1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include <linux/unicode.h> 44 #include "swap.h" 45 46 static struct vfsmount *shm_mnt __ro_after_init; 47 48 #ifdef CONFIG_SHMEM 49 /* 50 * This virtual memory filesystem is heavily based on the ramfs. It 51 * extends ramfs by the ability to use swap and honor resource limits 52 * which makes it a completely usable filesystem. 53 */ 54 55 #include <linux/xattr.h> 56 #include <linux/exportfs.h> 57 #include <linux/posix_acl.h> 58 #include <linux/posix_acl_xattr.h> 59 #include <linux/mman.h> 60 #include <linux/string.h> 61 #include <linux/slab.h> 62 #include <linux/backing-dev.h> 63 #include <linux/writeback.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 #include <linux/quotaops.h> 83 #include <linux/rcupdate_wait.h> 84 85 #include <linux/uaccess.h> 86 87 #include "internal.h" 88 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Pretend that one inode + its dentry occupy this much memory */ 95 #define BOGO_INODE_SIZE 1024 96 97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 98 #define SHORT_SYMLINK_LEN 128 99 100 /* 101 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 102 * inode->i_private (with i_rwsem making sure that it has only one user at 103 * a time): we would prefer not to enlarge the shmem inode just for that. 104 */ 105 struct shmem_falloc { 106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 107 pgoff_t start; /* start of range currently being fallocated */ 108 pgoff_t next; /* the next page offset to be fallocated */ 109 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 110 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 111 }; 112 113 struct shmem_options { 114 unsigned long long blocks; 115 unsigned long long inodes; 116 struct mempolicy *mpol; 117 kuid_t uid; 118 kgid_t gid; 119 umode_t mode; 120 bool full_inums; 121 int huge; 122 int seen; 123 bool noswap; 124 unsigned short quota_types; 125 struct shmem_quota_limits qlimits; 126 #if IS_ENABLED(CONFIG_UNICODE) 127 struct unicode_map *encoding; 128 bool strict_encoding; 129 #endif 130 #define SHMEM_SEEN_BLOCKS 1 131 #define SHMEM_SEEN_INODES 2 132 #define SHMEM_SEEN_HUGE 4 133 #define SHMEM_SEEN_INUMS 8 134 #define SHMEM_SEEN_NOSWAP 16 135 #define SHMEM_SEEN_QUOTA 32 136 }; 137 138 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 139 static unsigned long huge_shmem_orders_always __read_mostly; 140 static unsigned long huge_shmem_orders_madvise __read_mostly; 141 static unsigned long huge_shmem_orders_inherit __read_mostly; 142 static unsigned long huge_shmem_orders_within_size __read_mostly; 143 static bool shmem_orders_configured __initdata; 144 #endif 145 146 #ifdef CONFIG_TMPFS 147 static unsigned long shmem_default_max_blocks(void) 148 { 149 return totalram_pages() / 2; 150 } 151 152 static unsigned long shmem_default_max_inodes(void) 153 { 154 unsigned long nr_pages = totalram_pages(); 155 156 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 157 ULONG_MAX / BOGO_INODE_SIZE); 158 } 159 #endif 160 161 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 162 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 163 struct vm_area_struct *vma, vm_fault_t *fault_type); 164 165 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 166 { 167 return sb->s_fs_info; 168 } 169 170 /* 171 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 172 * for shared memory and for shared anonymous (/dev/zero) mappings 173 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 174 * consistent with the pre-accounting of private mappings ... 175 */ 176 static inline int shmem_acct_size(unsigned long flags, loff_t size) 177 { 178 return (flags & VM_NORESERVE) ? 179 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 180 } 181 182 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 183 { 184 if (!(flags & VM_NORESERVE)) 185 vm_unacct_memory(VM_ACCT(size)); 186 } 187 188 static inline int shmem_reacct_size(unsigned long flags, 189 loff_t oldsize, loff_t newsize) 190 { 191 if (!(flags & VM_NORESERVE)) { 192 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 193 return security_vm_enough_memory_mm(current->mm, 194 VM_ACCT(newsize) - VM_ACCT(oldsize)); 195 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 196 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 197 } 198 return 0; 199 } 200 201 /* 202 * ... whereas tmpfs objects are accounted incrementally as 203 * pages are allocated, in order to allow large sparse files. 204 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 205 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 206 */ 207 static inline int shmem_acct_blocks(unsigned long flags, long pages) 208 { 209 if (!(flags & VM_NORESERVE)) 210 return 0; 211 212 return security_vm_enough_memory_mm(current->mm, 213 pages * VM_ACCT(PAGE_SIZE)); 214 } 215 216 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 217 { 218 if (flags & VM_NORESERVE) 219 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 220 } 221 222 static int shmem_inode_acct_blocks(struct inode *inode, long pages) 223 { 224 struct shmem_inode_info *info = SHMEM_I(inode); 225 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 226 int err = -ENOSPC; 227 228 if (shmem_acct_blocks(info->flags, pages)) 229 return err; 230 231 might_sleep(); /* when quotas */ 232 if (sbinfo->max_blocks) { 233 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 234 sbinfo->max_blocks, pages)) 235 goto unacct; 236 237 err = dquot_alloc_block_nodirty(inode, pages); 238 if (err) { 239 percpu_counter_sub(&sbinfo->used_blocks, pages); 240 goto unacct; 241 } 242 } else { 243 err = dquot_alloc_block_nodirty(inode, pages); 244 if (err) 245 goto unacct; 246 } 247 248 return 0; 249 250 unacct: 251 shmem_unacct_blocks(info->flags, pages); 252 return err; 253 } 254 255 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 256 { 257 struct shmem_inode_info *info = SHMEM_I(inode); 258 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 259 260 might_sleep(); /* when quotas */ 261 dquot_free_block_nodirty(inode, pages); 262 263 if (sbinfo->max_blocks) 264 percpu_counter_sub(&sbinfo->used_blocks, pages); 265 shmem_unacct_blocks(info->flags, pages); 266 } 267 268 static const struct super_operations shmem_ops; 269 static const struct address_space_operations shmem_aops; 270 static const struct file_operations shmem_file_operations; 271 static const struct inode_operations shmem_inode_operations; 272 static const struct inode_operations shmem_dir_inode_operations; 273 static const struct inode_operations shmem_special_inode_operations; 274 static const struct vm_operations_struct shmem_vm_ops; 275 static const struct vm_operations_struct shmem_anon_vm_ops; 276 static struct file_system_type shmem_fs_type; 277 278 bool shmem_mapping(struct address_space *mapping) 279 { 280 return mapping->a_ops == &shmem_aops; 281 } 282 EXPORT_SYMBOL_GPL(shmem_mapping); 283 284 bool vma_is_anon_shmem(struct vm_area_struct *vma) 285 { 286 return vma->vm_ops == &shmem_anon_vm_ops; 287 } 288 289 bool vma_is_shmem(struct vm_area_struct *vma) 290 { 291 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 292 } 293 294 static LIST_HEAD(shmem_swaplist); 295 static DEFINE_MUTEX(shmem_swaplist_mutex); 296 297 #ifdef CONFIG_TMPFS_QUOTA 298 299 static int shmem_enable_quotas(struct super_block *sb, 300 unsigned short quota_types) 301 { 302 int type, err = 0; 303 304 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 305 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 306 if (!(quota_types & (1 << type))) 307 continue; 308 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 309 DQUOT_USAGE_ENABLED | 310 DQUOT_LIMITS_ENABLED); 311 if (err) 312 goto out_err; 313 } 314 return 0; 315 316 out_err: 317 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 318 type, err); 319 for (type--; type >= 0; type--) 320 dquot_quota_off(sb, type); 321 return err; 322 } 323 324 static void shmem_disable_quotas(struct super_block *sb) 325 { 326 int type; 327 328 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 329 dquot_quota_off(sb, type); 330 } 331 332 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 333 { 334 return SHMEM_I(inode)->i_dquot; 335 } 336 #endif /* CONFIG_TMPFS_QUOTA */ 337 338 /* 339 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 340 * produces a novel ino for the newly allocated inode. 341 * 342 * It may also be called when making a hard link to permit the space needed by 343 * each dentry. However, in that case, no new inode number is needed since that 344 * internally draws from another pool of inode numbers (currently global 345 * get_next_ino()). This case is indicated by passing NULL as inop. 346 */ 347 #define SHMEM_INO_BATCH 1024 348 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 349 { 350 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 351 ino_t ino; 352 353 if (!(sb->s_flags & SB_KERNMOUNT)) { 354 raw_spin_lock(&sbinfo->stat_lock); 355 if (sbinfo->max_inodes) { 356 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 357 raw_spin_unlock(&sbinfo->stat_lock); 358 return -ENOSPC; 359 } 360 sbinfo->free_ispace -= BOGO_INODE_SIZE; 361 } 362 if (inop) { 363 ino = sbinfo->next_ino++; 364 if (unlikely(is_zero_ino(ino))) 365 ino = sbinfo->next_ino++; 366 if (unlikely(!sbinfo->full_inums && 367 ino > UINT_MAX)) { 368 /* 369 * Emulate get_next_ino uint wraparound for 370 * compatibility 371 */ 372 if (IS_ENABLED(CONFIG_64BIT)) 373 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 374 __func__, MINOR(sb->s_dev)); 375 sbinfo->next_ino = 1; 376 ino = sbinfo->next_ino++; 377 } 378 *inop = ino; 379 } 380 raw_spin_unlock(&sbinfo->stat_lock); 381 } else if (inop) { 382 /* 383 * __shmem_file_setup, one of our callers, is lock-free: it 384 * doesn't hold stat_lock in shmem_reserve_inode since 385 * max_inodes is always 0, and is called from potentially 386 * unknown contexts. As such, use a per-cpu batched allocator 387 * which doesn't require the per-sb stat_lock unless we are at 388 * the batch boundary. 389 * 390 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 391 * shmem mounts are not exposed to userspace, so we don't need 392 * to worry about things like glibc compatibility. 393 */ 394 ino_t *next_ino; 395 396 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 397 ino = *next_ino; 398 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 399 raw_spin_lock(&sbinfo->stat_lock); 400 ino = sbinfo->next_ino; 401 sbinfo->next_ino += SHMEM_INO_BATCH; 402 raw_spin_unlock(&sbinfo->stat_lock); 403 if (unlikely(is_zero_ino(ino))) 404 ino++; 405 } 406 *inop = ino; 407 *next_ino = ++ino; 408 put_cpu(); 409 } 410 411 return 0; 412 } 413 414 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 415 { 416 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 417 if (sbinfo->max_inodes) { 418 raw_spin_lock(&sbinfo->stat_lock); 419 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 420 raw_spin_unlock(&sbinfo->stat_lock); 421 } 422 } 423 424 /** 425 * shmem_recalc_inode - recalculate the block usage of an inode 426 * @inode: inode to recalc 427 * @alloced: the change in number of pages allocated to inode 428 * @swapped: the change in number of pages swapped from inode 429 * 430 * We have to calculate the free blocks since the mm can drop 431 * undirtied hole pages behind our back. 432 * 433 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 434 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 435 */ 436 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 437 { 438 struct shmem_inode_info *info = SHMEM_I(inode); 439 long freed; 440 441 spin_lock(&info->lock); 442 info->alloced += alloced; 443 info->swapped += swapped; 444 freed = info->alloced - info->swapped - 445 READ_ONCE(inode->i_mapping->nrpages); 446 /* 447 * Special case: whereas normally shmem_recalc_inode() is called 448 * after i_mapping->nrpages has already been adjusted (up or down), 449 * shmem_writepage() has to raise swapped before nrpages is lowered - 450 * to stop a racing shmem_recalc_inode() from thinking that a page has 451 * been freed. Compensate here, to avoid the need for a followup call. 452 */ 453 if (swapped > 0) 454 freed += swapped; 455 if (freed > 0) 456 info->alloced -= freed; 457 spin_unlock(&info->lock); 458 459 /* The quota case may block */ 460 if (freed > 0) 461 shmem_inode_unacct_blocks(inode, freed); 462 } 463 464 bool shmem_charge(struct inode *inode, long pages) 465 { 466 struct address_space *mapping = inode->i_mapping; 467 468 if (shmem_inode_acct_blocks(inode, pages)) 469 return false; 470 471 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 472 xa_lock_irq(&mapping->i_pages); 473 mapping->nrpages += pages; 474 xa_unlock_irq(&mapping->i_pages); 475 476 shmem_recalc_inode(inode, pages, 0); 477 return true; 478 } 479 480 void shmem_uncharge(struct inode *inode, long pages) 481 { 482 /* pages argument is currently unused: keep it to help debugging */ 483 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 484 485 shmem_recalc_inode(inode, 0, 0); 486 } 487 488 /* 489 * Replace item expected in xarray by a new item, while holding xa_lock. 490 */ 491 static int shmem_replace_entry(struct address_space *mapping, 492 pgoff_t index, void *expected, void *replacement) 493 { 494 XA_STATE(xas, &mapping->i_pages, index); 495 void *item; 496 497 VM_BUG_ON(!expected); 498 VM_BUG_ON(!replacement); 499 item = xas_load(&xas); 500 if (item != expected) 501 return -ENOENT; 502 xas_store(&xas, replacement); 503 return 0; 504 } 505 506 /* 507 * Sometimes, before we decide whether to proceed or to fail, we must check 508 * that an entry was not already brought back from swap by a racing thread. 509 * 510 * Checking folio is not enough: by the time a swapcache folio is locked, it 511 * might be reused, and again be swapcache, using the same swap as before. 512 */ 513 static bool shmem_confirm_swap(struct address_space *mapping, 514 pgoff_t index, swp_entry_t swap) 515 { 516 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 517 } 518 519 /* 520 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 521 * 522 * SHMEM_HUGE_NEVER: 523 * disables huge pages for the mount; 524 * SHMEM_HUGE_ALWAYS: 525 * enables huge pages for the mount; 526 * SHMEM_HUGE_WITHIN_SIZE: 527 * only allocate huge pages if the page will be fully within i_size, 528 * also respect madvise() hints; 529 * SHMEM_HUGE_ADVISE: 530 * only allocate huge pages if requested with madvise(); 531 */ 532 533 #define SHMEM_HUGE_NEVER 0 534 #define SHMEM_HUGE_ALWAYS 1 535 #define SHMEM_HUGE_WITHIN_SIZE 2 536 #define SHMEM_HUGE_ADVISE 3 537 538 /* 539 * Special values. 540 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 541 * 542 * SHMEM_HUGE_DENY: 543 * disables huge on shm_mnt and all mounts, for emergency use; 544 * SHMEM_HUGE_FORCE: 545 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 546 * 547 */ 548 #define SHMEM_HUGE_DENY (-1) 549 #define SHMEM_HUGE_FORCE (-2) 550 551 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 552 /* ifdef here to avoid bloating shmem.o when not necessary */ 553 554 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 555 static int tmpfs_huge __read_mostly = SHMEM_HUGE_NEVER; 556 557 /** 558 * shmem_mapping_size_orders - Get allowable folio orders for the given file size. 559 * @mapping: Target address_space. 560 * @index: The page index. 561 * @write_end: end of a write, could extend inode size. 562 * 563 * This returns huge orders for folios (when supported) based on the file size 564 * which the mapping currently allows at the given index. The index is relevant 565 * due to alignment considerations the mapping might have. The returned order 566 * may be less than the size passed. 567 * 568 * Return: The orders. 569 */ 570 static inline unsigned int 571 shmem_mapping_size_orders(struct address_space *mapping, pgoff_t index, loff_t write_end) 572 { 573 unsigned int order; 574 size_t size; 575 576 if (!mapping_large_folio_support(mapping) || !write_end) 577 return 0; 578 579 /* Calculate the write size based on the write_end */ 580 size = write_end - (index << PAGE_SHIFT); 581 order = filemap_get_order(size); 582 if (!order) 583 return 0; 584 585 /* If we're not aligned, allocate a smaller folio */ 586 if (index & ((1UL << order) - 1)) 587 order = __ffs(index); 588 589 order = min_t(size_t, order, MAX_PAGECACHE_ORDER); 590 return order > 0 ? BIT(order + 1) - 1 : 0; 591 } 592 593 static unsigned int shmem_get_orders_within_size(struct inode *inode, 594 unsigned long within_size_orders, pgoff_t index, 595 loff_t write_end) 596 { 597 pgoff_t aligned_index; 598 unsigned long order; 599 loff_t i_size; 600 601 order = highest_order(within_size_orders); 602 while (within_size_orders) { 603 aligned_index = round_up(index + 1, 1 << order); 604 i_size = max(write_end, i_size_read(inode)); 605 i_size = round_up(i_size, PAGE_SIZE); 606 if (i_size >> PAGE_SHIFT >= aligned_index) 607 return within_size_orders; 608 609 order = next_order(&within_size_orders, order); 610 } 611 612 return 0; 613 } 614 615 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 616 loff_t write_end, bool shmem_huge_force, 617 struct vm_area_struct *vma, 618 unsigned long vm_flags) 619 { 620 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ? 621 0 : BIT(HPAGE_PMD_ORDER); 622 unsigned long within_size_orders; 623 624 if (!S_ISREG(inode->i_mode)) 625 return 0; 626 if (shmem_huge == SHMEM_HUGE_DENY) 627 return 0; 628 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 629 return maybe_pmd_order; 630 631 /* 632 * The huge order allocation for anon shmem is controlled through 633 * the mTHP interface, so we still use PMD-sized huge order to 634 * check whether global control is enabled. 635 * 636 * For tmpfs mmap()'s huge order, we still use PMD-sized order to 637 * allocate huge pages due to lack of a write size hint. 638 * 639 * Otherwise, tmpfs will allow getting a highest order hint based on 640 * the size of write and fallocate paths, then will try each allowable 641 * huge orders. 642 */ 643 switch (SHMEM_SB(inode->i_sb)->huge) { 644 case SHMEM_HUGE_ALWAYS: 645 if (vma) 646 return maybe_pmd_order; 647 648 return shmem_mapping_size_orders(inode->i_mapping, index, write_end); 649 case SHMEM_HUGE_WITHIN_SIZE: 650 if (vma) 651 within_size_orders = maybe_pmd_order; 652 else 653 within_size_orders = shmem_mapping_size_orders(inode->i_mapping, 654 index, write_end); 655 656 within_size_orders = shmem_get_orders_within_size(inode, within_size_orders, 657 index, write_end); 658 if (within_size_orders > 0) 659 return within_size_orders; 660 661 fallthrough; 662 case SHMEM_HUGE_ADVISE: 663 if (vm_flags & VM_HUGEPAGE) 664 return maybe_pmd_order; 665 fallthrough; 666 default: 667 return 0; 668 } 669 } 670 671 static int shmem_parse_huge(const char *str) 672 { 673 int huge; 674 675 if (!str) 676 return -EINVAL; 677 678 if (!strcmp(str, "never")) 679 huge = SHMEM_HUGE_NEVER; 680 else if (!strcmp(str, "always")) 681 huge = SHMEM_HUGE_ALWAYS; 682 else if (!strcmp(str, "within_size")) 683 huge = SHMEM_HUGE_WITHIN_SIZE; 684 else if (!strcmp(str, "advise")) 685 huge = SHMEM_HUGE_ADVISE; 686 else if (!strcmp(str, "deny")) 687 huge = SHMEM_HUGE_DENY; 688 else if (!strcmp(str, "force")) 689 huge = SHMEM_HUGE_FORCE; 690 else 691 return -EINVAL; 692 693 if (!has_transparent_hugepage() && 694 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 695 return -EINVAL; 696 697 /* Do not override huge allocation policy with non-PMD sized mTHP */ 698 if (huge == SHMEM_HUGE_FORCE && 699 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER)) 700 return -EINVAL; 701 702 return huge; 703 } 704 705 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 706 static const char *shmem_format_huge(int huge) 707 { 708 switch (huge) { 709 case SHMEM_HUGE_NEVER: 710 return "never"; 711 case SHMEM_HUGE_ALWAYS: 712 return "always"; 713 case SHMEM_HUGE_WITHIN_SIZE: 714 return "within_size"; 715 case SHMEM_HUGE_ADVISE: 716 return "advise"; 717 case SHMEM_HUGE_DENY: 718 return "deny"; 719 case SHMEM_HUGE_FORCE: 720 return "force"; 721 default: 722 VM_BUG_ON(1); 723 return "bad_val"; 724 } 725 } 726 #endif 727 728 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 729 struct shrink_control *sc, unsigned long nr_to_free) 730 { 731 LIST_HEAD(list), *pos, *next; 732 struct inode *inode; 733 struct shmem_inode_info *info; 734 struct folio *folio; 735 unsigned long batch = sc ? sc->nr_to_scan : 128; 736 unsigned long split = 0, freed = 0; 737 738 if (list_empty(&sbinfo->shrinklist)) 739 return SHRINK_STOP; 740 741 spin_lock(&sbinfo->shrinklist_lock); 742 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 743 info = list_entry(pos, struct shmem_inode_info, shrinklist); 744 745 /* pin the inode */ 746 inode = igrab(&info->vfs_inode); 747 748 /* inode is about to be evicted */ 749 if (!inode) { 750 list_del_init(&info->shrinklist); 751 goto next; 752 } 753 754 list_move(&info->shrinklist, &list); 755 next: 756 sbinfo->shrinklist_len--; 757 if (!--batch) 758 break; 759 } 760 spin_unlock(&sbinfo->shrinklist_lock); 761 762 list_for_each_safe(pos, next, &list) { 763 pgoff_t next, end; 764 loff_t i_size; 765 int ret; 766 767 info = list_entry(pos, struct shmem_inode_info, shrinklist); 768 inode = &info->vfs_inode; 769 770 if (nr_to_free && freed >= nr_to_free) 771 goto move_back; 772 773 i_size = i_size_read(inode); 774 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE); 775 if (!folio || xa_is_value(folio)) 776 goto drop; 777 778 /* No large folio at the end of the file: nothing to split */ 779 if (!folio_test_large(folio)) { 780 folio_put(folio); 781 goto drop; 782 } 783 784 /* Check if there is anything to gain from splitting */ 785 next = folio_next_index(folio); 786 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE)); 787 if (end <= folio->index || end >= next) { 788 folio_put(folio); 789 goto drop; 790 } 791 792 /* 793 * Move the inode on the list back to shrinklist if we failed 794 * to lock the page at this time. 795 * 796 * Waiting for the lock may lead to deadlock in the 797 * reclaim path. 798 */ 799 if (!folio_trylock(folio)) { 800 folio_put(folio); 801 goto move_back; 802 } 803 804 ret = split_folio(folio); 805 folio_unlock(folio); 806 folio_put(folio); 807 808 /* If split failed move the inode on the list back to shrinklist */ 809 if (ret) 810 goto move_back; 811 812 freed += next - end; 813 split++; 814 drop: 815 list_del_init(&info->shrinklist); 816 goto put; 817 move_back: 818 /* 819 * Make sure the inode is either on the global list or deleted 820 * from any local list before iput() since it could be deleted 821 * in another thread once we put the inode (then the local list 822 * is corrupted). 823 */ 824 spin_lock(&sbinfo->shrinklist_lock); 825 list_move(&info->shrinklist, &sbinfo->shrinklist); 826 sbinfo->shrinklist_len++; 827 spin_unlock(&sbinfo->shrinklist_lock); 828 put: 829 iput(inode); 830 } 831 832 return split; 833 } 834 835 static long shmem_unused_huge_scan(struct super_block *sb, 836 struct shrink_control *sc) 837 { 838 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 839 840 if (!READ_ONCE(sbinfo->shrinklist_len)) 841 return SHRINK_STOP; 842 843 return shmem_unused_huge_shrink(sbinfo, sc, 0); 844 } 845 846 static long shmem_unused_huge_count(struct super_block *sb, 847 struct shrink_control *sc) 848 { 849 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 850 return READ_ONCE(sbinfo->shrinklist_len); 851 } 852 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 853 854 #define shmem_huge SHMEM_HUGE_DENY 855 856 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 857 struct shrink_control *sc, unsigned long nr_to_free) 858 { 859 return 0; 860 } 861 862 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 863 loff_t write_end, bool shmem_huge_force, 864 struct vm_area_struct *vma, 865 unsigned long vm_flags) 866 { 867 return 0; 868 } 869 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 870 871 static void shmem_update_stats(struct folio *folio, int nr_pages) 872 { 873 if (folio_test_pmd_mappable(folio)) 874 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages); 875 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages); 876 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages); 877 } 878 879 /* 880 * Somewhat like filemap_add_folio, but error if expected item has gone. 881 */ 882 static int shmem_add_to_page_cache(struct folio *folio, 883 struct address_space *mapping, 884 pgoff_t index, void *expected, gfp_t gfp) 885 { 886 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 887 long nr = folio_nr_pages(folio); 888 889 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 890 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 891 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 892 893 folio_ref_add(folio, nr); 894 folio->mapping = mapping; 895 folio->index = index; 896 897 gfp &= GFP_RECLAIM_MASK; 898 folio_throttle_swaprate(folio, gfp); 899 900 do { 901 xas_lock_irq(&xas); 902 if (expected != xas_find_conflict(&xas)) { 903 xas_set_err(&xas, -EEXIST); 904 goto unlock; 905 } 906 if (expected && xas_find_conflict(&xas)) { 907 xas_set_err(&xas, -EEXIST); 908 goto unlock; 909 } 910 xas_store(&xas, folio); 911 if (xas_error(&xas)) 912 goto unlock; 913 shmem_update_stats(folio, nr); 914 mapping->nrpages += nr; 915 unlock: 916 xas_unlock_irq(&xas); 917 } while (xas_nomem(&xas, gfp)); 918 919 if (xas_error(&xas)) { 920 folio->mapping = NULL; 921 folio_ref_sub(folio, nr); 922 return xas_error(&xas); 923 } 924 925 return 0; 926 } 927 928 /* 929 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 930 */ 931 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 932 { 933 struct address_space *mapping = folio->mapping; 934 long nr = folio_nr_pages(folio); 935 int error; 936 937 xa_lock_irq(&mapping->i_pages); 938 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 939 folio->mapping = NULL; 940 mapping->nrpages -= nr; 941 shmem_update_stats(folio, -nr); 942 xa_unlock_irq(&mapping->i_pages); 943 folio_put_refs(folio, nr); 944 BUG_ON(error); 945 } 946 947 /* 948 * Remove swap entry from page cache, free the swap and its page cache. Returns 949 * the number of pages being freed. 0 means entry not found in XArray (0 pages 950 * being freed). 951 */ 952 static long shmem_free_swap(struct address_space *mapping, 953 pgoff_t index, void *radswap) 954 { 955 int order = xa_get_order(&mapping->i_pages, index); 956 void *old; 957 958 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 959 if (old != radswap) 960 return 0; 961 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order); 962 963 return 1 << order; 964 } 965 966 /* 967 * Determine (in bytes) how many of the shmem object's pages mapped by the 968 * given offsets are swapped out. 969 * 970 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 971 * as long as the inode doesn't go away and racy results are not a problem. 972 */ 973 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 974 pgoff_t start, pgoff_t end) 975 { 976 XA_STATE(xas, &mapping->i_pages, start); 977 struct page *page; 978 unsigned long swapped = 0; 979 unsigned long max = end - 1; 980 981 rcu_read_lock(); 982 xas_for_each(&xas, page, max) { 983 if (xas_retry(&xas, page)) 984 continue; 985 if (xa_is_value(page)) 986 swapped += 1 << xas_get_order(&xas); 987 if (xas.xa_index == max) 988 break; 989 if (need_resched()) { 990 xas_pause(&xas); 991 cond_resched_rcu(); 992 } 993 } 994 rcu_read_unlock(); 995 996 return swapped << PAGE_SHIFT; 997 } 998 999 /* 1000 * Determine (in bytes) how many of the shmem object's pages mapped by the 1001 * given vma is swapped out. 1002 * 1003 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 1004 * as long as the inode doesn't go away and racy results are not a problem. 1005 */ 1006 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 1007 { 1008 struct inode *inode = file_inode(vma->vm_file); 1009 struct shmem_inode_info *info = SHMEM_I(inode); 1010 struct address_space *mapping = inode->i_mapping; 1011 unsigned long swapped; 1012 1013 /* Be careful as we don't hold info->lock */ 1014 swapped = READ_ONCE(info->swapped); 1015 1016 /* 1017 * The easier cases are when the shmem object has nothing in swap, or 1018 * the vma maps it whole. Then we can simply use the stats that we 1019 * already track. 1020 */ 1021 if (!swapped) 1022 return 0; 1023 1024 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 1025 return swapped << PAGE_SHIFT; 1026 1027 /* Here comes the more involved part */ 1028 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 1029 vma->vm_pgoff + vma_pages(vma)); 1030 } 1031 1032 /* 1033 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 1034 */ 1035 void shmem_unlock_mapping(struct address_space *mapping) 1036 { 1037 struct folio_batch fbatch; 1038 pgoff_t index = 0; 1039 1040 folio_batch_init(&fbatch); 1041 /* 1042 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 1043 */ 1044 while (!mapping_unevictable(mapping) && 1045 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 1046 check_move_unevictable_folios(&fbatch); 1047 folio_batch_release(&fbatch); 1048 cond_resched(); 1049 } 1050 } 1051 1052 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 1053 { 1054 struct folio *folio; 1055 1056 /* 1057 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 1058 * beyond i_size, and reports fallocated folios as holes. 1059 */ 1060 folio = filemap_get_entry(inode->i_mapping, index); 1061 if (!folio) 1062 return folio; 1063 if (!xa_is_value(folio)) { 1064 folio_lock(folio); 1065 if (folio->mapping == inode->i_mapping) 1066 return folio; 1067 /* The folio has been swapped out */ 1068 folio_unlock(folio); 1069 folio_put(folio); 1070 } 1071 /* 1072 * But read a folio back from swap if any of it is within i_size 1073 * (although in some cases this is just a waste of time). 1074 */ 1075 folio = NULL; 1076 shmem_get_folio(inode, index, 0, &folio, SGP_READ); 1077 return folio; 1078 } 1079 1080 /* 1081 * Remove range of pages and swap entries from page cache, and free them. 1082 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 1083 */ 1084 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 1085 bool unfalloc) 1086 { 1087 struct address_space *mapping = inode->i_mapping; 1088 struct shmem_inode_info *info = SHMEM_I(inode); 1089 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 1090 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 1091 struct folio_batch fbatch; 1092 pgoff_t indices[PAGEVEC_SIZE]; 1093 struct folio *folio; 1094 bool same_folio; 1095 long nr_swaps_freed = 0; 1096 pgoff_t index; 1097 int i; 1098 1099 if (lend == -1) 1100 end = -1; /* unsigned, so actually very big */ 1101 1102 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1103 info->fallocend = start; 1104 1105 folio_batch_init(&fbatch); 1106 index = start; 1107 while (index < end && find_lock_entries(mapping, &index, end - 1, 1108 &fbatch, indices)) { 1109 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1110 folio = fbatch.folios[i]; 1111 1112 if (xa_is_value(folio)) { 1113 if (unfalloc) 1114 continue; 1115 nr_swaps_freed += shmem_free_swap(mapping, 1116 indices[i], folio); 1117 continue; 1118 } 1119 1120 if (!unfalloc || !folio_test_uptodate(folio)) 1121 truncate_inode_folio(mapping, folio); 1122 folio_unlock(folio); 1123 } 1124 folio_batch_remove_exceptionals(&fbatch); 1125 folio_batch_release(&fbatch); 1126 cond_resched(); 1127 } 1128 1129 /* 1130 * When undoing a failed fallocate, we want none of the partial folio 1131 * zeroing and splitting below, but shall want to truncate the whole 1132 * folio when !uptodate indicates that it was added by this fallocate, 1133 * even when [lstart, lend] covers only a part of the folio. 1134 */ 1135 if (unfalloc) 1136 goto whole_folios; 1137 1138 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1139 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1140 if (folio) { 1141 same_folio = lend < folio_pos(folio) + folio_size(folio); 1142 folio_mark_dirty(folio); 1143 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1144 start = folio_next_index(folio); 1145 if (same_folio) 1146 end = folio->index; 1147 } 1148 folio_unlock(folio); 1149 folio_put(folio); 1150 folio = NULL; 1151 } 1152 1153 if (!same_folio) 1154 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1155 if (folio) { 1156 folio_mark_dirty(folio); 1157 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1158 end = folio->index; 1159 folio_unlock(folio); 1160 folio_put(folio); 1161 } 1162 1163 whole_folios: 1164 1165 index = start; 1166 while (index < end) { 1167 cond_resched(); 1168 1169 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1170 indices)) { 1171 /* If all gone or hole-punch or unfalloc, we're done */ 1172 if (index == start || end != -1) 1173 break; 1174 /* But if truncating, restart to make sure all gone */ 1175 index = start; 1176 continue; 1177 } 1178 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1179 folio = fbatch.folios[i]; 1180 1181 if (xa_is_value(folio)) { 1182 long swaps_freed; 1183 1184 if (unfalloc) 1185 continue; 1186 swaps_freed = shmem_free_swap(mapping, indices[i], folio); 1187 if (!swaps_freed) { 1188 /* Swap was replaced by page: retry */ 1189 index = indices[i]; 1190 break; 1191 } 1192 nr_swaps_freed += swaps_freed; 1193 continue; 1194 } 1195 1196 folio_lock(folio); 1197 1198 if (!unfalloc || !folio_test_uptodate(folio)) { 1199 if (folio_mapping(folio) != mapping) { 1200 /* Page was replaced by swap: retry */ 1201 folio_unlock(folio); 1202 index = indices[i]; 1203 break; 1204 } 1205 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1206 folio); 1207 1208 if (!folio_test_large(folio)) { 1209 truncate_inode_folio(mapping, folio); 1210 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1211 /* 1212 * If we split a page, reset the loop so 1213 * that we pick up the new sub pages. 1214 * Otherwise the THP was entirely 1215 * dropped or the target range was 1216 * zeroed, so just continue the loop as 1217 * is. 1218 */ 1219 if (!folio_test_large(folio)) { 1220 folio_unlock(folio); 1221 index = start; 1222 break; 1223 } 1224 } 1225 } 1226 folio_unlock(folio); 1227 } 1228 folio_batch_remove_exceptionals(&fbatch); 1229 folio_batch_release(&fbatch); 1230 } 1231 1232 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1233 } 1234 1235 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1236 { 1237 shmem_undo_range(inode, lstart, lend, false); 1238 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1239 inode_inc_iversion(inode); 1240 } 1241 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1242 1243 static int shmem_getattr(struct mnt_idmap *idmap, 1244 const struct path *path, struct kstat *stat, 1245 u32 request_mask, unsigned int query_flags) 1246 { 1247 struct inode *inode = path->dentry->d_inode; 1248 struct shmem_inode_info *info = SHMEM_I(inode); 1249 1250 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1251 shmem_recalc_inode(inode, 0, 0); 1252 1253 if (info->fsflags & FS_APPEND_FL) 1254 stat->attributes |= STATX_ATTR_APPEND; 1255 if (info->fsflags & FS_IMMUTABLE_FL) 1256 stat->attributes |= STATX_ATTR_IMMUTABLE; 1257 if (info->fsflags & FS_NODUMP_FL) 1258 stat->attributes |= STATX_ATTR_NODUMP; 1259 stat->attributes_mask |= (STATX_ATTR_APPEND | 1260 STATX_ATTR_IMMUTABLE | 1261 STATX_ATTR_NODUMP); 1262 generic_fillattr(idmap, request_mask, inode, stat); 1263 1264 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0)) 1265 stat->blksize = HPAGE_PMD_SIZE; 1266 1267 if (request_mask & STATX_BTIME) { 1268 stat->result_mask |= STATX_BTIME; 1269 stat->btime.tv_sec = info->i_crtime.tv_sec; 1270 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1271 } 1272 1273 return 0; 1274 } 1275 1276 static int shmem_setattr(struct mnt_idmap *idmap, 1277 struct dentry *dentry, struct iattr *attr) 1278 { 1279 struct inode *inode = d_inode(dentry); 1280 struct shmem_inode_info *info = SHMEM_I(inode); 1281 int error; 1282 bool update_mtime = false; 1283 bool update_ctime = true; 1284 1285 error = setattr_prepare(idmap, dentry, attr); 1286 if (error) 1287 return error; 1288 1289 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1290 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1291 return -EPERM; 1292 } 1293 } 1294 1295 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1296 loff_t oldsize = inode->i_size; 1297 loff_t newsize = attr->ia_size; 1298 1299 /* protected by i_rwsem */ 1300 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1301 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1302 return -EPERM; 1303 1304 if (newsize != oldsize) { 1305 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1306 oldsize, newsize); 1307 if (error) 1308 return error; 1309 i_size_write(inode, newsize); 1310 update_mtime = true; 1311 } else { 1312 update_ctime = false; 1313 } 1314 if (newsize <= oldsize) { 1315 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1316 if (oldsize > holebegin) 1317 unmap_mapping_range(inode->i_mapping, 1318 holebegin, 0, 1); 1319 if (info->alloced) 1320 shmem_truncate_range(inode, 1321 newsize, (loff_t)-1); 1322 /* unmap again to remove racily COWed private pages */ 1323 if (oldsize > holebegin) 1324 unmap_mapping_range(inode->i_mapping, 1325 holebegin, 0, 1); 1326 } 1327 } 1328 1329 if (is_quota_modification(idmap, inode, attr)) { 1330 error = dquot_initialize(inode); 1331 if (error) 1332 return error; 1333 } 1334 1335 /* Transfer quota accounting */ 1336 if (i_uid_needs_update(idmap, attr, inode) || 1337 i_gid_needs_update(idmap, attr, inode)) { 1338 error = dquot_transfer(idmap, inode, attr); 1339 if (error) 1340 return error; 1341 } 1342 1343 setattr_copy(idmap, inode, attr); 1344 if (attr->ia_valid & ATTR_MODE) 1345 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1346 if (!error && update_ctime) { 1347 inode_set_ctime_current(inode); 1348 if (update_mtime) 1349 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1350 inode_inc_iversion(inode); 1351 } 1352 return error; 1353 } 1354 1355 static void shmem_evict_inode(struct inode *inode) 1356 { 1357 struct shmem_inode_info *info = SHMEM_I(inode); 1358 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1359 size_t freed = 0; 1360 1361 if (shmem_mapping(inode->i_mapping)) { 1362 shmem_unacct_size(info->flags, inode->i_size); 1363 inode->i_size = 0; 1364 mapping_set_exiting(inode->i_mapping); 1365 shmem_truncate_range(inode, 0, (loff_t)-1); 1366 if (!list_empty(&info->shrinklist)) { 1367 spin_lock(&sbinfo->shrinklist_lock); 1368 if (!list_empty(&info->shrinklist)) { 1369 list_del_init(&info->shrinklist); 1370 sbinfo->shrinklist_len--; 1371 } 1372 spin_unlock(&sbinfo->shrinklist_lock); 1373 } 1374 while (!list_empty(&info->swaplist)) { 1375 /* Wait while shmem_unuse() is scanning this inode... */ 1376 wait_var_event(&info->stop_eviction, 1377 !atomic_read(&info->stop_eviction)); 1378 mutex_lock(&shmem_swaplist_mutex); 1379 /* ...but beware of the race if we peeked too early */ 1380 if (!atomic_read(&info->stop_eviction)) 1381 list_del_init(&info->swaplist); 1382 mutex_unlock(&shmem_swaplist_mutex); 1383 } 1384 } 1385 1386 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1387 shmem_free_inode(inode->i_sb, freed); 1388 WARN_ON(inode->i_blocks); 1389 clear_inode(inode); 1390 #ifdef CONFIG_TMPFS_QUOTA 1391 dquot_free_inode(inode); 1392 dquot_drop(inode); 1393 #endif 1394 } 1395 1396 static unsigned int shmem_find_swap_entries(struct address_space *mapping, 1397 pgoff_t start, struct folio_batch *fbatch, 1398 pgoff_t *indices, unsigned int type) 1399 { 1400 XA_STATE(xas, &mapping->i_pages, start); 1401 struct folio *folio; 1402 swp_entry_t entry; 1403 1404 rcu_read_lock(); 1405 xas_for_each(&xas, folio, ULONG_MAX) { 1406 if (xas_retry(&xas, folio)) 1407 continue; 1408 1409 if (!xa_is_value(folio)) 1410 continue; 1411 1412 entry = radix_to_swp_entry(folio); 1413 /* 1414 * swapin error entries can be found in the mapping. But they're 1415 * deliberately ignored here as we've done everything we can do. 1416 */ 1417 if (swp_type(entry) != type) 1418 continue; 1419 1420 indices[folio_batch_count(fbatch)] = xas.xa_index; 1421 if (!folio_batch_add(fbatch, folio)) 1422 break; 1423 1424 if (need_resched()) { 1425 xas_pause(&xas); 1426 cond_resched_rcu(); 1427 } 1428 } 1429 rcu_read_unlock(); 1430 1431 return folio_batch_count(fbatch); 1432 } 1433 1434 /* 1435 * Move the swapped pages for an inode to page cache. Returns the count 1436 * of pages swapped in, or the error in case of failure. 1437 */ 1438 static int shmem_unuse_swap_entries(struct inode *inode, 1439 struct folio_batch *fbatch, pgoff_t *indices) 1440 { 1441 int i = 0; 1442 int ret = 0; 1443 int error = 0; 1444 struct address_space *mapping = inode->i_mapping; 1445 1446 for (i = 0; i < folio_batch_count(fbatch); i++) { 1447 struct folio *folio = fbatch->folios[i]; 1448 1449 if (!xa_is_value(folio)) 1450 continue; 1451 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1452 mapping_gfp_mask(mapping), NULL, NULL); 1453 if (error == 0) { 1454 folio_unlock(folio); 1455 folio_put(folio); 1456 ret++; 1457 } 1458 if (error == -ENOMEM) 1459 break; 1460 error = 0; 1461 } 1462 return error ? error : ret; 1463 } 1464 1465 /* 1466 * If swap found in inode, free it and move page from swapcache to filecache. 1467 */ 1468 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1469 { 1470 struct address_space *mapping = inode->i_mapping; 1471 pgoff_t start = 0; 1472 struct folio_batch fbatch; 1473 pgoff_t indices[PAGEVEC_SIZE]; 1474 int ret = 0; 1475 1476 do { 1477 folio_batch_init(&fbatch); 1478 if (!shmem_find_swap_entries(mapping, start, &fbatch, 1479 indices, type)) { 1480 ret = 0; 1481 break; 1482 } 1483 1484 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1485 if (ret < 0) 1486 break; 1487 1488 start = indices[folio_batch_count(&fbatch) - 1]; 1489 } while (true); 1490 1491 return ret; 1492 } 1493 1494 /* 1495 * Read all the shared memory data that resides in the swap 1496 * device 'type' back into memory, so the swap device can be 1497 * unused. 1498 */ 1499 int shmem_unuse(unsigned int type) 1500 { 1501 struct shmem_inode_info *info, *next; 1502 int error = 0; 1503 1504 if (list_empty(&shmem_swaplist)) 1505 return 0; 1506 1507 mutex_lock(&shmem_swaplist_mutex); 1508 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1509 if (!info->swapped) { 1510 list_del_init(&info->swaplist); 1511 continue; 1512 } 1513 /* 1514 * Drop the swaplist mutex while searching the inode for swap; 1515 * but before doing so, make sure shmem_evict_inode() will not 1516 * remove placeholder inode from swaplist, nor let it be freed 1517 * (igrab() would protect from unlink, but not from unmount). 1518 */ 1519 atomic_inc(&info->stop_eviction); 1520 mutex_unlock(&shmem_swaplist_mutex); 1521 1522 error = shmem_unuse_inode(&info->vfs_inode, type); 1523 cond_resched(); 1524 1525 mutex_lock(&shmem_swaplist_mutex); 1526 next = list_next_entry(info, swaplist); 1527 if (!info->swapped) 1528 list_del_init(&info->swaplist); 1529 if (atomic_dec_and_test(&info->stop_eviction)) 1530 wake_up_var(&info->stop_eviction); 1531 if (error) 1532 break; 1533 } 1534 mutex_unlock(&shmem_swaplist_mutex); 1535 1536 return error; 1537 } 1538 1539 /* 1540 * Move the page from the page cache to the swap cache. 1541 */ 1542 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1543 { 1544 struct folio *folio = page_folio(page); 1545 struct address_space *mapping = folio->mapping; 1546 struct inode *inode = mapping->host; 1547 struct shmem_inode_info *info = SHMEM_I(inode); 1548 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1549 pgoff_t index; 1550 int nr_pages; 1551 bool split = false; 1552 1553 /* 1554 * Our capabilities prevent regular writeback or sync from ever calling 1555 * shmem_writepage; but a stacking filesystem might use ->writepage of 1556 * its underlying filesystem, in which case tmpfs should write out to 1557 * swap only in response to memory pressure, and not for the writeback 1558 * threads or sync. 1559 */ 1560 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1561 goto redirty; 1562 1563 if ((info->flags & VM_LOCKED) || sbinfo->noswap) 1564 goto redirty; 1565 1566 if (!total_swap_pages) 1567 goto redirty; 1568 1569 /* 1570 * If CONFIG_THP_SWAP is not enabled, the large folio should be 1571 * split when swapping. 1572 * 1573 * And shrinkage of pages beyond i_size does not split swap, so 1574 * swapout of a large folio crossing i_size needs to split too 1575 * (unless fallocate has been used to preallocate beyond EOF). 1576 */ 1577 if (folio_test_large(folio)) { 1578 index = shmem_fallocend(inode, 1579 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 1580 if ((index > folio->index && index < folio_next_index(folio)) || 1581 !IS_ENABLED(CONFIG_THP_SWAP)) 1582 split = true; 1583 } 1584 1585 if (split) { 1586 try_split: 1587 /* Ensure the subpages are still dirty */ 1588 folio_test_set_dirty(folio); 1589 if (split_huge_page_to_list_to_order(page, wbc->list, 0)) 1590 goto redirty; 1591 folio = page_folio(page); 1592 folio_clear_dirty(folio); 1593 } 1594 1595 index = folio->index; 1596 nr_pages = folio_nr_pages(folio); 1597 1598 /* 1599 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1600 * value into swapfile.c, the only way we can correctly account for a 1601 * fallocated folio arriving here is now to initialize it and write it. 1602 * 1603 * That's okay for a folio already fallocated earlier, but if we have 1604 * not yet completed the fallocation, then (a) we want to keep track 1605 * of this folio in case we have to undo it, and (b) it may not be a 1606 * good idea to continue anyway, once we're pushing into swap. So 1607 * reactivate the folio, and let shmem_fallocate() quit when too many. 1608 */ 1609 if (!folio_test_uptodate(folio)) { 1610 if (inode->i_private) { 1611 struct shmem_falloc *shmem_falloc; 1612 spin_lock(&inode->i_lock); 1613 shmem_falloc = inode->i_private; 1614 if (shmem_falloc && 1615 !shmem_falloc->waitq && 1616 index >= shmem_falloc->start && 1617 index < shmem_falloc->next) 1618 shmem_falloc->nr_unswapped += nr_pages; 1619 else 1620 shmem_falloc = NULL; 1621 spin_unlock(&inode->i_lock); 1622 if (shmem_falloc) 1623 goto redirty; 1624 } 1625 folio_zero_range(folio, 0, folio_size(folio)); 1626 flush_dcache_folio(folio); 1627 folio_mark_uptodate(folio); 1628 } 1629 1630 /* 1631 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1632 * if it's not already there. Do it now before the folio is 1633 * moved to swap cache, when its pagelock no longer protects 1634 * the inode from eviction. But don't unlock the mutex until 1635 * we've incremented swapped, because shmem_unuse_inode() will 1636 * prune a !swapped inode from the swaplist under this mutex. 1637 */ 1638 mutex_lock(&shmem_swaplist_mutex); 1639 if (list_empty(&info->swaplist)) 1640 list_add(&info->swaplist, &shmem_swaplist); 1641 1642 if (!folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN)) { 1643 shmem_recalc_inode(inode, 0, nr_pages); 1644 swap_shmem_alloc(folio->swap, nr_pages); 1645 shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap)); 1646 1647 mutex_unlock(&shmem_swaplist_mutex); 1648 BUG_ON(folio_mapped(folio)); 1649 return swap_writepage(&folio->page, wbc); 1650 } 1651 1652 list_del_init(&info->swaplist); 1653 mutex_unlock(&shmem_swaplist_mutex); 1654 if (nr_pages > 1) 1655 goto try_split; 1656 redirty: 1657 folio_mark_dirty(folio); 1658 if (wbc->for_reclaim) 1659 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1660 folio_unlock(folio); 1661 return 0; 1662 } 1663 1664 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1665 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1666 { 1667 char buffer[64]; 1668 1669 if (!mpol || mpol->mode == MPOL_DEFAULT) 1670 return; /* show nothing */ 1671 1672 mpol_to_str(buffer, sizeof(buffer), mpol); 1673 1674 seq_printf(seq, ",mpol=%s", buffer); 1675 } 1676 1677 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1678 { 1679 struct mempolicy *mpol = NULL; 1680 if (sbinfo->mpol) { 1681 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1682 mpol = sbinfo->mpol; 1683 mpol_get(mpol); 1684 raw_spin_unlock(&sbinfo->stat_lock); 1685 } 1686 return mpol; 1687 } 1688 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1689 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1690 { 1691 } 1692 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1693 { 1694 return NULL; 1695 } 1696 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1697 1698 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1699 pgoff_t index, unsigned int order, pgoff_t *ilx); 1700 1701 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1702 struct shmem_inode_info *info, pgoff_t index) 1703 { 1704 struct mempolicy *mpol; 1705 pgoff_t ilx; 1706 struct folio *folio; 1707 1708 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1709 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1710 mpol_cond_put(mpol); 1711 1712 return folio; 1713 } 1714 1715 /* 1716 * Make sure huge_gfp is always more limited than limit_gfp. 1717 * Some of the flags set permissions, while others set limitations. 1718 */ 1719 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1720 { 1721 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1722 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1723 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1724 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1725 1726 /* Allow allocations only from the originally specified zones. */ 1727 result |= zoneflags; 1728 1729 /* 1730 * Minimize the result gfp by taking the union with the deny flags, 1731 * and the intersection of the allow flags. 1732 */ 1733 result |= (limit_gfp & denyflags); 1734 result |= (huge_gfp & limit_gfp) & allowflags; 1735 1736 return result; 1737 } 1738 1739 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1740 bool shmem_hpage_pmd_enabled(void) 1741 { 1742 if (shmem_huge == SHMEM_HUGE_DENY) 1743 return false; 1744 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always)) 1745 return true; 1746 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise)) 1747 return true; 1748 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size)) 1749 return true; 1750 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) && 1751 shmem_huge != SHMEM_HUGE_NEVER) 1752 return true; 1753 1754 return false; 1755 } 1756 1757 unsigned long shmem_allowable_huge_orders(struct inode *inode, 1758 struct vm_area_struct *vma, pgoff_t index, 1759 loff_t write_end, bool shmem_huge_force) 1760 { 1761 unsigned long mask = READ_ONCE(huge_shmem_orders_always); 1762 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size); 1763 unsigned long vm_flags = vma ? vma->vm_flags : 0; 1764 unsigned int global_orders; 1765 1766 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags))) 1767 return 0; 1768 1769 global_orders = shmem_huge_global_enabled(inode, index, write_end, 1770 shmem_huge_force, vma, vm_flags); 1771 /* Tmpfs huge pages allocation */ 1772 if (!vma || !vma_is_anon_shmem(vma)) 1773 return global_orders; 1774 1775 /* 1776 * Following the 'deny' semantics of the top level, force the huge 1777 * option off from all mounts. 1778 */ 1779 if (shmem_huge == SHMEM_HUGE_DENY) 1780 return 0; 1781 1782 /* 1783 * Only allow inherit orders if the top-level value is 'force', which 1784 * means non-PMD sized THP can not override 'huge' mount option now. 1785 */ 1786 if (shmem_huge == SHMEM_HUGE_FORCE) 1787 return READ_ONCE(huge_shmem_orders_inherit); 1788 1789 /* Allow mTHP that will be fully within i_size. */ 1790 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0); 1791 1792 if (vm_flags & VM_HUGEPAGE) 1793 mask |= READ_ONCE(huge_shmem_orders_madvise); 1794 1795 if (global_orders > 0) 1796 mask |= READ_ONCE(huge_shmem_orders_inherit); 1797 1798 return THP_ORDERS_ALL_FILE_DEFAULT & mask; 1799 } 1800 1801 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1802 struct address_space *mapping, pgoff_t index, 1803 unsigned long orders) 1804 { 1805 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1806 pgoff_t aligned_index; 1807 unsigned long pages; 1808 int order; 1809 1810 if (vma) { 1811 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 1812 if (!orders) 1813 return 0; 1814 } 1815 1816 /* Find the highest order that can add into the page cache */ 1817 order = highest_order(orders); 1818 while (orders) { 1819 pages = 1UL << order; 1820 aligned_index = round_down(index, pages); 1821 /* 1822 * Check for conflict before waiting on a huge allocation. 1823 * Conflict might be that a huge page has just been allocated 1824 * and added to page cache by a racing thread, or that there 1825 * is already at least one small page in the huge extent. 1826 * Be careful to retry when appropriate, but not forever! 1827 * Elsewhere -EEXIST would be the right code, but not here. 1828 */ 1829 if (!xa_find(&mapping->i_pages, &aligned_index, 1830 aligned_index + pages - 1, XA_PRESENT)) 1831 break; 1832 order = next_order(&orders, order); 1833 } 1834 1835 return orders; 1836 } 1837 #else 1838 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1839 struct address_space *mapping, pgoff_t index, 1840 unsigned long orders) 1841 { 1842 return 0; 1843 } 1844 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1845 1846 static struct folio *shmem_alloc_folio(gfp_t gfp, int order, 1847 struct shmem_inode_info *info, pgoff_t index) 1848 { 1849 struct mempolicy *mpol; 1850 pgoff_t ilx; 1851 struct folio *folio; 1852 1853 mpol = shmem_get_pgoff_policy(info, index, order, &ilx); 1854 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id()); 1855 mpol_cond_put(mpol); 1856 1857 return folio; 1858 } 1859 1860 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf, 1861 gfp_t gfp, struct inode *inode, pgoff_t index, 1862 struct mm_struct *fault_mm, unsigned long orders) 1863 { 1864 struct address_space *mapping = inode->i_mapping; 1865 struct shmem_inode_info *info = SHMEM_I(inode); 1866 unsigned long suitable_orders = 0; 1867 struct folio *folio = NULL; 1868 long pages; 1869 int error, order; 1870 1871 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1872 orders = 0; 1873 1874 if (orders > 0) { 1875 suitable_orders = shmem_suitable_orders(inode, vmf, 1876 mapping, index, orders); 1877 1878 order = highest_order(suitable_orders); 1879 while (suitable_orders) { 1880 pages = 1UL << order; 1881 index = round_down(index, pages); 1882 folio = shmem_alloc_folio(gfp, order, info, index); 1883 if (folio) 1884 goto allocated; 1885 1886 if (pages == HPAGE_PMD_NR) 1887 count_vm_event(THP_FILE_FALLBACK); 1888 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK); 1889 order = next_order(&suitable_orders, order); 1890 } 1891 } else { 1892 pages = 1; 1893 folio = shmem_alloc_folio(gfp, 0, info, index); 1894 } 1895 if (!folio) 1896 return ERR_PTR(-ENOMEM); 1897 1898 allocated: 1899 __folio_set_locked(folio); 1900 __folio_set_swapbacked(folio); 1901 1902 gfp &= GFP_RECLAIM_MASK; 1903 error = mem_cgroup_charge(folio, fault_mm, gfp); 1904 if (error) { 1905 if (xa_find(&mapping->i_pages, &index, 1906 index + pages - 1, XA_PRESENT)) { 1907 error = -EEXIST; 1908 } else if (pages > 1) { 1909 if (pages == HPAGE_PMD_NR) { 1910 count_vm_event(THP_FILE_FALLBACK); 1911 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1912 } 1913 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK); 1914 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE); 1915 } 1916 goto unlock; 1917 } 1918 1919 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1920 if (error) 1921 goto unlock; 1922 1923 error = shmem_inode_acct_blocks(inode, pages); 1924 if (error) { 1925 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1926 long freed; 1927 /* 1928 * Try to reclaim some space by splitting a few 1929 * large folios beyond i_size on the filesystem. 1930 */ 1931 shmem_unused_huge_shrink(sbinfo, NULL, pages); 1932 /* 1933 * And do a shmem_recalc_inode() to account for freed pages: 1934 * except our folio is there in cache, so not quite balanced. 1935 */ 1936 spin_lock(&info->lock); 1937 freed = pages + info->alloced - info->swapped - 1938 READ_ONCE(mapping->nrpages); 1939 if (freed > 0) 1940 info->alloced -= freed; 1941 spin_unlock(&info->lock); 1942 if (freed > 0) 1943 shmem_inode_unacct_blocks(inode, freed); 1944 error = shmem_inode_acct_blocks(inode, pages); 1945 if (error) { 1946 filemap_remove_folio(folio); 1947 goto unlock; 1948 } 1949 } 1950 1951 shmem_recalc_inode(inode, pages, 0); 1952 folio_add_lru(folio); 1953 return folio; 1954 1955 unlock: 1956 folio_unlock(folio); 1957 folio_put(folio); 1958 return ERR_PTR(error); 1959 } 1960 1961 static struct folio *shmem_swap_alloc_folio(struct inode *inode, 1962 struct vm_area_struct *vma, pgoff_t index, 1963 swp_entry_t entry, int order, gfp_t gfp) 1964 { 1965 struct shmem_inode_info *info = SHMEM_I(inode); 1966 struct folio *new; 1967 void *shadow; 1968 int nr_pages; 1969 1970 /* 1971 * We have arrived here because our zones are constrained, so don't 1972 * limit chance of success with further cpuset and node constraints. 1973 */ 1974 gfp &= ~GFP_CONSTRAINT_MASK; 1975 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && order > 0) { 1976 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 1977 1978 gfp = limit_gfp_mask(huge_gfp, gfp); 1979 } 1980 1981 new = shmem_alloc_folio(gfp, order, info, index); 1982 if (!new) 1983 return ERR_PTR(-ENOMEM); 1984 1985 nr_pages = folio_nr_pages(new); 1986 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL, 1987 gfp, entry)) { 1988 folio_put(new); 1989 return ERR_PTR(-ENOMEM); 1990 } 1991 1992 /* 1993 * Prevent parallel swapin from proceeding with the swap cache flag. 1994 * 1995 * Of course there is another possible concurrent scenario as well, 1996 * that is to say, the swap cache flag of a large folio has already 1997 * been set by swapcache_prepare(), while another thread may have 1998 * already split the large swap entry stored in the shmem mapping. 1999 * In this case, shmem_add_to_page_cache() will help identify the 2000 * concurrent swapin and return -EEXIST. 2001 */ 2002 if (swapcache_prepare(entry, nr_pages)) { 2003 folio_put(new); 2004 return ERR_PTR(-EEXIST); 2005 } 2006 2007 __folio_set_locked(new); 2008 __folio_set_swapbacked(new); 2009 new->swap = entry; 2010 2011 memcg1_swapin(entry, nr_pages); 2012 shadow = get_shadow_from_swap_cache(entry); 2013 if (shadow) 2014 workingset_refault(new, shadow); 2015 folio_add_lru(new); 2016 swap_read_folio(new, NULL); 2017 return new; 2018 } 2019 2020 /* 2021 * When a page is moved from swapcache to shmem filecache (either by the 2022 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 2023 * shmem_unuse_inode()), it may have been read in earlier from swap, in 2024 * ignorance of the mapping it belongs to. If that mapping has special 2025 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 2026 * we may need to copy to a suitable page before moving to filecache. 2027 * 2028 * In a future release, this may well be extended to respect cpuset and 2029 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 2030 * but for now it is a simple matter of zone. 2031 */ 2032 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 2033 { 2034 return folio_zonenum(folio) > gfp_zone(gfp); 2035 } 2036 2037 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 2038 struct shmem_inode_info *info, pgoff_t index, 2039 struct vm_area_struct *vma) 2040 { 2041 struct folio *new, *old = *foliop; 2042 swp_entry_t entry = old->swap; 2043 struct address_space *swap_mapping = swap_address_space(entry); 2044 pgoff_t swap_index = swap_cache_index(entry); 2045 XA_STATE(xas, &swap_mapping->i_pages, swap_index); 2046 int nr_pages = folio_nr_pages(old); 2047 int error = 0, i; 2048 2049 /* 2050 * We have arrived here because our zones are constrained, so don't 2051 * limit chance of success by further cpuset and node constraints. 2052 */ 2053 gfp &= ~GFP_CONSTRAINT_MASK; 2054 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2055 if (nr_pages > 1) { 2056 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 2057 2058 gfp = limit_gfp_mask(huge_gfp, gfp); 2059 } 2060 #endif 2061 2062 new = shmem_alloc_folio(gfp, folio_order(old), info, index); 2063 if (!new) 2064 return -ENOMEM; 2065 2066 folio_ref_add(new, nr_pages); 2067 folio_copy(new, old); 2068 flush_dcache_folio(new); 2069 2070 __folio_set_locked(new); 2071 __folio_set_swapbacked(new); 2072 folio_mark_uptodate(new); 2073 new->swap = entry; 2074 folio_set_swapcache(new); 2075 2076 /* Swap cache still stores N entries instead of a high-order entry */ 2077 xa_lock_irq(&swap_mapping->i_pages); 2078 for (i = 0; i < nr_pages; i++) { 2079 void *item = xas_load(&xas); 2080 2081 if (item != old) { 2082 error = -ENOENT; 2083 break; 2084 } 2085 2086 xas_store(&xas, new); 2087 xas_next(&xas); 2088 } 2089 if (!error) { 2090 mem_cgroup_replace_folio(old, new); 2091 shmem_update_stats(new, nr_pages); 2092 shmem_update_stats(old, -nr_pages); 2093 } 2094 xa_unlock_irq(&swap_mapping->i_pages); 2095 2096 if (unlikely(error)) { 2097 /* 2098 * Is this possible? I think not, now that our callers 2099 * check both the swapcache flag and folio->private 2100 * after getting the folio lock; but be defensive. 2101 * Reverse old to newpage for clear and free. 2102 */ 2103 old = new; 2104 } else { 2105 folio_add_lru(new); 2106 *foliop = new; 2107 } 2108 2109 folio_clear_swapcache(old); 2110 old->private = NULL; 2111 2112 folio_unlock(old); 2113 /* 2114 * The old folio are removed from swap cache, drop the 'nr_pages' 2115 * reference, as well as one temporary reference getting from swap 2116 * cache. 2117 */ 2118 folio_put_refs(old, nr_pages + 1); 2119 return error; 2120 } 2121 2122 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 2123 struct folio *folio, swp_entry_t swap, 2124 bool skip_swapcache) 2125 { 2126 struct address_space *mapping = inode->i_mapping; 2127 swp_entry_t swapin_error; 2128 void *old; 2129 int nr_pages; 2130 2131 swapin_error = make_poisoned_swp_entry(); 2132 old = xa_cmpxchg_irq(&mapping->i_pages, index, 2133 swp_to_radix_entry(swap), 2134 swp_to_radix_entry(swapin_error), 0); 2135 if (old != swp_to_radix_entry(swap)) 2136 return; 2137 2138 nr_pages = folio_nr_pages(folio); 2139 folio_wait_writeback(folio); 2140 if (!skip_swapcache) 2141 delete_from_swap_cache(folio); 2142 /* 2143 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 2144 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 2145 * in shmem_evict_inode(). 2146 */ 2147 shmem_recalc_inode(inode, -nr_pages, -nr_pages); 2148 swap_free_nr(swap, nr_pages); 2149 } 2150 2151 static int shmem_split_large_entry(struct inode *inode, pgoff_t index, 2152 swp_entry_t swap, gfp_t gfp) 2153 { 2154 struct address_space *mapping = inode->i_mapping; 2155 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0); 2156 int split_order = 0, entry_order; 2157 int i; 2158 2159 /* Convert user data gfp flags to xarray node gfp flags */ 2160 gfp &= GFP_RECLAIM_MASK; 2161 2162 for (;;) { 2163 void *old = NULL; 2164 int cur_order; 2165 pgoff_t swap_index; 2166 2167 xas_lock_irq(&xas); 2168 old = xas_load(&xas); 2169 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) { 2170 xas_set_err(&xas, -EEXIST); 2171 goto unlock; 2172 } 2173 2174 entry_order = xas_get_order(&xas); 2175 2176 if (!entry_order) 2177 goto unlock; 2178 2179 /* Try to split large swap entry in pagecache */ 2180 cur_order = entry_order; 2181 swap_index = round_down(index, 1 << entry_order); 2182 2183 split_order = xas_try_split_min_order(cur_order); 2184 2185 while (cur_order > 0) { 2186 pgoff_t aligned_index = 2187 round_down(index, 1 << cur_order); 2188 pgoff_t swap_offset = aligned_index - swap_index; 2189 2190 xas_set_order(&xas, index, split_order); 2191 xas_try_split(&xas, old, cur_order); 2192 if (xas_error(&xas)) 2193 goto unlock; 2194 2195 /* 2196 * Re-set the swap entry after splitting, and the swap 2197 * offset of the original large entry must be continuous. 2198 */ 2199 for (i = 0; i < 1 << cur_order; 2200 i += (1 << split_order)) { 2201 swp_entry_t tmp; 2202 2203 tmp = swp_entry(swp_type(swap), 2204 swp_offset(swap) + swap_offset + 2205 i); 2206 __xa_store(&mapping->i_pages, aligned_index + i, 2207 swp_to_radix_entry(tmp), 0); 2208 } 2209 cur_order = split_order; 2210 split_order = xas_try_split_min_order(split_order); 2211 } 2212 2213 unlock: 2214 xas_unlock_irq(&xas); 2215 2216 if (!xas_nomem(&xas, gfp)) 2217 break; 2218 } 2219 2220 if (xas_error(&xas)) 2221 return xas_error(&xas); 2222 2223 return entry_order; 2224 } 2225 2226 /* 2227 * Swap in the folio pointed to by *foliop. 2228 * Caller has to make sure that *foliop contains a valid swapped folio. 2229 * Returns 0 and the folio in foliop if success. On failure, returns the 2230 * error code and NULL in *foliop. 2231 */ 2232 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 2233 struct folio **foliop, enum sgp_type sgp, 2234 gfp_t gfp, struct vm_area_struct *vma, 2235 vm_fault_t *fault_type) 2236 { 2237 struct address_space *mapping = inode->i_mapping; 2238 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL; 2239 struct shmem_inode_info *info = SHMEM_I(inode); 2240 struct swap_info_struct *si; 2241 struct folio *folio = NULL; 2242 bool skip_swapcache = false; 2243 swp_entry_t swap; 2244 int error, nr_pages, order, split_order; 2245 2246 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 2247 swap = radix_to_swp_entry(*foliop); 2248 *foliop = NULL; 2249 2250 if (is_poisoned_swp_entry(swap)) 2251 return -EIO; 2252 2253 si = get_swap_device(swap); 2254 if (!si) { 2255 if (!shmem_confirm_swap(mapping, index, swap)) 2256 return -EEXIST; 2257 else 2258 return -EINVAL; 2259 } 2260 2261 /* Look it up and read it in.. */ 2262 folio = swap_cache_get_folio(swap, NULL, 0); 2263 order = xa_get_order(&mapping->i_pages, index); 2264 if (!folio) { 2265 bool fallback_order0 = false; 2266 2267 /* Or update major stats only when swapin succeeds?? */ 2268 if (fault_type) { 2269 *fault_type |= VM_FAULT_MAJOR; 2270 count_vm_event(PGMAJFAULT); 2271 count_memcg_event_mm(fault_mm, PGMAJFAULT); 2272 } 2273 2274 /* 2275 * If uffd is active for the vma, we need per-page fault 2276 * fidelity to maintain the uffd semantics, then fallback 2277 * to swapin order-0 folio, as well as for zswap case. 2278 */ 2279 if (order > 0 && ((vma && unlikely(userfaultfd_armed(vma))) || 2280 !zswap_never_enabled())) 2281 fallback_order0 = true; 2282 2283 /* Skip swapcache for synchronous device. */ 2284 if (!fallback_order0 && data_race(si->flags & SWP_SYNCHRONOUS_IO)) { 2285 folio = shmem_swap_alloc_folio(inode, vma, index, swap, order, gfp); 2286 if (!IS_ERR(folio)) { 2287 skip_swapcache = true; 2288 goto alloced; 2289 } 2290 2291 /* 2292 * Fallback to swapin order-0 folio unless the swap entry 2293 * already exists. 2294 */ 2295 error = PTR_ERR(folio); 2296 folio = NULL; 2297 if (error == -EEXIST) 2298 goto failed; 2299 } 2300 2301 /* 2302 * Now swap device can only swap in order 0 folio, then we 2303 * should split the large swap entry stored in the pagecache 2304 * if necessary. 2305 */ 2306 split_order = shmem_split_large_entry(inode, index, swap, gfp); 2307 if (split_order < 0) { 2308 error = split_order; 2309 goto failed; 2310 } 2311 2312 /* 2313 * If the large swap entry has already been split, it is 2314 * necessary to recalculate the new swap entry based on 2315 * the old order alignment. 2316 */ 2317 if (split_order > 0) { 2318 pgoff_t offset = index - round_down(index, 1 << split_order); 2319 2320 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2321 } 2322 2323 /* Here we actually start the io */ 2324 folio = shmem_swapin_cluster(swap, gfp, info, index); 2325 if (!folio) { 2326 error = -ENOMEM; 2327 goto failed; 2328 } 2329 } else if (order != folio_order(folio)) { 2330 /* 2331 * Swap readahead may swap in order 0 folios into swapcache 2332 * asynchronously, while the shmem mapping can still stores 2333 * large swap entries. In such cases, we should split the 2334 * large swap entry to prevent possible data corruption. 2335 */ 2336 split_order = shmem_split_large_entry(inode, index, swap, gfp); 2337 if (split_order < 0) { 2338 error = split_order; 2339 goto failed; 2340 } 2341 2342 /* 2343 * If the large swap entry has already been split, it is 2344 * necessary to recalculate the new swap entry based on 2345 * the old order alignment. 2346 */ 2347 if (split_order > 0) { 2348 pgoff_t offset = index - round_down(index, 1 << split_order); 2349 2350 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2351 } 2352 } 2353 2354 alloced: 2355 /* We have to do this with folio locked to prevent races */ 2356 folio_lock(folio); 2357 if ((!skip_swapcache && !folio_test_swapcache(folio)) || 2358 folio->swap.val != swap.val || 2359 !shmem_confirm_swap(mapping, index, swap) || 2360 xa_get_order(&mapping->i_pages, index) != folio_order(folio)) { 2361 error = -EEXIST; 2362 goto unlock; 2363 } 2364 if (!folio_test_uptodate(folio)) { 2365 error = -EIO; 2366 goto failed; 2367 } 2368 folio_wait_writeback(folio); 2369 nr_pages = folio_nr_pages(folio); 2370 2371 /* 2372 * Some architectures may have to restore extra metadata to the 2373 * folio after reading from swap. 2374 */ 2375 arch_swap_restore(folio_swap(swap, folio), folio); 2376 2377 if (shmem_should_replace_folio(folio, gfp)) { 2378 error = shmem_replace_folio(&folio, gfp, info, index, vma); 2379 if (error) 2380 goto failed; 2381 } 2382 2383 error = shmem_add_to_page_cache(folio, mapping, 2384 round_down(index, nr_pages), 2385 swp_to_radix_entry(swap), gfp); 2386 if (error) 2387 goto failed; 2388 2389 shmem_recalc_inode(inode, 0, -nr_pages); 2390 2391 if (sgp == SGP_WRITE) 2392 folio_mark_accessed(folio); 2393 2394 if (skip_swapcache) { 2395 folio->swap.val = 0; 2396 swapcache_clear(si, swap, nr_pages); 2397 } else { 2398 delete_from_swap_cache(folio); 2399 } 2400 folio_mark_dirty(folio); 2401 swap_free_nr(swap, nr_pages); 2402 put_swap_device(si); 2403 2404 *foliop = folio; 2405 return 0; 2406 failed: 2407 if (!shmem_confirm_swap(mapping, index, swap)) 2408 error = -EEXIST; 2409 if (error == -EIO) 2410 shmem_set_folio_swapin_error(inode, index, folio, swap, 2411 skip_swapcache); 2412 unlock: 2413 if (skip_swapcache) 2414 swapcache_clear(si, swap, folio_nr_pages(folio)); 2415 if (folio) { 2416 folio_unlock(folio); 2417 folio_put(folio); 2418 } 2419 put_swap_device(si); 2420 2421 return error; 2422 } 2423 2424 /* 2425 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 2426 * 2427 * If we allocate a new one we do not mark it dirty. That's up to the 2428 * vm. If we swap it in we mark it dirty since we also free the swap 2429 * entry since a page cannot live in both the swap and page cache. 2430 * 2431 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 2432 */ 2433 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 2434 loff_t write_end, struct folio **foliop, enum sgp_type sgp, 2435 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type) 2436 { 2437 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 2438 struct mm_struct *fault_mm; 2439 struct folio *folio; 2440 int error; 2441 bool alloced; 2442 unsigned long orders = 0; 2443 2444 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 2445 return -EINVAL; 2446 2447 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 2448 return -EFBIG; 2449 repeat: 2450 if (sgp <= SGP_CACHE && 2451 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 2452 return -EINVAL; 2453 2454 alloced = false; 2455 fault_mm = vma ? vma->vm_mm : NULL; 2456 2457 folio = filemap_get_entry(inode->i_mapping, index); 2458 if (folio && vma && userfaultfd_minor(vma)) { 2459 if (!xa_is_value(folio)) 2460 folio_put(folio); 2461 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 2462 return 0; 2463 } 2464 2465 if (xa_is_value(folio)) { 2466 error = shmem_swapin_folio(inode, index, &folio, 2467 sgp, gfp, vma, fault_type); 2468 if (error == -EEXIST) 2469 goto repeat; 2470 2471 *foliop = folio; 2472 return error; 2473 } 2474 2475 if (folio) { 2476 folio_lock(folio); 2477 2478 /* Has the folio been truncated or swapped out? */ 2479 if (unlikely(folio->mapping != inode->i_mapping)) { 2480 folio_unlock(folio); 2481 folio_put(folio); 2482 goto repeat; 2483 } 2484 if (sgp == SGP_WRITE) 2485 folio_mark_accessed(folio); 2486 if (folio_test_uptodate(folio)) 2487 goto out; 2488 /* fallocated folio */ 2489 if (sgp != SGP_READ) 2490 goto clear; 2491 folio_unlock(folio); 2492 folio_put(folio); 2493 } 2494 2495 /* 2496 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2497 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2498 */ 2499 *foliop = NULL; 2500 if (sgp == SGP_READ) 2501 return 0; 2502 if (sgp == SGP_NOALLOC) 2503 return -ENOENT; 2504 2505 /* 2506 * Fast cache lookup and swap lookup did not find it: allocate. 2507 */ 2508 2509 if (vma && userfaultfd_missing(vma)) { 2510 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2511 return 0; 2512 } 2513 2514 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */ 2515 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false); 2516 if (orders > 0) { 2517 gfp_t huge_gfp; 2518 2519 huge_gfp = vma_thp_gfp_mask(vma); 2520 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2521 folio = shmem_alloc_and_add_folio(vmf, huge_gfp, 2522 inode, index, fault_mm, orders); 2523 if (!IS_ERR(folio)) { 2524 if (folio_test_pmd_mappable(folio)) 2525 count_vm_event(THP_FILE_ALLOC); 2526 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC); 2527 goto alloced; 2528 } 2529 if (PTR_ERR(folio) == -EEXIST) 2530 goto repeat; 2531 } 2532 2533 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0); 2534 if (IS_ERR(folio)) { 2535 error = PTR_ERR(folio); 2536 if (error == -EEXIST) 2537 goto repeat; 2538 folio = NULL; 2539 goto unlock; 2540 } 2541 2542 alloced: 2543 alloced = true; 2544 if (folio_test_large(folio) && 2545 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2546 folio_next_index(folio)) { 2547 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2548 struct shmem_inode_info *info = SHMEM_I(inode); 2549 /* 2550 * Part of the large folio is beyond i_size: subject 2551 * to shrink under memory pressure. 2552 */ 2553 spin_lock(&sbinfo->shrinklist_lock); 2554 /* 2555 * _careful to defend against unlocked access to 2556 * ->shrink_list in shmem_unused_huge_shrink() 2557 */ 2558 if (list_empty_careful(&info->shrinklist)) { 2559 list_add_tail(&info->shrinklist, 2560 &sbinfo->shrinklist); 2561 sbinfo->shrinklist_len++; 2562 } 2563 spin_unlock(&sbinfo->shrinklist_lock); 2564 } 2565 2566 if (sgp == SGP_WRITE) 2567 folio_set_referenced(folio); 2568 /* 2569 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2570 */ 2571 if (sgp == SGP_FALLOC) 2572 sgp = SGP_WRITE; 2573 clear: 2574 /* 2575 * Let SGP_WRITE caller clear ends if write does not fill folio; 2576 * but SGP_FALLOC on a folio fallocated earlier must initialize 2577 * it now, lest undo on failure cancel our earlier guarantee. 2578 */ 2579 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2580 long i, n = folio_nr_pages(folio); 2581 2582 for (i = 0; i < n; i++) 2583 clear_highpage(folio_page(folio, i)); 2584 flush_dcache_folio(folio); 2585 folio_mark_uptodate(folio); 2586 } 2587 2588 /* Perhaps the file has been truncated since we checked */ 2589 if (sgp <= SGP_CACHE && 2590 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2591 error = -EINVAL; 2592 goto unlock; 2593 } 2594 out: 2595 *foliop = folio; 2596 return 0; 2597 2598 /* 2599 * Error recovery. 2600 */ 2601 unlock: 2602 if (alloced) 2603 filemap_remove_folio(folio); 2604 shmem_recalc_inode(inode, 0, 0); 2605 if (folio) { 2606 folio_unlock(folio); 2607 folio_put(folio); 2608 } 2609 return error; 2610 } 2611 2612 /** 2613 * shmem_get_folio - find, and lock a shmem folio. 2614 * @inode: inode to search 2615 * @index: the page index. 2616 * @write_end: end of a write, could extend inode size 2617 * @foliop: pointer to the folio if found 2618 * @sgp: SGP_* flags to control behavior 2619 * 2620 * Looks up the page cache entry at @inode & @index. If a folio is 2621 * present, it is returned locked with an increased refcount. 2622 * 2623 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2624 * before unlocking the folio to ensure that the folio is not reclaimed. 2625 * There is no need to reserve space before calling folio_mark_dirty(). 2626 * 2627 * When no folio is found, the behavior depends on @sgp: 2628 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2629 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2630 * - for all other flags a new folio is allocated, inserted into the 2631 * page cache and returned locked in @foliop. 2632 * 2633 * Context: May sleep. 2634 * Return: 0 if successful, else a negative error code. 2635 */ 2636 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end, 2637 struct folio **foliop, enum sgp_type sgp) 2638 { 2639 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp, 2640 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2641 } 2642 EXPORT_SYMBOL_GPL(shmem_get_folio); 2643 2644 /* 2645 * This is like autoremove_wake_function, but it removes the wait queue 2646 * entry unconditionally - even if something else had already woken the 2647 * target. 2648 */ 2649 static int synchronous_wake_function(wait_queue_entry_t *wait, 2650 unsigned int mode, int sync, void *key) 2651 { 2652 int ret = default_wake_function(wait, mode, sync, key); 2653 list_del_init(&wait->entry); 2654 return ret; 2655 } 2656 2657 /* 2658 * Trinity finds that probing a hole which tmpfs is punching can 2659 * prevent the hole-punch from ever completing: which in turn 2660 * locks writers out with its hold on i_rwsem. So refrain from 2661 * faulting pages into the hole while it's being punched. Although 2662 * shmem_undo_range() does remove the additions, it may be unable to 2663 * keep up, as each new page needs its own unmap_mapping_range() call, 2664 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2665 * 2666 * It does not matter if we sometimes reach this check just before the 2667 * hole-punch begins, so that one fault then races with the punch: 2668 * we just need to make racing faults a rare case. 2669 * 2670 * The implementation below would be much simpler if we just used a 2671 * standard mutex or completion: but we cannot take i_rwsem in fault, 2672 * and bloating every shmem inode for this unlikely case would be sad. 2673 */ 2674 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2675 { 2676 struct shmem_falloc *shmem_falloc; 2677 struct file *fpin = NULL; 2678 vm_fault_t ret = 0; 2679 2680 spin_lock(&inode->i_lock); 2681 shmem_falloc = inode->i_private; 2682 if (shmem_falloc && 2683 shmem_falloc->waitq && 2684 vmf->pgoff >= shmem_falloc->start && 2685 vmf->pgoff < shmem_falloc->next) { 2686 wait_queue_head_t *shmem_falloc_waitq; 2687 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2688 2689 ret = VM_FAULT_NOPAGE; 2690 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2691 shmem_falloc_waitq = shmem_falloc->waitq; 2692 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2693 TASK_UNINTERRUPTIBLE); 2694 spin_unlock(&inode->i_lock); 2695 schedule(); 2696 2697 /* 2698 * shmem_falloc_waitq points into the shmem_fallocate() 2699 * stack of the hole-punching task: shmem_falloc_waitq 2700 * is usually invalid by the time we reach here, but 2701 * finish_wait() does not dereference it in that case; 2702 * though i_lock needed lest racing with wake_up_all(). 2703 */ 2704 spin_lock(&inode->i_lock); 2705 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2706 } 2707 spin_unlock(&inode->i_lock); 2708 if (fpin) { 2709 fput(fpin); 2710 ret = VM_FAULT_RETRY; 2711 } 2712 return ret; 2713 } 2714 2715 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2716 { 2717 struct inode *inode = file_inode(vmf->vma->vm_file); 2718 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2719 struct folio *folio = NULL; 2720 vm_fault_t ret = 0; 2721 int err; 2722 2723 /* 2724 * Trinity finds that probing a hole which tmpfs is punching can 2725 * prevent the hole-punch from ever completing: noted in i_private. 2726 */ 2727 if (unlikely(inode->i_private)) { 2728 ret = shmem_falloc_wait(vmf, inode); 2729 if (ret) 2730 return ret; 2731 } 2732 2733 WARN_ON_ONCE(vmf->page != NULL); 2734 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE, 2735 gfp, vmf, &ret); 2736 if (err) 2737 return vmf_error(err); 2738 if (folio) { 2739 vmf->page = folio_file_page(folio, vmf->pgoff); 2740 ret |= VM_FAULT_LOCKED; 2741 } 2742 return ret; 2743 } 2744 2745 unsigned long shmem_get_unmapped_area(struct file *file, 2746 unsigned long uaddr, unsigned long len, 2747 unsigned long pgoff, unsigned long flags) 2748 { 2749 unsigned long addr; 2750 unsigned long offset; 2751 unsigned long inflated_len; 2752 unsigned long inflated_addr; 2753 unsigned long inflated_offset; 2754 unsigned long hpage_size; 2755 2756 if (len > TASK_SIZE) 2757 return -ENOMEM; 2758 2759 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff, 2760 flags); 2761 2762 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2763 return addr; 2764 if (IS_ERR_VALUE(addr)) 2765 return addr; 2766 if (addr & ~PAGE_MASK) 2767 return addr; 2768 if (addr > TASK_SIZE - len) 2769 return addr; 2770 2771 if (shmem_huge == SHMEM_HUGE_DENY) 2772 return addr; 2773 if (flags & MAP_FIXED) 2774 return addr; 2775 /* 2776 * Our priority is to support MAP_SHARED mapped hugely; 2777 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2778 * But if caller specified an address hint and we allocated area there 2779 * successfully, respect that as before. 2780 */ 2781 if (uaddr == addr) 2782 return addr; 2783 2784 hpage_size = HPAGE_PMD_SIZE; 2785 if (shmem_huge != SHMEM_HUGE_FORCE) { 2786 struct super_block *sb; 2787 unsigned long __maybe_unused hpage_orders; 2788 int order = 0; 2789 2790 if (file) { 2791 VM_BUG_ON(file->f_op != &shmem_file_operations); 2792 sb = file_inode(file)->i_sb; 2793 } else { 2794 /* 2795 * Called directly from mm/mmap.c, or drivers/char/mem.c 2796 * for "/dev/zero", to create a shared anonymous object. 2797 */ 2798 if (IS_ERR(shm_mnt)) 2799 return addr; 2800 sb = shm_mnt->mnt_sb; 2801 2802 /* 2803 * Find the highest mTHP order used for anonymous shmem to 2804 * provide a suitable alignment address. 2805 */ 2806 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2807 hpage_orders = READ_ONCE(huge_shmem_orders_always); 2808 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size); 2809 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise); 2810 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 2811 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit); 2812 2813 if (hpage_orders > 0) { 2814 order = highest_order(hpage_orders); 2815 hpage_size = PAGE_SIZE << order; 2816 } 2817 #endif 2818 } 2819 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order) 2820 return addr; 2821 } 2822 2823 if (len < hpage_size) 2824 return addr; 2825 2826 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1); 2827 if (offset && offset + len < 2 * hpage_size) 2828 return addr; 2829 if ((addr & (hpage_size - 1)) == offset) 2830 return addr; 2831 2832 inflated_len = len + hpage_size - PAGE_SIZE; 2833 if (inflated_len > TASK_SIZE) 2834 return addr; 2835 if (inflated_len < len) 2836 return addr; 2837 2838 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr, 2839 inflated_len, 0, flags); 2840 if (IS_ERR_VALUE(inflated_addr)) 2841 return addr; 2842 if (inflated_addr & ~PAGE_MASK) 2843 return addr; 2844 2845 inflated_offset = inflated_addr & (hpage_size - 1); 2846 inflated_addr += offset - inflated_offset; 2847 if (inflated_offset > offset) 2848 inflated_addr += hpage_size; 2849 2850 if (inflated_addr > TASK_SIZE - len) 2851 return addr; 2852 return inflated_addr; 2853 } 2854 2855 #ifdef CONFIG_NUMA 2856 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2857 { 2858 struct inode *inode = file_inode(vma->vm_file); 2859 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2860 } 2861 2862 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2863 unsigned long addr, pgoff_t *ilx) 2864 { 2865 struct inode *inode = file_inode(vma->vm_file); 2866 pgoff_t index; 2867 2868 /* 2869 * Bias interleave by inode number to distribute better across nodes; 2870 * but this interface is independent of which page order is used, so 2871 * supplies only that bias, letting caller apply the offset (adjusted 2872 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2873 */ 2874 *ilx = inode->i_ino; 2875 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2876 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2877 } 2878 2879 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2880 pgoff_t index, unsigned int order, pgoff_t *ilx) 2881 { 2882 struct mempolicy *mpol; 2883 2884 /* Bias interleave by inode number to distribute better across nodes */ 2885 *ilx = info->vfs_inode.i_ino + (index >> order); 2886 2887 mpol = mpol_shared_policy_lookup(&info->policy, index); 2888 return mpol ? mpol : get_task_policy(current); 2889 } 2890 #else 2891 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2892 pgoff_t index, unsigned int order, pgoff_t *ilx) 2893 { 2894 *ilx = 0; 2895 return NULL; 2896 } 2897 #endif /* CONFIG_NUMA */ 2898 2899 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2900 { 2901 struct inode *inode = file_inode(file); 2902 struct shmem_inode_info *info = SHMEM_I(inode); 2903 int retval = -ENOMEM; 2904 2905 /* 2906 * What serializes the accesses to info->flags? 2907 * ipc_lock_object() when called from shmctl_do_lock(), 2908 * no serialization needed when called from shm_destroy(). 2909 */ 2910 if (lock && !(info->flags & VM_LOCKED)) { 2911 if (!user_shm_lock(inode->i_size, ucounts)) 2912 goto out_nomem; 2913 info->flags |= VM_LOCKED; 2914 mapping_set_unevictable(file->f_mapping); 2915 } 2916 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2917 user_shm_unlock(inode->i_size, ucounts); 2918 info->flags &= ~VM_LOCKED; 2919 mapping_clear_unevictable(file->f_mapping); 2920 } 2921 retval = 0; 2922 2923 out_nomem: 2924 return retval; 2925 } 2926 2927 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2928 { 2929 struct inode *inode = file_inode(file); 2930 2931 file_accessed(file); 2932 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2933 if (inode->i_nlink) 2934 vma->vm_ops = &shmem_vm_ops; 2935 else 2936 vma->vm_ops = &shmem_anon_vm_ops; 2937 return 0; 2938 } 2939 2940 static int shmem_file_open(struct inode *inode, struct file *file) 2941 { 2942 file->f_mode |= FMODE_CAN_ODIRECT; 2943 return generic_file_open(inode, file); 2944 } 2945 2946 #ifdef CONFIG_TMPFS_XATTR 2947 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2948 2949 #if IS_ENABLED(CONFIG_UNICODE) 2950 /* 2951 * shmem_inode_casefold_flags - Deal with casefold file attribute flag 2952 * 2953 * The casefold file attribute needs some special checks. I can just be added to 2954 * an empty dir, and can't be removed from a non-empty dir. 2955 */ 2956 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 2957 struct dentry *dentry, unsigned int *i_flags) 2958 { 2959 unsigned int old = inode->i_flags; 2960 struct super_block *sb = inode->i_sb; 2961 2962 if (fsflags & FS_CASEFOLD_FL) { 2963 if (!(old & S_CASEFOLD)) { 2964 if (!sb->s_encoding) 2965 return -EOPNOTSUPP; 2966 2967 if (!S_ISDIR(inode->i_mode)) 2968 return -ENOTDIR; 2969 2970 if (dentry && !simple_empty(dentry)) 2971 return -ENOTEMPTY; 2972 } 2973 2974 *i_flags = *i_flags | S_CASEFOLD; 2975 } else if (old & S_CASEFOLD) { 2976 if (dentry && !simple_empty(dentry)) 2977 return -ENOTEMPTY; 2978 } 2979 2980 return 0; 2981 } 2982 #else 2983 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 2984 struct dentry *dentry, unsigned int *i_flags) 2985 { 2986 if (fsflags & FS_CASEFOLD_FL) 2987 return -EOPNOTSUPP; 2988 2989 return 0; 2990 } 2991 #endif 2992 2993 /* 2994 * chattr's fsflags are unrelated to extended attributes, 2995 * but tmpfs has chosen to enable them under the same config option. 2996 */ 2997 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 2998 { 2999 unsigned int i_flags = 0; 3000 int ret; 3001 3002 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags); 3003 if (ret) 3004 return ret; 3005 3006 if (fsflags & FS_NOATIME_FL) 3007 i_flags |= S_NOATIME; 3008 if (fsflags & FS_APPEND_FL) 3009 i_flags |= S_APPEND; 3010 if (fsflags & FS_IMMUTABLE_FL) 3011 i_flags |= S_IMMUTABLE; 3012 /* 3013 * But FS_NODUMP_FL does not require any action in i_flags. 3014 */ 3015 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD); 3016 3017 return 0; 3018 } 3019 #else 3020 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3021 { 3022 } 3023 #define shmem_initxattrs NULL 3024 #endif 3025 3026 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 3027 { 3028 return &SHMEM_I(inode)->dir_offsets; 3029 } 3030 3031 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 3032 struct super_block *sb, 3033 struct inode *dir, umode_t mode, 3034 dev_t dev, unsigned long flags) 3035 { 3036 struct inode *inode; 3037 struct shmem_inode_info *info; 3038 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3039 ino_t ino; 3040 int err; 3041 3042 err = shmem_reserve_inode(sb, &ino); 3043 if (err) 3044 return ERR_PTR(err); 3045 3046 inode = new_inode(sb); 3047 if (!inode) { 3048 shmem_free_inode(sb, 0); 3049 return ERR_PTR(-ENOSPC); 3050 } 3051 3052 inode->i_ino = ino; 3053 inode_init_owner(idmap, inode, dir, mode); 3054 inode->i_blocks = 0; 3055 simple_inode_init_ts(inode); 3056 inode->i_generation = get_random_u32(); 3057 info = SHMEM_I(inode); 3058 memset(info, 0, (char *)inode - (char *)info); 3059 spin_lock_init(&info->lock); 3060 atomic_set(&info->stop_eviction, 0); 3061 info->seals = F_SEAL_SEAL; 3062 info->flags = flags & VM_NORESERVE; 3063 info->i_crtime = inode_get_mtime(inode); 3064 info->fsflags = (dir == NULL) ? 0 : 3065 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 3066 if (info->fsflags) 3067 shmem_set_inode_flags(inode, info->fsflags, NULL); 3068 INIT_LIST_HEAD(&info->shrinklist); 3069 INIT_LIST_HEAD(&info->swaplist); 3070 simple_xattrs_init(&info->xattrs); 3071 cache_no_acl(inode); 3072 if (sbinfo->noswap) 3073 mapping_set_unevictable(inode->i_mapping); 3074 3075 /* Don't consider 'deny' for emergencies and 'force' for testing */ 3076 if (sbinfo->huge) 3077 mapping_set_large_folios(inode->i_mapping); 3078 3079 switch (mode & S_IFMT) { 3080 default: 3081 inode->i_op = &shmem_special_inode_operations; 3082 init_special_inode(inode, mode, dev); 3083 break; 3084 case S_IFREG: 3085 inode->i_mapping->a_ops = &shmem_aops; 3086 inode->i_op = &shmem_inode_operations; 3087 inode->i_fop = &shmem_file_operations; 3088 mpol_shared_policy_init(&info->policy, 3089 shmem_get_sbmpol(sbinfo)); 3090 break; 3091 case S_IFDIR: 3092 inc_nlink(inode); 3093 /* Some things misbehave if size == 0 on a directory */ 3094 inode->i_size = 2 * BOGO_DIRENT_SIZE; 3095 inode->i_op = &shmem_dir_inode_operations; 3096 inode->i_fop = &simple_offset_dir_operations; 3097 simple_offset_init(shmem_get_offset_ctx(inode)); 3098 break; 3099 case S_IFLNK: 3100 /* 3101 * Must not load anything in the rbtree, 3102 * mpol_free_shared_policy will not be called. 3103 */ 3104 mpol_shared_policy_init(&info->policy, NULL); 3105 break; 3106 } 3107 3108 lockdep_annotate_inode_mutex_key(inode); 3109 return inode; 3110 } 3111 3112 #ifdef CONFIG_TMPFS_QUOTA 3113 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3114 struct super_block *sb, struct inode *dir, 3115 umode_t mode, dev_t dev, unsigned long flags) 3116 { 3117 int err; 3118 struct inode *inode; 3119 3120 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3121 if (IS_ERR(inode)) 3122 return inode; 3123 3124 err = dquot_initialize(inode); 3125 if (err) 3126 goto errout; 3127 3128 err = dquot_alloc_inode(inode); 3129 if (err) { 3130 dquot_drop(inode); 3131 goto errout; 3132 } 3133 return inode; 3134 3135 errout: 3136 inode->i_flags |= S_NOQUOTA; 3137 iput(inode); 3138 return ERR_PTR(err); 3139 } 3140 #else 3141 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3142 struct super_block *sb, struct inode *dir, 3143 umode_t mode, dev_t dev, unsigned long flags) 3144 { 3145 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3146 } 3147 #endif /* CONFIG_TMPFS_QUOTA */ 3148 3149 #ifdef CONFIG_USERFAULTFD 3150 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 3151 struct vm_area_struct *dst_vma, 3152 unsigned long dst_addr, 3153 unsigned long src_addr, 3154 uffd_flags_t flags, 3155 struct folio **foliop) 3156 { 3157 struct inode *inode = file_inode(dst_vma->vm_file); 3158 struct shmem_inode_info *info = SHMEM_I(inode); 3159 struct address_space *mapping = inode->i_mapping; 3160 gfp_t gfp = mapping_gfp_mask(mapping); 3161 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 3162 void *page_kaddr; 3163 struct folio *folio; 3164 int ret; 3165 pgoff_t max_off; 3166 3167 if (shmem_inode_acct_blocks(inode, 1)) { 3168 /* 3169 * We may have got a page, returned -ENOENT triggering a retry, 3170 * and now we find ourselves with -ENOMEM. Release the page, to 3171 * avoid a BUG_ON in our caller. 3172 */ 3173 if (unlikely(*foliop)) { 3174 folio_put(*foliop); 3175 *foliop = NULL; 3176 } 3177 return -ENOMEM; 3178 } 3179 3180 if (!*foliop) { 3181 ret = -ENOMEM; 3182 folio = shmem_alloc_folio(gfp, 0, info, pgoff); 3183 if (!folio) 3184 goto out_unacct_blocks; 3185 3186 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 3187 page_kaddr = kmap_local_folio(folio, 0); 3188 /* 3189 * The read mmap_lock is held here. Despite the 3190 * mmap_lock being read recursive a deadlock is still 3191 * possible if a writer has taken a lock. For example: 3192 * 3193 * process A thread 1 takes read lock on own mmap_lock 3194 * process A thread 2 calls mmap, blocks taking write lock 3195 * process B thread 1 takes page fault, read lock on own mmap lock 3196 * process B thread 2 calls mmap, blocks taking write lock 3197 * process A thread 1 blocks taking read lock on process B 3198 * process B thread 1 blocks taking read lock on process A 3199 * 3200 * Disable page faults to prevent potential deadlock 3201 * and retry the copy outside the mmap_lock. 3202 */ 3203 pagefault_disable(); 3204 ret = copy_from_user(page_kaddr, 3205 (const void __user *)src_addr, 3206 PAGE_SIZE); 3207 pagefault_enable(); 3208 kunmap_local(page_kaddr); 3209 3210 /* fallback to copy_from_user outside mmap_lock */ 3211 if (unlikely(ret)) { 3212 *foliop = folio; 3213 ret = -ENOENT; 3214 /* don't free the page */ 3215 goto out_unacct_blocks; 3216 } 3217 3218 flush_dcache_folio(folio); 3219 } else { /* ZEROPAGE */ 3220 clear_user_highpage(&folio->page, dst_addr); 3221 } 3222 } else { 3223 folio = *foliop; 3224 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 3225 *foliop = NULL; 3226 } 3227 3228 VM_BUG_ON(folio_test_locked(folio)); 3229 VM_BUG_ON(folio_test_swapbacked(folio)); 3230 __folio_set_locked(folio); 3231 __folio_set_swapbacked(folio); 3232 __folio_mark_uptodate(folio); 3233 3234 ret = -EFAULT; 3235 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3236 if (unlikely(pgoff >= max_off)) 3237 goto out_release; 3238 3239 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 3240 if (ret) 3241 goto out_release; 3242 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 3243 if (ret) 3244 goto out_release; 3245 3246 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 3247 &folio->page, true, flags); 3248 if (ret) 3249 goto out_delete_from_cache; 3250 3251 shmem_recalc_inode(inode, 1, 0); 3252 folio_unlock(folio); 3253 return 0; 3254 out_delete_from_cache: 3255 filemap_remove_folio(folio); 3256 out_release: 3257 folio_unlock(folio); 3258 folio_put(folio); 3259 out_unacct_blocks: 3260 shmem_inode_unacct_blocks(inode, 1); 3261 return ret; 3262 } 3263 #endif /* CONFIG_USERFAULTFD */ 3264 3265 #ifdef CONFIG_TMPFS 3266 static const struct inode_operations shmem_symlink_inode_operations; 3267 static const struct inode_operations shmem_short_symlink_operations; 3268 3269 static int 3270 shmem_write_begin(struct file *file, struct address_space *mapping, 3271 loff_t pos, unsigned len, 3272 struct folio **foliop, void **fsdata) 3273 { 3274 struct inode *inode = mapping->host; 3275 struct shmem_inode_info *info = SHMEM_I(inode); 3276 pgoff_t index = pos >> PAGE_SHIFT; 3277 struct folio *folio; 3278 int ret = 0; 3279 3280 /* i_rwsem is held by caller */ 3281 if (unlikely(info->seals & (F_SEAL_GROW | 3282 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 3283 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 3284 return -EPERM; 3285 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 3286 return -EPERM; 3287 } 3288 3289 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE); 3290 if (ret) 3291 return ret; 3292 3293 if (folio_contain_hwpoisoned_page(folio)) { 3294 folio_unlock(folio); 3295 folio_put(folio); 3296 return -EIO; 3297 } 3298 3299 *foliop = folio; 3300 return 0; 3301 } 3302 3303 static int 3304 shmem_write_end(struct file *file, struct address_space *mapping, 3305 loff_t pos, unsigned len, unsigned copied, 3306 struct folio *folio, void *fsdata) 3307 { 3308 struct inode *inode = mapping->host; 3309 3310 if (pos + copied > inode->i_size) 3311 i_size_write(inode, pos + copied); 3312 3313 if (!folio_test_uptodate(folio)) { 3314 if (copied < folio_size(folio)) { 3315 size_t from = offset_in_folio(folio, pos); 3316 folio_zero_segments(folio, 0, from, 3317 from + copied, folio_size(folio)); 3318 } 3319 folio_mark_uptodate(folio); 3320 } 3321 folio_mark_dirty(folio); 3322 folio_unlock(folio); 3323 folio_put(folio); 3324 3325 return copied; 3326 } 3327 3328 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3329 { 3330 struct file *file = iocb->ki_filp; 3331 struct inode *inode = file_inode(file); 3332 struct address_space *mapping = inode->i_mapping; 3333 pgoff_t index; 3334 unsigned long offset; 3335 int error = 0; 3336 ssize_t retval = 0; 3337 3338 for (;;) { 3339 struct folio *folio = NULL; 3340 struct page *page = NULL; 3341 unsigned long nr, ret; 3342 loff_t end_offset, i_size = i_size_read(inode); 3343 bool fallback_page_copy = false; 3344 size_t fsize; 3345 3346 if (unlikely(iocb->ki_pos >= i_size)) 3347 break; 3348 3349 index = iocb->ki_pos >> PAGE_SHIFT; 3350 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3351 if (error) { 3352 if (error == -EINVAL) 3353 error = 0; 3354 break; 3355 } 3356 if (folio) { 3357 folio_unlock(folio); 3358 3359 page = folio_file_page(folio, index); 3360 if (PageHWPoison(page)) { 3361 folio_put(folio); 3362 error = -EIO; 3363 break; 3364 } 3365 3366 if (folio_test_large(folio) && 3367 folio_test_has_hwpoisoned(folio)) 3368 fallback_page_copy = true; 3369 } 3370 3371 /* 3372 * We must evaluate after, since reads (unlike writes) 3373 * are called without i_rwsem protection against truncate 3374 */ 3375 i_size = i_size_read(inode); 3376 if (unlikely(iocb->ki_pos >= i_size)) { 3377 if (folio) 3378 folio_put(folio); 3379 break; 3380 } 3381 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count); 3382 if (folio && likely(!fallback_page_copy)) 3383 fsize = folio_size(folio); 3384 else 3385 fsize = PAGE_SIZE; 3386 offset = iocb->ki_pos & (fsize - 1); 3387 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset); 3388 3389 if (folio) { 3390 /* 3391 * If users can be writing to this page using arbitrary 3392 * virtual addresses, take care about potential aliasing 3393 * before reading the page on the kernel side. 3394 */ 3395 if (mapping_writably_mapped(mapping)) { 3396 if (likely(!fallback_page_copy)) 3397 flush_dcache_folio(folio); 3398 else 3399 flush_dcache_page(page); 3400 } 3401 3402 /* 3403 * Mark the folio accessed if we read the beginning. 3404 */ 3405 if (!offset) 3406 folio_mark_accessed(folio); 3407 /* 3408 * Ok, we have the page, and it's up-to-date, so 3409 * now we can copy it to user space... 3410 */ 3411 if (likely(!fallback_page_copy)) 3412 ret = copy_folio_to_iter(folio, offset, nr, to); 3413 else 3414 ret = copy_page_to_iter(page, offset, nr, to); 3415 folio_put(folio); 3416 } else if (user_backed_iter(to)) { 3417 /* 3418 * Copy to user tends to be so well optimized, but 3419 * clear_user() not so much, that it is noticeably 3420 * faster to copy the zero page instead of clearing. 3421 */ 3422 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 3423 } else { 3424 /* 3425 * But submitting the same page twice in a row to 3426 * splice() - or others? - can result in confusion: 3427 * so don't attempt that optimization on pipes etc. 3428 */ 3429 ret = iov_iter_zero(nr, to); 3430 } 3431 3432 retval += ret; 3433 iocb->ki_pos += ret; 3434 3435 if (!iov_iter_count(to)) 3436 break; 3437 if (ret < nr) { 3438 error = -EFAULT; 3439 break; 3440 } 3441 cond_resched(); 3442 } 3443 3444 file_accessed(file); 3445 return retval ? retval : error; 3446 } 3447 3448 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3449 { 3450 struct file *file = iocb->ki_filp; 3451 struct inode *inode = file->f_mapping->host; 3452 ssize_t ret; 3453 3454 inode_lock(inode); 3455 ret = generic_write_checks(iocb, from); 3456 if (ret <= 0) 3457 goto unlock; 3458 ret = file_remove_privs(file); 3459 if (ret) 3460 goto unlock; 3461 ret = file_update_time(file); 3462 if (ret) 3463 goto unlock; 3464 ret = generic_perform_write(iocb, from); 3465 unlock: 3466 inode_unlock(inode); 3467 return ret; 3468 } 3469 3470 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 3471 struct pipe_buffer *buf) 3472 { 3473 return true; 3474 } 3475 3476 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 3477 struct pipe_buffer *buf) 3478 { 3479 } 3480 3481 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 3482 struct pipe_buffer *buf) 3483 { 3484 return false; 3485 } 3486 3487 static const struct pipe_buf_operations zero_pipe_buf_ops = { 3488 .release = zero_pipe_buf_release, 3489 .try_steal = zero_pipe_buf_try_steal, 3490 .get = zero_pipe_buf_get, 3491 }; 3492 3493 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 3494 loff_t fpos, size_t size) 3495 { 3496 size_t offset = fpos & ~PAGE_MASK; 3497 3498 size = min_t(size_t, size, PAGE_SIZE - offset); 3499 3500 if (!pipe_is_full(pipe)) { 3501 struct pipe_buffer *buf = pipe_head_buf(pipe); 3502 3503 *buf = (struct pipe_buffer) { 3504 .ops = &zero_pipe_buf_ops, 3505 .page = ZERO_PAGE(0), 3506 .offset = offset, 3507 .len = size, 3508 }; 3509 pipe->head++; 3510 } 3511 3512 return size; 3513 } 3514 3515 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 3516 struct pipe_inode_info *pipe, 3517 size_t len, unsigned int flags) 3518 { 3519 struct inode *inode = file_inode(in); 3520 struct address_space *mapping = inode->i_mapping; 3521 struct folio *folio = NULL; 3522 size_t total_spliced = 0, used, npages, n, part; 3523 loff_t isize; 3524 int error = 0; 3525 3526 /* Work out how much data we can actually add into the pipe */ 3527 used = pipe_buf_usage(pipe); 3528 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3529 len = min_t(size_t, len, npages * PAGE_SIZE); 3530 3531 do { 3532 bool fallback_page_splice = false; 3533 struct page *page = NULL; 3534 pgoff_t index; 3535 size_t size; 3536 3537 if (*ppos >= i_size_read(inode)) 3538 break; 3539 3540 index = *ppos >> PAGE_SHIFT; 3541 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3542 if (error) { 3543 if (error == -EINVAL) 3544 error = 0; 3545 break; 3546 } 3547 if (folio) { 3548 folio_unlock(folio); 3549 3550 page = folio_file_page(folio, index); 3551 if (PageHWPoison(page)) { 3552 error = -EIO; 3553 break; 3554 } 3555 3556 if (folio_test_large(folio) && 3557 folio_test_has_hwpoisoned(folio)) 3558 fallback_page_splice = true; 3559 } 3560 3561 /* 3562 * i_size must be checked after we know the pages are Uptodate. 3563 * 3564 * Checking i_size after the check allows us to calculate 3565 * the correct value for "nr", which means the zero-filled 3566 * part of the page is not copied back to userspace (unless 3567 * another truncate extends the file - this is desired though). 3568 */ 3569 isize = i_size_read(inode); 3570 if (unlikely(*ppos >= isize)) 3571 break; 3572 /* 3573 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned 3574 * pages. 3575 */ 3576 size = len; 3577 if (unlikely(fallback_page_splice)) { 3578 size_t offset = *ppos & ~PAGE_MASK; 3579 3580 size = umin(size, PAGE_SIZE - offset); 3581 } 3582 part = min_t(loff_t, isize - *ppos, size); 3583 3584 if (folio) { 3585 /* 3586 * If users can be writing to this page using arbitrary 3587 * virtual addresses, take care about potential aliasing 3588 * before reading the page on the kernel side. 3589 */ 3590 if (mapping_writably_mapped(mapping)) { 3591 if (likely(!fallback_page_splice)) 3592 flush_dcache_folio(folio); 3593 else 3594 flush_dcache_page(page); 3595 } 3596 folio_mark_accessed(folio); 3597 /* 3598 * Ok, we have the page, and it's up-to-date, so we can 3599 * now splice it into the pipe. 3600 */ 3601 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3602 folio_put(folio); 3603 folio = NULL; 3604 } else { 3605 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3606 } 3607 3608 if (!n) 3609 break; 3610 len -= n; 3611 total_spliced += n; 3612 *ppos += n; 3613 in->f_ra.prev_pos = *ppos; 3614 if (pipe_is_full(pipe)) 3615 break; 3616 3617 cond_resched(); 3618 } while (len); 3619 3620 if (folio) 3621 folio_put(folio); 3622 3623 file_accessed(in); 3624 return total_spliced ? total_spliced : error; 3625 } 3626 3627 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3628 { 3629 struct address_space *mapping = file->f_mapping; 3630 struct inode *inode = mapping->host; 3631 3632 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3633 return generic_file_llseek_size(file, offset, whence, 3634 MAX_LFS_FILESIZE, i_size_read(inode)); 3635 if (offset < 0) 3636 return -ENXIO; 3637 3638 inode_lock(inode); 3639 /* We're holding i_rwsem so we can access i_size directly */ 3640 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3641 if (offset >= 0) 3642 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3643 inode_unlock(inode); 3644 return offset; 3645 } 3646 3647 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3648 loff_t len) 3649 { 3650 struct inode *inode = file_inode(file); 3651 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3652 struct shmem_inode_info *info = SHMEM_I(inode); 3653 struct shmem_falloc shmem_falloc; 3654 pgoff_t start, index, end, undo_fallocend; 3655 int error; 3656 3657 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3658 return -EOPNOTSUPP; 3659 3660 inode_lock(inode); 3661 3662 if (mode & FALLOC_FL_PUNCH_HOLE) { 3663 struct address_space *mapping = file->f_mapping; 3664 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3665 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3666 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3667 3668 /* protected by i_rwsem */ 3669 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3670 error = -EPERM; 3671 goto out; 3672 } 3673 3674 shmem_falloc.waitq = &shmem_falloc_waitq; 3675 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3676 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3677 spin_lock(&inode->i_lock); 3678 inode->i_private = &shmem_falloc; 3679 spin_unlock(&inode->i_lock); 3680 3681 if ((u64)unmap_end > (u64)unmap_start) 3682 unmap_mapping_range(mapping, unmap_start, 3683 1 + unmap_end - unmap_start, 0); 3684 shmem_truncate_range(inode, offset, offset + len - 1); 3685 /* No need to unmap again: hole-punching leaves COWed pages */ 3686 3687 spin_lock(&inode->i_lock); 3688 inode->i_private = NULL; 3689 wake_up_all(&shmem_falloc_waitq); 3690 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3691 spin_unlock(&inode->i_lock); 3692 error = 0; 3693 goto out; 3694 } 3695 3696 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3697 error = inode_newsize_ok(inode, offset + len); 3698 if (error) 3699 goto out; 3700 3701 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3702 error = -EPERM; 3703 goto out; 3704 } 3705 3706 start = offset >> PAGE_SHIFT; 3707 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3708 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3709 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3710 error = -ENOSPC; 3711 goto out; 3712 } 3713 3714 shmem_falloc.waitq = NULL; 3715 shmem_falloc.start = start; 3716 shmem_falloc.next = start; 3717 shmem_falloc.nr_falloced = 0; 3718 shmem_falloc.nr_unswapped = 0; 3719 spin_lock(&inode->i_lock); 3720 inode->i_private = &shmem_falloc; 3721 spin_unlock(&inode->i_lock); 3722 3723 /* 3724 * info->fallocend is only relevant when huge pages might be 3725 * involved: to prevent split_huge_page() freeing fallocated 3726 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3727 */ 3728 undo_fallocend = info->fallocend; 3729 if (info->fallocend < end) 3730 info->fallocend = end; 3731 3732 for (index = start; index < end; ) { 3733 struct folio *folio; 3734 3735 /* 3736 * Check for fatal signal so that we abort early in OOM 3737 * situations. We don't want to abort in case of non-fatal 3738 * signals as large fallocate can take noticeable time and 3739 * e.g. periodic timers may result in fallocate constantly 3740 * restarting. 3741 */ 3742 if (fatal_signal_pending(current)) 3743 error = -EINTR; 3744 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3745 error = -ENOMEM; 3746 else 3747 error = shmem_get_folio(inode, index, offset + len, 3748 &folio, SGP_FALLOC); 3749 if (error) { 3750 info->fallocend = undo_fallocend; 3751 /* Remove the !uptodate folios we added */ 3752 if (index > start) { 3753 shmem_undo_range(inode, 3754 (loff_t)start << PAGE_SHIFT, 3755 ((loff_t)index << PAGE_SHIFT) - 1, true); 3756 } 3757 goto undone; 3758 } 3759 3760 /* 3761 * Here is a more important optimization than it appears: 3762 * a second SGP_FALLOC on the same large folio will clear it, 3763 * making it uptodate and un-undoable if we fail later. 3764 */ 3765 index = folio_next_index(folio); 3766 /* Beware 32-bit wraparound */ 3767 if (!index) 3768 index--; 3769 3770 /* 3771 * Inform shmem_writepage() how far we have reached. 3772 * No need for lock or barrier: we have the page lock. 3773 */ 3774 if (!folio_test_uptodate(folio)) 3775 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3776 shmem_falloc.next = index; 3777 3778 /* 3779 * If !uptodate, leave it that way so that freeable folios 3780 * can be recognized if we need to rollback on error later. 3781 * But mark it dirty so that memory pressure will swap rather 3782 * than free the folios we are allocating (and SGP_CACHE folios 3783 * might still be clean: we now need to mark those dirty too). 3784 */ 3785 folio_mark_dirty(folio); 3786 folio_unlock(folio); 3787 folio_put(folio); 3788 cond_resched(); 3789 } 3790 3791 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3792 i_size_write(inode, offset + len); 3793 undone: 3794 spin_lock(&inode->i_lock); 3795 inode->i_private = NULL; 3796 spin_unlock(&inode->i_lock); 3797 out: 3798 if (!error) 3799 file_modified(file); 3800 inode_unlock(inode); 3801 return error; 3802 } 3803 3804 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3805 { 3806 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3807 3808 buf->f_type = TMPFS_MAGIC; 3809 buf->f_bsize = PAGE_SIZE; 3810 buf->f_namelen = NAME_MAX; 3811 if (sbinfo->max_blocks) { 3812 buf->f_blocks = sbinfo->max_blocks; 3813 buf->f_bavail = 3814 buf->f_bfree = sbinfo->max_blocks - 3815 percpu_counter_sum(&sbinfo->used_blocks); 3816 } 3817 if (sbinfo->max_inodes) { 3818 buf->f_files = sbinfo->max_inodes; 3819 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3820 } 3821 /* else leave those fields 0 like simple_statfs */ 3822 3823 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3824 3825 return 0; 3826 } 3827 3828 /* 3829 * File creation. Allocate an inode, and we're done.. 3830 */ 3831 static int 3832 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3833 struct dentry *dentry, umode_t mode, dev_t dev) 3834 { 3835 struct inode *inode; 3836 int error; 3837 3838 if (!generic_ci_validate_strict_name(dir, &dentry->d_name)) 3839 return -EINVAL; 3840 3841 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3842 if (IS_ERR(inode)) 3843 return PTR_ERR(inode); 3844 3845 error = simple_acl_create(dir, inode); 3846 if (error) 3847 goto out_iput; 3848 error = security_inode_init_security(inode, dir, &dentry->d_name, 3849 shmem_initxattrs, NULL); 3850 if (error && error != -EOPNOTSUPP) 3851 goto out_iput; 3852 3853 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3854 if (error) 3855 goto out_iput; 3856 3857 dir->i_size += BOGO_DIRENT_SIZE; 3858 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3859 inode_inc_iversion(dir); 3860 3861 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3862 d_add(dentry, inode); 3863 else 3864 d_instantiate(dentry, inode); 3865 3866 dget(dentry); /* Extra count - pin the dentry in core */ 3867 return error; 3868 3869 out_iput: 3870 iput(inode); 3871 return error; 3872 } 3873 3874 static int 3875 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3876 struct file *file, umode_t mode) 3877 { 3878 struct inode *inode; 3879 int error; 3880 3881 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3882 if (IS_ERR(inode)) { 3883 error = PTR_ERR(inode); 3884 goto err_out; 3885 } 3886 error = security_inode_init_security(inode, dir, NULL, 3887 shmem_initxattrs, NULL); 3888 if (error && error != -EOPNOTSUPP) 3889 goto out_iput; 3890 error = simple_acl_create(dir, inode); 3891 if (error) 3892 goto out_iput; 3893 d_tmpfile(file, inode); 3894 3895 err_out: 3896 return finish_open_simple(file, error); 3897 out_iput: 3898 iput(inode); 3899 return error; 3900 } 3901 3902 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3903 struct dentry *dentry, umode_t mode) 3904 { 3905 int error; 3906 3907 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3908 if (error) 3909 return ERR_PTR(error); 3910 inc_nlink(dir); 3911 return NULL; 3912 } 3913 3914 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3915 struct dentry *dentry, umode_t mode, bool excl) 3916 { 3917 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3918 } 3919 3920 /* 3921 * Link a file.. 3922 */ 3923 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3924 struct dentry *dentry) 3925 { 3926 struct inode *inode = d_inode(old_dentry); 3927 int ret = 0; 3928 3929 /* 3930 * No ordinary (disk based) filesystem counts links as inodes; 3931 * but each new link needs a new dentry, pinning lowmem, and 3932 * tmpfs dentries cannot be pruned until they are unlinked. 3933 * But if an O_TMPFILE file is linked into the tmpfs, the 3934 * first link must skip that, to get the accounting right. 3935 */ 3936 if (inode->i_nlink) { 3937 ret = shmem_reserve_inode(inode->i_sb, NULL); 3938 if (ret) 3939 goto out; 3940 } 3941 3942 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3943 if (ret) { 3944 if (inode->i_nlink) 3945 shmem_free_inode(inode->i_sb, 0); 3946 goto out; 3947 } 3948 3949 dir->i_size += BOGO_DIRENT_SIZE; 3950 inode_set_mtime_to_ts(dir, 3951 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3952 inode_inc_iversion(dir); 3953 inc_nlink(inode); 3954 ihold(inode); /* New dentry reference */ 3955 dget(dentry); /* Extra pinning count for the created dentry */ 3956 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3957 d_add(dentry, inode); 3958 else 3959 d_instantiate(dentry, inode); 3960 out: 3961 return ret; 3962 } 3963 3964 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3965 { 3966 struct inode *inode = d_inode(dentry); 3967 3968 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3969 shmem_free_inode(inode->i_sb, 0); 3970 3971 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3972 3973 dir->i_size -= BOGO_DIRENT_SIZE; 3974 inode_set_mtime_to_ts(dir, 3975 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3976 inode_inc_iversion(dir); 3977 drop_nlink(inode); 3978 dput(dentry); /* Undo the count from "create" - does all the work */ 3979 3980 /* 3981 * For now, VFS can't deal with case-insensitive negative dentries, so 3982 * we invalidate them 3983 */ 3984 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3985 d_invalidate(dentry); 3986 3987 return 0; 3988 } 3989 3990 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3991 { 3992 if (!simple_empty(dentry)) 3993 return -ENOTEMPTY; 3994 3995 drop_nlink(d_inode(dentry)); 3996 drop_nlink(dir); 3997 return shmem_unlink(dir, dentry); 3998 } 3999 4000 static int shmem_whiteout(struct mnt_idmap *idmap, 4001 struct inode *old_dir, struct dentry *old_dentry) 4002 { 4003 struct dentry *whiteout; 4004 int error; 4005 4006 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 4007 if (!whiteout) 4008 return -ENOMEM; 4009 4010 error = shmem_mknod(idmap, old_dir, whiteout, 4011 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4012 dput(whiteout); 4013 if (error) 4014 return error; 4015 4016 /* 4017 * Cheat and hash the whiteout while the old dentry is still in 4018 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 4019 * 4020 * d_lookup() will consistently find one of them at this point, 4021 * not sure which one, but that isn't even important. 4022 */ 4023 d_rehash(whiteout); 4024 return 0; 4025 } 4026 4027 /* 4028 * The VFS layer already does all the dentry stuff for rename, 4029 * we just have to decrement the usage count for the target if 4030 * it exists so that the VFS layer correctly free's it when it 4031 * gets overwritten. 4032 */ 4033 static int shmem_rename2(struct mnt_idmap *idmap, 4034 struct inode *old_dir, struct dentry *old_dentry, 4035 struct inode *new_dir, struct dentry *new_dentry, 4036 unsigned int flags) 4037 { 4038 struct inode *inode = d_inode(old_dentry); 4039 int they_are_dirs = S_ISDIR(inode->i_mode); 4040 int error; 4041 4042 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4043 return -EINVAL; 4044 4045 if (flags & RENAME_EXCHANGE) 4046 return simple_offset_rename_exchange(old_dir, old_dentry, 4047 new_dir, new_dentry); 4048 4049 if (!simple_empty(new_dentry)) 4050 return -ENOTEMPTY; 4051 4052 if (flags & RENAME_WHITEOUT) { 4053 error = shmem_whiteout(idmap, old_dir, old_dentry); 4054 if (error) 4055 return error; 4056 } 4057 4058 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 4059 if (error) 4060 return error; 4061 4062 if (d_really_is_positive(new_dentry)) { 4063 (void) shmem_unlink(new_dir, new_dentry); 4064 if (they_are_dirs) { 4065 drop_nlink(d_inode(new_dentry)); 4066 drop_nlink(old_dir); 4067 } 4068 } else if (they_are_dirs) { 4069 drop_nlink(old_dir); 4070 inc_nlink(new_dir); 4071 } 4072 4073 old_dir->i_size -= BOGO_DIRENT_SIZE; 4074 new_dir->i_size += BOGO_DIRENT_SIZE; 4075 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 4076 inode_inc_iversion(old_dir); 4077 inode_inc_iversion(new_dir); 4078 return 0; 4079 } 4080 4081 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 4082 struct dentry *dentry, const char *symname) 4083 { 4084 int error; 4085 int len; 4086 struct inode *inode; 4087 struct folio *folio; 4088 char *link; 4089 4090 len = strlen(symname) + 1; 4091 if (len > PAGE_SIZE) 4092 return -ENAMETOOLONG; 4093 4094 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 4095 VM_NORESERVE); 4096 if (IS_ERR(inode)) 4097 return PTR_ERR(inode); 4098 4099 error = security_inode_init_security(inode, dir, &dentry->d_name, 4100 shmem_initxattrs, NULL); 4101 if (error && error != -EOPNOTSUPP) 4102 goto out_iput; 4103 4104 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 4105 if (error) 4106 goto out_iput; 4107 4108 inode->i_size = len-1; 4109 if (len <= SHORT_SYMLINK_LEN) { 4110 link = kmemdup(symname, len, GFP_KERNEL); 4111 if (!link) { 4112 error = -ENOMEM; 4113 goto out_remove_offset; 4114 } 4115 inode->i_op = &shmem_short_symlink_operations; 4116 inode_set_cached_link(inode, link, len - 1); 4117 } else { 4118 inode_nohighmem(inode); 4119 inode->i_mapping->a_ops = &shmem_aops; 4120 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE); 4121 if (error) 4122 goto out_remove_offset; 4123 inode->i_op = &shmem_symlink_inode_operations; 4124 memcpy(folio_address(folio), symname, len); 4125 folio_mark_uptodate(folio); 4126 folio_mark_dirty(folio); 4127 folio_unlock(folio); 4128 folio_put(folio); 4129 } 4130 dir->i_size += BOGO_DIRENT_SIZE; 4131 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 4132 inode_inc_iversion(dir); 4133 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 4134 d_add(dentry, inode); 4135 else 4136 d_instantiate(dentry, inode); 4137 dget(dentry); 4138 return 0; 4139 4140 out_remove_offset: 4141 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 4142 out_iput: 4143 iput(inode); 4144 return error; 4145 } 4146 4147 static void shmem_put_link(void *arg) 4148 { 4149 folio_mark_accessed(arg); 4150 folio_put(arg); 4151 } 4152 4153 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 4154 struct delayed_call *done) 4155 { 4156 struct folio *folio = NULL; 4157 int error; 4158 4159 if (!dentry) { 4160 folio = filemap_get_folio(inode->i_mapping, 0); 4161 if (IS_ERR(folio)) 4162 return ERR_PTR(-ECHILD); 4163 if (PageHWPoison(folio_page(folio, 0)) || 4164 !folio_test_uptodate(folio)) { 4165 folio_put(folio); 4166 return ERR_PTR(-ECHILD); 4167 } 4168 } else { 4169 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ); 4170 if (error) 4171 return ERR_PTR(error); 4172 if (!folio) 4173 return ERR_PTR(-ECHILD); 4174 if (PageHWPoison(folio_page(folio, 0))) { 4175 folio_unlock(folio); 4176 folio_put(folio); 4177 return ERR_PTR(-ECHILD); 4178 } 4179 folio_unlock(folio); 4180 } 4181 set_delayed_call(done, shmem_put_link, folio); 4182 return folio_address(folio); 4183 } 4184 4185 #ifdef CONFIG_TMPFS_XATTR 4186 4187 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 4188 { 4189 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4190 4191 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 4192 4193 return 0; 4194 } 4195 4196 static int shmem_fileattr_set(struct mnt_idmap *idmap, 4197 struct dentry *dentry, struct fileattr *fa) 4198 { 4199 struct inode *inode = d_inode(dentry); 4200 struct shmem_inode_info *info = SHMEM_I(inode); 4201 int ret, flags; 4202 4203 if (fileattr_has_fsx(fa)) 4204 return -EOPNOTSUPP; 4205 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 4206 return -EOPNOTSUPP; 4207 4208 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 4209 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 4210 4211 ret = shmem_set_inode_flags(inode, flags, dentry); 4212 4213 if (ret) 4214 return ret; 4215 4216 info->fsflags = flags; 4217 4218 inode_set_ctime_current(inode); 4219 inode_inc_iversion(inode); 4220 return 0; 4221 } 4222 4223 /* 4224 * Superblocks without xattr inode operations may get some security.* xattr 4225 * support from the LSM "for free". As soon as we have any other xattrs 4226 * like ACLs, we also need to implement the security.* handlers at 4227 * filesystem level, though. 4228 */ 4229 4230 /* 4231 * Callback for security_inode_init_security() for acquiring xattrs. 4232 */ 4233 static int shmem_initxattrs(struct inode *inode, 4234 const struct xattr *xattr_array, void *fs_info) 4235 { 4236 struct shmem_inode_info *info = SHMEM_I(inode); 4237 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4238 const struct xattr *xattr; 4239 struct simple_xattr *new_xattr; 4240 size_t ispace = 0; 4241 size_t len; 4242 4243 if (sbinfo->max_inodes) { 4244 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4245 ispace += simple_xattr_space(xattr->name, 4246 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 4247 } 4248 if (ispace) { 4249 raw_spin_lock(&sbinfo->stat_lock); 4250 if (sbinfo->free_ispace < ispace) 4251 ispace = 0; 4252 else 4253 sbinfo->free_ispace -= ispace; 4254 raw_spin_unlock(&sbinfo->stat_lock); 4255 if (!ispace) 4256 return -ENOSPC; 4257 } 4258 } 4259 4260 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4261 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 4262 if (!new_xattr) 4263 break; 4264 4265 len = strlen(xattr->name) + 1; 4266 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 4267 GFP_KERNEL_ACCOUNT); 4268 if (!new_xattr->name) { 4269 kvfree(new_xattr); 4270 break; 4271 } 4272 4273 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 4274 XATTR_SECURITY_PREFIX_LEN); 4275 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 4276 xattr->name, len); 4277 4278 simple_xattr_add(&info->xattrs, new_xattr); 4279 } 4280 4281 if (xattr->name != NULL) { 4282 if (ispace) { 4283 raw_spin_lock(&sbinfo->stat_lock); 4284 sbinfo->free_ispace += ispace; 4285 raw_spin_unlock(&sbinfo->stat_lock); 4286 } 4287 simple_xattrs_free(&info->xattrs, NULL); 4288 return -ENOMEM; 4289 } 4290 4291 return 0; 4292 } 4293 4294 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 4295 struct dentry *unused, struct inode *inode, 4296 const char *name, void *buffer, size_t size) 4297 { 4298 struct shmem_inode_info *info = SHMEM_I(inode); 4299 4300 name = xattr_full_name(handler, name); 4301 return simple_xattr_get(&info->xattrs, name, buffer, size); 4302 } 4303 4304 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 4305 struct mnt_idmap *idmap, 4306 struct dentry *unused, struct inode *inode, 4307 const char *name, const void *value, 4308 size_t size, int flags) 4309 { 4310 struct shmem_inode_info *info = SHMEM_I(inode); 4311 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4312 struct simple_xattr *old_xattr; 4313 size_t ispace = 0; 4314 4315 name = xattr_full_name(handler, name); 4316 if (value && sbinfo->max_inodes) { 4317 ispace = simple_xattr_space(name, size); 4318 raw_spin_lock(&sbinfo->stat_lock); 4319 if (sbinfo->free_ispace < ispace) 4320 ispace = 0; 4321 else 4322 sbinfo->free_ispace -= ispace; 4323 raw_spin_unlock(&sbinfo->stat_lock); 4324 if (!ispace) 4325 return -ENOSPC; 4326 } 4327 4328 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 4329 if (!IS_ERR(old_xattr)) { 4330 ispace = 0; 4331 if (old_xattr && sbinfo->max_inodes) 4332 ispace = simple_xattr_space(old_xattr->name, 4333 old_xattr->size); 4334 simple_xattr_free(old_xattr); 4335 old_xattr = NULL; 4336 inode_set_ctime_current(inode); 4337 inode_inc_iversion(inode); 4338 } 4339 if (ispace) { 4340 raw_spin_lock(&sbinfo->stat_lock); 4341 sbinfo->free_ispace += ispace; 4342 raw_spin_unlock(&sbinfo->stat_lock); 4343 } 4344 return PTR_ERR(old_xattr); 4345 } 4346 4347 static const struct xattr_handler shmem_security_xattr_handler = { 4348 .prefix = XATTR_SECURITY_PREFIX, 4349 .get = shmem_xattr_handler_get, 4350 .set = shmem_xattr_handler_set, 4351 }; 4352 4353 static const struct xattr_handler shmem_trusted_xattr_handler = { 4354 .prefix = XATTR_TRUSTED_PREFIX, 4355 .get = shmem_xattr_handler_get, 4356 .set = shmem_xattr_handler_set, 4357 }; 4358 4359 static const struct xattr_handler shmem_user_xattr_handler = { 4360 .prefix = XATTR_USER_PREFIX, 4361 .get = shmem_xattr_handler_get, 4362 .set = shmem_xattr_handler_set, 4363 }; 4364 4365 static const struct xattr_handler * const shmem_xattr_handlers[] = { 4366 &shmem_security_xattr_handler, 4367 &shmem_trusted_xattr_handler, 4368 &shmem_user_xattr_handler, 4369 NULL 4370 }; 4371 4372 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 4373 { 4374 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4375 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 4376 } 4377 #endif /* CONFIG_TMPFS_XATTR */ 4378 4379 static const struct inode_operations shmem_short_symlink_operations = { 4380 .getattr = shmem_getattr, 4381 .setattr = shmem_setattr, 4382 .get_link = simple_get_link, 4383 #ifdef CONFIG_TMPFS_XATTR 4384 .listxattr = shmem_listxattr, 4385 #endif 4386 }; 4387 4388 static const struct inode_operations shmem_symlink_inode_operations = { 4389 .getattr = shmem_getattr, 4390 .setattr = shmem_setattr, 4391 .get_link = shmem_get_link, 4392 #ifdef CONFIG_TMPFS_XATTR 4393 .listxattr = shmem_listxattr, 4394 #endif 4395 }; 4396 4397 static struct dentry *shmem_get_parent(struct dentry *child) 4398 { 4399 return ERR_PTR(-ESTALE); 4400 } 4401 4402 static int shmem_match(struct inode *ino, void *vfh) 4403 { 4404 __u32 *fh = vfh; 4405 __u64 inum = fh[2]; 4406 inum = (inum << 32) | fh[1]; 4407 return ino->i_ino == inum && fh[0] == ino->i_generation; 4408 } 4409 4410 /* Find any alias of inode, but prefer a hashed alias */ 4411 static struct dentry *shmem_find_alias(struct inode *inode) 4412 { 4413 struct dentry *alias = d_find_alias(inode); 4414 4415 return alias ?: d_find_any_alias(inode); 4416 } 4417 4418 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 4419 struct fid *fid, int fh_len, int fh_type) 4420 { 4421 struct inode *inode; 4422 struct dentry *dentry = NULL; 4423 u64 inum; 4424 4425 if (fh_len < 3) 4426 return NULL; 4427 4428 inum = fid->raw[2]; 4429 inum = (inum << 32) | fid->raw[1]; 4430 4431 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 4432 shmem_match, fid->raw); 4433 if (inode) { 4434 dentry = shmem_find_alias(inode); 4435 iput(inode); 4436 } 4437 4438 return dentry; 4439 } 4440 4441 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 4442 struct inode *parent) 4443 { 4444 if (*len < 3) { 4445 *len = 3; 4446 return FILEID_INVALID; 4447 } 4448 4449 if (inode_unhashed(inode)) { 4450 /* Unfortunately insert_inode_hash is not idempotent, 4451 * so as we hash inodes here rather than at creation 4452 * time, we need a lock to ensure we only try 4453 * to do it once 4454 */ 4455 static DEFINE_SPINLOCK(lock); 4456 spin_lock(&lock); 4457 if (inode_unhashed(inode)) 4458 __insert_inode_hash(inode, 4459 inode->i_ino + inode->i_generation); 4460 spin_unlock(&lock); 4461 } 4462 4463 fh[0] = inode->i_generation; 4464 fh[1] = inode->i_ino; 4465 fh[2] = ((__u64)inode->i_ino) >> 32; 4466 4467 *len = 3; 4468 return 1; 4469 } 4470 4471 static const struct export_operations shmem_export_ops = { 4472 .get_parent = shmem_get_parent, 4473 .encode_fh = shmem_encode_fh, 4474 .fh_to_dentry = shmem_fh_to_dentry, 4475 }; 4476 4477 enum shmem_param { 4478 Opt_gid, 4479 Opt_huge, 4480 Opt_mode, 4481 Opt_mpol, 4482 Opt_nr_blocks, 4483 Opt_nr_inodes, 4484 Opt_size, 4485 Opt_uid, 4486 Opt_inode32, 4487 Opt_inode64, 4488 Opt_noswap, 4489 Opt_quota, 4490 Opt_usrquota, 4491 Opt_grpquota, 4492 Opt_usrquota_block_hardlimit, 4493 Opt_usrquota_inode_hardlimit, 4494 Opt_grpquota_block_hardlimit, 4495 Opt_grpquota_inode_hardlimit, 4496 Opt_casefold_version, 4497 Opt_casefold, 4498 Opt_strict_encoding, 4499 }; 4500 4501 static const struct constant_table shmem_param_enums_huge[] = { 4502 {"never", SHMEM_HUGE_NEVER }, 4503 {"always", SHMEM_HUGE_ALWAYS }, 4504 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 4505 {"advise", SHMEM_HUGE_ADVISE }, 4506 {} 4507 }; 4508 4509 const struct fs_parameter_spec shmem_fs_parameters[] = { 4510 fsparam_gid ("gid", Opt_gid), 4511 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 4512 fsparam_u32oct("mode", Opt_mode), 4513 fsparam_string("mpol", Opt_mpol), 4514 fsparam_string("nr_blocks", Opt_nr_blocks), 4515 fsparam_string("nr_inodes", Opt_nr_inodes), 4516 fsparam_string("size", Opt_size), 4517 fsparam_uid ("uid", Opt_uid), 4518 fsparam_flag ("inode32", Opt_inode32), 4519 fsparam_flag ("inode64", Opt_inode64), 4520 fsparam_flag ("noswap", Opt_noswap), 4521 #ifdef CONFIG_TMPFS_QUOTA 4522 fsparam_flag ("quota", Opt_quota), 4523 fsparam_flag ("usrquota", Opt_usrquota), 4524 fsparam_flag ("grpquota", Opt_grpquota), 4525 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 4526 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 4527 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 4528 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 4529 #endif 4530 fsparam_string("casefold", Opt_casefold_version), 4531 fsparam_flag ("casefold", Opt_casefold), 4532 fsparam_flag ("strict_encoding", Opt_strict_encoding), 4533 {} 4534 }; 4535 4536 #if IS_ENABLED(CONFIG_UNICODE) 4537 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4538 bool latest_version) 4539 { 4540 struct shmem_options *ctx = fc->fs_private; 4541 int version = UTF8_LATEST; 4542 struct unicode_map *encoding; 4543 char *version_str = param->string + 5; 4544 4545 if (!latest_version) { 4546 if (strncmp(param->string, "utf8-", 5)) 4547 return invalfc(fc, "Only UTF-8 encodings are supported " 4548 "in the format: utf8-<version number>"); 4549 4550 version = utf8_parse_version(version_str); 4551 if (version < 0) 4552 return invalfc(fc, "Invalid UTF-8 version: %s", version_str); 4553 } 4554 4555 encoding = utf8_load(version); 4556 4557 if (IS_ERR(encoding)) { 4558 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n", 4559 unicode_major(version), unicode_minor(version), 4560 unicode_rev(version)); 4561 } 4562 4563 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n", 4564 unicode_major(version), unicode_minor(version), unicode_rev(version)); 4565 4566 ctx->encoding = encoding; 4567 4568 return 0; 4569 } 4570 #else 4571 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4572 bool latest_version) 4573 { 4574 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4575 } 4576 #endif 4577 4578 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 4579 { 4580 struct shmem_options *ctx = fc->fs_private; 4581 struct fs_parse_result result; 4582 unsigned long long size; 4583 char *rest; 4584 int opt; 4585 kuid_t kuid; 4586 kgid_t kgid; 4587 4588 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 4589 if (opt < 0) 4590 return opt; 4591 4592 switch (opt) { 4593 case Opt_size: 4594 size = memparse(param->string, &rest); 4595 if (*rest == '%') { 4596 size <<= PAGE_SHIFT; 4597 size *= totalram_pages(); 4598 do_div(size, 100); 4599 rest++; 4600 } 4601 if (*rest) 4602 goto bad_value; 4603 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 4604 ctx->seen |= SHMEM_SEEN_BLOCKS; 4605 break; 4606 case Opt_nr_blocks: 4607 ctx->blocks = memparse(param->string, &rest); 4608 if (*rest || ctx->blocks > LONG_MAX) 4609 goto bad_value; 4610 ctx->seen |= SHMEM_SEEN_BLOCKS; 4611 break; 4612 case Opt_nr_inodes: 4613 ctx->inodes = memparse(param->string, &rest); 4614 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 4615 goto bad_value; 4616 ctx->seen |= SHMEM_SEEN_INODES; 4617 break; 4618 case Opt_mode: 4619 ctx->mode = result.uint_32 & 07777; 4620 break; 4621 case Opt_uid: 4622 kuid = result.uid; 4623 4624 /* 4625 * The requested uid must be representable in the 4626 * filesystem's idmapping. 4627 */ 4628 if (!kuid_has_mapping(fc->user_ns, kuid)) 4629 goto bad_value; 4630 4631 ctx->uid = kuid; 4632 break; 4633 case Opt_gid: 4634 kgid = result.gid; 4635 4636 /* 4637 * The requested gid must be representable in the 4638 * filesystem's idmapping. 4639 */ 4640 if (!kgid_has_mapping(fc->user_ns, kgid)) 4641 goto bad_value; 4642 4643 ctx->gid = kgid; 4644 break; 4645 case Opt_huge: 4646 ctx->huge = result.uint_32; 4647 if (ctx->huge != SHMEM_HUGE_NEVER && 4648 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4649 has_transparent_hugepage())) 4650 goto unsupported_parameter; 4651 ctx->seen |= SHMEM_SEEN_HUGE; 4652 break; 4653 case Opt_mpol: 4654 if (IS_ENABLED(CONFIG_NUMA)) { 4655 mpol_put(ctx->mpol); 4656 ctx->mpol = NULL; 4657 if (mpol_parse_str(param->string, &ctx->mpol)) 4658 goto bad_value; 4659 break; 4660 } 4661 goto unsupported_parameter; 4662 case Opt_inode32: 4663 ctx->full_inums = false; 4664 ctx->seen |= SHMEM_SEEN_INUMS; 4665 break; 4666 case Opt_inode64: 4667 if (sizeof(ino_t) < 8) { 4668 return invalfc(fc, 4669 "Cannot use inode64 with <64bit inums in kernel\n"); 4670 } 4671 ctx->full_inums = true; 4672 ctx->seen |= SHMEM_SEEN_INUMS; 4673 break; 4674 case Opt_noswap: 4675 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4676 return invalfc(fc, 4677 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4678 } 4679 ctx->noswap = true; 4680 ctx->seen |= SHMEM_SEEN_NOSWAP; 4681 break; 4682 case Opt_quota: 4683 if (fc->user_ns != &init_user_ns) 4684 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4685 ctx->seen |= SHMEM_SEEN_QUOTA; 4686 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4687 break; 4688 case Opt_usrquota: 4689 if (fc->user_ns != &init_user_ns) 4690 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4691 ctx->seen |= SHMEM_SEEN_QUOTA; 4692 ctx->quota_types |= QTYPE_MASK_USR; 4693 break; 4694 case Opt_grpquota: 4695 if (fc->user_ns != &init_user_ns) 4696 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4697 ctx->seen |= SHMEM_SEEN_QUOTA; 4698 ctx->quota_types |= QTYPE_MASK_GRP; 4699 break; 4700 case Opt_usrquota_block_hardlimit: 4701 size = memparse(param->string, &rest); 4702 if (*rest || !size) 4703 goto bad_value; 4704 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4705 return invalfc(fc, 4706 "User quota block hardlimit too large."); 4707 ctx->qlimits.usrquota_bhardlimit = size; 4708 break; 4709 case Opt_grpquota_block_hardlimit: 4710 size = memparse(param->string, &rest); 4711 if (*rest || !size) 4712 goto bad_value; 4713 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4714 return invalfc(fc, 4715 "Group quota block hardlimit too large."); 4716 ctx->qlimits.grpquota_bhardlimit = size; 4717 break; 4718 case Opt_usrquota_inode_hardlimit: 4719 size = memparse(param->string, &rest); 4720 if (*rest || !size) 4721 goto bad_value; 4722 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4723 return invalfc(fc, 4724 "User quota inode hardlimit too large."); 4725 ctx->qlimits.usrquota_ihardlimit = size; 4726 break; 4727 case Opt_grpquota_inode_hardlimit: 4728 size = memparse(param->string, &rest); 4729 if (*rest || !size) 4730 goto bad_value; 4731 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4732 return invalfc(fc, 4733 "Group quota inode hardlimit too large."); 4734 ctx->qlimits.grpquota_ihardlimit = size; 4735 break; 4736 case Opt_casefold_version: 4737 return shmem_parse_opt_casefold(fc, param, false); 4738 case Opt_casefold: 4739 return shmem_parse_opt_casefold(fc, param, true); 4740 case Opt_strict_encoding: 4741 #if IS_ENABLED(CONFIG_UNICODE) 4742 ctx->strict_encoding = true; 4743 break; 4744 #else 4745 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4746 #endif 4747 } 4748 return 0; 4749 4750 unsupported_parameter: 4751 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4752 bad_value: 4753 return invalfc(fc, "Bad value for '%s'", param->key); 4754 } 4755 4756 static char *shmem_next_opt(char **s) 4757 { 4758 char *sbegin = *s; 4759 char *p; 4760 4761 if (sbegin == NULL) 4762 return NULL; 4763 4764 /* 4765 * NUL-terminate this option: unfortunately, 4766 * mount options form a comma-separated list, 4767 * but mpol's nodelist may also contain commas. 4768 */ 4769 for (;;) { 4770 p = strchr(*s, ','); 4771 if (p == NULL) 4772 break; 4773 *s = p + 1; 4774 if (!isdigit(*(p+1))) { 4775 *p = '\0'; 4776 return sbegin; 4777 } 4778 } 4779 4780 *s = NULL; 4781 return sbegin; 4782 } 4783 4784 static int shmem_parse_monolithic(struct fs_context *fc, void *data) 4785 { 4786 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt); 4787 } 4788 4789 /* 4790 * Reconfigure a shmem filesystem. 4791 */ 4792 static int shmem_reconfigure(struct fs_context *fc) 4793 { 4794 struct shmem_options *ctx = fc->fs_private; 4795 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4796 unsigned long used_isp; 4797 struct mempolicy *mpol = NULL; 4798 const char *err; 4799 4800 raw_spin_lock(&sbinfo->stat_lock); 4801 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4802 4803 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4804 if (!sbinfo->max_blocks) { 4805 err = "Cannot retroactively limit size"; 4806 goto out; 4807 } 4808 if (percpu_counter_compare(&sbinfo->used_blocks, 4809 ctx->blocks) > 0) { 4810 err = "Too small a size for current use"; 4811 goto out; 4812 } 4813 } 4814 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4815 if (!sbinfo->max_inodes) { 4816 err = "Cannot retroactively limit inodes"; 4817 goto out; 4818 } 4819 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4820 err = "Too few inodes for current use"; 4821 goto out; 4822 } 4823 } 4824 4825 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4826 sbinfo->next_ino > UINT_MAX) { 4827 err = "Current inum too high to switch to 32-bit inums"; 4828 goto out; 4829 } 4830 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4831 err = "Cannot disable swap on remount"; 4832 goto out; 4833 } 4834 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4835 err = "Cannot enable swap on remount if it was disabled on first mount"; 4836 goto out; 4837 } 4838 4839 if (ctx->seen & SHMEM_SEEN_QUOTA && 4840 !sb_any_quota_loaded(fc->root->d_sb)) { 4841 err = "Cannot enable quota on remount"; 4842 goto out; 4843 } 4844 4845 #ifdef CONFIG_TMPFS_QUOTA 4846 #define CHANGED_LIMIT(name) \ 4847 (ctx->qlimits.name## hardlimit && \ 4848 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4849 4850 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4851 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4852 err = "Cannot change global quota limit on remount"; 4853 goto out; 4854 } 4855 #endif /* CONFIG_TMPFS_QUOTA */ 4856 4857 if (ctx->seen & SHMEM_SEEN_HUGE) 4858 sbinfo->huge = ctx->huge; 4859 if (ctx->seen & SHMEM_SEEN_INUMS) 4860 sbinfo->full_inums = ctx->full_inums; 4861 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4862 sbinfo->max_blocks = ctx->blocks; 4863 if (ctx->seen & SHMEM_SEEN_INODES) { 4864 sbinfo->max_inodes = ctx->inodes; 4865 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4866 } 4867 4868 /* 4869 * Preserve previous mempolicy unless mpol remount option was specified. 4870 */ 4871 if (ctx->mpol) { 4872 mpol = sbinfo->mpol; 4873 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4874 ctx->mpol = NULL; 4875 } 4876 4877 if (ctx->noswap) 4878 sbinfo->noswap = true; 4879 4880 raw_spin_unlock(&sbinfo->stat_lock); 4881 mpol_put(mpol); 4882 return 0; 4883 out: 4884 raw_spin_unlock(&sbinfo->stat_lock); 4885 return invalfc(fc, "%s", err); 4886 } 4887 4888 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4889 { 4890 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4891 struct mempolicy *mpol; 4892 4893 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4894 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4895 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4896 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4897 if (sbinfo->mode != (0777 | S_ISVTX)) 4898 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4899 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4900 seq_printf(seq, ",uid=%u", 4901 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4902 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4903 seq_printf(seq, ",gid=%u", 4904 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4905 4906 /* 4907 * Showing inode{64,32} might be useful even if it's the system default, 4908 * since then people don't have to resort to checking both here and 4909 * /proc/config.gz to confirm 64-bit inums were successfully applied 4910 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4911 * 4912 * We hide it when inode64 isn't the default and we are using 32-bit 4913 * inodes, since that probably just means the feature isn't even under 4914 * consideration. 4915 * 4916 * As such: 4917 * 4918 * +-----------------+-----------------+ 4919 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4920 * +------------------+-----------------+-----------------+ 4921 * | full_inums=true | show | show | 4922 * | full_inums=false | show | hide | 4923 * +------------------+-----------------+-----------------+ 4924 * 4925 */ 4926 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4927 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4928 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4929 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4930 if (sbinfo->huge) 4931 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4932 #endif 4933 mpol = shmem_get_sbmpol(sbinfo); 4934 shmem_show_mpol(seq, mpol); 4935 mpol_put(mpol); 4936 if (sbinfo->noswap) 4937 seq_printf(seq, ",noswap"); 4938 #ifdef CONFIG_TMPFS_QUOTA 4939 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4940 seq_printf(seq, ",usrquota"); 4941 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4942 seq_printf(seq, ",grpquota"); 4943 if (sbinfo->qlimits.usrquota_bhardlimit) 4944 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4945 sbinfo->qlimits.usrquota_bhardlimit); 4946 if (sbinfo->qlimits.grpquota_bhardlimit) 4947 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4948 sbinfo->qlimits.grpquota_bhardlimit); 4949 if (sbinfo->qlimits.usrquota_ihardlimit) 4950 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4951 sbinfo->qlimits.usrquota_ihardlimit); 4952 if (sbinfo->qlimits.grpquota_ihardlimit) 4953 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4954 sbinfo->qlimits.grpquota_ihardlimit); 4955 #endif 4956 return 0; 4957 } 4958 4959 #endif /* CONFIG_TMPFS */ 4960 4961 static void shmem_put_super(struct super_block *sb) 4962 { 4963 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4964 4965 #if IS_ENABLED(CONFIG_UNICODE) 4966 if (sb->s_encoding) 4967 utf8_unload(sb->s_encoding); 4968 #endif 4969 4970 #ifdef CONFIG_TMPFS_QUOTA 4971 shmem_disable_quotas(sb); 4972 #endif 4973 free_percpu(sbinfo->ino_batch); 4974 percpu_counter_destroy(&sbinfo->used_blocks); 4975 mpol_put(sbinfo->mpol); 4976 kfree(sbinfo); 4977 sb->s_fs_info = NULL; 4978 } 4979 4980 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS) 4981 static const struct dentry_operations shmem_ci_dentry_ops = { 4982 .d_hash = generic_ci_d_hash, 4983 .d_compare = generic_ci_d_compare, 4984 .d_delete = always_delete_dentry, 4985 }; 4986 #endif 4987 4988 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4989 { 4990 struct shmem_options *ctx = fc->fs_private; 4991 struct inode *inode; 4992 struct shmem_sb_info *sbinfo; 4993 int error = -ENOMEM; 4994 4995 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4996 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4997 L1_CACHE_BYTES), GFP_KERNEL); 4998 if (!sbinfo) 4999 return error; 5000 5001 sb->s_fs_info = sbinfo; 5002 5003 #ifdef CONFIG_TMPFS 5004 /* 5005 * Per default we only allow half of the physical ram per 5006 * tmpfs instance, limiting inodes to one per page of lowmem; 5007 * but the internal instance is left unlimited. 5008 */ 5009 if (!(sb->s_flags & SB_KERNMOUNT)) { 5010 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 5011 ctx->blocks = shmem_default_max_blocks(); 5012 if (!(ctx->seen & SHMEM_SEEN_INODES)) 5013 ctx->inodes = shmem_default_max_inodes(); 5014 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 5015 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 5016 sbinfo->noswap = ctx->noswap; 5017 } else { 5018 sb->s_flags |= SB_NOUSER; 5019 } 5020 sb->s_export_op = &shmem_export_ops; 5021 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 5022 5023 #if IS_ENABLED(CONFIG_UNICODE) 5024 if (!ctx->encoding && ctx->strict_encoding) { 5025 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n"); 5026 error = -EINVAL; 5027 goto failed; 5028 } 5029 5030 if (ctx->encoding) { 5031 sb->s_encoding = ctx->encoding; 5032 sb->s_d_op = &shmem_ci_dentry_ops; 5033 if (ctx->strict_encoding) 5034 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL; 5035 } 5036 #endif 5037 5038 #else 5039 sb->s_flags |= SB_NOUSER; 5040 #endif /* CONFIG_TMPFS */ 5041 sbinfo->max_blocks = ctx->blocks; 5042 sbinfo->max_inodes = ctx->inodes; 5043 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 5044 if (sb->s_flags & SB_KERNMOUNT) { 5045 sbinfo->ino_batch = alloc_percpu(ino_t); 5046 if (!sbinfo->ino_batch) 5047 goto failed; 5048 } 5049 sbinfo->uid = ctx->uid; 5050 sbinfo->gid = ctx->gid; 5051 sbinfo->full_inums = ctx->full_inums; 5052 sbinfo->mode = ctx->mode; 5053 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5054 if (ctx->seen & SHMEM_SEEN_HUGE) 5055 sbinfo->huge = ctx->huge; 5056 else 5057 sbinfo->huge = tmpfs_huge; 5058 #endif 5059 sbinfo->mpol = ctx->mpol; 5060 ctx->mpol = NULL; 5061 5062 raw_spin_lock_init(&sbinfo->stat_lock); 5063 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 5064 goto failed; 5065 spin_lock_init(&sbinfo->shrinklist_lock); 5066 INIT_LIST_HEAD(&sbinfo->shrinklist); 5067 5068 sb->s_maxbytes = MAX_LFS_FILESIZE; 5069 sb->s_blocksize = PAGE_SIZE; 5070 sb->s_blocksize_bits = PAGE_SHIFT; 5071 sb->s_magic = TMPFS_MAGIC; 5072 sb->s_op = &shmem_ops; 5073 sb->s_time_gran = 1; 5074 #ifdef CONFIG_TMPFS_XATTR 5075 sb->s_xattr = shmem_xattr_handlers; 5076 #endif 5077 #ifdef CONFIG_TMPFS_POSIX_ACL 5078 sb->s_flags |= SB_POSIXACL; 5079 #endif 5080 uuid_t uuid; 5081 uuid_gen(&uuid); 5082 super_set_uuid(sb, uuid.b, sizeof(uuid)); 5083 5084 #ifdef CONFIG_TMPFS_QUOTA 5085 if (ctx->seen & SHMEM_SEEN_QUOTA) { 5086 sb->dq_op = &shmem_quota_operations; 5087 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5088 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 5089 5090 /* Copy the default limits from ctx into sbinfo */ 5091 memcpy(&sbinfo->qlimits, &ctx->qlimits, 5092 sizeof(struct shmem_quota_limits)); 5093 5094 if (shmem_enable_quotas(sb, ctx->quota_types)) 5095 goto failed; 5096 } 5097 #endif /* CONFIG_TMPFS_QUOTA */ 5098 5099 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 5100 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 5101 if (IS_ERR(inode)) { 5102 error = PTR_ERR(inode); 5103 goto failed; 5104 } 5105 inode->i_uid = sbinfo->uid; 5106 inode->i_gid = sbinfo->gid; 5107 sb->s_root = d_make_root(inode); 5108 if (!sb->s_root) 5109 goto failed; 5110 return 0; 5111 5112 failed: 5113 shmem_put_super(sb); 5114 return error; 5115 } 5116 5117 static int shmem_get_tree(struct fs_context *fc) 5118 { 5119 return get_tree_nodev(fc, shmem_fill_super); 5120 } 5121 5122 static void shmem_free_fc(struct fs_context *fc) 5123 { 5124 struct shmem_options *ctx = fc->fs_private; 5125 5126 if (ctx) { 5127 mpol_put(ctx->mpol); 5128 kfree(ctx); 5129 } 5130 } 5131 5132 static const struct fs_context_operations shmem_fs_context_ops = { 5133 .free = shmem_free_fc, 5134 .get_tree = shmem_get_tree, 5135 #ifdef CONFIG_TMPFS 5136 .parse_monolithic = shmem_parse_monolithic, 5137 .parse_param = shmem_parse_one, 5138 .reconfigure = shmem_reconfigure, 5139 #endif 5140 }; 5141 5142 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 5143 5144 static struct inode *shmem_alloc_inode(struct super_block *sb) 5145 { 5146 struct shmem_inode_info *info; 5147 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 5148 if (!info) 5149 return NULL; 5150 return &info->vfs_inode; 5151 } 5152 5153 static void shmem_free_in_core_inode(struct inode *inode) 5154 { 5155 if (S_ISLNK(inode->i_mode)) 5156 kfree(inode->i_link); 5157 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 5158 } 5159 5160 static void shmem_destroy_inode(struct inode *inode) 5161 { 5162 if (S_ISREG(inode->i_mode)) 5163 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 5164 if (S_ISDIR(inode->i_mode)) 5165 simple_offset_destroy(shmem_get_offset_ctx(inode)); 5166 } 5167 5168 static void shmem_init_inode(void *foo) 5169 { 5170 struct shmem_inode_info *info = foo; 5171 inode_init_once(&info->vfs_inode); 5172 } 5173 5174 static void __init shmem_init_inodecache(void) 5175 { 5176 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 5177 sizeof(struct shmem_inode_info), 5178 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 5179 } 5180 5181 static void __init shmem_destroy_inodecache(void) 5182 { 5183 kmem_cache_destroy(shmem_inode_cachep); 5184 } 5185 5186 /* Keep the page in page cache instead of truncating it */ 5187 static int shmem_error_remove_folio(struct address_space *mapping, 5188 struct folio *folio) 5189 { 5190 return 0; 5191 } 5192 5193 static const struct address_space_operations shmem_aops = { 5194 .writepage = shmem_writepage, 5195 .dirty_folio = noop_dirty_folio, 5196 #ifdef CONFIG_TMPFS 5197 .write_begin = shmem_write_begin, 5198 .write_end = shmem_write_end, 5199 #endif 5200 #ifdef CONFIG_MIGRATION 5201 .migrate_folio = migrate_folio, 5202 #endif 5203 .error_remove_folio = shmem_error_remove_folio, 5204 }; 5205 5206 static const struct file_operations shmem_file_operations = { 5207 .mmap = shmem_mmap, 5208 .open = shmem_file_open, 5209 .get_unmapped_area = shmem_get_unmapped_area, 5210 #ifdef CONFIG_TMPFS 5211 .llseek = shmem_file_llseek, 5212 .read_iter = shmem_file_read_iter, 5213 .write_iter = shmem_file_write_iter, 5214 .fsync = noop_fsync, 5215 .splice_read = shmem_file_splice_read, 5216 .splice_write = iter_file_splice_write, 5217 .fallocate = shmem_fallocate, 5218 #endif 5219 }; 5220 5221 static const struct inode_operations shmem_inode_operations = { 5222 .getattr = shmem_getattr, 5223 .setattr = shmem_setattr, 5224 #ifdef CONFIG_TMPFS_XATTR 5225 .listxattr = shmem_listxattr, 5226 .set_acl = simple_set_acl, 5227 .fileattr_get = shmem_fileattr_get, 5228 .fileattr_set = shmem_fileattr_set, 5229 #endif 5230 }; 5231 5232 static const struct inode_operations shmem_dir_inode_operations = { 5233 #ifdef CONFIG_TMPFS 5234 .getattr = shmem_getattr, 5235 .create = shmem_create, 5236 .lookup = simple_lookup, 5237 .link = shmem_link, 5238 .unlink = shmem_unlink, 5239 .symlink = shmem_symlink, 5240 .mkdir = shmem_mkdir, 5241 .rmdir = shmem_rmdir, 5242 .mknod = shmem_mknod, 5243 .rename = shmem_rename2, 5244 .tmpfile = shmem_tmpfile, 5245 .get_offset_ctx = shmem_get_offset_ctx, 5246 #endif 5247 #ifdef CONFIG_TMPFS_XATTR 5248 .listxattr = shmem_listxattr, 5249 .fileattr_get = shmem_fileattr_get, 5250 .fileattr_set = shmem_fileattr_set, 5251 #endif 5252 #ifdef CONFIG_TMPFS_POSIX_ACL 5253 .setattr = shmem_setattr, 5254 .set_acl = simple_set_acl, 5255 #endif 5256 }; 5257 5258 static const struct inode_operations shmem_special_inode_operations = { 5259 .getattr = shmem_getattr, 5260 #ifdef CONFIG_TMPFS_XATTR 5261 .listxattr = shmem_listxattr, 5262 #endif 5263 #ifdef CONFIG_TMPFS_POSIX_ACL 5264 .setattr = shmem_setattr, 5265 .set_acl = simple_set_acl, 5266 #endif 5267 }; 5268 5269 static const struct super_operations shmem_ops = { 5270 .alloc_inode = shmem_alloc_inode, 5271 .free_inode = shmem_free_in_core_inode, 5272 .destroy_inode = shmem_destroy_inode, 5273 #ifdef CONFIG_TMPFS 5274 .statfs = shmem_statfs, 5275 .show_options = shmem_show_options, 5276 #endif 5277 #ifdef CONFIG_TMPFS_QUOTA 5278 .get_dquots = shmem_get_dquots, 5279 #endif 5280 .evict_inode = shmem_evict_inode, 5281 .drop_inode = generic_delete_inode, 5282 .put_super = shmem_put_super, 5283 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5284 .nr_cached_objects = shmem_unused_huge_count, 5285 .free_cached_objects = shmem_unused_huge_scan, 5286 #endif 5287 }; 5288 5289 static const struct vm_operations_struct shmem_vm_ops = { 5290 .fault = shmem_fault, 5291 .map_pages = filemap_map_pages, 5292 #ifdef CONFIG_NUMA 5293 .set_policy = shmem_set_policy, 5294 .get_policy = shmem_get_policy, 5295 #endif 5296 }; 5297 5298 static const struct vm_operations_struct shmem_anon_vm_ops = { 5299 .fault = shmem_fault, 5300 .map_pages = filemap_map_pages, 5301 #ifdef CONFIG_NUMA 5302 .set_policy = shmem_set_policy, 5303 .get_policy = shmem_get_policy, 5304 #endif 5305 }; 5306 5307 int shmem_init_fs_context(struct fs_context *fc) 5308 { 5309 struct shmem_options *ctx; 5310 5311 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 5312 if (!ctx) 5313 return -ENOMEM; 5314 5315 ctx->mode = 0777 | S_ISVTX; 5316 ctx->uid = current_fsuid(); 5317 ctx->gid = current_fsgid(); 5318 5319 #if IS_ENABLED(CONFIG_UNICODE) 5320 ctx->encoding = NULL; 5321 #endif 5322 5323 fc->fs_private = ctx; 5324 fc->ops = &shmem_fs_context_ops; 5325 return 0; 5326 } 5327 5328 static struct file_system_type shmem_fs_type = { 5329 .owner = THIS_MODULE, 5330 .name = "tmpfs", 5331 .init_fs_context = shmem_init_fs_context, 5332 #ifdef CONFIG_TMPFS 5333 .parameters = shmem_fs_parameters, 5334 #endif 5335 .kill_sb = kill_litter_super, 5336 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME, 5337 }; 5338 5339 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5340 5341 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \ 5342 { \ 5343 .attr = { .name = __stringify(_name), .mode = _mode }, \ 5344 .show = _show, \ 5345 .store = _store, \ 5346 } 5347 5348 #define TMPFS_ATTR_W(_name, _store) \ 5349 static struct kobj_attribute tmpfs_attr_##_name = \ 5350 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store) 5351 5352 #define TMPFS_ATTR_RW(_name, _show, _store) \ 5353 static struct kobj_attribute tmpfs_attr_##_name = \ 5354 __INIT_KOBJ_ATTR(_name, 0644, _show, _store) 5355 5356 #define TMPFS_ATTR_RO(_name, _show) \ 5357 static struct kobj_attribute tmpfs_attr_##_name = \ 5358 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL) 5359 5360 #if IS_ENABLED(CONFIG_UNICODE) 5361 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a, 5362 char *buf) 5363 { 5364 return sysfs_emit(buf, "supported\n"); 5365 } 5366 TMPFS_ATTR_RO(casefold, casefold_show); 5367 #endif 5368 5369 static struct attribute *tmpfs_attributes[] = { 5370 #if IS_ENABLED(CONFIG_UNICODE) 5371 &tmpfs_attr_casefold.attr, 5372 #endif 5373 NULL 5374 }; 5375 5376 static const struct attribute_group tmpfs_attribute_group = { 5377 .attrs = tmpfs_attributes, 5378 .name = "features" 5379 }; 5380 5381 static struct kobject *tmpfs_kobj; 5382 5383 static int __init tmpfs_sysfs_init(void) 5384 { 5385 int ret; 5386 5387 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj); 5388 if (!tmpfs_kobj) 5389 return -ENOMEM; 5390 5391 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group); 5392 if (ret) 5393 kobject_put(tmpfs_kobj); 5394 5395 return ret; 5396 } 5397 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */ 5398 5399 void __init shmem_init(void) 5400 { 5401 int error; 5402 5403 shmem_init_inodecache(); 5404 5405 #ifdef CONFIG_TMPFS_QUOTA 5406 register_quota_format(&shmem_quota_format); 5407 #endif 5408 5409 error = register_filesystem(&shmem_fs_type); 5410 if (error) { 5411 pr_err("Could not register tmpfs\n"); 5412 goto out2; 5413 } 5414 5415 shm_mnt = kern_mount(&shmem_fs_type); 5416 if (IS_ERR(shm_mnt)) { 5417 error = PTR_ERR(shm_mnt); 5418 pr_err("Could not kern_mount tmpfs\n"); 5419 goto out1; 5420 } 5421 5422 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5423 error = tmpfs_sysfs_init(); 5424 if (error) { 5425 pr_err("Could not init tmpfs sysfs\n"); 5426 goto out1; 5427 } 5428 #endif 5429 5430 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5431 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 5432 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5433 else 5434 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 5435 5436 /* 5437 * Default to setting PMD-sized THP to inherit the global setting and 5438 * disable all other multi-size THPs. 5439 */ 5440 if (!shmem_orders_configured) 5441 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER); 5442 #endif 5443 return; 5444 5445 out1: 5446 unregister_filesystem(&shmem_fs_type); 5447 out2: 5448 #ifdef CONFIG_TMPFS_QUOTA 5449 unregister_quota_format(&shmem_quota_format); 5450 #endif 5451 shmem_destroy_inodecache(); 5452 shm_mnt = ERR_PTR(error); 5453 } 5454 5455 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 5456 static ssize_t shmem_enabled_show(struct kobject *kobj, 5457 struct kobj_attribute *attr, char *buf) 5458 { 5459 static const int values[] = { 5460 SHMEM_HUGE_ALWAYS, 5461 SHMEM_HUGE_WITHIN_SIZE, 5462 SHMEM_HUGE_ADVISE, 5463 SHMEM_HUGE_NEVER, 5464 SHMEM_HUGE_DENY, 5465 SHMEM_HUGE_FORCE, 5466 }; 5467 int len = 0; 5468 int i; 5469 5470 for (i = 0; i < ARRAY_SIZE(values); i++) { 5471 len += sysfs_emit_at(buf, len, 5472 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 5473 i ? " " : "", shmem_format_huge(values[i])); 5474 } 5475 len += sysfs_emit_at(buf, len, "\n"); 5476 5477 return len; 5478 } 5479 5480 static ssize_t shmem_enabled_store(struct kobject *kobj, 5481 struct kobj_attribute *attr, const char *buf, size_t count) 5482 { 5483 char tmp[16]; 5484 int huge, err; 5485 5486 if (count + 1 > sizeof(tmp)) 5487 return -EINVAL; 5488 memcpy(tmp, buf, count); 5489 tmp[count] = '\0'; 5490 if (count && tmp[count - 1] == '\n') 5491 tmp[count - 1] = '\0'; 5492 5493 huge = shmem_parse_huge(tmp); 5494 if (huge == -EINVAL) 5495 return huge; 5496 5497 shmem_huge = huge; 5498 if (shmem_huge > SHMEM_HUGE_DENY) 5499 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5500 5501 err = start_stop_khugepaged(); 5502 return err ? err : count; 5503 } 5504 5505 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 5506 static DEFINE_SPINLOCK(huge_shmem_orders_lock); 5507 5508 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj, 5509 struct kobj_attribute *attr, char *buf) 5510 { 5511 int order = to_thpsize(kobj)->order; 5512 const char *output; 5513 5514 if (test_bit(order, &huge_shmem_orders_always)) 5515 output = "[always] inherit within_size advise never"; 5516 else if (test_bit(order, &huge_shmem_orders_inherit)) 5517 output = "always [inherit] within_size advise never"; 5518 else if (test_bit(order, &huge_shmem_orders_within_size)) 5519 output = "always inherit [within_size] advise never"; 5520 else if (test_bit(order, &huge_shmem_orders_madvise)) 5521 output = "always inherit within_size [advise] never"; 5522 else 5523 output = "always inherit within_size advise [never]"; 5524 5525 return sysfs_emit(buf, "%s\n", output); 5526 } 5527 5528 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj, 5529 struct kobj_attribute *attr, 5530 const char *buf, size_t count) 5531 { 5532 int order = to_thpsize(kobj)->order; 5533 ssize_t ret = count; 5534 5535 if (sysfs_streq(buf, "always")) { 5536 spin_lock(&huge_shmem_orders_lock); 5537 clear_bit(order, &huge_shmem_orders_inherit); 5538 clear_bit(order, &huge_shmem_orders_madvise); 5539 clear_bit(order, &huge_shmem_orders_within_size); 5540 set_bit(order, &huge_shmem_orders_always); 5541 spin_unlock(&huge_shmem_orders_lock); 5542 } else if (sysfs_streq(buf, "inherit")) { 5543 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5544 if (shmem_huge == SHMEM_HUGE_FORCE && 5545 order != HPAGE_PMD_ORDER) 5546 return -EINVAL; 5547 5548 spin_lock(&huge_shmem_orders_lock); 5549 clear_bit(order, &huge_shmem_orders_always); 5550 clear_bit(order, &huge_shmem_orders_madvise); 5551 clear_bit(order, &huge_shmem_orders_within_size); 5552 set_bit(order, &huge_shmem_orders_inherit); 5553 spin_unlock(&huge_shmem_orders_lock); 5554 } else if (sysfs_streq(buf, "within_size")) { 5555 spin_lock(&huge_shmem_orders_lock); 5556 clear_bit(order, &huge_shmem_orders_always); 5557 clear_bit(order, &huge_shmem_orders_inherit); 5558 clear_bit(order, &huge_shmem_orders_madvise); 5559 set_bit(order, &huge_shmem_orders_within_size); 5560 spin_unlock(&huge_shmem_orders_lock); 5561 } else if (sysfs_streq(buf, "advise")) { 5562 spin_lock(&huge_shmem_orders_lock); 5563 clear_bit(order, &huge_shmem_orders_always); 5564 clear_bit(order, &huge_shmem_orders_inherit); 5565 clear_bit(order, &huge_shmem_orders_within_size); 5566 set_bit(order, &huge_shmem_orders_madvise); 5567 spin_unlock(&huge_shmem_orders_lock); 5568 } else if (sysfs_streq(buf, "never")) { 5569 spin_lock(&huge_shmem_orders_lock); 5570 clear_bit(order, &huge_shmem_orders_always); 5571 clear_bit(order, &huge_shmem_orders_inherit); 5572 clear_bit(order, &huge_shmem_orders_within_size); 5573 clear_bit(order, &huge_shmem_orders_madvise); 5574 spin_unlock(&huge_shmem_orders_lock); 5575 } else { 5576 ret = -EINVAL; 5577 } 5578 5579 if (ret > 0) { 5580 int err = start_stop_khugepaged(); 5581 5582 if (err) 5583 ret = err; 5584 } 5585 return ret; 5586 } 5587 5588 struct kobj_attribute thpsize_shmem_enabled_attr = 5589 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store); 5590 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 5591 5592 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 5593 5594 static int __init setup_transparent_hugepage_shmem(char *str) 5595 { 5596 int huge; 5597 5598 huge = shmem_parse_huge(str); 5599 if (huge == -EINVAL) { 5600 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n"); 5601 return huge; 5602 } 5603 5604 shmem_huge = huge; 5605 return 1; 5606 } 5607 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem); 5608 5609 static int __init setup_transparent_hugepage_tmpfs(char *str) 5610 { 5611 int huge; 5612 5613 huge = shmem_parse_huge(str); 5614 if (huge < 0) { 5615 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n"); 5616 return huge; 5617 } 5618 5619 tmpfs_huge = huge; 5620 return 1; 5621 } 5622 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs); 5623 5624 static char str_dup[PAGE_SIZE] __initdata; 5625 static int __init setup_thp_shmem(char *str) 5626 { 5627 char *token, *range, *policy, *subtoken; 5628 unsigned long always, inherit, madvise, within_size; 5629 char *start_size, *end_size; 5630 int start, end, nr; 5631 char *p; 5632 5633 if (!str || strlen(str) + 1 > PAGE_SIZE) 5634 goto err; 5635 strscpy(str_dup, str); 5636 5637 always = huge_shmem_orders_always; 5638 inherit = huge_shmem_orders_inherit; 5639 madvise = huge_shmem_orders_madvise; 5640 within_size = huge_shmem_orders_within_size; 5641 p = str_dup; 5642 while ((token = strsep(&p, ";")) != NULL) { 5643 range = strsep(&token, ":"); 5644 policy = token; 5645 5646 if (!policy) 5647 goto err; 5648 5649 while ((subtoken = strsep(&range, ",")) != NULL) { 5650 if (strchr(subtoken, '-')) { 5651 start_size = strsep(&subtoken, "-"); 5652 end_size = subtoken; 5653 5654 start = get_order_from_str(start_size, 5655 THP_ORDERS_ALL_FILE_DEFAULT); 5656 end = get_order_from_str(end_size, 5657 THP_ORDERS_ALL_FILE_DEFAULT); 5658 } else { 5659 start_size = end_size = subtoken; 5660 start = end = get_order_from_str(subtoken, 5661 THP_ORDERS_ALL_FILE_DEFAULT); 5662 } 5663 5664 if (start < 0) { 5665 pr_err("invalid size %s in thp_shmem boot parameter\n", 5666 start_size); 5667 goto err; 5668 } 5669 5670 if (end < 0) { 5671 pr_err("invalid size %s in thp_shmem boot parameter\n", 5672 end_size); 5673 goto err; 5674 } 5675 5676 if (start > end) 5677 goto err; 5678 5679 nr = end - start + 1; 5680 if (!strcmp(policy, "always")) { 5681 bitmap_set(&always, start, nr); 5682 bitmap_clear(&inherit, start, nr); 5683 bitmap_clear(&madvise, start, nr); 5684 bitmap_clear(&within_size, start, nr); 5685 } else if (!strcmp(policy, "advise")) { 5686 bitmap_set(&madvise, start, nr); 5687 bitmap_clear(&inherit, start, nr); 5688 bitmap_clear(&always, start, nr); 5689 bitmap_clear(&within_size, start, nr); 5690 } else if (!strcmp(policy, "inherit")) { 5691 bitmap_set(&inherit, start, nr); 5692 bitmap_clear(&madvise, start, nr); 5693 bitmap_clear(&always, start, nr); 5694 bitmap_clear(&within_size, start, nr); 5695 } else if (!strcmp(policy, "within_size")) { 5696 bitmap_set(&within_size, start, nr); 5697 bitmap_clear(&inherit, start, nr); 5698 bitmap_clear(&madvise, start, nr); 5699 bitmap_clear(&always, start, nr); 5700 } else if (!strcmp(policy, "never")) { 5701 bitmap_clear(&inherit, start, nr); 5702 bitmap_clear(&madvise, start, nr); 5703 bitmap_clear(&always, start, nr); 5704 bitmap_clear(&within_size, start, nr); 5705 } else { 5706 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy); 5707 goto err; 5708 } 5709 } 5710 } 5711 5712 huge_shmem_orders_always = always; 5713 huge_shmem_orders_madvise = madvise; 5714 huge_shmem_orders_inherit = inherit; 5715 huge_shmem_orders_within_size = within_size; 5716 shmem_orders_configured = true; 5717 return 1; 5718 5719 err: 5720 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str); 5721 return 0; 5722 } 5723 __setup("thp_shmem=", setup_thp_shmem); 5724 5725 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5726 5727 #else /* !CONFIG_SHMEM */ 5728 5729 /* 5730 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 5731 * 5732 * This is intended for small system where the benefits of the full 5733 * shmem code (swap-backed and resource-limited) are outweighed by 5734 * their complexity. On systems without swap this code should be 5735 * effectively equivalent, but much lighter weight. 5736 */ 5737 5738 static struct file_system_type shmem_fs_type = { 5739 .name = "tmpfs", 5740 .init_fs_context = ramfs_init_fs_context, 5741 .parameters = ramfs_fs_parameters, 5742 .kill_sb = ramfs_kill_sb, 5743 .fs_flags = FS_USERNS_MOUNT, 5744 }; 5745 5746 void __init shmem_init(void) 5747 { 5748 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 5749 5750 shm_mnt = kern_mount(&shmem_fs_type); 5751 BUG_ON(IS_ERR(shm_mnt)); 5752 } 5753 5754 int shmem_unuse(unsigned int type) 5755 { 5756 return 0; 5757 } 5758 5759 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 5760 { 5761 return 0; 5762 } 5763 5764 void shmem_unlock_mapping(struct address_space *mapping) 5765 { 5766 } 5767 5768 #ifdef CONFIG_MMU 5769 unsigned long shmem_get_unmapped_area(struct file *file, 5770 unsigned long addr, unsigned long len, 5771 unsigned long pgoff, unsigned long flags) 5772 { 5773 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags); 5774 } 5775 #endif 5776 5777 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 5778 { 5779 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 5780 } 5781 EXPORT_SYMBOL_GPL(shmem_truncate_range); 5782 5783 #define shmem_vm_ops generic_file_vm_ops 5784 #define shmem_anon_vm_ops generic_file_vm_ops 5785 #define shmem_file_operations ramfs_file_operations 5786 #define shmem_acct_size(flags, size) 0 5787 #define shmem_unacct_size(flags, size) do {} while (0) 5788 5789 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 5790 struct super_block *sb, struct inode *dir, 5791 umode_t mode, dev_t dev, unsigned long flags) 5792 { 5793 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 5794 return inode ? inode : ERR_PTR(-ENOSPC); 5795 } 5796 5797 #endif /* CONFIG_SHMEM */ 5798 5799 /* common code */ 5800 5801 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 5802 loff_t size, unsigned long flags, unsigned int i_flags) 5803 { 5804 struct inode *inode; 5805 struct file *res; 5806 5807 if (IS_ERR(mnt)) 5808 return ERR_CAST(mnt); 5809 5810 if (size < 0 || size > MAX_LFS_FILESIZE) 5811 return ERR_PTR(-EINVAL); 5812 5813 if (shmem_acct_size(flags, size)) 5814 return ERR_PTR(-ENOMEM); 5815 5816 if (is_idmapped_mnt(mnt)) 5817 return ERR_PTR(-EINVAL); 5818 5819 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 5820 S_IFREG | S_IRWXUGO, 0, flags); 5821 if (IS_ERR(inode)) { 5822 shmem_unacct_size(flags, size); 5823 return ERR_CAST(inode); 5824 } 5825 inode->i_flags |= i_flags; 5826 inode->i_size = size; 5827 clear_nlink(inode); /* It is unlinked */ 5828 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 5829 if (!IS_ERR(res)) 5830 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 5831 &shmem_file_operations); 5832 if (IS_ERR(res)) 5833 iput(inode); 5834 return res; 5835 } 5836 5837 /** 5838 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 5839 * kernel internal. There will be NO LSM permission checks against the 5840 * underlying inode. So users of this interface must do LSM checks at a 5841 * higher layer. The users are the big_key and shm implementations. LSM 5842 * checks are provided at the key or shm level rather than the inode. 5843 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5844 * @size: size to be set for the file 5845 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5846 */ 5847 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 5848 { 5849 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 5850 } 5851 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 5852 5853 /** 5854 * shmem_file_setup - get an unlinked file living in tmpfs 5855 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5856 * @size: size to be set for the file 5857 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5858 */ 5859 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 5860 { 5861 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 5862 } 5863 EXPORT_SYMBOL_GPL(shmem_file_setup); 5864 5865 /** 5866 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 5867 * @mnt: the tmpfs mount where the file will be created 5868 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5869 * @size: size to be set for the file 5870 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5871 */ 5872 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 5873 loff_t size, unsigned long flags) 5874 { 5875 return __shmem_file_setup(mnt, name, size, flags, 0); 5876 } 5877 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 5878 5879 /** 5880 * shmem_zero_setup - setup a shared anonymous mapping 5881 * @vma: the vma to be mmapped is prepared by do_mmap 5882 */ 5883 int shmem_zero_setup(struct vm_area_struct *vma) 5884 { 5885 struct file *file; 5886 loff_t size = vma->vm_end - vma->vm_start; 5887 5888 /* 5889 * Cloning a new file under mmap_lock leads to a lock ordering conflict 5890 * between XFS directory reading and selinux: since this file is only 5891 * accessible to the user through its mapping, use S_PRIVATE flag to 5892 * bypass file security, in the same way as shmem_kernel_file_setup(). 5893 */ 5894 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 5895 if (IS_ERR(file)) 5896 return PTR_ERR(file); 5897 5898 if (vma->vm_file) 5899 fput(vma->vm_file); 5900 vma->vm_file = file; 5901 vma->vm_ops = &shmem_anon_vm_ops; 5902 5903 return 0; 5904 } 5905 5906 /** 5907 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 5908 * @mapping: the folio's address_space 5909 * @index: the folio index 5910 * @gfp: the page allocator flags to use if allocating 5911 * 5912 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 5913 * with any new page allocations done using the specified allocation flags. 5914 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 5915 * suit tmpfs, since it may have pages in swapcache, and needs to find those 5916 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 5917 * 5918 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 5919 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 5920 */ 5921 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 5922 pgoff_t index, gfp_t gfp) 5923 { 5924 #ifdef CONFIG_SHMEM 5925 struct inode *inode = mapping->host; 5926 struct folio *folio; 5927 int error; 5928 5929 error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE, 5930 gfp, NULL, NULL); 5931 if (error) 5932 return ERR_PTR(error); 5933 5934 folio_unlock(folio); 5935 return folio; 5936 #else 5937 /* 5938 * The tiny !SHMEM case uses ramfs without swap 5939 */ 5940 return mapping_read_folio_gfp(mapping, index, gfp); 5941 #endif 5942 } 5943 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 5944 5945 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 5946 pgoff_t index, gfp_t gfp) 5947 { 5948 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 5949 struct page *page; 5950 5951 if (IS_ERR(folio)) 5952 return &folio->page; 5953 5954 page = folio_file_page(folio, index); 5955 if (PageHWPoison(page)) { 5956 folio_put(folio); 5957 return ERR_PTR(-EIO); 5958 } 5959 5960 return page; 5961 } 5962 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 5963