xref: /linux/mm/shmem.c (revision 79ac11393328fb1717d17c12e3c0eef0e9fa0647)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44 
45 static struct vfsmount *shm_mnt __ro_after_init;
46 
47 #ifdef CONFIG_SHMEM
48 /*
49  * This virtual memory filesystem is heavily based on the ramfs. It
50  * extends ramfs by the ability to use swap and honor resource limits
51  * which makes it a completely usable filesystem.
52  */
53 
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 #include <linux/quotaops.h>
82 
83 #include <linux/uaccess.h>
84 
85 #include "internal.h"
86 
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92 
93 /* Pretend that one inode + its dentry occupy this much memory */
94 #define BOGO_INODE_SIZE 1024
95 
96 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
97 #define SHORT_SYMLINK_LEN 128
98 
99 /*
100  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
101  * inode->i_private (with i_rwsem making sure that it has only one user at
102  * a time): we would prefer not to enlarge the shmem inode just for that.
103  */
104 struct shmem_falloc {
105 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
106 	pgoff_t start;		/* start of range currently being fallocated */
107 	pgoff_t next;		/* the next page offset to be fallocated */
108 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
109 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
110 };
111 
112 struct shmem_options {
113 	unsigned long long blocks;
114 	unsigned long long inodes;
115 	struct mempolicy *mpol;
116 	kuid_t uid;
117 	kgid_t gid;
118 	umode_t mode;
119 	bool full_inums;
120 	int huge;
121 	int seen;
122 	bool noswap;
123 	unsigned short quota_types;
124 	struct shmem_quota_limits qlimits;
125 #define SHMEM_SEEN_BLOCKS 1
126 #define SHMEM_SEEN_INODES 2
127 #define SHMEM_SEEN_HUGE 4
128 #define SHMEM_SEEN_INUMS 8
129 #define SHMEM_SEEN_NOSWAP 16
130 #define SHMEM_SEEN_QUOTA 32
131 };
132 
133 #ifdef CONFIG_TMPFS
134 static unsigned long shmem_default_max_blocks(void)
135 {
136 	return totalram_pages() / 2;
137 }
138 
139 static unsigned long shmem_default_max_inodes(void)
140 {
141 	unsigned long nr_pages = totalram_pages();
142 
143 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
144 			ULONG_MAX / BOGO_INODE_SIZE);
145 }
146 #endif
147 
148 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
149 			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
150 			struct mm_struct *fault_mm, vm_fault_t *fault_type);
151 
152 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
153 {
154 	return sb->s_fs_info;
155 }
156 
157 /*
158  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
159  * for shared memory and for shared anonymous (/dev/zero) mappings
160  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
161  * consistent with the pre-accounting of private mappings ...
162  */
163 static inline int shmem_acct_size(unsigned long flags, loff_t size)
164 {
165 	return (flags & VM_NORESERVE) ?
166 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
167 }
168 
169 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
170 {
171 	if (!(flags & VM_NORESERVE))
172 		vm_unacct_memory(VM_ACCT(size));
173 }
174 
175 static inline int shmem_reacct_size(unsigned long flags,
176 		loff_t oldsize, loff_t newsize)
177 {
178 	if (!(flags & VM_NORESERVE)) {
179 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
180 			return security_vm_enough_memory_mm(current->mm,
181 					VM_ACCT(newsize) - VM_ACCT(oldsize));
182 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
183 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
184 	}
185 	return 0;
186 }
187 
188 /*
189  * ... whereas tmpfs objects are accounted incrementally as
190  * pages are allocated, in order to allow large sparse files.
191  * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
192  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
193  */
194 static inline int shmem_acct_blocks(unsigned long flags, long pages)
195 {
196 	if (!(flags & VM_NORESERVE))
197 		return 0;
198 
199 	return security_vm_enough_memory_mm(current->mm,
200 			pages * VM_ACCT(PAGE_SIZE));
201 }
202 
203 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
204 {
205 	if (flags & VM_NORESERVE)
206 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
207 }
208 
209 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
210 {
211 	struct shmem_inode_info *info = SHMEM_I(inode);
212 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
213 	int err = -ENOSPC;
214 
215 	if (shmem_acct_blocks(info->flags, pages))
216 		return err;
217 
218 	might_sleep();	/* when quotas */
219 	if (sbinfo->max_blocks) {
220 		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
221 						sbinfo->max_blocks, pages))
222 			goto unacct;
223 
224 		err = dquot_alloc_block_nodirty(inode, pages);
225 		if (err) {
226 			percpu_counter_sub(&sbinfo->used_blocks, pages);
227 			goto unacct;
228 		}
229 	} else {
230 		err = dquot_alloc_block_nodirty(inode, pages);
231 		if (err)
232 			goto unacct;
233 	}
234 
235 	return 0;
236 
237 unacct:
238 	shmem_unacct_blocks(info->flags, pages);
239 	return err;
240 }
241 
242 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
243 {
244 	struct shmem_inode_info *info = SHMEM_I(inode);
245 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
246 
247 	might_sleep();	/* when quotas */
248 	dquot_free_block_nodirty(inode, pages);
249 
250 	if (sbinfo->max_blocks)
251 		percpu_counter_sub(&sbinfo->used_blocks, pages);
252 	shmem_unacct_blocks(info->flags, pages);
253 }
254 
255 static const struct super_operations shmem_ops;
256 const struct address_space_operations shmem_aops;
257 static const struct file_operations shmem_file_operations;
258 static const struct inode_operations shmem_inode_operations;
259 static const struct inode_operations shmem_dir_inode_operations;
260 static const struct inode_operations shmem_special_inode_operations;
261 static const struct vm_operations_struct shmem_vm_ops;
262 static const struct vm_operations_struct shmem_anon_vm_ops;
263 static struct file_system_type shmem_fs_type;
264 
265 bool vma_is_anon_shmem(struct vm_area_struct *vma)
266 {
267 	return vma->vm_ops == &shmem_anon_vm_ops;
268 }
269 
270 bool vma_is_shmem(struct vm_area_struct *vma)
271 {
272 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
273 }
274 
275 static LIST_HEAD(shmem_swaplist);
276 static DEFINE_MUTEX(shmem_swaplist_mutex);
277 
278 #ifdef CONFIG_TMPFS_QUOTA
279 
280 static int shmem_enable_quotas(struct super_block *sb,
281 			       unsigned short quota_types)
282 {
283 	int type, err = 0;
284 
285 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
286 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
287 		if (!(quota_types & (1 << type)))
288 			continue;
289 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
290 					  DQUOT_USAGE_ENABLED |
291 					  DQUOT_LIMITS_ENABLED);
292 		if (err)
293 			goto out_err;
294 	}
295 	return 0;
296 
297 out_err:
298 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
299 		type, err);
300 	for (type--; type >= 0; type--)
301 		dquot_quota_off(sb, type);
302 	return err;
303 }
304 
305 static void shmem_disable_quotas(struct super_block *sb)
306 {
307 	int type;
308 
309 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
310 		dquot_quota_off(sb, type);
311 }
312 
313 static struct dquot **shmem_get_dquots(struct inode *inode)
314 {
315 	return SHMEM_I(inode)->i_dquot;
316 }
317 #endif /* CONFIG_TMPFS_QUOTA */
318 
319 /*
320  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
321  * produces a novel ino for the newly allocated inode.
322  *
323  * It may also be called when making a hard link to permit the space needed by
324  * each dentry. However, in that case, no new inode number is needed since that
325  * internally draws from another pool of inode numbers (currently global
326  * get_next_ino()). This case is indicated by passing NULL as inop.
327  */
328 #define SHMEM_INO_BATCH 1024
329 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
330 {
331 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
332 	ino_t ino;
333 
334 	if (!(sb->s_flags & SB_KERNMOUNT)) {
335 		raw_spin_lock(&sbinfo->stat_lock);
336 		if (sbinfo->max_inodes) {
337 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
338 				raw_spin_unlock(&sbinfo->stat_lock);
339 				return -ENOSPC;
340 			}
341 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
342 		}
343 		if (inop) {
344 			ino = sbinfo->next_ino++;
345 			if (unlikely(is_zero_ino(ino)))
346 				ino = sbinfo->next_ino++;
347 			if (unlikely(!sbinfo->full_inums &&
348 				     ino > UINT_MAX)) {
349 				/*
350 				 * Emulate get_next_ino uint wraparound for
351 				 * compatibility
352 				 */
353 				if (IS_ENABLED(CONFIG_64BIT))
354 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
355 						__func__, MINOR(sb->s_dev));
356 				sbinfo->next_ino = 1;
357 				ino = sbinfo->next_ino++;
358 			}
359 			*inop = ino;
360 		}
361 		raw_spin_unlock(&sbinfo->stat_lock);
362 	} else if (inop) {
363 		/*
364 		 * __shmem_file_setup, one of our callers, is lock-free: it
365 		 * doesn't hold stat_lock in shmem_reserve_inode since
366 		 * max_inodes is always 0, and is called from potentially
367 		 * unknown contexts. As such, use a per-cpu batched allocator
368 		 * which doesn't require the per-sb stat_lock unless we are at
369 		 * the batch boundary.
370 		 *
371 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
372 		 * shmem mounts are not exposed to userspace, so we don't need
373 		 * to worry about things like glibc compatibility.
374 		 */
375 		ino_t *next_ino;
376 
377 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
378 		ino = *next_ino;
379 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
380 			raw_spin_lock(&sbinfo->stat_lock);
381 			ino = sbinfo->next_ino;
382 			sbinfo->next_ino += SHMEM_INO_BATCH;
383 			raw_spin_unlock(&sbinfo->stat_lock);
384 			if (unlikely(is_zero_ino(ino)))
385 				ino++;
386 		}
387 		*inop = ino;
388 		*next_ino = ++ino;
389 		put_cpu();
390 	}
391 
392 	return 0;
393 }
394 
395 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
396 {
397 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
398 	if (sbinfo->max_inodes) {
399 		raw_spin_lock(&sbinfo->stat_lock);
400 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
401 		raw_spin_unlock(&sbinfo->stat_lock);
402 	}
403 }
404 
405 /**
406  * shmem_recalc_inode - recalculate the block usage of an inode
407  * @inode: inode to recalc
408  * @alloced: the change in number of pages allocated to inode
409  * @swapped: the change in number of pages swapped from inode
410  *
411  * We have to calculate the free blocks since the mm can drop
412  * undirtied hole pages behind our back.
413  *
414  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
415  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
416  */
417 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
418 {
419 	struct shmem_inode_info *info = SHMEM_I(inode);
420 	long freed;
421 
422 	spin_lock(&info->lock);
423 	info->alloced += alloced;
424 	info->swapped += swapped;
425 	freed = info->alloced - info->swapped -
426 		READ_ONCE(inode->i_mapping->nrpages);
427 	/*
428 	 * Special case: whereas normally shmem_recalc_inode() is called
429 	 * after i_mapping->nrpages has already been adjusted (up or down),
430 	 * shmem_writepage() has to raise swapped before nrpages is lowered -
431 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
432 	 * been freed.  Compensate here, to avoid the need for a followup call.
433 	 */
434 	if (swapped > 0)
435 		freed += swapped;
436 	if (freed > 0)
437 		info->alloced -= freed;
438 	spin_unlock(&info->lock);
439 
440 	/* The quota case may block */
441 	if (freed > 0)
442 		shmem_inode_unacct_blocks(inode, freed);
443 }
444 
445 bool shmem_charge(struct inode *inode, long pages)
446 {
447 	struct address_space *mapping = inode->i_mapping;
448 
449 	if (shmem_inode_acct_blocks(inode, pages))
450 		return false;
451 
452 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
453 	xa_lock_irq(&mapping->i_pages);
454 	mapping->nrpages += pages;
455 	xa_unlock_irq(&mapping->i_pages);
456 
457 	shmem_recalc_inode(inode, pages, 0);
458 	return true;
459 }
460 
461 void shmem_uncharge(struct inode *inode, long pages)
462 {
463 	/* pages argument is currently unused: keep it to help debugging */
464 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
465 
466 	shmem_recalc_inode(inode, 0, 0);
467 }
468 
469 /*
470  * Replace item expected in xarray by a new item, while holding xa_lock.
471  */
472 static int shmem_replace_entry(struct address_space *mapping,
473 			pgoff_t index, void *expected, void *replacement)
474 {
475 	XA_STATE(xas, &mapping->i_pages, index);
476 	void *item;
477 
478 	VM_BUG_ON(!expected);
479 	VM_BUG_ON(!replacement);
480 	item = xas_load(&xas);
481 	if (item != expected)
482 		return -ENOENT;
483 	xas_store(&xas, replacement);
484 	return 0;
485 }
486 
487 /*
488  * Sometimes, before we decide whether to proceed or to fail, we must check
489  * that an entry was not already brought back from swap by a racing thread.
490  *
491  * Checking page is not enough: by the time a SwapCache page is locked, it
492  * might be reused, and again be SwapCache, using the same swap as before.
493  */
494 static bool shmem_confirm_swap(struct address_space *mapping,
495 			       pgoff_t index, swp_entry_t swap)
496 {
497 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
498 }
499 
500 /*
501  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
502  *
503  * SHMEM_HUGE_NEVER:
504  *	disables huge pages for the mount;
505  * SHMEM_HUGE_ALWAYS:
506  *	enables huge pages for the mount;
507  * SHMEM_HUGE_WITHIN_SIZE:
508  *	only allocate huge pages if the page will be fully within i_size,
509  *	also respect fadvise()/madvise() hints;
510  * SHMEM_HUGE_ADVISE:
511  *	only allocate huge pages if requested with fadvise()/madvise();
512  */
513 
514 #define SHMEM_HUGE_NEVER	0
515 #define SHMEM_HUGE_ALWAYS	1
516 #define SHMEM_HUGE_WITHIN_SIZE	2
517 #define SHMEM_HUGE_ADVISE	3
518 
519 /*
520  * Special values.
521  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
522  *
523  * SHMEM_HUGE_DENY:
524  *	disables huge on shm_mnt and all mounts, for emergency use;
525  * SHMEM_HUGE_FORCE:
526  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
527  *
528  */
529 #define SHMEM_HUGE_DENY		(-1)
530 #define SHMEM_HUGE_FORCE	(-2)
531 
532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
533 /* ifdef here to avoid bloating shmem.o when not necessary */
534 
535 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
536 
537 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
538 		   struct mm_struct *mm, unsigned long vm_flags)
539 {
540 	loff_t i_size;
541 
542 	if (!S_ISREG(inode->i_mode))
543 		return false;
544 	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
545 		return false;
546 	if (shmem_huge == SHMEM_HUGE_DENY)
547 		return false;
548 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
549 		return true;
550 
551 	switch (SHMEM_SB(inode->i_sb)->huge) {
552 	case SHMEM_HUGE_ALWAYS:
553 		return true;
554 	case SHMEM_HUGE_WITHIN_SIZE:
555 		index = round_up(index + 1, HPAGE_PMD_NR);
556 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
557 		if (i_size >> PAGE_SHIFT >= index)
558 			return true;
559 		fallthrough;
560 	case SHMEM_HUGE_ADVISE:
561 		if (mm && (vm_flags & VM_HUGEPAGE))
562 			return true;
563 		fallthrough;
564 	default:
565 		return false;
566 	}
567 }
568 
569 #if defined(CONFIG_SYSFS)
570 static int shmem_parse_huge(const char *str)
571 {
572 	if (!strcmp(str, "never"))
573 		return SHMEM_HUGE_NEVER;
574 	if (!strcmp(str, "always"))
575 		return SHMEM_HUGE_ALWAYS;
576 	if (!strcmp(str, "within_size"))
577 		return SHMEM_HUGE_WITHIN_SIZE;
578 	if (!strcmp(str, "advise"))
579 		return SHMEM_HUGE_ADVISE;
580 	if (!strcmp(str, "deny"))
581 		return SHMEM_HUGE_DENY;
582 	if (!strcmp(str, "force"))
583 		return SHMEM_HUGE_FORCE;
584 	return -EINVAL;
585 }
586 #endif
587 
588 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
589 static const char *shmem_format_huge(int huge)
590 {
591 	switch (huge) {
592 	case SHMEM_HUGE_NEVER:
593 		return "never";
594 	case SHMEM_HUGE_ALWAYS:
595 		return "always";
596 	case SHMEM_HUGE_WITHIN_SIZE:
597 		return "within_size";
598 	case SHMEM_HUGE_ADVISE:
599 		return "advise";
600 	case SHMEM_HUGE_DENY:
601 		return "deny";
602 	case SHMEM_HUGE_FORCE:
603 		return "force";
604 	default:
605 		VM_BUG_ON(1);
606 		return "bad_val";
607 	}
608 }
609 #endif
610 
611 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
612 		struct shrink_control *sc, unsigned long nr_to_split)
613 {
614 	LIST_HEAD(list), *pos, *next;
615 	LIST_HEAD(to_remove);
616 	struct inode *inode;
617 	struct shmem_inode_info *info;
618 	struct folio *folio;
619 	unsigned long batch = sc ? sc->nr_to_scan : 128;
620 	int split = 0;
621 
622 	if (list_empty(&sbinfo->shrinklist))
623 		return SHRINK_STOP;
624 
625 	spin_lock(&sbinfo->shrinklist_lock);
626 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
627 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
628 
629 		/* pin the inode */
630 		inode = igrab(&info->vfs_inode);
631 
632 		/* inode is about to be evicted */
633 		if (!inode) {
634 			list_del_init(&info->shrinklist);
635 			goto next;
636 		}
637 
638 		/* Check if there's anything to gain */
639 		if (round_up(inode->i_size, PAGE_SIZE) ==
640 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
641 			list_move(&info->shrinklist, &to_remove);
642 			goto next;
643 		}
644 
645 		list_move(&info->shrinklist, &list);
646 next:
647 		sbinfo->shrinklist_len--;
648 		if (!--batch)
649 			break;
650 	}
651 	spin_unlock(&sbinfo->shrinklist_lock);
652 
653 	list_for_each_safe(pos, next, &to_remove) {
654 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
655 		inode = &info->vfs_inode;
656 		list_del_init(&info->shrinklist);
657 		iput(inode);
658 	}
659 
660 	list_for_each_safe(pos, next, &list) {
661 		int ret;
662 		pgoff_t index;
663 
664 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
665 		inode = &info->vfs_inode;
666 
667 		if (nr_to_split && split >= nr_to_split)
668 			goto move_back;
669 
670 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
671 		folio = filemap_get_folio(inode->i_mapping, index);
672 		if (IS_ERR(folio))
673 			goto drop;
674 
675 		/* No huge page at the end of the file: nothing to split */
676 		if (!folio_test_large(folio)) {
677 			folio_put(folio);
678 			goto drop;
679 		}
680 
681 		/*
682 		 * Move the inode on the list back to shrinklist if we failed
683 		 * to lock the page at this time.
684 		 *
685 		 * Waiting for the lock may lead to deadlock in the
686 		 * reclaim path.
687 		 */
688 		if (!folio_trylock(folio)) {
689 			folio_put(folio);
690 			goto move_back;
691 		}
692 
693 		ret = split_folio(folio);
694 		folio_unlock(folio);
695 		folio_put(folio);
696 
697 		/* If split failed move the inode on the list back to shrinklist */
698 		if (ret)
699 			goto move_back;
700 
701 		split++;
702 drop:
703 		list_del_init(&info->shrinklist);
704 		goto put;
705 move_back:
706 		/*
707 		 * Make sure the inode is either on the global list or deleted
708 		 * from any local list before iput() since it could be deleted
709 		 * in another thread once we put the inode (then the local list
710 		 * is corrupted).
711 		 */
712 		spin_lock(&sbinfo->shrinklist_lock);
713 		list_move(&info->shrinklist, &sbinfo->shrinklist);
714 		sbinfo->shrinklist_len++;
715 		spin_unlock(&sbinfo->shrinklist_lock);
716 put:
717 		iput(inode);
718 	}
719 
720 	return split;
721 }
722 
723 static long shmem_unused_huge_scan(struct super_block *sb,
724 		struct shrink_control *sc)
725 {
726 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
727 
728 	if (!READ_ONCE(sbinfo->shrinklist_len))
729 		return SHRINK_STOP;
730 
731 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
732 }
733 
734 static long shmem_unused_huge_count(struct super_block *sb,
735 		struct shrink_control *sc)
736 {
737 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
738 	return READ_ONCE(sbinfo->shrinklist_len);
739 }
740 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
741 
742 #define shmem_huge SHMEM_HUGE_DENY
743 
744 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
745 		   struct mm_struct *mm, unsigned long vm_flags)
746 {
747 	return false;
748 }
749 
750 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
751 		struct shrink_control *sc, unsigned long nr_to_split)
752 {
753 	return 0;
754 }
755 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
756 
757 /*
758  * Somewhat like filemap_add_folio, but error if expected item has gone.
759  */
760 static int shmem_add_to_page_cache(struct folio *folio,
761 				   struct address_space *mapping,
762 				   pgoff_t index, void *expected, gfp_t gfp)
763 {
764 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
765 	long nr = folio_nr_pages(folio);
766 
767 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
768 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
769 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
770 	VM_BUG_ON(expected && folio_test_large(folio));
771 
772 	folio_ref_add(folio, nr);
773 	folio->mapping = mapping;
774 	folio->index = index;
775 
776 	gfp &= GFP_RECLAIM_MASK;
777 	folio_throttle_swaprate(folio, gfp);
778 
779 	do {
780 		xas_lock_irq(&xas);
781 		if (expected != xas_find_conflict(&xas)) {
782 			xas_set_err(&xas, -EEXIST);
783 			goto unlock;
784 		}
785 		if (expected && xas_find_conflict(&xas)) {
786 			xas_set_err(&xas, -EEXIST);
787 			goto unlock;
788 		}
789 		xas_store(&xas, folio);
790 		if (xas_error(&xas))
791 			goto unlock;
792 		if (folio_test_pmd_mappable(folio))
793 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
794 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
795 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
796 		mapping->nrpages += nr;
797 unlock:
798 		xas_unlock_irq(&xas);
799 	} while (xas_nomem(&xas, gfp));
800 
801 	if (xas_error(&xas)) {
802 		folio->mapping = NULL;
803 		folio_ref_sub(folio, nr);
804 		return xas_error(&xas);
805 	}
806 
807 	return 0;
808 }
809 
810 /*
811  * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
812  */
813 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
814 {
815 	struct address_space *mapping = folio->mapping;
816 	long nr = folio_nr_pages(folio);
817 	int error;
818 
819 	xa_lock_irq(&mapping->i_pages);
820 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
821 	folio->mapping = NULL;
822 	mapping->nrpages -= nr;
823 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
824 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
825 	xa_unlock_irq(&mapping->i_pages);
826 	folio_put(folio);
827 	BUG_ON(error);
828 }
829 
830 /*
831  * Remove swap entry from page cache, free the swap and its page cache.
832  */
833 static int shmem_free_swap(struct address_space *mapping,
834 			   pgoff_t index, void *radswap)
835 {
836 	void *old;
837 
838 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
839 	if (old != radswap)
840 		return -ENOENT;
841 	free_swap_and_cache(radix_to_swp_entry(radswap));
842 	return 0;
843 }
844 
845 /*
846  * Determine (in bytes) how many of the shmem object's pages mapped by the
847  * given offsets are swapped out.
848  *
849  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
850  * as long as the inode doesn't go away and racy results are not a problem.
851  */
852 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
853 						pgoff_t start, pgoff_t end)
854 {
855 	XA_STATE(xas, &mapping->i_pages, start);
856 	struct page *page;
857 	unsigned long swapped = 0;
858 	unsigned long max = end - 1;
859 
860 	rcu_read_lock();
861 	xas_for_each(&xas, page, max) {
862 		if (xas_retry(&xas, page))
863 			continue;
864 		if (xa_is_value(page))
865 			swapped++;
866 		if (xas.xa_index == max)
867 			break;
868 		if (need_resched()) {
869 			xas_pause(&xas);
870 			cond_resched_rcu();
871 		}
872 	}
873 	rcu_read_unlock();
874 
875 	return swapped << PAGE_SHIFT;
876 }
877 
878 /*
879  * Determine (in bytes) how many of the shmem object's pages mapped by the
880  * given vma is swapped out.
881  *
882  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
883  * as long as the inode doesn't go away and racy results are not a problem.
884  */
885 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
886 {
887 	struct inode *inode = file_inode(vma->vm_file);
888 	struct shmem_inode_info *info = SHMEM_I(inode);
889 	struct address_space *mapping = inode->i_mapping;
890 	unsigned long swapped;
891 
892 	/* Be careful as we don't hold info->lock */
893 	swapped = READ_ONCE(info->swapped);
894 
895 	/*
896 	 * The easier cases are when the shmem object has nothing in swap, or
897 	 * the vma maps it whole. Then we can simply use the stats that we
898 	 * already track.
899 	 */
900 	if (!swapped)
901 		return 0;
902 
903 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
904 		return swapped << PAGE_SHIFT;
905 
906 	/* Here comes the more involved part */
907 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
908 					vma->vm_pgoff + vma_pages(vma));
909 }
910 
911 /*
912  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
913  */
914 void shmem_unlock_mapping(struct address_space *mapping)
915 {
916 	struct folio_batch fbatch;
917 	pgoff_t index = 0;
918 
919 	folio_batch_init(&fbatch);
920 	/*
921 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
922 	 */
923 	while (!mapping_unevictable(mapping) &&
924 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
925 		check_move_unevictable_folios(&fbatch);
926 		folio_batch_release(&fbatch);
927 		cond_resched();
928 	}
929 }
930 
931 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
932 {
933 	struct folio *folio;
934 
935 	/*
936 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
937 	 * beyond i_size, and reports fallocated folios as holes.
938 	 */
939 	folio = filemap_get_entry(inode->i_mapping, index);
940 	if (!folio)
941 		return folio;
942 	if (!xa_is_value(folio)) {
943 		folio_lock(folio);
944 		if (folio->mapping == inode->i_mapping)
945 			return folio;
946 		/* The folio has been swapped out */
947 		folio_unlock(folio);
948 		folio_put(folio);
949 	}
950 	/*
951 	 * But read a folio back from swap if any of it is within i_size
952 	 * (although in some cases this is just a waste of time).
953 	 */
954 	folio = NULL;
955 	shmem_get_folio(inode, index, &folio, SGP_READ);
956 	return folio;
957 }
958 
959 /*
960  * Remove range of pages and swap entries from page cache, and free them.
961  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
962  */
963 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
964 								 bool unfalloc)
965 {
966 	struct address_space *mapping = inode->i_mapping;
967 	struct shmem_inode_info *info = SHMEM_I(inode);
968 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
969 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
970 	struct folio_batch fbatch;
971 	pgoff_t indices[PAGEVEC_SIZE];
972 	struct folio *folio;
973 	bool same_folio;
974 	long nr_swaps_freed = 0;
975 	pgoff_t index;
976 	int i;
977 
978 	if (lend == -1)
979 		end = -1;	/* unsigned, so actually very big */
980 
981 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
982 		info->fallocend = start;
983 
984 	folio_batch_init(&fbatch);
985 	index = start;
986 	while (index < end && find_lock_entries(mapping, &index, end - 1,
987 			&fbatch, indices)) {
988 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
989 			folio = fbatch.folios[i];
990 
991 			if (xa_is_value(folio)) {
992 				if (unfalloc)
993 					continue;
994 				nr_swaps_freed += !shmem_free_swap(mapping,
995 							indices[i], folio);
996 				continue;
997 			}
998 
999 			if (!unfalloc || !folio_test_uptodate(folio))
1000 				truncate_inode_folio(mapping, folio);
1001 			folio_unlock(folio);
1002 		}
1003 		folio_batch_remove_exceptionals(&fbatch);
1004 		folio_batch_release(&fbatch);
1005 		cond_resched();
1006 	}
1007 
1008 	/*
1009 	 * When undoing a failed fallocate, we want none of the partial folio
1010 	 * zeroing and splitting below, but shall want to truncate the whole
1011 	 * folio when !uptodate indicates that it was added by this fallocate,
1012 	 * even when [lstart, lend] covers only a part of the folio.
1013 	 */
1014 	if (unfalloc)
1015 		goto whole_folios;
1016 
1017 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1018 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1019 	if (folio) {
1020 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1021 		folio_mark_dirty(folio);
1022 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1023 			start = folio_next_index(folio);
1024 			if (same_folio)
1025 				end = folio->index;
1026 		}
1027 		folio_unlock(folio);
1028 		folio_put(folio);
1029 		folio = NULL;
1030 	}
1031 
1032 	if (!same_folio)
1033 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1034 	if (folio) {
1035 		folio_mark_dirty(folio);
1036 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1037 			end = folio->index;
1038 		folio_unlock(folio);
1039 		folio_put(folio);
1040 	}
1041 
1042 whole_folios:
1043 
1044 	index = start;
1045 	while (index < end) {
1046 		cond_resched();
1047 
1048 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1049 				indices)) {
1050 			/* If all gone or hole-punch or unfalloc, we're done */
1051 			if (index == start || end != -1)
1052 				break;
1053 			/* But if truncating, restart to make sure all gone */
1054 			index = start;
1055 			continue;
1056 		}
1057 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1058 			folio = fbatch.folios[i];
1059 
1060 			if (xa_is_value(folio)) {
1061 				if (unfalloc)
1062 					continue;
1063 				if (shmem_free_swap(mapping, indices[i], folio)) {
1064 					/* Swap was replaced by page: retry */
1065 					index = indices[i];
1066 					break;
1067 				}
1068 				nr_swaps_freed++;
1069 				continue;
1070 			}
1071 
1072 			folio_lock(folio);
1073 
1074 			if (!unfalloc || !folio_test_uptodate(folio)) {
1075 				if (folio_mapping(folio) != mapping) {
1076 					/* Page was replaced by swap: retry */
1077 					folio_unlock(folio);
1078 					index = indices[i];
1079 					break;
1080 				}
1081 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1082 						folio);
1083 				truncate_inode_folio(mapping, folio);
1084 			}
1085 			folio_unlock(folio);
1086 		}
1087 		folio_batch_remove_exceptionals(&fbatch);
1088 		folio_batch_release(&fbatch);
1089 	}
1090 
1091 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1092 }
1093 
1094 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1095 {
1096 	shmem_undo_range(inode, lstart, lend, false);
1097 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1098 	inode_inc_iversion(inode);
1099 }
1100 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1101 
1102 static int shmem_getattr(struct mnt_idmap *idmap,
1103 			 const struct path *path, struct kstat *stat,
1104 			 u32 request_mask, unsigned int query_flags)
1105 {
1106 	struct inode *inode = path->dentry->d_inode;
1107 	struct shmem_inode_info *info = SHMEM_I(inode);
1108 
1109 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1110 		shmem_recalc_inode(inode, 0, 0);
1111 
1112 	if (info->fsflags & FS_APPEND_FL)
1113 		stat->attributes |= STATX_ATTR_APPEND;
1114 	if (info->fsflags & FS_IMMUTABLE_FL)
1115 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1116 	if (info->fsflags & FS_NODUMP_FL)
1117 		stat->attributes |= STATX_ATTR_NODUMP;
1118 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1119 			STATX_ATTR_IMMUTABLE |
1120 			STATX_ATTR_NODUMP);
1121 	generic_fillattr(idmap, request_mask, inode, stat);
1122 
1123 	if (shmem_is_huge(inode, 0, false, NULL, 0))
1124 		stat->blksize = HPAGE_PMD_SIZE;
1125 
1126 	if (request_mask & STATX_BTIME) {
1127 		stat->result_mask |= STATX_BTIME;
1128 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1129 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 static int shmem_setattr(struct mnt_idmap *idmap,
1136 			 struct dentry *dentry, struct iattr *attr)
1137 {
1138 	struct inode *inode = d_inode(dentry);
1139 	struct shmem_inode_info *info = SHMEM_I(inode);
1140 	int error;
1141 	bool update_mtime = false;
1142 	bool update_ctime = true;
1143 
1144 	error = setattr_prepare(idmap, dentry, attr);
1145 	if (error)
1146 		return error;
1147 
1148 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1149 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1150 			return -EPERM;
1151 		}
1152 	}
1153 
1154 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1155 		loff_t oldsize = inode->i_size;
1156 		loff_t newsize = attr->ia_size;
1157 
1158 		/* protected by i_rwsem */
1159 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1160 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1161 			return -EPERM;
1162 
1163 		if (newsize != oldsize) {
1164 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1165 					oldsize, newsize);
1166 			if (error)
1167 				return error;
1168 			i_size_write(inode, newsize);
1169 			update_mtime = true;
1170 		} else {
1171 			update_ctime = false;
1172 		}
1173 		if (newsize <= oldsize) {
1174 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1175 			if (oldsize > holebegin)
1176 				unmap_mapping_range(inode->i_mapping,
1177 							holebegin, 0, 1);
1178 			if (info->alloced)
1179 				shmem_truncate_range(inode,
1180 							newsize, (loff_t)-1);
1181 			/* unmap again to remove racily COWed private pages */
1182 			if (oldsize > holebegin)
1183 				unmap_mapping_range(inode->i_mapping,
1184 							holebegin, 0, 1);
1185 		}
1186 	}
1187 
1188 	if (is_quota_modification(idmap, inode, attr)) {
1189 		error = dquot_initialize(inode);
1190 		if (error)
1191 			return error;
1192 	}
1193 
1194 	/* Transfer quota accounting */
1195 	if (i_uid_needs_update(idmap, attr, inode) ||
1196 	    i_gid_needs_update(idmap, attr, inode)) {
1197 		error = dquot_transfer(idmap, inode, attr);
1198 		if (error)
1199 			return error;
1200 	}
1201 
1202 	setattr_copy(idmap, inode, attr);
1203 	if (attr->ia_valid & ATTR_MODE)
1204 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1205 	if (!error && update_ctime) {
1206 		inode_set_ctime_current(inode);
1207 		if (update_mtime)
1208 			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1209 		inode_inc_iversion(inode);
1210 	}
1211 	return error;
1212 }
1213 
1214 static void shmem_evict_inode(struct inode *inode)
1215 {
1216 	struct shmem_inode_info *info = SHMEM_I(inode);
1217 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1218 	size_t freed = 0;
1219 
1220 	if (shmem_mapping(inode->i_mapping)) {
1221 		shmem_unacct_size(info->flags, inode->i_size);
1222 		inode->i_size = 0;
1223 		mapping_set_exiting(inode->i_mapping);
1224 		shmem_truncate_range(inode, 0, (loff_t)-1);
1225 		if (!list_empty(&info->shrinklist)) {
1226 			spin_lock(&sbinfo->shrinklist_lock);
1227 			if (!list_empty(&info->shrinklist)) {
1228 				list_del_init(&info->shrinklist);
1229 				sbinfo->shrinklist_len--;
1230 			}
1231 			spin_unlock(&sbinfo->shrinklist_lock);
1232 		}
1233 		while (!list_empty(&info->swaplist)) {
1234 			/* Wait while shmem_unuse() is scanning this inode... */
1235 			wait_var_event(&info->stop_eviction,
1236 				       !atomic_read(&info->stop_eviction));
1237 			mutex_lock(&shmem_swaplist_mutex);
1238 			/* ...but beware of the race if we peeked too early */
1239 			if (!atomic_read(&info->stop_eviction))
1240 				list_del_init(&info->swaplist);
1241 			mutex_unlock(&shmem_swaplist_mutex);
1242 		}
1243 	}
1244 
1245 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1246 	shmem_free_inode(inode->i_sb, freed);
1247 	WARN_ON(inode->i_blocks);
1248 	clear_inode(inode);
1249 #ifdef CONFIG_TMPFS_QUOTA
1250 	dquot_free_inode(inode);
1251 	dquot_drop(inode);
1252 #endif
1253 }
1254 
1255 static int shmem_find_swap_entries(struct address_space *mapping,
1256 				   pgoff_t start, struct folio_batch *fbatch,
1257 				   pgoff_t *indices, unsigned int type)
1258 {
1259 	XA_STATE(xas, &mapping->i_pages, start);
1260 	struct folio *folio;
1261 	swp_entry_t entry;
1262 
1263 	rcu_read_lock();
1264 	xas_for_each(&xas, folio, ULONG_MAX) {
1265 		if (xas_retry(&xas, folio))
1266 			continue;
1267 
1268 		if (!xa_is_value(folio))
1269 			continue;
1270 
1271 		entry = radix_to_swp_entry(folio);
1272 		/*
1273 		 * swapin error entries can be found in the mapping. But they're
1274 		 * deliberately ignored here as we've done everything we can do.
1275 		 */
1276 		if (swp_type(entry) != type)
1277 			continue;
1278 
1279 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1280 		if (!folio_batch_add(fbatch, folio))
1281 			break;
1282 
1283 		if (need_resched()) {
1284 			xas_pause(&xas);
1285 			cond_resched_rcu();
1286 		}
1287 	}
1288 	rcu_read_unlock();
1289 
1290 	return xas.xa_index;
1291 }
1292 
1293 /*
1294  * Move the swapped pages for an inode to page cache. Returns the count
1295  * of pages swapped in, or the error in case of failure.
1296  */
1297 static int shmem_unuse_swap_entries(struct inode *inode,
1298 		struct folio_batch *fbatch, pgoff_t *indices)
1299 {
1300 	int i = 0;
1301 	int ret = 0;
1302 	int error = 0;
1303 	struct address_space *mapping = inode->i_mapping;
1304 
1305 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1306 		struct folio *folio = fbatch->folios[i];
1307 
1308 		if (!xa_is_value(folio))
1309 			continue;
1310 		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1311 					mapping_gfp_mask(mapping), NULL, NULL);
1312 		if (error == 0) {
1313 			folio_unlock(folio);
1314 			folio_put(folio);
1315 			ret++;
1316 		}
1317 		if (error == -ENOMEM)
1318 			break;
1319 		error = 0;
1320 	}
1321 	return error ? error : ret;
1322 }
1323 
1324 /*
1325  * If swap found in inode, free it and move page from swapcache to filecache.
1326  */
1327 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1328 {
1329 	struct address_space *mapping = inode->i_mapping;
1330 	pgoff_t start = 0;
1331 	struct folio_batch fbatch;
1332 	pgoff_t indices[PAGEVEC_SIZE];
1333 	int ret = 0;
1334 
1335 	do {
1336 		folio_batch_init(&fbatch);
1337 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1338 		if (folio_batch_count(&fbatch) == 0) {
1339 			ret = 0;
1340 			break;
1341 		}
1342 
1343 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1344 		if (ret < 0)
1345 			break;
1346 
1347 		start = indices[folio_batch_count(&fbatch) - 1];
1348 	} while (true);
1349 
1350 	return ret;
1351 }
1352 
1353 /*
1354  * Read all the shared memory data that resides in the swap
1355  * device 'type' back into memory, so the swap device can be
1356  * unused.
1357  */
1358 int shmem_unuse(unsigned int type)
1359 {
1360 	struct shmem_inode_info *info, *next;
1361 	int error = 0;
1362 
1363 	if (list_empty(&shmem_swaplist))
1364 		return 0;
1365 
1366 	mutex_lock(&shmem_swaplist_mutex);
1367 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1368 		if (!info->swapped) {
1369 			list_del_init(&info->swaplist);
1370 			continue;
1371 		}
1372 		/*
1373 		 * Drop the swaplist mutex while searching the inode for swap;
1374 		 * but before doing so, make sure shmem_evict_inode() will not
1375 		 * remove placeholder inode from swaplist, nor let it be freed
1376 		 * (igrab() would protect from unlink, but not from unmount).
1377 		 */
1378 		atomic_inc(&info->stop_eviction);
1379 		mutex_unlock(&shmem_swaplist_mutex);
1380 
1381 		error = shmem_unuse_inode(&info->vfs_inode, type);
1382 		cond_resched();
1383 
1384 		mutex_lock(&shmem_swaplist_mutex);
1385 		next = list_next_entry(info, swaplist);
1386 		if (!info->swapped)
1387 			list_del_init(&info->swaplist);
1388 		if (atomic_dec_and_test(&info->stop_eviction))
1389 			wake_up_var(&info->stop_eviction);
1390 		if (error)
1391 			break;
1392 	}
1393 	mutex_unlock(&shmem_swaplist_mutex);
1394 
1395 	return error;
1396 }
1397 
1398 /*
1399  * Move the page from the page cache to the swap cache.
1400  */
1401 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1402 {
1403 	struct folio *folio = page_folio(page);
1404 	struct address_space *mapping = folio->mapping;
1405 	struct inode *inode = mapping->host;
1406 	struct shmem_inode_info *info = SHMEM_I(inode);
1407 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1408 	swp_entry_t swap;
1409 	pgoff_t index;
1410 
1411 	/*
1412 	 * Our capabilities prevent regular writeback or sync from ever calling
1413 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1414 	 * its underlying filesystem, in which case tmpfs should write out to
1415 	 * swap only in response to memory pressure, and not for the writeback
1416 	 * threads or sync.
1417 	 */
1418 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1419 		goto redirty;
1420 
1421 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1422 		goto redirty;
1423 
1424 	if (!total_swap_pages)
1425 		goto redirty;
1426 
1427 	/*
1428 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1429 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1430 	 * and its shmem_writeback() needs them to be split when swapping.
1431 	 */
1432 	if (folio_test_large(folio)) {
1433 		/* Ensure the subpages are still dirty */
1434 		folio_test_set_dirty(folio);
1435 		if (split_huge_page(page) < 0)
1436 			goto redirty;
1437 		folio = page_folio(page);
1438 		folio_clear_dirty(folio);
1439 	}
1440 
1441 	index = folio->index;
1442 
1443 	/*
1444 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1445 	 * value into swapfile.c, the only way we can correctly account for a
1446 	 * fallocated folio arriving here is now to initialize it and write it.
1447 	 *
1448 	 * That's okay for a folio already fallocated earlier, but if we have
1449 	 * not yet completed the fallocation, then (a) we want to keep track
1450 	 * of this folio in case we have to undo it, and (b) it may not be a
1451 	 * good idea to continue anyway, once we're pushing into swap.  So
1452 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1453 	 */
1454 	if (!folio_test_uptodate(folio)) {
1455 		if (inode->i_private) {
1456 			struct shmem_falloc *shmem_falloc;
1457 			spin_lock(&inode->i_lock);
1458 			shmem_falloc = inode->i_private;
1459 			if (shmem_falloc &&
1460 			    !shmem_falloc->waitq &&
1461 			    index >= shmem_falloc->start &&
1462 			    index < shmem_falloc->next)
1463 				shmem_falloc->nr_unswapped++;
1464 			else
1465 				shmem_falloc = NULL;
1466 			spin_unlock(&inode->i_lock);
1467 			if (shmem_falloc)
1468 				goto redirty;
1469 		}
1470 		folio_zero_range(folio, 0, folio_size(folio));
1471 		flush_dcache_folio(folio);
1472 		folio_mark_uptodate(folio);
1473 	}
1474 
1475 	swap = folio_alloc_swap(folio);
1476 	if (!swap.val)
1477 		goto redirty;
1478 
1479 	/*
1480 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1481 	 * if it's not already there.  Do it now before the folio is
1482 	 * moved to swap cache, when its pagelock no longer protects
1483 	 * the inode from eviction.  But don't unlock the mutex until
1484 	 * we've incremented swapped, because shmem_unuse_inode() will
1485 	 * prune a !swapped inode from the swaplist under this mutex.
1486 	 */
1487 	mutex_lock(&shmem_swaplist_mutex);
1488 	if (list_empty(&info->swaplist))
1489 		list_add(&info->swaplist, &shmem_swaplist);
1490 
1491 	if (add_to_swap_cache(folio, swap,
1492 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1493 			NULL) == 0) {
1494 		shmem_recalc_inode(inode, 0, 1);
1495 		swap_shmem_alloc(swap);
1496 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1497 
1498 		mutex_unlock(&shmem_swaplist_mutex);
1499 		BUG_ON(folio_mapped(folio));
1500 		swap_writepage(&folio->page, wbc);
1501 		return 0;
1502 	}
1503 
1504 	mutex_unlock(&shmem_swaplist_mutex);
1505 	put_swap_folio(folio, swap);
1506 redirty:
1507 	folio_mark_dirty(folio);
1508 	if (wbc->for_reclaim)
1509 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1510 	folio_unlock(folio);
1511 	return 0;
1512 }
1513 
1514 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1515 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1516 {
1517 	char buffer[64];
1518 
1519 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1520 		return;		/* show nothing */
1521 
1522 	mpol_to_str(buffer, sizeof(buffer), mpol);
1523 
1524 	seq_printf(seq, ",mpol=%s", buffer);
1525 }
1526 
1527 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1528 {
1529 	struct mempolicy *mpol = NULL;
1530 	if (sbinfo->mpol) {
1531 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1532 		mpol = sbinfo->mpol;
1533 		mpol_get(mpol);
1534 		raw_spin_unlock(&sbinfo->stat_lock);
1535 	}
1536 	return mpol;
1537 }
1538 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1539 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1540 {
1541 }
1542 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1543 {
1544 	return NULL;
1545 }
1546 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1547 
1548 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1549 			pgoff_t index, unsigned int order, pgoff_t *ilx);
1550 
1551 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1552 			struct shmem_inode_info *info, pgoff_t index)
1553 {
1554 	struct mempolicy *mpol;
1555 	pgoff_t ilx;
1556 	struct page *page;
1557 
1558 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1559 	page = swap_cluster_readahead(swap, gfp, mpol, ilx);
1560 	mpol_cond_put(mpol);
1561 
1562 	if (!page)
1563 		return NULL;
1564 	return page_folio(page);
1565 }
1566 
1567 /*
1568  * Make sure huge_gfp is always more limited than limit_gfp.
1569  * Some of the flags set permissions, while others set limitations.
1570  */
1571 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1572 {
1573 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1574 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1575 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1576 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1577 
1578 	/* Allow allocations only from the originally specified zones. */
1579 	result |= zoneflags;
1580 
1581 	/*
1582 	 * Minimize the result gfp by taking the union with the deny flags,
1583 	 * and the intersection of the allow flags.
1584 	 */
1585 	result |= (limit_gfp & denyflags);
1586 	result |= (huge_gfp & limit_gfp) & allowflags;
1587 
1588 	return result;
1589 }
1590 
1591 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1592 		struct shmem_inode_info *info, pgoff_t index)
1593 {
1594 	struct mempolicy *mpol;
1595 	pgoff_t ilx;
1596 	struct page *page;
1597 
1598 	mpol = shmem_get_pgoff_policy(info, index, HPAGE_PMD_ORDER, &ilx);
1599 	page = alloc_pages_mpol(gfp, HPAGE_PMD_ORDER, mpol, ilx, numa_node_id());
1600 	mpol_cond_put(mpol);
1601 
1602 	return page_rmappable_folio(page);
1603 }
1604 
1605 static struct folio *shmem_alloc_folio(gfp_t gfp,
1606 		struct shmem_inode_info *info, pgoff_t index)
1607 {
1608 	struct mempolicy *mpol;
1609 	pgoff_t ilx;
1610 	struct page *page;
1611 
1612 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1613 	page = alloc_pages_mpol(gfp, 0, mpol, ilx, numa_node_id());
1614 	mpol_cond_put(mpol);
1615 
1616 	return (struct folio *)page;
1617 }
1618 
1619 static struct folio *shmem_alloc_and_add_folio(gfp_t gfp,
1620 		struct inode *inode, pgoff_t index,
1621 		struct mm_struct *fault_mm, bool huge)
1622 {
1623 	struct address_space *mapping = inode->i_mapping;
1624 	struct shmem_inode_info *info = SHMEM_I(inode);
1625 	struct folio *folio;
1626 	long pages;
1627 	int error;
1628 
1629 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1630 		huge = false;
1631 
1632 	if (huge) {
1633 		pages = HPAGE_PMD_NR;
1634 		index = round_down(index, HPAGE_PMD_NR);
1635 
1636 		/*
1637 		 * Check for conflict before waiting on a huge allocation.
1638 		 * Conflict might be that a huge page has just been allocated
1639 		 * and added to page cache by a racing thread, or that there
1640 		 * is already at least one small page in the huge extent.
1641 		 * Be careful to retry when appropriate, but not forever!
1642 		 * Elsewhere -EEXIST would be the right code, but not here.
1643 		 */
1644 		if (xa_find(&mapping->i_pages, &index,
1645 				index + HPAGE_PMD_NR - 1, XA_PRESENT))
1646 			return ERR_PTR(-E2BIG);
1647 
1648 		folio = shmem_alloc_hugefolio(gfp, info, index);
1649 		if (!folio)
1650 			count_vm_event(THP_FILE_FALLBACK);
1651 	} else {
1652 		pages = 1;
1653 		folio = shmem_alloc_folio(gfp, info, index);
1654 	}
1655 	if (!folio)
1656 		return ERR_PTR(-ENOMEM);
1657 
1658 	__folio_set_locked(folio);
1659 	__folio_set_swapbacked(folio);
1660 
1661 	gfp &= GFP_RECLAIM_MASK;
1662 	error = mem_cgroup_charge(folio, fault_mm, gfp);
1663 	if (error) {
1664 		if (xa_find(&mapping->i_pages, &index,
1665 				index + pages - 1, XA_PRESENT)) {
1666 			error = -EEXIST;
1667 		} else if (huge) {
1668 			count_vm_event(THP_FILE_FALLBACK);
1669 			count_vm_event(THP_FILE_FALLBACK_CHARGE);
1670 		}
1671 		goto unlock;
1672 	}
1673 
1674 	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1675 	if (error)
1676 		goto unlock;
1677 
1678 	error = shmem_inode_acct_blocks(inode, pages);
1679 	if (error) {
1680 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1681 		long freed;
1682 		/*
1683 		 * Try to reclaim some space by splitting a few
1684 		 * large folios beyond i_size on the filesystem.
1685 		 */
1686 		shmem_unused_huge_shrink(sbinfo, NULL, 2);
1687 		/*
1688 		 * And do a shmem_recalc_inode() to account for freed pages:
1689 		 * except our folio is there in cache, so not quite balanced.
1690 		 */
1691 		spin_lock(&info->lock);
1692 		freed = pages + info->alloced - info->swapped -
1693 			READ_ONCE(mapping->nrpages);
1694 		if (freed > 0)
1695 			info->alloced -= freed;
1696 		spin_unlock(&info->lock);
1697 		if (freed > 0)
1698 			shmem_inode_unacct_blocks(inode, freed);
1699 		error = shmem_inode_acct_blocks(inode, pages);
1700 		if (error) {
1701 			filemap_remove_folio(folio);
1702 			goto unlock;
1703 		}
1704 	}
1705 
1706 	shmem_recalc_inode(inode, pages, 0);
1707 	folio_add_lru(folio);
1708 	return folio;
1709 
1710 unlock:
1711 	folio_unlock(folio);
1712 	folio_put(folio);
1713 	return ERR_PTR(error);
1714 }
1715 
1716 /*
1717  * When a page is moved from swapcache to shmem filecache (either by the
1718  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1719  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1720  * ignorance of the mapping it belongs to.  If that mapping has special
1721  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1722  * we may need to copy to a suitable page before moving to filecache.
1723  *
1724  * In a future release, this may well be extended to respect cpuset and
1725  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1726  * but for now it is a simple matter of zone.
1727  */
1728 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1729 {
1730 	return folio_zonenum(folio) > gfp_zone(gfp);
1731 }
1732 
1733 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1734 				struct shmem_inode_info *info, pgoff_t index)
1735 {
1736 	struct folio *old, *new;
1737 	struct address_space *swap_mapping;
1738 	swp_entry_t entry;
1739 	pgoff_t swap_index;
1740 	int error;
1741 
1742 	old = *foliop;
1743 	entry = old->swap;
1744 	swap_index = swp_offset(entry);
1745 	swap_mapping = swap_address_space(entry);
1746 
1747 	/*
1748 	 * We have arrived here because our zones are constrained, so don't
1749 	 * limit chance of success by further cpuset and node constraints.
1750 	 */
1751 	gfp &= ~GFP_CONSTRAINT_MASK;
1752 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1753 	new = shmem_alloc_folio(gfp, info, index);
1754 	if (!new)
1755 		return -ENOMEM;
1756 
1757 	folio_get(new);
1758 	folio_copy(new, old);
1759 	flush_dcache_folio(new);
1760 
1761 	__folio_set_locked(new);
1762 	__folio_set_swapbacked(new);
1763 	folio_mark_uptodate(new);
1764 	new->swap = entry;
1765 	folio_set_swapcache(new);
1766 
1767 	/*
1768 	 * Our caller will very soon move newpage out of swapcache, but it's
1769 	 * a nice clean interface for us to replace oldpage by newpage there.
1770 	 */
1771 	xa_lock_irq(&swap_mapping->i_pages);
1772 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1773 	if (!error) {
1774 		mem_cgroup_migrate(old, new);
1775 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1776 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1777 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1778 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1779 	}
1780 	xa_unlock_irq(&swap_mapping->i_pages);
1781 
1782 	if (unlikely(error)) {
1783 		/*
1784 		 * Is this possible?  I think not, now that our callers check
1785 		 * both PageSwapCache and page_private after getting page lock;
1786 		 * but be defensive.  Reverse old to newpage for clear and free.
1787 		 */
1788 		old = new;
1789 	} else {
1790 		folio_add_lru(new);
1791 		*foliop = new;
1792 	}
1793 
1794 	folio_clear_swapcache(old);
1795 	old->private = NULL;
1796 
1797 	folio_unlock(old);
1798 	folio_put_refs(old, 2);
1799 	return error;
1800 }
1801 
1802 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1803 					 struct folio *folio, swp_entry_t swap)
1804 {
1805 	struct address_space *mapping = inode->i_mapping;
1806 	swp_entry_t swapin_error;
1807 	void *old;
1808 
1809 	swapin_error = make_poisoned_swp_entry();
1810 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1811 			     swp_to_radix_entry(swap),
1812 			     swp_to_radix_entry(swapin_error), 0);
1813 	if (old != swp_to_radix_entry(swap))
1814 		return;
1815 
1816 	folio_wait_writeback(folio);
1817 	delete_from_swap_cache(folio);
1818 	/*
1819 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
1820 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
1821 	 * in shmem_evict_inode().
1822 	 */
1823 	shmem_recalc_inode(inode, -1, -1);
1824 	swap_free(swap);
1825 }
1826 
1827 /*
1828  * Swap in the folio pointed to by *foliop.
1829  * Caller has to make sure that *foliop contains a valid swapped folio.
1830  * Returns 0 and the folio in foliop if success. On failure, returns the
1831  * error code and NULL in *foliop.
1832  */
1833 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1834 			     struct folio **foliop, enum sgp_type sgp,
1835 			     gfp_t gfp, struct mm_struct *fault_mm,
1836 			     vm_fault_t *fault_type)
1837 {
1838 	struct address_space *mapping = inode->i_mapping;
1839 	struct shmem_inode_info *info = SHMEM_I(inode);
1840 	struct swap_info_struct *si;
1841 	struct folio *folio = NULL;
1842 	swp_entry_t swap;
1843 	int error;
1844 
1845 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1846 	swap = radix_to_swp_entry(*foliop);
1847 	*foliop = NULL;
1848 
1849 	if (is_poisoned_swp_entry(swap))
1850 		return -EIO;
1851 
1852 	si = get_swap_device(swap);
1853 	if (!si) {
1854 		if (!shmem_confirm_swap(mapping, index, swap))
1855 			return -EEXIST;
1856 		else
1857 			return -EINVAL;
1858 	}
1859 
1860 	/* Look it up and read it in.. */
1861 	folio = swap_cache_get_folio(swap, NULL, 0);
1862 	if (!folio) {
1863 		/* Or update major stats only when swapin succeeds?? */
1864 		if (fault_type) {
1865 			*fault_type |= VM_FAULT_MAJOR;
1866 			count_vm_event(PGMAJFAULT);
1867 			count_memcg_event_mm(fault_mm, PGMAJFAULT);
1868 		}
1869 		/* Here we actually start the io */
1870 		folio = shmem_swapin_cluster(swap, gfp, info, index);
1871 		if (!folio) {
1872 			error = -ENOMEM;
1873 			goto failed;
1874 		}
1875 	}
1876 
1877 	/* We have to do this with folio locked to prevent races */
1878 	folio_lock(folio);
1879 	if (!folio_test_swapcache(folio) ||
1880 	    folio->swap.val != swap.val ||
1881 	    !shmem_confirm_swap(mapping, index, swap)) {
1882 		error = -EEXIST;
1883 		goto unlock;
1884 	}
1885 	if (!folio_test_uptodate(folio)) {
1886 		error = -EIO;
1887 		goto failed;
1888 	}
1889 	folio_wait_writeback(folio);
1890 
1891 	/*
1892 	 * Some architectures may have to restore extra metadata to the
1893 	 * folio after reading from swap.
1894 	 */
1895 	arch_swap_restore(swap, folio);
1896 
1897 	if (shmem_should_replace_folio(folio, gfp)) {
1898 		error = shmem_replace_folio(&folio, gfp, info, index);
1899 		if (error)
1900 			goto failed;
1901 	}
1902 
1903 	error = shmem_add_to_page_cache(folio, mapping, index,
1904 					swp_to_radix_entry(swap), gfp);
1905 	if (error)
1906 		goto failed;
1907 
1908 	shmem_recalc_inode(inode, 0, -1);
1909 
1910 	if (sgp == SGP_WRITE)
1911 		folio_mark_accessed(folio);
1912 
1913 	delete_from_swap_cache(folio);
1914 	folio_mark_dirty(folio);
1915 	swap_free(swap);
1916 	put_swap_device(si);
1917 
1918 	*foliop = folio;
1919 	return 0;
1920 failed:
1921 	if (!shmem_confirm_swap(mapping, index, swap))
1922 		error = -EEXIST;
1923 	if (error == -EIO)
1924 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1925 unlock:
1926 	if (folio) {
1927 		folio_unlock(folio);
1928 		folio_put(folio);
1929 	}
1930 	put_swap_device(si);
1931 
1932 	return error;
1933 }
1934 
1935 /*
1936  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1937  *
1938  * If we allocate a new one we do not mark it dirty. That's up to the
1939  * vm. If we swap it in we mark it dirty since we also free the swap
1940  * entry since a page cannot live in both the swap and page cache.
1941  *
1942  * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
1943  */
1944 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1945 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1946 		struct vm_fault *vmf, vm_fault_t *fault_type)
1947 {
1948 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1949 	struct mm_struct *fault_mm;
1950 	struct folio *folio;
1951 	int error;
1952 	bool alloced;
1953 
1954 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1955 		return -EFBIG;
1956 repeat:
1957 	if (sgp <= SGP_CACHE &&
1958 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
1959 		return -EINVAL;
1960 
1961 	alloced = false;
1962 	fault_mm = vma ? vma->vm_mm : NULL;
1963 
1964 	folio = filemap_get_entry(inode->i_mapping, index);
1965 	if (folio && vma && userfaultfd_minor(vma)) {
1966 		if (!xa_is_value(folio))
1967 			folio_put(folio);
1968 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1969 		return 0;
1970 	}
1971 
1972 	if (xa_is_value(folio)) {
1973 		error = shmem_swapin_folio(inode, index, &folio,
1974 					   sgp, gfp, fault_mm, fault_type);
1975 		if (error == -EEXIST)
1976 			goto repeat;
1977 
1978 		*foliop = folio;
1979 		return error;
1980 	}
1981 
1982 	if (folio) {
1983 		folio_lock(folio);
1984 
1985 		/* Has the folio been truncated or swapped out? */
1986 		if (unlikely(folio->mapping != inode->i_mapping)) {
1987 			folio_unlock(folio);
1988 			folio_put(folio);
1989 			goto repeat;
1990 		}
1991 		if (sgp == SGP_WRITE)
1992 			folio_mark_accessed(folio);
1993 		if (folio_test_uptodate(folio))
1994 			goto out;
1995 		/* fallocated folio */
1996 		if (sgp != SGP_READ)
1997 			goto clear;
1998 		folio_unlock(folio);
1999 		folio_put(folio);
2000 	}
2001 
2002 	/*
2003 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2004 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2005 	 */
2006 	*foliop = NULL;
2007 	if (sgp == SGP_READ)
2008 		return 0;
2009 	if (sgp == SGP_NOALLOC)
2010 		return -ENOENT;
2011 
2012 	/*
2013 	 * Fast cache lookup and swap lookup did not find it: allocate.
2014 	 */
2015 
2016 	if (vma && userfaultfd_missing(vma)) {
2017 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2018 		return 0;
2019 	}
2020 
2021 	if (shmem_is_huge(inode, index, false, fault_mm,
2022 			  vma ? vma->vm_flags : 0)) {
2023 		gfp_t huge_gfp;
2024 
2025 		huge_gfp = vma_thp_gfp_mask(vma);
2026 		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2027 		folio = shmem_alloc_and_add_folio(huge_gfp,
2028 				inode, index, fault_mm, true);
2029 		if (!IS_ERR(folio)) {
2030 			count_vm_event(THP_FILE_ALLOC);
2031 			goto alloced;
2032 		}
2033 		if (PTR_ERR(folio) == -EEXIST)
2034 			goto repeat;
2035 	}
2036 
2037 	folio = shmem_alloc_and_add_folio(gfp, inode, index, fault_mm, false);
2038 	if (IS_ERR(folio)) {
2039 		error = PTR_ERR(folio);
2040 		if (error == -EEXIST)
2041 			goto repeat;
2042 		folio = NULL;
2043 		goto unlock;
2044 	}
2045 
2046 alloced:
2047 	alloced = true;
2048 	if (folio_test_pmd_mappable(folio) &&
2049 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2050 					folio_next_index(folio) - 1) {
2051 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2052 		struct shmem_inode_info *info = SHMEM_I(inode);
2053 		/*
2054 		 * Part of the large folio is beyond i_size: subject
2055 		 * to shrink under memory pressure.
2056 		 */
2057 		spin_lock(&sbinfo->shrinklist_lock);
2058 		/*
2059 		 * _careful to defend against unlocked access to
2060 		 * ->shrink_list in shmem_unused_huge_shrink()
2061 		 */
2062 		if (list_empty_careful(&info->shrinklist)) {
2063 			list_add_tail(&info->shrinklist,
2064 				      &sbinfo->shrinklist);
2065 			sbinfo->shrinklist_len++;
2066 		}
2067 		spin_unlock(&sbinfo->shrinklist_lock);
2068 	}
2069 
2070 	if (sgp == SGP_WRITE)
2071 		folio_set_referenced(folio);
2072 	/*
2073 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2074 	 */
2075 	if (sgp == SGP_FALLOC)
2076 		sgp = SGP_WRITE;
2077 clear:
2078 	/*
2079 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2080 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2081 	 * it now, lest undo on failure cancel our earlier guarantee.
2082 	 */
2083 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2084 		long i, n = folio_nr_pages(folio);
2085 
2086 		for (i = 0; i < n; i++)
2087 			clear_highpage(folio_page(folio, i));
2088 		flush_dcache_folio(folio);
2089 		folio_mark_uptodate(folio);
2090 	}
2091 
2092 	/* Perhaps the file has been truncated since we checked */
2093 	if (sgp <= SGP_CACHE &&
2094 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2095 		error = -EINVAL;
2096 		goto unlock;
2097 	}
2098 out:
2099 	*foliop = folio;
2100 	return 0;
2101 
2102 	/*
2103 	 * Error recovery.
2104 	 */
2105 unlock:
2106 	if (alloced)
2107 		filemap_remove_folio(folio);
2108 	shmem_recalc_inode(inode, 0, 0);
2109 	if (folio) {
2110 		folio_unlock(folio);
2111 		folio_put(folio);
2112 	}
2113 	return error;
2114 }
2115 
2116 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2117 		enum sgp_type sgp)
2118 {
2119 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2120 			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2121 }
2122 
2123 /*
2124  * This is like autoremove_wake_function, but it removes the wait queue
2125  * entry unconditionally - even if something else had already woken the
2126  * target.
2127  */
2128 static int synchronous_wake_function(wait_queue_entry_t *wait,
2129 			unsigned int mode, int sync, void *key)
2130 {
2131 	int ret = default_wake_function(wait, mode, sync, key);
2132 	list_del_init(&wait->entry);
2133 	return ret;
2134 }
2135 
2136 /*
2137  * Trinity finds that probing a hole which tmpfs is punching can
2138  * prevent the hole-punch from ever completing: which in turn
2139  * locks writers out with its hold on i_rwsem.  So refrain from
2140  * faulting pages into the hole while it's being punched.  Although
2141  * shmem_undo_range() does remove the additions, it may be unable to
2142  * keep up, as each new page needs its own unmap_mapping_range() call,
2143  * and the i_mmap tree grows ever slower to scan if new vmas are added.
2144  *
2145  * It does not matter if we sometimes reach this check just before the
2146  * hole-punch begins, so that one fault then races with the punch:
2147  * we just need to make racing faults a rare case.
2148  *
2149  * The implementation below would be much simpler if we just used a
2150  * standard mutex or completion: but we cannot take i_rwsem in fault,
2151  * and bloating every shmem inode for this unlikely case would be sad.
2152  */
2153 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2154 {
2155 	struct shmem_falloc *shmem_falloc;
2156 	struct file *fpin = NULL;
2157 	vm_fault_t ret = 0;
2158 
2159 	spin_lock(&inode->i_lock);
2160 	shmem_falloc = inode->i_private;
2161 	if (shmem_falloc &&
2162 	    shmem_falloc->waitq &&
2163 	    vmf->pgoff >= shmem_falloc->start &&
2164 	    vmf->pgoff < shmem_falloc->next) {
2165 		wait_queue_head_t *shmem_falloc_waitq;
2166 		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2167 
2168 		ret = VM_FAULT_NOPAGE;
2169 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2170 		shmem_falloc_waitq = shmem_falloc->waitq;
2171 		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2172 				TASK_UNINTERRUPTIBLE);
2173 		spin_unlock(&inode->i_lock);
2174 		schedule();
2175 
2176 		/*
2177 		 * shmem_falloc_waitq points into the shmem_fallocate()
2178 		 * stack of the hole-punching task: shmem_falloc_waitq
2179 		 * is usually invalid by the time we reach here, but
2180 		 * finish_wait() does not dereference it in that case;
2181 		 * though i_lock needed lest racing with wake_up_all().
2182 		 */
2183 		spin_lock(&inode->i_lock);
2184 		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2185 	}
2186 	spin_unlock(&inode->i_lock);
2187 	if (fpin) {
2188 		fput(fpin);
2189 		ret = VM_FAULT_RETRY;
2190 	}
2191 	return ret;
2192 }
2193 
2194 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2195 {
2196 	struct inode *inode = file_inode(vmf->vma->vm_file);
2197 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2198 	struct folio *folio = NULL;
2199 	vm_fault_t ret = 0;
2200 	int err;
2201 
2202 	/*
2203 	 * Trinity finds that probing a hole which tmpfs is punching can
2204 	 * prevent the hole-punch from ever completing: noted in i_private.
2205 	 */
2206 	if (unlikely(inode->i_private)) {
2207 		ret = shmem_falloc_wait(vmf, inode);
2208 		if (ret)
2209 			return ret;
2210 	}
2211 
2212 	WARN_ON_ONCE(vmf->page != NULL);
2213 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2214 				  gfp, vmf, &ret);
2215 	if (err)
2216 		return vmf_error(err);
2217 	if (folio) {
2218 		vmf->page = folio_file_page(folio, vmf->pgoff);
2219 		ret |= VM_FAULT_LOCKED;
2220 	}
2221 	return ret;
2222 }
2223 
2224 unsigned long shmem_get_unmapped_area(struct file *file,
2225 				      unsigned long uaddr, unsigned long len,
2226 				      unsigned long pgoff, unsigned long flags)
2227 {
2228 	unsigned long (*get_area)(struct file *,
2229 		unsigned long, unsigned long, unsigned long, unsigned long);
2230 	unsigned long addr;
2231 	unsigned long offset;
2232 	unsigned long inflated_len;
2233 	unsigned long inflated_addr;
2234 	unsigned long inflated_offset;
2235 
2236 	if (len > TASK_SIZE)
2237 		return -ENOMEM;
2238 
2239 	get_area = current->mm->get_unmapped_area;
2240 	addr = get_area(file, uaddr, len, pgoff, flags);
2241 
2242 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2243 		return addr;
2244 	if (IS_ERR_VALUE(addr))
2245 		return addr;
2246 	if (addr & ~PAGE_MASK)
2247 		return addr;
2248 	if (addr > TASK_SIZE - len)
2249 		return addr;
2250 
2251 	if (shmem_huge == SHMEM_HUGE_DENY)
2252 		return addr;
2253 	if (len < HPAGE_PMD_SIZE)
2254 		return addr;
2255 	if (flags & MAP_FIXED)
2256 		return addr;
2257 	/*
2258 	 * Our priority is to support MAP_SHARED mapped hugely;
2259 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2260 	 * But if caller specified an address hint and we allocated area there
2261 	 * successfully, respect that as before.
2262 	 */
2263 	if (uaddr == addr)
2264 		return addr;
2265 
2266 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2267 		struct super_block *sb;
2268 
2269 		if (file) {
2270 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2271 			sb = file_inode(file)->i_sb;
2272 		} else {
2273 			/*
2274 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2275 			 * for "/dev/zero", to create a shared anonymous object.
2276 			 */
2277 			if (IS_ERR(shm_mnt))
2278 				return addr;
2279 			sb = shm_mnt->mnt_sb;
2280 		}
2281 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2282 			return addr;
2283 	}
2284 
2285 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2286 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2287 		return addr;
2288 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2289 		return addr;
2290 
2291 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2292 	if (inflated_len > TASK_SIZE)
2293 		return addr;
2294 	if (inflated_len < len)
2295 		return addr;
2296 
2297 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2298 	if (IS_ERR_VALUE(inflated_addr))
2299 		return addr;
2300 	if (inflated_addr & ~PAGE_MASK)
2301 		return addr;
2302 
2303 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2304 	inflated_addr += offset - inflated_offset;
2305 	if (inflated_offset > offset)
2306 		inflated_addr += HPAGE_PMD_SIZE;
2307 
2308 	if (inflated_addr > TASK_SIZE - len)
2309 		return addr;
2310 	return inflated_addr;
2311 }
2312 
2313 #ifdef CONFIG_NUMA
2314 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2315 {
2316 	struct inode *inode = file_inode(vma->vm_file);
2317 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2318 }
2319 
2320 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2321 					  unsigned long addr, pgoff_t *ilx)
2322 {
2323 	struct inode *inode = file_inode(vma->vm_file);
2324 	pgoff_t index;
2325 
2326 	/*
2327 	 * Bias interleave by inode number to distribute better across nodes;
2328 	 * but this interface is independent of which page order is used, so
2329 	 * supplies only that bias, letting caller apply the offset (adjusted
2330 	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2331 	 */
2332 	*ilx = inode->i_ino;
2333 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2334 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2335 }
2336 
2337 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2338 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2339 {
2340 	struct mempolicy *mpol;
2341 
2342 	/* Bias interleave by inode number to distribute better across nodes */
2343 	*ilx = info->vfs_inode.i_ino + (index >> order);
2344 
2345 	mpol = mpol_shared_policy_lookup(&info->policy, index);
2346 	return mpol ? mpol : get_task_policy(current);
2347 }
2348 #else
2349 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2350 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2351 {
2352 	*ilx = 0;
2353 	return NULL;
2354 }
2355 #endif /* CONFIG_NUMA */
2356 
2357 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2358 {
2359 	struct inode *inode = file_inode(file);
2360 	struct shmem_inode_info *info = SHMEM_I(inode);
2361 	int retval = -ENOMEM;
2362 
2363 	/*
2364 	 * What serializes the accesses to info->flags?
2365 	 * ipc_lock_object() when called from shmctl_do_lock(),
2366 	 * no serialization needed when called from shm_destroy().
2367 	 */
2368 	if (lock && !(info->flags & VM_LOCKED)) {
2369 		if (!user_shm_lock(inode->i_size, ucounts))
2370 			goto out_nomem;
2371 		info->flags |= VM_LOCKED;
2372 		mapping_set_unevictable(file->f_mapping);
2373 	}
2374 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2375 		user_shm_unlock(inode->i_size, ucounts);
2376 		info->flags &= ~VM_LOCKED;
2377 		mapping_clear_unevictable(file->f_mapping);
2378 	}
2379 	retval = 0;
2380 
2381 out_nomem:
2382 	return retval;
2383 }
2384 
2385 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2386 {
2387 	struct inode *inode = file_inode(file);
2388 	struct shmem_inode_info *info = SHMEM_I(inode);
2389 	int ret;
2390 
2391 	ret = seal_check_write(info->seals, vma);
2392 	if (ret)
2393 		return ret;
2394 
2395 	/* arm64 - allow memory tagging on RAM-based files */
2396 	vm_flags_set(vma, VM_MTE_ALLOWED);
2397 
2398 	file_accessed(file);
2399 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2400 	if (inode->i_nlink)
2401 		vma->vm_ops = &shmem_vm_ops;
2402 	else
2403 		vma->vm_ops = &shmem_anon_vm_ops;
2404 	return 0;
2405 }
2406 
2407 static int shmem_file_open(struct inode *inode, struct file *file)
2408 {
2409 	file->f_mode |= FMODE_CAN_ODIRECT;
2410 	return generic_file_open(inode, file);
2411 }
2412 
2413 #ifdef CONFIG_TMPFS_XATTR
2414 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2415 
2416 /*
2417  * chattr's fsflags are unrelated to extended attributes,
2418  * but tmpfs has chosen to enable them under the same config option.
2419  */
2420 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2421 {
2422 	unsigned int i_flags = 0;
2423 
2424 	if (fsflags & FS_NOATIME_FL)
2425 		i_flags |= S_NOATIME;
2426 	if (fsflags & FS_APPEND_FL)
2427 		i_flags |= S_APPEND;
2428 	if (fsflags & FS_IMMUTABLE_FL)
2429 		i_flags |= S_IMMUTABLE;
2430 	/*
2431 	 * But FS_NODUMP_FL does not require any action in i_flags.
2432 	 */
2433 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2434 }
2435 #else
2436 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2437 {
2438 }
2439 #define shmem_initxattrs NULL
2440 #endif
2441 
2442 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2443 {
2444 	return &SHMEM_I(inode)->dir_offsets;
2445 }
2446 
2447 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2448 					     struct super_block *sb,
2449 					     struct inode *dir, umode_t mode,
2450 					     dev_t dev, unsigned long flags)
2451 {
2452 	struct inode *inode;
2453 	struct shmem_inode_info *info;
2454 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2455 	ino_t ino;
2456 	int err;
2457 
2458 	err = shmem_reserve_inode(sb, &ino);
2459 	if (err)
2460 		return ERR_PTR(err);
2461 
2462 	inode = new_inode(sb);
2463 	if (!inode) {
2464 		shmem_free_inode(sb, 0);
2465 		return ERR_PTR(-ENOSPC);
2466 	}
2467 
2468 	inode->i_ino = ino;
2469 	inode_init_owner(idmap, inode, dir, mode);
2470 	inode->i_blocks = 0;
2471 	simple_inode_init_ts(inode);
2472 	inode->i_generation = get_random_u32();
2473 	info = SHMEM_I(inode);
2474 	memset(info, 0, (char *)inode - (char *)info);
2475 	spin_lock_init(&info->lock);
2476 	atomic_set(&info->stop_eviction, 0);
2477 	info->seals = F_SEAL_SEAL;
2478 	info->flags = flags & VM_NORESERVE;
2479 	info->i_crtime = inode_get_mtime(inode);
2480 	info->fsflags = (dir == NULL) ? 0 :
2481 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2482 	if (info->fsflags)
2483 		shmem_set_inode_flags(inode, info->fsflags);
2484 	INIT_LIST_HEAD(&info->shrinklist);
2485 	INIT_LIST_HEAD(&info->swaplist);
2486 	simple_xattrs_init(&info->xattrs);
2487 	cache_no_acl(inode);
2488 	if (sbinfo->noswap)
2489 		mapping_set_unevictable(inode->i_mapping);
2490 	mapping_set_large_folios(inode->i_mapping);
2491 
2492 	switch (mode & S_IFMT) {
2493 	default:
2494 		inode->i_op = &shmem_special_inode_operations;
2495 		init_special_inode(inode, mode, dev);
2496 		break;
2497 	case S_IFREG:
2498 		inode->i_mapping->a_ops = &shmem_aops;
2499 		inode->i_op = &shmem_inode_operations;
2500 		inode->i_fop = &shmem_file_operations;
2501 		mpol_shared_policy_init(&info->policy,
2502 					 shmem_get_sbmpol(sbinfo));
2503 		break;
2504 	case S_IFDIR:
2505 		inc_nlink(inode);
2506 		/* Some things misbehave if size == 0 on a directory */
2507 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2508 		inode->i_op = &shmem_dir_inode_operations;
2509 		inode->i_fop = &simple_offset_dir_operations;
2510 		simple_offset_init(shmem_get_offset_ctx(inode));
2511 		break;
2512 	case S_IFLNK:
2513 		/*
2514 		 * Must not load anything in the rbtree,
2515 		 * mpol_free_shared_policy will not be called.
2516 		 */
2517 		mpol_shared_policy_init(&info->policy, NULL);
2518 		break;
2519 	}
2520 
2521 	lockdep_annotate_inode_mutex_key(inode);
2522 	return inode;
2523 }
2524 
2525 #ifdef CONFIG_TMPFS_QUOTA
2526 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2527 				     struct super_block *sb, struct inode *dir,
2528 				     umode_t mode, dev_t dev, unsigned long flags)
2529 {
2530 	int err;
2531 	struct inode *inode;
2532 
2533 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2534 	if (IS_ERR(inode))
2535 		return inode;
2536 
2537 	err = dquot_initialize(inode);
2538 	if (err)
2539 		goto errout;
2540 
2541 	err = dquot_alloc_inode(inode);
2542 	if (err) {
2543 		dquot_drop(inode);
2544 		goto errout;
2545 	}
2546 	return inode;
2547 
2548 errout:
2549 	inode->i_flags |= S_NOQUOTA;
2550 	iput(inode);
2551 	return ERR_PTR(err);
2552 }
2553 #else
2554 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2555 				     struct super_block *sb, struct inode *dir,
2556 				     umode_t mode, dev_t dev, unsigned long flags)
2557 {
2558 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2559 }
2560 #endif /* CONFIG_TMPFS_QUOTA */
2561 
2562 #ifdef CONFIG_USERFAULTFD
2563 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2564 			   struct vm_area_struct *dst_vma,
2565 			   unsigned long dst_addr,
2566 			   unsigned long src_addr,
2567 			   uffd_flags_t flags,
2568 			   struct folio **foliop)
2569 {
2570 	struct inode *inode = file_inode(dst_vma->vm_file);
2571 	struct shmem_inode_info *info = SHMEM_I(inode);
2572 	struct address_space *mapping = inode->i_mapping;
2573 	gfp_t gfp = mapping_gfp_mask(mapping);
2574 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2575 	void *page_kaddr;
2576 	struct folio *folio;
2577 	int ret;
2578 	pgoff_t max_off;
2579 
2580 	if (shmem_inode_acct_blocks(inode, 1)) {
2581 		/*
2582 		 * We may have got a page, returned -ENOENT triggering a retry,
2583 		 * and now we find ourselves with -ENOMEM. Release the page, to
2584 		 * avoid a BUG_ON in our caller.
2585 		 */
2586 		if (unlikely(*foliop)) {
2587 			folio_put(*foliop);
2588 			*foliop = NULL;
2589 		}
2590 		return -ENOMEM;
2591 	}
2592 
2593 	if (!*foliop) {
2594 		ret = -ENOMEM;
2595 		folio = shmem_alloc_folio(gfp, info, pgoff);
2596 		if (!folio)
2597 			goto out_unacct_blocks;
2598 
2599 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2600 			page_kaddr = kmap_local_folio(folio, 0);
2601 			/*
2602 			 * The read mmap_lock is held here.  Despite the
2603 			 * mmap_lock being read recursive a deadlock is still
2604 			 * possible if a writer has taken a lock.  For example:
2605 			 *
2606 			 * process A thread 1 takes read lock on own mmap_lock
2607 			 * process A thread 2 calls mmap, blocks taking write lock
2608 			 * process B thread 1 takes page fault, read lock on own mmap lock
2609 			 * process B thread 2 calls mmap, blocks taking write lock
2610 			 * process A thread 1 blocks taking read lock on process B
2611 			 * process B thread 1 blocks taking read lock on process A
2612 			 *
2613 			 * Disable page faults to prevent potential deadlock
2614 			 * and retry the copy outside the mmap_lock.
2615 			 */
2616 			pagefault_disable();
2617 			ret = copy_from_user(page_kaddr,
2618 					     (const void __user *)src_addr,
2619 					     PAGE_SIZE);
2620 			pagefault_enable();
2621 			kunmap_local(page_kaddr);
2622 
2623 			/* fallback to copy_from_user outside mmap_lock */
2624 			if (unlikely(ret)) {
2625 				*foliop = folio;
2626 				ret = -ENOENT;
2627 				/* don't free the page */
2628 				goto out_unacct_blocks;
2629 			}
2630 
2631 			flush_dcache_folio(folio);
2632 		} else {		/* ZEROPAGE */
2633 			clear_user_highpage(&folio->page, dst_addr);
2634 		}
2635 	} else {
2636 		folio = *foliop;
2637 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2638 		*foliop = NULL;
2639 	}
2640 
2641 	VM_BUG_ON(folio_test_locked(folio));
2642 	VM_BUG_ON(folio_test_swapbacked(folio));
2643 	__folio_set_locked(folio);
2644 	__folio_set_swapbacked(folio);
2645 	__folio_mark_uptodate(folio);
2646 
2647 	ret = -EFAULT;
2648 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2649 	if (unlikely(pgoff >= max_off))
2650 		goto out_release;
2651 
2652 	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
2653 	if (ret)
2654 		goto out_release;
2655 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
2656 	if (ret)
2657 		goto out_release;
2658 
2659 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2660 				       &folio->page, true, flags);
2661 	if (ret)
2662 		goto out_delete_from_cache;
2663 
2664 	shmem_recalc_inode(inode, 1, 0);
2665 	folio_unlock(folio);
2666 	return 0;
2667 out_delete_from_cache:
2668 	filemap_remove_folio(folio);
2669 out_release:
2670 	folio_unlock(folio);
2671 	folio_put(folio);
2672 out_unacct_blocks:
2673 	shmem_inode_unacct_blocks(inode, 1);
2674 	return ret;
2675 }
2676 #endif /* CONFIG_USERFAULTFD */
2677 
2678 #ifdef CONFIG_TMPFS
2679 static const struct inode_operations shmem_symlink_inode_operations;
2680 static const struct inode_operations shmem_short_symlink_operations;
2681 
2682 static int
2683 shmem_write_begin(struct file *file, struct address_space *mapping,
2684 			loff_t pos, unsigned len,
2685 			struct page **pagep, void **fsdata)
2686 {
2687 	struct inode *inode = mapping->host;
2688 	struct shmem_inode_info *info = SHMEM_I(inode);
2689 	pgoff_t index = pos >> PAGE_SHIFT;
2690 	struct folio *folio;
2691 	int ret = 0;
2692 
2693 	/* i_rwsem is held by caller */
2694 	if (unlikely(info->seals & (F_SEAL_GROW |
2695 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2696 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2697 			return -EPERM;
2698 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2699 			return -EPERM;
2700 	}
2701 
2702 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2703 	if (ret)
2704 		return ret;
2705 
2706 	*pagep = folio_file_page(folio, index);
2707 	if (PageHWPoison(*pagep)) {
2708 		folio_unlock(folio);
2709 		folio_put(folio);
2710 		*pagep = NULL;
2711 		return -EIO;
2712 	}
2713 
2714 	return 0;
2715 }
2716 
2717 static int
2718 shmem_write_end(struct file *file, struct address_space *mapping,
2719 			loff_t pos, unsigned len, unsigned copied,
2720 			struct page *page, void *fsdata)
2721 {
2722 	struct folio *folio = page_folio(page);
2723 	struct inode *inode = mapping->host;
2724 
2725 	if (pos + copied > inode->i_size)
2726 		i_size_write(inode, pos + copied);
2727 
2728 	if (!folio_test_uptodate(folio)) {
2729 		if (copied < folio_size(folio)) {
2730 			size_t from = offset_in_folio(folio, pos);
2731 			folio_zero_segments(folio, 0, from,
2732 					from + copied, folio_size(folio));
2733 		}
2734 		folio_mark_uptodate(folio);
2735 	}
2736 	folio_mark_dirty(folio);
2737 	folio_unlock(folio);
2738 	folio_put(folio);
2739 
2740 	return copied;
2741 }
2742 
2743 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2744 {
2745 	struct file *file = iocb->ki_filp;
2746 	struct inode *inode = file_inode(file);
2747 	struct address_space *mapping = inode->i_mapping;
2748 	pgoff_t index;
2749 	unsigned long offset;
2750 	int error = 0;
2751 	ssize_t retval = 0;
2752 	loff_t *ppos = &iocb->ki_pos;
2753 
2754 	index = *ppos >> PAGE_SHIFT;
2755 	offset = *ppos & ~PAGE_MASK;
2756 
2757 	for (;;) {
2758 		struct folio *folio = NULL;
2759 		struct page *page = NULL;
2760 		pgoff_t end_index;
2761 		unsigned long nr, ret;
2762 		loff_t i_size = i_size_read(inode);
2763 
2764 		end_index = i_size >> PAGE_SHIFT;
2765 		if (index > end_index)
2766 			break;
2767 		if (index == end_index) {
2768 			nr = i_size & ~PAGE_MASK;
2769 			if (nr <= offset)
2770 				break;
2771 		}
2772 
2773 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2774 		if (error) {
2775 			if (error == -EINVAL)
2776 				error = 0;
2777 			break;
2778 		}
2779 		if (folio) {
2780 			folio_unlock(folio);
2781 
2782 			page = folio_file_page(folio, index);
2783 			if (PageHWPoison(page)) {
2784 				folio_put(folio);
2785 				error = -EIO;
2786 				break;
2787 			}
2788 		}
2789 
2790 		/*
2791 		 * We must evaluate after, since reads (unlike writes)
2792 		 * are called without i_rwsem protection against truncate
2793 		 */
2794 		nr = PAGE_SIZE;
2795 		i_size = i_size_read(inode);
2796 		end_index = i_size >> PAGE_SHIFT;
2797 		if (index == end_index) {
2798 			nr = i_size & ~PAGE_MASK;
2799 			if (nr <= offset) {
2800 				if (folio)
2801 					folio_put(folio);
2802 				break;
2803 			}
2804 		}
2805 		nr -= offset;
2806 
2807 		if (folio) {
2808 			/*
2809 			 * If users can be writing to this page using arbitrary
2810 			 * virtual addresses, take care about potential aliasing
2811 			 * before reading the page on the kernel side.
2812 			 */
2813 			if (mapping_writably_mapped(mapping))
2814 				flush_dcache_page(page);
2815 			/*
2816 			 * Mark the page accessed if we read the beginning.
2817 			 */
2818 			if (!offset)
2819 				folio_mark_accessed(folio);
2820 			/*
2821 			 * Ok, we have the page, and it's up-to-date, so
2822 			 * now we can copy it to user space...
2823 			 */
2824 			ret = copy_page_to_iter(page, offset, nr, to);
2825 			folio_put(folio);
2826 
2827 		} else if (user_backed_iter(to)) {
2828 			/*
2829 			 * Copy to user tends to be so well optimized, but
2830 			 * clear_user() not so much, that it is noticeably
2831 			 * faster to copy the zero page instead of clearing.
2832 			 */
2833 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2834 		} else {
2835 			/*
2836 			 * But submitting the same page twice in a row to
2837 			 * splice() - or others? - can result in confusion:
2838 			 * so don't attempt that optimization on pipes etc.
2839 			 */
2840 			ret = iov_iter_zero(nr, to);
2841 		}
2842 
2843 		retval += ret;
2844 		offset += ret;
2845 		index += offset >> PAGE_SHIFT;
2846 		offset &= ~PAGE_MASK;
2847 
2848 		if (!iov_iter_count(to))
2849 			break;
2850 		if (ret < nr) {
2851 			error = -EFAULT;
2852 			break;
2853 		}
2854 		cond_resched();
2855 	}
2856 
2857 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2858 	file_accessed(file);
2859 	return retval ? retval : error;
2860 }
2861 
2862 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2863 {
2864 	struct file *file = iocb->ki_filp;
2865 	struct inode *inode = file->f_mapping->host;
2866 	ssize_t ret;
2867 
2868 	inode_lock(inode);
2869 	ret = generic_write_checks(iocb, from);
2870 	if (ret <= 0)
2871 		goto unlock;
2872 	ret = file_remove_privs(file);
2873 	if (ret)
2874 		goto unlock;
2875 	ret = file_update_time(file);
2876 	if (ret)
2877 		goto unlock;
2878 	ret = generic_perform_write(iocb, from);
2879 unlock:
2880 	inode_unlock(inode);
2881 	return ret;
2882 }
2883 
2884 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
2885 			      struct pipe_buffer *buf)
2886 {
2887 	return true;
2888 }
2889 
2890 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
2891 				  struct pipe_buffer *buf)
2892 {
2893 }
2894 
2895 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
2896 				    struct pipe_buffer *buf)
2897 {
2898 	return false;
2899 }
2900 
2901 static const struct pipe_buf_operations zero_pipe_buf_ops = {
2902 	.release	= zero_pipe_buf_release,
2903 	.try_steal	= zero_pipe_buf_try_steal,
2904 	.get		= zero_pipe_buf_get,
2905 };
2906 
2907 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
2908 					loff_t fpos, size_t size)
2909 {
2910 	size_t offset = fpos & ~PAGE_MASK;
2911 
2912 	size = min_t(size_t, size, PAGE_SIZE - offset);
2913 
2914 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2915 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2916 
2917 		*buf = (struct pipe_buffer) {
2918 			.ops	= &zero_pipe_buf_ops,
2919 			.page	= ZERO_PAGE(0),
2920 			.offset	= offset,
2921 			.len	= size,
2922 		};
2923 		pipe->head++;
2924 	}
2925 
2926 	return size;
2927 }
2928 
2929 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2930 				      struct pipe_inode_info *pipe,
2931 				      size_t len, unsigned int flags)
2932 {
2933 	struct inode *inode = file_inode(in);
2934 	struct address_space *mapping = inode->i_mapping;
2935 	struct folio *folio = NULL;
2936 	size_t total_spliced = 0, used, npages, n, part;
2937 	loff_t isize;
2938 	int error = 0;
2939 
2940 	/* Work out how much data we can actually add into the pipe */
2941 	used = pipe_occupancy(pipe->head, pipe->tail);
2942 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2943 	len = min_t(size_t, len, npages * PAGE_SIZE);
2944 
2945 	do {
2946 		if (*ppos >= i_size_read(inode))
2947 			break;
2948 
2949 		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
2950 					SGP_READ);
2951 		if (error) {
2952 			if (error == -EINVAL)
2953 				error = 0;
2954 			break;
2955 		}
2956 		if (folio) {
2957 			folio_unlock(folio);
2958 
2959 			if (folio_test_hwpoison(folio) ||
2960 			    (folio_test_large(folio) &&
2961 			     folio_test_has_hwpoisoned(folio))) {
2962 				error = -EIO;
2963 				break;
2964 			}
2965 		}
2966 
2967 		/*
2968 		 * i_size must be checked after we know the pages are Uptodate.
2969 		 *
2970 		 * Checking i_size after the check allows us to calculate
2971 		 * the correct value for "nr", which means the zero-filled
2972 		 * part of the page is not copied back to userspace (unless
2973 		 * another truncate extends the file - this is desired though).
2974 		 */
2975 		isize = i_size_read(inode);
2976 		if (unlikely(*ppos >= isize))
2977 			break;
2978 		part = min_t(loff_t, isize - *ppos, len);
2979 
2980 		if (folio) {
2981 			/*
2982 			 * If users can be writing to this page using arbitrary
2983 			 * virtual addresses, take care about potential aliasing
2984 			 * before reading the page on the kernel side.
2985 			 */
2986 			if (mapping_writably_mapped(mapping))
2987 				flush_dcache_folio(folio);
2988 			folio_mark_accessed(folio);
2989 			/*
2990 			 * Ok, we have the page, and it's up-to-date, so we can
2991 			 * now splice it into the pipe.
2992 			 */
2993 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
2994 			folio_put(folio);
2995 			folio = NULL;
2996 		} else {
2997 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
2998 		}
2999 
3000 		if (!n)
3001 			break;
3002 		len -= n;
3003 		total_spliced += n;
3004 		*ppos += n;
3005 		in->f_ra.prev_pos = *ppos;
3006 		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3007 			break;
3008 
3009 		cond_resched();
3010 	} while (len);
3011 
3012 	if (folio)
3013 		folio_put(folio);
3014 
3015 	file_accessed(in);
3016 	return total_spliced ? total_spliced : error;
3017 }
3018 
3019 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3020 {
3021 	struct address_space *mapping = file->f_mapping;
3022 	struct inode *inode = mapping->host;
3023 
3024 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3025 		return generic_file_llseek_size(file, offset, whence,
3026 					MAX_LFS_FILESIZE, i_size_read(inode));
3027 	if (offset < 0)
3028 		return -ENXIO;
3029 
3030 	inode_lock(inode);
3031 	/* We're holding i_rwsem so we can access i_size directly */
3032 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3033 	if (offset >= 0)
3034 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3035 	inode_unlock(inode);
3036 	return offset;
3037 }
3038 
3039 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3040 							 loff_t len)
3041 {
3042 	struct inode *inode = file_inode(file);
3043 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3044 	struct shmem_inode_info *info = SHMEM_I(inode);
3045 	struct shmem_falloc shmem_falloc;
3046 	pgoff_t start, index, end, undo_fallocend;
3047 	int error;
3048 
3049 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3050 		return -EOPNOTSUPP;
3051 
3052 	inode_lock(inode);
3053 
3054 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3055 		struct address_space *mapping = file->f_mapping;
3056 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3057 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3058 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3059 
3060 		/* protected by i_rwsem */
3061 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3062 			error = -EPERM;
3063 			goto out;
3064 		}
3065 
3066 		shmem_falloc.waitq = &shmem_falloc_waitq;
3067 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3068 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3069 		spin_lock(&inode->i_lock);
3070 		inode->i_private = &shmem_falloc;
3071 		spin_unlock(&inode->i_lock);
3072 
3073 		if ((u64)unmap_end > (u64)unmap_start)
3074 			unmap_mapping_range(mapping, unmap_start,
3075 					    1 + unmap_end - unmap_start, 0);
3076 		shmem_truncate_range(inode, offset, offset + len - 1);
3077 		/* No need to unmap again: hole-punching leaves COWed pages */
3078 
3079 		spin_lock(&inode->i_lock);
3080 		inode->i_private = NULL;
3081 		wake_up_all(&shmem_falloc_waitq);
3082 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3083 		spin_unlock(&inode->i_lock);
3084 		error = 0;
3085 		goto out;
3086 	}
3087 
3088 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3089 	error = inode_newsize_ok(inode, offset + len);
3090 	if (error)
3091 		goto out;
3092 
3093 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3094 		error = -EPERM;
3095 		goto out;
3096 	}
3097 
3098 	start = offset >> PAGE_SHIFT;
3099 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3100 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3101 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3102 		error = -ENOSPC;
3103 		goto out;
3104 	}
3105 
3106 	shmem_falloc.waitq = NULL;
3107 	shmem_falloc.start = start;
3108 	shmem_falloc.next  = start;
3109 	shmem_falloc.nr_falloced = 0;
3110 	shmem_falloc.nr_unswapped = 0;
3111 	spin_lock(&inode->i_lock);
3112 	inode->i_private = &shmem_falloc;
3113 	spin_unlock(&inode->i_lock);
3114 
3115 	/*
3116 	 * info->fallocend is only relevant when huge pages might be
3117 	 * involved: to prevent split_huge_page() freeing fallocated
3118 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3119 	 */
3120 	undo_fallocend = info->fallocend;
3121 	if (info->fallocend < end)
3122 		info->fallocend = end;
3123 
3124 	for (index = start; index < end; ) {
3125 		struct folio *folio;
3126 
3127 		/*
3128 		 * Good, the fallocate(2) manpage permits EINTR: we may have
3129 		 * been interrupted because we are using up too much memory.
3130 		 */
3131 		if (signal_pending(current))
3132 			error = -EINTR;
3133 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3134 			error = -ENOMEM;
3135 		else
3136 			error = shmem_get_folio(inode, index, &folio,
3137 						SGP_FALLOC);
3138 		if (error) {
3139 			info->fallocend = undo_fallocend;
3140 			/* Remove the !uptodate folios we added */
3141 			if (index > start) {
3142 				shmem_undo_range(inode,
3143 				    (loff_t)start << PAGE_SHIFT,
3144 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3145 			}
3146 			goto undone;
3147 		}
3148 
3149 		/*
3150 		 * Here is a more important optimization than it appears:
3151 		 * a second SGP_FALLOC on the same large folio will clear it,
3152 		 * making it uptodate and un-undoable if we fail later.
3153 		 */
3154 		index = folio_next_index(folio);
3155 		/* Beware 32-bit wraparound */
3156 		if (!index)
3157 			index--;
3158 
3159 		/*
3160 		 * Inform shmem_writepage() how far we have reached.
3161 		 * No need for lock or barrier: we have the page lock.
3162 		 */
3163 		if (!folio_test_uptodate(folio))
3164 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3165 		shmem_falloc.next = index;
3166 
3167 		/*
3168 		 * If !uptodate, leave it that way so that freeable folios
3169 		 * can be recognized if we need to rollback on error later.
3170 		 * But mark it dirty so that memory pressure will swap rather
3171 		 * than free the folios we are allocating (and SGP_CACHE folios
3172 		 * might still be clean: we now need to mark those dirty too).
3173 		 */
3174 		folio_mark_dirty(folio);
3175 		folio_unlock(folio);
3176 		folio_put(folio);
3177 		cond_resched();
3178 	}
3179 
3180 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3181 		i_size_write(inode, offset + len);
3182 undone:
3183 	spin_lock(&inode->i_lock);
3184 	inode->i_private = NULL;
3185 	spin_unlock(&inode->i_lock);
3186 out:
3187 	if (!error)
3188 		file_modified(file);
3189 	inode_unlock(inode);
3190 	return error;
3191 }
3192 
3193 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3194 {
3195 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3196 
3197 	buf->f_type = TMPFS_MAGIC;
3198 	buf->f_bsize = PAGE_SIZE;
3199 	buf->f_namelen = NAME_MAX;
3200 	if (sbinfo->max_blocks) {
3201 		buf->f_blocks = sbinfo->max_blocks;
3202 		buf->f_bavail =
3203 		buf->f_bfree  = sbinfo->max_blocks -
3204 				percpu_counter_sum(&sbinfo->used_blocks);
3205 	}
3206 	if (sbinfo->max_inodes) {
3207 		buf->f_files = sbinfo->max_inodes;
3208 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3209 	}
3210 	/* else leave those fields 0 like simple_statfs */
3211 
3212 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3213 
3214 	return 0;
3215 }
3216 
3217 /*
3218  * File creation. Allocate an inode, and we're done..
3219  */
3220 static int
3221 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3222 	    struct dentry *dentry, umode_t mode, dev_t dev)
3223 {
3224 	struct inode *inode;
3225 	int error;
3226 
3227 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3228 	if (IS_ERR(inode))
3229 		return PTR_ERR(inode);
3230 
3231 	error = simple_acl_create(dir, inode);
3232 	if (error)
3233 		goto out_iput;
3234 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3235 					     shmem_initxattrs, NULL);
3236 	if (error && error != -EOPNOTSUPP)
3237 		goto out_iput;
3238 
3239 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3240 	if (error)
3241 		goto out_iput;
3242 
3243 	dir->i_size += BOGO_DIRENT_SIZE;
3244 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3245 	inode_inc_iversion(dir);
3246 	d_instantiate(dentry, inode);
3247 	dget(dentry); /* Extra count - pin the dentry in core */
3248 	return error;
3249 
3250 out_iput:
3251 	iput(inode);
3252 	return error;
3253 }
3254 
3255 static int
3256 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3257 	      struct file *file, umode_t mode)
3258 {
3259 	struct inode *inode;
3260 	int error;
3261 
3262 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3263 	if (IS_ERR(inode)) {
3264 		error = PTR_ERR(inode);
3265 		goto err_out;
3266 	}
3267 	error = security_inode_init_security(inode, dir, NULL,
3268 					     shmem_initxattrs, NULL);
3269 	if (error && error != -EOPNOTSUPP)
3270 		goto out_iput;
3271 	error = simple_acl_create(dir, inode);
3272 	if (error)
3273 		goto out_iput;
3274 	d_tmpfile(file, inode);
3275 
3276 err_out:
3277 	return finish_open_simple(file, error);
3278 out_iput:
3279 	iput(inode);
3280 	return error;
3281 }
3282 
3283 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3284 		       struct dentry *dentry, umode_t mode)
3285 {
3286 	int error;
3287 
3288 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3289 	if (error)
3290 		return error;
3291 	inc_nlink(dir);
3292 	return 0;
3293 }
3294 
3295 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3296 			struct dentry *dentry, umode_t mode, bool excl)
3297 {
3298 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3299 }
3300 
3301 /*
3302  * Link a file..
3303  */
3304 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3305 		      struct dentry *dentry)
3306 {
3307 	struct inode *inode = d_inode(old_dentry);
3308 	int ret = 0;
3309 
3310 	/*
3311 	 * No ordinary (disk based) filesystem counts links as inodes;
3312 	 * but each new link needs a new dentry, pinning lowmem, and
3313 	 * tmpfs dentries cannot be pruned until they are unlinked.
3314 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3315 	 * first link must skip that, to get the accounting right.
3316 	 */
3317 	if (inode->i_nlink) {
3318 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3319 		if (ret)
3320 			goto out;
3321 	}
3322 
3323 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3324 	if (ret) {
3325 		if (inode->i_nlink)
3326 			shmem_free_inode(inode->i_sb, 0);
3327 		goto out;
3328 	}
3329 
3330 	dir->i_size += BOGO_DIRENT_SIZE;
3331 	inode_set_mtime_to_ts(dir,
3332 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3333 	inode_inc_iversion(dir);
3334 	inc_nlink(inode);
3335 	ihold(inode);	/* New dentry reference */
3336 	dget(dentry);	/* Extra pinning count for the created dentry */
3337 	d_instantiate(dentry, inode);
3338 out:
3339 	return ret;
3340 }
3341 
3342 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3343 {
3344 	struct inode *inode = d_inode(dentry);
3345 
3346 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3347 		shmem_free_inode(inode->i_sb, 0);
3348 
3349 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3350 
3351 	dir->i_size -= BOGO_DIRENT_SIZE;
3352 	inode_set_mtime_to_ts(dir,
3353 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3354 	inode_inc_iversion(dir);
3355 	drop_nlink(inode);
3356 	dput(dentry);	/* Undo the count from "create" - does all the work */
3357 	return 0;
3358 }
3359 
3360 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3361 {
3362 	if (!simple_empty(dentry))
3363 		return -ENOTEMPTY;
3364 
3365 	drop_nlink(d_inode(dentry));
3366 	drop_nlink(dir);
3367 	return shmem_unlink(dir, dentry);
3368 }
3369 
3370 static int shmem_whiteout(struct mnt_idmap *idmap,
3371 			  struct inode *old_dir, struct dentry *old_dentry)
3372 {
3373 	struct dentry *whiteout;
3374 	int error;
3375 
3376 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3377 	if (!whiteout)
3378 		return -ENOMEM;
3379 
3380 	error = shmem_mknod(idmap, old_dir, whiteout,
3381 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3382 	dput(whiteout);
3383 	if (error)
3384 		return error;
3385 
3386 	/*
3387 	 * Cheat and hash the whiteout while the old dentry is still in
3388 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3389 	 *
3390 	 * d_lookup() will consistently find one of them at this point,
3391 	 * not sure which one, but that isn't even important.
3392 	 */
3393 	d_rehash(whiteout);
3394 	return 0;
3395 }
3396 
3397 /*
3398  * The VFS layer already does all the dentry stuff for rename,
3399  * we just have to decrement the usage count for the target if
3400  * it exists so that the VFS layer correctly free's it when it
3401  * gets overwritten.
3402  */
3403 static int shmem_rename2(struct mnt_idmap *idmap,
3404 			 struct inode *old_dir, struct dentry *old_dentry,
3405 			 struct inode *new_dir, struct dentry *new_dentry,
3406 			 unsigned int flags)
3407 {
3408 	struct inode *inode = d_inode(old_dentry);
3409 	int they_are_dirs = S_ISDIR(inode->i_mode);
3410 	int error;
3411 
3412 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3413 		return -EINVAL;
3414 
3415 	if (flags & RENAME_EXCHANGE)
3416 		return simple_offset_rename_exchange(old_dir, old_dentry,
3417 						     new_dir, new_dentry);
3418 
3419 	if (!simple_empty(new_dentry))
3420 		return -ENOTEMPTY;
3421 
3422 	if (flags & RENAME_WHITEOUT) {
3423 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3424 		if (error)
3425 			return error;
3426 	}
3427 
3428 	simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry);
3429 	error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry);
3430 	if (error)
3431 		return error;
3432 
3433 	if (d_really_is_positive(new_dentry)) {
3434 		(void) shmem_unlink(new_dir, new_dentry);
3435 		if (they_are_dirs) {
3436 			drop_nlink(d_inode(new_dentry));
3437 			drop_nlink(old_dir);
3438 		}
3439 	} else if (they_are_dirs) {
3440 		drop_nlink(old_dir);
3441 		inc_nlink(new_dir);
3442 	}
3443 
3444 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3445 	new_dir->i_size += BOGO_DIRENT_SIZE;
3446 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3447 	inode_inc_iversion(old_dir);
3448 	inode_inc_iversion(new_dir);
3449 	return 0;
3450 }
3451 
3452 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3453 			 struct dentry *dentry, const char *symname)
3454 {
3455 	int error;
3456 	int len;
3457 	struct inode *inode;
3458 	struct folio *folio;
3459 
3460 	len = strlen(symname) + 1;
3461 	if (len > PAGE_SIZE)
3462 		return -ENAMETOOLONG;
3463 
3464 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3465 				VM_NORESERVE);
3466 	if (IS_ERR(inode))
3467 		return PTR_ERR(inode);
3468 
3469 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3470 					     shmem_initxattrs, NULL);
3471 	if (error && error != -EOPNOTSUPP)
3472 		goto out_iput;
3473 
3474 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3475 	if (error)
3476 		goto out_iput;
3477 
3478 	inode->i_size = len-1;
3479 	if (len <= SHORT_SYMLINK_LEN) {
3480 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3481 		if (!inode->i_link) {
3482 			error = -ENOMEM;
3483 			goto out_remove_offset;
3484 		}
3485 		inode->i_op = &shmem_short_symlink_operations;
3486 	} else {
3487 		inode_nohighmem(inode);
3488 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3489 		if (error)
3490 			goto out_remove_offset;
3491 		inode->i_mapping->a_ops = &shmem_aops;
3492 		inode->i_op = &shmem_symlink_inode_operations;
3493 		memcpy(folio_address(folio), symname, len);
3494 		folio_mark_uptodate(folio);
3495 		folio_mark_dirty(folio);
3496 		folio_unlock(folio);
3497 		folio_put(folio);
3498 	}
3499 	dir->i_size += BOGO_DIRENT_SIZE;
3500 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3501 	inode_inc_iversion(dir);
3502 	d_instantiate(dentry, inode);
3503 	dget(dentry);
3504 	return 0;
3505 
3506 out_remove_offset:
3507 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3508 out_iput:
3509 	iput(inode);
3510 	return error;
3511 }
3512 
3513 static void shmem_put_link(void *arg)
3514 {
3515 	folio_mark_accessed(arg);
3516 	folio_put(arg);
3517 }
3518 
3519 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3520 				  struct delayed_call *done)
3521 {
3522 	struct folio *folio = NULL;
3523 	int error;
3524 
3525 	if (!dentry) {
3526 		folio = filemap_get_folio(inode->i_mapping, 0);
3527 		if (IS_ERR(folio))
3528 			return ERR_PTR(-ECHILD);
3529 		if (PageHWPoison(folio_page(folio, 0)) ||
3530 		    !folio_test_uptodate(folio)) {
3531 			folio_put(folio);
3532 			return ERR_PTR(-ECHILD);
3533 		}
3534 	} else {
3535 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3536 		if (error)
3537 			return ERR_PTR(error);
3538 		if (!folio)
3539 			return ERR_PTR(-ECHILD);
3540 		if (PageHWPoison(folio_page(folio, 0))) {
3541 			folio_unlock(folio);
3542 			folio_put(folio);
3543 			return ERR_PTR(-ECHILD);
3544 		}
3545 		folio_unlock(folio);
3546 	}
3547 	set_delayed_call(done, shmem_put_link, folio);
3548 	return folio_address(folio);
3549 }
3550 
3551 #ifdef CONFIG_TMPFS_XATTR
3552 
3553 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3554 {
3555 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3556 
3557 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3558 
3559 	return 0;
3560 }
3561 
3562 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3563 			      struct dentry *dentry, struct fileattr *fa)
3564 {
3565 	struct inode *inode = d_inode(dentry);
3566 	struct shmem_inode_info *info = SHMEM_I(inode);
3567 
3568 	if (fileattr_has_fsx(fa))
3569 		return -EOPNOTSUPP;
3570 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3571 		return -EOPNOTSUPP;
3572 
3573 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3574 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3575 
3576 	shmem_set_inode_flags(inode, info->fsflags);
3577 	inode_set_ctime_current(inode);
3578 	inode_inc_iversion(inode);
3579 	return 0;
3580 }
3581 
3582 /*
3583  * Superblocks without xattr inode operations may get some security.* xattr
3584  * support from the LSM "for free". As soon as we have any other xattrs
3585  * like ACLs, we also need to implement the security.* handlers at
3586  * filesystem level, though.
3587  */
3588 
3589 /*
3590  * Callback for security_inode_init_security() for acquiring xattrs.
3591  */
3592 static int shmem_initxattrs(struct inode *inode,
3593 			    const struct xattr *xattr_array, void *fs_info)
3594 {
3595 	struct shmem_inode_info *info = SHMEM_I(inode);
3596 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3597 	const struct xattr *xattr;
3598 	struct simple_xattr *new_xattr;
3599 	size_t ispace = 0;
3600 	size_t len;
3601 
3602 	if (sbinfo->max_inodes) {
3603 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3604 			ispace += simple_xattr_space(xattr->name,
3605 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3606 		}
3607 		if (ispace) {
3608 			raw_spin_lock(&sbinfo->stat_lock);
3609 			if (sbinfo->free_ispace < ispace)
3610 				ispace = 0;
3611 			else
3612 				sbinfo->free_ispace -= ispace;
3613 			raw_spin_unlock(&sbinfo->stat_lock);
3614 			if (!ispace)
3615 				return -ENOSPC;
3616 		}
3617 	}
3618 
3619 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3620 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3621 		if (!new_xattr)
3622 			break;
3623 
3624 		len = strlen(xattr->name) + 1;
3625 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3626 					  GFP_KERNEL_ACCOUNT);
3627 		if (!new_xattr->name) {
3628 			kvfree(new_xattr);
3629 			break;
3630 		}
3631 
3632 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3633 		       XATTR_SECURITY_PREFIX_LEN);
3634 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3635 		       xattr->name, len);
3636 
3637 		simple_xattr_add(&info->xattrs, new_xattr);
3638 	}
3639 
3640 	if (xattr->name != NULL) {
3641 		if (ispace) {
3642 			raw_spin_lock(&sbinfo->stat_lock);
3643 			sbinfo->free_ispace += ispace;
3644 			raw_spin_unlock(&sbinfo->stat_lock);
3645 		}
3646 		simple_xattrs_free(&info->xattrs, NULL);
3647 		return -ENOMEM;
3648 	}
3649 
3650 	return 0;
3651 }
3652 
3653 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3654 				   struct dentry *unused, struct inode *inode,
3655 				   const char *name, void *buffer, size_t size)
3656 {
3657 	struct shmem_inode_info *info = SHMEM_I(inode);
3658 
3659 	name = xattr_full_name(handler, name);
3660 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3661 }
3662 
3663 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3664 				   struct mnt_idmap *idmap,
3665 				   struct dentry *unused, struct inode *inode,
3666 				   const char *name, const void *value,
3667 				   size_t size, int flags)
3668 {
3669 	struct shmem_inode_info *info = SHMEM_I(inode);
3670 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3671 	struct simple_xattr *old_xattr;
3672 	size_t ispace = 0;
3673 
3674 	name = xattr_full_name(handler, name);
3675 	if (value && sbinfo->max_inodes) {
3676 		ispace = simple_xattr_space(name, size);
3677 		raw_spin_lock(&sbinfo->stat_lock);
3678 		if (sbinfo->free_ispace < ispace)
3679 			ispace = 0;
3680 		else
3681 			sbinfo->free_ispace -= ispace;
3682 		raw_spin_unlock(&sbinfo->stat_lock);
3683 		if (!ispace)
3684 			return -ENOSPC;
3685 	}
3686 
3687 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
3688 	if (!IS_ERR(old_xattr)) {
3689 		ispace = 0;
3690 		if (old_xattr && sbinfo->max_inodes)
3691 			ispace = simple_xattr_space(old_xattr->name,
3692 						    old_xattr->size);
3693 		simple_xattr_free(old_xattr);
3694 		old_xattr = NULL;
3695 		inode_set_ctime_current(inode);
3696 		inode_inc_iversion(inode);
3697 	}
3698 	if (ispace) {
3699 		raw_spin_lock(&sbinfo->stat_lock);
3700 		sbinfo->free_ispace += ispace;
3701 		raw_spin_unlock(&sbinfo->stat_lock);
3702 	}
3703 	return PTR_ERR(old_xattr);
3704 }
3705 
3706 static const struct xattr_handler shmem_security_xattr_handler = {
3707 	.prefix = XATTR_SECURITY_PREFIX,
3708 	.get = shmem_xattr_handler_get,
3709 	.set = shmem_xattr_handler_set,
3710 };
3711 
3712 static const struct xattr_handler shmem_trusted_xattr_handler = {
3713 	.prefix = XATTR_TRUSTED_PREFIX,
3714 	.get = shmem_xattr_handler_get,
3715 	.set = shmem_xattr_handler_set,
3716 };
3717 
3718 static const struct xattr_handler shmem_user_xattr_handler = {
3719 	.prefix = XATTR_USER_PREFIX,
3720 	.get = shmem_xattr_handler_get,
3721 	.set = shmem_xattr_handler_set,
3722 };
3723 
3724 static const struct xattr_handler * const shmem_xattr_handlers[] = {
3725 	&shmem_security_xattr_handler,
3726 	&shmem_trusted_xattr_handler,
3727 	&shmem_user_xattr_handler,
3728 	NULL
3729 };
3730 
3731 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3732 {
3733 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3734 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3735 }
3736 #endif /* CONFIG_TMPFS_XATTR */
3737 
3738 static const struct inode_operations shmem_short_symlink_operations = {
3739 	.getattr	= shmem_getattr,
3740 	.setattr	= shmem_setattr,
3741 	.get_link	= simple_get_link,
3742 #ifdef CONFIG_TMPFS_XATTR
3743 	.listxattr	= shmem_listxattr,
3744 #endif
3745 };
3746 
3747 static const struct inode_operations shmem_symlink_inode_operations = {
3748 	.getattr	= shmem_getattr,
3749 	.setattr	= shmem_setattr,
3750 	.get_link	= shmem_get_link,
3751 #ifdef CONFIG_TMPFS_XATTR
3752 	.listxattr	= shmem_listxattr,
3753 #endif
3754 };
3755 
3756 static struct dentry *shmem_get_parent(struct dentry *child)
3757 {
3758 	return ERR_PTR(-ESTALE);
3759 }
3760 
3761 static int shmem_match(struct inode *ino, void *vfh)
3762 {
3763 	__u32 *fh = vfh;
3764 	__u64 inum = fh[2];
3765 	inum = (inum << 32) | fh[1];
3766 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3767 }
3768 
3769 /* Find any alias of inode, but prefer a hashed alias */
3770 static struct dentry *shmem_find_alias(struct inode *inode)
3771 {
3772 	struct dentry *alias = d_find_alias(inode);
3773 
3774 	return alias ?: d_find_any_alias(inode);
3775 }
3776 
3777 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3778 		struct fid *fid, int fh_len, int fh_type)
3779 {
3780 	struct inode *inode;
3781 	struct dentry *dentry = NULL;
3782 	u64 inum;
3783 
3784 	if (fh_len < 3)
3785 		return NULL;
3786 
3787 	inum = fid->raw[2];
3788 	inum = (inum << 32) | fid->raw[1];
3789 
3790 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3791 			shmem_match, fid->raw);
3792 	if (inode) {
3793 		dentry = shmem_find_alias(inode);
3794 		iput(inode);
3795 	}
3796 
3797 	return dentry;
3798 }
3799 
3800 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3801 				struct inode *parent)
3802 {
3803 	if (*len < 3) {
3804 		*len = 3;
3805 		return FILEID_INVALID;
3806 	}
3807 
3808 	if (inode_unhashed(inode)) {
3809 		/* Unfortunately insert_inode_hash is not idempotent,
3810 		 * so as we hash inodes here rather than at creation
3811 		 * time, we need a lock to ensure we only try
3812 		 * to do it once
3813 		 */
3814 		static DEFINE_SPINLOCK(lock);
3815 		spin_lock(&lock);
3816 		if (inode_unhashed(inode))
3817 			__insert_inode_hash(inode,
3818 					    inode->i_ino + inode->i_generation);
3819 		spin_unlock(&lock);
3820 	}
3821 
3822 	fh[0] = inode->i_generation;
3823 	fh[1] = inode->i_ino;
3824 	fh[2] = ((__u64)inode->i_ino) >> 32;
3825 
3826 	*len = 3;
3827 	return 1;
3828 }
3829 
3830 static const struct export_operations shmem_export_ops = {
3831 	.get_parent     = shmem_get_parent,
3832 	.encode_fh      = shmem_encode_fh,
3833 	.fh_to_dentry	= shmem_fh_to_dentry,
3834 };
3835 
3836 enum shmem_param {
3837 	Opt_gid,
3838 	Opt_huge,
3839 	Opt_mode,
3840 	Opt_mpol,
3841 	Opt_nr_blocks,
3842 	Opt_nr_inodes,
3843 	Opt_size,
3844 	Opt_uid,
3845 	Opt_inode32,
3846 	Opt_inode64,
3847 	Opt_noswap,
3848 	Opt_quota,
3849 	Opt_usrquota,
3850 	Opt_grpquota,
3851 	Opt_usrquota_block_hardlimit,
3852 	Opt_usrquota_inode_hardlimit,
3853 	Opt_grpquota_block_hardlimit,
3854 	Opt_grpquota_inode_hardlimit,
3855 };
3856 
3857 static const struct constant_table shmem_param_enums_huge[] = {
3858 	{"never",	SHMEM_HUGE_NEVER },
3859 	{"always",	SHMEM_HUGE_ALWAYS },
3860 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3861 	{"advise",	SHMEM_HUGE_ADVISE },
3862 	{}
3863 };
3864 
3865 const struct fs_parameter_spec shmem_fs_parameters[] = {
3866 	fsparam_u32   ("gid",		Opt_gid),
3867 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3868 	fsparam_u32oct("mode",		Opt_mode),
3869 	fsparam_string("mpol",		Opt_mpol),
3870 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3871 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3872 	fsparam_string("size",		Opt_size),
3873 	fsparam_u32   ("uid",		Opt_uid),
3874 	fsparam_flag  ("inode32",	Opt_inode32),
3875 	fsparam_flag  ("inode64",	Opt_inode64),
3876 	fsparam_flag  ("noswap",	Opt_noswap),
3877 #ifdef CONFIG_TMPFS_QUOTA
3878 	fsparam_flag  ("quota",		Opt_quota),
3879 	fsparam_flag  ("usrquota",	Opt_usrquota),
3880 	fsparam_flag  ("grpquota",	Opt_grpquota),
3881 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
3882 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
3883 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
3884 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
3885 #endif
3886 	{}
3887 };
3888 
3889 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3890 {
3891 	struct shmem_options *ctx = fc->fs_private;
3892 	struct fs_parse_result result;
3893 	unsigned long long size;
3894 	char *rest;
3895 	int opt;
3896 	kuid_t kuid;
3897 	kgid_t kgid;
3898 
3899 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3900 	if (opt < 0)
3901 		return opt;
3902 
3903 	switch (opt) {
3904 	case Opt_size:
3905 		size = memparse(param->string, &rest);
3906 		if (*rest == '%') {
3907 			size <<= PAGE_SHIFT;
3908 			size *= totalram_pages();
3909 			do_div(size, 100);
3910 			rest++;
3911 		}
3912 		if (*rest)
3913 			goto bad_value;
3914 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3915 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3916 		break;
3917 	case Opt_nr_blocks:
3918 		ctx->blocks = memparse(param->string, &rest);
3919 		if (*rest || ctx->blocks > LONG_MAX)
3920 			goto bad_value;
3921 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3922 		break;
3923 	case Opt_nr_inodes:
3924 		ctx->inodes = memparse(param->string, &rest);
3925 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
3926 			goto bad_value;
3927 		ctx->seen |= SHMEM_SEEN_INODES;
3928 		break;
3929 	case Opt_mode:
3930 		ctx->mode = result.uint_32 & 07777;
3931 		break;
3932 	case Opt_uid:
3933 		kuid = make_kuid(current_user_ns(), result.uint_32);
3934 		if (!uid_valid(kuid))
3935 			goto bad_value;
3936 
3937 		/*
3938 		 * The requested uid must be representable in the
3939 		 * filesystem's idmapping.
3940 		 */
3941 		if (!kuid_has_mapping(fc->user_ns, kuid))
3942 			goto bad_value;
3943 
3944 		ctx->uid = kuid;
3945 		break;
3946 	case Opt_gid:
3947 		kgid = make_kgid(current_user_ns(), result.uint_32);
3948 		if (!gid_valid(kgid))
3949 			goto bad_value;
3950 
3951 		/*
3952 		 * The requested gid must be representable in the
3953 		 * filesystem's idmapping.
3954 		 */
3955 		if (!kgid_has_mapping(fc->user_ns, kgid))
3956 			goto bad_value;
3957 
3958 		ctx->gid = kgid;
3959 		break;
3960 	case Opt_huge:
3961 		ctx->huge = result.uint_32;
3962 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3963 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3964 		      has_transparent_hugepage()))
3965 			goto unsupported_parameter;
3966 		ctx->seen |= SHMEM_SEEN_HUGE;
3967 		break;
3968 	case Opt_mpol:
3969 		if (IS_ENABLED(CONFIG_NUMA)) {
3970 			mpol_put(ctx->mpol);
3971 			ctx->mpol = NULL;
3972 			if (mpol_parse_str(param->string, &ctx->mpol))
3973 				goto bad_value;
3974 			break;
3975 		}
3976 		goto unsupported_parameter;
3977 	case Opt_inode32:
3978 		ctx->full_inums = false;
3979 		ctx->seen |= SHMEM_SEEN_INUMS;
3980 		break;
3981 	case Opt_inode64:
3982 		if (sizeof(ino_t) < 8) {
3983 			return invalfc(fc,
3984 				       "Cannot use inode64 with <64bit inums in kernel\n");
3985 		}
3986 		ctx->full_inums = true;
3987 		ctx->seen |= SHMEM_SEEN_INUMS;
3988 		break;
3989 	case Opt_noswap:
3990 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
3991 			return invalfc(fc,
3992 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
3993 		}
3994 		ctx->noswap = true;
3995 		ctx->seen |= SHMEM_SEEN_NOSWAP;
3996 		break;
3997 	case Opt_quota:
3998 		if (fc->user_ns != &init_user_ns)
3999 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4000 		ctx->seen |= SHMEM_SEEN_QUOTA;
4001 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4002 		break;
4003 	case Opt_usrquota:
4004 		if (fc->user_ns != &init_user_ns)
4005 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4006 		ctx->seen |= SHMEM_SEEN_QUOTA;
4007 		ctx->quota_types |= QTYPE_MASK_USR;
4008 		break;
4009 	case Opt_grpquota:
4010 		if (fc->user_ns != &init_user_ns)
4011 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4012 		ctx->seen |= SHMEM_SEEN_QUOTA;
4013 		ctx->quota_types |= QTYPE_MASK_GRP;
4014 		break;
4015 	case Opt_usrquota_block_hardlimit:
4016 		size = memparse(param->string, &rest);
4017 		if (*rest || !size)
4018 			goto bad_value;
4019 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4020 			return invalfc(fc,
4021 				       "User quota block hardlimit too large.");
4022 		ctx->qlimits.usrquota_bhardlimit = size;
4023 		break;
4024 	case Opt_grpquota_block_hardlimit:
4025 		size = memparse(param->string, &rest);
4026 		if (*rest || !size)
4027 			goto bad_value;
4028 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4029 			return invalfc(fc,
4030 				       "Group quota block hardlimit too large.");
4031 		ctx->qlimits.grpquota_bhardlimit = size;
4032 		break;
4033 	case Opt_usrquota_inode_hardlimit:
4034 		size = memparse(param->string, &rest);
4035 		if (*rest || !size)
4036 			goto bad_value;
4037 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4038 			return invalfc(fc,
4039 				       "User quota inode hardlimit too large.");
4040 		ctx->qlimits.usrquota_ihardlimit = size;
4041 		break;
4042 	case Opt_grpquota_inode_hardlimit:
4043 		size = memparse(param->string, &rest);
4044 		if (*rest || !size)
4045 			goto bad_value;
4046 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4047 			return invalfc(fc,
4048 				       "Group quota inode hardlimit too large.");
4049 		ctx->qlimits.grpquota_ihardlimit = size;
4050 		break;
4051 	}
4052 	return 0;
4053 
4054 unsupported_parameter:
4055 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4056 bad_value:
4057 	return invalfc(fc, "Bad value for '%s'", param->key);
4058 }
4059 
4060 static int shmem_parse_options(struct fs_context *fc, void *data)
4061 {
4062 	char *options = data;
4063 
4064 	if (options) {
4065 		int err = security_sb_eat_lsm_opts(options, &fc->security);
4066 		if (err)
4067 			return err;
4068 	}
4069 
4070 	while (options != NULL) {
4071 		char *this_char = options;
4072 		for (;;) {
4073 			/*
4074 			 * NUL-terminate this option: unfortunately,
4075 			 * mount options form a comma-separated list,
4076 			 * but mpol's nodelist may also contain commas.
4077 			 */
4078 			options = strchr(options, ',');
4079 			if (options == NULL)
4080 				break;
4081 			options++;
4082 			if (!isdigit(*options)) {
4083 				options[-1] = '\0';
4084 				break;
4085 			}
4086 		}
4087 		if (*this_char) {
4088 			char *value = strchr(this_char, '=');
4089 			size_t len = 0;
4090 			int err;
4091 
4092 			if (value) {
4093 				*value++ = '\0';
4094 				len = strlen(value);
4095 			}
4096 			err = vfs_parse_fs_string(fc, this_char, value, len);
4097 			if (err < 0)
4098 				return err;
4099 		}
4100 	}
4101 	return 0;
4102 }
4103 
4104 /*
4105  * Reconfigure a shmem filesystem.
4106  */
4107 static int shmem_reconfigure(struct fs_context *fc)
4108 {
4109 	struct shmem_options *ctx = fc->fs_private;
4110 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4111 	unsigned long used_isp;
4112 	struct mempolicy *mpol = NULL;
4113 	const char *err;
4114 
4115 	raw_spin_lock(&sbinfo->stat_lock);
4116 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4117 
4118 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4119 		if (!sbinfo->max_blocks) {
4120 			err = "Cannot retroactively limit size";
4121 			goto out;
4122 		}
4123 		if (percpu_counter_compare(&sbinfo->used_blocks,
4124 					   ctx->blocks) > 0) {
4125 			err = "Too small a size for current use";
4126 			goto out;
4127 		}
4128 	}
4129 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4130 		if (!sbinfo->max_inodes) {
4131 			err = "Cannot retroactively limit inodes";
4132 			goto out;
4133 		}
4134 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4135 			err = "Too few inodes for current use";
4136 			goto out;
4137 		}
4138 	}
4139 
4140 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4141 	    sbinfo->next_ino > UINT_MAX) {
4142 		err = "Current inum too high to switch to 32-bit inums";
4143 		goto out;
4144 	}
4145 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4146 		err = "Cannot disable swap on remount";
4147 		goto out;
4148 	}
4149 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4150 		err = "Cannot enable swap on remount if it was disabled on first mount";
4151 		goto out;
4152 	}
4153 
4154 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4155 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4156 		err = "Cannot enable quota on remount";
4157 		goto out;
4158 	}
4159 
4160 #ifdef CONFIG_TMPFS_QUOTA
4161 #define CHANGED_LIMIT(name)						\
4162 	(ctx->qlimits.name## hardlimit &&				\
4163 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4164 
4165 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4166 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4167 		err = "Cannot change global quota limit on remount";
4168 		goto out;
4169 	}
4170 #endif /* CONFIG_TMPFS_QUOTA */
4171 
4172 	if (ctx->seen & SHMEM_SEEN_HUGE)
4173 		sbinfo->huge = ctx->huge;
4174 	if (ctx->seen & SHMEM_SEEN_INUMS)
4175 		sbinfo->full_inums = ctx->full_inums;
4176 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4177 		sbinfo->max_blocks  = ctx->blocks;
4178 	if (ctx->seen & SHMEM_SEEN_INODES) {
4179 		sbinfo->max_inodes  = ctx->inodes;
4180 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4181 	}
4182 
4183 	/*
4184 	 * Preserve previous mempolicy unless mpol remount option was specified.
4185 	 */
4186 	if (ctx->mpol) {
4187 		mpol = sbinfo->mpol;
4188 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4189 		ctx->mpol = NULL;
4190 	}
4191 
4192 	if (ctx->noswap)
4193 		sbinfo->noswap = true;
4194 
4195 	raw_spin_unlock(&sbinfo->stat_lock);
4196 	mpol_put(mpol);
4197 	return 0;
4198 out:
4199 	raw_spin_unlock(&sbinfo->stat_lock);
4200 	return invalfc(fc, "%s", err);
4201 }
4202 
4203 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4204 {
4205 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4206 	struct mempolicy *mpol;
4207 
4208 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4209 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4210 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4211 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4212 	if (sbinfo->mode != (0777 | S_ISVTX))
4213 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4214 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4215 		seq_printf(seq, ",uid=%u",
4216 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4217 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4218 		seq_printf(seq, ",gid=%u",
4219 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4220 
4221 	/*
4222 	 * Showing inode{64,32} might be useful even if it's the system default,
4223 	 * since then people don't have to resort to checking both here and
4224 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4225 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4226 	 *
4227 	 * We hide it when inode64 isn't the default and we are using 32-bit
4228 	 * inodes, since that probably just means the feature isn't even under
4229 	 * consideration.
4230 	 *
4231 	 * As such:
4232 	 *
4233 	 *                     +-----------------+-----------------+
4234 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4235 	 *  +------------------+-----------------+-----------------+
4236 	 *  | full_inums=true  | show            | show            |
4237 	 *  | full_inums=false | show            | hide            |
4238 	 *  +------------------+-----------------+-----------------+
4239 	 *
4240 	 */
4241 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4242 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4243 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4244 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4245 	if (sbinfo->huge)
4246 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4247 #endif
4248 	mpol = shmem_get_sbmpol(sbinfo);
4249 	shmem_show_mpol(seq, mpol);
4250 	mpol_put(mpol);
4251 	if (sbinfo->noswap)
4252 		seq_printf(seq, ",noswap");
4253 	return 0;
4254 }
4255 
4256 #endif /* CONFIG_TMPFS */
4257 
4258 static void shmem_put_super(struct super_block *sb)
4259 {
4260 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4261 
4262 #ifdef CONFIG_TMPFS_QUOTA
4263 	shmem_disable_quotas(sb);
4264 #endif
4265 	free_percpu(sbinfo->ino_batch);
4266 	percpu_counter_destroy(&sbinfo->used_blocks);
4267 	mpol_put(sbinfo->mpol);
4268 	kfree(sbinfo);
4269 	sb->s_fs_info = NULL;
4270 }
4271 
4272 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4273 {
4274 	struct shmem_options *ctx = fc->fs_private;
4275 	struct inode *inode;
4276 	struct shmem_sb_info *sbinfo;
4277 	int error = -ENOMEM;
4278 
4279 	/* Round up to L1_CACHE_BYTES to resist false sharing */
4280 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4281 				L1_CACHE_BYTES), GFP_KERNEL);
4282 	if (!sbinfo)
4283 		return error;
4284 
4285 	sb->s_fs_info = sbinfo;
4286 
4287 #ifdef CONFIG_TMPFS
4288 	/*
4289 	 * Per default we only allow half of the physical ram per
4290 	 * tmpfs instance, limiting inodes to one per page of lowmem;
4291 	 * but the internal instance is left unlimited.
4292 	 */
4293 	if (!(sb->s_flags & SB_KERNMOUNT)) {
4294 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4295 			ctx->blocks = shmem_default_max_blocks();
4296 		if (!(ctx->seen & SHMEM_SEEN_INODES))
4297 			ctx->inodes = shmem_default_max_inodes();
4298 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4299 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4300 		sbinfo->noswap = ctx->noswap;
4301 	} else {
4302 		sb->s_flags |= SB_NOUSER;
4303 	}
4304 	sb->s_export_op = &shmem_export_ops;
4305 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4306 #else
4307 	sb->s_flags |= SB_NOUSER;
4308 #endif
4309 	sbinfo->max_blocks = ctx->blocks;
4310 	sbinfo->max_inodes = ctx->inodes;
4311 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4312 	if (sb->s_flags & SB_KERNMOUNT) {
4313 		sbinfo->ino_batch = alloc_percpu(ino_t);
4314 		if (!sbinfo->ino_batch)
4315 			goto failed;
4316 	}
4317 	sbinfo->uid = ctx->uid;
4318 	sbinfo->gid = ctx->gid;
4319 	sbinfo->full_inums = ctx->full_inums;
4320 	sbinfo->mode = ctx->mode;
4321 	sbinfo->huge = ctx->huge;
4322 	sbinfo->mpol = ctx->mpol;
4323 	ctx->mpol = NULL;
4324 
4325 	raw_spin_lock_init(&sbinfo->stat_lock);
4326 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4327 		goto failed;
4328 	spin_lock_init(&sbinfo->shrinklist_lock);
4329 	INIT_LIST_HEAD(&sbinfo->shrinklist);
4330 
4331 	sb->s_maxbytes = MAX_LFS_FILESIZE;
4332 	sb->s_blocksize = PAGE_SIZE;
4333 	sb->s_blocksize_bits = PAGE_SHIFT;
4334 	sb->s_magic = TMPFS_MAGIC;
4335 	sb->s_op = &shmem_ops;
4336 	sb->s_time_gran = 1;
4337 #ifdef CONFIG_TMPFS_XATTR
4338 	sb->s_xattr = shmem_xattr_handlers;
4339 #endif
4340 #ifdef CONFIG_TMPFS_POSIX_ACL
4341 	sb->s_flags |= SB_POSIXACL;
4342 #endif
4343 	uuid_gen(&sb->s_uuid);
4344 
4345 #ifdef CONFIG_TMPFS_QUOTA
4346 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4347 		sb->dq_op = &shmem_quota_operations;
4348 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4349 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4350 
4351 		/* Copy the default limits from ctx into sbinfo */
4352 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4353 		       sizeof(struct shmem_quota_limits));
4354 
4355 		if (shmem_enable_quotas(sb, ctx->quota_types))
4356 			goto failed;
4357 	}
4358 #endif /* CONFIG_TMPFS_QUOTA */
4359 
4360 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
4361 				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
4362 	if (IS_ERR(inode)) {
4363 		error = PTR_ERR(inode);
4364 		goto failed;
4365 	}
4366 	inode->i_uid = sbinfo->uid;
4367 	inode->i_gid = sbinfo->gid;
4368 	sb->s_root = d_make_root(inode);
4369 	if (!sb->s_root)
4370 		goto failed;
4371 	return 0;
4372 
4373 failed:
4374 	shmem_put_super(sb);
4375 	return error;
4376 }
4377 
4378 static int shmem_get_tree(struct fs_context *fc)
4379 {
4380 	return get_tree_nodev(fc, shmem_fill_super);
4381 }
4382 
4383 static void shmem_free_fc(struct fs_context *fc)
4384 {
4385 	struct shmem_options *ctx = fc->fs_private;
4386 
4387 	if (ctx) {
4388 		mpol_put(ctx->mpol);
4389 		kfree(ctx);
4390 	}
4391 }
4392 
4393 static const struct fs_context_operations shmem_fs_context_ops = {
4394 	.free			= shmem_free_fc,
4395 	.get_tree		= shmem_get_tree,
4396 #ifdef CONFIG_TMPFS
4397 	.parse_monolithic	= shmem_parse_options,
4398 	.parse_param		= shmem_parse_one,
4399 	.reconfigure		= shmem_reconfigure,
4400 #endif
4401 };
4402 
4403 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4404 
4405 static struct inode *shmem_alloc_inode(struct super_block *sb)
4406 {
4407 	struct shmem_inode_info *info;
4408 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4409 	if (!info)
4410 		return NULL;
4411 	return &info->vfs_inode;
4412 }
4413 
4414 static void shmem_free_in_core_inode(struct inode *inode)
4415 {
4416 	if (S_ISLNK(inode->i_mode))
4417 		kfree(inode->i_link);
4418 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4419 }
4420 
4421 static void shmem_destroy_inode(struct inode *inode)
4422 {
4423 	if (S_ISREG(inode->i_mode))
4424 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4425 	if (S_ISDIR(inode->i_mode))
4426 		simple_offset_destroy(shmem_get_offset_ctx(inode));
4427 }
4428 
4429 static void shmem_init_inode(void *foo)
4430 {
4431 	struct shmem_inode_info *info = foo;
4432 	inode_init_once(&info->vfs_inode);
4433 }
4434 
4435 static void __init shmem_init_inodecache(void)
4436 {
4437 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4438 				sizeof(struct shmem_inode_info),
4439 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4440 }
4441 
4442 static void __init shmem_destroy_inodecache(void)
4443 {
4444 	kmem_cache_destroy(shmem_inode_cachep);
4445 }
4446 
4447 /* Keep the page in page cache instead of truncating it */
4448 static int shmem_error_remove_page(struct address_space *mapping,
4449 				   struct page *page)
4450 {
4451 	return 0;
4452 }
4453 
4454 const struct address_space_operations shmem_aops = {
4455 	.writepage	= shmem_writepage,
4456 	.dirty_folio	= noop_dirty_folio,
4457 #ifdef CONFIG_TMPFS
4458 	.write_begin	= shmem_write_begin,
4459 	.write_end	= shmem_write_end,
4460 #endif
4461 #ifdef CONFIG_MIGRATION
4462 	.migrate_folio	= migrate_folio,
4463 #endif
4464 	.error_remove_page = shmem_error_remove_page,
4465 };
4466 EXPORT_SYMBOL(shmem_aops);
4467 
4468 static const struct file_operations shmem_file_operations = {
4469 	.mmap		= shmem_mmap,
4470 	.open		= shmem_file_open,
4471 	.get_unmapped_area = shmem_get_unmapped_area,
4472 #ifdef CONFIG_TMPFS
4473 	.llseek		= shmem_file_llseek,
4474 	.read_iter	= shmem_file_read_iter,
4475 	.write_iter	= shmem_file_write_iter,
4476 	.fsync		= noop_fsync,
4477 	.splice_read	= shmem_file_splice_read,
4478 	.splice_write	= iter_file_splice_write,
4479 	.fallocate	= shmem_fallocate,
4480 #endif
4481 };
4482 
4483 static const struct inode_operations shmem_inode_operations = {
4484 	.getattr	= shmem_getattr,
4485 	.setattr	= shmem_setattr,
4486 #ifdef CONFIG_TMPFS_XATTR
4487 	.listxattr	= shmem_listxattr,
4488 	.set_acl	= simple_set_acl,
4489 	.fileattr_get	= shmem_fileattr_get,
4490 	.fileattr_set	= shmem_fileattr_set,
4491 #endif
4492 };
4493 
4494 static const struct inode_operations shmem_dir_inode_operations = {
4495 #ifdef CONFIG_TMPFS
4496 	.getattr	= shmem_getattr,
4497 	.create		= shmem_create,
4498 	.lookup		= simple_lookup,
4499 	.link		= shmem_link,
4500 	.unlink		= shmem_unlink,
4501 	.symlink	= shmem_symlink,
4502 	.mkdir		= shmem_mkdir,
4503 	.rmdir		= shmem_rmdir,
4504 	.mknod		= shmem_mknod,
4505 	.rename		= shmem_rename2,
4506 	.tmpfile	= shmem_tmpfile,
4507 	.get_offset_ctx	= shmem_get_offset_ctx,
4508 #endif
4509 #ifdef CONFIG_TMPFS_XATTR
4510 	.listxattr	= shmem_listxattr,
4511 	.fileattr_get	= shmem_fileattr_get,
4512 	.fileattr_set	= shmem_fileattr_set,
4513 #endif
4514 #ifdef CONFIG_TMPFS_POSIX_ACL
4515 	.setattr	= shmem_setattr,
4516 	.set_acl	= simple_set_acl,
4517 #endif
4518 };
4519 
4520 static const struct inode_operations shmem_special_inode_operations = {
4521 	.getattr	= shmem_getattr,
4522 #ifdef CONFIG_TMPFS_XATTR
4523 	.listxattr	= shmem_listxattr,
4524 #endif
4525 #ifdef CONFIG_TMPFS_POSIX_ACL
4526 	.setattr	= shmem_setattr,
4527 	.set_acl	= simple_set_acl,
4528 #endif
4529 };
4530 
4531 static const struct super_operations shmem_ops = {
4532 	.alloc_inode	= shmem_alloc_inode,
4533 	.free_inode	= shmem_free_in_core_inode,
4534 	.destroy_inode	= shmem_destroy_inode,
4535 #ifdef CONFIG_TMPFS
4536 	.statfs		= shmem_statfs,
4537 	.show_options	= shmem_show_options,
4538 #endif
4539 #ifdef CONFIG_TMPFS_QUOTA
4540 	.get_dquots	= shmem_get_dquots,
4541 #endif
4542 	.evict_inode	= shmem_evict_inode,
4543 	.drop_inode	= generic_delete_inode,
4544 	.put_super	= shmem_put_super,
4545 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4546 	.nr_cached_objects	= shmem_unused_huge_count,
4547 	.free_cached_objects	= shmem_unused_huge_scan,
4548 #endif
4549 };
4550 
4551 static const struct vm_operations_struct shmem_vm_ops = {
4552 	.fault		= shmem_fault,
4553 	.map_pages	= filemap_map_pages,
4554 #ifdef CONFIG_NUMA
4555 	.set_policy     = shmem_set_policy,
4556 	.get_policy     = shmem_get_policy,
4557 #endif
4558 };
4559 
4560 static const struct vm_operations_struct shmem_anon_vm_ops = {
4561 	.fault		= shmem_fault,
4562 	.map_pages	= filemap_map_pages,
4563 #ifdef CONFIG_NUMA
4564 	.set_policy     = shmem_set_policy,
4565 	.get_policy     = shmem_get_policy,
4566 #endif
4567 };
4568 
4569 int shmem_init_fs_context(struct fs_context *fc)
4570 {
4571 	struct shmem_options *ctx;
4572 
4573 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4574 	if (!ctx)
4575 		return -ENOMEM;
4576 
4577 	ctx->mode = 0777 | S_ISVTX;
4578 	ctx->uid = current_fsuid();
4579 	ctx->gid = current_fsgid();
4580 
4581 	fc->fs_private = ctx;
4582 	fc->ops = &shmem_fs_context_ops;
4583 	return 0;
4584 }
4585 
4586 static struct file_system_type shmem_fs_type = {
4587 	.owner		= THIS_MODULE,
4588 	.name		= "tmpfs",
4589 	.init_fs_context = shmem_init_fs_context,
4590 #ifdef CONFIG_TMPFS
4591 	.parameters	= shmem_fs_parameters,
4592 #endif
4593 	.kill_sb	= kill_litter_super,
4594 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4595 };
4596 
4597 void __init shmem_init(void)
4598 {
4599 	int error;
4600 
4601 	shmem_init_inodecache();
4602 
4603 #ifdef CONFIG_TMPFS_QUOTA
4604 	error = register_quota_format(&shmem_quota_format);
4605 	if (error < 0) {
4606 		pr_err("Could not register quota format\n");
4607 		goto out3;
4608 	}
4609 #endif
4610 
4611 	error = register_filesystem(&shmem_fs_type);
4612 	if (error) {
4613 		pr_err("Could not register tmpfs\n");
4614 		goto out2;
4615 	}
4616 
4617 	shm_mnt = kern_mount(&shmem_fs_type);
4618 	if (IS_ERR(shm_mnt)) {
4619 		error = PTR_ERR(shm_mnt);
4620 		pr_err("Could not kern_mount tmpfs\n");
4621 		goto out1;
4622 	}
4623 
4624 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4625 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4626 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4627 	else
4628 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4629 #endif
4630 	return;
4631 
4632 out1:
4633 	unregister_filesystem(&shmem_fs_type);
4634 out2:
4635 #ifdef CONFIG_TMPFS_QUOTA
4636 	unregister_quota_format(&shmem_quota_format);
4637 out3:
4638 #endif
4639 	shmem_destroy_inodecache();
4640 	shm_mnt = ERR_PTR(error);
4641 }
4642 
4643 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4644 static ssize_t shmem_enabled_show(struct kobject *kobj,
4645 				  struct kobj_attribute *attr, char *buf)
4646 {
4647 	static const int values[] = {
4648 		SHMEM_HUGE_ALWAYS,
4649 		SHMEM_HUGE_WITHIN_SIZE,
4650 		SHMEM_HUGE_ADVISE,
4651 		SHMEM_HUGE_NEVER,
4652 		SHMEM_HUGE_DENY,
4653 		SHMEM_HUGE_FORCE,
4654 	};
4655 	int len = 0;
4656 	int i;
4657 
4658 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4659 		len += sysfs_emit_at(buf, len,
4660 				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4661 				i ? " " : "", shmem_format_huge(values[i]));
4662 	}
4663 	len += sysfs_emit_at(buf, len, "\n");
4664 
4665 	return len;
4666 }
4667 
4668 static ssize_t shmem_enabled_store(struct kobject *kobj,
4669 		struct kobj_attribute *attr, const char *buf, size_t count)
4670 {
4671 	char tmp[16];
4672 	int huge;
4673 
4674 	if (count + 1 > sizeof(tmp))
4675 		return -EINVAL;
4676 	memcpy(tmp, buf, count);
4677 	tmp[count] = '\0';
4678 	if (count && tmp[count - 1] == '\n')
4679 		tmp[count - 1] = '\0';
4680 
4681 	huge = shmem_parse_huge(tmp);
4682 	if (huge == -EINVAL)
4683 		return -EINVAL;
4684 	if (!has_transparent_hugepage() &&
4685 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4686 		return -EINVAL;
4687 
4688 	shmem_huge = huge;
4689 	if (shmem_huge > SHMEM_HUGE_DENY)
4690 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4691 	return count;
4692 }
4693 
4694 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4695 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4696 
4697 #else /* !CONFIG_SHMEM */
4698 
4699 /*
4700  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4701  *
4702  * This is intended for small system where the benefits of the full
4703  * shmem code (swap-backed and resource-limited) are outweighed by
4704  * their complexity. On systems without swap this code should be
4705  * effectively equivalent, but much lighter weight.
4706  */
4707 
4708 static struct file_system_type shmem_fs_type = {
4709 	.name		= "tmpfs",
4710 	.init_fs_context = ramfs_init_fs_context,
4711 	.parameters	= ramfs_fs_parameters,
4712 	.kill_sb	= ramfs_kill_sb,
4713 	.fs_flags	= FS_USERNS_MOUNT,
4714 };
4715 
4716 void __init shmem_init(void)
4717 {
4718 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4719 
4720 	shm_mnt = kern_mount(&shmem_fs_type);
4721 	BUG_ON(IS_ERR(shm_mnt));
4722 }
4723 
4724 int shmem_unuse(unsigned int type)
4725 {
4726 	return 0;
4727 }
4728 
4729 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4730 {
4731 	return 0;
4732 }
4733 
4734 void shmem_unlock_mapping(struct address_space *mapping)
4735 {
4736 }
4737 
4738 #ifdef CONFIG_MMU
4739 unsigned long shmem_get_unmapped_area(struct file *file,
4740 				      unsigned long addr, unsigned long len,
4741 				      unsigned long pgoff, unsigned long flags)
4742 {
4743 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4744 }
4745 #endif
4746 
4747 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4748 {
4749 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4750 }
4751 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4752 
4753 #define shmem_vm_ops				generic_file_vm_ops
4754 #define shmem_anon_vm_ops			generic_file_vm_ops
4755 #define shmem_file_operations			ramfs_file_operations
4756 #define shmem_acct_size(flags, size)		0
4757 #define shmem_unacct_size(flags, size)		do {} while (0)
4758 
4759 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
4760 				struct super_block *sb, struct inode *dir,
4761 				umode_t mode, dev_t dev, unsigned long flags)
4762 {
4763 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
4764 	return inode ? inode : ERR_PTR(-ENOSPC);
4765 }
4766 
4767 #endif /* CONFIG_SHMEM */
4768 
4769 /* common code */
4770 
4771 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
4772 			loff_t size, unsigned long flags, unsigned int i_flags)
4773 {
4774 	struct inode *inode;
4775 	struct file *res;
4776 
4777 	if (IS_ERR(mnt))
4778 		return ERR_CAST(mnt);
4779 
4780 	if (size < 0 || size > MAX_LFS_FILESIZE)
4781 		return ERR_PTR(-EINVAL);
4782 
4783 	if (shmem_acct_size(flags, size))
4784 		return ERR_PTR(-ENOMEM);
4785 
4786 	if (is_idmapped_mnt(mnt))
4787 		return ERR_PTR(-EINVAL);
4788 
4789 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4790 				S_IFREG | S_IRWXUGO, 0, flags);
4791 	if (IS_ERR(inode)) {
4792 		shmem_unacct_size(flags, size);
4793 		return ERR_CAST(inode);
4794 	}
4795 	inode->i_flags |= i_flags;
4796 	inode->i_size = size;
4797 	clear_nlink(inode);	/* It is unlinked */
4798 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4799 	if (!IS_ERR(res))
4800 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4801 				&shmem_file_operations);
4802 	if (IS_ERR(res))
4803 		iput(inode);
4804 	return res;
4805 }
4806 
4807 /**
4808  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4809  * 	kernel internal.  There will be NO LSM permission checks against the
4810  * 	underlying inode.  So users of this interface must do LSM checks at a
4811  *	higher layer.  The users are the big_key and shm implementations.  LSM
4812  *	checks are provided at the key or shm level rather than the inode.
4813  * @name: name for dentry (to be seen in /proc/<pid>/maps
4814  * @size: size to be set for the file
4815  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4816  */
4817 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4818 {
4819 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4820 }
4821 
4822 /**
4823  * shmem_file_setup - get an unlinked file living in tmpfs
4824  * @name: name for dentry (to be seen in /proc/<pid>/maps
4825  * @size: size to be set for the file
4826  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4827  */
4828 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4829 {
4830 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4831 }
4832 EXPORT_SYMBOL_GPL(shmem_file_setup);
4833 
4834 /**
4835  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4836  * @mnt: the tmpfs mount where the file will be created
4837  * @name: name for dentry (to be seen in /proc/<pid>/maps
4838  * @size: size to be set for the file
4839  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4840  */
4841 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4842 				       loff_t size, unsigned long flags)
4843 {
4844 	return __shmem_file_setup(mnt, name, size, flags, 0);
4845 }
4846 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4847 
4848 /**
4849  * shmem_zero_setup - setup a shared anonymous mapping
4850  * @vma: the vma to be mmapped is prepared by do_mmap
4851  */
4852 int shmem_zero_setup(struct vm_area_struct *vma)
4853 {
4854 	struct file *file;
4855 	loff_t size = vma->vm_end - vma->vm_start;
4856 
4857 	/*
4858 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4859 	 * between XFS directory reading and selinux: since this file is only
4860 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4861 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4862 	 */
4863 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4864 	if (IS_ERR(file))
4865 		return PTR_ERR(file);
4866 
4867 	if (vma->vm_file)
4868 		fput(vma->vm_file);
4869 	vma->vm_file = file;
4870 	vma->vm_ops = &shmem_anon_vm_ops;
4871 
4872 	return 0;
4873 }
4874 
4875 /**
4876  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4877  * @mapping:	the folio's address_space
4878  * @index:	the folio index
4879  * @gfp:	the page allocator flags to use if allocating
4880  *
4881  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4882  * with any new page allocations done using the specified allocation flags.
4883  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4884  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4885  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4886  *
4887  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4888  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4889  */
4890 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4891 		pgoff_t index, gfp_t gfp)
4892 {
4893 #ifdef CONFIG_SHMEM
4894 	struct inode *inode = mapping->host;
4895 	struct folio *folio;
4896 	int error;
4897 
4898 	BUG_ON(!shmem_mapping(mapping));
4899 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4900 				    gfp, NULL, NULL);
4901 	if (error)
4902 		return ERR_PTR(error);
4903 
4904 	folio_unlock(folio);
4905 	return folio;
4906 #else
4907 	/*
4908 	 * The tiny !SHMEM case uses ramfs without swap
4909 	 */
4910 	return mapping_read_folio_gfp(mapping, index, gfp);
4911 #endif
4912 }
4913 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4914 
4915 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4916 					 pgoff_t index, gfp_t gfp)
4917 {
4918 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4919 	struct page *page;
4920 
4921 	if (IS_ERR(folio))
4922 		return &folio->page;
4923 
4924 	page = folio_file_page(folio, index);
4925 	if (PageHWPoison(page)) {
4926 		folio_put(folio);
4927 		return ERR_PTR(-EIO);
4928 	}
4929 
4930 	return page;
4931 }
4932 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4933