xref: /linux/mm/shmem.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include <linux/unicode.h>
44 #include "swap.h"
45 
46 static struct vfsmount *shm_mnt __ro_after_init;
47 
48 #ifdef CONFIG_SHMEM
49 /*
50  * This virtual memory filesystem is heavily based on the ramfs. It
51  * extends ramfs by the ability to use swap and honor resource limits
52  * which makes it a completely usable filesystem.
53  */
54 
55 #include <linux/xattr.h>
56 #include <linux/exportfs.h>
57 #include <linux/posix_acl.h>
58 #include <linux/posix_acl_xattr.h>
59 #include <linux/mman.h>
60 #include <linux/string.h>
61 #include <linux/slab.h>
62 #include <linux/backing-dev.h>
63 #include <linux/writeback.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 #include <linux/quotaops.h>
83 #include <linux/rcupdate_wait.h>
84 
85 #include <linux/uaccess.h>
86 
87 #include "internal.h"
88 
89 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
90 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
91 
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94 
95 /* Pretend that one inode + its dentry occupy this much memory */
96 #define BOGO_INODE_SIZE 1024
97 
98 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
99 #define SHORT_SYMLINK_LEN 128
100 
101 /*
102  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
103  * inode->i_private (with i_rwsem making sure that it has only one user at
104  * a time): we would prefer not to enlarge the shmem inode just for that.
105  */
106 struct shmem_falloc {
107 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
108 	pgoff_t start;		/* start of range currently being fallocated */
109 	pgoff_t next;		/* the next page offset to be fallocated */
110 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
111 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
112 };
113 
114 struct shmem_options {
115 	unsigned long long blocks;
116 	unsigned long long inodes;
117 	struct mempolicy *mpol;
118 	kuid_t uid;
119 	kgid_t gid;
120 	umode_t mode;
121 	bool full_inums;
122 	int huge;
123 	int seen;
124 	bool noswap;
125 	unsigned short quota_types;
126 	struct shmem_quota_limits qlimits;
127 #if IS_ENABLED(CONFIG_UNICODE)
128 	struct unicode_map *encoding;
129 	bool strict_encoding;
130 #endif
131 #define SHMEM_SEEN_BLOCKS 1
132 #define SHMEM_SEEN_INODES 2
133 #define SHMEM_SEEN_HUGE 4
134 #define SHMEM_SEEN_INUMS 8
135 #define SHMEM_SEEN_NOSWAP 16
136 #define SHMEM_SEEN_QUOTA 32
137 };
138 
139 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
140 static unsigned long huge_shmem_orders_always __read_mostly;
141 static unsigned long huge_shmem_orders_madvise __read_mostly;
142 static unsigned long huge_shmem_orders_inherit __read_mostly;
143 static unsigned long huge_shmem_orders_within_size __read_mostly;
144 static bool shmem_orders_configured __initdata;
145 #endif
146 
147 #ifdef CONFIG_TMPFS
148 static unsigned long shmem_default_max_blocks(void)
149 {
150 	return totalram_pages() / 2;
151 }
152 
153 static unsigned long shmem_default_max_inodes(void)
154 {
155 	unsigned long nr_pages = totalram_pages();
156 
157 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
158 			ULONG_MAX / BOGO_INODE_SIZE);
159 }
160 #endif
161 
162 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
163 			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
164 			struct vm_area_struct *vma, vm_fault_t *fault_type);
165 
166 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
167 {
168 	return sb->s_fs_info;
169 }
170 
171 /*
172  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
173  * for shared memory and for shared anonymous (/dev/zero) mappings
174  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
175  * consistent with the pre-accounting of private mappings ...
176  */
177 static inline int shmem_acct_size(unsigned long flags, loff_t size)
178 {
179 	return (flags & VM_NORESERVE) ?
180 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
181 }
182 
183 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
184 {
185 	if (!(flags & VM_NORESERVE))
186 		vm_unacct_memory(VM_ACCT(size));
187 }
188 
189 static inline int shmem_reacct_size(unsigned long flags,
190 		loff_t oldsize, loff_t newsize)
191 {
192 	if (!(flags & VM_NORESERVE)) {
193 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
194 			return security_vm_enough_memory_mm(current->mm,
195 					VM_ACCT(newsize) - VM_ACCT(oldsize));
196 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
197 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
198 	}
199 	return 0;
200 }
201 
202 /*
203  * ... whereas tmpfs objects are accounted incrementally as
204  * pages are allocated, in order to allow large sparse files.
205  * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
206  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
207  */
208 static inline int shmem_acct_blocks(unsigned long flags, long pages)
209 {
210 	if (!(flags & VM_NORESERVE))
211 		return 0;
212 
213 	return security_vm_enough_memory_mm(current->mm,
214 			pages * VM_ACCT(PAGE_SIZE));
215 }
216 
217 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
218 {
219 	if (flags & VM_NORESERVE)
220 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
221 }
222 
223 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
224 {
225 	struct shmem_inode_info *info = SHMEM_I(inode);
226 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
227 	int err = -ENOSPC;
228 
229 	if (shmem_acct_blocks(info->flags, pages))
230 		return err;
231 
232 	might_sleep();	/* when quotas */
233 	if (sbinfo->max_blocks) {
234 		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
235 						sbinfo->max_blocks, pages))
236 			goto unacct;
237 
238 		err = dquot_alloc_block_nodirty(inode, pages);
239 		if (err) {
240 			percpu_counter_sub(&sbinfo->used_blocks, pages);
241 			goto unacct;
242 		}
243 	} else {
244 		err = dquot_alloc_block_nodirty(inode, pages);
245 		if (err)
246 			goto unacct;
247 	}
248 
249 	return 0;
250 
251 unacct:
252 	shmem_unacct_blocks(info->flags, pages);
253 	return err;
254 }
255 
256 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
257 {
258 	struct shmem_inode_info *info = SHMEM_I(inode);
259 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
260 
261 	might_sleep();	/* when quotas */
262 	dquot_free_block_nodirty(inode, pages);
263 
264 	if (sbinfo->max_blocks)
265 		percpu_counter_sub(&sbinfo->used_blocks, pages);
266 	shmem_unacct_blocks(info->flags, pages);
267 }
268 
269 static const struct super_operations shmem_ops;
270 static const struct address_space_operations shmem_aops;
271 static const struct file_operations shmem_file_operations;
272 static const struct inode_operations shmem_inode_operations;
273 static const struct inode_operations shmem_dir_inode_operations;
274 static const struct inode_operations shmem_special_inode_operations;
275 static const struct vm_operations_struct shmem_vm_ops;
276 static const struct vm_operations_struct shmem_anon_vm_ops;
277 static struct file_system_type shmem_fs_type;
278 
279 bool shmem_mapping(struct address_space *mapping)
280 {
281 	return mapping->a_ops == &shmem_aops;
282 }
283 EXPORT_SYMBOL_GPL(shmem_mapping);
284 
285 bool vma_is_anon_shmem(struct vm_area_struct *vma)
286 {
287 	return vma->vm_ops == &shmem_anon_vm_ops;
288 }
289 
290 bool vma_is_shmem(struct vm_area_struct *vma)
291 {
292 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
293 }
294 
295 static LIST_HEAD(shmem_swaplist);
296 static DEFINE_MUTEX(shmem_swaplist_mutex);
297 
298 #ifdef CONFIG_TMPFS_QUOTA
299 
300 static int shmem_enable_quotas(struct super_block *sb,
301 			       unsigned short quota_types)
302 {
303 	int type, err = 0;
304 
305 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
306 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
307 		if (!(quota_types & (1 << type)))
308 			continue;
309 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
310 					  DQUOT_USAGE_ENABLED |
311 					  DQUOT_LIMITS_ENABLED);
312 		if (err)
313 			goto out_err;
314 	}
315 	return 0;
316 
317 out_err:
318 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
319 		type, err);
320 	for (type--; type >= 0; type--)
321 		dquot_quota_off(sb, type);
322 	return err;
323 }
324 
325 static void shmem_disable_quotas(struct super_block *sb)
326 {
327 	int type;
328 
329 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
330 		dquot_quota_off(sb, type);
331 }
332 
333 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
334 {
335 	return SHMEM_I(inode)->i_dquot;
336 }
337 #endif /* CONFIG_TMPFS_QUOTA */
338 
339 /*
340  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
341  * produces a novel ino for the newly allocated inode.
342  *
343  * It may also be called when making a hard link to permit the space needed by
344  * each dentry. However, in that case, no new inode number is needed since that
345  * internally draws from another pool of inode numbers (currently global
346  * get_next_ino()). This case is indicated by passing NULL as inop.
347  */
348 #define SHMEM_INO_BATCH 1024
349 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
350 {
351 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
352 	ino_t ino;
353 
354 	if (!(sb->s_flags & SB_KERNMOUNT)) {
355 		raw_spin_lock(&sbinfo->stat_lock);
356 		if (sbinfo->max_inodes) {
357 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
358 				raw_spin_unlock(&sbinfo->stat_lock);
359 				return -ENOSPC;
360 			}
361 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
362 		}
363 		if (inop) {
364 			ino = sbinfo->next_ino++;
365 			if (unlikely(is_zero_ino(ino)))
366 				ino = sbinfo->next_ino++;
367 			if (unlikely(!sbinfo->full_inums &&
368 				     ino > UINT_MAX)) {
369 				/*
370 				 * Emulate get_next_ino uint wraparound for
371 				 * compatibility
372 				 */
373 				if (IS_ENABLED(CONFIG_64BIT))
374 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
375 						__func__, MINOR(sb->s_dev));
376 				sbinfo->next_ino = 1;
377 				ino = sbinfo->next_ino++;
378 			}
379 			*inop = ino;
380 		}
381 		raw_spin_unlock(&sbinfo->stat_lock);
382 	} else if (inop) {
383 		/*
384 		 * __shmem_file_setup, one of our callers, is lock-free: it
385 		 * doesn't hold stat_lock in shmem_reserve_inode since
386 		 * max_inodes is always 0, and is called from potentially
387 		 * unknown contexts. As such, use a per-cpu batched allocator
388 		 * which doesn't require the per-sb stat_lock unless we are at
389 		 * the batch boundary.
390 		 *
391 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
392 		 * shmem mounts are not exposed to userspace, so we don't need
393 		 * to worry about things like glibc compatibility.
394 		 */
395 		ino_t *next_ino;
396 
397 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
398 		ino = *next_ino;
399 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
400 			raw_spin_lock(&sbinfo->stat_lock);
401 			ino = sbinfo->next_ino;
402 			sbinfo->next_ino += SHMEM_INO_BATCH;
403 			raw_spin_unlock(&sbinfo->stat_lock);
404 			if (unlikely(is_zero_ino(ino)))
405 				ino++;
406 		}
407 		*inop = ino;
408 		*next_ino = ++ino;
409 		put_cpu();
410 	}
411 
412 	return 0;
413 }
414 
415 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
416 {
417 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
418 	if (sbinfo->max_inodes) {
419 		raw_spin_lock(&sbinfo->stat_lock);
420 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
421 		raw_spin_unlock(&sbinfo->stat_lock);
422 	}
423 }
424 
425 /**
426  * shmem_recalc_inode - recalculate the block usage of an inode
427  * @inode: inode to recalc
428  * @alloced: the change in number of pages allocated to inode
429  * @swapped: the change in number of pages swapped from inode
430  *
431  * We have to calculate the free blocks since the mm can drop
432  * undirtied hole pages behind our back.
433  *
434  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
435  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
436  */
437 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
438 {
439 	struct shmem_inode_info *info = SHMEM_I(inode);
440 	long freed;
441 
442 	spin_lock(&info->lock);
443 	info->alloced += alloced;
444 	info->swapped += swapped;
445 	freed = info->alloced - info->swapped -
446 		READ_ONCE(inode->i_mapping->nrpages);
447 	/*
448 	 * Special case: whereas normally shmem_recalc_inode() is called
449 	 * after i_mapping->nrpages has already been adjusted (up or down),
450 	 * shmem_writepage() has to raise swapped before nrpages is lowered -
451 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
452 	 * been freed.  Compensate here, to avoid the need for a followup call.
453 	 */
454 	if (swapped > 0)
455 		freed += swapped;
456 	if (freed > 0)
457 		info->alloced -= freed;
458 	spin_unlock(&info->lock);
459 
460 	/* The quota case may block */
461 	if (freed > 0)
462 		shmem_inode_unacct_blocks(inode, freed);
463 }
464 
465 bool shmem_charge(struct inode *inode, long pages)
466 {
467 	struct address_space *mapping = inode->i_mapping;
468 
469 	if (shmem_inode_acct_blocks(inode, pages))
470 		return false;
471 
472 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
473 	xa_lock_irq(&mapping->i_pages);
474 	mapping->nrpages += pages;
475 	xa_unlock_irq(&mapping->i_pages);
476 
477 	shmem_recalc_inode(inode, pages, 0);
478 	return true;
479 }
480 
481 void shmem_uncharge(struct inode *inode, long pages)
482 {
483 	/* pages argument is currently unused: keep it to help debugging */
484 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
485 
486 	shmem_recalc_inode(inode, 0, 0);
487 }
488 
489 /*
490  * Replace item expected in xarray by a new item, while holding xa_lock.
491  */
492 static int shmem_replace_entry(struct address_space *mapping,
493 			pgoff_t index, void *expected, void *replacement)
494 {
495 	XA_STATE(xas, &mapping->i_pages, index);
496 	void *item;
497 
498 	VM_BUG_ON(!expected);
499 	VM_BUG_ON(!replacement);
500 	item = xas_load(&xas);
501 	if (item != expected)
502 		return -ENOENT;
503 	xas_store(&xas, replacement);
504 	return 0;
505 }
506 
507 /*
508  * Sometimes, before we decide whether to proceed or to fail, we must check
509  * that an entry was not already brought back from swap by a racing thread.
510  *
511  * Checking folio is not enough: by the time a swapcache folio is locked, it
512  * might be reused, and again be swapcache, using the same swap as before.
513  */
514 static bool shmem_confirm_swap(struct address_space *mapping,
515 			       pgoff_t index, swp_entry_t swap)
516 {
517 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
518 }
519 
520 /*
521  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
522  *
523  * SHMEM_HUGE_NEVER:
524  *	disables huge pages for the mount;
525  * SHMEM_HUGE_ALWAYS:
526  *	enables huge pages for the mount;
527  * SHMEM_HUGE_WITHIN_SIZE:
528  *	only allocate huge pages if the page will be fully within i_size,
529  *	also respect fadvise()/madvise() hints;
530  * SHMEM_HUGE_ADVISE:
531  *	only allocate huge pages if requested with fadvise()/madvise();
532  */
533 
534 #define SHMEM_HUGE_NEVER	0
535 #define SHMEM_HUGE_ALWAYS	1
536 #define SHMEM_HUGE_WITHIN_SIZE	2
537 #define SHMEM_HUGE_ADVISE	3
538 
539 /*
540  * Special values.
541  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
542  *
543  * SHMEM_HUGE_DENY:
544  *	disables huge on shm_mnt and all mounts, for emergency use;
545  * SHMEM_HUGE_FORCE:
546  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
547  *
548  */
549 #define SHMEM_HUGE_DENY		(-1)
550 #define SHMEM_HUGE_FORCE	(-2)
551 
552 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
553 /* ifdef here to avoid bloating shmem.o when not necessary */
554 
555 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
556 
557 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
558 				      loff_t write_end, bool shmem_huge_force,
559 				      unsigned long vm_flags)
560 {
561 	loff_t i_size;
562 
563 	if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER)
564 		return false;
565 	if (!S_ISREG(inode->i_mode))
566 		return false;
567 	if (shmem_huge == SHMEM_HUGE_DENY)
568 		return false;
569 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
570 		return true;
571 
572 	switch (SHMEM_SB(inode->i_sb)->huge) {
573 	case SHMEM_HUGE_ALWAYS:
574 		return true;
575 	case SHMEM_HUGE_WITHIN_SIZE:
576 		index = round_up(index + 1, HPAGE_PMD_NR);
577 		i_size = max(write_end, i_size_read(inode));
578 		i_size = round_up(i_size, PAGE_SIZE);
579 		if (i_size >> PAGE_SHIFT >= index)
580 			return true;
581 		fallthrough;
582 	case SHMEM_HUGE_ADVISE:
583 		if (vm_flags & VM_HUGEPAGE)
584 			return true;
585 		fallthrough;
586 	default:
587 		return false;
588 	}
589 }
590 
591 static int shmem_parse_huge(const char *str)
592 {
593 	int huge;
594 
595 	if (!str)
596 		return -EINVAL;
597 
598 	if (!strcmp(str, "never"))
599 		huge = SHMEM_HUGE_NEVER;
600 	else if (!strcmp(str, "always"))
601 		huge = SHMEM_HUGE_ALWAYS;
602 	else if (!strcmp(str, "within_size"))
603 		huge = SHMEM_HUGE_WITHIN_SIZE;
604 	else if (!strcmp(str, "advise"))
605 		huge = SHMEM_HUGE_ADVISE;
606 	else if (!strcmp(str, "deny"))
607 		huge = SHMEM_HUGE_DENY;
608 	else if (!strcmp(str, "force"))
609 		huge = SHMEM_HUGE_FORCE;
610 	else
611 		return -EINVAL;
612 
613 	if (!has_transparent_hugepage() &&
614 	    huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
615 		return -EINVAL;
616 
617 	/* Do not override huge allocation policy with non-PMD sized mTHP */
618 	if (huge == SHMEM_HUGE_FORCE &&
619 	    huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
620 		return -EINVAL;
621 
622 	return huge;
623 }
624 
625 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
626 static const char *shmem_format_huge(int huge)
627 {
628 	switch (huge) {
629 	case SHMEM_HUGE_NEVER:
630 		return "never";
631 	case SHMEM_HUGE_ALWAYS:
632 		return "always";
633 	case SHMEM_HUGE_WITHIN_SIZE:
634 		return "within_size";
635 	case SHMEM_HUGE_ADVISE:
636 		return "advise";
637 	case SHMEM_HUGE_DENY:
638 		return "deny";
639 	case SHMEM_HUGE_FORCE:
640 		return "force";
641 	default:
642 		VM_BUG_ON(1);
643 		return "bad_val";
644 	}
645 }
646 #endif
647 
648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649 		struct shrink_control *sc, unsigned long nr_to_free)
650 {
651 	LIST_HEAD(list), *pos, *next;
652 	struct inode *inode;
653 	struct shmem_inode_info *info;
654 	struct folio *folio;
655 	unsigned long batch = sc ? sc->nr_to_scan : 128;
656 	unsigned long split = 0, freed = 0;
657 
658 	if (list_empty(&sbinfo->shrinklist))
659 		return SHRINK_STOP;
660 
661 	spin_lock(&sbinfo->shrinklist_lock);
662 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
663 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
664 
665 		/* pin the inode */
666 		inode = igrab(&info->vfs_inode);
667 
668 		/* inode is about to be evicted */
669 		if (!inode) {
670 			list_del_init(&info->shrinklist);
671 			goto next;
672 		}
673 
674 		list_move(&info->shrinklist, &list);
675 next:
676 		sbinfo->shrinklist_len--;
677 		if (!--batch)
678 			break;
679 	}
680 	spin_unlock(&sbinfo->shrinklist_lock);
681 
682 	list_for_each_safe(pos, next, &list) {
683 		pgoff_t next, end;
684 		loff_t i_size;
685 		int ret;
686 
687 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
688 		inode = &info->vfs_inode;
689 
690 		if (nr_to_free && freed >= nr_to_free)
691 			goto move_back;
692 
693 		i_size = i_size_read(inode);
694 		folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
695 		if (!folio || xa_is_value(folio))
696 			goto drop;
697 
698 		/* No large folio at the end of the file: nothing to split */
699 		if (!folio_test_large(folio)) {
700 			folio_put(folio);
701 			goto drop;
702 		}
703 
704 		/* Check if there is anything to gain from splitting */
705 		next = folio_next_index(folio);
706 		end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
707 		if (end <= folio->index || end >= next) {
708 			folio_put(folio);
709 			goto drop;
710 		}
711 
712 		/*
713 		 * Move the inode on the list back to shrinklist if we failed
714 		 * to lock the page at this time.
715 		 *
716 		 * Waiting for the lock may lead to deadlock in the
717 		 * reclaim path.
718 		 */
719 		if (!folio_trylock(folio)) {
720 			folio_put(folio);
721 			goto move_back;
722 		}
723 
724 		ret = split_folio(folio);
725 		folio_unlock(folio);
726 		folio_put(folio);
727 
728 		/* If split failed move the inode on the list back to shrinklist */
729 		if (ret)
730 			goto move_back;
731 
732 		freed += next - end;
733 		split++;
734 drop:
735 		list_del_init(&info->shrinklist);
736 		goto put;
737 move_back:
738 		/*
739 		 * Make sure the inode is either on the global list or deleted
740 		 * from any local list before iput() since it could be deleted
741 		 * in another thread once we put the inode (then the local list
742 		 * is corrupted).
743 		 */
744 		spin_lock(&sbinfo->shrinklist_lock);
745 		list_move(&info->shrinklist, &sbinfo->shrinklist);
746 		sbinfo->shrinklist_len++;
747 		spin_unlock(&sbinfo->shrinklist_lock);
748 put:
749 		iput(inode);
750 	}
751 
752 	return split;
753 }
754 
755 static long shmem_unused_huge_scan(struct super_block *sb,
756 		struct shrink_control *sc)
757 {
758 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
759 
760 	if (!READ_ONCE(sbinfo->shrinklist_len))
761 		return SHRINK_STOP;
762 
763 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
764 }
765 
766 static long shmem_unused_huge_count(struct super_block *sb,
767 		struct shrink_control *sc)
768 {
769 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
770 	return READ_ONCE(sbinfo->shrinklist_len);
771 }
772 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
773 
774 #define shmem_huge SHMEM_HUGE_DENY
775 
776 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
777 		struct shrink_control *sc, unsigned long nr_to_free)
778 {
779 	return 0;
780 }
781 
782 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
783 				      loff_t write_end, bool shmem_huge_force,
784 				      unsigned long vm_flags)
785 {
786 	return false;
787 }
788 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
789 
790 /*
791  * Somewhat like filemap_add_folio, but error if expected item has gone.
792  */
793 static int shmem_add_to_page_cache(struct folio *folio,
794 				   struct address_space *mapping,
795 				   pgoff_t index, void *expected, gfp_t gfp)
796 {
797 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
798 	long nr = folio_nr_pages(folio);
799 
800 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
801 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
802 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
803 
804 	folio_ref_add(folio, nr);
805 	folio->mapping = mapping;
806 	folio->index = index;
807 
808 	gfp &= GFP_RECLAIM_MASK;
809 	folio_throttle_swaprate(folio, gfp);
810 
811 	do {
812 		xas_lock_irq(&xas);
813 		if (expected != xas_find_conflict(&xas)) {
814 			xas_set_err(&xas, -EEXIST);
815 			goto unlock;
816 		}
817 		if (expected && xas_find_conflict(&xas)) {
818 			xas_set_err(&xas, -EEXIST);
819 			goto unlock;
820 		}
821 		xas_store(&xas, folio);
822 		if (xas_error(&xas))
823 			goto unlock;
824 		if (folio_test_pmd_mappable(folio))
825 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
826 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
827 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
828 		mapping->nrpages += nr;
829 unlock:
830 		xas_unlock_irq(&xas);
831 	} while (xas_nomem(&xas, gfp));
832 
833 	if (xas_error(&xas)) {
834 		folio->mapping = NULL;
835 		folio_ref_sub(folio, nr);
836 		return xas_error(&xas);
837 	}
838 
839 	return 0;
840 }
841 
842 /*
843  * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
844  */
845 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
846 {
847 	struct address_space *mapping = folio->mapping;
848 	long nr = folio_nr_pages(folio);
849 	int error;
850 
851 	xa_lock_irq(&mapping->i_pages);
852 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
853 	folio->mapping = NULL;
854 	mapping->nrpages -= nr;
855 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
856 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
857 	xa_unlock_irq(&mapping->i_pages);
858 	folio_put_refs(folio, nr);
859 	BUG_ON(error);
860 }
861 
862 /*
863  * Remove swap entry from page cache, free the swap and its page cache. Returns
864  * the number of pages being freed. 0 means entry not found in XArray (0 pages
865  * being freed).
866  */
867 static long shmem_free_swap(struct address_space *mapping,
868 			    pgoff_t index, void *radswap)
869 {
870 	int order = xa_get_order(&mapping->i_pages, index);
871 	void *old;
872 
873 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
874 	if (old != radswap)
875 		return 0;
876 	free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
877 
878 	return 1 << order;
879 }
880 
881 /*
882  * Determine (in bytes) how many of the shmem object's pages mapped by the
883  * given offsets are swapped out.
884  *
885  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
886  * as long as the inode doesn't go away and racy results are not a problem.
887  */
888 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
889 						pgoff_t start, pgoff_t end)
890 {
891 	XA_STATE(xas, &mapping->i_pages, start);
892 	struct page *page;
893 	unsigned long swapped = 0;
894 	unsigned long max = end - 1;
895 
896 	rcu_read_lock();
897 	xas_for_each(&xas, page, max) {
898 		if (xas_retry(&xas, page))
899 			continue;
900 		if (xa_is_value(page))
901 			swapped += 1 << xas_get_order(&xas);
902 		if (xas.xa_index == max)
903 			break;
904 		if (need_resched()) {
905 			xas_pause(&xas);
906 			cond_resched_rcu();
907 		}
908 	}
909 	rcu_read_unlock();
910 
911 	return swapped << PAGE_SHIFT;
912 }
913 
914 /*
915  * Determine (in bytes) how many of the shmem object's pages mapped by the
916  * given vma is swapped out.
917  *
918  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
919  * as long as the inode doesn't go away and racy results are not a problem.
920  */
921 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
922 {
923 	struct inode *inode = file_inode(vma->vm_file);
924 	struct shmem_inode_info *info = SHMEM_I(inode);
925 	struct address_space *mapping = inode->i_mapping;
926 	unsigned long swapped;
927 
928 	/* Be careful as we don't hold info->lock */
929 	swapped = READ_ONCE(info->swapped);
930 
931 	/*
932 	 * The easier cases are when the shmem object has nothing in swap, or
933 	 * the vma maps it whole. Then we can simply use the stats that we
934 	 * already track.
935 	 */
936 	if (!swapped)
937 		return 0;
938 
939 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
940 		return swapped << PAGE_SHIFT;
941 
942 	/* Here comes the more involved part */
943 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
944 					vma->vm_pgoff + vma_pages(vma));
945 }
946 
947 /*
948  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
949  */
950 void shmem_unlock_mapping(struct address_space *mapping)
951 {
952 	struct folio_batch fbatch;
953 	pgoff_t index = 0;
954 
955 	folio_batch_init(&fbatch);
956 	/*
957 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
958 	 */
959 	while (!mapping_unevictable(mapping) &&
960 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
961 		check_move_unevictable_folios(&fbatch);
962 		folio_batch_release(&fbatch);
963 		cond_resched();
964 	}
965 }
966 
967 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
968 {
969 	struct folio *folio;
970 
971 	/*
972 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
973 	 * beyond i_size, and reports fallocated folios as holes.
974 	 */
975 	folio = filemap_get_entry(inode->i_mapping, index);
976 	if (!folio)
977 		return folio;
978 	if (!xa_is_value(folio)) {
979 		folio_lock(folio);
980 		if (folio->mapping == inode->i_mapping)
981 			return folio;
982 		/* The folio has been swapped out */
983 		folio_unlock(folio);
984 		folio_put(folio);
985 	}
986 	/*
987 	 * But read a folio back from swap if any of it is within i_size
988 	 * (although in some cases this is just a waste of time).
989 	 */
990 	folio = NULL;
991 	shmem_get_folio(inode, index, 0, &folio, SGP_READ);
992 	return folio;
993 }
994 
995 /*
996  * Remove range of pages and swap entries from page cache, and free them.
997  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
998  */
999 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
1000 								 bool unfalloc)
1001 {
1002 	struct address_space *mapping = inode->i_mapping;
1003 	struct shmem_inode_info *info = SHMEM_I(inode);
1004 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
1005 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
1006 	struct folio_batch fbatch;
1007 	pgoff_t indices[PAGEVEC_SIZE];
1008 	struct folio *folio;
1009 	bool same_folio;
1010 	long nr_swaps_freed = 0;
1011 	pgoff_t index;
1012 	int i;
1013 
1014 	if (lend == -1)
1015 		end = -1;	/* unsigned, so actually very big */
1016 
1017 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1018 		info->fallocend = start;
1019 
1020 	folio_batch_init(&fbatch);
1021 	index = start;
1022 	while (index < end && find_lock_entries(mapping, &index, end - 1,
1023 			&fbatch, indices)) {
1024 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1025 			folio = fbatch.folios[i];
1026 
1027 			if (xa_is_value(folio)) {
1028 				if (unfalloc)
1029 					continue;
1030 				nr_swaps_freed += shmem_free_swap(mapping,
1031 							indices[i], folio);
1032 				continue;
1033 			}
1034 
1035 			if (!unfalloc || !folio_test_uptodate(folio))
1036 				truncate_inode_folio(mapping, folio);
1037 			folio_unlock(folio);
1038 		}
1039 		folio_batch_remove_exceptionals(&fbatch);
1040 		folio_batch_release(&fbatch);
1041 		cond_resched();
1042 	}
1043 
1044 	/*
1045 	 * When undoing a failed fallocate, we want none of the partial folio
1046 	 * zeroing and splitting below, but shall want to truncate the whole
1047 	 * folio when !uptodate indicates that it was added by this fallocate,
1048 	 * even when [lstart, lend] covers only a part of the folio.
1049 	 */
1050 	if (unfalloc)
1051 		goto whole_folios;
1052 
1053 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1054 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1055 	if (folio) {
1056 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1057 		folio_mark_dirty(folio);
1058 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1059 			start = folio_next_index(folio);
1060 			if (same_folio)
1061 				end = folio->index;
1062 		}
1063 		folio_unlock(folio);
1064 		folio_put(folio);
1065 		folio = NULL;
1066 	}
1067 
1068 	if (!same_folio)
1069 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1070 	if (folio) {
1071 		folio_mark_dirty(folio);
1072 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1073 			end = folio->index;
1074 		folio_unlock(folio);
1075 		folio_put(folio);
1076 	}
1077 
1078 whole_folios:
1079 
1080 	index = start;
1081 	while (index < end) {
1082 		cond_resched();
1083 
1084 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1085 				indices)) {
1086 			/* If all gone or hole-punch or unfalloc, we're done */
1087 			if (index == start || end != -1)
1088 				break;
1089 			/* But if truncating, restart to make sure all gone */
1090 			index = start;
1091 			continue;
1092 		}
1093 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1094 			folio = fbatch.folios[i];
1095 
1096 			if (xa_is_value(folio)) {
1097 				long swaps_freed;
1098 
1099 				if (unfalloc)
1100 					continue;
1101 				swaps_freed = shmem_free_swap(mapping, indices[i], folio);
1102 				if (!swaps_freed) {
1103 					/* Swap was replaced by page: retry */
1104 					index = indices[i];
1105 					break;
1106 				}
1107 				nr_swaps_freed += swaps_freed;
1108 				continue;
1109 			}
1110 
1111 			folio_lock(folio);
1112 
1113 			if (!unfalloc || !folio_test_uptodate(folio)) {
1114 				if (folio_mapping(folio) != mapping) {
1115 					/* Page was replaced by swap: retry */
1116 					folio_unlock(folio);
1117 					index = indices[i];
1118 					break;
1119 				}
1120 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1121 						folio);
1122 
1123 				if (!folio_test_large(folio)) {
1124 					truncate_inode_folio(mapping, folio);
1125 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1126 					/*
1127 					 * If we split a page, reset the loop so
1128 					 * that we pick up the new sub pages.
1129 					 * Otherwise the THP was entirely
1130 					 * dropped or the target range was
1131 					 * zeroed, so just continue the loop as
1132 					 * is.
1133 					 */
1134 					if (!folio_test_large(folio)) {
1135 						folio_unlock(folio);
1136 						index = start;
1137 						break;
1138 					}
1139 				}
1140 			}
1141 			folio_unlock(folio);
1142 		}
1143 		folio_batch_remove_exceptionals(&fbatch);
1144 		folio_batch_release(&fbatch);
1145 	}
1146 
1147 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1148 }
1149 
1150 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1151 {
1152 	shmem_undo_range(inode, lstart, lend, false);
1153 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1154 	inode_inc_iversion(inode);
1155 }
1156 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1157 
1158 static int shmem_getattr(struct mnt_idmap *idmap,
1159 			 const struct path *path, struct kstat *stat,
1160 			 u32 request_mask, unsigned int query_flags)
1161 {
1162 	struct inode *inode = path->dentry->d_inode;
1163 	struct shmem_inode_info *info = SHMEM_I(inode);
1164 
1165 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1166 		shmem_recalc_inode(inode, 0, 0);
1167 
1168 	if (info->fsflags & FS_APPEND_FL)
1169 		stat->attributes |= STATX_ATTR_APPEND;
1170 	if (info->fsflags & FS_IMMUTABLE_FL)
1171 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1172 	if (info->fsflags & FS_NODUMP_FL)
1173 		stat->attributes |= STATX_ATTR_NODUMP;
1174 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1175 			STATX_ATTR_IMMUTABLE |
1176 			STATX_ATTR_NODUMP);
1177 	generic_fillattr(idmap, request_mask, inode, stat);
1178 
1179 	if (shmem_huge_global_enabled(inode, 0, 0, false, 0))
1180 		stat->blksize = HPAGE_PMD_SIZE;
1181 
1182 	if (request_mask & STATX_BTIME) {
1183 		stat->result_mask |= STATX_BTIME;
1184 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1185 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1186 	}
1187 
1188 	return 0;
1189 }
1190 
1191 static int shmem_setattr(struct mnt_idmap *idmap,
1192 			 struct dentry *dentry, struct iattr *attr)
1193 {
1194 	struct inode *inode = d_inode(dentry);
1195 	struct shmem_inode_info *info = SHMEM_I(inode);
1196 	int error;
1197 	bool update_mtime = false;
1198 	bool update_ctime = true;
1199 
1200 	error = setattr_prepare(idmap, dentry, attr);
1201 	if (error)
1202 		return error;
1203 
1204 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1205 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1206 			return -EPERM;
1207 		}
1208 	}
1209 
1210 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1211 		loff_t oldsize = inode->i_size;
1212 		loff_t newsize = attr->ia_size;
1213 
1214 		/* protected by i_rwsem */
1215 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1216 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1217 			return -EPERM;
1218 
1219 		if (newsize != oldsize) {
1220 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1221 					oldsize, newsize);
1222 			if (error)
1223 				return error;
1224 			i_size_write(inode, newsize);
1225 			update_mtime = true;
1226 		} else {
1227 			update_ctime = false;
1228 		}
1229 		if (newsize <= oldsize) {
1230 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1231 			if (oldsize > holebegin)
1232 				unmap_mapping_range(inode->i_mapping,
1233 							holebegin, 0, 1);
1234 			if (info->alloced)
1235 				shmem_truncate_range(inode,
1236 							newsize, (loff_t)-1);
1237 			/* unmap again to remove racily COWed private pages */
1238 			if (oldsize > holebegin)
1239 				unmap_mapping_range(inode->i_mapping,
1240 							holebegin, 0, 1);
1241 		}
1242 	}
1243 
1244 	if (is_quota_modification(idmap, inode, attr)) {
1245 		error = dquot_initialize(inode);
1246 		if (error)
1247 			return error;
1248 	}
1249 
1250 	/* Transfer quota accounting */
1251 	if (i_uid_needs_update(idmap, attr, inode) ||
1252 	    i_gid_needs_update(idmap, attr, inode)) {
1253 		error = dquot_transfer(idmap, inode, attr);
1254 		if (error)
1255 			return error;
1256 	}
1257 
1258 	setattr_copy(idmap, inode, attr);
1259 	if (attr->ia_valid & ATTR_MODE)
1260 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1261 	if (!error && update_ctime) {
1262 		inode_set_ctime_current(inode);
1263 		if (update_mtime)
1264 			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1265 		inode_inc_iversion(inode);
1266 	}
1267 	return error;
1268 }
1269 
1270 static void shmem_evict_inode(struct inode *inode)
1271 {
1272 	struct shmem_inode_info *info = SHMEM_I(inode);
1273 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1274 	size_t freed = 0;
1275 
1276 	if (shmem_mapping(inode->i_mapping)) {
1277 		shmem_unacct_size(info->flags, inode->i_size);
1278 		inode->i_size = 0;
1279 		mapping_set_exiting(inode->i_mapping);
1280 		shmem_truncate_range(inode, 0, (loff_t)-1);
1281 		if (!list_empty(&info->shrinklist)) {
1282 			spin_lock(&sbinfo->shrinklist_lock);
1283 			if (!list_empty(&info->shrinklist)) {
1284 				list_del_init(&info->shrinklist);
1285 				sbinfo->shrinklist_len--;
1286 			}
1287 			spin_unlock(&sbinfo->shrinklist_lock);
1288 		}
1289 		while (!list_empty(&info->swaplist)) {
1290 			/* Wait while shmem_unuse() is scanning this inode... */
1291 			wait_var_event(&info->stop_eviction,
1292 				       !atomic_read(&info->stop_eviction));
1293 			mutex_lock(&shmem_swaplist_mutex);
1294 			/* ...but beware of the race if we peeked too early */
1295 			if (!atomic_read(&info->stop_eviction))
1296 				list_del_init(&info->swaplist);
1297 			mutex_unlock(&shmem_swaplist_mutex);
1298 		}
1299 	}
1300 
1301 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1302 	shmem_free_inode(inode->i_sb, freed);
1303 	WARN_ON(inode->i_blocks);
1304 	clear_inode(inode);
1305 #ifdef CONFIG_TMPFS_QUOTA
1306 	dquot_free_inode(inode);
1307 	dquot_drop(inode);
1308 #endif
1309 }
1310 
1311 static int shmem_find_swap_entries(struct address_space *mapping,
1312 				   pgoff_t start, struct folio_batch *fbatch,
1313 				   pgoff_t *indices, unsigned int type)
1314 {
1315 	XA_STATE(xas, &mapping->i_pages, start);
1316 	struct folio *folio;
1317 	swp_entry_t entry;
1318 
1319 	rcu_read_lock();
1320 	xas_for_each(&xas, folio, ULONG_MAX) {
1321 		if (xas_retry(&xas, folio))
1322 			continue;
1323 
1324 		if (!xa_is_value(folio))
1325 			continue;
1326 
1327 		entry = radix_to_swp_entry(folio);
1328 		/*
1329 		 * swapin error entries can be found in the mapping. But they're
1330 		 * deliberately ignored here as we've done everything we can do.
1331 		 */
1332 		if (swp_type(entry) != type)
1333 			continue;
1334 
1335 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1336 		if (!folio_batch_add(fbatch, folio))
1337 			break;
1338 
1339 		if (need_resched()) {
1340 			xas_pause(&xas);
1341 			cond_resched_rcu();
1342 		}
1343 	}
1344 	rcu_read_unlock();
1345 
1346 	return xas.xa_index;
1347 }
1348 
1349 /*
1350  * Move the swapped pages for an inode to page cache. Returns the count
1351  * of pages swapped in, or the error in case of failure.
1352  */
1353 static int shmem_unuse_swap_entries(struct inode *inode,
1354 		struct folio_batch *fbatch, pgoff_t *indices)
1355 {
1356 	int i = 0;
1357 	int ret = 0;
1358 	int error = 0;
1359 	struct address_space *mapping = inode->i_mapping;
1360 
1361 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1362 		struct folio *folio = fbatch->folios[i];
1363 
1364 		if (!xa_is_value(folio))
1365 			continue;
1366 		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1367 					mapping_gfp_mask(mapping), NULL, NULL);
1368 		if (error == 0) {
1369 			folio_unlock(folio);
1370 			folio_put(folio);
1371 			ret++;
1372 		}
1373 		if (error == -ENOMEM)
1374 			break;
1375 		error = 0;
1376 	}
1377 	return error ? error : ret;
1378 }
1379 
1380 /*
1381  * If swap found in inode, free it and move page from swapcache to filecache.
1382  */
1383 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1384 {
1385 	struct address_space *mapping = inode->i_mapping;
1386 	pgoff_t start = 0;
1387 	struct folio_batch fbatch;
1388 	pgoff_t indices[PAGEVEC_SIZE];
1389 	int ret = 0;
1390 
1391 	do {
1392 		folio_batch_init(&fbatch);
1393 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1394 		if (folio_batch_count(&fbatch) == 0) {
1395 			ret = 0;
1396 			break;
1397 		}
1398 
1399 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1400 		if (ret < 0)
1401 			break;
1402 
1403 		start = indices[folio_batch_count(&fbatch) - 1];
1404 	} while (true);
1405 
1406 	return ret;
1407 }
1408 
1409 /*
1410  * Read all the shared memory data that resides in the swap
1411  * device 'type' back into memory, so the swap device can be
1412  * unused.
1413  */
1414 int shmem_unuse(unsigned int type)
1415 {
1416 	struct shmem_inode_info *info, *next;
1417 	int error = 0;
1418 
1419 	if (list_empty(&shmem_swaplist))
1420 		return 0;
1421 
1422 	mutex_lock(&shmem_swaplist_mutex);
1423 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1424 		if (!info->swapped) {
1425 			list_del_init(&info->swaplist);
1426 			continue;
1427 		}
1428 		/*
1429 		 * Drop the swaplist mutex while searching the inode for swap;
1430 		 * but before doing so, make sure shmem_evict_inode() will not
1431 		 * remove placeholder inode from swaplist, nor let it be freed
1432 		 * (igrab() would protect from unlink, but not from unmount).
1433 		 */
1434 		atomic_inc(&info->stop_eviction);
1435 		mutex_unlock(&shmem_swaplist_mutex);
1436 
1437 		error = shmem_unuse_inode(&info->vfs_inode, type);
1438 		cond_resched();
1439 
1440 		mutex_lock(&shmem_swaplist_mutex);
1441 		next = list_next_entry(info, swaplist);
1442 		if (!info->swapped)
1443 			list_del_init(&info->swaplist);
1444 		if (atomic_dec_and_test(&info->stop_eviction))
1445 			wake_up_var(&info->stop_eviction);
1446 		if (error)
1447 			break;
1448 	}
1449 	mutex_unlock(&shmem_swaplist_mutex);
1450 
1451 	return error;
1452 }
1453 
1454 /*
1455  * Move the page from the page cache to the swap cache.
1456  */
1457 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1458 {
1459 	struct folio *folio = page_folio(page);
1460 	struct address_space *mapping = folio->mapping;
1461 	struct inode *inode = mapping->host;
1462 	struct shmem_inode_info *info = SHMEM_I(inode);
1463 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1464 	swp_entry_t swap;
1465 	pgoff_t index;
1466 	int nr_pages;
1467 	bool split = false;
1468 
1469 	/*
1470 	 * Our capabilities prevent regular writeback or sync from ever calling
1471 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1472 	 * its underlying filesystem, in which case tmpfs should write out to
1473 	 * swap only in response to memory pressure, and not for the writeback
1474 	 * threads or sync.
1475 	 */
1476 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1477 		goto redirty;
1478 
1479 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1480 		goto redirty;
1481 
1482 	if (!total_swap_pages)
1483 		goto redirty;
1484 
1485 	/*
1486 	 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1487 	 * split when swapping.
1488 	 *
1489 	 * And shrinkage of pages beyond i_size does not split swap, so
1490 	 * swapout of a large folio crossing i_size needs to split too
1491 	 * (unless fallocate has been used to preallocate beyond EOF).
1492 	 */
1493 	if (folio_test_large(folio)) {
1494 		index = shmem_fallocend(inode,
1495 			DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1496 		if ((index > folio->index && index < folio_next_index(folio)) ||
1497 		    !IS_ENABLED(CONFIG_THP_SWAP))
1498 			split = true;
1499 	}
1500 
1501 	if (split) {
1502 try_split:
1503 		/* Ensure the subpages are still dirty */
1504 		folio_test_set_dirty(folio);
1505 		if (split_huge_page_to_list_to_order(page, wbc->list, 0))
1506 			goto redirty;
1507 		folio = page_folio(page);
1508 		folio_clear_dirty(folio);
1509 	}
1510 
1511 	index = folio->index;
1512 	nr_pages = folio_nr_pages(folio);
1513 
1514 	/*
1515 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1516 	 * value into swapfile.c, the only way we can correctly account for a
1517 	 * fallocated folio arriving here is now to initialize it and write it.
1518 	 *
1519 	 * That's okay for a folio already fallocated earlier, but if we have
1520 	 * not yet completed the fallocation, then (a) we want to keep track
1521 	 * of this folio in case we have to undo it, and (b) it may not be a
1522 	 * good idea to continue anyway, once we're pushing into swap.  So
1523 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1524 	 */
1525 	if (!folio_test_uptodate(folio)) {
1526 		if (inode->i_private) {
1527 			struct shmem_falloc *shmem_falloc;
1528 			spin_lock(&inode->i_lock);
1529 			shmem_falloc = inode->i_private;
1530 			if (shmem_falloc &&
1531 			    !shmem_falloc->waitq &&
1532 			    index >= shmem_falloc->start &&
1533 			    index < shmem_falloc->next)
1534 				shmem_falloc->nr_unswapped++;
1535 			else
1536 				shmem_falloc = NULL;
1537 			spin_unlock(&inode->i_lock);
1538 			if (shmem_falloc)
1539 				goto redirty;
1540 		}
1541 		folio_zero_range(folio, 0, folio_size(folio));
1542 		flush_dcache_folio(folio);
1543 		folio_mark_uptodate(folio);
1544 	}
1545 
1546 	swap = folio_alloc_swap(folio);
1547 	if (!swap.val) {
1548 		if (nr_pages > 1)
1549 			goto try_split;
1550 
1551 		goto redirty;
1552 	}
1553 
1554 	/*
1555 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1556 	 * if it's not already there.  Do it now before the folio is
1557 	 * moved to swap cache, when its pagelock no longer protects
1558 	 * the inode from eviction.  But don't unlock the mutex until
1559 	 * we've incremented swapped, because shmem_unuse_inode() will
1560 	 * prune a !swapped inode from the swaplist under this mutex.
1561 	 */
1562 	mutex_lock(&shmem_swaplist_mutex);
1563 	if (list_empty(&info->swaplist))
1564 		list_add(&info->swaplist, &shmem_swaplist);
1565 
1566 	if (add_to_swap_cache(folio, swap,
1567 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1568 			NULL) == 0) {
1569 		shmem_recalc_inode(inode, 0, nr_pages);
1570 		swap_shmem_alloc(swap, nr_pages);
1571 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1572 
1573 		mutex_unlock(&shmem_swaplist_mutex);
1574 		BUG_ON(folio_mapped(folio));
1575 		return swap_writepage(&folio->page, wbc);
1576 	}
1577 
1578 	mutex_unlock(&shmem_swaplist_mutex);
1579 	put_swap_folio(folio, swap);
1580 redirty:
1581 	folio_mark_dirty(folio);
1582 	if (wbc->for_reclaim)
1583 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1584 	folio_unlock(folio);
1585 	return 0;
1586 }
1587 
1588 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1589 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1590 {
1591 	char buffer[64];
1592 
1593 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1594 		return;		/* show nothing */
1595 
1596 	mpol_to_str(buffer, sizeof(buffer), mpol);
1597 
1598 	seq_printf(seq, ",mpol=%s", buffer);
1599 }
1600 
1601 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1602 {
1603 	struct mempolicy *mpol = NULL;
1604 	if (sbinfo->mpol) {
1605 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1606 		mpol = sbinfo->mpol;
1607 		mpol_get(mpol);
1608 		raw_spin_unlock(&sbinfo->stat_lock);
1609 	}
1610 	return mpol;
1611 }
1612 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1613 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1614 {
1615 }
1616 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1617 {
1618 	return NULL;
1619 }
1620 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1621 
1622 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1623 			pgoff_t index, unsigned int order, pgoff_t *ilx);
1624 
1625 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1626 			struct shmem_inode_info *info, pgoff_t index)
1627 {
1628 	struct mempolicy *mpol;
1629 	pgoff_t ilx;
1630 	struct folio *folio;
1631 
1632 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1633 	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1634 	mpol_cond_put(mpol);
1635 
1636 	return folio;
1637 }
1638 
1639 /*
1640  * Make sure huge_gfp is always more limited than limit_gfp.
1641  * Some of the flags set permissions, while others set limitations.
1642  */
1643 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1644 {
1645 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1646 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1647 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1648 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1649 
1650 	/* Allow allocations only from the originally specified zones. */
1651 	result |= zoneflags;
1652 
1653 	/*
1654 	 * Minimize the result gfp by taking the union with the deny flags,
1655 	 * and the intersection of the allow flags.
1656 	 */
1657 	result |= (limit_gfp & denyflags);
1658 	result |= (huge_gfp & limit_gfp) & allowflags;
1659 
1660 	return result;
1661 }
1662 
1663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1664 bool shmem_hpage_pmd_enabled(void)
1665 {
1666 	if (shmem_huge == SHMEM_HUGE_DENY)
1667 		return false;
1668 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
1669 		return true;
1670 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
1671 		return true;
1672 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
1673 		return true;
1674 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
1675 	    shmem_huge != SHMEM_HUGE_NEVER)
1676 		return true;
1677 
1678 	return false;
1679 }
1680 
1681 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1682 				struct vm_area_struct *vma, pgoff_t index,
1683 				loff_t write_end, bool shmem_huge_force)
1684 {
1685 	unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1686 	unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1687 	unsigned long vm_flags = vma ? vma->vm_flags : 0;
1688 	bool global_huge;
1689 	loff_t i_size;
1690 	int order;
1691 
1692 	if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags)))
1693 		return 0;
1694 
1695 	global_huge = shmem_huge_global_enabled(inode, index, write_end,
1696 						shmem_huge_force, vm_flags);
1697 	if (!vma || !vma_is_anon_shmem(vma)) {
1698 		/*
1699 		 * For tmpfs, we now only support PMD sized THP if huge page
1700 		 * is enabled, otherwise fallback to order 0.
1701 		 */
1702 		return global_huge ? BIT(HPAGE_PMD_ORDER) : 0;
1703 	}
1704 
1705 	/*
1706 	 * Following the 'deny' semantics of the top level, force the huge
1707 	 * option off from all mounts.
1708 	 */
1709 	if (shmem_huge == SHMEM_HUGE_DENY)
1710 		return 0;
1711 
1712 	/*
1713 	 * Only allow inherit orders if the top-level value is 'force', which
1714 	 * means non-PMD sized THP can not override 'huge' mount option now.
1715 	 */
1716 	if (shmem_huge == SHMEM_HUGE_FORCE)
1717 		return READ_ONCE(huge_shmem_orders_inherit);
1718 
1719 	/* Allow mTHP that will be fully within i_size. */
1720 	order = highest_order(within_size_orders);
1721 	while (within_size_orders) {
1722 		index = round_up(index + 1, order);
1723 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1724 		if (i_size >> PAGE_SHIFT >= index) {
1725 			mask |= within_size_orders;
1726 			break;
1727 		}
1728 
1729 		order = next_order(&within_size_orders, order);
1730 	}
1731 
1732 	if (vm_flags & VM_HUGEPAGE)
1733 		mask |= READ_ONCE(huge_shmem_orders_madvise);
1734 
1735 	if (global_huge)
1736 		mask |= READ_ONCE(huge_shmem_orders_inherit);
1737 
1738 	return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1739 }
1740 
1741 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1742 					   struct address_space *mapping, pgoff_t index,
1743 					   unsigned long orders)
1744 {
1745 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1746 	pgoff_t aligned_index;
1747 	unsigned long pages;
1748 	int order;
1749 
1750 	if (vma) {
1751 		orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1752 		if (!orders)
1753 			return 0;
1754 	}
1755 
1756 	/* Find the highest order that can add into the page cache */
1757 	order = highest_order(orders);
1758 	while (orders) {
1759 		pages = 1UL << order;
1760 		aligned_index = round_down(index, pages);
1761 		/*
1762 		 * Check for conflict before waiting on a huge allocation.
1763 		 * Conflict might be that a huge page has just been allocated
1764 		 * and added to page cache by a racing thread, or that there
1765 		 * is already at least one small page in the huge extent.
1766 		 * Be careful to retry when appropriate, but not forever!
1767 		 * Elsewhere -EEXIST would be the right code, but not here.
1768 		 */
1769 		if (!xa_find(&mapping->i_pages, &aligned_index,
1770 			     aligned_index + pages - 1, XA_PRESENT))
1771 			break;
1772 		order = next_order(&orders, order);
1773 	}
1774 
1775 	return orders;
1776 }
1777 #else
1778 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1779 					   struct address_space *mapping, pgoff_t index,
1780 					   unsigned long orders)
1781 {
1782 	return 0;
1783 }
1784 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1785 
1786 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1787 		struct shmem_inode_info *info, pgoff_t index)
1788 {
1789 	struct mempolicy *mpol;
1790 	pgoff_t ilx;
1791 	struct folio *folio;
1792 
1793 	mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1794 	folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1795 	mpol_cond_put(mpol);
1796 
1797 	return folio;
1798 }
1799 
1800 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1801 		gfp_t gfp, struct inode *inode, pgoff_t index,
1802 		struct mm_struct *fault_mm, unsigned long orders)
1803 {
1804 	struct address_space *mapping = inode->i_mapping;
1805 	struct shmem_inode_info *info = SHMEM_I(inode);
1806 	unsigned long suitable_orders = 0;
1807 	struct folio *folio = NULL;
1808 	long pages;
1809 	int error, order;
1810 
1811 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1812 		orders = 0;
1813 
1814 	if (orders > 0) {
1815 		suitable_orders = shmem_suitable_orders(inode, vmf,
1816 							mapping, index, orders);
1817 
1818 		order = highest_order(suitable_orders);
1819 		while (suitable_orders) {
1820 			pages = 1UL << order;
1821 			index = round_down(index, pages);
1822 			folio = shmem_alloc_folio(gfp, order, info, index);
1823 			if (folio)
1824 				goto allocated;
1825 
1826 			if (pages == HPAGE_PMD_NR)
1827 				count_vm_event(THP_FILE_FALLBACK);
1828 			count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1829 			order = next_order(&suitable_orders, order);
1830 		}
1831 	} else {
1832 		pages = 1;
1833 		folio = shmem_alloc_folio(gfp, 0, info, index);
1834 	}
1835 	if (!folio)
1836 		return ERR_PTR(-ENOMEM);
1837 
1838 allocated:
1839 	__folio_set_locked(folio);
1840 	__folio_set_swapbacked(folio);
1841 
1842 	gfp &= GFP_RECLAIM_MASK;
1843 	error = mem_cgroup_charge(folio, fault_mm, gfp);
1844 	if (error) {
1845 		if (xa_find(&mapping->i_pages, &index,
1846 				index + pages - 1, XA_PRESENT)) {
1847 			error = -EEXIST;
1848 		} else if (pages > 1) {
1849 			if (pages == HPAGE_PMD_NR) {
1850 				count_vm_event(THP_FILE_FALLBACK);
1851 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
1852 			}
1853 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1854 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1855 		}
1856 		goto unlock;
1857 	}
1858 
1859 	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1860 	if (error)
1861 		goto unlock;
1862 
1863 	error = shmem_inode_acct_blocks(inode, pages);
1864 	if (error) {
1865 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1866 		long freed;
1867 		/*
1868 		 * Try to reclaim some space by splitting a few
1869 		 * large folios beyond i_size on the filesystem.
1870 		 */
1871 		shmem_unused_huge_shrink(sbinfo, NULL, pages);
1872 		/*
1873 		 * And do a shmem_recalc_inode() to account for freed pages:
1874 		 * except our folio is there in cache, so not quite balanced.
1875 		 */
1876 		spin_lock(&info->lock);
1877 		freed = pages + info->alloced - info->swapped -
1878 			READ_ONCE(mapping->nrpages);
1879 		if (freed > 0)
1880 			info->alloced -= freed;
1881 		spin_unlock(&info->lock);
1882 		if (freed > 0)
1883 			shmem_inode_unacct_blocks(inode, freed);
1884 		error = shmem_inode_acct_blocks(inode, pages);
1885 		if (error) {
1886 			filemap_remove_folio(folio);
1887 			goto unlock;
1888 		}
1889 	}
1890 
1891 	shmem_recalc_inode(inode, pages, 0);
1892 	folio_add_lru(folio);
1893 	return folio;
1894 
1895 unlock:
1896 	folio_unlock(folio);
1897 	folio_put(folio);
1898 	return ERR_PTR(error);
1899 }
1900 
1901 /*
1902  * When a page is moved from swapcache to shmem filecache (either by the
1903  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1904  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1905  * ignorance of the mapping it belongs to.  If that mapping has special
1906  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1907  * we may need to copy to a suitable page before moving to filecache.
1908  *
1909  * In a future release, this may well be extended to respect cpuset and
1910  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1911  * but for now it is a simple matter of zone.
1912  */
1913 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1914 {
1915 	return folio_zonenum(folio) > gfp_zone(gfp);
1916 }
1917 
1918 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1919 				struct shmem_inode_info *info, pgoff_t index,
1920 				struct vm_area_struct *vma)
1921 {
1922 	struct folio *new, *old = *foliop;
1923 	swp_entry_t entry = old->swap;
1924 	struct address_space *swap_mapping = swap_address_space(entry);
1925 	pgoff_t swap_index = swap_cache_index(entry);
1926 	XA_STATE(xas, &swap_mapping->i_pages, swap_index);
1927 	int nr_pages = folio_nr_pages(old);
1928 	int error = 0, i;
1929 
1930 	/*
1931 	 * We have arrived here because our zones are constrained, so don't
1932 	 * limit chance of success by further cpuset and node constraints.
1933 	 */
1934 	gfp &= ~GFP_CONSTRAINT_MASK;
1935 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1936 	if (nr_pages > 1) {
1937 		gfp_t huge_gfp = vma_thp_gfp_mask(vma);
1938 
1939 		gfp = limit_gfp_mask(huge_gfp, gfp);
1940 	}
1941 #endif
1942 
1943 	new = shmem_alloc_folio(gfp, folio_order(old), info, index);
1944 	if (!new)
1945 		return -ENOMEM;
1946 
1947 	folio_ref_add(new, nr_pages);
1948 	folio_copy(new, old);
1949 	flush_dcache_folio(new);
1950 
1951 	__folio_set_locked(new);
1952 	__folio_set_swapbacked(new);
1953 	folio_mark_uptodate(new);
1954 	new->swap = entry;
1955 	folio_set_swapcache(new);
1956 
1957 	/* Swap cache still stores N entries instead of a high-order entry */
1958 	xa_lock_irq(&swap_mapping->i_pages);
1959 	for (i = 0; i < nr_pages; i++) {
1960 		void *item = xas_load(&xas);
1961 
1962 		if (item != old) {
1963 			error = -ENOENT;
1964 			break;
1965 		}
1966 
1967 		xas_store(&xas, new);
1968 		xas_next(&xas);
1969 	}
1970 	if (!error) {
1971 		mem_cgroup_replace_folio(old, new);
1972 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, nr_pages);
1973 		__lruvec_stat_mod_folio(new, NR_SHMEM, nr_pages);
1974 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -nr_pages);
1975 		__lruvec_stat_mod_folio(old, NR_SHMEM, -nr_pages);
1976 	}
1977 	xa_unlock_irq(&swap_mapping->i_pages);
1978 
1979 	if (unlikely(error)) {
1980 		/*
1981 		 * Is this possible?  I think not, now that our callers
1982 		 * check both the swapcache flag and folio->private
1983 		 * after getting the folio lock; but be defensive.
1984 		 * Reverse old to newpage for clear and free.
1985 		 */
1986 		old = new;
1987 	} else {
1988 		folio_add_lru(new);
1989 		*foliop = new;
1990 	}
1991 
1992 	folio_clear_swapcache(old);
1993 	old->private = NULL;
1994 
1995 	folio_unlock(old);
1996 	/*
1997 	 * The old folio are removed from swap cache, drop the 'nr_pages'
1998 	 * reference, as well as one temporary reference getting from swap
1999 	 * cache.
2000 	 */
2001 	folio_put_refs(old, nr_pages + 1);
2002 	return error;
2003 }
2004 
2005 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
2006 					 struct folio *folio, swp_entry_t swap)
2007 {
2008 	struct address_space *mapping = inode->i_mapping;
2009 	swp_entry_t swapin_error;
2010 	void *old;
2011 	int nr_pages;
2012 
2013 	swapin_error = make_poisoned_swp_entry();
2014 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
2015 			     swp_to_radix_entry(swap),
2016 			     swp_to_radix_entry(swapin_error), 0);
2017 	if (old != swp_to_radix_entry(swap))
2018 		return;
2019 
2020 	nr_pages = folio_nr_pages(folio);
2021 	folio_wait_writeback(folio);
2022 	delete_from_swap_cache(folio);
2023 	/*
2024 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2025 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2026 	 * in shmem_evict_inode().
2027 	 */
2028 	shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2029 	swap_free_nr(swap, nr_pages);
2030 }
2031 
2032 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2033 				   swp_entry_t swap, gfp_t gfp)
2034 {
2035 	struct address_space *mapping = inode->i_mapping;
2036 	XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2037 	void *alloced_shadow = NULL;
2038 	int alloced_order = 0, i;
2039 
2040 	/* Convert user data gfp flags to xarray node gfp flags */
2041 	gfp &= GFP_RECLAIM_MASK;
2042 
2043 	for (;;) {
2044 		int order = -1, split_order = 0;
2045 		void *old = NULL;
2046 
2047 		xas_lock_irq(&xas);
2048 		old = xas_load(&xas);
2049 		if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2050 			xas_set_err(&xas, -EEXIST);
2051 			goto unlock;
2052 		}
2053 
2054 		order = xas_get_order(&xas);
2055 
2056 		/* Swap entry may have changed before we re-acquire the lock */
2057 		if (alloced_order &&
2058 		    (old != alloced_shadow || order != alloced_order)) {
2059 			xas_destroy(&xas);
2060 			alloced_order = 0;
2061 		}
2062 
2063 		/* Try to split large swap entry in pagecache */
2064 		if (order > 0) {
2065 			if (!alloced_order) {
2066 				split_order = order;
2067 				goto unlock;
2068 			}
2069 			xas_split(&xas, old, order);
2070 
2071 			/*
2072 			 * Re-set the swap entry after splitting, and the swap
2073 			 * offset of the original large entry must be continuous.
2074 			 */
2075 			for (i = 0; i < 1 << order; i++) {
2076 				pgoff_t aligned_index = round_down(index, 1 << order);
2077 				swp_entry_t tmp;
2078 
2079 				tmp = swp_entry(swp_type(swap), swp_offset(swap) + i);
2080 				__xa_store(&mapping->i_pages, aligned_index + i,
2081 					   swp_to_radix_entry(tmp), 0);
2082 			}
2083 		}
2084 
2085 unlock:
2086 		xas_unlock_irq(&xas);
2087 
2088 		/* split needed, alloc here and retry. */
2089 		if (split_order) {
2090 			xas_split_alloc(&xas, old, split_order, gfp);
2091 			if (xas_error(&xas))
2092 				goto error;
2093 			alloced_shadow = old;
2094 			alloced_order = split_order;
2095 			xas_reset(&xas);
2096 			continue;
2097 		}
2098 
2099 		if (!xas_nomem(&xas, gfp))
2100 			break;
2101 	}
2102 
2103 error:
2104 	if (xas_error(&xas))
2105 		return xas_error(&xas);
2106 
2107 	return alloced_order;
2108 }
2109 
2110 /*
2111  * Swap in the folio pointed to by *foliop.
2112  * Caller has to make sure that *foliop contains a valid swapped folio.
2113  * Returns 0 and the folio in foliop if success. On failure, returns the
2114  * error code and NULL in *foliop.
2115  */
2116 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2117 			     struct folio **foliop, enum sgp_type sgp,
2118 			     gfp_t gfp, struct vm_area_struct *vma,
2119 			     vm_fault_t *fault_type)
2120 {
2121 	struct address_space *mapping = inode->i_mapping;
2122 	struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2123 	struct shmem_inode_info *info = SHMEM_I(inode);
2124 	struct swap_info_struct *si;
2125 	struct folio *folio = NULL;
2126 	swp_entry_t swap;
2127 	int error, nr_pages;
2128 
2129 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2130 	swap = radix_to_swp_entry(*foliop);
2131 	*foliop = NULL;
2132 
2133 	if (is_poisoned_swp_entry(swap))
2134 		return -EIO;
2135 
2136 	si = get_swap_device(swap);
2137 	if (!si) {
2138 		if (!shmem_confirm_swap(mapping, index, swap))
2139 			return -EEXIST;
2140 		else
2141 			return -EINVAL;
2142 	}
2143 
2144 	/* Look it up and read it in.. */
2145 	folio = swap_cache_get_folio(swap, NULL, 0);
2146 	if (!folio) {
2147 		int split_order;
2148 
2149 		/* Or update major stats only when swapin succeeds?? */
2150 		if (fault_type) {
2151 			*fault_type |= VM_FAULT_MAJOR;
2152 			count_vm_event(PGMAJFAULT);
2153 			count_memcg_event_mm(fault_mm, PGMAJFAULT);
2154 		}
2155 
2156 		/*
2157 		 * Now swap device can only swap in order 0 folio, then we
2158 		 * should split the large swap entry stored in the pagecache
2159 		 * if necessary.
2160 		 */
2161 		split_order = shmem_split_large_entry(inode, index, swap, gfp);
2162 		if (split_order < 0) {
2163 			error = split_order;
2164 			goto failed;
2165 		}
2166 
2167 		/*
2168 		 * If the large swap entry has already been split, it is
2169 		 * necessary to recalculate the new swap entry based on
2170 		 * the old order alignment.
2171 		 */
2172 		if (split_order > 0) {
2173 			pgoff_t offset = index - round_down(index, 1 << split_order);
2174 
2175 			swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2176 		}
2177 
2178 		/* Here we actually start the io */
2179 		folio = shmem_swapin_cluster(swap, gfp, info, index);
2180 		if (!folio) {
2181 			error = -ENOMEM;
2182 			goto failed;
2183 		}
2184 	}
2185 
2186 	/* We have to do this with folio locked to prevent races */
2187 	folio_lock(folio);
2188 	if (!folio_test_swapcache(folio) ||
2189 	    folio->swap.val != swap.val ||
2190 	    !shmem_confirm_swap(mapping, index, swap)) {
2191 		error = -EEXIST;
2192 		goto unlock;
2193 	}
2194 	if (!folio_test_uptodate(folio)) {
2195 		error = -EIO;
2196 		goto failed;
2197 	}
2198 	folio_wait_writeback(folio);
2199 	nr_pages = folio_nr_pages(folio);
2200 
2201 	/*
2202 	 * Some architectures may have to restore extra metadata to the
2203 	 * folio after reading from swap.
2204 	 */
2205 	arch_swap_restore(folio_swap(swap, folio), folio);
2206 
2207 	if (shmem_should_replace_folio(folio, gfp)) {
2208 		error = shmem_replace_folio(&folio, gfp, info, index, vma);
2209 		if (error)
2210 			goto failed;
2211 	}
2212 
2213 	error = shmem_add_to_page_cache(folio, mapping,
2214 					round_down(index, nr_pages),
2215 					swp_to_radix_entry(swap), gfp);
2216 	if (error)
2217 		goto failed;
2218 
2219 	shmem_recalc_inode(inode, 0, -nr_pages);
2220 
2221 	if (sgp == SGP_WRITE)
2222 		folio_mark_accessed(folio);
2223 
2224 	delete_from_swap_cache(folio);
2225 	folio_mark_dirty(folio);
2226 	swap_free_nr(swap, nr_pages);
2227 	put_swap_device(si);
2228 
2229 	*foliop = folio;
2230 	return 0;
2231 failed:
2232 	if (!shmem_confirm_swap(mapping, index, swap))
2233 		error = -EEXIST;
2234 	if (error == -EIO)
2235 		shmem_set_folio_swapin_error(inode, index, folio, swap);
2236 unlock:
2237 	if (folio) {
2238 		folio_unlock(folio);
2239 		folio_put(folio);
2240 	}
2241 	put_swap_device(si);
2242 
2243 	return error;
2244 }
2245 
2246 /*
2247  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2248  *
2249  * If we allocate a new one we do not mark it dirty. That's up to the
2250  * vm. If we swap it in we mark it dirty since we also free the swap
2251  * entry since a page cannot live in both the swap and page cache.
2252  *
2253  * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2254  */
2255 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2256 		loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2257 		gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2258 {
2259 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2260 	struct mm_struct *fault_mm;
2261 	struct folio *folio;
2262 	int error;
2263 	bool alloced;
2264 	unsigned long orders = 0;
2265 
2266 	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2267 		return -EINVAL;
2268 
2269 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2270 		return -EFBIG;
2271 repeat:
2272 	if (sgp <= SGP_CACHE &&
2273 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2274 		return -EINVAL;
2275 
2276 	alloced = false;
2277 	fault_mm = vma ? vma->vm_mm : NULL;
2278 
2279 	folio = filemap_get_entry(inode->i_mapping, index);
2280 	if (folio && vma && userfaultfd_minor(vma)) {
2281 		if (!xa_is_value(folio))
2282 			folio_put(folio);
2283 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2284 		return 0;
2285 	}
2286 
2287 	if (xa_is_value(folio)) {
2288 		error = shmem_swapin_folio(inode, index, &folio,
2289 					   sgp, gfp, vma, fault_type);
2290 		if (error == -EEXIST)
2291 			goto repeat;
2292 
2293 		*foliop = folio;
2294 		return error;
2295 	}
2296 
2297 	if (folio) {
2298 		folio_lock(folio);
2299 
2300 		/* Has the folio been truncated or swapped out? */
2301 		if (unlikely(folio->mapping != inode->i_mapping)) {
2302 			folio_unlock(folio);
2303 			folio_put(folio);
2304 			goto repeat;
2305 		}
2306 		if (sgp == SGP_WRITE)
2307 			folio_mark_accessed(folio);
2308 		if (folio_test_uptodate(folio))
2309 			goto out;
2310 		/* fallocated folio */
2311 		if (sgp != SGP_READ)
2312 			goto clear;
2313 		folio_unlock(folio);
2314 		folio_put(folio);
2315 	}
2316 
2317 	/*
2318 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2319 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2320 	 */
2321 	*foliop = NULL;
2322 	if (sgp == SGP_READ)
2323 		return 0;
2324 	if (sgp == SGP_NOALLOC)
2325 		return -ENOENT;
2326 
2327 	/*
2328 	 * Fast cache lookup and swap lookup did not find it: allocate.
2329 	 */
2330 
2331 	if (vma && userfaultfd_missing(vma)) {
2332 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2333 		return 0;
2334 	}
2335 
2336 	/* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2337 	orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2338 	if (orders > 0) {
2339 		gfp_t huge_gfp;
2340 
2341 		huge_gfp = vma_thp_gfp_mask(vma);
2342 		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2343 		folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2344 				inode, index, fault_mm, orders);
2345 		if (!IS_ERR(folio)) {
2346 			if (folio_test_pmd_mappable(folio))
2347 				count_vm_event(THP_FILE_ALLOC);
2348 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2349 			goto alloced;
2350 		}
2351 		if (PTR_ERR(folio) == -EEXIST)
2352 			goto repeat;
2353 	}
2354 
2355 	folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2356 	if (IS_ERR(folio)) {
2357 		error = PTR_ERR(folio);
2358 		if (error == -EEXIST)
2359 			goto repeat;
2360 		folio = NULL;
2361 		goto unlock;
2362 	}
2363 
2364 alloced:
2365 	alloced = true;
2366 	if (folio_test_large(folio) &&
2367 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2368 					folio_next_index(folio)) {
2369 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2370 		struct shmem_inode_info *info = SHMEM_I(inode);
2371 		/*
2372 		 * Part of the large folio is beyond i_size: subject
2373 		 * to shrink under memory pressure.
2374 		 */
2375 		spin_lock(&sbinfo->shrinklist_lock);
2376 		/*
2377 		 * _careful to defend against unlocked access to
2378 		 * ->shrink_list in shmem_unused_huge_shrink()
2379 		 */
2380 		if (list_empty_careful(&info->shrinklist)) {
2381 			list_add_tail(&info->shrinklist,
2382 				      &sbinfo->shrinklist);
2383 			sbinfo->shrinklist_len++;
2384 		}
2385 		spin_unlock(&sbinfo->shrinklist_lock);
2386 	}
2387 
2388 	if (sgp == SGP_WRITE)
2389 		folio_set_referenced(folio);
2390 	/*
2391 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2392 	 */
2393 	if (sgp == SGP_FALLOC)
2394 		sgp = SGP_WRITE;
2395 clear:
2396 	/*
2397 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2398 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2399 	 * it now, lest undo on failure cancel our earlier guarantee.
2400 	 */
2401 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2402 		long i, n = folio_nr_pages(folio);
2403 
2404 		for (i = 0; i < n; i++)
2405 			clear_highpage(folio_page(folio, i));
2406 		flush_dcache_folio(folio);
2407 		folio_mark_uptodate(folio);
2408 	}
2409 
2410 	/* Perhaps the file has been truncated since we checked */
2411 	if (sgp <= SGP_CACHE &&
2412 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2413 		error = -EINVAL;
2414 		goto unlock;
2415 	}
2416 out:
2417 	*foliop = folio;
2418 	return 0;
2419 
2420 	/*
2421 	 * Error recovery.
2422 	 */
2423 unlock:
2424 	if (alloced)
2425 		filemap_remove_folio(folio);
2426 	shmem_recalc_inode(inode, 0, 0);
2427 	if (folio) {
2428 		folio_unlock(folio);
2429 		folio_put(folio);
2430 	}
2431 	return error;
2432 }
2433 
2434 /**
2435  * shmem_get_folio - find, and lock a shmem folio.
2436  * @inode:	inode to search
2437  * @index:	the page index.
2438  * @write_end:	end of a write, could extend inode size
2439  * @foliop:	pointer to the folio if found
2440  * @sgp:	SGP_* flags to control behavior
2441  *
2442  * Looks up the page cache entry at @inode & @index.  If a folio is
2443  * present, it is returned locked with an increased refcount.
2444  *
2445  * If the caller modifies data in the folio, it must call folio_mark_dirty()
2446  * before unlocking the folio to ensure that the folio is not reclaimed.
2447  * There is no need to reserve space before calling folio_mark_dirty().
2448  *
2449  * When no folio is found, the behavior depends on @sgp:
2450  *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2451  *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2452  *  - for all other flags a new folio is allocated, inserted into the
2453  *    page cache and returned locked in @foliop.
2454  *
2455  * Context: May sleep.
2456  * Return: 0 if successful, else a negative error code.
2457  */
2458 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2459 		    struct folio **foliop, enum sgp_type sgp)
2460 {
2461 	return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2462 			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2463 }
2464 EXPORT_SYMBOL_GPL(shmem_get_folio);
2465 
2466 /*
2467  * This is like autoremove_wake_function, but it removes the wait queue
2468  * entry unconditionally - even if something else had already woken the
2469  * target.
2470  */
2471 static int synchronous_wake_function(wait_queue_entry_t *wait,
2472 			unsigned int mode, int sync, void *key)
2473 {
2474 	int ret = default_wake_function(wait, mode, sync, key);
2475 	list_del_init(&wait->entry);
2476 	return ret;
2477 }
2478 
2479 /*
2480  * Trinity finds that probing a hole which tmpfs is punching can
2481  * prevent the hole-punch from ever completing: which in turn
2482  * locks writers out with its hold on i_rwsem.  So refrain from
2483  * faulting pages into the hole while it's being punched.  Although
2484  * shmem_undo_range() does remove the additions, it may be unable to
2485  * keep up, as each new page needs its own unmap_mapping_range() call,
2486  * and the i_mmap tree grows ever slower to scan if new vmas are added.
2487  *
2488  * It does not matter if we sometimes reach this check just before the
2489  * hole-punch begins, so that one fault then races with the punch:
2490  * we just need to make racing faults a rare case.
2491  *
2492  * The implementation below would be much simpler if we just used a
2493  * standard mutex or completion: but we cannot take i_rwsem in fault,
2494  * and bloating every shmem inode for this unlikely case would be sad.
2495  */
2496 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2497 {
2498 	struct shmem_falloc *shmem_falloc;
2499 	struct file *fpin = NULL;
2500 	vm_fault_t ret = 0;
2501 
2502 	spin_lock(&inode->i_lock);
2503 	shmem_falloc = inode->i_private;
2504 	if (shmem_falloc &&
2505 	    shmem_falloc->waitq &&
2506 	    vmf->pgoff >= shmem_falloc->start &&
2507 	    vmf->pgoff < shmem_falloc->next) {
2508 		wait_queue_head_t *shmem_falloc_waitq;
2509 		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2510 
2511 		ret = VM_FAULT_NOPAGE;
2512 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2513 		shmem_falloc_waitq = shmem_falloc->waitq;
2514 		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2515 				TASK_UNINTERRUPTIBLE);
2516 		spin_unlock(&inode->i_lock);
2517 		schedule();
2518 
2519 		/*
2520 		 * shmem_falloc_waitq points into the shmem_fallocate()
2521 		 * stack of the hole-punching task: shmem_falloc_waitq
2522 		 * is usually invalid by the time we reach here, but
2523 		 * finish_wait() does not dereference it in that case;
2524 		 * though i_lock needed lest racing with wake_up_all().
2525 		 */
2526 		spin_lock(&inode->i_lock);
2527 		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2528 	}
2529 	spin_unlock(&inode->i_lock);
2530 	if (fpin) {
2531 		fput(fpin);
2532 		ret = VM_FAULT_RETRY;
2533 	}
2534 	return ret;
2535 }
2536 
2537 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2538 {
2539 	struct inode *inode = file_inode(vmf->vma->vm_file);
2540 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2541 	struct folio *folio = NULL;
2542 	vm_fault_t ret = 0;
2543 	int err;
2544 
2545 	/*
2546 	 * Trinity finds that probing a hole which tmpfs is punching can
2547 	 * prevent the hole-punch from ever completing: noted in i_private.
2548 	 */
2549 	if (unlikely(inode->i_private)) {
2550 		ret = shmem_falloc_wait(vmf, inode);
2551 		if (ret)
2552 			return ret;
2553 	}
2554 
2555 	WARN_ON_ONCE(vmf->page != NULL);
2556 	err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2557 				  gfp, vmf, &ret);
2558 	if (err)
2559 		return vmf_error(err);
2560 	if (folio) {
2561 		vmf->page = folio_file_page(folio, vmf->pgoff);
2562 		ret |= VM_FAULT_LOCKED;
2563 	}
2564 	return ret;
2565 }
2566 
2567 unsigned long shmem_get_unmapped_area(struct file *file,
2568 				      unsigned long uaddr, unsigned long len,
2569 				      unsigned long pgoff, unsigned long flags)
2570 {
2571 	unsigned long addr;
2572 	unsigned long offset;
2573 	unsigned long inflated_len;
2574 	unsigned long inflated_addr;
2575 	unsigned long inflated_offset;
2576 	unsigned long hpage_size;
2577 
2578 	if (len > TASK_SIZE)
2579 		return -ENOMEM;
2580 
2581 	addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2582 				    flags);
2583 
2584 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2585 		return addr;
2586 	if (IS_ERR_VALUE(addr))
2587 		return addr;
2588 	if (addr & ~PAGE_MASK)
2589 		return addr;
2590 	if (addr > TASK_SIZE - len)
2591 		return addr;
2592 
2593 	if (shmem_huge == SHMEM_HUGE_DENY)
2594 		return addr;
2595 	if (flags & MAP_FIXED)
2596 		return addr;
2597 	/*
2598 	 * Our priority is to support MAP_SHARED mapped hugely;
2599 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2600 	 * But if caller specified an address hint and we allocated area there
2601 	 * successfully, respect that as before.
2602 	 */
2603 	if (uaddr == addr)
2604 		return addr;
2605 
2606 	hpage_size = HPAGE_PMD_SIZE;
2607 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2608 		struct super_block *sb;
2609 		unsigned long __maybe_unused hpage_orders;
2610 		int order = 0;
2611 
2612 		if (file) {
2613 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2614 			sb = file_inode(file)->i_sb;
2615 		} else {
2616 			/*
2617 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2618 			 * for "/dev/zero", to create a shared anonymous object.
2619 			 */
2620 			if (IS_ERR(shm_mnt))
2621 				return addr;
2622 			sb = shm_mnt->mnt_sb;
2623 
2624 			/*
2625 			 * Find the highest mTHP order used for anonymous shmem to
2626 			 * provide a suitable alignment address.
2627 			 */
2628 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2629 			hpage_orders = READ_ONCE(huge_shmem_orders_always);
2630 			hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2631 			hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2632 			if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2633 				hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2634 
2635 			if (hpage_orders > 0) {
2636 				order = highest_order(hpage_orders);
2637 				hpage_size = PAGE_SIZE << order;
2638 			}
2639 #endif
2640 		}
2641 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2642 			return addr;
2643 	}
2644 
2645 	if (len < hpage_size)
2646 		return addr;
2647 
2648 	offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2649 	if (offset && offset + len < 2 * hpage_size)
2650 		return addr;
2651 	if ((addr & (hpage_size - 1)) == offset)
2652 		return addr;
2653 
2654 	inflated_len = len + hpage_size - PAGE_SIZE;
2655 	if (inflated_len > TASK_SIZE)
2656 		return addr;
2657 	if (inflated_len < len)
2658 		return addr;
2659 
2660 	inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2661 					     inflated_len, 0, flags);
2662 	if (IS_ERR_VALUE(inflated_addr))
2663 		return addr;
2664 	if (inflated_addr & ~PAGE_MASK)
2665 		return addr;
2666 
2667 	inflated_offset = inflated_addr & (hpage_size - 1);
2668 	inflated_addr += offset - inflated_offset;
2669 	if (inflated_offset > offset)
2670 		inflated_addr += hpage_size;
2671 
2672 	if (inflated_addr > TASK_SIZE - len)
2673 		return addr;
2674 	return inflated_addr;
2675 }
2676 
2677 #ifdef CONFIG_NUMA
2678 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2679 {
2680 	struct inode *inode = file_inode(vma->vm_file);
2681 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2682 }
2683 
2684 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2685 					  unsigned long addr, pgoff_t *ilx)
2686 {
2687 	struct inode *inode = file_inode(vma->vm_file);
2688 	pgoff_t index;
2689 
2690 	/*
2691 	 * Bias interleave by inode number to distribute better across nodes;
2692 	 * but this interface is independent of which page order is used, so
2693 	 * supplies only that bias, letting caller apply the offset (adjusted
2694 	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2695 	 */
2696 	*ilx = inode->i_ino;
2697 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2698 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2699 }
2700 
2701 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2702 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2703 {
2704 	struct mempolicy *mpol;
2705 
2706 	/* Bias interleave by inode number to distribute better across nodes */
2707 	*ilx = info->vfs_inode.i_ino + (index >> order);
2708 
2709 	mpol = mpol_shared_policy_lookup(&info->policy, index);
2710 	return mpol ? mpol : get_task_policy(current);
2711 }
2712 #else
2713 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2714 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2715 {
2716 	*ilx = 0;
2717 	return NULL;
2718 }
2719 #endif /* CONFIG_NUMA */
2720 
2721 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2722 {
2723 	struct inode *inode = file_inode(file);
2724 	struct shmem_inode_info *info = SHMEM_I(inode);
2725 	int retval = -ENOMEM;
2726 
2727 	/*
2728 	 * What serializes the accesses to info->flags?
2729 	 * ipc_lock_object() when called from shmctl_do_lock(),
2730 	 * no serialization needed when called from shm_destroy().
2731 	 */
2732 	if (lock && !(info->flags & VM_LOCKED)) {
2733 		if (!user_shm_lock(inode->i_size, ucounts))
2734 			goto out_nomem;
2735 		info->flags |= VM_LOCKED;
2736 		mapping_set_unevictable(file->f_mapping);
2737 	}
2738 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2739 		user_shm_unlock(inode->i_size, ucounts);
2740 		info->flags &= ~VM_LOCKED;
2741 		mapping_clear_unevictable(file->f_mapping);
2742 	}
2743 	retval = 0;
2744 
2745 out_nomem:
2746 	return retval;
2747 }
2748 
2749 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2750 {
2751 	struct inode *inode = file_inode(file);
2752 	struct shmem_inode_info *info = SHMEM_I(inode);
2753 	int ret;
2754 
2755 	ret = seal_check_write(info->seals, vma);
2756 	if (ret)
2757 		return ret;
2758 
2759 	file_accessed(file);
2760 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2761 	if (inode->i_nlink)
2762 		vma->vm_ops = &shmem_vm_ops;
2763 	else
2764 		vma->vm_ops = &shmem_anon_vm_ops;
2765 	return 0;
2766 }
2767 
2768 static int shmem_file_open(struct inode *inode, struct file *file)
2769 {
2770 	file->f_mode |= FMODE_CAN_ODIRECT;
2771 	return generic_file_open(inode, file);
2772 }
2773 
2774 #ifdef CONFIG_TMPFS_XATTR
2775 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2776 
2777 #if IS_ENABLED(CONFIG_UNICODE)
2778 /*
2779  * shmem_inode_casefold_flags - Deal with casefold file attribute flag
2780  *
2781  * The casefold file attribute needs some special checks. I can just be added to
2782  * an empty dir, and can't be removed from a non-empty dir.
2783  */
2784 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2785 				      struct dentry *dentry, unsigned int *i_flags)
2786 {
2787 	unsigned int old = inode->i_flags;
2788 	struct super_block *sb = inode->i_sb;
2789 
2790 	if (fsflags & FS_CASEFOLD_FL) {
2791 		if (!(old & S_CASEFOLD)) {
2792 			if (!sb->s_encoding)
2793 				return -EOPNOTSUPP;
2794 
2795 			if (!S_ISDIR(inode->i_mode))
2796 				return -ENOTDIR;
2797 
2798 			if (dentry && !simple_empty(dentry))
2799 				return -ENOTEMPTY;
2800 		}
2801 
2802 		*i_flags = *i_flags | S_CASEFOLD;
2803 	} else if (old & S_CASEFOLD) {
2804 		if (dentry && !simple_empty(dentry))
2805 			return -ENOTEMPTY;
2806 	}
2807 
2808 	return 0;
2809 }
2810 #else
2811 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2812 				      struct dentry *dentry, unsigned int *i_flags)
2813 {
2814 	if (fsflags & FS_CASEFOLD_FL)
2815 		return -EOPNOTSUPP;
2816 
2817 	return 0;
2818 }
2819 #endif
2820 
2821 /*
2822  * chattr's fsflags are unrelated to extended attributes,
2823  * but tmpfs has chosen to enable them under the same config option.
2824  */
2825 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
2826 {
2827 	unsigned int i_flags = 0;
2828 	int ret;
2829 
2830 	ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags);
2831 	if (ret)
2832 		return ret;
2833 
2834 	if (fsflags & FS_NOATIME_FL)
2835 		i_flags |= S_NOATIME;
2836 	if (fsflags & FS_APPEND_FL)
2837 		i_flags |= S_APPEND;
2838 	if (fsflags & FS_IMMUTABLE_FL)
2839 		i_flags |= S_IMMUTABLE;
2840 	/*
2841 	 * But FS_NODUMP_FL does not require any action in i_flags.
2842 	 */
2843 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD);
2844 
2845 	return 0;
2846 }
2847 #else
2848 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
2849 {
2850 }
2851 #define shmem_initxattrs NULL
2852 #endif
2853 
2854 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2855 {
2856 	return &SHMEM_I(inode)->dir_offsets;
2857 }
2858 
2859 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2860 					     struct super_block *sb,
2861 					     struct inode *dir, umode_t mode,
2862 					     dev_t dev, unsigned long flags)
2863 {
2864 	struct inode *inode;
2865 	struct shmem_inode_info *info;
2866 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2867 	ino_t ino;
2868 	int err;
2869 
2870 	err = shmem_reserve_inode(sb, &ino);
2871 	if (err)
2872 		return ERR_PTR(err);
2873 
2874 	inode = new_inode(sb);
2875 	if (!inode) {
2876 		shmem_free_inode(sb, 0);
2877 		return ERR_PTR(-ENOSPC);
2878 	}
2879 
2880 	inode->i_ino = ino;
2881 	inode_init_owner(idmap, inode, dir, mode);
2882 	inode->i_blocks = 0;
2883 	simple_inode_init_ts(inode);
2884 	inode->i_generation = get_random_u32();
2885 	info = SHMEM_I(inode);
2886 	memset(info, 0, (char *)inode - (char *)info);
2887 	spin_lock_init(&info->lock);
2888 	atomic_set(&info->stop_eviction, 0);
2889 	info->seals = F_SEAL_SEAL;
2890 	info->flags = flags & VM_NORESERVE;
2891 	info->i_crtime = inode_get_mtime(inode);
2892 	info->fsflags = (dir == NULL) ? 0 :
2893 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2894 	if (info->fsflags)
2895 		shmem_set_inode_flags(inode, info->fsflags, NULL);
2896 	INIT_LIST_HEAD(&info->shrinklist);
2897 	INIT_LIST_HEAD(&info->swaplist);
2898 	simple_xattrs_init(&info->xattrs);
2899 	cache_no_acl(inode);
2900 	if (sbinfo->noswap)
2901 		mapping_set_unevictable(inode->i_mapping);
2902 
2903 	/* Don't consider 'deny' for emergencies and 'force' for testing */
2904 	if (sbinfo->huge)
2905 		mapping_set_large_folios(inode->i_mapping);
2906 
2907 	switch (mode & S_IFMT) {
2908 	default:
2909 		inode->i_op = &shmem_special_inode_operations;
2910 		init_special_inode(inode, mode, dev);
2911 		break;
2912 	case S_IFREG:
2913 		inode->i_mapping->a_ops = &shmem_aops;
2914 		inode->i_op = &shmem_inode_operations;
2915 		inode->i_fop = &shmem_file_operations;
2916 		mpol_shared_policy_init(&info->policy,
2917 					 shmem_get_sbmpol(sbinfo));
2918 		break;
2919 	case S_IFDIR:
2920 		inc_nlink(inode);
2921 		/* Some things misbehave if size == 0 on a directory */
2922 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2923 		inode->i_op = &shmem_dir_inode_operations;
2924 		inode->i_fop = &simple_offset_dir_operations;
2925 		simple_offset_init(shmem_get_offset_ctx(inode));
2926 		break;
2927 	case S_IFLNK:
2928 		/*
2929 		 * Must not load anything in the rbtree,
2930 		 * mpol_free_shared_policy will not be called.
2931 		 */
2932 		mpol_shared_policy_init(&info->policy, NULL);
2933 		break;
2934 	}
2935 
2936 	lockdep_annotate_inode_mutex_key(inode);
2937 	return inode;
2938 }
2939 
2940 #ifdef CONFIG_TMPFS_QUOTA
2941 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2942 				     struct super_block *sb, struct inode *dir,
2943 				     umode_t mode, dev_t dev, unsigned long flags)
2944 {
2945 	int err;
2946 	struct inode *inode;
2947 
2948 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2949 	if (IS_ERR(inode))
2950 		return inode;
2951 
2952 	err = dquot_initialize(inode);
2953 	if (err)
2954 		goto errout;
2955 
2956 	err = dquot_alloc_inode(inode);
2957 	if (err) {
2958 		dquot_drop(inode);
2959 		goto errout;
2960 	}
2961 	return inode;
2962 
2963 errout:
2964 	inode->i_flags |= S_NOQUOTA;
2965 	iput(inode);
2966 	return ERR_PTR(err);
2967 }
2968 #else
2969 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2970 				     struct super_block *sb, struct inode *dir,
2971 				     umode_t mode, dev_t dev, unsigned long flags)
2972 {
2973 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2974 }
2975 #endif /* CONFIG_TMPFS_QUOTA */
2976 
2977 #ifdef CONFIG_USERFAULTFD
2978 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2979 			   struct vm_area_struct *dst_vma,
2980 			   unsigned long dst_addr,
2981 			   unsigned long src_addr,
2982 			   uffd_flags_t flags,
2983 			   struct folio **foliop)
2984 {
2985 	struct inode *inode = file_inode(dst_vma->vm_file);
2986 	struct shmem_inode_info *info = SHMEM_I(inode);
2987 	struct address_space *mapping = inode->i_mapping;
2988 	gfp_t gfp = mapping_gfp_mask(mapping);
2989 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2990 	void *page_kaddr;
2991 	struct folio *folio;
2992 	int ret;
2993 	pgoff_t max_off;
2994 
2995 	if (shmem_inode_acct_blocks(inode, 1)) {
2996 		/*
2997 		 * We may have got a page, returned -ENOENT triggering a retry,
2998 		 * and now we find ourselves with -ENOMEM. Release the page, to
2999 		 * avoid a BUG_ON in our caller.
3000 		 */
3001 		if (unlikely(*foliop)) {
3002 			folio_put(*foliop);
3003 			*foliop = NULL;
3004 		}
3005 		return -ENOMEM;
3006 	}
3007 
3008 	if (!*foliop) {
3009 		ret = -ENOMEM;
3010 		folio = shmem_alloc_folio(gfp, 0, info, pgoff);
3011 		if (!folio)
3012 			goto out_unacct_blocks;
3013 
3014 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
3015 			page_kaddr = kmap_local_folio(folio, 0);
3016 			/*
3017 			 * The read mmap_lock is held here.  Despite the
3018 			 * mmap_lock being read recursive a deadlock is still
3019 			 * possible if a writer has taken a lock.  For example:
3020 			 *
3021 			 * process A thread 1 takes read lock on own mmap_lock
3022 			 * process A thread 2 calls mmap, blocks taking write lock
3023 			 * process B thread 1 takes page fault, read lock on own mmap lock
3024 			 * process B thread 2 calls mmap, blocks taking write lock
3025 			 * process A thread 1 blocks taking read lock on process B
3026 			 * process B thread 1 blocks taking read lock on process A
3027 			 *
3028 			 * Disable page faults to prevent potential deadlock
3029 			 * and retry the copy outside the mmap_lock.
3030 			 */
3031 			pagefault_disable();
3032 			ret = copy_from_user(page_kaddr,
3033 					     (const void __user *)src_addr,
3034 					     PAGE_SIZE);
3035 			pagefault_enable();
3036 			kunmap_local(page_kaddr);
3037 
3038 			/* fallback to copy_from_user outside mmap_lock */
3039 			if (unlikely(ret)) {
3040 				*foliop = folio;
3041 				ret = -ENOENT;
3042 				/* don't free the page */
3043 				goto out_unacct_blocks;
3044 			}
3045 
3046 			flush_dcache_folio(folio);
3047 		} else {		/* ZEROPAGE */
3048 			clear_user_highpage(&folio->page, dst_addr);
3049 		}
3050 	} else {
3051 		folio = *foliop;
3052 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
3053 		*foliop = NULL;
3054 	}
3055 
3056 	VM_BUG_ON(folio_test_locked(folio));
3057 	VM_BUG_ON(folio_test_swapbacked(folio));
3058 	__folio_set_locked(folio);
3059 	__folio_set_swapbacked(folio);
3060 	__folio_mark_uptodate(folio);
3061 
3062 	ret = -EFAULT;
3063 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3064 	if (unlikely(pgoff >= max_off))
3065 		goto out_release;
3066 
3067 	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
3068 	if (ret)
3069 		goto out_release;
3070 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3071 	if (ret)
3072 		goto out_release;
3073 
3074 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3075 				       &folio->page, true, flags);
3076 	if (ret)
3077 		goto out_delete_from_cache;
3078 
3079 	shmem_recalc_inode(inode, 1, 0);
3080 	folio_unlock(folio);
3081 	return 0;
3082 out_delete_from_cache:
3083 	filemap_remove_folio(folio);
3084 out_release:
3085 	folio_unlock(folio);
3086 	folio_put(folio);
3087 out_unacct_blocks:
3088 	shmem_inode_unacct_blocks(inode, 1);
3089 	return ret;
3090 }
3091 #endif /* CONFIG_USERFAULTFD */
3092 
3093 #ifdef CONFIG_TMPFS
3094 static const struct inode_operations shmem_symlink_inode_operations;
3095 static const struct inode_operations shmem_short_symlink_operations;
3096 
3097 static int
3098 shmem_write_begin(struct file *file, struct address_space *mapping,
3099 			loff_t pos, unsigned len,
3100 			struct folio **foliop, void **fsdata)
3101 {
3102 	struct inode *inode = mapping->host;
3103 	struct shmem_inode_info *info = SHMEM_I(inode);
3104 	pgoff_t index = pos >> PAGE_SHIFT;
3105 	struct folio *folio;
3106 	int ret = 0;
3107 
3108 	/* i_rwsem is held by caller */
3109 	if (unlikely(info->seals & (F_SEAL_GROW |
3110 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3111 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3112 			return -EPERM;
3113 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3114 			return -EPERM;
3115 	}
3116 
3117 	ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3118 	if (ret)
3119 		return ret;
3120 
3121 	if (folio_test_hwpoison(folio) ||
3122 	    (folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) {
3123 		folio_unlock(folio);
3124 		folio_put(folio);
3125 		return -EIO;
3126 	}
3127 
3128 	*foliop = folio;
3129 	return 0;
3130 }
3131 
3132 static int
3133 shmem_write_end(struct file *file, struct address_space *mapping,
3134 			loff_t pos, unsigned len, unsigned copied,
3135 			struct folio *folio, void *fsdata)
3136 {
3137 	struct inode *inode = mapping->host;
3138 
3139 	if (pos + copied > inode->i_size)
3140 		i_size_write(inode, pos + copied);
3141 
3142 	if (!folio_test_uptodate(folio)) {
3143 		if (copied < folio_size(folio)) {
3144 			size_t from = offset_in_folio(folio, pos);
3145 			folio_zero_segments(folio, 0, from,
3146 					from + copied, folio_size(folio));
3147 		}
3148 		folio_mark_uptodate(folio);
3149 	}
3150 	folio_mark_dirty(folio);
3151 	folio_unlock(folio);
3152 	folio_put(folio);
3153 
3154 	return copied;
3155 }
3156 
3157 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3158 {
3159 	struct file *file = iocb->ki_filp;
3160 	struct inode *inode = file_inode(file);
3161 	struct address_space *mapping = inode->i_mapping;
3162 	pgoff_t index;
3163 	unsigned long offset;
3164 	int error = 0;
3165 	ssize_t retval = 0;
3166 
3167 	for (;;) {
3168 		struct folio *folio = NULL;
3169 		struct page *page = NULL;
3170 		unsigned long nr, ret;
3171 		loff_t end_offset, i_size = i_size_read(inode);
3172 		bool fallback_page_copy = false;
3173 		size_t fsize;
3174 
3175 		if (unlikely(iocb->ki_pos >= i_size))
3176 			break;
3177 
3178 		index = iocb->ki_pos >> PAGE_SHIFT;
3179 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3180 		if (error) {
3181 			if (error == -EINVAL)
3182 				error = 0;
3183 			break;
3184 		}
3185 		if (folio) {
3186 			folio_unlock(folio);
3187 
3188 			page = folio_file_page(folio, index);
3189 			if (PageHWPoison(page)) {
3190 				folio_put(folio);
3191 				error = -EIO;
3192 				break;
3193 			}
3194 
3195 			if (folio_test_large(folio) &&
3196 			    folio_test_has_hwpoisoned(folio))
3197 				fallback_page_copy = true;
3198 		}
3199 
3200 		/*
3201 		 * We must evaluate after, since reads (unlike writes)
3202 		 * are called without i_rwsem protection against truncate
3203 		 */
3204 		i_size = i_size_read(inode);
3205 		if (unlikely(iocb->ki_pos >= i_size)) {
3206 			if (folio)
3207 				folio_put(folio);
3208 			break;
3209 		}
3210 		end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count);
3211 		if (folio && likely(!fallback_page_copy))
3212 			fsize = folio_size(folio);
3213 		else
3214 			fsize = PAGE_SIZE;
3215 		offset = iocb->ki_pos & (fsize - 1);
3216 		nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset);
3217 
3218 		if (folio) {
3219 			/*
3220 			 * If users can be writing to this page using arbitrary
3221 			 * virtual addresses, take care about potential aliasing
3222 			 * before reading the page on the kernel side.
3223 			 */
3224 			if (mapping_writably_mapped(mapping)) {
3225 				if (likely(!fallback_page_copy))
3226 					flush_dcache_folio(folio);
3227 				else
3228 					flush_dcache_page(page);
3229 			}
3230 
3231 			/*
3232 			 * Mark the folio accessed if we read the beginning.
3233 			 */
3234 			if (!offset)
3235 				folio_mark_accessed(folio);
3236 			/*
3237 			 * Ok, we have the page, and it's up-to-date, so
3238 			 * now we can copy it to user space...
3239 			 */
3240 			if (likely(!fallback_page_copy))
3241 				ret = copy_folio_to_iter(folio, offset, nr, to);
3242 			else
3243 				ret = copy_page_to_iter(page, offset, nr, to);
3244 			folio_put(folio);
3245 		} else if (user_backed_iter(to)) {
3246 			/*
3247 			 * Copy to user tends to be so well optimized, but
3248 			 * clear_user() not so much, that it is noticeably
3249 			 * faster to copy the zero page instead of clearing.
3250 			 */
3251 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3252 		} else {
3253 			/*
3254 			 * But submitting the same page twice in a row to
3255 			 * splice() - or others? - can result in confusion:
3256 			 * so don't attempt that optimization on pipes etc.
3257 			 */
3258 			ret = iov_iter_zero(nr, to);
3259 		}
3260 
3261 		retval += ret;
3262 		iocb->ki_pos += ret;
3263 
3264 		if (!iov_iter_count(to))
3265 			break;
3266 		if (ret < nr) {
3267 			error = -EFAULT;
3268 			break;
3269 		}
3270 		cond_resched();
3271 	}
3272 
3273 	file_accessed(file);
3274 	return retval ? retval : error;
3275 }
3276 
3277 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3278 {
3279 	struct file *file = iocb->ki_filp;
3280 	struct inode *inode = file->f_mapping->host;
3281 	ssize_t ret;
3282 
3283 	inode_lock(inode);
3284 	ret = generic_write_checks(iocb, from);
3285 	if (ret <= 0)
3286 		goto unlock;
3287 	ret = file_remove_privs(file);
3288 	if (ret)
3289 		goto unlock;
3290 	ret = file_update_time(file);
3291 	if (ret)
3292 		goto unlock;
3293 	ret = generic_perform_write(iocb, from);
3294 unlock:
3295 	inode_unlock(inode);
3296 	return ret;
3297 }
3298 
3299 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3300 			      struct pipe_buffer *buf)
3301 {
3302 	return true;
3303 }
3304 
3305 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3306 				  struct pipe_buffer *buf)
3307 {
3308 }
3309 
3310 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3311 				    struct pipe_buffer *buf)
3312 {
3313 	return false;
3314 }
3315 
3316 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3317 	.release	= zero_pipe_buf_release,
3318 	.try_steal	= zero_pipe_buf_try_steal,
3319 	.get		= zero_pipe_buf_get,
3320 };
3321 
3322 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3323 					loff_t fpos, size_t size)
3324 {
3325 	size_t offset = fpos & ~PAGE_MASK;
3326 
3327 	size = min_t(size_t, size, PAGE_SIZE - offset);
3328 
3329 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
3330 		struct pipe_buffer *buf = pipe_head_buf(pipe);
3331 
3332 		*buf = (struct pipe_buffer) {
3333 			.ops	= &zero_pipe_buf_ops,
3334 			.page	= ZERO_PAGE(0),
3335 			.offset	= offset,
3336 			.len	= size,
3337 		};
3338 		pipe->head++;
3339 	}
3340 
3341 	return size;
3342 }
3343 
3344 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3345 				      struct pipe_inode_info *pipe,
3346 				      size_t len, unsigned int flags)
3347 {
3348 	struct inode *inode = file_inode(in);
3349 	struct address_space *mapping = inode->i_mapping;
3350 	struct folio *folio = NULL;
3351 	size_t total_spliced = 0, used, npages, n, part;
3352 	loff_t isize;
3353 	int error = 0;
3354 
3355 	/* Work out how much data we can actually add into the pipe */
3356 	used = pipe_occupancy(pipe->head, pipe->tail);
3357 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
3358 	len = min_t(size_t, len, npages * PAGE_SIZE);
3359 
3360 	do {
3361 		bool fallback_page_splice = false;
3362 		struct page *page = NULL;
3363 		pgoff_t index;
3364 		size_t size;
3365 
3366 		if (*ppos >= i_size_read(inode))
3367 			break;
3368 
3369 		index = *ppos >> PAGE_SHIFT;
3370 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3371 		if (error) {
3372 			if (error == -EINVAL)
3373 				error = 0;
3374 			break;
3375 		}
3376 		if (folio) {
3377 			folio_unlock(folio);
3378 
3379 			page = folio_file_page(folio, index);
3380 			if (PageHWPoison(page)) {
3381 				error = -EIO;
3382 				break;
3383 			}
3384 
3385 			if (folio_test_large(folio) &&
3386 			    folio_test_has_hwpoisoned(folio))
3387 				fallback_page_splice = true;
3388 		}
3389 
3390 		/*
3391 		 * i_size must be checked after we know the pages are Uptodate.
3392 		 *
3393 		 * Checking i_size after the check allows us to calculate
3394 		 * the correct value for "nr", which means the zero-filled
3395 		 * part of the page is not copied back to userspace (unless
3396 		 * another truncate extends the file - this is desired though).
3397 		 */
3398 		isize = i_size_read(inode);
3399 		if (unlikely(*ppos >= isize))
3400 			break;
3401 		/*
3402 		 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned
3403 		 * pages.
3404 		 */
3405 		size = len;
3406 		if (unlikely(fallback_page_splice)) {
3407 			size_t offset = *ppos & ~PAGE_MASK;
3408 
3409 			size = umin(size, PAGE_SIZE - offset);
3410 		}
3411 		part = min_t(loff_t, isize - *ppos, size);
3412 
3413 		if (folio) {
3414 			/*
3415 			 * If users can be writing to this page using arbitrary
3416 			 * virtual addresses, take care about potential aliasing
3417 			 * before reading the page on the kernel side.
3418 			 */
3419 			if (mapping_writably_mapped(mapping)) {
3420 				if (likely(!fallback_page_splice))
3421 					flush_dcache_folio(folio);
3422 				else
3423 					flush_dcache_page(page);
3424 			}
3425 			folio_mark_accessed(folio);
3426 			/*
3427 			 * Ok, we have the page, and it's up-to-date, so we can
3428 			 * now splice it into the pipe.
3429 			 */
3430 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3431 			folio_put(folio);
3432 			folio = NULL;
3433 		} else {
3434 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3435 		}
3436 
3437 		if (!n)
3438 			break;
3439 		len -= n;
3440 		total_spliced += n;
3441 		*ppos += n;
3442 		in->f_ra.prev_pos = *ppos;
3443 		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3444 			break;
3445 
3446 		cond_resched();
3447 	} while (len);
3448 
3449 	if (folio)
3450 		folio_put(folio);
3451 
3452 	file_accessed(in);
3453 	return total_spliced ? total_spliced : error;
3454 }
3455 
3456 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3457 {
3458 	struct address_space *mapping = file->f_mapping;
3459 	struct inode *inode = mapping->host;
3460 
3461 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3462 		return generic_file_llseek_size(file, offset, whence,
3463 					MAX_LFS_FILESIZE, i_size_read(inode));
3464 	if (offset < 0)
3465 		return -ENXIO;
3466 
3467 	inode_lock(inode);
3468 	/* We're holding i_rwsem so we can access i_size directly */
3469 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3470 	if (offset >= 0)
3471 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3472 	inode_unlock(inode);
3473 	return offset;
3474 }
3475 
3476 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3477 							 loff_t len)
3478 {
3479 	struct inode *inode = file_inode(file);
3480 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3481 	struct shmem_inode_info *info = SHMEM_I(inode);
3482 	struct shmem_falloc shmem_falloc;
3483 	pgoff_t start, index, end, undo_fallocend;
3484 	int error;
3485 
3486 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3487 		return -EOPNOTSUPP;
3488 
3489 	inode_lock(inode);
3490 
3491 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3492 		struct address_space *mapping = file->f_mapping;
3493 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3494 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3495 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3496 
3497 		/* protected by i_rwsem */
3498 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3499 			error = -EPERM;
3500 			goto out;
3501 		}
3502 
3503 		shmem_falloc.waitq = &shmem_falloc_waitq;
3504 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3505 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3506 		spin_lock(&inode->i_lock);
3507 		inode->i_private = &shmem_falloc;
3508 		spin_unlock(&inode->i_lock);
3509 
3510 		if ((u64)unmap_end > (u64)unmap_start)
3511 			unmap_mapping_range(mapping, unmap_start,
3512 					    1 + unmap_end - unmap_start, 0);
3513 		shmem_truncate_range(inode, offset, offset + len - 1);
3514 		/* No need to unmap again: hole-punching leaves COWed pages */
3515 
3516 		spin_lock(&inode->i_lock);
3517 		inode->i_private = NULL;
3518 		wake_up_all(&shmem_falloc_waitq);
3519 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3520 		spin_unlock(&inode->i_lock);
3521 		error = 0;
3522 		goto out;
3523 	}
3524 
3525 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3526 	error = inode_newsize_ok(inode, offset + len);
3527 	if (error)
3528 		goto out;
3529 
3530 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3531 		error = -EPERM;
3532 		goto out;
3533 	}
3534 
3535 	start = offset >> PAGE_SHIFT;
3536 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3537 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3538 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3539 		error = -ENOSPC;
3540 		goto out;
3541 	}
3542 
3543 	shmem_falloc.waitq = NULL;
3544 	shmem_falloc.start = start;
3545 	shmem_falloc.next  = start;
3546 	shmem_falloc.nr_falloced = 0;
3547 	shmem_falloc.nr_unswapped = 0;
3548 	spin_lock(&inode->i_lock);
3549 	inode->i_private = &shmem_falloc;
3550 	spin_unlock(&inode->i_lock);
3551 
3552 	/*
3553 	 * info->fallocend is only relevant when huge pages might be
3554 	 * involved: to prevent split_huge_page() freeing fallocated
3555 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3556 	 */
3557 	undo_fallocend = info->fallocend;
3558 	if (info->fallocend < end)
3559 		info->fallocend = end;
3560 
3561 	for (index = start; index < end; ) {
3562 		struct folio *folio;
3563 
3564 		/*
3565 		 * Check for fatal signal so that we abort early in OOM
3566 		 * situations. We don't want to abort in case of non-fatal
3567 		 * signals as large fallocate can take noticeable time and
3568 		 * e.g. periodic timers may result in fallocate constantly
3569 		 * restarting.
3570 		 */
3571 		if (fatal_signal_pending(current))
3572 			error = -EINTR;
3573 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3574 			error = -ENOMEM;
3575 		else
3576 			error = shmem_get_folio(inode, index, offset + len,
3577 						&folio, SGP_FALLOC);
3578 		if (error) {
3579 			info->fallocend = undo_fallocend;
3580 			/* Remove the !uptodate folios we added */
3581 			if (index > start) {
3582 				shmem_undo_range(inode,
3583 				    (loff_t)start << PAGE_SHIFT,
3584 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3585 			}
3586 			goto undone;
3587 		}
3588 
3589 		/*
3590 		 * Here is a more important optimization than it appears:
3591 		 * a second SGP_FALLOC on the same large folio will clear it,
3592 		 * making it uptodate and un-undoable if we fail later.
3593 		 */
3594 		index = folio_next_index(folio);
3595 		/* Beware 32-bit wraparound */
3596 		if (!index)
3597 			index--;
3598 
3599 		/*
3600 		 * Inform shmem_writepage() how far we have reached.
3601 		 * No need for lock or barrier: we have the page lock.
3602 		 */
3603 		if (!folio_test_uptodate(folio))
3604 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3605 		shmem_falloc.next = index;
3606 
3607 		/*
3608 		 * If !uptodate, leave it that way so that freeable folios
3609 		 * can be recognized if we need to rollback on error later.
3610 		 * But mark it dirty so that memory pressure will swap rather
3611 		 * than free the folios we are allocating (and SGP_CACHE folios
3612 		 * might still be clean: we now need to mark those dirty too).
3613 		 */
3614 		folio_mark_dirty(folio);
3615 		folio_unlock(folio);
3616 		folio_put(folio);
3617 		cond_resched();
3618 	}
3619 
3620 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3621 		i_size_write(inode, offset + len);
3622 undone:
3623 	spin_lock(&inode->i_lock);
3624 	inode->i_private = NULL;
3625 	spin_unlock(&inode->i_lock);
3626 out:
3627 	if (!error)
3628 		file_modified(file);
3629 	inode_unlock(inode);
3630 	return error;
3631 }
3632 
3633 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3634 {
3635 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3636 
3637 	buf->f_type = TMPFS_MAGIC;
3638 	buf->f_bsize = PAGE_SIZE;
3639 	buf->f_namelen = NAME_MAX;
3640 	if (sbinfo->max_blocks) {
3641 		buf->f_blocks = sbinfo->max_blocks;
3642 		buf->f_bavail =
3643 		buf->f_bfree  = sbinfo->max_blocks -
3644 				percpu_counter_sum(&sbinfo->used_blocks);
3645 	}
3646 	if (sbinfo->max_inodes) {
3647 		buf->f_files = sbinfo->max_inodes;
3648 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3649 	}
3650 	/* else leave those fields 0 like simple_statfs */
3651 
3652 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3653 
3654 	return 0;
3655 }
3656 
3657 /*
3658  * File creation. Allocate an inode, and we're done..
3659  */
3660 static int
3661 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3662 	    struct dentry *dentry, umode_t mode, dev_t dev)
3663 {
3664 	struct inode *inode;
3665 	int error;
3666 
3667 	if (!generic_ci_validate_strict_name(dir, &dentry->d_name))
3668 		return -EINVAL;
3669 
3670 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3671 	if (IS_ERR(inode))
3672 		return PTR_ERR(inode);
3673 
3674 	error = simple_acl_create(dir, inode);
3675 	if (error)
3676 		goto out_iput;
3677 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3678 					     shmem_initxattrs, NULL);
3679 	if (error && error != -EOPNOTSUPP)
3680 		goto out_iput;
3681 
3682 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3683 	if (error)
3684 		goto out_iput;
3685 
3686 	dir->i_size += BOGO_DIRENT_SIZE;
3687 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3688 	inode_inc_iversion(dir);
3689 
3690 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3691 		d_add(dentry, inode);
3692 	else
3693 		d_instantiate(dentry, inode);
3694 
3695 	dget(dentry); /* Extra count - pin the dentry in core */
3696 	return error;
3697 
3698 out_iput:
3699 	iput(inode);
3700 	return error;
3701 }
3702 
3703 static int
3704 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3705 	      struct file *file, umode_t mode)
3706 {
3707 	struct inode *inode;
3708 	int error;
3709 
3710 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3711 	if (IS_ERR(inode)) {
3712 		error = PTR_ERR(inode);
3713 		goto err_out;
3714 	}
3715 	error = security_inode_init_security(inode, dir, NULL,
3716 					     shmem_initxattrs, NULL);
3717 	if (error && error != -EOPNOTSUPP)
3718 		goto out_iput;
3719 	error = simple_acl_create(dir, inode);
3720 	if (error)
3721 		goto out_iput;
3722 	d_tmpfile(file, inode);
3723 
3724 err_out:
3725 	return finish_open_simple(file, error);
3726 out_iput:
3727 	iput(inode);
3728 	return error;
3729 }
3730 
3731 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3732 		       struct dentry *dentry, umode_t mode)
3733 {
3734 	int error;
3735 
3736 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3737 	if (error)
3738 		return error;
3739 	inc_nlink(dir);
3740 	return 0;
3741 }
3742 
3743 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3744 			struct dentry *dentry, umode_t mode, bool excl)
3745 {
3746 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3747 }
3748 
3749 /*
3750  * Link a file..
3751  */
3752 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3753 		      struct dentry *dentry)
3754 {
3755 	struct inode *inode = d_inode(old_dentry);
3756 	int ret = 0;
3757 
3758 	/*
3759 	 * No ordinary (disk based) filesystem counts links as inodes;
3760 	 * but each new link needs a new dentry, pinning lowmem, and
3761 	 * tmpfs dentries cannot be pruned until they are unlinked.
3762 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3763 	 * first link must skip that, to get the accounting right.
3764 	 */
3765 	if (inode->i_nlink) {
3766 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3767 		if (ret)
3768 			goto out;
3769 	}
3770 
3771 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3772 	if (ret) {
3773 		if (inode->i_nlink)
3774 			shmem_free_inode(inode->i_sb, 0);
3775 		goto out;
3776 	}
3777 
3778 	dir->i_size += BOGO_DIRENT_SIZE;
3779 	inode_set_mtime_to_ts(dir,
3780 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3781 	inode_inc_iversion(dir);
3782 	inc_nlink(inode);
3783 	ihold(inode);	/* New dentry reference */
3784 	dget(dentry);	/* Extra pinning count for the created dentry */
3785 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3786 		d_add(dentry, inode);
3787 	else
3788 		d_instantiate(dentry, inode);
3789 out:
3790 	return ret;
3791 }
3792 
3793 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3794 {
3795 	struct inode *inode = d_inode(dentry);
3796 
3797 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3798 		shmem_free_inode(inode->i_sb, 0);
3799 
3800 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3801 
3802 	dir->i_size -= BOGO_DIRENT_SIZE;
3803 	inode_set_mtime_to_ts(dir,
3804 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3805 	inode_inc_iversion(dir);
3806 	drop_nlink(inode);
3807 	dput(dentry);	/* Undo the count from "create" - does all the work */
3808 
3809 	/*
3810 	 * For now, VFS can't deal with case-insensitive negative dentries, so
3811 	 * we invalidate them
3812 	 */
3813 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3814 		d_invalidate(dentry);
3815 
3816 	return 0;
3817 }
3818 
3819 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3820 {
3821 	if (!simple_offset_empty(dentry))
3822 		return -ENOTEMPTY;
3823 
3824 	drop_nlink(d_inode(dentry));
3825 	drop_nlink(dir);
3826 	return shmem_unlink(dir, dentry);
3827 }
3828 
3829 static int shmem_whiteout(struct mnt_idmap *idmap,
3830 			  struct inode *old_dir, struct dentry *old_dentry)
3831 {
3832 	struct dentry *whiteout;
3833 	int error;
3834 
3835 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3836 	if (!whiteout)
3837 		return -ENOMEM;
3838 
3839 	error = shmem_mknod(idmap, old_dir, whiteout,
3840 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3841 	dput(whiteout);
3842 	if (error)
3843 		return error;
3844 
3845 	/*
3846 	 * Cheat and hash the whiteout while the old dentry is still in
3847 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3848 	 *
3849 	 * d_lookup() will consistently find one of them at this point,
3850 	 * not sure which one, but that isn't even important.
3851 	 */
3852 	d_rehash(whiteout);
3853 	return 0;
3854 }
3855 
3856 /*
3857  * The VFS layer already does all the dentry stuff for rename,
3858  * we just have to decrement the usage count for the target if
3859  * it exists so that the VFS layer correctly free's it when it
3860  * gets overwritten.
3861  */
3862 static int shmem_rename2(struct mnt_idmap *idmap,
3863 			 struct inode *old_dir, struct dentry *old_dentry,
3864 			 struct inode *new_dir, struct dentry *new_dentry,
3865 			 unsigned int flags)
3866 {
3867 	struct inode *inode = d_inode(old_dentry);
3868 	int they_are_dirs = S_ISDIR(inode->i_mode);
3869 	int error;
3870 
3871 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3872 		return -EINVAL;
3873 
3874 	if (flags & RENAME_EXCHANGE)
3875 		return simple_offset_rename_exchange(old_dir, old_dentry,
3876 						     new_dir, new_dentry);
3877 
3878 	if (!simple_offset_empty(new_dentry))
3879 		return -ENOTEMPTY;
3880 
3881 	if (flags & RENAME_WHITEOUT) {
3882 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3883 		if (error)
3884 			return error;
3885 	}
3886 
3887 	error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
3888 	if (error)
3889 		return error;
3890 
3891 	if (d_really_is_positive(new_dentry)) {
3892 		(void) shmem_unlink(new_dir, new_dentry);
3893 		if (they_are_dirs) {
3894 			drop_nlink(d_inode(new_dentry));
3895 			drop_nlink(old_dir);
3896 		}
3897 	} else if (they_are_dirs) {
3898 		drop_nlink(old_dir);
3899 		inc_nlink(new_dir);
3900 	}
3901 
3902 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3903 	new_dir->i_size += BOGO_DIRENT_SIZE;
3904 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3905 	inode_inc_iversion(old_dir);
3906 	inode_inc_iversion(new_dir);
3907 	return 0;
3908 }
3909 
3910 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3911 			 struct dentry *dentry, const char *symname)
3912 {
3913 	int error;
3914 	int len;
3915 	struct inode *inode;
3916 	struct folio *folio;
3917 
3918 	len = strlen(symname) + 1;
3919 	if (len > PAGE_SIZE)
3920 		return -ENAMETOOLONG;
3921 
3922 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3923 				VM_NORESERVE);
3924 	if (IS_ERR(inode))
3925 		return PTR_ERR(inode);
3926 
3927 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3928 					     shmem_initxattrs, NULL);
3929 	if (error && error != -EOPNOTSUPP)
3930 		goto out_iput;
3931 
3932 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3933 	if (error)
3934 		goto out_iput;
3935 
3936 	inode->i_size = len-1;
3937 	if (len <= SHORT_SYMLINK_LEN) {
3938 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3939 		if (!inode->i_link) {
3940 			error = -ENOMEM;
3941 			goto out_remove_offset;
3942 		}
3943 		inode->i_op = &shmem_short_symlink_operations;
3944 	} else {
3945 		inode_nohighmem(inode);
3946 		inode->i_mapping->a_ops = &shmem_aops;
3947 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
3948 		if (error)
3949 			goto out_remove_offset;
3950 		inode->i_op = &shmem_symlink_inode_operations;
3951 		memcpy(folio_address(folio), symname, len);
3952 		folio_mark_uptodate(folio);
3953 		folio_mark_dirty(folio);
3954 		folio_unlock(folio);
3955 		folio_put(folio);
3956 	}
3957 	dir->i_size += BOGO_DIRENT_SIZE;
3958 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3959 	inode_inc_iversion(dir);
3960 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3961 		d_add(dentry, inode);
3962 	else
3963 		d_instantiate(dentry, inode);
3964 	dget(dentry);
3965 	return 0;
3966 
3967 out_remove_offset:
3968 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3969 out_iput:
3970 	iput(inode);
3971 	return error;
3972 }
3973 
3974 static void shmem_put_link(void *arg)
3975 {
3976 	folio_mark_accessed(arg);
3977 	folio_put(arg);
3978 }
3979 
3980 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3981 				  struct delayed_call *done)
3982 {
3983 	struct folio *folio = NULL;
3984 	int error;
3985 
3986 	if (!dentry) {
3987 		folio = filemap_get_folio(inode->i_mapping, 0);
3988 		if (IS_ERR(folio))
3989 			return ERR_PTR(-ECHILD);
3990 		if (PageHWPoison(folio_page(folio, 0)) ||
3991 		    !folio_test_uptodate(folio)) {
3992 			folio_put(folio);
3993 			return ERR_PTR(-ECHILD);
3994 		}
3995 	} else {
3996 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
3997 		if (error)
3998 			return ERR_PTR(error);
3999 		if (!folio)
4000 			return ERR_PTR(-ECHILD);
4001 		if (PageHWPoison(folio_page(folio, 0))) {
4002 			folio_unlock(folio);
4003 			folio_put(folio);
4004 			return ERR_PTR(-ECHILD);
4005 		}
4006 		folio_unlock(folio);
4007 	}
4008 	set_delayed_call(done, shmem_put_link, folio);
4009 	return folio_address(folio);
4010 }
4011 
4012 #ifdef CONFIG_TMPFS_XATTR
4013 
4014 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
4015 {
4016 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4017 
4018 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
4019 
4020 	return 0;
4021 }
4022 
4023 static int shmem_fileattr_set(struct mnt_idmap *idmap,
4024 			      struct dentry *dentry, struct fileattr *fa)
4025 {
4026 	struct inode *inode = d_inode(dentry);
4027 	struct shmem_inode_info *info = SHMEM_I(inode);
4028 	int ret, flags;
4029 
4030 	if (fileattr_has_fsx(fa))
4031 		return -EOPNOTSUPP;
4032 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
4033 		return -EOPNOTSUPP;
4034 
4035 	flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
4036 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
4037 
4038 	ret = shmem_set_inode_flags(inode, flags, dentry);
4039 
4040 	if (ret)
4041 		return ret;
4042 
4043 	info->fsflags = flags;
4044 
4045 	inode_set_ctime_current(inode);
4046 	inode_inc_iversion(inode);
4047 	return 0;
4048 }
4049 
4050 /*
4051  * Superblocks without xattr inode operations may get some security.* xattr
4052  * support from the LSM "for free". As soon as we have any other xattrs
4053  * like ACLs, we also need to implement the security.* handlers at
4054  * filesystem level, though.
4055  */
4056 
4057 /*
4058  * Callback for security_inode_init_security() for acquiring xattrs.
4059  */
4060 static int shmem_initxattrs(struct inode *inode,
4061 			    const struct xattr *xattr_array, void *fs_info)
4062 {
4063 	struct shmem_inode_info *info = SHMEM_I(inode);
4064 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4065 	const struct xattr *xattr;
4066 	struct simple_xattr *new_xattr;
4067 	size_t ispace = 0;
4068 	size_t len;
4069 
4070 	if (sbinfo->max_inodes) {
4071 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4072 			ispace += simple_xattr_space(xattr->name,
4073 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
4074 		}
4075 		if (ispace) {
4076 			raw_spin_lock(&sbinfo->stat_lock);
4077 			if (sbinfo->free_ispace < ispace)
4078 				ispace = 0;
4079 			else
4080 				sbinfo->free_ispace -= ispace;
4081 			raw_spin_unlock(&sbinfo->stat_lock);
4082 			if (!ispace)
4083 				return -ENOSPC;
4084 		}
4085 	}
4086 
4087 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4088 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
4089 		if (!new_xattr)
4090 			break;
4091 
4092 		len = strlen(xattr->name) + 1;
4093 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
4094 					  GFP_KERNEL_ACCOUNT);
4095 		if (!new_xattr->name) {
4096 			kvfree(new_xattr);
4097 			break;
4098 		}
4099 
4100 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4101 		       XATTR_SECURITY_PREFIX_LEN);
4102 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4103 		       xattr->name, len);
4104 
4105 		simple_xattr_add(&info->xattrs, new_xattr);
4106 	}
4107 
4108 	if (xattr->name != NULL) {
4109 		if (ispace) {
4110 			raw_spin_lock(&sbinfo->stat_lock);
4111 			sbinfo->free_ispace += ispace;
4112 			raw_spin_unlock(&sbinfo->stat_lock);
4113 		}
4114 		simple_xattrs_free(&info->xattrs, NULL);
4115 		return -ENOMEM;
4116 	}
4117 
4118 	return 0;
4119 }
4120 
4121 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4122 				   struct dentry *unused, struct inode *inode,
4123 				   const char *name, void *buffer, size_t size)
4124 {
4125 	struct shmem_inode_info *info = SHMEM_I(inode);
4126 
4127 	name = xattr_full_name(handler, name);
4128 	return simple_xattr_get(&info->xattrs, name, buffer, size);
4129 }
4130 
4131 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4132 				   struct mnt_idmap *idmap,
4133 				   struct dentry *unused, struct inode *inode,
4134 				   const char *name, const void *value,
4135 				   size_t size, int flags)
4136 {
4137 	struct shmem_inode_info *info = SHMEM_I(inode);
4138 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4139 	struct simple_xattr *old_xattr;
4140 	size_t ispace = 0;
4141 
4142 	name = xattr_full_name(handler, name);
4143 	if (value && sbinfo->max_inodes) {
4144 		ispace = simple_xattr_space(name, size);
4145 		raw_spin_lock(&sbinfo->stat_lock);
4146 		if (sbinfo->free_ispace < ispace)
4147 			ispace = 0;
4148 		else
4149 			sbinfo->free_ispace -= ispace;
4150 		raw_spin_unlock(&sbinfo->stat_lock);
4151 		if (!ispace)
4152 			return -ENOSPC;
4153 	}
4154 
4155 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4156 	if (!IS_ERR(old_xattr)) {
4157 		ispace = 0;
4158 		if (old_xattr && sbinfo->max_inodes)
4159 			ispace = simple_xattr_space(old_xattr->name,
4160 						    old_xattr->size);
4161 		simple_xattr_free(old_xattr);
4162 		old_xattr = NULL;
4163 		inode_set_ctime_current(inode);
4164 		inode_inc_iversion(inode);
4165 	}
4166 	if (ispace) {
4167 		raw_spin_lock(&sbinfo->stat_lock);
4168 		sbinfo->free_ispace += ispace;
4169 		raw_spin_unlock(&sbinfo->stat_lock);
4170 	}
4171 	return PTR_ERR(old_xattr);
4172 }
4173 
4174 static const struct xattr_handler shmem_security_xattr_handler = {
4175 	.prefix = XATTR_SECURITY_PREFIX,
4176 	.get = shmem_xattr_handler_get,
4177 	.set = shmem_xattr_handler_set,
4178 };
4179 
4180 static const struct xattr_handler shmem_trusted_xattr_handler = {
4181 	.prefix = XATTR_TRUSTED_PREFIX,
4182 	.get = shmem_xattr_handler_get,
4183 	.set = shmem_xattr_handler_set,
4184 };
4185 
4186 static const struct xattr_handler shmem_user_xattr_handler = {
4187 	.prefix = XATTR_USER_PREFIX,
4188 	.get = shmem_xattr_handler_get,
4189 	.set = shmem_xattr_handler_set,
4190 };
4191 
4192 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4193 	&shmem_security_xattr_handler,
4194 	&shmem_trusted_xattr_handler,
4195 	&shmem_user_xattr_handler,
4196 	NULL
4197 };
4198 
4199 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4200 {
4201 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4202 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4203 }
4204 #endif /* CONFIG_TMPFS_XATTR */
4205 
4206 static const struct inode_operations shmem_short_symlink_operations = {
4207 	.getattr	= shmem_getattr,
4208 	.setattr	= shmem_setattr,
4209 	.get_link	= simple_get_link,
4210 #ifdef CONFIG_TMPFS_XATTR
4211 	.listxattr	= shmem_listxattr,
4212 #endif
4213 };
4214 
4215 static const struct inode_operations shmem_symlink_inode_operations = {
4216 	.getattr	= shmem_getattr,
4217 	.setattr	= shmem_setattr,
4218 	.get_link	= shmem_get_link,
4219 #ifdef CONFIG_TMPFS_XATTR
4220 	.listxattr	= shmem_listxattr,
4221 #endif
4222 };
4223 
4224 static struct dentry *shmem_get_parent(struct dentry *child)
4225 {
4226 	return ERR_PTR(-ESTALE);
4227 }
4228 
4229 static int shmem_match(struct inode *ino, void *vfh)
4230 {
4231 	__u32 *fh = vfh;
4232 	__u64 inum = fh[2];
4233 	inum = (inum << 32) | fh[1];
4234 	return ino->i_ino == inum && fh[0] == ino->i_generation;
4235 }
4236 
4237 /* Find any alias of inode, but prefer a hashed alias */
4238 static struct dentry *shmem_find_alias(struct inode *inode)
4239 {
4240 	struct dentry *alias = d_find_alias(inode);
4241 
4242 	return alias ?: d_find_any_alias(inode);
4243 }
4244 
4245 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4246 		struct fid *fid, int fh_len, int fh_type)
4247 {
4248 	struct inode *inode;
4249 	struct dentry *dentry = NULL;
4250 	u64 inum;
4251 
4252 	if (fh_len < 3)
4253 		return NULL;
4254 
4255 	inum = fid->raw[2];
4256 	inum = (inum << 32) | fid->raw[1];
4257 
4258 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4259 			shmem_match, fid->raw);
4260 	if (inode) {
4261 		dentry = shmem_find_alias(inode);
4262 		iput(inode);
4263 	}
4264 
4265 	return dentry;
4266 }
4267 
4268 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4269 				struct inode *parent)
4270 {
4271 	if (*len < 3) {
4272 		*len = 3;
4273 		return FILEID_INVALID;
4274 	}
4275 
4276 	if (inode_unhashed(inode)) {
4277 		/* Unfortunately insert_inode_hash is not idempotent,
4278 		 * so as we hash inodes here rather than at creation
4279 		 * time, we need a lock to ensure we only try
4280 		 * to do it once
4281 		 */
4282 		static DEFINE_SPINLOCK(lock);
4283 		spin_lock(&lock);
4284 		if (inode_unhashed(inode))
4285 			__insert_inode_hash(inode,
4286 					    inode->i_ino + inode->i_generation);
4287 		spin_unlock(&lock);
4288 	}
4289 
4290 	fh[0] = inode->i_generation;
4291 	fh[1] = inode->i_ino;
4292 	fh[2] = ((__u64)inode->i_ino) >> 32;
4293 
4294 	*len = 3;
4295 	return 1;
4296 }
4297 
4298 static const struct export_operations shmem_export_ops = {
4299 	.get_parent     = shmem_get_parent,
4300 	.encode_fh      = shmem_encode_fh,
4301 	.fh_to_dentry	= shmem_fh_to_dentry,
4302 };
4303 
4304 enum shmem_param {
4305 	Opt_gid,
4306 	Opt_huge,
4307 	Opt_mode,
4308 	Opt_mpol,
4309 	Opt_nr_blocks,
4310 	Opt_nr_inodes,
4311 	Opt_size,
4312 	Opt_uid,
4313 	Opt_inode32,
4314 	Opt_inode64,
4315 	Opt_noswap,
4316 	Opt_quota,
4317 	Opt_usrquota,
4318 	Opt_grpquota,
4319 	Opt_usrquota_block_hardlimit,
4320 	Opt_usrquota_inode_hardlimit,
4321 	Opt_grpquota_block_hardlimit,
4322 	Opt_grpquota_inode_hardlimit,
4323 	Opt_casefold_version,
4324 	Opt_casefold,
4325 	Opt_strict_encoding,
4326 };
4327 
4328 static const struct constant_table shmem_param_enums_huge[] = {
4329 	{"never",	SHMEM_HUGE_NEVER },
4330 	{"always",	SHMEM_HUGE_ALWAYS },
4331 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
4332 	{"advise",	SHMEM_HUGE_ADVISE },
4333 	{}
4334 };
4335 
4336 const struct fs_parameter_spec shmem_fs_parameters[] = {
4337 	fsparam_gid   ("gid",		Opt_gid),
4338 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
4339 	fsparam_u32oct("mode",		Opt_mode),
4340 	fsparam_string("mpol",		Opt_mpol),
4341 	fsparam_string("nr_blocks",	Opt_nr_blocks),
4342 	fsparam_string("nr_inodes",	Opt_nr_inodes),
4343 	fsparam_string("size",		Opt_size),
4344 	fsparam_uid   ("uid",		Opt_uid),
4345 	fsparam_flag  ("inode32",	Opt_inode32),
4346 	fsparam_flag  ("inode64",	Opt_inode64),
4347 	fsparam_flag  ("noswap",	Opt_noswap),
4348 #ifdef CONFIG_TMPFS_QUOTA
4349 	fsparam_flag  ("quota",		Opt_quota),
4350 	fsparam_flag  ("usrquota",	Opt_usrquota),
4351 	fsparam_flag  ("grpquota",	Opt_grpquota),
4352 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4353 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4354 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4355 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4356 #endif
4357 	fsparam_string("casefold",	Opt_casefold_version),
4358 	fsparam_flag  ("casefold",	Opt_casefold),
4359 	fsparam_flag  ("strict_encoding", Opt_strict_encoding),
4360 	{}
4361 };
4362 
4363 #if IS_ENABLED(CONFIG_UNICODE)
4364 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4365 				    bool latest_version)
4366 {
4367 	struct shmem_options *ctx = fc->fs_private;
4368 	unsigned int version = UTF8_LATEST;
4369 	struct unicode_map *encoding;
4370 	char *version_str = param->string + 5;
4371 
4372 	if (!latest_version) {
4373 		if (strncmp(param->string, "utf8-", 5))
4374 			return invalfc(fc, "Only UTF-8 encodings are supported "
4375 				       "in the format: utf8-<version number>");
4376 
4377 		version = utf8_parse_version(version_str);
4378 		if (version < 0)
4379 			return invalfc(fc, "Invalid UTF-8 version: %s", version_str);
4380 	}
4381 
4382 	encoding = utf8_load(version);
4383 
4384 	if (IS_ERR(encoding)) {
4385 		return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n",
4386 			       unicode_major(version), unicode_minor(version),
4387 			       unicode_rev(version));
4388 	}
4389 
4390 	pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n",
4391 		unicode_major(version), unicode_minor(version), unicode_rev(version));
4392 
4393 	ctx->encoding = encoding;
4394 
4395 	return 0;
4396 }
4397 #else
4398 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4399 				    bool latest_version)
4400 {
4401 	return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4402 }
4403 #endif
4404 
4405 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4406 {
4407 	struct shmem_options *ctx = fc->fs_private;
4408 	struct fs_parse_result result;
4409 	unsigned long long size;
4410 	char *rest;
4411 	int opt;
4412 	kuid_t kuid;
4413 	kgid_t kgid;
4414 
4415 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4416 	if (opt < 0)
4417 		return opt;
4418 
4419 	switch (opt) {
4420 	case Opt_size:
4421 		size = memparse(param->string, &rest);
4422 		if (*rest == '%') {
4423 			size <<= PAGE_SHIFT;
4424 			size *= totalram_pages();
4425 			do_div(size, 100);
4426 			rest++;
4427 		}
4428 		if (*rest)
4429 			goto bad_value;
4430 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4431 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4432 		break;
4433 	case Opt_nr_blocks:
4434 		ctx->blocks = memparse(param->string, &rest);
4435 		if (*rest || ctx->blocks > LONG_MAX)
4436 			goto bad_value;
4437 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4438 		break;
4439 	case Opt_nr_inodes:
4440 		ctx->inodes = memparse(param->string, &rest);
4441 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4442 			goto bad_value;
4443 		ctx->seen |= SHMEM_SEEN_INODES;
4444 		break;
4445 	case Opt_mode:
4446 		ctx->mode = result.uint_32 & 07777;
4447 		break;
4448 	case Opt_uid:
4449 		kuid = result.uid;
4450 
4451 		/*
4452 		 * The requested uid must be representable in the
4453 		 * filesystem's idmapping.
4454 		 */
4455 		if (!kuid_has_mapping(fc->user_ns, kuid))
4456 			goto bad_value;
4457 
4458 		ctx->uid = kuid;
4459 		break;
4460 	case Opt_gid:
4461 		kgid = result.gid;
4462 
4463 		/*
4464 		 * The requested gid must be representable in the
4465 		 * filesystem's idmapping.
4466 		 */
4467 		if (!kgid_has_mapping(fc->user_ns, kgid))
4468 			goto bad_value;
4469 
4470 		ctx->gid = kgid;
4471 		break;
4472 	case Opt_huge:
4473 		ctx->huge = result.uint_32;
4474 		if (ctx->huge != SHMEM_HUGE_NEVER &&
4475 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4476 		      has_transparent_hugepage()))
4477 			goto unsupported_parameter;
4478 		ctx->seen |= SHMEM_SEEN_HUGE;
4479 		break;
4480 	case Opt_mpol:
4481 		if (IS_ENABLED(CONFIG_NUMA)) {
4482 			mpol_put(ctx->mpol);
4483 			ctx->mpol = NULL;
4484 			if (mpol_parse_str(param->string, &ctx->mpol))
4485 				goto bad_value;
4486 			break;
4487 		}
4488 		goto unsupported_parameter;
4489 	case Opt_inode32:
4490 		ctx->full_inums = false;
4491 		ctx->seen |= SHMEM_SEEN_INUMS;
4492 		break;
4493 	case Opt_inode64:
4494 		if (sizeof(ino_t) < 8) {
4495 			return invalfc(fc,
4496 				       "Cannot use inode64 with <64bit inums in kernel\n");
4497 		}
4498 		ctx->full_inums = true;
4499 		ctx->seen |= SHMEM_SEEN_INUMS;
4500 		break;
4501 	case Opt_noswap:
4502 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4503 			return invalfc(fc,
4504 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4505 		}
4506 		ctx->noswap = true;
4507 		ctx->seen |= SHMEM_SEEN_NOSWAP;
4508 		break;
4509 	case Opt_quota:
4510 		if (fc->user_ns != &init_user_ns)
4511 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4512 		ctx->seen |= SHMEM_SEEN_QUOTA;
4513 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4514 		break;
4515 	case Opt_usrquota:
4516 		if (fc->user_ns != &init_user_ns)
4517 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4518 		ctx->seen |= SHMEM_SEEN_QUOTA;
4519 		ctx->quota_types |= QTYPE_MASK_USR;
4520 		break;
4521 	case Opt_grpquota:
4522 		if (fc->user_ns != &init_user_ns)
4523 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4524 		ctx->seen |= SHMEM_SEEN_QUOTA;
4525 		ctx->quota_types |= QTYPE_MASK_GRP;
4526 		break;
4527 	case Opt_usrquota_block_hardlimit:
4528 		size = memparse(param->string, &rest);
4529 		if (*rest || !size)
4530 			goto bad_value;
4531 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4532 			return invalfc(fc,
4533 				       "User quota block hardlimit too large.");
4534 		ctx->qlimits.usrquota_bhardlimit = size;
4535 		break;
4536 	case Opt_grpquota_block_hardlimit:
4537 		size = memparse(param->string, &rest);
4538 		if (*rest || !size)
4539 			goto bad_value;
4540 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4541 			return invalfc(fc,
4542 				       "Group quota block hardlimit too large.");
4543 		ctx->qlimits.grpquota_bhardlimit = size;
4544 		break;
4545 	case Opt_usrquota_inode_hardlimit:
4546 		size = memparse(param->string, &rest);
4547 		if (*rest || !size)
4548 			goto bad_value;
4549 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4550 			return invalfc(fc,
4551 				       "User quota inode hardlimit too large.");
4552 		ctx->qlimits.usrquota_ihardlimit = size;
4553 		break;
4554 	case Opt_grpquota_inode_hardlimit:
4555 		size = memparse(param->string, &rest);
4556 		if (*rest || !size)
4557 			goto bad_value;
4558 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4559 			return invalfc(fc,
4560 				       "Group quota inode hardlimit too large.");
4561 		ctx->qlimits.grpquota_ihardlimit = size;
4562 		break;
4563 	case Opt_casefold_version:
4564 		return shmem_parse_opt_casefold(fc, param, false);
4565 	case Opt_casefold:
4566 		return shmem_parse_opt_casefold(fc, param, true);
4567 	case Opt_strict_encoding:
4568 #if IS_ENABLED(CONFIG_UNICODE)
4569 		ctx->strict_encoding = true;
4570 		break;
4571 #else
4572 		return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4573 #endif
4574 	}
4575 	return 0;
4576 
4577 unsupported_parameter:
4578 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4579 bad_value:
4580 	return invalfc(fc, "Bad value for '%s'", param->key);
4581 }
4582 
4583 static int shmem_parse_options(struct fs_context *fc, void *data)
4584 {
4585 	char *options = data;
4586 
4587 	if (options) {
4588 		int err = security_sb_eat_lsm_opts(options, &fc->security);
4589 		if (err)
4590 			return err;
4591 	}
4592 
4593 	while (options != NULL) {
4594 		char *this_char = options;
4595 		for (;;) {
4596 			/*
4597 			 * NUL-terminate this option: unfortunately,
4598 			 * mount options form a comma-separated list,
4599 			 * but mpol's nodelist may also contain commas.
4600 			 */
4601 			options = strchr(options, ',');
4602 			if (options == NULL)
4603 				break;
4604 			options++;
4605 			if (!isdigit(*options)) {
4606 				options[-1] = '\0';
4607 				break;
4608 			}
4609 		}
4610 		if (*this_char) {
4611 			char *value = strchr(this_char, '=');
4612 			size_t len = 0;
4613 			int err;
4614 
4615 			if (value) {
4616 				*value++ = '\0';
4617 				len = strlen(value);
4618 			}
4619 			err = vfs_parse_fs_string(fc, this_char, value, len);
4620 			if (err < 0)
4621 				return err;
4622 		}
4623 	}
4624 	return 0;
4625 }
4626 
4627 /*
4628  * Reconfigure a shmem filesystem.
4629  */
4630 static int shmem_reconfigure(struct fs_context *fc)
4631 {
4632 	struct shmem_options *ctx = fc->fs_private;
4633 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4634 	unsigned long used_isp;
4635 	struct mempolicy *mpol = NULL;
4636 	const char *err;
4637 
4638 	raw_spin_lock(&sbinfo->stat_lock);
4639 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4640 
4641 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4642 		if (!sbinfo->max_blocks) {
4643 			err = "Cannot retroactively limit size";
4644 			goto out;
4645 		}
4646 		if (percpu_counter_compare(&sbinfo->used_blocks,
4647 					   ctx->blocks) > 0) {
4648 			err = "Too small a size for current use";
4649 			goto out;
4650 		}
4651 	}
4652 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4653 		if (!sbinfo->max_inodes) {
4654 			err = "Cannot retroactively limit inodes";
4655 			goto out;
4656 		}
4657 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4658 			err = "Too few inodes for current use";
4659 			goto out;
4660 		}
4661 	}
4662 
4663 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4664 	    sbinfo->next_ino > UINT_MAX) {
4665 		err = "Current inum too high to switch to 32-bit inums";
4666 		goto out;
4667 	}
4668 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4669 		err = "Cannot disable swap on remount";
4670 		goto out;
4671 	}
4672 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4673 		err = "Cannot enable swap on remount if it was disabled on first mount";
4674 		goto out;
4675 	}
4676 
4677 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4678 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4679 		err = "Cannot enable quota on remount";
4680 		goto out;
4681 	}
4682 
4683 #ifdef CONFIG_TMPFS_QUOTA
4684 #define CHANGED_LIMIT(name)						\
4685 	(ctx->qlimits.name## hardlimit &&				\
4686 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4687 
4688 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4689 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4690 		err = "Cannot change global quota limit on remount";
4691 		goto out;
4692 	}
4693 #endif /* CONFIG_TMPFS_QUOTA */
4694 
4695 	if (ctx->seen & SHMEM_SEEN_HUGE)
4696 		sbinfo->huge = ctx->huge;
4697 	if (ctx->seen & SHMEM_SEEN_INUMS)
4698 		sbinfo->full_inums = ctx->full_inums;
4699 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4700 		sbinfo->max_blocks  = ctx->blocks;
4701 	if (ctx->seen & SHMEM_SEEN_INODES) {
4702 		sbinfo->max_inodes  = ctx->inodes;
4703 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4704 	}
4705 
4706 	/*
4707 	 * Preserve previous mempolicy unless mpol remount option was specified.
4708 	 */
4709 	if (ctx->mpol) {
4710 		mpol = sbinfo->mpol;
4711 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4712 		ctx->mpol = NULL;
4713 	}
4714 
4715 	if (ctx->noswap)
4716 		sbinfo->noswap = true;
4717 
4718 	raw_spin_unlock(&sbinfo->stat_lock);
4719 	mpol_put(mpol);
4720 	return 0;
4721 out:
4722 	raw_spin_unlock(&sbinfo->stat_lock);
4723 	return invalfc(fc, "%s", err);
4724 }
4725 
4726 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4727 {
4728 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4729 	struct mempolicy *mpol;
4730 
4731 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4732 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4733 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4734 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4735 	if (sbinfo->mode != (0777 | S_ISVTX))
4736 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4737 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4738 		seq_printf(seq, ",uid=%u",
4739 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4740 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4741 		seq_printf(seq, ",gid=%u",
4742 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4743 
4744 	/*
4745 	 * Showing inode{64,32} might be useful even if it's the system default,
4746 	 * since then people don't have to resort to checking both here and
4747 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4748 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4749 	 *
4750 	 * We hide it when inode64 isn't the default and we are using 32-bit
4751 	 * inodes, since that probably just means the feature isn't even under
4752 	 * consideration.
4753 	 *
4754 	 * As such:
4755 	 *
4756 	 *                     +-----------------+-----------------+
4757 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4758 	 *  +------------------+-----------------+-----------------+
4759 	 *  | full_inums=true  | show            | show            |
4760 	 *  | full_inums=false | show            | hide            |
4761 	 *  +------------------+-----------------+-----------------+
4762 	 *
4763 	 */
4764 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4765 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4766 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4767 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4768 	if (sbinfo->huge)
4769 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4770 #endif
4771 	mpol = shmem_get_sbmpol(sbinfo);
4772 	shmem_show_mpol(seq, mpol);
4773 	mpol_put(mpol);
4774 	if (sbinfo->noswap)
4775 		seq_printf(seq, ",noswap");
4776 #ifdef CONFIG_TMPFS_QUOTA
4777 	if (sb_has_quota_active(root->d_sb, USRQUOTA))
4778 		seq_printf(seq, ",usrquota");
4779 	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4780 		seq_printf(seq, ",grpquota");
4781 	if (sbinfo->qlimits.usrquota_bhardlimit)
4782 		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4783 			   sbinfo->qlimits.usrquota_bhardlimit);
4784 	if (sbinfo->qlimits.grpquota_bhardlimit)
4785 		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4786 			   sbinfo->qlimits.grpquota_bhardlimit);
4787 	if (sbinfo->qlimits.usrquota_ihardlimit)
4788 		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4789 			   sbinfo->qlimits.usrquota_ihardlimit);
4790 	if (sbinfo->qlimits.grpquota_ihardlimit)
4791 		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4792 			   sbinfo->qlimits.grpquota_ihardlimit);
4793 #endif
4794 	return 0;
4795 }
4796 
4797 #endif /* CONFIG_TMPFS */
4798 
4799 static void shmem_put_super(struct super_block *sb)
4800 {
4801 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4802 
4803 #if IS_ENABLED(CONFIG_UNICODE)
4804 	if (sb->s_encoding)
4805 		utf8_unload(sb->s_encoding);
4806 #endif
4807 
4808 #ifdef CONFIG_TMPFS_QUOTA
4809 	shmem_disable_quotas(sb);
4810 #endif
4811 	free_percpu(sbinfo->ino_batch);
4812 	percpu_counter_destroy(&sbinfo->used_blocks);
4813 	mpol_put(sbinfo->mpol);
4814 	kfree(sbinfo);
4815 	sb->s_fs_info = NULL;
4816 }
4817 
4818 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS)
4819 static const struct dentry_operations shmem_ci_dentry_ops = {
4820 	.d_hash = generic_ci_d_hash,
4821 	.d_compare = generic_ci_d_compare,
4822 	.d_delete = always_delete_dentry,
4823 };
4824 #endif
4825 
4826 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4827 {
4828 	struct shmem_options *ctx = fc->fs_private;
4829 	struct inode *inode;
4830 	struct shmem_sb_info *sbinfo;
4831 	int error = -ENOMEM;
4832 
4833 	/* Round up to L1_CACHE_BYTES to resist false sharing */
4834 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4835 				L1_CACHE_BYTES), GFP_KERNEL);
4836 	if (!sbinfo)
4837 		return error;
4838 
4839 	sb->s_fs_info = sbinfo;
4840 
4841 #ifdef CONFIG_TMPFS
4842 	/*
4843 	 * Per default we only allow half of the physical ram per
4844 	 * tmpfs instance, limiting inodes to one per page of lowmem;
4845 	 * but the internal instance is left unlimited.
4846 	 */
4847 	if (!(sb->s_flags & SB_KERNMOUNT)) {
4848 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4849 			ctx->blocks = shmem_default_max_blocks();
4850 		if (!(ctx->seen & SHMEM_SEEN_INODES))
4851 			ctx->inodes = shmem_default_max_inodes();
4852 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4853 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4854 		sbinfo->noswap = ctx->noswap;
4855 	} else {
4856 		sb->s_flags |= SB_NOUSER;
4857 	}
4858 	sb->s_export_op = &shmem_export_ops;
4859 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4860 
4861 #if IS_ENABLED(CONFIG_UNICODE)
4862 	if (!ctx->encoding && ctx->strict_encoding) {
4863 		pr_err("tmpfs: strict_encoding option without encoding is forbidden\n");
4864 		error = -EINVAL;
4865 		goto failed;
4866 	}
4867 
4868 	if (ctx->encoding) {
4869 		sb->s_encoding = ctx->encoding;
4870 		sb->s_d_op = &shmem_ci_dentry_ops;
4871 		if (ctx->strict_encoding)
4872 			sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL;
4873 	}
4874 #endif
4875 
4876 #else
4877 	sb->s_flags |= SB_NOUSER;
4878 #endif /* CONFIG_TMPFS */
4879 	sbinfo->max_blocks = ctx->blocks;
4880 	sbinfo->max_inodes = ctx->inodes;
4881 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4882 	if (sb->s_flags & SB_KERNMOUNT) {
4883 		sbinfo->ino_batch = alloc_percpu(ino_t);
4884 		if (!sbinfo->ino_batch)
4885 			goto failed;
4886 	}
4887 	sbinfo->uid = ctx->uid;
4888 	sbinfo->gid = ctx->gid;
4889 	sbinfo->full_inums = ctx->full_inums;
4890 	sbinfo->mode = ctx->mode;
4891 	sbinfo->huge = ctx->huge;
4892 	sbinfo->mpol = ctx->mpol;
4893 	ctx->mpol = NULL;
4894 
4895 	raw_spin_lock_init(&sbinfo->stat_lock);
4896 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4897 		goto failed;
4898 	spin_lock_init(&sbinfo->shrinklist_lock);
4899 	INIT_LIST_HEAD(&sbinfo->shrinklist);
4900 
4901 	sb->s_maxbytes = MAX_LFS_FILESIZE;
4902 	sb->s_blocksize = PAGE_SIZE;
4903 	sb->s_blocksize_bits = PAGE_SHIFT;
4904 	sb->s_magic = TMPFS_MAGIC;
4905 	sb->s_op = &shmem_ops;
4906 	sb->s_time_gran = 1;
4907 #ifdef CONFIG_TMPFS_XATTR
4908 	sb->s_xattr = shmem_xattr_handlers;
4909 #endif
4910 #ifdef CONFIG_TMPFS_POSIX_ACL
4911 	sb->s_flags |= SB_POSIXACL;
4912 #endif
4913 	uuid_t uuid;
4914 	uuid_gen(&uuid);
4915 	super_set_uuid(sb, uuid.b, sizeof(uuid));
4916 
4917 #ifdef CONFIG_TMPFS_QUOTA
4918 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4919 		sb->dq_op = &shmem_quota_operations;
4920 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4921 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4922 
4923 		/* Copy the default limits from ctx into sbinfo */
4924 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4925 		       sizeof(struct shmem_quota_limits));
4926 
4927 		if (shmem_enable_quotas(sb, ctx->quota_types))
4928 			goto failed;
4929 	}
4930 #endif /* CONFIG_TMPFS_QUOTA */
4931 
4932 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
4933 				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
4934 	if (IS_ERR(inode)) {
4935 		error = PTR_ERR(inode);
4936 		goto failed;
4937 	}
4938 	inode->i_uid = sbinfo->uid;
4939 	inode->i_gid = sbinfo->gid;
4940 	sb->s_root = d_make_root(inode);
4941 	if (!sb->s_root)
4942 		goto failed;
4943 	return 0;
4944 
4945 failed:
4946 	shmem_put_super(sb);
4947 	return error;
4948 }
4949 
4950 static int shmem_get_tree(struct fs_context *fc)
4951 {
4952 	return get_tree_nodev(fc, shmem_fill_super);
4953 }
4954 
4955 static void shmem_free_fc(struct fs_context *fc)
4956 {
4957 	struct shmem_options *ctx = fc->fs_private;
4958 
4959 	if (ctx) {
4960 		mpol_put(ctx->mpol);
4961 		kfree(ctx);
4962 	}
4963 }
4964 
4965 static const struct fs_context_operations shmem_fs_context_ops = {
4966 	.free			= shmem_free_fc,
4967 	.get_tree		= shmem_get_tree,
4968 #ifdef CONFIG_TMPFS
4969 	.parse_monolithic	= shmem_parse_options,
4970 	.parse_param		= shmem_parse_one,
4971 	.reconfigure		= shmem_reconfigure,
4972 #endif
4973 };
4974 
4975 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4976 
4977 static struct inode *shmem_alloc_inode(struct super_block *sb)
4978 {
4979 	struct shmem_inode_info *info;
4980 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4981 	if (!info)
4982 		return NULL;
4983 	return &info->vfs_inode;
4984 }
4985 
4986 static void shmem_free_in_core_inode(struct inode *inode)
4987 {
4988 	if (S_ISLNK(inode->i_mode))
4989 		kfree(inode->i_link);
4990 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4991 }
4992 
4993 static void shmem_destroy_inode(struct inode *inode)
4994 {
4995 	if (S_ISREG(inode->i_mode))
4996 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4997 	if (S_ISDIR(inode->i_mode))
4998 		simple_offset_destroy(shmem_get_offset_ctx(inode));
4999 }
5000 
5001 static void shmem_init_inode(void *foo)
5002 {
5003 	struct shmem_inode_info *info = foo;
5004 	inode_init_once(&info->vfs_inode);
5005 }
5006 
5007 static void __init shmem_init_inodecache(void)
5008 {
5009 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
5010 				sizeof(struct shmem_inode_info),
5011 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
5012 }
5013 
5014 static void __init shmem_destroy_inodecache(void)
5015 {
5016 	kmem_cache_destroy(shmem_inode_cachep);
5017 }
5018 
5019 /* Keep the page in page cache instead of truncating it */
5020 static int shmem_error_remove_folio(struct address_space *mapping,
5021 				   struct folio *folio)
5022 {
5023 	return 0;
5024 }
5025 
5026 static const struct address_space_operations shmem_aops = {
5027 	.writepage	= shmem_writepage,
5028 	.dirty_folio	= noop_dirty_folio,
5029 #ifdef CONFIG_TMPFS
5030 	.write_begin	= shmem_write_begin,
5031 	.write_end	= shmem_write_end,
5032 #endif
5033 #ifdef CONFIG_MIGRATION
5034 	.migrate_folio	= migrate_folio,
5035 #endif
5036 	.error_remove_folio = shmem_error_remove_folio,
5037 };
5038 
5039 static const struct file_operations shmem_file_operations = {
5040 	.mmap		= shmem_mmap,
5041 	.open		= shmem_file_open,
5042 	.get_unmapped_area = shmem_get_unmapped_area,
5043 #ifdef CONFIG_TMPFS
5044 	.llseek		= shmem_file_llseek,
5045 	.read_iter	= shmem_file_read_iter,
5046 	.write_iter	= shmem_file_write_iter,
5047 	.fsync		= noop_fsync,
5048 	.splice_read	= shmem_file_splice_read,
5049 	.splice_write	= iter_file_splice_write,
5050 	.fallocate	= shmem_fallocate,
5051 #endif
5052 };
5053 
5054 static const struct inode_operations shmem_inode_operations = {
5055 	.getattr	= shmem_getattr,
5056 	.setattr	= shmem_setattr,
5057 #ifdef CONFIG_TMPFS_XATTR
5058 	.listxattr	= shmem_listxattr,
5059 	.set_acl	= simple_set_acl,
5060 	.fileattr_get	= shmem_fileattr_get,
5061 	.fileattr_set	= shmem_fileattr_set,
5062 #endif
5063 };
5064 
5065 static const struct inode_operations shmem_dir_inode_operations = {
5066 #ifdef CONFIG_TMPFS
5067 	.getattr	= shmem_getattr,
5068 	.create		= shmem_create,
5069 	.lookup		= simple_lookup,
5070 	.link		= shmem_link,
5071 	.unlink		= shmem_unlink,
5072 	.symlink	= shmem_symlink,
5073 	.mkdir		= shmem_mkdir,
5074 	.rmdir		= shmem_rmdir,
5075 	.mknod		= shmem_mknod,
5076 	.rename		= shmem_rename2,
5077 	.tmpfile	= shmem_tmpfile,
5078 	.get_offset_ctx	= shmem_get_offset_ctx,
5079 #endif
5080 #ifdef CONFIG_TMPFS_XATTR
5081 	.listxattr	= shmem_listxattr,
5082 	.fileattr_get	= shmem_fileattr_get,
5083 	.fileattr_set	= shmem_fileattr_set,
5084 #endif
5085 #ifdef CONFIG_TMPFS_POSIX_ACL
5086 	.setattr	= shmem_setattr,
5087 	.set_acl	= simple_set_acl,
5088 #endif
5089 };
5090 
5091 static const struct inode_operations shmem_special_inode_operations = {
5092 	.getattr	= shmem_getattr,
5093 #ifdef CONFIG_TMPFS_XATTR
5094 	.listxattr	= shmem_listxattr,
5095 #endif
5096 #ifdef CONFIG_TMPFS_POSIX_ACL
5097 	.setattr	= shmem_setattr,
5098 	.set_acl	= simple_set_acl,
5099 #endif
5100 };
5101 
5102 static const struct super_operations shmem_ops = {
5103 	.alloc_inode	= shmem_alloc_inode,
5104 	.free_inode	= shmem_free_in_core_inode,
5105 	.destroy_inode	= shmem_destroy_inode,
5106 #ifdef CONFIG_TMPFS
5107 	.statfs		= shmem_statfs,
5108 	.show_options	= shmem_show_options,
5109 #endif
5110 #ifdef CONFIG_TMPFS_QUOTA
5111 	.get_dquots	= shmem_get_dquots,
5112 #endif
5113 	.evict_inode	= shmem_evict_inode,
5114 	.drop_inode	= generic_delete_inode,
5115 	.put_super	= shmem_put_super,
5116 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5117 	.nr_cached_objects	= shmem_unused_huge_count,
5118 	.free_cached_objects	= shmem_unused_huge_scan,
5119 #endif
5120 };
5121 
5122 static const struct vm_operations_struct shmem_vm_ops = {
5123 	.fault		= shmem_fault,
5124 	.map_pages	= filemap_map_pages,
5125 #ifdef CONFIG_NUMA
5126 	.set_policy     = shmem_set_policy,
5127 	.get_policy     = shmem_get_policy,
5128 #endif
5129 };
5130 
5131 static const struct vm_operations_struct shmem_anon_vm_ops = {
5132 	.fault		= shmem_fault,
5133 	.map_pages	= filemap_map_pages,
5134 #ifdef CONFIG_NUMA
5135 	.set_policy     = shmem_set_policy,
5136 	.get_policy     = shmem_get_policy,
5137 #endif
5138 };
5139 
5140 int shmem_init_fs_context(struct fs_context *fc)
5141 {
5142 	struct shmem_options *ctx;
5143 
5144 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
5145 	if (!ctx)
5146 		return -ENOMEM;
5147 
5148 	ctx->mode = 0777 | S_ISVTX;
5149 	ctx->uid = current_fsuid();
5150 	ctx->gid = current_fsgid();
5151 
5152 #if IS_ENABLED(CONFIG_UNICODE)
5153 	ctx->encoding = NULL;
5154 #endif
5155 
5156 	fc->fs_private = ctx;
5157 	fc->ops = &shmem_fs_context_ops;
5158 	return 0;
5159 }
5160 
5161 static struct file_system_type shmem_fs_type = {
5162 	.owner		= THIS_MODULE,
5163 	.name		= "tmpfs",
5164 	.init_fs_context = shmem_init_fs_context,
5165 #ifdef CONFIG_TMPFS
5166 	.parameters	= shmem_fs_parameters,
5167 #endif
5168 	.kill_sb	= kill_litter_super,
5169 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
5170 };
5171 
5172 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5173 
5174 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store)			\
5175 {									\
5176 	.attr	= { .name = __stringify(_name), .mode = _mode },	\
5177 	.show	= _show,						\
5178 	.store	= _store,						\
5179 }
5180 
5181 #define TMPFS_ATTR_W(_name, _store)				\
5182 	static struct kobj_attribute tmpfs_attr_##_name =	\
5183 			__INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
5184 
5185 #define TMPFS_ATTR_RW(_name, _show, _store)			\
5186 	static struct kobj_attribute tmpfs_attr_##_name =	\
5187 			__INIT_KOBJ_ATTR(_name, 0644, _show, _store)
5188 
5189 #define TMPFS_ATTR_RO(_name, _show)				\
5190 	static struct kobj_attribute tmpfs_attr_##_name =	\
5191 			__INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
5192 
5193 #if IS_ENABLED(CONFIG_UNICODE)
5194 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a,
5195 			char *buf)
5196 {
5197 		return sysfs_emit(buf, "supported\n");
5198 }
5199 TMPFS_ATTR_RO(casefold, casefold_show);
5200 #endif
5201 
5202 static struct attribute *tmpfs_attributes[] = {
5203 #if IS_ENABLED(CONFIG_UNICODE)
5204 	&tmpfs_attr_casefold.attr,
5205 #endif
5206 	NULL
5207 };
5208 
5209 static const struct attribute_group tmpfs_attribute_group = {
5210 	.attrs = tmpfs_attributes,
5211 	.name = "features"
5212 };
5213 
5214 static struct kobject *tmpfs_kobj;
5215 
5216 static int __init tmpfs_sysfs_init(void)
5217 {
5218 	int ret;
5219 
5220 	tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj);
5221 	if (!tmpfs_kobj)
5222 		return -ENOMEM;
5223 
5224 	ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group);
5225 	if (ret)
5226 		kobject_put(tmpfs_kobj);
5227 
5228 	return ret;
5229 }
5230 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */
5231 
5232 void __init shmem_init(void)
5233 {
5234 	int error;
5235 
5236 	shmem_init_inodecache();
5237 
5238 #ifdef CONFIG_TMPFS_QUOTA
5239 	register_quota_format(&shmem_quota_format);
5240 #endif
5241 
5242 	error = register_filesystem(&shmem_fs_type);
5243 	if (error) {
5244 		pr_err("Could not register tmpfs\n");
5245 		goto out2;
5246 	}
5247 
5248 	shm_mnt = kern_mount(&shmem_fs_type);
5249 	if (IS_ERR(shm_mnt)) {
5250 		error = PTR_ERR(shm_mnt);
5251 		pr_err("Could not kern_mount tmpfs\n");
5252 		goto out1;
5253 	}
5254 
5255 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5256 	error = tmpfs_sysfs_init();
5257 	if (error) {
5258 		pr_err("Could not init tmpfs sysfs\n");
5259 		goto out1;
5260 	}
5261 #endif
5262 
5263 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5264 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5265 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5266 	else
5267 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5268 
5269 	/*
5270 	 * Default to setting PMD-sized THP to inherit the global setting and
5271 	 * disable all other multi-size THPs.
5272 	 */
5273 	if (!shmem_orders_configured)
5274 		huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5275 #endif
5276 	return;
5277 
5278 out1:
5279 	unregister_filesystem(&shmem_fs_type);
5280 out2:
5281 #ifdef CONFIG_TMPFS_QUOTA
5282 	unregister_quota_format(&shmem_quota_format);
5283 #endif
5284 	shmem_destroy_inodecache();
5285 	shm_mnt = ERR_PTR(error);
5286 }
5287 
5288 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5289 static ssize_t shmem_enabled_show(struct kobject *kobj,
5290 				  struct kobj_attribute *attr, char *buf)
5291 {
5292 	static const int values[] = {
5293 		SHMEM_HUGE_ALWAYS,
5294 		SHMEM_HUGE_WITHIN_SIZE,
5295 		SHMEM_HUGE_ADVISE,
5296 		SHMEM_HUGE_NEVER,
5297 		SHMEM_HUGE_DENY,
5298 		SHMEM_HUGE_FORCE,
5299 	};
5300 	int len = 0;
5301 	int i;
5302 
5303 	for (i = 0; i < ARRAY_SIZE(values); i++) {
5304 		len += sysfs_emit_at(buf, len,
5305 				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5306 				i ? " " : "", shmem_format_huge(values[i]));
5307 	}
5308 	len += sysfs_emit_at(buf, len, "\n");
5309 
5310 	return len;
5311 }
5312 
5313 static ssize_t shmem_enabled_store(struct kobject *kobj,
5314 		struct kobj_attribute *attr, const char *buf, size_t count)
5315 {
5316 	char tmp[16];
5317 	int huge, err;
5318 
5319 	if (count + 1 > sizeof(tmp))
5320 		return -EINVAL;
5321 	memcpy(tmp, buf, count);
5322 	tmp[count] = '\0';
5323 	if (count && tmp[count - 1] == '\n')
5324 		tmp[count - 1] = '\0';
5325 
5326 	huge = shmem_parse_huge(tmp);
5327 	if (huge == -EINVAL)
5328 		return huge;
5329 
5330 	shmem_huge = huge;
5331 	if (shmem_huge > SHMEM_HUGE_DENY)
5332 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5333 
5334 	err = start_stop_khugepaged();
5335 	return err ? err : count;
5336 }
5337 
5338 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5339 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5340 
5341 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5342 					  struct kobj_attribute *attr, char *buf)
5343 {
5344 	int order = to_thpsize(kobj)->order;
5345 	const char *output;
5346 
5347 	if (test_bit(order, &huge_shmem_orders_always))
5348 		output = "[always] inherit within_size advise never";
5349 	else if (test_bit(order, &huge_shmem_orders_inherit))
5350 		output = "always [inherit] within_size advise never";
5351 	else if (test_bit(order, &huge_shmem_orders_within_size))
5352 		output = "always inherit [within_size] advise never";
5353 	else if (test_bit(order, &huge_shmem_orders_madvise))
5354 		output = "always inherit within_size [advise] never";
5355 	else
5356 		output = "always inherit within_size advise [never]";
5357 
5358 	return sysfs_emit(buf, "%s\n", output);
5359 }
5360 
5361 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5362 					   struct kobj_attribute *attr,
5363 					   const char *buf, size_t count)
5364 {
5365 	int order = to_thpsize(kobj)->order;
5366 	ssize_t ret = count;
5367 
5368 	if (sysfs_streq(buf, "always")) {
5369 		spin_lock(&huge_shmem_orders_lock);
5370 		clear_bit(order, &huge_shmem_orders_inherit);
5371 		clear_bit(order, &huge_shmem_orders_madvise);
5372 		clear_bit(order, &huge_shmem_orders_within_size);
5373 		set_bit(order, &huge_shmem_orders_always);
5374 		spin_unlock(&huge_shmem_orders_lock);
5375 	} else if (sysfs_streq(buf, "inherit")) {
5376 		/* Do not override huge allocation policy with non-PMD sized mTHP */
5377 		if (shmem_huge == SHMEM_HUGE_FORCE &&
5378 		    order != HPAGE_PMD_ORDER)
5379 			return -EINVAL;
5380 
5381 		spin_lock(&huge_shmem_orders_lock);
5382 		clear_bit(order, &huge_shmem_orders_always);
5383 		clear_bit(order, &huge_shmem_orders_madvise);
5384 		clear_bit(order, &huge_shmem_orders_within_size);
5385 		set_bit(order, &huge_shmem_orders_inherit);
5386 		spin_unlock(&huge_shmem_orders_lock);
5387 	} else if (sysfs_streq(buf, "within_size")) {
5388 		spin_lock(&huge_shmem_orders_lock);
5389 		clear_bit(order, &huge_shmem_orders_always);
5390 		clear_bit(order, &huge_shmem_orders_inherit);
5391 		clear_bit(order, &huge_shmem_orders_madvise);
5392 		set_bit(order, &huge_shmem_orders_within_size);
5393 		spin_unlock(&huge_shmem_orders_lock);
5394 	} else if (sysfs_streq(buf, "advise")) {
5395 		spin_lock(&huge_shmem_orders_lock);
5396 		clear_bit(order, &huge_shmem_orders_always);
5397 		clear_bit(order, &huge_shmem_orders_inherit);
5398 		clear_bit(order, &huge_shmem_orders_within_size);
5399 		set_bit(order, &huge_shmem_orders_madvise);
5400 		spin_unlock(&huge_shmem_orders_lock);
5401 	} else if (sysfs_streq(buf, "never")) {
5402 		spin_lock(&huge_shmem_orders_lock);
5403 		clear_bit(order, &huge_shmem_orders_always);
5404 		clear_bit(order, &huge_shmem_orders_inherit);
5405 		clear_bit(order, &huge_shmem_orders_within_size);
5406 		clear_bit(order, &huge_shmem_orders_madvise);
5407 		spin_unlock(&huge_shmem_orders_lock);
5408 	} else {
5409 		ret = -EINVAL;
5410 	}
5411 
5412 	if (ret > 0) {
5413 		int err = start_stop_khugepaged();
5414 
5415 		if (err)
5416 			ret = err;
5417 	}
5418 	return ret;
5419 }
5420 
5421 struct kobj_attribute thpsize_shmem_enabled_attr =
5422 	__ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5423 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5424 
5425 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
5426 
5427 static int __init setup_transparent_hugepage_shmem(char *str)
5428 {
5429 	int huge;
5430 
5431 	huge = shmem_parse_huge(str);
5432 	if (huge == -EINVAL) {
5433 		pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n");
5434 		return huge;
5435 	}
5436 
5437 	shmem_huge = huge;
5438 	return 1;
5439 }
5440 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem);
5441 
5442 static char str_dup[PAGE_SIZE] __initdata;
5443 static int __init setup_thp_shmem(char *str)
5444 {
5445 	char *token, *range, *policy, *subtoken;
5446 	unsigned long always, inherit, madvise, within_size;
5447 	char *start_size, *end_size;
5448 	int start, end, nr;
5449 	char *p;
5450 
5451 	if (!str || strlen(str) + 1 > PAGE_SIZE)
5452 		goto err;
5453 	strscpy(str_dup, str);
5454 
5455 	always = huge_shmem_orders_always;
5456 	inherit = huge_shmem_orders_inherit;
5457 	madvise = huge_shmem_orders_madvise;
5458 	within_size = huge_shmem_orders_within_size;
5459 	p = str_dup;
5460 	while ((token = strsep(&p, ";")) != NULL) {
5461 		range = strsep(&token, ":");
5462 		policy = token;
5463 
5464 		if (!policy)
5465 			goto err;
5466 
5467 		while ((subtoken = strsep(&range, ",")) != NULL) {
5468 			if (strchr(subtoken, '-')) {
5469 				start_size = strsep(&subtoken, "-");
5470 				end_size = subtoken;
5471 
5472 				start = get_order_from_str(start_size,
5473 							   THP_ORDERS_ALL_FILE_DEFAULT);
5474 				end = get_order_from_str(end_size,
5475 							 THP_ORDERS_ALL_FILE_DEFAULT);
5476 			} else {
5477 				start_size = end_size = subtoken;
5478 				start = end = get_order_from_str(subtoken,
5479 								 THP_ORDERS_ALL_FILE_DEFAULT);
5480 			}
5481 
5482 			if (start == -EINVAL) {
5483 				pr_err("invalid size %s in thp_shmem boot parameter\n",
5484 				       start_size);
5485 				goto err;
5486 			}
5487 
5488 			if (end == -EINVAL) {
5489 				pr_err("invalid size %s in thp_shmem boot parameter\n",
5490 				       end_size);
5491 				goto err;
5492 			}
5493 
5494 			if (start < 0 || end < 0 || start > end)
5495 				goto err;
5496 
5497 			nr = end - start + 1;
5498 			if (!strcmp(policy, "always")) {
5499 				bitmap_set(&always, start, nr);
5500 				bitmap_clear(&inherit, start, nr);
5501 				bitmap_clear(&madvise, start, nr);
5502 				bitmap_clear(&within_size, start, nr);
5503 			} else if (!strcmp(policy, "advise")) {
5504 				bitmap_set(&madvise, start, nr);
5505 				bitmap_clear(&inherit, start, nr);
5506 				bitmap_clear(&always, start, nr);
5507 				bitmap_clear(&within_size, start, nr);
5508 			} else if (!strcmp(policy, "inherit")) {
5509 				bitmap_set(&inherit, start, nr);
5510 				bitmap_clear(&madvise, start, nr);
5511 				bitmap_clear(&always, start, nr);
5512 				bitmap_clear(&within_size, start, nr);
5513 			} else if (!strcmp(policy, "within_size")) {
5514 				bitmap_set(&within_size, start, nr);
5515 				bitmap_clear(&inherit, start, nr);
5516 				bitmap_clear(&madvise, start, nr);
5517 				bitmap_clear(&always, start, nr);
5518 			} else if (!strcmp(policy, "never")) {
5519 				bitmap_clear(&inherit, start, nr);
5520 				bitmap_clear(&madvise, start, nr);
5521 				bitmap_clear(&always, start, nr);
5522 				bitmap_clear(&within_size, start, nr);
5523 			} else {
5524 				pr_err("invalid policy %s in thp_shmem boot parameter\n", policy);
5525 				goto err;
5526 			}
5527 		}
5528 	}
5529 
5530 	huge_shmem_orders_always = always;
5531 	huge_shmem_orders_madvise = madvise;
5532 	huge_shmem_orders_inherit = inherit;
5533 	huge_shmem_orders_within_size = within_size;
5534 	shmem_orders_configured = true;
5535 	return 1;
5536 
5537 err:
5538 	pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str);
5539 	return 0;
5540 }
5541 __setup("thp_shmem=", setup_thp_shmem);
5542 
5543 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5544 
5545 #else /* !CONFIG_SHMEM */
5546 
5547 /*
5548  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5549  *
5550  * This is intended for small system where the benefits of the full
5551  * shmem code (swap-backed and resource-limited) are outweighed by
5552  * their complexity. On systems without swap this code should be
5553  * effectively equivalent, but much lighter weight.
5554  */
5555 
5556 static struct file_system_type shmem_fs_type = {
5557 	.name		= "tmpfs",
5558 	.init_fs_context = ramfs_init_fs_context,
5559 	.parameters	= ramfs_fs_parameters,
5560 	.kill_sb	= ramfs_kill_sb,
5561 	.fs_flags	= FS_USERNS_MOUNT,
5562 };
5563 
5564 void __init shmem_init(void)
5565 {
5566 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5567 
5568 	shm_mnt = kern_mount(&shmem_fs_type);
5569 	BUG_ON(IS_ERR(shm_mnt));
5570 }
5571 
5572 int shmem_unuse(unsigned int type)
5573 {
5574 	return 0;
5575 }
5576 
5577 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5578 {
5579 	return 0;
5580 }
5581 
5582 void shmem_unlock_mapping(struct address_space *mapping)
5583 {
5584 }
5585 
5586 #ifdef CONFIG_MMU
5587 unsigned long shmem_get_unmapped_area(struct file *file,
5588 				      unsigned long addr, unsigned long len,
5589 				      unsigned long pgoff, unsigned long flags)
5590 {
5591 	return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5592 }
5593 #endif
5594 
5595 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5596 {
5597 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5598 }
5599 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5600 
5601 #define shmem_vm_ops				generic_file_vm_ops
5602 #define shmem_anon_vm_ops			generic_file_vm_ops
5603 #define shmem_file_operations			ramfs_file_operations
5604 #define shmem_acct_size(flags, size)		0
5605 #define shmem_unacct_size(flags, size)		do {} while (0)
5606 
5607 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5608 				struct super_block *sb, struct inode *dir,
5609 				umode_t mode, dev_t dev, unsigned long flags)
5610 {
5611 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5612 	return inode ? inode : ERR_PTR(-ENOSPC);
5613 }
5614 
5615 #endif /* CONFIG_SHMEM */
5616 
5617 /* common code */
5618 
5619 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5620 			loff_t size, unsigned long flags, unsigned int i_flags)
5621 {
5622 	struct inode *inode;
5623 	struct file *res;
5624 
5625 	if (IS_ERR(mnt))
5626 		return ERR_CAST(mnt);
5627 
5628 	if (size < 0 || size > MAX_LFS_FILESIZE)
5629 		return ERR_PTR(-EINVAL);
5630 
5631 	if (shmem_acct_size(flags, size))
5632 		return ERR_PTR(-ENOMEM);
5633 
5634 	if (is_idmapped_mnt(mnt))
5635 		return ERR_PTR(-EINVAL);
5636 
5637 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5638 				S_IFREG | S_IRWXUGO, 0, flags);
5639 	if (IS_ERR(inode)) {
5640 		shmem_unacct_size(flags, size);
5641 		return ERR_CAST(inode);
5642 	}
5643 	inode->i_flags |= i_flags;
5644 	inode->i_size = size;
5645 	clear_nlink(inode);	/* It is unlinked */
5646 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5647 	if (!IS_ERR(res))
5648 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5649 				&shmem_file_operations);
5650 	if (IS_ERR(res))
5651 		iput(inode);
5652 	return res;
5653 }
5654 
5655 /**
5656  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5657  * 	kernel internal.  There will be NO LSM permission checks against the
5658  * 	underlying inode.  So users of this interface must do LSM checks at a
5659  *	higher layer.  The users are the big_key and shm implementations.  LSM
5660  *	checks are provided at the key or shm level rather than the inode.
5661  * @name: name for dentry (to be seen in /proc/<pid>/maps
5662  * @size: size to be set for the file
5663  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5664  */
5665 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5666 {
5667 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5668 }
5669 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5670 
5671 /**
5672  * shmem_file_setup - get an unlinked file living in tmpfs
5673  * @name: name for dentry (to be seen in /proc/<pid>/maps
5674  * @size: size to be set for the file
5675  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5676  */
5677 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5678 {
5679 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5680 }
5681 EXPORT_SYMBOL_GPL(shmem_file_setup);
5682 
5683 /**
5684  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5685  * @mnt: the tmpfs mount where the file will be created
5686  * @name: name for dentry (to be seen in /proc/<pid>/maps
5687  * @size: size to be set for the file
5688  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5689  */
5690 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5691 				       loff_t size, unsigned long flags)
5692 {
5693 	return __shmem_file_setup(mnt, name, size, flags, 0);
5694 }
5695 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5696 
5697 /**
5698  * shmem_zero_setup - setup a shared anonymous mapping
5699  * @vma: the vma to be mmapped is prepared by do_mmap
5700  */
5701 int shmem_zero_setup(struct vm_area_struct *vma)
5702 {
5703 	struct file *file;
5704 	loff_t size = vma->vm_end - vma->vm_start;
5705 
5706 	/*
5707 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5708 	 * between XFS directory reading and selinux: since this file is only
5709 	 * accessible to the user through its mapping, use S_PRIVATE flag to
5710 	 * bypass file security, in the same way as shmem_kernel_file_setup().
5711 	 */
5712 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5713 	if (IS_ERR(file))
5714 		return PTR_ERR(file);
5715 
5716 	if (vma->vm_file)
5717 		fput(vma->vm_file);
5718 	vma->vm_file = file;
5719 	vma->vm_ops = &shmem_anon_vm_ops;
5720 
5721 	return 0;
5722 }
5723 
5724 /**
5725  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5726  * @mapping:	the folio's address_space
5727  * @index:	the folio index
5728  * @gfp:	the page allocator flags to use if allocating
5729  *
5730  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5731  * with any new page allocations done using the specified allocation flags.
5732  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5733  * suit tmpfs, since it may have pages in swapcache, and needs to find those
5734  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5735  *
5736  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5737  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5738  */
5739 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5740 		pgoff_t index, gfp_t gfp)
5741 {
5742 #ifdef CONFIG_SHMEM
5743 	struct inode *inode = mapping->host;
5744 	struct folio *folio;
5745 	int error;
5746 
5747 	error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE,
5748 				    gfp, NULL, NULL);
5749 	if (error)
5750 		return ERR_PTR(error);
5751 
5752 	folio_unlock(folio);
5753 	return folio;
5754 #else
5755 	/*
5756 	 * The tiny !SHMEM case uses ramfs without swap
5757 	 */
5758 	return mapping_read_folio_gfp(mapping, index, gfp);
5759 #endif
5760 }
5761 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5762 
5763 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5764 					 pgoff_t index, gfp_t gfp)
5765 {
5766 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5767 	struct page *page;
5768 
5769 	if (IS_ERR(folio))
5770 		return &folio->page;
5771 
5772 	page = folio_file_page(folio, index);
5773 	if (PageHWPoison(page)) {
5774 		folio_put(folio);
5775 		return ERR_PTR(-EIO);
5776 	}
5777 
5778 	return page;
5779 }
5780 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5781