma; 1976 struct inode *inode = file_inode(vma->vm_file); 1977 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1978 enum sgp_type sgp; 1979 int err; 1980 vm_fault_t ret = VM_FAULT_LOCKED; 1981 1982 /* 1983 * Trinity finds that probing a hole which tmpfs is punching can 1984 * prevent the hole-punch from ever completing: which in turn 1985 * locks writers out with its hold on i_mutex. So refrain from 1986 * faulting pages into the hole while it's being punched. Although 1987 * shmem_undo_range() does remove the additions, it may be unable to 1988 * keep up, as each new page needs its own unmap_mapping_range() call, 1989 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1990 * 1991 * It does not matter if we sometimes reach this check just before the 1992 * hole-punch begins, so that one fault then races with the punch: 1993 * we just need to make racing faults a rare case. 1994 * 1995 * The implementation below would be much simpler if we just used a 1996 * standard mutex or completion: but we cannot take i_mutex in fault, 1997 * and bloating every shmem inode for this unlikely case would be sad. 1998 */ 1999 if (unlikely(inode->i_private)) { 2000 struct shmem_falloc *shmem_falloc; 2001 2002 spin_lock(&inode->i_lock); 2003 shmem_falloc = inode->i_private; 2004 if (shmem_falloc && 2005 shmem_falloc->waitq && 2006 vmf->pgoff >= shmem_falloc->start && 2007 vmf->pgoff < shmem_falloc->next) { 2008 wait_queue_head_t *shmem_falloc_waitq; 2009 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2010 2011 ret = VM_FAULT_NOPAGE; 2012 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 2013 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 2014 /* It's polite to up mmap_sem if we can */ 2015 up_read(&vma->vm_mm->mmap_sem); 2016 ret = VM_FAULT_RETRY; 2017 } 2018 2019 shmem_falloc_waitq = shmem_falloc->waitq; 2020 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2021 TASK_UNINTERRUPTIBLE); 2022 spin_unlock(&inode->i_lock); 2023 schedule(); 2024 2025 /* 2026 * shmem_falloc_waitq points into the shmem_fallocate() 2027 * stack of the hole-punching task: shmem_falloc_waitq 2028 * is usually invalid by the time we reach here, but 2029 * finish_wait() does not dereference it in that case; 2030 * though i_lock needed lest racing with wake_up_all(). 2031 */ 2032 spin_lock(&inode->i_lock); 2033 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2034 spin_unlock(&inode->i_lock); 2035 return ret; 2036 } 2037 spin_unlock(&inode->i_lock); 2038 } 2039 2040 sgp = SGP_CACHE; 2041 2042 if ((vma->vm_flags & VM_NOHUGEPAGE) || 2043 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 2044 sgp = SGP_NOHUGE; 2045 else if (vma->vm_flags & VM_HUGEPAGE) 2046 sgp = SGP_HUGE; 2047 2048 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 2049 gfp, vma, vmf, &ret); 2050 if (err) 2051 return vmf_error(err); 2052 return ret; 2053 } 2054 2055 unsigned long shmem_get_unmapped_area(struct file *file, 2056 unsigned long uaddr, unsigned long len, 2057 unsigned long pgoff, unsigned long flags) 2058 { 2059 unsigned long (*get_area)(struct file *, 2060 unsigned long, unsigned long, unsigned long, unsigned long); 2061 unsigned long addr; 2062 unsigned long offset; 2063 unsigned long inflated_len; 2064 unsigned long inflated_addr; 2065 unsigned long inflated_offset; 2066 2067 if (len > TASK_SIZE) 2068 return -ENOMEM; 2069 2070 get_area = current->mm->get_unmapped_area; 2071 addr = get_area(file, uaddr, len, pgoff, flags); 2072 2073 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 2074 return addr; 2075 if (IS_ERR_VALUE(addr)) 2076 return addr; 2077 if (addr & ~PAGE_MASK) 2078 return addr; 2079 if (addr > TASK_SIZE - len) 2080 return addr; 2081 2082 if (shmem_huge == SHMEM_HUGE_DENY) 2083 return addr; 2084 if (len < HPAGE_PMD_SIZE) 2085 return addr; 2086 if (flags & MAP_FIXED) 2087 return addr; 2088 /* 2089 * Our priority is to support MAP_SHARED mapped hugely; 2090 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2091 * But if caller specified an address hint, respect that as before. 2092 */ 2093 if (uaddr) 2094 return addr; 2095 2096 if (shmem_huge != SHMEM_HUGE_FORCE) { 2097 struct super_block *sb; 2098 2099 if (file) { 2100 VM_BUG_ON(file->f_op != &shmem_file_operations); 2101 sb = file_inode(file)->i_sb; 2102 } else { 2103 /* 2104 * Called directly from mm/mmap.c, or drivers/char/mem.c 2105 * for "/dev/zero", to create a shared anonymous object. 2106 */ 2107 if (IS_ERR(shm_mnt)) 2108 return addr; 2109 sb = shm_mnt->mnt_sb; 2110 } 2111 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2112 return addr; 2113 } 2114 2115 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2116 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2117 return addr; 2118 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2119 return addr; 2120 2121 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2122 if (inflated_len > TASK_SIZE) 2123 return addr; 2124 if (inflated_len < len) 2125 return addr; 2126 2127 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags); 2128 if (IS_ERR_VALUE(inflated_addr)) 2129 return addr; 2130 if (inflated_addr & ~PAGE_MASK) 2131 return addr; 2132 2133 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2134 inflated_addr += offset - inflated_offset; 2135 if (inflated_offset > offset) 2136 inflated_addr += HPAGE_PMD_SIZE; 2137 2138 if (inflated_addr > TASK_SIZE - len) 2139 return addr; 2140 return inflated_addr; 2141 } 2142 2143 #ifdef CONFIG_NUMA 2144 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2145 { 2146 struct inode *inode = file_inode(vma->vm_file); 2147 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2148 } 2149 2150 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2151 unsigned long addr) 2152 { 2153 struct inode *inode = file_inode(vma->vm_file); 2154 pgoff_t index; 2155 2156 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2157 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2158 } 2159 #endif 2160 2161 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2162 { 2163 struct inode *inode = file_inode(file); 2164 struct shmem_inode_info *info = SHMEM_I(inode); 2165 int retval = -ENOMEM; 2166 2167 spin_lock_irq(&info->lock); 2168 if (lock && !(info->flags & VM_LOCKED)) { 2169 if (!user_shm_lock(inode->i_size, user)) 2170 goto out_nomem; 2171 info->flags |= VM_LOCKED; 2172 mapping_set_unevictable(file->f_mapping); 2173 } 2174 if (!lock && (info->flags & VM_LOCKED) && user) { 2175 user_shm_unlock(inode->i_size, user); 2176 info->flags &= ~VM_LOCKED; 2177 mapping_clear_unevictable(file->f_mapping); 2178 } 2179 retval = 0; 2180 2181 out_nomem: 2182 spin_unlock_irq(&info->lock); 2183 return retval; 2184 } 2185 2186 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2187 { 2188 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2189 2190 if (info->seals & F_SEAL_FUTURE_WRITE) { 2191 /* 2192 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 2193 * "future write" seal active. 2194 */ 2195 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 2196 return -EPERM; 2197 2198 /* 2199 * Since the F_SEAL_FUTURE_WRITE seals allow for a MAP_SHARED 2200 * read-only mapping, take care to not allow mprotect to revert 2201 * protections. 2202 */ 2203 vma->vm_flags &= ~(VM_MAYWRITE); 2204 } 2205 2206 file_accessed(file); 2207 vma->vm_ops = &shmem_vm_ops; 2208 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 2209 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2210 (vma->vm_end & HPAGE_PMD_MASK)) { 2211 khugepaged_enter(vma, vma->vm_flags); 2212 } 2213 return 0; 2214 } 2215 2216 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2217 umode_t mode, dev_t dev, unsigned long flags) 2218 { 2219 struct inode *inode; 2220 struct shmem_inode_info *info; 2221 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2222 2223 if (shmem_reserve_inode(sb)) 2224 return NULL; 2225 2226 inode = new_inode(sb); 2227 if (inode) { 2228 inode->i_ino = get_next_ino(); 2229 inode_init_owner(inode, dir, mode); 2230 inode->i_blocks = 0; 2231 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2232 inode->i_generation = prandom_u32(); 2233 info = SHMEM_I(inode); 2234 memset(info, 0, (char *)inode - (char *)info); 2235 spin_lock_init(&info->lock); 2236 atomic_set(&info->stop_eviction, 0); 2237 info->seals = F_SEAL_SEAL; 2238 info->flags = flags & VM_NORESERVE; 2239 INIT_LIST_HEAD(&info->shrinklist); 2240 INIT_LIST_HEAD(&info->swaplist); 2241 simple_xattrs_init(&info->xattrs); 2242 cache_no_acl(inode); 2243 2244 switch (mode & S_IFMT) { 2245 default: 2246 inode->i_op = &shmem_special_inode_operations; 2247 init_special_inode(inode, mode, dev); 2248 break; 2249 case S_IFREG: 2250 inode->i_mapping->a_ops = &shmem_aops; 2251 inode->i_op = &shmem_inode_operations; 2252 inode->i_fop = &shmem_file_operations; 2253 mpol_shared_policy_init(&info->policy, 2254 shmem_get_sbmpol(sbinfo)); 2255 break; 2256 case S_IFDIR: 2257 inc_nlink(inode); 2258 /* Some things misbehave if size == 0 on a directory */ 2259 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2260 inode->i_op = &shmem_dir_inode_operations; 2261 inode->i_fop = &simple_dir_operations; 2262 break; 2263 case S_IFLNK: 2264 /* 2265 * Must not load anything in the rbtree, 2266 * mpol_free_shared_policy will not be called. 2267 */ 2268 mpol_shared_policy_init(&info->policy, NULL); 2269 break; 2270 } 2271 2272 lockdep_annotate_inode_mutex_key(inode); 2273 } else 2274 shmem_free_inode(sb); 2275 return inode; 2276 } 2277 2278 bool shmem_mapping(struct address_space *mapping) 2279 { 2280 return mapping->a_ops == &shmem_aops; 2281 } 2282 2283 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2284 pmd_t *dst_pmd, 2285 struct vm_area_struct *dst_vma, 2286 unsigned long dst_addr, 2287 unsigned long src_addr, 2288 bool zeropage, 2289 struct page **pagep) 2290 { 2291 struct inode *inode = file_inode(dst_vma->vm_file); 2292 struct shmem_inode_info *info = SHMEM_I(inode); 2293 struct address_space *mapping = inode->i_mapping; 2294 gfp_t gfp = mapping_gfp_mask(mapping); 2295 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2296 struct mem_cgroup *memcg; 2297 spinlock_t *ptl; 2298 void *page_kaddr; 2299 struct page *page; 2300 pte_t _dst_pte, *dst_pte; 2301 int ret; 2302 pgoff_t offset, max_off; 2303 2304 ret = -ENOMEM; 2305 if (!shmem_inode_acct_block(inode, 1)) 2306 goto out; 2307 2308 if (!*pagep) { 2309 page = shmem_alloc_page(gfp, info, pgoff); 2310 if (!page) 2311 goto out_unacct_blocks; 2312 2313 if (!zeropage) { /* mcopy_atomic */ 2314 page_kaddr = kmap_atomic(page); 2315 ret = copy_from_user(page_kaddr, 2316 (const void __user *)src_addr, 2317 PAGE_SIZE); 2318 kunmap_atomic(page_kaddr); 2319 2320 /* fallback to copy_from_user outside mmap_sem */ 2321 if (unlikely(ret)) { 2322 *pagep = page; 2323 shmem_inode_unacct_blocks(inode, 1); 2324 /* don't free the page */ 2325 return -ENOENT; 2326 } 2327 } else { /* mfill_zeropage_atomic */ 2328 clear_highpage(page); 2329 } 2330 } else { 2331 page = *pagep; 2332 *pagep = NULL; 2333 } 2334 2335 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2336 __SetPageLocked(page); 2337 __SetPageSwapBacked(page); 2338 __SetPageUptodate(page); 2339 2340 ret = -EFAULT; 2341 offset = linear_page_index(dst_vma, dst_addr); 2342 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2343 if (unlikely(offset >= max_off)) 2344 goto out_release; 2345 2346 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false); 2347 if (ret) 2348 goto out_release; 2349 2350 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2351 gfp & GFP_RECLAIM_MASK); 2352 if (ret) 2353 goto out_release_uncharge; 2354 2355 mem_cgroup_commit_charge(page, memcg, false, false); 2356 2357 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2358 if (dst_vma->vm_flags & VM_WRITE) 2359 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2360 else { 2361 /* 2362 * We don't set the pte dirty if the vma has no 2363 * VM_WRITE permission, so mark the page dirty or it 2364 * could be freed from under us. We could do it 2365 * unconditionally before unlock_page(), but doing it 2366 * only if VM_WRITE is not set is faster. 2367 */ 2368 set_page_dirty(page); 2369 } 2370 2371 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2372 2373 ret = -EFAULT; 2374 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2375 if (unlikely(offset >= max_off)) 2376 goto out_release_uncharge_unlock; 2377 2378 ret = -EEXIST; 2379 if (!pte_none(*dst_pte)) 2380 goto out_release_uncharge_unlock; 2381 2382 lru_cache_add_anon(page); 2383 2384 spin_lock(&info->lock); 2385 info->alloced++; 2386 inode->i_blocks += BLOCKS_PER_PAGE; 2387 shmem_recalc_inode(inode); 2388 spin_unlock(&info->lock); 2389 2390 inc_mm_counter(dst_mm, mm_counter_file(page)); 2391 page_add_file_rmap(page, false); 2392 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2393 2394 /* No need to invalidate - it was non-present before */ 2395 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2396 pte_unmap_unlock(dst_pte, ptl); 2397 unlock_page(page); 2398 ret = 0; 2399 out: 2400 return ret; 2401 out_release_uncharge_unlock: 2402 pte_unmap_unlock(dst_pte, ptl); 2403 ClearPageDirty(page); 2404 delete_from_page_cache(page); 2405 out_release_uncharge: 2406 mem_cgroup_cancel_charge(page, memcg, false); 2407 out_release: 2408 unlock_page(page); 2409 put_page(page); 2410 out_unacct_blocks: 2411 shmem_inode_unacct_blocks(inode, 1); 2412 goto out; 2413 } 2414 2415 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2416 pmd_t *dst_pmd, 2417 struct vm_area_struct *dst_vma, 2418 unsigned long dst_addr, 2419 unsigned long src_addr, 2420 struct page **pagep) 2421 { 2422 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2423 dst_addr, src_addr, false, pagep); 2424 } 2425 2426 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, 2427 pmd_t *dst_pmd, 2428 struct vm_area_struct *dst_vma, 2429 unsigned long dst_addr) 2430 { 2431 struct page *page = NULL; 2432 2433 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2434 dst_addr, 0, true, &page); 2435 } 2436 2437 #ifdef CONFIG_TMPFS 2438 static const struct inode_operations shmem_symlink_inode_operations; 2439 static const struct inode_operations shmem_short_symlink_operations; 2440 2441 #ifdef CONFIG_TMPFS_XATTR 2442 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2443 #else 2444 #define shmem_initxattrs NULL 2445 #endif 2446 2447 static int 2448 shmem_write_begin(struct file *file, struct address_space *mapping, 2449 loff_t pos, unsigned len, unsigned flags, 2450 struct page **pagep, void **fsdata) 2451 { 2452 struct inode *inode = mapping->host; 2453 struct shmem_inode_info *info = SHMEM_I(inode); 2454 pgoff_t index = pos >> PAGE_SHIFT; 2455 2456 /* i_mutex is held by caller */ 2457 if (unlikely(info->seals & (F_SEAL_GROW | 2458 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2459 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2460 return -EPERM; 2461 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2462 return -EPERM; 2463 } 2464 2465 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2466 } 2467 2468 static int 2469 shmem_write_end(struct file *file, struct address_space *mapping, 2470 loff_t pos, unsigned len, unsigned copied, 2471 struct page *page, void *fsdata) 2472 { 2473 struct inode *inode = mapping->host; 2474 2475 if (pos + copied > inode->i_size) 2476 i_size_write(inode, pos + copied); 2477 2478 if (!PageUptodate(page)) { 2479 struct page *head = compound_head(page); 2480 if (PageTransCompound(page)) { 2481 int i; 2482 2483 for (i = 0; i < HPAGE_PMD_NR; i++) { 2484 if (head + i == page) 2485 continue; 2486 clear_highpage(head + i); 2487 flush_dcache_page(head + i); 2488 } 2489 } 2490 if (copied < PAGE_SIZE) { 2491 unsigned from = pos & (PAGE_SIZE - 1); 2492 zero_user_segments(page, 0, from, 2493 from + copied, PAGE_SIZE); 2494 } 2495 SetPageUptodate(head); 2496 } 2497 set_page_dirty(page); 2498 unlock_page(page); 2499 put_page(page); 2500 2501 return copied; 2502 } 2503 2504 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2505 { 2506 struct file *file = iocb->ki_filp; 2507 struct inode *inode = file_inode(file); 2508 struct address_space *mapping = inode->i_mapping; 2509 pgoff_t index; 2510 unsigned long offset; 2511 enum sgp_type sgp = SGP_READ; 2512 int error = 0; 2513 ssize_t retval = 0; 2514 loff_t *ppos = &iocb->ki_pos; 2515 2516 /* 2517 * Might this read be for a stacking filesystem? Then when reading 2518 * holes of a sparse file, we actually need to allocate those pages, 2519 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2520 */ 2521 if (!iter_is_iovec(to)) 2522 sgp = SGP_CACHE; 2523 2524 index = *ppos >> PAGE_SHIFT; 2525 offset = *ppos & ~PAGE_MASK; 2526 2527 for (;;) { 2528 struct page *page = NULL; 2529 pgoff_t end_index; 2530 unsigned long nr, ret; 2531 loff_t i_size = i_size_read(inode); 2532 2533 end_index = i_size >> PAGE_SHIFT; 2534 if (index > end_index) 2535 break; 2536 if (index == end_index) { 2537 nr = i_size & ~PAGE_MASK; 2538 if (nr <= offset) 2539 break; 2540 } 2541 2542 error = shmem_getpage(inode, index, &page, sgp); 2543 if (error) { 2544 if (error == -EINVAL) 2545 error = 0; 2546 break; 2547 } 2548 if (page) { 2549 if (sgp == SGP_CACHE) 2550 set_page_dirty(page); 2551 unlock_page(page); 2552 } 2553 2554 /* 2555 * We must evaluate after, since reads (unlike writes) 2556 * are called without i_mutex protection against truncate 2557 */ 2558 nr = PAGE_SIZE; 2559 i_size = i_size_read(inode); 2560 end_index = i_size >> PAGE_SHIFT; 2561 if (index == end_index) { 2562 nr = i_size & ~PAGE_MASK; 2563 if (nr <= offset) { 2564 if (page) 2565 put_page(page); 2566 break; 2567 } 2568 } 2569 nr -= offset; 2570 2571 if (page) { 2572 /* 2573 * If users can be writing to this page using arbitrary 2574 * virtual addresses, take care about potential aliasing 2575 * before reading the page on the kernel side. 2576 */ 2577 if (mapping_writably_mapped(mapping)) 2578 flush_dcache_page(page); 2579 /* 2580 * Mark the page accessed if we read the beginning. 2581 */ 2582 if (!offset) 2583 mark_page_accessed(page); 2584 } else { 2585 page = ZERO_PAGE(0); 2586 get_page(page); 2587 } 2588 2589 /* 2590 * Ok, we have the page, and it's up-to-date, so 2591 * now we can copy it to user space... 2592 */ 2593 ret = copy_page_to_iter(page, offset, nr, to); 2594 retval += ret; 2595 offset += ret; 2596 index += offset >> PAGE_SHIFT; 2597 offset &= ~PAGE_MASK; 2598 2599 put_page(page); 2600 if (!iov_iter_count(to)) 2601 break; 2602 if (ret < nr) { 2603 error = -EFAULT; 2604 break; 2605 } 2606 cond_resched(); 2607 } 2608 2609 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2610 file_accessed(file); 2611 return retval ? retval : error; 2612 } 2613 2614 /* 2615 * llseek SEEK_DATA or SEEK_HOLE through the page cache. 2616 */ 2617 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2618 pgoff_t index, pgoff_t end, int whence) 2619 { 2620 struct page *page; 2621 struct pagevec pvec; 2622 pgoff_t indices[PAGEVEC_SIZE]; 2623 bool done = false; 2624 int i; 2625 2626 pagevec_init(&pvec); 2627 pvec.nr = 1; /* start small: we may be there already */ 2628 while (!done) { 2629 pvec.nr = find_get_entries(mapping, index, 2630 pvec.nr, pvec.pages, indices); 2631 if (!pvec.nr) { 2632 if (whence == SEEK_DATA) 2633 index = end; 2634 break; 2635 } 2636 for (i = 0; i < pvec.nr; i++, index++) { 2637 if (index < indices[i]) { 2638 if (whence == SEEK_HOLE) { 2639 done = true; 2640 break; 2641 } 2642 index = indices[i]; 2643 } 2644 page = pvec.pages[i]; 2645 if (page && !xa_is_value(page)) { 2646 if (!PageUptodate(page)) 2647 page = NULL; 2648 } 2649 if (index >= end || 2650 (page && whence == SEEK_DATA) || 2651 (!page && whence == SEEK_HOLE)) { 2652 done = true; 2653 break; 2654 } 2655 } 2656 pagevec_remove_exceptionals(&pvec); 2657 pagevec_release(&pvec); 2658 pvec.nr = PAGEVEC_SIZE; 2659 cond_resched(); 2660 } 2661 return index; 2662 } 2663 2664 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2665 { 2666 struct address_space *mapping = file->f_mapping; 2667 struct inode *inode = mapping->host; 2668 pgoff_t start, end; 2669 loff_t new_offset; 2670 2671 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2672 return generic_file_llseek_size(file, offset, whence, 2673 MAX_LFS_FILESIZE, i_size_read(inode)); 2674 inode_lock(inode); 2675 /* We're holding i_mutex so we can access i_size directly */ 2676 2677 if (offset < 0 || offset >= inode->i_size) 2678 offset = -ENXIO; 2679 else { 2680 start = offset >> PAGE_SHIFT; 2681 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2682 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2683 new_offset <<= PAGE_SHIFT; 2684 if (new_offset > offset) { 2685 if (new_offset < inode->i_size) 2686 offset = new_offset; 2687 else if (whence == SEEK_DATA) 2688 offset = -ENXIO; 2689 else 2690 offset = inode->i_size; 2691 } 2692 } 2693 2694 if (offset >= 0) 2695 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2696 inode_unlock(inode); 2697 return offset; 2698 } 2699 2700 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2701 loff_t len) 2702 { 2703 struct inode *inode = file_inode(file); 2704 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2705 struct shmem_inode_info *info = SHMEM_I(inode); 2706 struct shmem_falloc shmem_falloc; 2707 pgoff_t start, index, end; 2708 int error; 2709 2710 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2711 return -EOPNOTSUPP; 2712 2713 inode_lock(inode); 2714 2715 if (mode & FALLOC_FL_PUNCH_HOLE) { 2716 struct address_space *mapping = file->f_mapping; 2717 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2718 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2719 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2720 2721 /* protected by i_mutex */ 2722 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2723 error = -EPERM; 2724 goto out; 2725 } 2726 2727 shmem_falloc.waitq = &shmem_falloc_waitq; 2728 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2729 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2730 spin_lock(&inode->i_lock); 2731 inode->i_private = &shmem_falloc; 2732 spin_unlock(&inode->i_lock); 2733 2734 if ((u64)unmap_end > (u64)unmap_start) 2735 unmap_mapping_range(mapping, unmap_start, 2736 1 + unmap_end - unmap_start, 0); 2737 shmem_truncate_range(inode, offset, offset + len - 1); 2738 /* No need to unmap again: hole-punching leaves COWed pages */ 2739 2740 spin_lock(&inode->i_lock); 2741 inode->i_private = NULL; 2742 wake_up_all(&shmem_falloc_waitq); 2743 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2744 spin_unlock(&inode->i_lock); 2745 error = 0; 2746 goto out; 2747 } 2748 2749 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2750 error = inode_newsize_ok(inode, offset + len); 2751 if (error) 2752 goto out; 2753 2754 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2755 error = -EPERM; 2756 goto out; 2757 } 2758 2759 start = offset >> PAGE_SHIFT; 2760 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2761 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2762 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2763 error = -ENOSPC; 2764 goto out; 2765 } 2766 2767 shmem_falloc.waitq = NULL; 2768 shmem_falloc.start = start; 2769 shmem_falloc.next = start; 2770 shmem_falloc.nr_falloced = 0; 2771 shmem_falloc.nr_unswapped = 0; 2772 spin_lock(&inode->i_lock); 2773 inode->i_private = &shmem_falloc; 2774 spin_unlock(&inode->i_lock); 2775 2776 for (index = start; index < end; index++) { 2777 struct page *page; 2778 2779 /* 2780 * Good, the fallocate(2) manpage permits EINTR: we may have 2781 * been interrupted because we are using up too much memory. 2782 */ 2783 if (signal_pending(current)) 2784 error = -EINTR; 2785 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2786 error = -ENOMEM; 2787 else 2788 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2789 if (error) { 2790 /* Remove the !PageUptodate pages we added */ 2791 if (index > start) { 2792 shmem_undo_range(inode, 2793 (loff_t)start << PAGE_SHIFT, 2794 ((loff_t)index << PAGE_SHIFT) - 1, true); 2795 } 2796 goto undone; 2797 } 2798 2799 /* 2800 * Inform shmem_writepage() how far we have reached. 2801 * No need for lock or barrier: we have the page lock. 2802 */ 2803 shmem_falloc.next++; 2804 if (!PageUptodate(page)) 2805 shmem_falloc.nr_falloced++; 2806 2807 /* 2808 * If !PageUptodate, leave it that way so that freeable pages 2809 * can be recognized if we need to rollback on error later. 2810 * But set_page_dirty so that memory pressure will swap rather 2811 * than free the pages we are allocating (and SGP_CACHE pages 2812 * might still be clean: we now need to mark those dirty too). 2813 */ 2814 set_page_dirty(page); 2815 unlock_page(page); 2816 put_page(page); 2817 cond_resched(); 2818 } 2819 2820 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2821 i_size_write(inode, offset + len); 2822 inode->i_ctime = current_time(inode); 2823 undone: 2824 spin_lock(&inode->i_lock); 2825 inode->i_private = NULL; 2826 spin_unlock(&inode->i_lock); 2827 out: 2828 inode_unlock(inode); 2829 return error; 2830 } 2831 2832 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2833 { 2834 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2835 2836 buf->f_type = TMPFS_MAGIC; 2837 buf->f_bsize = PAGE_SIZE; 2838 buf->f_namelen = NAME_MAX; 2839 if (sbinfo->max_blocks) { 2840 buf->f_blocks = sbinfo->max_blocks; 2841 buf->f_bavail = 2842 buf->f_bfree = sbinfo->max_blocks - 2843 percpu_counter_sum(&sbinfo->used_blocks); 2844 } 2845 if (sbinfo->max_inodes) { 2846 buf->f_files = sbinfo->max_inodes; 2847 buf->f_ffree = sbinfo->free_inodes; 2848 } 2849 /* else leave those fields 0 like simple_statfs */ 2850 return 0; 2851 } 2852 2853 /* 2854 * File creation. Allocate an inode, and we're done.. 2855 */ 2856 static int 2857 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2858 { 2859 struct inode *inode; 2860 int error = -ENOSPC; 2861 2862 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2863 if (inode) { 2864 error = simple_acl_create(dir, inode); 2865 if (error) 2866 goto out_iput; 2867 error = security_inode_init_security(inode, dir, 2868 &dentry->d_name, 2869 shmem_initxattrs, NULL); 2870 if (error && error != -EOPNOTSUPP) 2871 goto out_iput; 2872 2873 error = 0; 2874 dir->i_size += BOGO_DIRENT_SIZE; 2875 dir->i_ctime = dir->i_mtime = current_time(dir); 2876 d_instantiate(dentry, inode); 2877 dget(dentry); /* Extra count - pin the dentry in core */ 2878 } 2879 return error; 2880 out_iput: 2881 iput(inode); 2882 return error; 2883 } 2884 2885 static int 2886 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2887 { 2888 struct inode *inode; 2889 int error = -ENOSPC; 2890 2891 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2892 if (inode) { 2893 error = security_inode_init_security(inode, dir, 2894 NULL, 2895 shmem_initxattrs, NULL); 2896 if (error && error != -EOPNOTSUPP) 2897 goto out_iput; 2898 error = simple_acl_create(dir, inode); 2899 if (error) 2900 goto out_iput; 2901 d_tmpfile(dentry, inode); 2902 } 2903 return error; 2904 out_iput: 2905 iput(inode); 2906 return error; 2907 } 2908 2909 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2910 { 2911 int error; 2912 2913 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2914 return error; 2915 inc_nlink(dir); 2916 return 0; 2917 } 2918 2919 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2920 bool excl) 2921 { 2922 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2923 } 2924 2925 /* 2926 * Link a file.. 2927 */ 2928 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2929 { 2930 struct inode *inode = d_inode(old_dentry); 2931 int ret = 0; 2932 2933 /* 2934 * No ordinary (disk based) filesystem counts links as inodes; 2935 * but each new link needs a new dentry, pinning lowmem, and 2936 * tmpfs dentries cannot be pruned until they are unlinked. 2937 * But if an O_TMPFILE file is linked into the tmpfs, the 2938 * first link must skip that, to get the accounting right. 2939 */ 2940 if (inode->i_nlink) { 2941 ret = shmem_reserve_inode(inode->i_sb); 2942 if (ret) 2943 goto out; 2944 } 2945 2946 dir->i_size += BOGO_DIRENT_SIZE; 2947 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2948 inc_nlink(inode); 2949 ihold(inode); /* New dentry reference */ 2950 dget(dentry); /* Extra pinning count for the created dentry */ 2951 d_instantiate(dentry, inode); 2952 out: 2953 return ret; 2954 } 2955 2956 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2957 { 2958 struct inode *inode = d_inode(dentry); 2959 2960 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2961 shmem_free_inode(inode->i_sb); 2962 2963 dir->i_size -= BOGO_DIRENT_SIZE; 2964 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2965 drop_nlink(inode); 2966 dput(dentry); /* Undo the count from "create" - this does all the work */ 2967 return 0; 2968 } 2969 2970 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2971 { 2972 if (!simple_empty(dentry)) 2973 return -ENOTEMPTY; 2974 2975 drop_nlink(d_inode(dentry)); 2976 drop_nlink(dir); 2977 return shmem_unlink(dir, dentry); 2978 } 2979 2980 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2981 { 2982 bool old_is_dir = d_is_dir(old_dentry); 2983 bool new_is_dir = d_is_dir(new_dentry); 2984 2985 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2986 if (old_is_dir) { 2987 drop_nlink(old_dir); 2988 inc_nlink(new_dir); 2989 } else { 2990 drop_nlink(new_dir); 2991 inc_nlink(old_dir); 2992 } 2993 } 2994 old_dir->i_ctime = old_dir->i_mtime = 2995 new_dir->i_ctime = new_dir->i_mtime = 2996 d_inode(old_dentry)->i_ctime = 2997 d_inode(new_dentry)->i_ctime = current_time(old_dir); 2998 2999 return 0; 3000 } 3001 3002 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 3003 { 3004 struct dentry *whiteout; 3005 int error; 3006 3007 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3008 if (!whiteout) 3009 return -ENOMEM; 3010 3011 error = shmem_mknod(old_dir, whiteout, 3012 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3013 dput(whiteout); 3014 if (error) 3015 return error; 3016 3017 /* 3018 * Cheat and hash the whiteout while the old dentry is still in 3019 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3020 * 3021 * d_lookup() will consistently find one of them at this point, 3022 * not sure which one, but that isn't even important. 3023 */ 3024 d_rehash(whiteout); 3025 return 0; 3026 } 3027 3028 /* 3029 * The VFS layer already does all the dentry stuff for rename, 3030 * we just have to decrement the usage count for the target if 3031 * it exists so that the VFS layer correctly free's it when it 3032 * gets overwritten. 3033 */ 3034 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 3035 { 3036 struct inode *inode = d_inode(old_dentry); 3037 int they_are_dirs = S_ISDIR(inode->i_mode); 3038 3039 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3040 return -EINVAL; 3041 3042 if (flags & RENAME_EXCHANGE) 3043 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3044 3045 if (!simple_empty(new_dentry)) 3046 return -ENOTEMPTY; 3047 3048 if (flags & RENAME_WHITEOUT) { 3049 int error; 3050 3051 error = shmem_whiteout(old_dir, old_dentry); 3052 if (error) 3053 return error; 3054 } 3055 3056 if (d_really_is_positive(new_dentry)) { 3057 (void) shmem_unlink(new_dir, new_dentry); 3058 if (they_are_dirs) { 3059 drop_nlink(d_inode(new_dentry)); 3060 drop_nlink(old_dir); 3061 } 3062 } else if (they_are_dirs) { 3063 drop_nlink(old_dir); 3064 inc_nlink(new_dir); 3065 } 3066 3067 old_dir->i_size -= BOGO_DIRENT_SIZE; 3068 new_dir->i_size += BOGO_DIRENT_SIZE; 3069 old_dir->i_ctime = old_dir->i_mtime = 3070 new_dir->i_ctime = new_dir->i_mtime = 3071 inode->i_ctime = current_time(old_dir); 3072 return 0; 3073 } 3074 3075 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3076 { 3077 int error; 3078 int len; 3079 struct inode *inode; 3080 struct page *page; 3081 3082 len = strlen(symname) + 1; 3083 if (len > PAGE_SIZE) 3084 return -ENAMETOOLONG; 3085 3086 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3087 VM_NORESERVE); 3088 if (!inode) 3089 return -ENOSPC; 3090 3091 error = security_inode_init_security(inode, dir, &dentry->d_name, 3092 shmem_initxattrs, NULL); 3093 if (error) { 3094 if (error != -EOPNOTSUPP) { 3095 iput(inode); 3096 return error; 3097 } 3098 error = 0; 3099 } 3100 3101 inode->i_size = len-1; 3102 if (len <= SHORT_SYMLINK_LEN) { 3103 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3104 if (!inode->i_link) { 3105 iput(inode); 3106 return -ENOMEM; 3107 } 3108 inode->i_op = &shmem_short_symlink_operations; 3109 } else { 3110 inode_nohighmem(inode); 3111 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3112 if (error) { 3113 iput(inode); 3114 return error; 3115 } 3116 inode->i_mapping->a_ops = &shmem_aops; 3117 inode->i_op = &shmem_symlink_inode_operations; 3118 memcpy(page_address(page), symname, len); 3119 SetPageUptodate(page); 3120 set_page_dirty(page); 3121 unlock_page(page); 3122 put_page(page); 3123 } 3124 dir->i_size += BOGO_DIRENT_SIZE; 3125 dir->i_ctime = dir->i_mtime = current_time(dir); 3126 d_instantiate(dentry, inode); 3127 dget(dentry); 3128 return 0; 3129 } 3130 3131 static void shmem_put_link(void *arg) 3132 { 3133 mark_page_accessed(arg); 3134 put_page(arg); 3135 } 3136 3137 static const char *shmem_get_link(struct dentry *dentry, 3138 struct inode *inode, 3139 struct delayed_call *done) 3140 { 3141 struct page *page = NULL; 3142 int error; 3143 if (!dentry) { 3144 page = find_get_page(inode->i_mapping, 0); 3145 if (!page) 3146 return ERR_PTR(-ECHILD); 3147 if (!PageUptodate(page)) { 3148 put_page(page); 3149 return ERR_PTR(-ECHILD); 3150 } 3151 } else { 3152 error = shmem_getpage(inode, 0, &page, SGP_READ); 3153 if (error) 3154 return ERR_PTR(error); 3155 unlock_page(page); 3156 } 3157 set_delayed_call(done, shmem_put_link, page); 3158 return page_address(page); 3159 } 3160 3161 #ifdef CONFIG_TMPFS_XATTR 3162 /* 3163 * Superblocks without xattr inode operations may get some security.* xattr 3164 * support from the LSM "for free". As soon as we have any other xattrs 3165 * like ACLs, we also need to implement the security.* handlers at 3166 * filesystem level, though. 3167 */ 3168 3169 /* 3170 * Callback for security_inode_init_security() for acquiring xattrs. 3171 */ 3172 static int shmem_initxattrs(struct inode *inode, 3173 const struct xattr *xattr_array, 3174 void *fs_info) 3175 { 3176 struct shmem_inode_info *info = SHMEM_I(inode); 3177 const struct xattr *xattr; 3178 struct simple_xattr *new_xattr; 3179 size_t len; 3180 3181 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3182 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3183 if (!new_xattr) 3184 return -ENOMEM; 3185 3186 len = strlen(xattr->name) + 1; 3187 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3188 GFP_KERNEL); 3189 if (!new_xattr->name) { 3190 kfree(new_xattr); 3191 return -ENOMEM; 3192 } 3193 3194 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3195 XATTR_SECURITY_PREFIX_LEN); 3196 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3197 xattr->name, len); 3198 3199 simple_xattr_list_add(&info->xattrs, new_xattr); 3200 } 3201 3202 return 0; 3203 } 3204 3205 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3206 struct dentry *unused, struct inode *inode, 3207 const char *name, void *buffer, size_t size) 3208 { 3209 struct shmem_inode_info *info = SHMEM_I(inode); 3210 3211 name = xattr_full_name(handler, name); 3212 return simple_xattr_get(&info->xattrs, name, buffer, size); 3213 } 3214 3215 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3216 struct dentry *unused, struct inode *inode, 3217 const char *name, const void *value, 3218 size_t size, int flags) 3219 { 3220 struct shmem_inode_info *info = SHMEM_I(inode); 3221 3222 name = xattr_full_name(handler, name); 3223 return simple_xattr_set(&info->xattrs, name, value, size, flags); 3224 } 3225 3226 static const struct xattr_handler shmem_security_xattr_handler = { 3227 .prefix = XATTR_SECURITY_PREFIX, 3228 .get = shmem_xattr_handler_get, 3229 .set = shmem_xattr_handler_set, 3230 }; 3231 3232 static const struct xattr_handler shmem_trusted_xattr_handler = { 3233 .prefix = XATTR_TRUSTED_PREFIX, 3234 .get = shmem_xattr_handler_get, 3235 .set = shmem_xattr_handler_set, 3236 }; 3237 3238 static const struct xattr_handler *shmem_xattr_handlers[] = { 3239 #ifdef CONFIG_TMPFS_POSIX_ACL 3240 &posix_acl_access_xattr_handler, 3241 &posix_acl_default_xattr_handler, 3242 #endif 3243 &shmem_security_xattr_handler, 3244 &shmem_trusted_xattr_handler, 3245 NULL 3246 }; 3247 3248 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3249 { 3250 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3251 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3252 } 3253 #endif /* CONFIG_TMPFS_XATTR */ 3254 3255 static const struct inode_operations shmem_short_symlink_operations = { 3256 .get_link = simple_get_link, 3257 #ifdef CONFIG_TMPFS_XATTR 3258 .listxattr = shmem_listxattr, 3259 #endif 3260 }; 3261 3262 static const struct inode_operations shmem_symlink_inode_operations = { 3263 .get_link = shmem_get_link, 3264 #ifdef CONFIG_TMPFS_XATTR 3265 .listxattr = shmem_listxattr, 3266 #endif 3267 }; 3268 3269 static struct dentry *shmem_get_parent(struct dentry *child) 3270 { 3271 return ERR_PTR(-ESTALE); 3272 } 3273 3274 static int shmem_match(struct inode *ino, void *vfh) 3275 { 3276 __u32 *fh = vfh; 3277 __u64 inum = fh[2]; 3278 inum = (inum << 32) | fh[1]; 3279 return ino->i_ino == inum && fh[0] == ino->i_generation; 3280 } 3281 3282 /* Find any alias of inode, but prefer a hashed alias */ 3283 static struct dentry *shmem_find_alias(struct inode *inode) 3284 { 3285 struct dentry *alias = d_find_alias(inode); 3286 3287 return alias ?: d_find_any_alias(inode); 3288 } 3289 3290 3291 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3292 struct fid *fid, int fh_len, int fh_type) 3293 { 3294 struct inode *inode; 3295 struct dentry *dentry = NULL; 3296 u64 inum; 3297 3298 if (fh_len < 3) 3299 return NULL; 3300 3301 inum = fid->raw[2]; 3302 inum = (inum << 32) | fid->raw[1]; 3303 3304 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3305 shmem_match, fid->raw); 3306 if (inode) { 3307 dentry = shmem_find_alias(inode); 3308 iput(inode); 3309 } 3310 3311 return dentry; 3312 } 3313 3314 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3315 struct inode *parent) 3316 { 3317 if (*len < 3) { 3318 *len = 3; 3319 return FILEID_INVALID; 3320 } 3321 3322 if (inode_unhashed(inode)) { 3323 /* Unfortunately insert_inode_hash is not idempotent, 3324 * so as we hash inodes here rather than at creation 3325 * time, we need a lock to ensure we only try 3326 * to do it once 3327 */ 3328 static DEFINE_SPINLOCK(lock); 3329 spin_lock(&lock); 3330 if (inode_unhashed(inode)) 3331 __insert_inode_hash(inode, 3332 inode->i_ino + inode->i_generation); 3333 spin_unlock(&lock); 3334 } 3335 3336 fh[0] = inode->i_generation; 3337 fh[1] = inode->i_ino; 3338 fh[2] = ((__u64)inode->i_ino) >> 32; 3339 3340 *len = 3; 3341 return 1; 3342 } 3343 3344 static const struct export_operations shmem_export_ops = { 3345 .get_parent = shmem_get_parent, 3346 .encode_fh = shmem_encode_fh, 3347 .fh_to_dentry = shmem_fh_to_dentry, 3348 }; 3349 3350 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 3351 bool remount) 3352 { 3353 char *this_char, *value, *rest; 3354 struct mempolicy *mpol = NULL; 3355 uid_t uid; 3356 gid_t gid; 3357 3358 while (options != NULL) { 3359 this_char = options; 3360 for (;;) { 3361 /* 3362 * NUL-terminate this option: unfortunately, 3363 * mount options form a comma-separated list, 3364 * but mpol's nodelist may also contain commas. 3365 */ 3366 options = strchr(options, ','); 3367 if (options == NULL) 3368 break; 3369 options++; 3370 if (!isdigit(*options)) { 3371 options[-1] = '\0'; 3372 break; 3373 } 3374 } 3375 if (!*this_char) 3376 continue; 3377 if ((value = strchr(this_char,'=')) != NULL) { 3378 *value++ = 0; 3379 } else { 3380 pr_err("tmpfs: No value for mount option '%s'\n", 3381 this_char); 3382 goto error; 3383 } 3384 3385 if (!strcmp(this_char,"size")) { 3386 unsigned long long size; 3387 size = memparse(value,&rest); 3388 if (*rest == '%') { 3389 size <<= PAGE_SHIFT; 3390 size *= totalram_pages(); 3391 do_div(size, 100); 3392 rest++; 3393 } 3394 if (*rest) 3395 goto bad_val; 3396 sbinfo->max_blocks = 3397 DIV_ROUND_UP(size, PAGE_SIZE); 3398 } else if (!strcmp(this_char,"nr_blocks")) { 3399 sbinfo->max_blocks = memparse(value, &rest); 3400 if (*rest) 3401 goto bad_val; 3402 } else if (!strcmp(this_char,"nr_inodes")) { 3403 sbinfo->max_inodes = memparse(value, &rest); 3404 if (*rest) 3405 goto bad_val; 3406 } else if (!strcmp(this_char,"mode")) { 3407 if (remount) 3408 continue; 3409 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 3410 if (*rest) 3411 goto bad_val; 3412 } else if (!strcmp(this_char,"uid")) { 3413 if (remount) 3414 continue; 3415 uid = simple_strtoul(value, &rest, 0); 3416 if (*rest) 3417 goto bad_val; 3418 sbinfo->uid = make_kuid(current_user_ns(), uid); 3419 if (!uid_valid(sbinfo->uid)) 3420 goto bad_val; 3421 } else if (!strcmp(this_char,"gid")) { 3422 if (remount) 3423 continue; 3424 gid = simple_strtoul(value, &rest, 0); 3425 if (*rest) 3426 goto bad_val; 3427 sbinfo->gid = make_kgid(current_user_ns(), gid); 3428 if (!gid_valid(sbinfo->gid)) 3429 goto bad_val; 3430 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3431 } else if (!strcmp(this_char, "huge")) { 3432 int huge; 3433 huge = shmem_parse_huge(value); 3434 if (huge < 0) 3435 goto bad_val; 3436 if (!has_transparent_hugepage() && 3437 huge != SHMEM_HUGE_NEVER) 3438 goto bad_val; 3439 sbinfo->huge = huge; 3440 #endif 3441 #ifdef CONFIG_NUMA 3442 } else if (!strcmp(this_char,"mpol")) { 3443 mpol_put(mpol); 3444 mpol = NULL; 3445 if (mpol_parse_str(value, &mpol)) 3446 goto bad_val; 3447 #endif 3448 } else { 3449 pr_err("tmpfs: Bad mount option %s\n", this_char); 3450 goto error; 3451 } 3452 } 3453 sbinfo->mpol = mpol; 3454 return 0; 3455 3456 bad_val: 3457 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n", 3458 value, this_char); 3459 error: 3460 mpol_put(mpol); 3461 return 1; 3462 3463 } 3464 3465 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 3466 { 3467 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3468 struct shmem_sb_info config = *sbinfo; 3469 unsigned long inodes; 3470 int error = -EINVAL; 3471 3472 config.mpol = NULL; 3473 if (shmem_parse_options(data, &config, true)) 3474 return error; 3475 3476 spin_lock(&sbinfo->stat_lock); 3477 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3478 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 3479 goto out; 3480 if (config.max_inodes < inodes) 3481 goto out; 3482 /* 3483 * Those tests disallow limited->unlimited while any are in use; 3484 * but we must separately disallow unlimited->limited, because 3485 * in that case we have no record of how much is already in use. 3486 */ 3487 if (config.max_blocks && !sbinfo->max_blocks) 3488 goto out; 3489 if (config.max_inodes && !sbinfo->max_inodes) 3490 goto out; 3491 3492 error = 0; 3493 sbinfo->huge = config.huge; 3494 sbinfo->max_blocks = config.max_blocks; 3495 sbinfo->max_inodes = config.max_inodes; 3496 sbinfo->free_inodes = config.max_inodes - inodes; 3497 3498 /* 3499 * Preserve previous mempolicy unless mpol remount option was specified. 3500 */ 3501 if (config.mpol) { 3502 mpol_put(sbinfo->mpol); 3503 sbinfo->mpol = config.mpol; /* transfers initial ref */ 3504 } 3505 out: 3506 spin_unlock(&sbinfo->stat_lock); 3507 return error; 3508 } 3509 3510 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3511 { 3512 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3513 3514 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3515 seq_printf(seq, ",size=%luk", 3516 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3517 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3518 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3519 if (sbinfo->mode != (0777 | S_ISVTX)) 3520 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3521 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3522 seq_printf(seq, ",uid=%u", 3523 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3524 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3525 seq_printf(seq, ",gid=%u", 3526 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3527 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3528 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3529 if (sbinfo->huge) 3530 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3531 #endif 3532 shmem_show_mpol(seq, sbinfo->mpol); 3533 return 0; 3534 } 3535 3536 #endif /* CONFIG_TMPFS */ 3537 3538 static void shmem_put_super(struct super_block *sb) 3539 { 3540 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3541 3542 percpu_counter_destroy(&sbinfo->used_blocks); 3543 mpol_put(sbinfo->mpol); 3544 kfree(sbinfo); 3545 sb->s_fs_info = NULL; 3546 } 3547 3548 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3549 { 3550 struct inode *inode; 3551 struct shmem_sb_info *sbinfo; 3552 int err = -ENOMEM; 3553 3554 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3555 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3556 L1_CACHE_BYTES), GFP_KERNEL); 3557 if (!sbinfo) 3558 return -ENOMEM; 3559 3560 sbinfo->mode = 0777 | S_ISVTX; 3561 sbinfo->uid = current_fsuid(); 3562 sbinfo->gid = current_fsgid(); 3563 sb->s_fs_info = sbinfo; 3564 3565 #ifdef CONFIG_TMPFS 3566 /* 3567 * Per default we only allow half of the physical ram per 3568 * tmpfs instance, limiting inodes to one per page of lowmem; 3569 * but the internal instance is left unlimited. 3570 */ 3571 if (!(sb->s_flags & SB_KERNMOUNT)) { 3572 sbinfo->max_blocks = shmem_default_max_blocks(); 3573 sbinfo->max_inodes = shmem_default_max_inodes(); 3574 if (shmem_parse_options(data, sbinfo, false)) { 3575 err = -EINVAL; 3576 goto failed; 3577 } 3578 } else { 3579 sb->s_flags |= SB_NOUSER; 3580 } 3581 sb->s_export_op = &shmem_export_ops; 3582 sb->s_flags |= SB_NOSEC; 3583 #else 3584 sb->s_flags |= SB_NOUSER; 3585 #endif 3586 3587 spin_lock_init(&sbinfo->stat_lock); 3588 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3589 goto failed; 3590 sbinfo->free_inodes = sbinfo->max_inodes; 3591 spin_lock_init(&sbinfo->shrinklist_lock); 3592 INIT_LIST_HEAD(&sbinfo->shrinklist); 3593 3594 sb->s_maxbytes = MAX_LFS_FILESIZE; 3595 sb->s_blocksize = PAGE_SIZE; 3596 sb->s_blocksize_bits = PAGE_SHIFT; 3597 sb->s_magic = TMPFS_MAGIC; 3598 sb->s_op = &shmem_ops; 3599 sb->s_time_gran = 1; 3600 #ifdef CONFIG_TMPFS_XATTR 3601 sb->s_xattr = shmem_xattr_handlers; 3602 #endif 3603 #ifdef CONFIG_TMPFS_POSIX_ACL 3604 sb->s_flags |= SB_POSIXACL; 3605 #endif 3606 uuid_gen(&sb->s_uuid); 3607 3608 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3609 if (!inode) 3610 goto failed; 3611 inode->i_uid = sbinfo->uid; 3612 inode->i_gid = sbinfo->gid; 3613 sb->s_root = d_make_root(inode); 3614 if (!sb->s_root) 3615 goto failed; 3616 return 0; 3617 3618 failed: 3619 shmem_put_super(sb); 3620 return err; 3621 } 3622 3623 static struct kmem_cache *shmem_inode_cachep; 3624 3625 static struct inode *shmem_alloc_inode(struct super_block *sb) 3626 { 3627 struct shmem_inode_info *info; 3628 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3629 if (!info) 3630 return NULL; 3631 return &info->vfs_inode; 3632 } 3633 3634 static void shmem_free_in_core_inode(struct inode *inode) 3635 { 3636 if (S_ISLNK(inode->i_mode)) 3637 kfree(inode->i_link); 3638 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3639 } 3640 3641 static void shmem_destroy_inode(struct inode *inode) 3642 { 3643 if (S_ISREG(inode->i_mode)) 3644 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3645 } 3646 3647 static void shmem_init_inode(void *foo) 3648 { 3649 struct shmem_inode_info *info = foo; 3650 inode_init_once(&info->vfs_inode); 3651 } 3652 3653 static void shmem_init_inodecache(void) 3654 { 3655 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3656 sizeof(struct shmem_inode_info), 3657 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3658 } 3659 3660 static void shmem_destroy_inodecache(void) 3661 { 3662 kmem_cache_destroy(shmem_inode_cachep); 3663 } 3664 3665 static const struct address_space_operations shmem_aops = { 3666 .writepage = shmem_writepage, 3667 .set_page_dirty = __set_page_dirty_no_writeback, 3668 #ifdef CONFIG_TMPFS 3669 .write_begin = shmem_write_begin, 3670 .write_end = shmem_write_end, 3671 #endif 3672 #ifdef CONFIG_MIGRATION 3673 .migratepage = migrate_page, 3674 #endif 3675 .error_remove_page = generic_error_remove_page, 3676 }; 3677 3678 static const struct file_operations shmem_file_operations = { 3679 .mmap = shmem_mmap, 3680 .get_unmapped_area = shmem_get_unmapped_area, 3681 #ifdef CONFIG_TMPFS 3682 .llseek = shmem_file_llseek, 3683 .read_iter = shmem_file_read_iter, 3684 .write_iter = generic_file_write_iter, 3685 .fsync = noop_fsync, 3686 .splice_read = generic_file_splice_read, 3687 .splice_write = iter_file_splice_write, 3688 .fallocate = shmem_fallocate, 3689 #endif 3690 }; 3691 3692 static const struct inode_operations shmem_inode_operations = { 3693 .getattr = shmem_getattr, 3694 .setattr = shmem_setattr, 3695 #ifdef CONFIG_TMPFS_XATTR 3696 .listxattr = shmem_listxattr, 3697 .set_acl = simple_set_acl, 3698 #endif 3699 }; 3700 3701 static const struct inode_operations shmem_dir_inode_operations = { 3702 #ifdef CONFIG_TMPFS 3703 .create = shmem_create, 3704 .lookup = simple_lookup, 3705 .link = shmem_link, 3706 .unlink = shmem_unlink, 3707 .symlink = shmem_symlink, 3708 .mkdir = shmem_mkdir, 3709 .rmdir = shmem_rmdir, 3710 .mknod = shmem_mknod, 3711 .rename = shmem_rename2, 3712 .tmpfile = shmem_tmpfile, 3713 #endif 3714 #ifdef CONFIG_TMPFS_XATTR 3715 .listxattr = shmem_listxattr, 3716 #endif 3717 #ifdef CONFIG_TMPFS_POSIX_ACL 3718 .setattr = shmem_setattr, 3719 .set_acl = simple_set_acl, 3720 #endif 3721 }; 3722 3723 static const struct inode_operations shmem_special_inode_operations = { 3724 #ifdef CONFIG_TMPFS_XATTR 3725 .listxattr = shmem_listxattr, 3726 #endif 3727 #ifdef CONFIG_TMPFS_POSIX_ACL 3728 .setattr = shmem_setattr, 3729 .set_acl = simple_set_acl, 3730 #endif 3731 }; 3732 3733 static const struct super_operations shmem_ops = { 3734 .alloc_inode = shmem_alloc_inode, 3735 .free_inode = shmem_free_in_core_inode, 3736 .destroy_inode = shmem_destroy_inode, 3737 #ifdef CONFIG_TMPFS 3738 .statfs = shmem_statfs, 3739 .remount_fs = shmem_remount_fs, 3740 .show_options = shmem_show_options, 3741 #endif 3742 .evict_inode = shmem_evict_inode, 3743 .drop_inode = generic_delete_inode, 3744 .put_super = shmem_put_super, 3745 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3746 .nr_cached_objects = shmem_unused_huge_count, 3747 .free_cached_objects = shmem_unused_huge_scan, 3748 #endif 3749 }; 3750 3751 static const struct vm_operations_struct shmem_vm_ops = { 3752 .fault = shmem_fault, 3753 .map_pages = filemap_map_pages, 3754 #ifdef CONFIG_NUMA 3755 .set_policy = shmem_set_policy, 3756 .get_policy = shmem_get_policy, 3757 #endif 3758 }; 3759 3760 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3761 int flags, const char *dev_name, void *data) 3762 { 3763 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3764 } 3765 3766 static struct file_system_type shmem_fs_type = { 3767 .owner = THIS_MODULE, 3768 .name = "tmpfs", 3769 .mount = shmem_mount, 3770 .kill_sb = kill_litter_super, 3771 .fs_flags = FS_USERNS_MOUNT, 3772 }; 3773 3774 int __init shmem_init(void) 3775 { 3776 int error; 3777 3778 /* If rootfs called this, don't re-init */ 3779 if (shmem_inode_cachep) 3780 return 0; 3781 3782 shmem_init_inodecache(); 3783 3784 error = register_filesystem(&shmem_fs_type); 3785 if (error) { 3786 pr_err("Could not register tmpfs\n"); 3787 goto out2; 3788 } 3789 3790 shm_mnt = kern_mount(&shmem_fs_type); 3791 if (IS_ERR(shm_mnt)) { 3792 error = PTR_ERR(shm_mnt); 3793 pr_err("Could not kern_mount tmpfs\n"); 3794 goto out1; 3795 } 3796 3797 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3798 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3799 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3800 else 3801 shmem_huge = 0; /* just in case it was patched */ 3802 #endif 3803 return 0; 3804 3805 out1: 3806 unregister_filesystem(&shmem_fs_type); 3807 out2: 3808 shmem_destroy_inodecache(); 3809 shm_mnt = ERR_PTR(error); 3810 return error; 3811 } 3812 3813 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS) 3814 static ssize_t shmem_enabled_show(struct kobject *kobj, 3815 struct kobj_attribute *attr, char *buf) 3816 { 3817 int values[] = { 3818 SHMEM_HUGE_ALWAYS, 3819 SHMEM_HUGE_WITHIN_SIZE, 3820 SHMEM_HUGE_ADVISE, 3821 SHMEM_HUGE_NEVER, 3822 SHMEM_HUGE_DENY, 3823 SHMEM_HUGE_FORCE, 3824 }; 3825 int i, count; 3826 3827 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 3828 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 3829 3830 count += sprintf(buf + count, fmt, 3831 shmem_format_huge(values[i])); 3832 } 3833 buf[count - 1] = '\n'; 3834 return count; 3835 } 3836 3837 static ssize_t shmem_enabled_store(struct kobject *kobj, 3838 struct kobj_attribute *attr, const char *buf, size_t count) 3839 { 3840 char tmp[16]; 3841 int huge; 3842 3843 if (count + 1 > sizeof(tmp)) 3844 return -EINVAL; 3845 memcpy(tmp, buf, count); 3846 tmp[count] = '\0'; 3847 if (count && tmp[count - 1] == '\n') 3848 tmp[count - 1] = '\0'; 3849 3850 huge = shmem_parse_huge(tmp); 3851 if (huge == -EINVAL) 3852 return -EINVAL; 3853 if (!has_transparent_hugepage() && 3854 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3855 return -EINVAL; 3856 3857 shmem_huge = huge; 3858 if (shmem_huge > SHMEM_HUGE_DENY) 3859 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3860 return count; 3861 } 3862 3863 struct kobj_attribute shmem_enabled_attr = 3864 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 3865 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */ 3866 3867 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3868 bool shmem_huge_enabled(struct vm_area_struct *vma) 3869 { 3870 struct inode *inode = file_inode(vma->vm_file); 3871 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3872 loff_t i_size; 3873 pgoff_t off; 3874 3875 if (shmem_huge == SHMEM_HUGE_FORCE) 3876 return true; 3877 if (shmem_huge == SHMEM_HUGE_DENY) 3878 return false; 3879 switch (sbinfo->huge) { 3880 case SHMEM_HUGE_NEVER: 3881 return false; 3882 case SHMEM_HUGE_ALWAYS: 3883 return true; 3884 case SHMEM_HUGE_WITHIN_SIZE: 3885 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 3886 i_size = round_up(i_size_read(inode), PAGE_SIZE); 3887 if (i_size >= HPAGE_PMD_SIZE && 3888 i_size >> PAGE_SHIFT >= off) 3889 return true; 3890 /* fall through */ 3891 case SHMEM_HUGE_ADVISE: 3892 /* TODO: implement fadvise() hints */ 3893 return (vma->vm_flags & VM_HUGEPAGE); 3894 default: 3895 VM_BUG_ON(1); 3896 return false; 3897 } 3898 } 3899 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 3900 3901 #else /* !CONFIG_SHMEM */ 3902 3903 /* 3904 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3905 * 3906 * This is intended for small system where the benefits of the full 3907 * shmem code (swap-backed and resource-limited) are outweighed by 3908 * their complexity. On systems without swap this code should be 3909 * effectively equivalent, but much lighter weight. 3910 */ 3911 3912 static struct file_system_type shmem_fs_type = { 3913 .name = "tmpfs", 3914 .mount = ramfs_mount, 3915 .kill_sb = kill_litter_super, 3916 .fs_flags = FS_USERNS_MOUNT, 3917 }; 3918 3919 int __init shmem_init(void) 3920 { 3921 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3922 3923 shm_mnt = kern_mount(&shmem_fs_type); 3924 BUG_ON(IS_ERR(shm_mnt)); 3925 3926 return 0; 3927 } 3928 3929 int shmem_unuse(unsigned int type, bool frontswap, 3930 unsigned long *fs_pages_to_unuse) 3931 { 3932 return 0; 3933 } 3934 3935 int shmem_lock(struct file *file, int lock, struct user_struct *user) 3936 { 3937 return 0; 3938 } 3939 3940 void shmem_unlock_mapping(struct address_space *mapping) 3941 { 3942 } 3943 3944 #ifdef CONFIG_MMU 3945 unsigned long shmem_get_unmapped_area(struct file *file, 3946 unsigned long addr, unsigned long len, 3947 unsigned long pgoff, unsigned long flags) 3948 { 3949 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 3950 } 3951 #endif 3952 3953 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 3954 { 3955 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 3956 } 3957 EXPORT_SYMBOL_GPL(shmem_truncate_range); 3958 3959 #define shmem_vm_ops generic_file_vm_ops 3960 #define shmem_file_operations ramfs_file_operations 3961 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 3962 #define shmem_acct_size(flags, size) 0 3963 #define shmem_unacct_size(flags, size) do {} while (0) 3964 3965 #endif /* CONFIG_SHMEM */ 3966 3967 /* common code */ 3968 3969 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 3970 unsigned long flags, unsigned int i_flags) 3971 { 3972 struct inode *inode; 3973 struct file *res; 3974 3975 if (IS_ERR(mnt)) 3976 return ERR_CAST(mnt); 3977 3978 if (size < 0 || size > MAX_LFS_FILESIZE) 3979 return ERR_PTR(-EINVAL); 3980 3981 if (shmem_acct_size(flags, size)) 3982 return ERR_PTR(-ENOMEM); 3983 3984 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 3985 flags); 3986 if (unlikely(!inode)) { 3987 shmem_unacct_size(flags, size); 3988 return ERR_PTR(-ENOSPC); 3989 } 3990 inode->i_flags |= i_flags; 3991 inode->i_size = size; 3992 clear_nlink(inode); /* It is unlinked */ 3993 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 3994 if (!IS_ERR(res)) 3995 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 3996 &shmem_file_operations); 3997 if (IS_ERR(res)) 3998 iput(inode); 3999 return res; 4000 } 4001 4002 /** 4003 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4004 * kernel internal. There will be NO LSM permission checks against the 4005 * underlying inode. So users of this interface must do LSM checks at a 4006 * higher layer. The users are the big_key and shm implementations. LSM 4007 * checks are provided at the key or shm level rather than the inode. 4008 * @name: name for dentry (to be seen in /proc/<pid>/maps 4009 * @size: size to be set for the file 4010 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4011 */ 4012 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4013 { 4014 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4015 } 4016 4017 /** 4018 * shmem_file_setup - get an unlinked file living in tmpfs 4019 * @name: name for dentry (to be seen in /proc/<pid>/maps 4020 * @size: size to be set for the file 4021 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4022 */ 4023 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4024 { 4025 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4026 } 4027 EXPORT_SYMBOL_GPL(shmem_file_setup); 4028 4029 /** 4030 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4031 * @mnt: the tmpfs mount where the file will be created 4032 * @name: name for dentry (to be seen in /proc/<pid>/maps 4033 * @size: size to be set for the file 4034 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4035 */ 4036 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4037 loff_t size, unsigned long flags) 4038 { 4039 return __shmem_file_setup(mnt, name, size, flags, 0); 4040 } 4041 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4042 4043 /** 4044 * shmem_zero_setup - setup a shared anonymous mapping 4045 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 4046 */ 4047 int shmem_zero_setup(struct vm_area_struct *vma) 4048 { 4049 struct file *file; 4050 loff_t size = vma->vm_end - vma->vm_start; 4051 4052 /* 4053 * Cloning a new file under mmap_sem leads to a lock ordering conflict 4054 * between XFS directory reading and selinux: since this file is only 4055 * accessible to the user through its mapping, use S_PRIVATE flag to 4056 * bypass file security, in the same way as shmem_kernel_file_setup(). 4057 */ 4058 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4059 if (IS_ERR(file)) 4060 return PTR_ERR(file); 4061 4062 if (vma->vm_file) 4063 fput(vma->vm_file); 4064 vma->vm_file = file; 4065 vma->vm_ops = &shmem_vm_ops; 4066 4067 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 4068 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4069 (vma->vm_end & HPAGE_PMD_MASK)) { 4070 khugepaged_enter(vma, vma->vm_flags); 4071 } 4072 4073 return 0; 4074 } 4075 4076 /** 4077 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4078 * @mapping: the page's address_space 4079 * @index: the page index 4080 * @gfp: the page allocator flags to use if allocating 4081 * 4082 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4083 * with any new page allocations done using the specified allocation flags. 4084 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4085 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4086 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4087 * 4088 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4089 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4090 */ 4091 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4092 pgoff_t index, gfp_t gfp) 4093 { 4094 #ifdef CONFIG_SHMEM 4095 struct inode *inode = mapping->host; 4096 struct page *page; 4097 int error; 4098 4099 BUG_ON(mapping->a_ops != &shmem_aops); 4100 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4101 gfp, NULL, NULL, NULL); 4102 if (error) 4103 page = ERR_PTR(error); 4104 else 4105 unlock_page(page); 4106 return page; 4107 #else 4108 /* 4109 * The tiny !SHMEM case uses ramfs without swap 4110 */ 4111 return read_cache_page_gfp(mapping, index, gfp); 4112 #endif 4113 } 4114 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4115