xref: /linux/mm/shmem.c (revision 78b7b991838a4a6baeaad934addc4db2c5917eb8)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44 
45 static struct vfsmount *shm_mnt __ro_after_init;
46 
47 #ifdef CONFIG_SHMEM
48 /*
49  * This virtual memory filesystem is heavily based on the ramfs. It
50  * extends ramfs by the ability to use swap and honor resource limits
51  * which makes it a completely usable filesystem.
52  */
53 
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 #include <linux/quotaops.h>
82 #include <linux/rcupdate_wait.h>
83 
84 #include <linux/uaccess.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Pretend that one inode + its dentry occupy this much memory */
95 #define BOGO_INODE_SIZE 1024
96 
97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98 #define SHORT_SYMLINK_LEN 128
99 
100 /*
101  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
102  * inode->i_private (with i_rwsem making sure that it has only one user at
103  * a time): we would prefer not to enlarge the shmem inode just for that.
104  */
105 struct shmem_falloc {
106 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 	pgoff_t start;		/* start of range currently being fallocated */
108 	pgoff_t next;		/* the next page offset to be fallocated */
109 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
110 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
111 };
112 
113 struct shmem_options {
114 	unsigned long long blocks;
115 	unsigned long long inodes;
116 	struct mempolicy *mpol;
117 	kuid_t uid;
118 	kgid_t gid;
119 	umode_t mode;
120 	bool full_inums;
121 	int huge;
122 	int seen;
123 	bool noswap;
124 	unsigned short quota_types;
125 	struct shmem_quota_limits qlimits;
126 #define SHMEM_SEEN_BLOCKS 1
127 #define SHMEM_SEEN_INODES 2
128 #define SHMEM_SEEN_HUGE 4
129 #define SHMEM_SEEN_INUMS 8
130 #define SHMEM_SEEN_NOSWAP 16
131 #define SHMEM_SEEN_QUOTA 32
132 };
133 
134 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
135 static unsigned long huge_shmem_orders_always __read_mostly;
136 static unsigned long huge_shmem_orders_madvise __read_mostly;
137 static unsigned long huge_shmem_orders_inherit __read_mostly;
138 static unsigned long huge_shmem_orders_within_size __read_mostly;
139 #endif
140 
141 #ifdef CONFIG_TMPFS
142 static unsigned long shmem_default_max_blocks(void)
143 {
144 	return totalram_pages() / 2;
145 }
146 
147 static unsigned long shmem_default_max_inodes(void)
148 {
149 	unsigned long nr_pages = totalram_pages();
150 
151 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
152 			ULONG_MAX / BOGO_INODE_SIZE);
153 }
154 #endif
155 
156 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
157 			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
158 			struct vm_area_struct *vma, vm_fault_t *fault_type);
159 
160 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
161 {
162 	return sb->s_fs_info;
163 }
164 
165 /*
166  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
167  * for shared memory and for shared anonymous (/dev/zero) mappings
168  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
169  * consistent with the pre-accounting of private mappings ...
170  */
171 static inline int shmem_acct_size(unsigned long flags, loff_t size)
172 {
173 	return (flags & VM_NORESERVE) ?
174 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
175 }
176 
177 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
178 {
179 	if (!(flags & VM_NORESERVE))
180 		vm_unacct_memory(VM_ACCT(size));
181 }
182 
183 static inline int shmem_reacct_size(unsigned long flags,
184 		loff_t oldsize, loff_t newsize)
185 {
186 	if (!(flags & VM_NORESERVE)) {
187 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
188 			return security_vm_enough_memory_mm(current->mm,
189 					VM_ACCT(newsize) - VM_ACCT(oldsize));
190 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
191 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
192 	}
193 	return 0;
194 }
195 
196 /*
197  * ... whereas tmpfs objects are accounted incrementally as
198  * pages are allocated, in order to allow large sparse files.
199  * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
200  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
201  */
202 static inline int shmem_acct_blocks(unsigned long flags, long pages)
203 {
204 	if (!(flags & VM_NORESERVE))
205 		return 0;
206 
207 	return security_vm_enough_memory_mm(current->mm,
208 			pages * VM_ACCT(PAGE_SIZE));
209 }
210 
211 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
212 {
213 	if (flags & VM_NORESERVE)
214 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
215 }
216 
217 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
218 {
219 	struct shmem_inode_info *info = SHMEM_I(inode);
220 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
221 	int err = -ENOSPC;
222 
223 	if (shmem_acct_blocks(info->flags, pages))
224 		return err;
225 
226 	might_sleep();	/* when quotas */
227 	if (sbinfo->max_blocks) {
228 		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
229 						sbinfo->max_blocks, pages))
230 			goto unacct;
231 
232 		err = dquot_alloc_block_nodirty(inode, pages);
233 		if (err) {
234 			percpu_counter_sub(&sbinfo->used_blocks, pages);
235 			goto unacct;
236 		}
237 	} else {
238 		err = dquot_alloc_block_nodirty(inode, pages);
239 		if (err)
240 			goto unacct;
241 	}
242 
243 	return 0;
244 
245 unacct:
246 	shmem_unacct_blocks(info->flags, pages);
247 	return err;
248 }
249 
250 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
251 {
252 	struct shmem_inode_info *info = SHMEM_I(inode);
253 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
254 
255 	might_sleep();	/* when quotas */
256 	dquot_free_block_nodirty(inode, pages);
257 
258 	if (sbinfo->max_blocks)
259 		percpu_counter_sub(&sbinfo->used_blocks, pages);
260 	shmem_unacct_blocks(info->flags, pages);
261 }
262 
263 static const struct super_operations shmem_ops;
264 static const struct address_space_operations shmem_aops;
265 static const struct file_operations shmem_file_operations;
266 static const struct inode_operations shmem_inode_operations;
267 static const struct inode_operations shmem_dir_inode_operations;
268 static const struct inode_operations shmem_special_inode_operations;
269 static const struct vm_operations_struct shmem_vm_ops;
270 static const struct vm_operations_struct shmem_anon_vm_ops;
271 static struct file_system_type shmem_fs_type;
272 
273 bool shmem_mapping(struct address_space *mapping)
274 {
275 	return mapping->a_ops == &shmem_aops;
276 }
277 EXPORT_SYMBOL_GPL(shmem_mapping);
278 
279 bool vma_is_anon_shmem(struct vm_area_struct *vma)
280 {
281 	return vma->vm_ops == &shmem_anon_vm_ops;
282 }
283 
284 bool vma_is_shmem(struct vm_area_struct *vma)
285 {
286 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
287 }
288 
289 static LIST_HEAD(shmem_swaplist);
290 static DEFINE_MUTEX(shmem_swaplist_mutex);
291 
292 #ifdef CONFIG_TMPFS_QUOTA
293 
294 static int shmem_enable_quotas(struct super_block *sb,
295 			       unsigned short quota_types)
296 {
297 	int type, err = 0;
298 
299 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
300 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
301 		if (!(quota_types & (1 << type)))
302 			continue;
303 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
304 					  DQUOT_USAGE_ENABLED |
305 					  DQUOT_LIMITS_ENABLED);
306 		if (err)
307 			goto out_err;
308 	}
309 	return 0;
310 
311 out_err:
312 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
313 		type, err);
314 	for (type--; type >= 0; type--)
315 		dquot_quota_off(sb, type);
316 	return err;
317 }
318 
319 static void shmem_disable_quotas(struct super_block *sb)
320 {
321 	int type;
322 
323 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
324 		dquot_quota_off(sb, type);
325 }
326 
327 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
328 {
329 	return SHMEM_I(inode)->i_dquot;
330 }
331 #endif /* CONFIG_TMPFS_QUOTA */
332 
333 /*
334  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
335  * produces a novel ino for the newly allocated inode.
336  *
337  * It may also be called when making a hard link to permit the space needed by
338  * each dentry. However, in that case, no new inode number is needed since that
339  * internally draws from another pool of inode numbers (currently global
340  * get_next_ino()). This case is indicated by passing NULL as inop.
341  */
342 #define SHMEM_INO_BATCH 1024
343 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
344 {
345 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
346 	ino_t ino;
347 
348 	if (!(sb->s_flags & SB_KERNMOUNT)) {
349 		raw_spin_lock(&sbinfo->stat_lock);
350 		if (sbinfo->max_inodes) {
351 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
352 				raw_spin_unlock(&sbinfo->stat_lock);
353 				return -ENOSPC;
354 			}
355 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
356 		}
357 		if (inop) {
358 			ino = sbinfo->next_ino++;
359 			if (unlikely(is_zero_ino(ino)))
360 				ino = sbinfo->next_ino++;
361 			if (unlikely(!sbinfo->full_inums &&
362 				     ino > UINT_MAX)) {
363 				/*
364 				 * Emulate get_next_ino uint wraparound for
365 				 * compatibility
366 				 */
367 				if (IS_ENABLED(CONFIG_64BIT))
368 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
369 						__func__, MINOR(sb->s_dev));
370 				sbinfo->next_ino = 1;
371 				ino = sbinfo->next_ino++;
372 			}
373 			*inop = ino;
374 		}
375 		raw_spin_unlock(&sbinfo->stat_lock);
376 	} else if (inop) {
377 		/*
378 		 * __shmem_file_setup, one of our callers, is lock-free: it
379 		 * doesn't hold stat_lock in shmem_reserve_inode since
380 		 * max_inodes is always 0, and is called from potentially
381 		 * unknown contexts. As such, use a per-cpu batched allocator
382 		 * which doesn't require the per-sb stat_lock unless we are at
383 		 * the batch boundary.
384 		 *
385 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
386 		 * shmem mounts are not exposed to userspace, so we don't need
387 		 * to worry about things like glibc compatibility.
388 		 */
389 		ino_t *next_ino;
390 
391 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
392 		ino = *next_ino;
393 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
394 			raw_spin_lock(&sbinfo->stat_lock);
395 			ino = sbinfo->next_ino;
396 			sbinfo->next_ino += SHMEM_INO_BATCH;
397 			raw_spin_unlock(&sbinfo->stat_lock);
398 			if (unlikely(is_zero_ino(ino)))
399 				ino++;
400 		}
401 		*inop = ino;
402 		*next_ino = ++ino;
403 		put_cpu();
404 	}
405 
406 	return 0;
407 }
408 
409 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
410 {
411 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
412 	if (sbinfo->max_inodes) {
413 		raw_spin_lock(&sbinfo->stat_lock);
414 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
415 		raw_spin_unlock(&sbinfo->stat_lock);
416 	}
417 }
418 
419 /**
420  * shmem_recalc_inode - recalculate the block usage of an inode
421  * @inode: inode to recalc
422  * @alloced: the change in number of pages allocated to inode
423  * @swapped: the change in number of pages swapped from inode
424  *
425  * We have to calculate the free blocks since the mm can drop
426  * undirtied hole pages behind our back.
427  *
428  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
429  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
430  */
431 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
432 {
433 	struct shmem_inode_info *info = SHMEM_I(inode);
434 	long freed;
435 
436 	spin_lock(&info->lock);
437 	info->alloced += alloced;
438 	info->swapped += swapped;
439 	freed = info->alloced - info->swapped -
440 		READ_ONCE(inode->i_mapping->nrpages);
441 	/*
442 	 * Special case: whereas normally shmem_recalc_inode() is called
443 	 * after i_mapping->nrpages has already been adjusted (up or down),
444 	 * shmem_writepage() has to raise swapped before nrpages is lowered -
445 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
446 	 * been freed.  Compensate here, to avoid the need for a followup call.
447 	 */
448 	if (swapped > 0)
449 		freed += swapped;
450 	if (freed > 0)
451 		info->alloced -= freed;
452 	spin_unlock(&info->lock);
453 
454 	/* The quota case may block */
455 	if (freed > 0)
456 		shmem_inode_unacct_blocks(inode, freed);
457 }
458 
459 bool shmem_charge(struct inode *inode, long pages)
460 {
461 	struct address_space *mapping = inode->i_mapping;
462 
463 	if (shmem_inode_acct_blocks(inode, pages))
464 		return false;
465 
466 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
467 	xa_lock_irq(&mapping->i_pages);
468 	mapping->nrpages += pages;
469 	xa_unlock_irq(&mapping->i_pages);
470 
471 	shmem_recalc_inode(inode, pages, 0);
472 	return true;
473 }
474 
475 void shmem_uncharge(struct inode *inode, long pages)
476 {
477 	/* pages argument is currently unused: keep it to help debugging */
478 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
479 
480 	shmem_recalc_inode(inode, 0, 0);
481 }
482 
483 /*
484  * Replace item expected in xarray by a new item, while holding xa_lock.
485  */
486 static int shmem_replace_entry(struct address_space *mapping,
487 			pgoff_t index, void *expected, void *replacement)
488 {
489 	XA_STATE(xas, &mapping->i_pages, index);
490 	void *item;
491 
492 	VM_BUG_ON(!expected);
493 	VM_BUG_ON(!replacement);
494 	item = xas_load(&xas);
495 	if (item != expected)
496 		return -ENOENT;
497 	xas_store(&xas, replacement);
498 	return 0;
499 }
500 
501 /*
502  * Sometimes, before we decide whether to proceed or to fail, we must check
503  * that an entry was not already brought back from swap by a racing thread.
504  *
505  * Checking folio is not enough: by the time a swapcache folio is locked, it
506  * might be reused, and again be swapcache, using the same swap as before.
507  */
508 static bool shmem_confirm_swap(struct address_space *mapping,
509 			       pgoff_t index, swp_entry_t swap)
510 {
511 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
512 }
513 
514 /*
515  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
516  *
517  * SHMEM_HUGE_NEVER:
518  *	disables huge pages for the mount;
519  * SHMEM_HUGE_ALWAYS:
520  *	enables huge pages for the mount;
521  * SHMEM_HUGE_WITHIN_SIZE:
522  *	only allocate huge pages if the page will be fully within i_size,
523  *	also respect fadvise()/madvise() hints;
524  * SHMEM_HUGE_ADVISE:
525  *	only allocate huge pages if requested with fadvise()/madvise();
526  */
527 
528 #define SHMEM_HUGE_NEVER	0
529 #define SHMEM_HUGE_ALWAYS	1
530 #define SHMEM_HUGE_WITHIN_SIZE	2
531 #define SHMEM_HUGE_ADVISE	3
532 
533 /*
534  * Special values.
535  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
536  *
537  * SHMEM_HUGE_DENY:
538  *	disables huge on shm_mnt and all mounts, for emergency use;
539  * SHMEM_HUGE_FORCE:
540  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
541  *
542  */
543 #define SHMEM_HUGE_DENY		(-1)
544 #define SHMEM_HUGE_FORCE	(-2)
545 
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 /* ifdef here to avoid bloating shmem.o when not necessary */
548 
549 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
550 
551 static bool __shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
552 					loff_t write_end, bool shmem_huge_force,
553 					struct vm_area_struct *vma,
554 					unsigned long vm_flags)
555 {
556 	struct mm_struct *mm = vma ? vma->vm_mm : NULL;
557 	loff_t i_size;
558 
559 	if (!S_ISREG(inode->i_mode))
560 		return false;
561 	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
562 		return false;
563 	if (shmem_huge == SHMEM_HUGE_DENY)
564 		return false;
565 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
566 		return true;
567 
568 	switch (SHMEM_SB(inode->i_sb)->huge) {
569 	case SHMEM_HUGE_ALWAYS:
570 		return true;
571 	case SHMEM_HUGE_WITHIN_SIZE:
572 		index = round_up(index + 1, HPAGE_PMD_NR);
573 		i_size = max(write_end, i_size_read(inode));
574 		i_size = round_up(i_size, PAGE_SIZE);
575 		if (i_size >> PAGE_SHIFT >= index)
576 			return true;
577 		fallthrough;
578 	case SHMEM_HUGE_ADVISE:
579 		if (mm && (vm_flags & VM_HUGEPAGE))
580 			return true;
581 		fallthrough;
582 	default:
583 		return false;
584 	}
585 }
586 
587 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
588 		   loff_t write_end, bool shmem_huge_force,
589 		   struct vm_area_struct *vma, unsigned long vm_flags)
590 {
591 	if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER)
592 		return false;
593 
594 	return __shmem_huge_global_enabled(inode, index, write_end,
595 					   shmem_huge_force, vma, vm_flags);
596 }
597 
598 #if defined(CONFIG_SYSFS)
599 static int shmem_parse_huge(const char *str)
600 {
601 	if (!strcmp(str, "never"))
602 		return SHMEM_HUGE_NEVER;
603 	if (!strcmp(str, "always"))
604 		return SHMEM_HUGE_ALWAYS;
605 	if (!strcmp(str, "within_size"))
606 		return SHMEM_HUGE_WITHIN_SIZE;
607 	if (!strcmp(str, "advise"))
608 		return SHMEM_HUGE_ADVISE;
609 	if (!strcmp(str, "deny"))
610 		return SHMEM_HUGE_DENY;
611 	if (!strcmp(str, "force"))
612 		return SHMEM_HUGE_FORCE;
613 	return -EINVAL;
614 }
615 #endif
616 
617 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
618 static const char *shmem_format_huge(int huge)
619 {
620 	switch (huge) {
621 	case SHMEM_HUGE_NEVER:
622 		return "never";
623 	case SHMEM_HUGE_ALWAYS:
624 		return "always";
625 	case SHMEM_HUGE_WITHIN_SIZE:
626 		return "within_size";
627 	case SHMEM_HUGE_ADVISE:
628 		return "advise";
629 	case SHMEM_HUGE_DENY:
630 		return "deny";
631 	case SHMEM_HUGE_FORCE:
632 		return "force";
633 	default:
634 		VM_BUG_ON(1);
635 		return "bad_val";
636 	}
637 }
638 #endif
639 
640 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
641 		struct shrink_control *sc, unsigned long nr_to_free)
642 {
643 	LIST_HEAD(list), *pos, *next;
644 	struct inode *inode;
645 	struct shmem_inode_info *info;
646 	struct folio *folio;
647 	unsigned long batch = sc ? sc->nr_to_scan : 128;
648 	unsigned long split = 0, freed = 0;
649 
650 	if (list_empty(&sbinfo->shrinklist))
651 		return SHRINK_STOP;
652 
653 	spin_lock(&sbinfo->shrinklist_lock);
654 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
655 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
656 
657 		/* pin the inode */
658 		inode = igrab(&info->vfs_inode);
659 
660 		/* inode is about to be evicted */
661 		if (!inode) {
662 			list_del_init(&info->shrinklist);
663 			goto next;
664 		}
665 
666 		list_move(&info->shrinklist, &list);
667 next:
668 		sbinfo->shrinklist_len--;
669 		if (!--batch)
670 			break;
671 	}
672 	spin_unlock(&sbinfo->shrinklist_lock);
673 
674 	list_for_each_safe(pos, next, &list) {
675 		pgoff_t next, end;
676 		loff_t i_size;
677 		int ret;
678 
679 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
680 		inode = &info->vfs_inode;
681 
682 		if (nr_to_free && freed >= nr_to_free)
683 			goto move_back;
684 
685 		i_size = i_size_read(inode);
686 		folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
687 		if (!folio || xa_is_value(folio))
688 			goto drop;
689 
690 		/* No large folio at the end of the file: nothing to split */
691 		if (!folio_test_large(folio)) {
692 			folio_put(folio);
693 			goto drop;
694 		}
695 
696 		/* Check if there is anything to gain from splitting */
697 		next = folio_next_index(folio);
698 		end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
699 		if (end <= folio->index || end >= next) {
700 			folio_put(folio);
701 			goto drop;
702 		}
703 
704 		/*
705 		 * Move the inode on the list back to shrinklist if we failed
706 		 * to lock the page at this time.
707 		 *
708 		 * Waiting for the lock may lead to deadlock in the
709 		 * reclaim path.
710 		 */
711 		if (!folio_trylock(folio)) {
712 			folio_put(folio);
713 			goto move_back;
714 		}
715 
716 		ret = split_folio(folio);
717 		folio_unlock(folio);
718 		folio_put(folio);
719 
720 		/* If split failed move the inode on the list back to shrinklist */
721 		if (ret)
722 			goto move_back;
723 
724 		freed += next - end;
725 		split++;
726 drop:
727 		list_del_init(&info->shrinklist);
728 		goto put;
729 move_back:
730 		/*
731 		 * Make sure the inode is either on the global list or deleted
732 		 * from any local list before iput() since it could be deleted
733 		 * in another thread once we put the inode (then the local list
734 		 * is corrupted).
735 		 */
736 		spin_lock(&sbinfo->shrinklist_lock);
737 		list_move(&info->shrinklist, &sbinfo->shrinklist);
738 		sbinfo->shrinklist_len++;
739 		spin_unlock(&sbinfo->shrinklist_lock);
740 put:
741 		iput(inode);
742 	}
743 
744 	return split;
745 }
746 
747 static long shmem_unused_huge_scan(struct super_block *sb,
748 		struct shrink_control *sc)
749 {
750 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
751 
752 	if (!READ_ONCE(sbinfo->shrinklist_len))
753 		return SHRINK_STOP;
754 
755 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
756 }
757 
758 static long shmem_unused_huge_count(struct super_block *sb,
759 		struct shrink_control *sc)
760 {
761 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
762 	return READ_ONCE(sbinfo->shrinklist_len);
763 }
764 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
765 
766 #define shmem_huge SHMEM_HUGE_DENY
767 
768 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
769 		struct shrink_control *sc, unsigned long nr_to_free)
770 {
771 	return 0;
772 }
773 
774 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
775 		loff_t write_end, bool shmem_huge_force,
776 		struct vm_area_struct *vma, unsigned long vm_flags)
777 {
778 	return false;
779 }
780 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
781 
782 /*
783  * Somewhat like filemap_add_folio, but error if expected item has gone.
784  */
785 static int shmem_add_to_page_cache(struct folio *folio,
786 				   struct address_space *mapping,
787 				   pgoff_t index, void *expected, gfp_t gfp)
788 {
789 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
790 	long nr = folio_nr_pages(folio);
791 
792 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
793 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
794 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
795 
796 	folio_ref_add(folio, nr);
797 	folio->mapping = mapping;
798 	folio->index = index;
799 
800 	gfp &= GFP_RECLAIM_MASK;
801 	folio_throttle_swaprate(folio, gfp);
802 
803 	do {
804 		xas_lock_irq(&xas);
805 		if (expected != xas_find_conflict(&xas)) {
806 			xas_set_err(&xas, -EEXIST);
807 			goto unlock;
808 		}
809 		if (expected && xas_find_conflict(&xas)) {
810 			xas_set_err(&xas, -EEXIST);
811 			goto unlock;
812 		}
813 		xas_store(&xas, folio);
814 		if (xas_error(&xas))
815 			goto unlock;
816 		if (folio_test_pmd_mappable(folio))
817 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
818 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
819 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
820 		mapping->nrpages += nr;
821 unlock:
822 		xas_unlock_irq(&xas);
823 	} while (xas_nomem(&xas, gfp));
824 
825 	if (xas_error(&xas)) {
826 		folio->mapping = NULL;
827 		folio_ref_sub(folio, nr);
828 		return xas_error(&xas);
829 	}
830 
831 	return 0;
832 }
833 
834 /*
835  * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
836  */
837 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
838 {
839 	struct address_space *mapping = folio->mapping;
840 	long nr = folio_nr_pages(folio);
841 	int error;
842 
843 	xa_lock_irq(&mapping->i_pages);
844 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
845 	folio->mapping = NULL;
846 	mapping->nrpages -= nr;
847 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
848 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
849 	xa_unlock_irq(&mapping->i_pages);
850 	folio_put_refs(folio, nr);
851 	BUG_ON(error);
852 }
853 
854 /*
855  * Remove swap entry from page cache, free the swap and its page cache. Returns
856  * the number of pages being freed. 0 means entry not found in XArray (0 pages
857  * being freed).
858  */
859 static long shmem_free_swap(struct address_space *mapping,
860 			    pgoff_t index, void *radswap)
861 {
862 	int order = xa_get_order(&mapping->i_pages, index);
863 	void *old;
864 
865 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
866 	if (old != radswap)
867 		return 0;
868 	free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
869 
870 	return 1 << order;
871 }
872 
873 /*
874  * Determine (in bytes) how many of the shmem object's pages mapped by the
875  * given offsets are swapped out.
876  *
877  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
878  * as long as the inode doesn't go away and racy results are not a problem.
879  */
880 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
881 						pgoff_t start, pgoff_t end)
882 {
883 	XA_STATE(xas, &mapping->i_pages, start);
884 	struct page *page;
885 	unsigned long swapped = 0;
886 	unsigned long max = end - 1;
887 
888 	rcu_read_lock();
889 	xas_for_each(&xas, page, max) {
890 		if (xas_retry(&xas, page))
891 			continue;
892 		if (xa_is_value(page))
893 			swapped += 1 << xas_get_order(&xas);
894 		if (xas.xa_index == max)
895 			break;
896 		if (need_resched()) {
897 			xas_pause(&xas);
898 			cond_resched_rcu();
899 		}
900 	}
901 	rcu_read_unlock();
902 
903 	return swapped << PAGE_SHIFT;
904 }
905 
906 /*
907  * Determine (in bytes) how many of the shmem object's pages mapped by the
908  * given vma is swapped out.
909  *
910  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
911  * as long as the inode doesn't go away and racy results are not a problem.
912  */
913 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
914 {
915 	struct inode *inode = file_inode(vma->vm_file);
916 	struct shmem_inode_info *info = SHMEM_I(inode);
917 	struct address_space *mapping = inode->i_mapping;
918 	unsigned long swapped;
919 
920 	/* Be careful as we don't hold info->lock */
921 	swapped = READ_ONCE(info->swapped);
922 
923 	/*
924 	 * The easier cases are when the shmem object has nothing in swap, or
925 	 * the vma maps it whole. Then we can simply use the stats that we
926 	 * already track.
927 	 */
928 	if (!swapped)
929 		return 0;
930 
931 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
932 		return swapped << PAGE_SHIFT;
933 
934 	/* Here comes the more involved part */
935 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
936 					vma->vm_pgoff + vma_pages(vma));
937 }
938 
939 /*
940  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
941  */
942 void shmem_unlock_mapping(struct address_space *mapping)
943 {
944 	struct folio_batch fbatch;
945 	pgoff_t index = 0;
946 
947 	folio_batch_init(&fbatch);
948 	/*
949 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
950 	 */
951 	while (!mapping_unevictable(mapping) &&
952 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
953 		check_move_unevictable_folios(&fbatch);
954 		folio_batch_release(&fbatch);
955 		cond_resched();
956 	}
957 }
958 
959 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
960 {
961 	struct folio *folio;
962 
963 	/*
964 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
965 	 * beyond i_size, and reports fallocated folios as holes.
966 	 */
967 	folio = filemap_get_entry(inode->i_mapping, index);
968 	if (!folio)
969 		return folio;
970 	if (!xa_is_value(folio)) {
971 		folio_lock(folio);
972 		if (folio->mapping == inode->i_mapping)
973 			return folio;
974 		/* The folio has been swapped out */
975 		folio_unlock(folio);
976 		folio_put(folio);
977 	}
978 	/*
979 	 * But read a folio back from swap if any of it is within i_size
980 	 * (although in some cases this is just a waste of time).
981 	 */
982 	folio = NULL;
983 	shmem_get_folio(inode, index, 0, &folio, SGP_READ);
984 	return folio;
985 }
986 
987 /*
988  * Remove range of pages and swap entries from page cache, and free them.
989  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
990  */
991 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
992 								 bool unfalloc)
993 {
994 	struct address_space *mapping = inode->i_mapping;
995 	struct shmem_inode_info *info = SHMEM_I(inode);
996 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
997 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
998 	struct folio_batch fbatch;
999 	pgoff_t indices[PAGEVEC_SIZE];
1000 	struct folio *folio;
1001 	bool same_folio;
1002 	long nr_swaps_freed = 0;
1003 	pgoff_t index;
1004 	int i;
1005 
1006 	if (lend == -1)
1007 		end = -1;	/* unsigned, so actually very big */
1008 
1009 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1010 		info->fallocend = start;
1011 
1012 	folio_batch_init(&fbatch);
1013 	index = start;
1014 	while (index < end && find_lock_entries(mapping, &index, end - 1,
1015 			&fbatch, indices)) {
1016 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1017 			folio = fbatch.folios[i];
1018 
1019 			if (xa_is_value(folio)) {
1020 				if (unfalloc)
1021 					continue;
1022 				nr_swaps_freed += shmem_free_swap(mapping,
1023 							indices[i], folio);
1024 				continue;
1025 			}
1026 
1027 			if (!unfalloc || !folio_test_uptodate(folio))
1028 				truncate_inode_folio(mapping, folio);
1029 			folio_unlock(folio);
1030 		}
1031 		folio_batch_remove_exceptionals(&fbatch);
1032 		folio_batch_release(&fbatch);
1033 		cond_resched();
1034 	}
1035 
1036 	/*
1037 	 * When undoing a failed fallocate, we want none of the partial folio
1038 	 * zeroing and splitting below, but shall want to truncate the whole
1039 	 * folio when !uptodate indicates that it was added by this fallocate,
1040 	 * even when [lstart, lend] covers only a part of the folio.
1041 	 */
1042 	if (unfalloc)
1043 		goto whole_folios;
1044 
1045 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1046 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1047 	if (folio) {
1048 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1049 		folio_mark_dirty(folio);
1050 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1051 			start = folio_next_index(folio);
1052 			if (same_folio)
1053 				end = folio->index;
1054 		}
1055 		folio_unlock(folio);
1056 		folio_put(folio);
1057 		folio = NULL;
1058 	}
1059 
1060 	if (!same_folio)
1061 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1062 	if (folio) {
1063 		folio_mark_dirty(folio);
1064 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1065 			end = folio->index;
1066 		folio_unlock(folio);
1067 		folio_put(folio);
1068 	}
1069 
1070 whole_folios:
1071 
1072 	index = start;
1073 	while (index < end) {
1074 		cond_resched();
1075 
1076 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1077 				indices)) {
1078 			/* If all gone or hole-punch or unfalloc, we're done */
1079 			if (index == start || end != -1)
1080 				break;
1081 			/* But if truncating, restart to make sure all gone */
1082 			index = start;
1083 			continue;
1084 		}
1085 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1086 			folio = fbatch.folios[i];
1087 
1088 			if (xa_is_value(folio)) {
1089 				long swaps_freed;
1090 
1091 				if (unfalloc)
1092 					continue;
1093 				swaps_freed = shmem_free_swap(mapping, indices[i], folio);
1094 				if (!swaps_freed) {
1095 					/* Swap was replaced by page: retry */
1096 					index = indices[i];
1097 					break;
1098 				}
1099 				nr_swaps_freed += swaps_freed;
1100 				continue;
1101 			}
1102 
1103 			folio_lock(folio);
1104 
1105 			if (!unfalloc || !folio_test_uptodate(folio)) {
1106 				if (folio_mapping(folio) != mapping) {
1107 					/* Page was replaced by swap: retry */
1108 					folio_unlock(folio);
1109 					index = indices[i];
1110 					break;
1111 				}
1112 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1113 						folio);
1114 
1115 				if (!folio_test_large(folio)) {
1116 					truncate_inode_folio(mapping, folio);
1117 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1118 					/*
1119 					 * If we split a page, reset the loop so
1120 					 * that we pick up the new sub pages.
1121 					 * Otherwise the THP was entirely
1122 					 * dropped or the target range was
1123 					 * zeroed, so just continue the loop as
1124 					 * is.
1125 					 */
1126 					if (!folio_test_large(folio)) {
1127 						folio_unlock(folio);
1128 						index = start;
1129 						break;
1130 					}
1131 				}
1132 			}
1133 			folio_unlock(folio);
1134 		}
1135 		folio_batch_remove_exceptionals(&fbatch);
1136 		folio_batch_release(&fbatch);
1137 	}
1138 
1139 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1140 }
1141 
1142 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1143 {
1144 	shmem_undo_range(inode, lstart, lend, false);
1145 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1146 	inode_inc_iversion(inode);
1147 }
1148 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1149 
1150 static int shmem_getattr(struct mnt_idmap *idmap,
1151 			 const struct path *path, struct kstat *stat,
1152 			 u32 request_mask, unsigned int query_flags)
1153 {
1154 	struct inode *inode = path->dentry->d_inode;
1155 	struct shmem_inode_info *info = SHMEM_I(inode);
1156 
1157 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1158 		shmem_recalc_inode(inode, 0, 0);
1159 
1160 	if (info->fsflags & FS_APPEND_FL)
1161 		stat->attributes |= STATX_ATTR_APPEND;
1162 	if (info->fsflags & FS_IMMUTABLE_FL)
1163 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1164 	if (info->fsflags & FS_NODUMP_FL)
1165 		stat->attributes |= STATX_ATTR_NODUMP;
1166 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1167 			STATX_ATTR_IMMUTABLE |
1168 			STATX_ATTR_NODUMP);
1169 	generic_fillattr(idmap, request_mask, inode, stat);
1170 
1171 	if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
1172 		stat->blksize = HPAGE_PMD_SIZE;
1173 
1174 	if (request_mask & STATX_BTIME) {
1175 		stat->result_mask |= STATX_BTIME;
1176 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1177 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1178 	}
1179 
1180 	return 0;
1181 }
1182 
1183 static int shmem_setattr(struct mnt_idmap *idmap,
1184 			 struct dentry *dentry, struct iattr *attr)
1185 {
1186 	struct inode *inode = d_inode(dentry);
1187 	struct shmem_inode_info *info = SHMEM_I(inode);
1188 	int error;
1189 	bool update_mtime = false;
1190 	bool update_ctime = true;
1191 
1192 	error = setattr_prepare(idmap, dentry, attr);
1193 	if (error)
1194 		return error;
1195 
1196 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1197 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1198 			return -EPERM;
1199 		}
1200 	}
1201 
1202 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1203 		loff_t oldsize = inode->i_size;
1204 		loff_t newsize = attr->ia_size;
1205 
1206 		/* protected by i_rwsem */
1207 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1208 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1209 			return -EPERM;
1210 
1211 		if (newsize != oldsize) {
1212 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1213 					oldsize, newsize);
1214 			if (error)
1215 				return error;
1216 			i_size_write(inode, newsize);
1217 			update_mtime = true;
1218 		} else {
1219 			update_ctime = false;
1220 		}
1221 		if (newsize <= oldsize) {
1222 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1223 			if (oldsize > holebegin)
1224 				unmap_mapping_range(inode->i_mapping,
1225 							holebegin, 0, 1);
1226 			if (info->alloced)
1227 				shmem_truncate_range(inode,
1228 							newsize, (loff_t)-1);
1229 			/* unmap again to remove racily COWed private pages */
1230 			if (oldsize > holebegin)
1231 				unmap_mapping_range(inode->i_mapping,
1232 							holebegin, 0, 1);
1233 		}
1234 	}
1235 
1236 	if (is_quota_modification(idmap, inode, attr)) {
1237 		error = dquot_initialize(inode);
1238 		if (error)
1239 			return error;
1240 	}
1241 
1242 	/* Transfer quota accounting */
1243 	if (i_uid_needs_update(idmap, attr, inode) ||
1244 	    i_gid_needs_update(idmap, attr, inode)) {
1245 		error = dquot_transfer(idmap, inode, attr);
1246 		if (error)
1247 			return error;
1248 	}
1249 
1250 	setattr_copy(idmap, inode, attr);
1251 	if (attr->ia_valid & ATTR_MODE)
1252 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1253 	if (!error && update_ctime) {
1254 		inode_set_ctime_current(inode);
1255 		if (update_mtime)
1256 			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1257 		inode_inc_iversion(inode);
1258 	}
1259 	return error;
1260 }
1261 
1262 static void shmem_evict_inode(struct inode *inode)
1263 {
1264 	struct shmem_inode_info *info = SHMEM_I(inode);
1265 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1266 	size_t freed = 0;
1267 
1268 	if (shmem_mapping(inode->i_mapping)) {
1269 		shmem_unacct_size(info->flags, inode->i_size);
1270 		inode->i_size = 0;
1271 		mapping_set_exiting(inode->i_mapping);
1272 		shmem_truncate_range(inode, 0, (loff_t)-1);
1273 		if (!list_empty(&info->shrinklist)) {
1274 			spin_lock(&sbinfo->shrinklist_lock);
1275 			if (!list_empty(&info->shrinklist)) {
1276 				list_del_init(&info->shrinklist);
1277 				sbinfo->shrinklist_len--;
1278 			}
1279 			spin_unlock(&sbinfo->shrinklist_lock);
1280 		}
1281 		while (!list_empty(&info->swaplist)) {
1282 			/* Wait while shmem_unuse() is scanning this inode... */
1283 			wait_var_event(&info->stop_eviction,
1284 				       !atomic_read(&info->stop_eviction));
1285 			mutex_lock(&shmem_swaplist_mutex);
1286 			/* ...but beware of the race if we peeked too early */
1287 			if (!atomic_read(&info->stop_eviction))
1288 				list_del_init(&info->swaplist);
1289 			mutex_unlock(&shmem_swaplist_mutex);
1290 		}
1291 	}
1292 
1293 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1294 	shmem_free_inode(inode->i_sb, freed);
1295 	WARN_ON(inode->i_blocks);
1296 	clear_inode(inode);
1297 #ifdef CONFIG_TMPFS_QUOTA
1298 	dquot_free_inode(inode);
1299 	dquot_drop(inode);
1300 #endif
1301 }
1302 
1303 static int shmem_find_swap_entries(struct address_space *mapping,
1304 				   pgoff_t start, struct folio_batch *fbatch,
1305 				   pgoff_t *indices, unsigned int type)
1306 {
1307 	XA_STATE(xas, &mapping->i_pages, start);
1308 	struct folio *folio;
1309 	swp_entry_t entry;
1310 
1311 	rcu_read_lock();
1312 	xas_for_each(&xas, folio, ULONG_MAX) {
1313 		if (xas_retry(&xas, folio))
1314 			continue;
1315 
1316 		if (!xa_is_value(folio))
1317 			continue;
1318 
1319 		entry = radix_to_swp_entry(folio);
1320 		/*
1321 		 * swapin error entries can be found in the mapping. But they're
1322 		 * deliberately ignored here as we've done everything we can do.
1323 		 */
1324 		if (swp_type(entry) != type)
1325 			continue;
1326 
1327 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1328 		if (!folio_batch_add(fbatch, folio))
1329 			break;
1330 
1331 		if (need_resched()) {
1332 			xas_pause(&xas);
1333 			cond_resched_rcu();
1334 		}
1335 	}
1336 	rcu_read_unlock();
1337 
1338 	return xas.xa_index;
1339 }
1340 
1341 /*
1342  * Move the swapped pages for an inode to page cache. Returns the count
1343  * of pages swapped in, or the error in case of failure.
1344  */
1345 static int shmem_unuse_swap_entries(struct inode *inode,
1346 		struct folio_batch *fbatch, pgoff_t *indices)
1347 {
1348 	int i = 0;
1349 	int ret = 0;
1350 	int error = 0;
1351 	struct address_space *mapping = inode->i_mapping;
1352 
1353 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1354 		struct folio *folio = fbatch->folios[i];
1355 
1356 		if (!xa_is_value(folio))
1357 			continue;
1358 		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1359 					mapping_gfp_mask(mapping), NULL, NULL);
1360 		if (error == 0) {
1361 			folio_unlock(folio);
1362 			folio_put(folio);
1363 			ret++;
1364 		}
1365 		if (error == -ENOMEM)
1366 			break;
1367 		error = 0;
1368 	}
1369 	return error ? error : ret;
1370 }
1371 
1372 /*
1373  * If swap found in inode, free it and move page from swapcache to filecache.
1374  */
1375 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1376 {
1377 	struct address_space *mapping = inode->i_mapping;
1378 	pgoff_t start = 0;
1379 	struct folio_batch fbatch;
1380 	pgoff_t indices[PAGEVEC_SIZE];
1381 	int ret = 0;
1382 
1383 	do {
1384 		folio_batch_init(&fbatch);
1385 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1386 		if (folio_batch_count(&fbatch) == 0) {
1387 			ret = 0;
1388 			break;
1389 		}
1390 
1391 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1392 		if (ret < 0)
1393 			break;
1394 
1395 		start = indices[folio_batch_count(&fbatch) - 1];
1396 	} while (true);
1397 
1398 	return ret;
1399 }
1400 
1401 /*
1402  * Read all the shared memory data that resides in the swap
1403  * device 'type' back into memory, so the swap device can be
1404  * unused.
1405  */
1406 int shmem_unuse(unsigned int type)
1407 {
1408 	struct shmem_inode_info *info, *next;
1409 	int error = 0;
1410 
1411 	if (list_empty(&shmem_swaplist))
1412 		return 0;
1413 
1414 	mutex_lock(&shmem_swaplist_mutex);
1415 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1416 		if (!info->swapped) {
1417 			list_del_init(&info->swaplist);
1418 			continue;
1419 		}
1420 		/*
1421 		 * Drop the swaplist mutex while searching the inode for swap;
1422 		 * but before doing so, make sure shmem_evict_inode() will not
1423 		 * remove placeholder inode from swaplist, nor let it be freed
1424 		 * (igrab() would protect from unlink, but not from unmount).
1425 		 */
1426 		atomic_inc(&info->stop_eviction);
1427 		mutex_unlock(&shmem_swaplist_mutex);
1428 
1429 		error = shmem_unuse_inode(&info->vfs_inode, type);
1430 		cond_resched();
1431 
1432 		mutex_lock(&shmem_swaplist_mutex);
1433 		next = list_next_entry(info, swaplist);
1434 		if (!info->swapped)
1435 			list_del_init(&info->swaplist);
1436 		if (atomic_dec_and_test(&info->stop_eviction))
1437 			wake_up_var(&info->stop_eviction);
1438 		if (error)
1439 			break;
1440 	}
1441 	mutex_unlock(&shmem_swaplist_mutex);
1442 
1443 	return error;
1444 }
1445 
1446 /*
1447  * Move the page from the page cache to the swap cache.
1448  */
1449 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1450 {
1451 	struct folio *folio = page_folio(page);
1452 	struct address_space *mapping = folio->mapping;
1453 	struct inode *inode = mapping->host;
1454 	struct shmem_inode_info *info = SHMEM_I(inode);
1455 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1456 	swp_entry_t swap;
1457 	pgoff_t index;
1458 	int nr_pages;
1459 	bool split = false;
1460 
1461 	/*
1462 	 * Our capabilities prevent regular writeback or sync from ever calling
1463 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1464 	 * its underlying filesystem, in which case tmpfs should write out to
1465 	 * swap only in response to memory pressure, and not for the writeback
1466 	 * threads or sync.
1467 	 */
1468 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1469 		goto redirty;
1470 
1471 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1472 		goto redirty;
1473 
1474 	if (!total_swap_pages)
1475 		goto redirty;
1476 
1477 	/*
1478 	 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1479 	 * split when swapping.
1480 	 *
1481 	 * And shrinkage of pages beyond i_size does not split swap, so
1482 	 * swapout of a large folio crossing i_size needs to split too
1483 	 * (unless fallocate has been used to preallocate beyond EOF).
1484 	 */
1485 	if (folio_test_large(folio)) {
1486 		index = shmem_fallocend(inode,
1487 			DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1488 		if ((index > folio->index && index < folio_next_index(folio)) ||
1489 		    !IS_ENABLED(CONFIG_THP_SWAP))
1490 			split = true;
1491 	}
1492 
1493 	if (split) {
1494 try_split:
1495 		/* Ensure the subpages are still dirty */
1496 		folio_test_set_dirty(folio);
1497 		if (split_huge_page_to_list_to_order(page, wbc->list, 0))
1498 			goto redirty;
1499 		folio = page_folio(page);
1500 		folio_clear_dirty(folio);
1501 	}
1502 
1503 	index = folio->index;
1504 	nr_pages = folio_nr_pages(folio);
1505 
1506 	/*
1507 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1508 	 * value into swapfile.c, the only way we can correctly account for a
1509 	 * fallocated folio arriving here is now to initialize it and write it.
1510 	 *
1511 	 * That's okay for a folio already fallocated earlier, but if we have
1512 	 * not yet completed the fallocation, then (a) we want to keep track
1513 	 * of this folio in case we have to undo it, and (b) it may not be a
1514 	 * good idea to continue anyway, once we're pushing into swap.  So
1515 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1516 	 */
1517 	if (!folio_test_uptodate(folio)) {
1518 		if (inode->i_private) {
1519 			struct shmem_falloc *shmem_falloc;
1520 			spin_lock(&inode->i_lock);
1521 			shmem_falloc = inode->i_private;
1522 			if (shmem_falloc &&
1523 			    !shmem_falloc->waitq &&
1524 			    index >= shmem_falloc->start &&
1525 			    index < shmem_falloc->next)
1526 				shmem_falloc->nr_unswapped++;
1527 			else
1528 				shmem_falloc = NULL;
1529 			spin_unlock(&inode->i_lock);
1530 			if (shmem_falloc)
1531 				goto redirty;
1532 		}
1533 		folio_zero_range(folio, 0, folio_size(folio));
1534 		flush_dcache_folio(folio);
1535 		folio_mark_uptodate(folio);
1536 	}
1537 
1538 	swap = folio_alloc_swap(folio);
1539 	if (!swap.val) {
1540 		if (nr_pages > 1)
1541 			goto try_split;
1542 
1543 		goto redirty;
1544 	}
1545 
1546 	/*
1547 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1548 	 * if it's not already there.  Do it now before the folio is
1549 	 * moved to swap cache, when its pagelock no longer protects
1550 	 * the inode from eviction.  But don't unlock the mutex until
1551 	 * we've incremented swapped, because shmem_unuse_inode() will
1552 	 * prune a !swapped inode from the swaplist under this mutex.
1553 	 */
1554 	mutex_lock(&shmem_swaplist_mutex);
1555 	if (list_empty(&info->swaplist))
1556 		list_add(&info->swaplist, &shmem_swaplist);
1557 
1558 	if (add_to_swap_cache(folio, swap,
1559 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1560 			NULL) == 0) {
1561 		shmem_recalc_inode(inode, 0, nr_pages);
1562 		swap_shmem_alloc(swap, nr_pages);
1563 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1564 
1565 		mutex_unlock(&shmem_swaplist_mutex);
1566 		BUG_ON(folio_mapped(folio));
1567 		return swap_writepage(&folio->page, wbc);
1568 	}
1569 
1570 	mutex_unlock(&shmem_swaplist_mutex);
1571 	put_swap_folio(folio, swap);
1572 redirty:
1573 	folio_mark_dirty(folio);
1574 	if (wbc->for_reclaim)
1575 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1576 	folio_unlock(folio);
1577 	return 0;
1578 }
1579 
1580 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1581 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1582 {
1583 	char buffer[64];
1584 
1585 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1586 		return;		/* show nothing */
1587 
1588 	mpol_to_str(buffer, sizeof(buffer), mpol);
1589 
1590 	seq_printf(seq, ",mpol=%s", buffer);
1591 }
1592 
1593 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1594 {
1595 	struct mempolicy *mpol = NULL;
1596 	if (sbinfo->mpol) {
1597 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1598 		mpol = sbinfo->mpol;
1599 		mpol_get(mpol);
1600 		raw_spin_unlock(&sbinfo->stat_lock);
1601 	}
1602 	return mpol;
1603 }
1604 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1605 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1606 {
1607 }
1608 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1609 {
1610 	return NULL;
1611 }
1612 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1613 
1614 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1615 			pgoff_t index, unsigned int order, pgoff_t *ilx);
1616 
1617 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1618 			struct shmem_inode_info *info, pgoff_t index)
1619 {
1620 	struct mempolicy *mpol;
1621 	pgoff_t ilx;
1622 	struct folio *folio;
1623 
1624 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1625 	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1626 	mpol_cond_put(mpol);
1627 
1628 	return folio;
1629 }
1630 
1631 /*
1632  * Make sure huge_gfp is always more limited than limit_gfp.
1633  * Some of the flags set permissions, while others set limitations.
1634  */
1635 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1636 {
1637 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1638 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1639 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1640 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1641 
1642 	/* Allow allocations only from the originally specified zones. */
1643 	result |= zoneflags;
1644 
1645 	/*
1646 	 * Minimize the result gfp by taking the union with the deny flags,
1647 	 * and the intersection of the allow flags.
1648 	 */
1649 	result |= (limit_gfp & denyflags);
1650 	result |= (huge_gfp & limit_gfp) & allowflags;
1651 
1652 	return result;
1653 }
1654 
1655 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1656 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1657 				struct vm_area_struct *vma, pgoff_t index,
1658 				loff_t write_end, bool shmem_huge_force)
1659 {
1660 	unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1661 	unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1662 	unsigned long vm_flags = vma ? vma->vm_flags : 0;
1663 	bool global_huge;
1664 	loff_t i_size;
1665 	int order;
1666 
1667 	if (vma && ((vm_flags & VM_NOHUGEPAGE) ||
1668 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
1669 		return 0;
1670 
1671 	/* If the hardware/firmware marked hugepage support disabled. */
1672 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
1673 		return 0;
1674 
1675 	global_huge = shmem_huge_global_enabled(inode, index, write_end,
1676 					shmem_huge_force, vma, vm_flags);
1677 	if (!vma || !vma_is_anon_shmem(vma)) {
1678 		/*
1679 		 * For tmpfs, we now only support PMD sized THP if huge page
1680 		 * is enabled, otherwise fallback to order 0.
1681 		 */
1682 		return global_huge ? BIT(HPAGE_PMD_ORDER) : 0;
1683 	}
1684 
1685 	/*
1686 	 * Following the 'deny' semantics of the top level, force the huge
1687 	 * option off from all mounts.
1688 	 */
1689 	if (shmem_huge == SHMEM_HUGE_DENY)
1690 		return 0;
1691 
1692 	/*
1693 	 * Only allow inherit orders if the top-level value is 'force', which
1694 	 * means non-PMD sized THP can not override 'huge' mount option now.
1695 	 */
1696 	if (shmem_huge == SHMEM_HUGE_FORCE)
1697 		return READ_ONCE(huge_shmem_orders_inherit);
1698 
1699 	/* Allow mTHP that will be fully within i_size. */
1700 	order = highest_order(within_size_orders);
1701 	while (within_size_orders) {
1702 		index = round_up(index + 1, order);
1703 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1704 		if (i_size >> PAGE_SHIFT >= index) {
1705 			mask |= within_size_orders;
1706 			break;
1707 		}
1708 
1709 		order = next_order(&within_size_orders, order);
1710 	}
1711 
1712 	if (vm_flags & VM_HUGEPAGE)
1713 		mask |= READ_ONCE(huge_shmem_orders_madvise);
1714 
1715 	if (global_huge)
1716 		mask |= READ_ONCE(huge_shmem_orders_inherit);
1717 
1718 	return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1719 }
1720 
1721 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1722 					   struct address_space *mapping, pgoff_t index,
1723 					   unsigned long orders)
1724 {
1725 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1726 	pgoff_t aligned_index;
1727 	unsigned long pages;
1728 	int order;
1729 
1730 	if (vma) {
1731 		orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1732 		if (!orders)
1733 			return 0;
1734 	}
1735 
1736 	/* Find the highest order that can add into the page cache */
1737 	order = highest_order(orders);
1738 	while (orders) {
1739 		pages = 1UL << order;
1740 		aligned_index = round_down(index, pages);
1741 		/*
1742 		 * Check for conflict before waiting on a huge allocation.
1743 		 * Conflict might be that a huge page has just been allocated
1744 		 * and added to page cache by a racing thread, or that there
1745 		 * is already at least one small page in the huge extent.
1746 		 * Be careful to retry when appropriate, but not forever!
1747 		 * Elsewhere -EEXIST would be the right code, but not here.
1748 		 */
1749 		if (!xa_find(&mapping->i_pages, &aligned_index,
1750 			     aligned_index + pages - 1, XA_PRESENT))
1751 			break;
1752 		order = next_order(&orders, order);
1753 	}
1754 
1755 	return orders;
1756 }
1757 #else
1758 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1759 					   struct address_space *mapping, pgoff_t index,
1760 					   unsigned long orders)
1761 {
1762 	return 0;
1763 }
1764 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1765 
1766 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1767 		struct shmem_inode_info *info, pgoff_t index)
1768 {
1769 	struct mempolicy *mpol;
1770 	pgoff_t ilx;
1771 	struct folio *folio;
1772 
1773 	mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1774 	folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1775 	mpol_cond_put(mpol);
1776 
1777 	return folio;
1778 }
1779 
1780 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1781 		gfp_t gfp, struct inode *inode, pgoff_t index,
1782 		struct mm_struct *fault_mm, unsigned long orders)
1783 {
1784 	struct address_space *mapping = inode->i_mapping;
1785 	struct shmem_inode_info *info = SHMEM_I(inode);
1786 	unsigned long suitable_orders = 0;
1787 	struct folio *folio = NULL;
1788 	long pages;
1789 	int error, order;
1790 
1791 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1792 		orders = 0;
1793 
1794 	if (orders > 0) {
1795 		suitable_orders = shmem_suitable_orders(inode, vmf,
1796 							mapping, index, orders);
1797 
1798 		order = highest_order(suitable_orders);
1799 		while (suitable_orders) {
1800 			pages = 1UL << order;
1801 			index = round_down(index, pages);
1802 			folio = shmem_alloc_folio(gfp, order, info, index);
1803 			if (folio)
1804 				goto allocated;
1805 
1806 			if (pages == HPAGE_PMD_NR)
1807 				count_vm_event(THP_FILE_FALLBACK);
1808 			count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1809 			order = next_order(&suitable_orders, order);
1810 		}
1811 	} else {
1812 		pages = 1;
1813 		folio = shmem_alloc_folio(gfp, 0, info, index);
1814 	}
1815 	if (!folio)
1816 		return ERR_PTR(-ENOMEM);
1817 
1818 allocated:
1819 	__folio_set_locked(folio);
1820 	__folio_set_swapbacked(folio);
1821 
1822 	gfp &= GFP_RECLAIM_MASK;
1823 	error = mem_cgroup_charge(folio, fault_mm, gfp);
1824 	if (error) {
1825 		if (xa_find(&mapping->i_pages, &index,
1826 				index + pages - 1, XA_PRESENT)) {
1827 			error = -EEXIST;
1828 		} else if (pages > 1) {
1829 			if (pages == HPAGE_PMD_NR) {
1830 				count_vm_event(THP_FILE_FALLBACK);
1831 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
1832 			}
1833 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1834 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1835 		}
1836 		goto unlock;
1837 	}
1838 
1839 	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1840 	if (error)
1841 		goto unlock;
1842 
1843 	error = shmem_inode_acct_blocks(inode, pages);
1844 	if (error) {
1845 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1846 		long freed;
1847 		/*
1848 		 * Try to reclaim some space by splitting a few
1849 		 * large folios beyond i_size on the filesystem.
1850 		 */
1851 		shmem_unused_huge_shrink(sbinfo, NULL, pages);
1852 		/*
1853 		 * And do a shmem_recalc_inode() to account for freed pages:
1854 		 * except our folio is there in cache, so not quite balanced.
1855 		 */
1856 		spin_lock(&info->lock);
1857 		freed = pages + info->alloced - info->swapped -
1858 			READ_ONCE(mapping->nrpages);
1859 		if (freed > 0)
1860 			info->alloced -= freed;
1861 		spin_unlock(&info->lock);
1862 		if (freed > 0)
1863 			shmem_inode_unacct_blocks(inode, freed);
1864 		error = shmem_inode_acct_blocks(inode, pages);
1865 		if (error) {
1866 			filemap_remove_folio(folio);
1867 			goto unlock;
1868 		}
1869 	}
1870 
1871 	shmem_recalc_inode(inode, pages, 0);
1872 	folio_add_lru(folio);
1873 	return folio;
1874 
1875 unlock:
1876 	folio_unlock(folio);
1877 	folio_put(folio);
1878 	return ERR_PTR(error);
1879 }
1880 
1881 /*
1882  * When a page is moved from swapcache to shmem filecache (either by the
1883  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1884  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1885  * ignorance of the mapping it belongs to.  If that mapping has special
1886  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1887  * we may need to copy to a suitable page before moving to filecache.
1888  *
1889  * In a future release, this may well be extended to respect cpuset and
1890  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1891  * but for now it is a simple matter of zone.
1892  */
1893 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1894 {
1895 	return folio_zonenum(folio) > gfp_zone(gfp);
1896 }
1897 
1898 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1899 				struct shmem_inode_info *info, pgoff_t index,
1900 				struct vm_area_struct *vma)
1901 {
1902 	struct folio *new, *old = *foliop;
1903 	swp_entry_t entry = old->swap;
1904 	struct address_space *swap_mapping = swap_address_space(entry);
1905 	pgoff_t swap_index = swap_cache_index(entry);
1906 	XA_STATE(xas, &swap_mapping->i_pages, swap_index);
1907 	int nr_pages = folio_nr_pages(old);
1908 	int error = 0, i;
1909 
1910 	/*
1911 	 * We have arrived here because our zones are constrained, so don't
1912 	 * limit chance of success by further cpuset and node constraints.
1913 	 */
1914 	gfp &= ~GFP_CONSTRAINT_MASK;
1915 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1916 	if (nr_pages > 1) {
1917 		gfp_t huge_gfp = vma_thp_gfp_mask(vma);
1918 
1919 		gfp = limit_gfp_mask(huge_gfp, gfp);
1920 	}
1921 #endif
1922 
1923 	new = shmem_alloc_folio(gfp, folio_order(old), info, index);
1924 	if (!new)
1925 		return -ENOMEM;
1926 
1927 	folio_ref_add(new, nr_pages);
1928 	folio_copy(new, old);
1929 	flush_dcache_folio(new);
1930 
1931 	__folio_set_locked(new);
1932 	__folio_set_swapbacked(new);
1933 	folio_mark_uptodate(new);
1934 	new->swap = entry;
1935 	folio_set_swapcache(new);
1936 
1937 	/* Swap cache still stores N entries instead of a high-order entry */
1938 	xa_lock_irq(&swap_mapping->i_pages);
1939 	for (i = 0; i < nr_pages; i++) {
1940 		void *item = xas_load(&xas);
1941 
1942 		if (item != old) {
1943 			error = -ENOENT;
1944 			break;
1945 		}
1946 
1947 		xas_store(&xas, new);
1948 		xas_next(&xas);
1949 	}
1950 	if (!error) {
1951 		mem_cgroup_replace_folio(old, new);
1952 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, nr_pages);
1953 		__lruvec_stat_mod_folio(new, NR_SHMEM, nr_pages);
1954 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -nr_pages);
1955 		__lruvec_stat_mod_folio(old, NR_SHMEM, -nr_pages);
1956 	}
1957 	xa_unlock_irq(&swap_mapping->i_pages);
1958 
1959 	if (unlikely(error)) {
1960 		/*
1961 		 * Is this possible?  I think not, now that our callers
1962 		 * check both the swapcache flag and folio->private
1963 		 * after getting the folio lock; but be defensive.
1964 		 * Reverse old to newpage for clear and free.
1965 		 */
1966 		old = new;
1967 	} else {
1968 		folio_add_lru(new);
1969 		*foliop = new;
1970 	}
1971 
1972 	folio_clear_swapcache(old);
1973 	old->private = NULL;
1974 
1975 	folio_unlock(old);
1976 	/*
1977 	 * The old folio are removed from swap cache, drop the 'nr_pages'
1978 	 * reference, as well as one temporary reference getting from swap
1979 	 * cache.
1980 	 */
1981 	folio_put_refs(old, nr_pages + 1);
1982 	return error;
1983 }
1984 
1985 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1986 					 struct folio *folio, swp_entry_t swap)
1987 {
1988 	struct address_space *mapping = inode->i_mapping;
1989 	swp_entry_t swapin_error;
1990 	void *old;
1991 	int nr_pages;
1992 
1993 	swapin_error = make_poisoned_swp_entry();
1994 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1995 			     swp_to_radix_entry(swap),
1996 			     swp_to_radix_entry(swapin_error), 0);
1997 	if (old != swp_to_radix_entry(swap))
1998 		return;
1999 
2000 	nr_pages = folio_nr_pages(folio);
2001 	folio_wait_writeback(folio);
2002 	delete_from_swap_cache(folio);
2003 	/*
2004 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2005 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2006 	 * in shmem_evict_inode().
2007 	 */
2008 	shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2009 	swap_free_nr(swap, nr_pages);
2010 }
2011 
2012 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2013 				   swp_entry_t swap, gfp_t gfp)
2014 {
2015 	struct address_space *mapping = inode->i_mapping;
2016 	XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2017 	void *alloced_shadow = NULL;
2018 	int alloced_order = 0, i;
2019 
2020 	/* Convert user data gfp flags to xarray node gfp flags */
2021 	gfp &= GFP_RECLAIM_MASK;
2022 
2023 	for (;;) {
2024 		int order = -1, split_order = 0;
2025 		void *old = NULL;
2026 
2027 		xas_lock_irq(&xas);
2028 		old = xas_load(&xas);
2029 		if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2030 			xas_set_err(&xas, -EEXIST);
2031 			goto unlock;
2032 		}
2033 
2034 		order = xas_get_order(&xas);
2035 
2036 		/* Swap entry may have changed before we re-acquire the lock */
2037 		if (alloced_order &&
2038 		    (old != alloced_shadow || order != alloced_order)) {
2039 			xas_destroy(&xas);
2040 			alloced_order = 0;
2041 		}
2042 
2043 		/* Try to split large swap entry in pagecache */
2044 		if (order > 0) {
2045 			if (!alloced_order) {
2046 				split_order = order;
2047 				goto unlock;
2048 			}
2049 			xas_split(&xas, old, order);
2050 
2051 			/*
2052 			 * Re-set the swap entry after splitting, and the swap
2053 			 * offset of the original large entry must be continuous.
2054 			 */
2055 			for (i = 0; i < 1 << order; i++) {
2056 				pgoff_t aligned_index = round_down(index, 1 << order);
2057 				swp_entry_t tmp;
2058 
2059 				tmp = swp_entry(swp_type(swap), swp_offset(swap) + i);
2060 				__xa_store(&mapping->i_pages, aligned_index + i,
2061 					   swp_to_radix_entry(tmp), 0);
2062 			}
2063 		}
2064 
2065 unlock:
2066 		xas_unlock_irq(&xas);
2067 
2068 		/* split needed, alloc here and retry. */
2069 		if (split_order) {
2070 			xas_split_alloc(&xas, old, split_order, gfp);
2071 			if (xas_error(&xas))
2072 				goto error;
2073 			alloced_shadow = old;
2074 			alloced_order = split_order;
2075 			xas_reset(&xas);
2076 			continue;
2077 		}
2078 
2079 		if (!xas_nomem(&xas, gfp))
2080 			break;
2081 	}
2082 
2083 error:
2084 	if (xas_error(&xas))
2085 		return xas_error(&xas);
2086 
2087 	return alloced_order;
2088 }
2089 
2090 /*
2091  * Swap in the folio pointed to by *foliop.
2092  * Caller has to make sure that *foliop contains a valid swapped folio.
2093  * Returns 0 and the folio in foliop if success. On failure, returns the
2094  * error code and NULL in *foliop.
2095  */
2096 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2097 			     struct folio **foliop, enum sgp_type sgp,
2098 			     gfp_t gfp, struct vm_area_struct *vma,
2099 			     vm_fault_t *fault_type)
2100 {
2101 	struct address_space *mapping = inode->i_mapping;
2102 	struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2103 	struct shmem_inode_info *info = SHMEM_I(inode);
2104 	struct swap_info_struct *si;
2105 	struct folio *folio = NULL;
2106 	swp_entry_t swap;
2107 	int error, nr_pages;
2108 
2109 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2110 	swap = radix_to_swp_entry(*foliop);
2111 	*foliop = NULL;
2112 
2113 	if (is_poisoned_swp_entry(swap))
2114 		return -EIO;
2115 
2116 	si = get_swap_device(swap);
2117 	if (!si) {
2118 		if (!shmem_confirm_swap(mapping, index, swap))
2119 			return -EEXIST;
2120 		else
2121 			return -EINVAL;
2122 	}
2123 
2124 	/* Look it up and read it in.. */
2125 	folio = swap_cache_get_folio(swap, NULL, 0);
2126 	if (!folio) {
2127 		int split_order;
2128 
2129 		/* Or update major stats only when swapin succeeds?? */
2130 		if (fault_type) {
2131 			*fault_type |= VM_FAULT_MAJOR;
2132 			count_vm_event(PGMAJFAULT);
2133 			count_memcg_event_mm(fault_mm, PGMAJFAULT);
2134 		}
2135 
2136 		/*
2137 		 * Now swap device can only swap in order 0 folio, then we
2138 		 * should split the large swap entry stored in the pagecache
2139 		 * if necessary.
2140 		 */
2141 		split_order = shmem_split_large_entry(inode, index, swap, gfp);
2142 		if (split_order < 0) {
2143 			error = split_order;
2144 			goto failed;
2145 		}
2146 
2147 		/*
2148 		 * If the large swap entry has already been split, it is
2149 		 * necessary to recalculate the new swap entry based on
2150 		 * the old order alignment.
2151 		 */
2152 		if (split_order > 0) {
2153 			pgoff_t offset = index - round_down(index, 1 << split_order);
2154 
2155 			swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2156 		}
2157 
2158 		/* Here we actually start the io */
2159 		folio = shmem_swapin_cluster(swap, gfp, info, index);
2160 		if (!folio) {
2161 			error = -ENOMEM;
2162 			goto failed;
2163 		}
2164 	}
2165 
2166 	/* We have to do this with folio locked to prevent races */
2167 	folio_lock(folio);
2168 	if (!folio_test_swapcache(folio) ||
2169 	    folio->swap.val != swap.val ||
2170 	    !shmem_confirm_swap(mapping, index, swap)) {
2171 		error = -EEXIST;
2172 		goto unlock;
2173 	}
2174 	if (!folio_test_uptodate(folio)) {
2175 		error = -EIO;
2176 		goto failed;
2177 	}
2178 	folio_wait_writeback(folio);
2179 	nr_pages = folio_nr_pages(folio);
2180 
2181 	/*
2182 	 * Some architectures may have to restore extra metadata to the
2183 	 * folio after reading from swap.
2184 	 */
2185 	arch_swap_restore(folio_swap(swap, folio), folio);
2186 
2187 	if (shmem_should_replace_folio(folio, gfp)) {
2188 		error = shmem_replace_folio(&folio, gfp, info, index, vma);
2189 		if (error)
2190 			goto failed;
2191 	}
2192 
2193 	error = shmem_add_to_page_cache(folio, mapping,
2194 					round_down(index, nr_pages),
2195 					swp_to_radix_entry(swap), gfp);
2196 	if (error)
2197 		goto failed;
2198 
2199 	shmem_recalc_inode(inode, 0, -nr_pages);
2200 
2201 	if (sgp == SGP_WRITE)
2202 		folio_mark_accessed(folio);
2203 
2204 	delete_from_swap_cache(folio);
2205 	folio_mark_dirty(folio);
2206 	swap_free_nr(swap, nr_pages);
2207 	put_swap_device(si);
2208 
2209 	*foliop = folio;
2210 	return 0;
2211 failed:
2212 	if (!shmem_confirm_swap(mapping, index, swap))
2213 		error = -EEXIST;
2214 	if (error == -EIO)
2215 		shmem_set_folio_swapin_error(inode, index, folio, swap);
2216 unlock:
2217 	if (folio) {
2218 		folio_unlock(folio);
2219 		folio_put(folio);
2220 	}
2221 	put_swap_device(si);
2222 
2223 	return error;
2224 }
2225 
2226 /*
2227  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2228  *
2229  * If we allocate a new one we do not mark it dirty. That's up to the
2230  * vm. If we swap it in we mark it dirty since we also free the swap
2231  * entry since a page cannot live in both the swap and page cache.
2232  *
2233  * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2234  */
2235 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2236 		loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2237 		gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2238 {
2239 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2240 	struct mm_struct *fault_mm;
2241 	struct folio *folio;
2242 	int error;
2243 	bool alloced;
2244 	unsigned long orders = 0;
2245 
2246 	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2247 		return -EINVAL;
2248 
2249 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2250 		return -EFBIG;
2251 repeat:
2252 	if (sgp <= SGP_CACHE &&
2253 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2254 		return -EINVAL;
2255 
2256 	alloced = false;
2257 	fault_mm = vma ? vma->vm_mm : NULL;
2258 
2259 	folio = filemap_get_entry(inode->i_mapping, index);
2260 	if (folio && vma && userfaultfd_minor(vma)) {
2261 		if (!xa_is_value(folio))
2262 			folio_put(folio);
2263 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2264 		return 0;
2265 	}
2266 
2267 	if (xa_is_value(folio)) {
2268 		error = shmem_swapin_folio(inode, index, &folio,
2269 					   sgp, gfp, vma, fault_type);
2270 		if (error == -EEXIST)
2271 			goto repeat;
2272 
2273 		*foliop = folio;
2274 		return error;
2275 	}
2276 
2277 	if (folio) {
2278 		folio_lock(folio);
2279 
2280 		/* Has the folio been truncated or swapped out? */
2281 		if (unlikely(folio->mapping != inode->i_mapping)) {
2282 			folio_unlock(folio);
2283 			folio_put(folio);
2284 			goto repeat;
2285 		}
2286 		if (sgp == SGP_WRITE)
2287 			folio_mark_accessed(folio);
2288 		if (folio_test_uptodate(folio))
2289 			goto out;
2290 		/* fallocated folio */
2291 		if (sgp != SGP_READ)
2292 			goto clear;
2293 		folio_unlock(folio);
2294 		folio_put(folio);
2295 	}
2296 
2297 	/*
2298 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2299 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2300 	 */
2301 	*foliop = NULL;
2302 	if (sgp == SGP_READ)
2303 		return 0;
2304 	if (sgp == SGP_NOALLOC)
2305 		return -ENOENT;
2306 
2307 	/*
2308 	 * Fast cache lookup and swap lookup did not find it: allocate.
2309 	 */
2310 
2311 	if (vma && userfaultfd_missing(vma)) {
2312 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2313 		return 0;
2314 	}
2315 
2316 	/* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2317 	orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2318 	if (orders > 0) {
2319 		gfp_t huge_gfp;
2320 
2321 		huge_gfp = vma_thp_gfp_mask(vma);
2322 		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2323 		folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2324 				inode, index, fault_mm, orders);
2325 		if (!IS_ERR(folio)) {
2326 			if (folio_test_pmd_mappable(folio))
2327 				count_vm_event(THP_FILE_ALLOC);
2328 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2329 			goto alloced;
2330 		}
2331 		if (PTR_ERR(folio) == -EEXIST)
2332 			goto repeat;
2333 	}
2334 
2335 	folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2336 	if (IS_ERR(folio)) {
2337 		error = PTR_ERR(folio);
2338 		if (error == -EEXIST)
2339 			goto repeat;
2340 		folio = NULL;
2341 		goto unlock;
2342 	}
2343 
2344 alloced:
2345 	alloced = true;
2346 	if (folio_test_large(folio) &&
2347 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2348 					folio_next_index(folio)) {
2349 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2350 		struct shmem_inode_info *info = SHMEM_I(inode);
2351 		/*
2352 		 * Part of the large folio is beyond i_size: subject
2353 		 * to shrink under memory pressure.
2354 		 */
2355 		spin_lock(&sbinfo->shrinklist_lock);
2356 		/*
2357 		 * _careful to defend against unlocked access to
2358 		 * ->shrink_list in shmem_unused_huge_shrink()
2359 		 */
2360 		if (list_empty_careful(&info->shrinklist)) {
2361 			list_add_tail(&info->shrinklist,
2362 				      &sbinfo->shrinklist);
2363 			sbinfo->shrinklist_len++;
2364 		}
2365 		spin_unlock(&sbinfo->shrinklist_lock);
2366 	}
2367 
2368 	if (sgp == SGP_WRITE)
2369 		folio_set_referenced(folio);
2370 	/*
2371 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2372 	 */
2373 	if (sgp == SGP_FALLOC)
2374 		sgp = SGP_WRITE;
2375 clear:
2376 	/*
2377 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2378 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2379 	 * it now, lest undo on failure cancel our earlier guarantee.
2380 	 */
2381 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2382 		long i, n = folio_nr_pages(folio);
2383 
2384 		for (i = 0; i < n; i++)
2385 			clear_highpage(folio_page(folio, i));
2386 		flush_dcache_folio(folio);
2387 		folio_mark_uptodate(folio);
2388 	}
2389 
2390 	/* Perhaps the file has been truncated since we checked */
2391 	if (sgp <= SGP_CACHE &&
2392 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2393 		error = -EINVAL;
2394 		goto unlock;
2395 	}
2396 out:
2397 	*foliop = folio;
2398 	return 0;
2399 
2400 	/*
2401 	 * Error recovery.
2402 	 */
2403 unlock:
2404 	if (alloced)
2405 		filemap_remove_folio(folio);
2406 	shmem_recalc_inode(inode, 0, 0);
2407 	if (folio) {
2408 		folio_unlock(folio);
2409 		folio_put(folio);
2410 	}
2411 	return error;
2412 }
2413 
2414 /**
2415  * shmem_get_folio - find, and lock a shmem folio.
2416  * @inode:	inode to search
2417  * @index:	the page index.
2418  * @write_end:	end of a write, could extend inode size
2419  * @foliop:	pointer to the folio if found
2420  * @sgp:	SGP_* flags to control behavior
2421  *
2422  * Looks up the page cache entry at @inode & @index.  If a folio is
2423  * present, it is returned locked with an increased refcount.
2424  *
2425  * If the caller modifies data in the folio, it must call folio_mark_dirty()
2426  * before unlocking the folio to ensure that the folio is not reclaimed.
2427  * There is no need to reserve space before calling folio_mark_dirty().
2428  *
2429  * When no folio is found, the behavior depends on @sgp:
2430  *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2431  *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2432  *  - for all other flags a new folio is allocated, inserted into the
2433  *    page cache and returned locked in @foliop.
2434  *
2435  * Context: May sleep.
2436  * Return: 0 if successful, else a negative error code.
2437  */
2438 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2439 		    struct folio **foliop, enum sgp_type sgp)
2440 {
2441 	return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2442 			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2443 }
2444 EXPORT_SYMBOL_GPL(shmem_get_folio);
2445 
2446 /*
2447  * This is like autoremove_wake_function, but it removes the wait queue
2448  * entry unconditionally - even if something else had already woken the
2449  * target.
2450  */
2451 static int synchronous_wake_function(wait_queue_entry_t *wait,
2452 			unsigned int mode, int sync, void *key)
2453 {
2454 	int ret = default_wake_function(wait, mode, sync, key);
2455 	list_del_init(&wait->entry);
2456 	return ret;
2457 }
2458 
2459 /*
2460  * Trinity finds that probing a hole which tmpfs is punching can
2461  * prevent the hole-punch from ever completing: which in turn
2462  * locks writers out with its hold on i_rwsem.  So refrain from
2463  * faulting pages into the hole while it's being punched.  Although
2464  * shmem_undo_range() does remove the additions, it may be unable to
2465  * keep up, as each new page needs its own unmap_mapping_range() call,
2466  * and the i_mmap tree grows ever slower to scan if new vmas are added.
2467  *
2468  * It does not matter if we sometimes reach this check just before the
2469  * hole-punch begins, so that one fault then races with the punch:
2470  * we just need to make racing faults a rare case.
2471  *
2472  * The implementation below would be much simpler if we just used a
2473  * standard mutex or completion: but we cannot take i_rwsem in fault,
2474  * and bloating every shmem inode for this unlikely case would be sad.
2475  */
2476 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2477 {
2478 	struct shmem_falloc *shmem_falloc;
2479 	struct file *fpin = NULL;
2480 	vm_fault_t ret = 0;
2481 
2482 	spin_lock(&inode->i_lock);
2483 	shmem_falloc = inode->i_private;
2484 	if (shmem_falloc &&
2485 	    shmem_falloc->waitq &&
2486 	    vmf->pgoff >= shmem_falloc->start &&
2487 	    vmf->pgoff < shmem_falloc->next) {
2488 		wait_queue_head_t *shmem_falloc_waitq;
2489 		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2490 
2491 		ret = VM_FAULT_NOPAGE;
2492 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2493 		shmem_falloc_waitq = shmem_falloc->waitq;
2494 		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2495 				TASK_UNINTERRUPTIBLE);
2496 		spin_unlock(&inode->i_lock);
2497 		schedule();
2498 
2499 		/*
2500 		 * shmem_falloc_waitq points into the shmem_fallocate()
2501 		 * stack of the hole-punching task: shmem_falloc_waitq
2502 		 * is usually invalid by the time we reach here, but
2503 		 * finish_wait() does not dereference it in that case;
2504 		 * though i_lock needed lest racing with wake_up_all().
2505 		 */
2506 		spin_lock(&inode->i_lock);
2507 		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2508 	}
2509 	spin_unlock(&inode->i_lock);
2510 	if (fpin) {
2511 		fput(fpin);
2512 		ret = VM_FAULT_RETRY;
2513 	}
2514 	return ret;
2515 }
2516 
2517 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2518 {
2519 	struct inode *inode = file_inode(vmf->vma->vm_file);
2520 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2521 	struct folio *folio = NULL;
2522 	vm_fault_t ret = 0;
2523 	int err;
2524 
2525 	/*
2526 	 * Trinity finds that probing a hole which tmpfs is punching can
2527 	 * prevent the hole-punch from ever completing: noted in i_private.
2528 	 */
2529 	if (unlikely(inode->i_private)) {
2530 		ret = shmem_falloc_wait(vmf, inode);
2531 		if (ret)
2532 			return ret;
2533 	}
2534 
2535 	WARN_ON_ONCE(vmf->page != NULL);
2536 	err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2537 				  gfp, vmf, &ret);
2538 	if (err)
2539 		return vmf_error(err);
2540 	if (folio) {
2541 		vmf->page = folio_file_page(folio, vmf->pgoff);
2542 		ret |= VM_FAULT_LOCKED;
2543 	}
2544 	return ret;
2545 }
2546 
2547 unsigned long shmem_get_unmapped_area(struct file *file,
2548 				      unsigned long uaddr, unsigned long len,
2549 				      unsigned long pgoff, unsigned long flags)
2550 {
2551 	unsigned long addr;
2552 	unsigned long offset;
2553 	unsigned long inflated_len;
2554 	unsigned long inflated_addr;
2555 	unsigned long inflated_offset;
2556 	unsigned long hpage_size;
2557 
2558 	if (len > TASK_SIZE)
2559 		return -ENOMEM;
2560 
2561 	addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2562 				    flags);
2563 
2564 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2565 		return addr;
2566 	if (IS_ERR_VALUE(addr))
2567 		return addr;
2568 	if (addr & ~PAGE_MASK)
2569 		return addr;
2570 	if (addr > TASK_SIZE - len)
2571 		return addr;
2572 
2573 	if (shmem_huge == SHMEM_HUGE_DENY)
2574 		return addr;
2575 	if (flags & MAP_FIXED)
2576 		return addr;
2577 	/*
2578 	 * Our priority is to support MAP_SHARED mapped hugely;
2579 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2580 	 * But if caller specified an address hint and we allocated area there
2581 	 * successfully, respect that as before.
2582 	 */
2583 	if (uaddr == addr)
2584 		return addr;
2585 
2586 	hpage_size = HPAGE_PMD_SIZE;
2587 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2588 		struct super_block *sb;
2589 		unsigned long __maybe_unused hpage_orders;
2590 		int order = 0;
2591 
2592 		if (file) {
2593 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2594 			sb = file_inode(file)->i_sb;
2595 		} else {
2596 			/*
2597 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2598 			 * for "/dev/zero", to create a shared anonymous object.
2599 			 */
2600 			if (IS_ERR(shm_mnt))
2601 				return addr;
2602 			sb = shm_mnt->mnt_sb;
2603 
2604 			/*
2605 			 * Find the highest mTHP order used for anonymous shmem to
2606 			 * provide a suitable alignment address.
2607 			 */
2608 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2609 			hpage_orders = READ_ONCE(huge_shmem_orders_always);
2610 			hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2611 			hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2612 			if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2613 				hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2614 
2615 			if (hpage_orders > 0) {
2616 				order = highest_order(hpage_orders);
2617 				hpage_size = PAGE_SIZE << order;
2618 			}
2619 #endif
2620 		}
2621 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2622 			return addr;
2623 	}
2624 
2625 	if (len < hpage_size)
2626 		return addr;
2627 
2628 	offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2629 	if (offset && offset + len < 2 * hpage_size)
2630 		return addr;
2631 	if ((addr & (hpage_size - 1)) == offset)
2632 		return addr;
2633 
2634 	inflated_len = len + hpage_size - PAGE_SIZE;
2635 	if (inflated_len > TASK_SIZE)
2636 		return addr;
2637 	if (inflated_len < len)
2638 		return addr;
2639 
2640 	inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2641 					     inflated_len, 0, flags);
2642 	if (IS_ERR_VALUE(inflated_addr))
2643 		return addr;
2644 	if (inflated_addr & ~PAGE_MASK)
2645 		return addr;
2646 
2647 	inflated_offset = inflated_addr & (hpage_size - 1);
2648 	inflated_addr += offset - inflated_offset;
2649 	if (inflated_offset > offset)
2650 		inflated_addr += hpage_size;
2651 
2652 	if (inflated_addr > TASK_SIZE - len)
2653 		return addr;
2654 	return inflated_addr;
2655 }
2656 
2657 #ifdef CONFIG_NUMA
2658 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2659 {
2660 	struct inode *inode = file_inode(vma->vm_file);
2661 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2662 }
2663 
2664 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2665 					  unsigned long addr, pgoff_t *ilx)
2666 {
2667 	struct inode *inode = file_inode(vma->vm_file);
2668 	pgoff_t index;
2669 
2670 	/*
2671 	 * Bias interleave by inode number to distribute better across nodes;
2672 	 * but this interface is independent of which page order is used, so
2673 	 * supplies only that bias, letting caller apply the offset (adjusted
2674 	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2675 	 */
2676 	*ilx = inode->i_ino;
2677 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2678 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2679 }
2680 
2681 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2682 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2683 {
2684 	struct mempolicy *mpol;
2685 
2686 	/* Bias interleave by inode number to distribute better across nodes */
2687 	*ilx = info->vfs_inode.i_ino + (index >> order);
2688 
2689 	mpol = mpol_shared_policy_lookup(&info->policy, index);
2690 	return mpol ? mpol : get_task_policy(current);
2691 }
2692 #else
2693 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2694 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2695 {
2696 	*ilx = 0;
2697 	return NULL;
2698 }
2699 #endif /* CONFIG_NUMA */
2700 
2701 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2702 {
2703 	struct inode *inode = file_inode(file);
2704 	struct shmem_inode_info *info = SHMEM_I(inode);
2705 	int retval = -ENOMEM;
2706 
2707 	/*
2708 	 * What serializes the accesses to info->flags?
2709 	 * ipc_lock_object() when called from shmctl_do_lock(),
2710 	 * no serialization needed when called from shm_destroy().
2711 	 */
2712 	if (lock && !(info->flags & VM_LOCKED)) {
2713 		if (!user_shm_lock(inode->i_size, ucounts))
2714 			goto out_nomem;
2715 		info->flags |= VM_LOCKED;
2716 		mapping_set_unevictable(file->f_mapping);
2717 	}
2718 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2719 		user_shm_unlock(inode->i_size, ucounts);
2720 		info->flags &= ~VM_LOCKED;
2721 		mapping_clear_unevictable(file->f_mapping);
2722 	}
2723 	retval = 0;
2724 
2725 out_nomem:
2726 	return retval;
2727 }
2728 
2729 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2730 {
2731 	struct inode *inode = file_inode(file);
2732 	struct shmem_inode_info *info = SHMEM_I(inode);
2733 	int ret;
2734 
2735 	ret = seal_check_write(info->seals, vma);
2736 	if (ret)
2737 		return ret;
2738 
2739 	/* arm64 - allow memory tagging on RAM-based files */
2740 	vm_flags_set(vma, VM_MTE_ALLOWED);
2741 
2742 	file_accessed(file);
2743 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2744 	if (inode->i_nlink)
2745 		vma->vm_ops = &shmem_vm_ops;
2746 	else
2747 		vma->vm_ops = &shmem_anon_vm_ops;
2748 	return 0;
2749 }
2750 
2751 static int shmem_file_open(struct inode *inode, struct file *file)
2752 {
2753 	file->f_mode |= FMODE_CAN_ODIRECT;
2754 	return generic_file_open(inode, file);
2755 }
2756 
2757 #ifdef CONFIG_TMPFS_XATTR
2758 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2759 
2760 /*
2761  * chattr's fsflags are unrelated to extended attributes,
2762  * but tmpfs has chosen to enable them under the same config option.
2763  */
2764 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2765 {
2766 	unsigned int i_flags = 0;
2767 
2768 	if (fsflags & FS_NOATIME_FL)
2769 		i_flags |= S_NOATIME;
2770 	if (fsflags & FS_APPEND_FL)
2771 		i_flags |= S_APPEND;
2772 	if (fsflags & FS_IMMUTABLE_FL)
2773 		i_flags |= S_IMMUTABLE;
2774 	/*
2775 	 * But FS_NODUMP_FL does not require any action in i_flags.
2776 	 */
2777 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2778 }
2779 #else
2780 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2781 {
2782 }
2783 #define shmem_initxattrs NULL
2784 #endif
2785 
2786 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2787 {
2788 	return &SHMEM_I(inode)->dir_offsets;
2789 }
2790 
2791 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2792 					     struct super_block *sb,
2793 					     struct inode *dir, umode_t mode,
2794 					     dev_t dev, unsigned long flags)
2795 {
2796 	struct inode *inode;
2797 	struct shmem_inode_info *info;
2798 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2799 	ino_t ino;
2800 	int err;
2801 
2802 	err = shmem_reserve_inode(sb, &ino);
2803 	if (err)
2804 		return ERR_PTR(err);
2805 
2806 	inode = new_inode(sb);
2807 	if (!inode) {
2808 		shmem_free_inode(sb, 0);
2809 		return ERR_PTR(-ENOSPC);
2810 	}
2811 
2812 	inode->i_ino = ino;
2813 	inode_init_owner(idmap, inode, dir, mode);
2814 	inode->i_blocks = 0;
2815 	simple_inode_init_ts(inode);
2816 	inode->i_generation = get_random_u32();
2817 	info = SHMEM_I(inode);
2818 	memset(info, 0, (char *)inode - (char *)info);
2819 	spin_lock_init(&info->lock);
2820 	atomic_set(&info->stop_eviction, 0);
2821 	info->seals = F_SEAL_SEAL;
2822 	info->flags = flags & VM_NORESERVE;
2823 	info->i_crtime = inode_get_mtime(inode);
2824 	info->fsflags = (dir == NULL) ? 0 :
2825 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2826 	if (info->fsflags)
2827 		shmem_set_inode_flags(inode, info->fsflags);
2828 	INIT_LIST_HEAD(&info->shrinklist);
2829 	INIT_LIST_HEAD(&info->swaplist);
2830 	simple_xattrs_init(&info->xattrs);
2831 	cache_no_acl(inode);
2832 	if (sbinfo->noswap)
2833 		mapping_set_unevictable(inode->i_mapping);
2834 	mapping_set_large_folios(inode->i_mapping);
2835 
2836 	switch (mode & S_IFMT) {
2837 	default:
2838 		inode->i_op = &shmem_special_inode_operations;
2839 		init_special_inode(inode, mode, dev);
2840 		break;
2841 	case S_IFREG:
2842 		inode->i_mapping->a_ops = &shmem_aops;
2843 		inode->i_op = &shmem_inode_operations;
2844 		inode->i_fop = &shmem_file_operations;
2845 		mpol_shared_policy_init(&info->policy,
2846 					 shmem_get_sbmpol(sbinfo));
2847 		break;
2848 	case S_IFDIR:
2849 		inc_nlink(inode);
2850 		/* Some things misbehave if size == 0 on a directory */
2851 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2852 		inode->i_op = &shmem_dir_inode_operations;
2853 		inode->i_fop = &simple_offset_dir_operations;
2854 		simple_offset_init(shmem_get_offset_ctx(inode));
2855 		break;
2856 	case S_IFLNK:
2857 		/*
2858 		 * Must not load anything in the rbtree,
2859 		 * mpol_free_shared_policy will not be called.
2860 		 */
2861 		mpol_shared_policy_init(&info->policy, NULL);
2862 		break;
2863 	}
2864 
2865 	lockdep_annotate_inode_mutex_key(inode);
2866 	return inode;
2867 }
2868 
2869 #ifdef CONFIG_TMPFS_QUOTA
2870 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2871 				     struct super_block *sb, struct inode *dir,
2872 				     umode_t mode, dev_t dev, unsigned long flags)
2873 {
2874 	int err;
2875 	struct inode *inode;
2876 
2877 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2878 	if (IS_ERR(inode))
2879 		return inode;
2880 
2881 	err = dquot_initialize(inode);
2882 	if (err)
2883 		goto errout;
2884 
2885 	err = dquot_alloc_inode(inode);
2886 	if (err) {
2887 		dquot_drop(inode);
2888 		goto errout;
2889 	}
2890 	return inode;
2891 
2892 errout:
2893 	inode->i_flags |= S_NOQUOTA;
2894 	iput(inode);
2895 	return ERR_PTR(err);
2896 }
2897 #else
2898 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2899 				     struct super_block *sb, struct inode *dir,
2900 				     umode_t mode, dev_t dev, unsigned long flags)
2901 {
2902 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2903 }
2904 #endif /* CONFIG_TMPFS_QUOTA */
2905 
2906 #ifdef CONFIG_USERFAULTFD
2907 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2908 			   struct vm_area_struct *dst_vma,
2909 			   unsigned long dst_addr,
2910 			   unsigned long src_addr,
2911 			   uffd_flags_t flags,
2912 			   struct folio **foliop)
2913 {
2914 	struct inode *inode = file_inode(dst_vma->vm_file);
2915 	struct shmem_inode_info *info = SHMEM_I(inode);
2916 	struct address_space *mapping = inode->i_mapping;
2917 	gfp_t gfp = mapping_gfp_mask(mapping);
2918 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2919 	void *page_kaddr;
2920 	struct folio *folio;
2921 	int ret;
2922 	pgoff_t max_off;
2923 
2924 	if (shmem_inode_acct_blocks(inode, 1)) {
2925 		/*
2926 		 * We may have got a page, returned -ENOENT triggering a retry,
2927 		 * and now we find ourselves with -ENOMEM. Release the page, to
2928 		 * avoid a BUG_ON in our caller.
2929 		 */
2930 		if (unlikely(*foliop)) {
2931 			folio_put(*foliop);
2932 			*foliop = NULL;
2933 		}
2934 		return -ENOMEM;
2935 	}
2936 
2937 	if (!*foliop) {
2938 		ret = -ENOMEM;
2939 		folio = shmem_alloc_folio(gfp, 0, info, pgoff);
2940 		if (!folio)
2941 			goto out_unacct_blocks;
2942 
2943 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2944 			page_kaddr = kmap_local_folio(folio, 0);
2945 			/*
2946 			 * The read mmap_lock is held here.  Despite the
2947 			 * mmap_lock being read recursive a deadlock is still
2948 			 * possible if a writer has taken a lock.  For example:
2949 			 *
2950 			 * process A thread 1 takes read lock on own mmap_lock
2951 			 * process A thread 2 calls mmap, blocks taking write lock
2952 			 * process B thread 1 takes page fault, read lock on own mmap lock
2953 			 * process B thread 2 calls mmap, blocks taking write lock
2954 			 * process A thread 1 blocks taking read lock on process B
2955 			 * process B thread 1 blocks taking read lock on process A
2956 			 *
2957 			 * Disable page faults to prevent potential deadlock
2958 			 * and retry the copy outside the mmap_lock.
2959 			 */
2960 			pagefault_disable();
2961 			ret = copy_from_user(page_kaddr,
2962 					     (const void __user *)src_addr,
2963 					     PAGE_SIZE);
2964 			pagefault_enable();
2965 			kunmap_local(page_kaddr);
2966 
2967 			/* fallback to copy_from_user outside mmap_lock */
2968 			if (unlikely(ret)) {
2969 				*foliop = folio;
2970 				ret = -ENOENT;
2971 				/* don't free the page */
2972 				goto out_unacct_blocks;
2973 			}
2974 
2975 			flush_dcache_folio(folio);
2976 		} else {		/* ZEROPAGE */
2977 			clear_user_highpage(&folio->page, dst_addr);
2978 		}
2979 	} else {
2980 		folio = *foliop;
2981 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2982 		*foliop = NULL;
2983 	}
2984 
2985 	VM_BUG_ON(folio_test_locked(folio));
2986 	VM_BUG_ON(folio_test_swapbacked(folio));
2987 	__folio_set_locked(folio);
2988 	__folio_set_swapbacked(folio);
2989 	__folio_mark_uptodate(folio);
2990 
2991 	ret = -EFAULT;
2992 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2993 	if (unlikely(pgoff >= max_off))
2994 		goto out_release;
2995 
2996 	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
2997 	if (ret)
2998 		goto out_release;
2999 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3000 	if (ret)
3001 		goto out_release;
3002 
3003 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3004 				       &folio->page, true, flags);
3005 	if (ret)
3006 		goto out_delete_from_cache;
3007 
3008 	shmem_recalc_inode(inode, 1, 0);
3009 	folio_unlock(folio);
3010 	return 0;
3011 out_delete_from_cache:
3012 	filemap_remove_folio(folio);
3013 out_release:
3014 	folio_unlock(folio);
3015 	folio_put(folio);
3016 out_unacct_blocks:
3017 	shmem_inode_unacct_blocks(inode, 1);
3018 	return ret;
3019 }
3020 #endif /* CONFIG_USERFAULTFD */
3021 
3022 #ifdef CONFIG_TMPFS
3023 static const struct inode_operations shmem_symlink_inode_operations;
3024 static const struct inode_operations shmem_short_symlink_operations;
3025 
3026 static int
3027 shmem_write_begin(struct file *file, struct address_space *mapping,
3028 			loff_t pos, unsigned len,
3029 			struct folio **foliop, void **fsdata)
3030 {
3031 	struct inode *inode = mapping->host;
3032 	struct shmem_inode_info *info = SHMEM_I(inode);
3033 	pgoff_t index = pos >> PAGE_SHIFT;
3034 	struct folio *folio;
3035 	int ret = 0;
3036 
3037 	/* i_rwsem is held by caller */
3038 	if (unlikely(info->seals & (F_SEAL_GROW |
3039 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3040 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3041 			return -EPERM;
3042 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3043 			return -EPERM;
3044 	}
3045 
3046 	ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3047 	if (ret)
3048 		return ret;
3049 
3050 	if (folio_test_hwpoison(folio) ||
3051 	    (folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) {
3052 		folio_unlock(folio);
3053 		folio_put(folio);
3054 		return -EIO;
3055 	}
3056 
3057 	*foliop = folio;
3058 	return 0;
3059 }
3060 
3061 static int
3062 shmem_write_end(struct file *file, struct address_space *mapping,
3063 			loff_t pos, unsigned len, unsigned copied,
3064 			struct folio *folio, void *fsdata)
3065 {
3066 	struct inode *inode = mapping->host;
3067 
3068 	if (pos + copied > inode->i_size)
3069 		i_size_write(inode, pos + copied);
3070 
3071 	if (!folio_test_uptodate(folio)) {
3072 		if (copied < folio_size(folio)) {
3073 			size_t from = offset_in_folio(folio, pos);
3074 			folio_zero_segments(folio, 0, from,
3075 					from + copied, folio_size(folio));
3076 		}
3077 		folio_mark_uptodate(folio);
3078 	}
3079 	folio_mark_dirty(folio);
3080 	folio_unlock(folio);
3081 	folio_put(folio);
3082 
3083 	return copied;
3084 }
3085 
3086 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3087 {
3088 	struct file *file = iocb->ki_filp;
3089 	struct inode *inode = file_inode(file);
3090 	struct address_space *mapping = inode->i_mapping;
3091 	pgoff_t index;
3092 	unsigned long offset;
3093 	int error = 0;
3094 	ssize_t retval = 0;
3095 	loff_t *ppos = &iocb->ki_pos;
3096 
3097 	index = *ppos >> PAGE_SHIFT;
3098 	offset = *ppos & ~PAGE_MASK;
3099 
3100 	for (;;) {
3101 		struct folio *folio = NULL;
3102 		struct page *page = NULL;
3103 		pgoff_t end_index;
3104 		unsigned long nr, ret;
3105 		loff_t i_size = i_size_read(inode);
3106 
3107 		end_index = i_size >> PAGE_SHIFT;
3108 		if (index > end_index)
3109 			break;
3110 		if (index == end_index) {
3111 			nr = i_size & ~PAGE_MASK;
3112 			if (nr <= offset)
3113 				break;
3114 		}
3115 
3116 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3117 		if (error) {
3118 			if (error == -EINVAL)
3119 				error = 0;
3120 			break;
3121 		}
3122 		if (folio) {
3123 			folio_unlock(folio);
3124 
3125 			page = folio_file_page(folio, index);
3126 			if (PageHWPoison(page)) {
3127 				folio_put(folio);
3128 				error = -EIO;
3129 				break;
3130 			}
3131 		}
3132 
3133 		/*
3134 		 * We must evaluate after, since reads (unlike writes)
3135 		 * are called without i_rwsem protection against truncate
3136 		 */
3137 		nr = PAGE_SIZE;
3138 		i_size = i_size_read(inode);
3139 		end_index = i_size >> PAGE_SHIFT;
3140 		if (index == end_index) {
3141 			nr = i_size & ~PAGE_MASK;
3142 			if (nr <= offset) {
3143 				if (folio)
3144 					folio_put(folio);
3145 				break;
3146 			}
3147 		}
3148 		nr -= offset;
3149 
3150 		if (folio) {
3151 			/*
3152 			 * If users can be writing to this page using arbitrary
3153 			 * virtual addresses, take care about potential aliasing
3154 			 * before reading the page on the kernel side.
3155 			 */
3156 			if (mapping_writably_mapped(mapping))
3157 				flush_dcache_page(page);
3158 			/*
3159 			 * Mark the page accessed if we read the beginning.
3160 			 */
3161 			if (!offset)
3162 				folio_mark_accessed(folio);
3163 			/*
3164 			 * Ok, we have the page, and it's up-to-date, so
3165 			 * now we can copy it to user space...
3166 			 */
3167 			ret = copy_page_to_iter(page, offset, nr, to);
3168 			folio_put(folio);
3169 
3170 		} else if (user_backed_iter(to)) {
3171 			/*
3172 			 * Copy to user tends to be so well optimized, but
3173 			 * clear_user() not so much, that it is noticeably
3174 			 * faster to copy the zero page instead of clearing.
3175 			 */
3176 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3177 		} else {
3178 			/*
3179 			 * But submitting the same page twice in a row to
3180 			 * splice() - or others? - can result in confusion:
3181 			 * so don't attempt that optimization on pipes etc.
3182 			 */
3183 			ret = iov_iter_zero(nr, to);
3184 		}
3185 
3186 		retval += ret;
3187 		offset += ret;
3188 		index += offset >> PAGE_SHIFT;
3189 		offset &= ~PAGE_MASK;
3190 
3191 		if (!iov_iter_count(to))
3192 			break;
3193 		if (ret < nr) {
3194 			error = -EFAULT;
3195 			break;
3196 		}
3197 		cond_resched();
3198 	}
3199 
3200 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
3201 	file_accessed(file);
3202 	return retval ? retval : error;
3203 }
3204 
3205 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3206 {
3207 	struct file *file = iocb->ki_filp;
3208 	struct inode *inode = file->f_mapping->host;
3209 	ssize_t ret;
3210 
3211 	inode_lock(inode);
3212 	ret = generic_write_checks(iocb, from);
3213 	if (ret <= 0)
3214 		goto unlock;
3215 	ret = file_remove_privs(file);
3216 	if (ret)
3217 		goto unlock;
3218 	ret = file_update_time(file);
3219 	if (ret)
3220 		goto unlock;
3221 	ret = generic_perform_write(iocb, from);
3222 unlock:
3223 	inode_unlock(inode);
3224 	return ret;
3225 }
3226 
3227 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3228 			      struct pipe_buffer *buf)
3229 {
3230 	return true;
3231 }
3232 
3233 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3234 				  struct pipe_buffer *buf)
3235 {
3236 }
3237 
3238 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3239 				    struct pipe_buffer *buf)
3240 {
3241 	return false;
3242 }
3243 
3244 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3245 	.release	= zero_pipe_buf_release,
3246 	.try_steal	= zero_pipe_buf_try_steal,
3247 	.get		= zero_pipe_buf_get,
3248 };
3249 
3250 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3251 					loff_t fpos, size_t size)
3252 {
3253 	size_t offset = fpos & ~PAGE_MASK;
3254 
3255 	size = min_t(size_t, size, PAGE_SIZE - offset);
3256 
3257 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
3258 		struct pipe_buffer *buf = pipe_head_buf(pipe);
3259 
3260 		*buf = (struct pipe_buffer) {
3261 			.ops	= &zero_pipe_buf_ops,
3262 			.page	= ZERO_PAGE(0),
3263 			.offset	= offset,
3264 			.len	= size,
3265 		};
3266 		pipe->head++;
3267 	}
3268 
3269 	return size;
3270 }
3271 
3272 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3273 				      struct pipe_inode_info *pipe,
3274 				      size_t len, unsigned int flags)
3275 {
3276 	struct inode *inode = file_inode(in);
3277 	struct address_space *mapping = inode->i_mapping;
3278 	struct folio *folio = NULL;
3279 	size_t total_spliced = 0, used, npages, n, part;
3280 	loff_t isize;
3281 	int error = 0;
3282 
3283 	/* Work out how much data we can actually add into the pipe */
3284 	used = pipe_occupancy(pipe->head, pipe->tail);
3285 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
3286 	len = min_t(size_t, len, npages * PAGE_SIZE);
3287 
3288 	do {
3289 		if (*ppos >= i_size_read(inode))
3290 			break;
3291 
3292 		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, 0, &folio,
3293 					SGP_READ);
3294 		if (error) {
3295 			if (error == -EINVAL)
3296 				error = 0;
3297 			break;
3298 		}
3299 		if (folio) {
3300 			folio_unlock(folio);
3301 
3302 			if (folio_test_hwpoison(folio) ||
3303 			    (folio_test_large(folio) &&
3304 			     folio_test_has_hwpoisoned(folio))) {
3305 				error = -EIO;
3306 				break;
3307 			}
3308 		}
3309 
3310 		/*
3311 		 * i_size must be checked after we know the pages are Uptodate.
3312 		 *
3313 		 * Checking i_size after the check allows us to calculate
3314 		 * the correct value for "nr", which means the zero-filled
3315 		 * part of the page is not copied back to userspace (unless
3316 		 * another truncate extends the file - this is desired though).
3317 		 */
3318 		isize = i_size_read(inode);
3319 		if (unlikely(*ppos >= isize))
3320 			break;
3321 		part = min_t(loff_t, isize - *ppos, len);
3322 
3323 		if (folio) {
3324 			/*
3325 			 * If users can be writing to this page using arbitrary
3326 			 * virtual addresses, take care about potential aliasing
3327 			 * before reading the page on the kernel side.
3328 			 */
3329 			if (mapping_writably_mapped(mapping))
3330 				flush_dcache_folio(folio);
3331 			folio_mark_accessed(folio);
3332 			/*
3333 			 * Ok, we have the page, and it's up-to-date, so we can
3334 			 * now splice it into the pipe.
3335 			 */
3336 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3337 			folio_put(folio);
3338 			folio = NULL;
3339 		} else {
3340 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3341 		}
3342 
3343 		if (!n)
3344 			break;
3345 		len -= n;
3346 		total_spliced += n;
3347 		*ppos += n;
3348 		in->f_ra.prev_pos = *ppos;
3349 		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3350 			break;
3351 
3352 		cond_resched();
3353 	} while (len);
3354 
3355 	if (folio)
3356 		folio_put(folio);
3357 
3358 	file_accessed(in);
3359 	return total_spliced ? total_spliced : error;
3360 }
3361 
3362 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3363 {
3364 	struct address_space *mapping = file->f_mapping;
3365 	struct inode *inode = mapping->host;
3366 
3367 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3368 		return generic_file_llseek_size(file, offset, whence,
3369 					MAX_LFS_FILESIZE, i_size_read(inode));
3370 	if (offset < 0)
3371 		return -ENXIO;
3372 
3373 	inode_lock(inode);
3374 	/* We're holding i_rwsem so we can access i_size directly */
3375 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3376 	if (offset >= 0)
3377 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3378 	inode_unlock(inode);
3379 	return offset;
3380 }
3381 
3382 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3383 							 loff_t len)
3384 {
3385 	struct inode *inode = file_inode(file);
3386 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3387 	struct shmem_inode_info *info = SHMEM_I(inode);
3388 	struct shmem_falloc shmem_falloc;
3389 	pgoff_t start, index, end, undo_fallocend;
3390 	int error;
3391 
3392 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3393 		return -EOPNOTSUPP;
3394 
3395 	inode_lock(inode);
3396 
3397 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3398 		struct address_space *mapping = file->f_mapping;
3399 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3400 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3401 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3402 
3403 		/* protected by i_rwsem */
3404 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3405 			error = -EPERM;
3406 			goto out;
3407 		}
3408 
3409 		shmem_falloc.waitq = &shmem_falloc_waitq;
3410 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3411 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3412 		spin_lock(&inode->i_lock);
3413 		inode->i_private = &shmem_falloc;
3414 		spin_unlock(&inode->i_lock);
3415 
3416 		if ((u64)unmap_end > (u64)unmap_start)
3417 			unmap_mapping_range(mapping, unmap_start,
3418 					    1 + unmap_end - unmap_start, 0);
3419 		shmem_truncate_range(inode, offset, offset + len - 1);
3420 		/* No need to unmap again: hole-punching leaves COWed pages */
3421 
3422 		spin_lock(&inode->i_lock);
3423 		inode->i_private = NULL;
3424 		wake_up_all(&shmem_falloc_waitq);
3425 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3426 		spin_unlock(&inode->i_lock);
3427 		error = 0;
3428 		goto out;
3429 	}
3430 
3431 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3432 	error = inode_newsize_ok(inode, offset + len);
3433 	if (error)
3434 		goto out;
3435 
3436 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3437 		error = -EPERM;
3438 		goto out;
3439 	}
3440 
3441 	start = offset >> PAGE_SHIFT;
3442 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3443 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3444 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3445 		error = -ENOSPC;
3446 		goto out;
3447 	}
3448 
3449 	shmem_falloc.waitq = NULL;
3450 	shmem_falloc.start = start;
3451 	shmem_falloc.next  = start;
3452 	shmem_falloc.nr_falloced = 0;
3453 	shmem_falloc.nr_unswapped = 0;
3454 	spin_lock(&inode->i_lock);
3455 	inode->i_private = &shmem_falloc;
3456 	spin_unlock(&inode->i_lock);
3457 
3458 	/*
3459 	 * info->fallocend is only relevant when huge pages might be
3460 	 * involved: to prevent split_huge_page() freeing fallocated
3461 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3462 	 */
3463 	undo_fallocend = info->fallocend;
3464 	if (info->fallocend < end)
3465 		info->fallocend = end;
3466 
3467 	for (index = start; index < end; ) {
3468 		struct folio *folio;
3469 
3470 		/*
3471 		 * Check for fatal signal so that we abort early in OOM
3472 		 * situations. We don't want to abort in case of non-fatal
3473 		 * signals as large fallocate can take noticeable time and
3474 		 * e.g. periodic timers may result in fallocate constantly
3475 		 * restarting.
3476 		 */
3477 		if (fatal_signal_pending(current))
3478 			error = -EINTR;
3479 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3480 			error = -ENOMEM;
3481 		else
3482 			error = shmem_get_folio(inode, index, offset + len,
3483 						&folio, SGP_FALLOC);
3484 		if (error) {
3485 			info->fallocend = undo_fallocend;
3486 			/* Remove the !uptodate folios we added */
3487 			if (index > start) {
3488 				shmem_undo_range(inode,
3489 				    (loff_t)start << PAGE_SHIFT,
3490 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3491 			}
3492 			goto undone;
3493 		}
3494 
3495 		/*
3496 		 * Here is a more important optimization than it appears:
3497 		 * a second SGP_FALLOC on the same large folio will clear it,
3498 		 * making it uptodate and un-undoable if we fail later.
3499 		 */
3500 		index = folio_next_index(folio);
3501 		/* Beware 32-bit wraparound */
3502 		if (!index)
3503 			index--;
3504 
3505 		/*
3506 		 * Inform shmem_writepage() how far we have reached.
3507 		 * No need for lock or barrier: we have the page lock.
3508 		 */
3509 		if (!folio_test_uptodate(folio))
3510 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3511 		shmem_falloc.next = index;
3512 
3513 		/*
3514 		 * If !uptodate, leave it that way so that freeable folios
3515 		 * can be recognized if we need to rollback on error later.
3516 		 * But mark it dirty so that memory pressure will swap rather
3517 		 * than free the folios we are allocating (and SGP_CACHE folios
3518 		 * might still be clean: we now need to mark those dirty too).
3519 		 */
3520 		folio_mark_dirty(folio);
3521 		folio_unlock(folio);
3522 		folio_put(folio);
3523 		cond_resched();
3524 	}
3525 
3526 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3527 		i_size_write(inode, offset + len);
3528 undone:
3529 	spin_lock(&inode->i_lock);
3530 	inode->i_private = NULL;
3531 	spin_unlock(&inode->i_lock);
3532 out:
3533 	if (!error)
3534 		file_modified(file);
3535 	inode_unlock(inode);
3536 	return error;
3537 }
3538 
3539 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3540 {
3541 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3542 
3543 	buf->f_type = TMPFS_MAGIC;
3544 	buf->f_bsize = PAGE_SIZE;
3545 	buf->f_namelen = NAME_MAX;
3546 	if (sbinfo->max_blocks) {
3547 		buf->f_blocks = sbinfo->max_blocks;
3548 		buf->f_bavail =
3549 		buf->f_bfree  = sbinfo->max_blocks -
3550 				percpu_counter_sum(&sbinfo->used_blocks);
3551 	}
3552 	if (sbinfo->max_inodes) {
3553 		buf->f_files = sbinfo->max_inodes;
3554 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3555 	}
3556 	/* else leave those fields 0 like simple_statfs */
3557 
3558 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3559 
3560 	return 0;
3561 }
3562 
3563 /*
3564  * File creation. Allocate an inode, and we're done..
3565  */
3566 static int
3567 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3568 	    struct dentry *dentry, umode_t mode, dev_t dev)
3569 {
3570 	struct inode *inode;
3571 	int error;
3572 
3573 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3574 	if (IS_ERR(inode))
3575 		return PTR_ERR(inode);
3576 
3577 	error = simple_acl_create(dir, inode);
3578 	if (error)
3579 		goto out_iput;
3580 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3581 					     shmem_initxattrs, NULL);
3582 	if (error && error != -EOPNOTSUPP)
3583 		goto out_iput;
3584 
3585 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3586 	if (error)
3587 		goto out_iput;
3588 
3589 	dir->i_size += BOGO_DIRENT_SIZE;
3590 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3591 	inode_inc_iversion(dir);
3592 	d_instantiate(dentry, inode);
3593 	dget(dentry); /* Extra count - pin the dentry in core */
3594 	return error;
3595 
3596 out_iput:
3597 	iput(inode);
3598 	return error;
3599 }
3600 
3601 static int
3602 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3603 	      struct file *file, umode_t mode)
3604 {
3605 	struct inode *inode;
3606 	int error;
3607 
3608 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3609 	if (IS_ERR(inode)) {
3610 		error = PTR_ERR(inode);
3611 		goto err_out;
3612 	}
3613 	error = security_inode_init_security(inode, dir, NULL,
3614 					     shmem_initxattrs, NULL);
3615 	if (error && error != -EOPNOTSUPP)
3616 		goto out_iput;
3617 	error = simple_acl_create(dir, inode);
3618 	if (error)
3619 		goto out_iput;
3620 	d_tmpfile(file, inode);
3621 
3622 err_out:
3623 	return finish_open_simple(file, error);
3624 out_iput:
3625 	iput(inode);
3626 	return error;
3627 }
3628 
3629 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3630 		       struct dentry *dentry, umode_t mode)
3631 {
3632 	int error;
3633 
3634 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3635 	if (error)
3636 		return error;
3637 	inc_nlink(dir);
3638 	return 0;
3639 }
3640 
3641 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3642 			struct dentry *dentry, umode_t mode, bool excl)
3643 {
3644 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3645 }
3646 
3647 /*
3648  * Link a file..
3649  */
3650 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3651 		      struct dentry *dentry)
3652 {
3653 	struct inode *inode = d_inode(old_dentry);
3654 	int ret = 0;
3655 
3656 	/*
3657 	 * No ordinary (disk based) filesystem counts links as inodes;
3658 	 * but each new link needs a new dentry, pinning lowmem, and
3659 	 * tmpfs dentries cannot be pruned until they are unlinked.
3660 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3661 	 * first link must skip that, to get the accounting right.
3662 	 */
3663 	if (inode->i_nlink) {
3664 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3665 		if (ret)
3666 			goto out;
3667 	}
3668 
3669 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3670 	if (ret) {
3671 		if (inode->i_nlink)
3672 			shmem_free_inode(inode->i_sb, 0);
3673 		goto out;
3674 	}
3675 
3676 	dir->i_size += BOGO_DIRENT_SIZE;
3677 	inode_set_mtime_to_ts(dir,
3678 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3679 	inode_inc_iversion(dir);
3680 	inc_nlink(inode);
3681 	ihold(inode);	/* New dentry reference */
3682 	dget(dentry);	/* Extra pinning count for the created dentry */
3683 	d_instantiate(dentry, inode);
3684 out:
3685 	return ret;
3686 }
3687 
3688 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3689 {
3690 	struct inode *inode = d_inode(dentry);
3691 
3692 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3693 		shmem_free_inode(inode->i_sb, 0);
3694 
3695 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3696 
3697 	dir->i_size -= BOGO_DIRENT_SIZE;
3698 	inode_set_mtime_to_ts(dir,
3699 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3700 	inode_inc_iversion(dir);
3701 	drop_nlink(inode);
3702 	dput(dentry);	/* Undo the count from "create" - does all the work */
3703 	return 0;
3704 }
3705 
3706 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3707 {
3708 	if (!simple_offset_empty(dentry))
3709 		return -ENOTEMPTY;
3710 
3711 	drop_nlink(d_inode(dentry));
3712 	drop_nlink(dir);
3713 	return shmem_unlink(dir, dentry);
3714 }
3715 
3716 static int shmem_whiteout(struct mnt_idmap *idmap,
3717 			  struct inode *old_dir, struct dentry *old_dentry)
3718 {
3719 	struct dentry *whiteout;
3720 	int error;
3721 
3722 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3723 	if (!whiteout)
3724 		return -ENOMEM;
3725 
3726 	error = shmem_mknod(idmap, old_dir, whiteout,
3727 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3728 	dput(whiteout);
3729 	if (error)
3730 		return error;
3731 
3732 	/*
3733 	 * Cheat and hash the whiteout while the old dentry is still in
3734 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3735 	 *
3736 	 * d_lookup() will consistently find one of them at this point,
3737 	 * not sure which one, but that isn't even important.
3738 	 */
3739 	d_rehash(whiteout);
3740 	return 0;
3741 }
3742 
3743 /*
3744  * The VFS layer already does all the dentry stuff for rename,
3745  * we just have to decrement the usage count for the target if
3746  * it exists so that the VFS layer correctly free's it when it
3747  * gets overwritten.
3748  */
3749 static int shmem_rename2(struct mnt_idmap *idmap,
3750 			 struct inode *old_dir, struct dentry *old_dentry,
3751 			 struct inode *new_dir, struct dentry *new_dentry,
3752 			 unsigned int flags)
3753 {
3754 	struct inode *inode = d_inode(old_dentry);
3755 	int they_are_dirs = S_ISDIR(inode->i_mode);
3756 	int error;
3757 
3758 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3759 		return -EINVAL;
3760 
3761 	if (flags & RENAME_EXCHANGE)
3762 		return simple_offset_rename_exchange(old_dir, old_dentry,
3763 						     new_dir, new_dentry);
3764 
3765 	if (!simple_offset_empty(new_dentry))
3766 		return -ENOTEMPTY;
3767 
3768 	if (flags & RENAME_WHITEOUT) {
3769 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3770 		if (error)
3771 			return error;
3772 	}
3773 
3774 	error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
3775 	if (error)
3776 		return error;
3777 
3778 	if (d_really_is_positive(new_dentry)) {
3779 		(void) shmem_unlink(new_dir, new_dentry);
3780 		if (they_are_dirs) {
3781 			drop_nlink(d_inode(new_dentry));
3782 			drop_nlink(old_dir);
3783 		}
3784 	} else if (they_are_dirs) {
3785 		drop_nlink(old_dir);
3786 		inc_nlink(new_dir);
3787 	}
3788 
3789 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3790 	new_dir->i_size += BOGO_DIRENT_SIZE;
3791 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3792 	inode_inc_iversion(old_dir);
3793 	inode_inc_iversion(new_dir);
3794 	return 0;
3795 }
3796 
3797 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3798 			 struct dentry *dentry, const char *symname)
3799 {
3800 	int error;
3801 	int len;
3802 	struct inode *inode;
3803 	struct folio *folio;
3804 
3805 	len = strlen(symname) + 1;
3806 	if (len > PAGE_SIZE)
3807 		return -ENAMETOOLONG;
3808 
3809 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3810 				VM_NORESERVE);
3811 	if (IS_ERR(inode))
3812 		return PTR_ERR(inode);
3813 
3814 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3815 					     shmem_initxattrs, NULL);
3816 	if (error && error != -EOPNOTSUPP)
3817 		goto out_iput;
3818 
3819 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3820 	if (error)
3821 		goto out_iput;
3822 
3823 	inode->i_size = len-1;
3824 	if (len <= SHORT_SYMLINK_LEN) {
3825 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3826 		if (!inode->i_link) {
3827 			error = -ENOMEM;
3828 			goto out_remove_offset;
3829 		}
3830 		inode->i_op = &shmem_short_symlink_operations;
3831 	} else {
3832 		inode_nohighmem(inode);
3833 		inode->i_mapping->a_ops = &shmem_aops;
3834 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
3835 		if (error)
3836 			goto out_remove_offset;
3837 		inode->i_op = &shmem_symlink_inode_operations;
3838 		memcpy(folio_address(folio), symname, len);
3839 		folio_mark_uptodate(folio);
3840 		folio_mark_dirty(folio);
3841 		folio_unlock(folio);
3842 		folio_put(folio);
3843 	}
3844 	dir->i_size += BOGO_DIRENT_SIZE;
3845 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3846 	inode_inc_iversion(dir);
3847 	d_instantiate(dentry, inode);
3848 	dget(dentry);
3849 	return 0;
3850 
3851 out_remove_offset:
3852 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3853 out_iput:
3854 	iput(inode);
3855 	return error;
3856 }
3857 
3858 static void shmem_put_link(void *arg)
3859 {
3860 	folio_mark_accessed(arg);
3861 	folio_put(arg);
3862 }
3863 
3864 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3865 				  struct delayed_call *done)
3866 {
3867 	struct folio *folio = NULL;
3868 	int error;
3869 
3870 	if (!dentry) {
3871 		folio = filemap_get_folio(inode->i_mapping, 0);
3872 		if (IS_ERR(folio))
3873 			return ERR_PTR(-ECHILD);
3874 		if (PageHWPoison(folio_page(folio, 0)) ||
3875 		    !folio_test_uptodate(folio)) {
3876 			folio_put(folio);
3877 			return ERR_PTR(-ECHILD);
3878 		}
3879 	} else {
3880 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
3881 		if (error)
3882 			return ERR_PTR(error);
3883 		if (!folio)
3884 			return ERR_PTR(-ECHILD);
3885 		if (PageHWPoison(folio_page(folio, 0))) {
3886 			folio_unlock(folio);
3887 			folio_put(folio);
3888 			return ERR_PTR(-ECHILD);
3889 		}
3890 		folio_unlock(folio);
3891 	}
3892 	set_delayed_call(done, shmem_put_link, folio);
3893 	return folio_address(folio);
3894 }
3895 
3896 #ifdef CONFIG_TMPFS_XATTR
3897 
3898 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3899 {
3900 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3901 
3902 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3903 
3904 	return 0;
3905 }
3906 
3907 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3908 			      struct dentry *dentry, struct fileattr *fa)
3909 {
3910 	struct inode *inode = d_inode(dentry);
3911 	struct shmem_inode_info *info = SHMEM_I(inode);
3912 
3913 	if (fileattr_has_fsx(fa))
3914 		return -EOPNOTSUPP;
3915 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3916 		return -EOPNOTSUPP;
3917 
3918 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3919 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3920 
3921 	shmem_set_inode_flags(inode, info->fsflags);
3922 	inode_set_ctime_current(inode);
3923 	inode_inc_iversion(inode);
3924 	return 0;
3925 }
3926 
3927 /*
3928  * Superblocks without xattr inode operations may get some security.* xattr
3929  * support from the LSM "for free". As soon as we have any other xattrs
3930  * like ACLs, we also need to implement the security.* handlers at
3931  * filesystem level, though.
3932  */
3933 
3934 /*
3935  * Callback for security_inode_init_security() for acquiring xattrs.
3936  */
3937 static int shmem_initxattrs(struct inode *inode,
3938 			    const struct xattr *xattr_array, void *fs_info)
3939 {
3940 	struct shmem_inode_info *info = SHMEM_I(inode);
3941 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3942 	const struct xattr *xattr;
3943 	struct simple_xattr *new_xattr;
3944 	size_t ispace = 0;
3945 	size_t len;
3946 
3947 	if (sbinfo->max_inodes) {
3948 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3949 			ispace += simple_xattr_space(xattr->name,
3950 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3951 		}
3952 		if (ispace) {
3953 			raw_spin_lock(&sbinfo->stat_lock);
3954 			if (sbinfo->free_ispace < ispace)
3955 				ispace = 0;
3956 			else
3957 				sbinfo->free_ispace -= ispace;
3958 			raw_spin_unlock(&sbinfo->stat_lock);
3959 			if (!ispace)
3960 				return -ENOSPC;
3961 		}
3962 	}
3963 
3964 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3965 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3966 		if (!new_xattr)
3967 			break;
3968 
3969 		len = strlen(xattr->name) + 1;
3970 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3971 					  GFP_KERNEL_ACCOUNT);
3972 		if (!new_xattr->name) {
3973 			kvfree(new_xattr);
3974 			break;
3975 		}
3976 
3977 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3978 		       XATTR_SECURITY_PREFIX_LEN);
3979 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3980 		       xattr->name, len);
3981 
3982 		simple_xattr_add(&info->xattrs, new_xattr);
3983 	}
3984 
3985 	if (xattr->name != NULL) {
3986 		if (ispace) {
3987 			raw_spin_lock(&sbinfo->stat_lock);
3988 			sbinfo->free_ispace += ispace;
3989 			raw_spin_unlock(&sbinfo->stat_lock);
3990 		}
3991 		simple_xattrs_free(&info->xattrs, NULL);
3992 		return -ENOMEM;
3993 	}
3994 
3995 	return 0;
3996 }
3997 
3998 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3999 				   struct dentry *unused, struct inode *inode,
4000 				   const char *name, void *buffer, size_t size)
4001 {
4002 	struct shmem_inode_info *info = SHMEM_I(inode);
4003 
4004 	name = xattr_full_name(handler, name);
4005 	return simple_xattr_get(&info->xattrs, name, buffer, size);
4006 }
4007 
4008 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4009 				   struct mnt_idmap *idmap,
4010 				   struct dentry *unused, struct inode *inode,
4011 				   const char *name, const void *value,
4012 				   size_t size, int flags)
4013 {
4014 	struct shmem_inode_info *info = SHMEM_I(inode);
4015 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4016 	struct simple_xattr *old_xattr;
4017 	size_t ispace = 0;
4018 
4019 	name = xattr_full_name(handler, name);
4020 	if (value && sbinfo->max_inodes) {
4021 		ispace = simple_xattr_space(name, size);
4022 		raw_spin_lock(&sbinfo->stat_lock);
4023 		if (sbinfo->free_ispace < ispace)
4024 			ispace = 0;
4025 		else
4026 			sbinfo->free_ispace -= ispace;
4027 		raw_spin_unlock(&sbinfo->stat_lock);
4028 		if (!ispace)
4029 			return -ENOSPC;
4030 	}
4031 
4032 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4033 	if (!IS_ERR(old_xattr)) {
4034 		ispace = 0;
4035 		if (old_xattr && sbinfo->max_inodes)
4036 			ispace = simple_xattr_space(old_xattr->name,
4037 						    old_xattr->size);
4038 		simple_xattr_free(old_xattr);
4039 		old_xattr = NULL;
4040 		inode_set_ctime_current(inode);
4041 		inode_inc_iversion(inode);
4042 	}
4043 	if (ispace) {
4044 		raw_spin_lock(&sbinfo->stat_lock);
4045 		sbinfo->free_ispace += ispace;
4046 		raw_spin_unlock(&sbinfo->stat_lock);
4047 	}
4048 	return PTR_ERR(old_xattr);
4049 }
4050 
4051 static const struct xattr_handler shmem_security_xattr_handler = {
4052 	.prefix = XATTR_SECURITY_PREFIX,
4053 	.get = shmem_xattr_handler_get,
4054 	.set = shmem_xattr_handler_set,
4055 };
4056 
4057 static const struct xattr_handler shmem_trusted_xattr_handler = {
4058 	.prefix = XATTR_TRUSTED_PREFIX,
4059 	.get = shmem_xattr_handler_get,
4060 	.set = shmem_xattr_handler_set,
4061 };
4062 
4063 static const struct xattr_handler shmem_user_xattr_handler = {
4064 	.prefix = XATTR_USER_PREFIX,
4065 	.get = shmem_xattr_handler_get,
4066 	.set = shmem_xattr_handler_set,
4067 };
4068 
4069 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4070 	&shmem_security_xattr_handler,
4071 	&shmem_trusted_xattr_handler,
4072 	&shmem_user_xattr_handler,
4073 	NULL
4074 };
4075 
4076 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4077 {
4078 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4079 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4080 }
4081 #endif /* CONFIG_TMPFS_XATTR */
4082 
4083 static const struct inode_operations shmem_short_symlink_operations = {
4084 	.getattr	= shmem_getattr,
4085 	.setattr	= shmem_setattr,
4086 	.get_link	= simple_get_link,
4087 #ifdef CONFIG_TMPFS_XATTR
4088 	.listxattr	= shmem_listxattr,
4089 #endif
4090 };
4091 
4092 static const struct inode_operations shmem_symlink_inode_operations = {
4093 	.getattr	= shmem_getattr,
4094 	.setattr	= shmem_setattr,
4095 	.get_link	= shmem_get_link,
4096 #ifdef CONFIG_TMPFS_XATTR
4097 	.listxattr	= shmem_listxattr,
4098 #endif
4099 };
4100 
4101 static struct dentry *shmem_get_parent(struct dentry *child)
4102 {
4103 	return ERR_PTR(-ESTALE);
4104 }
4105 
4106 static int shmem_match(struct inode *ino, void *vfh)
4107 {
4108 	__u32 *fh = vfh;
4109 	__u64 inum = fh[2];
4110 	inum = (inum << 32) | fh[1];
4111 	return ino->i_ino == inum && fh[0] == ino->i_generation;
4112 }
4113 
4114 /* Find any alias of inode, but prefer a hashed alias */
4115 static struct dentry *shmem_find_alias(struct inode *inode)
4116 {
4117 	struct dentry *alias = d_find_alias(inode);
4118 
4119 	return alias ?: d_find_any_alias(inode);
4120 }
4121 
4122 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4123 		struct fid *fid, int fh_len, int fh_type)
4124 {
4125 	struct inode *inode;
4126 	struct dentry *dentry = NULL;
4127 	u64 inum;
4128 
4129 	if (fh_len < 3)
4130 		return NULL;
4131 
4132 	inum = fid->raw[2];
4133 	inum = (inum << 32) | fid->raw[1];
4134 
4135 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4136 			shmem_match, fid->raw);
4137 	if (inode) {
4138 		dentry = shmem_find_alias(inode);
4139 		iput(inode);
4140 	}
4141 
4142 	return dentry;
4143 }
4144 
4145 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4146 				struct inode *parent)
4147 {
4148 	if (*len < 3) {
4149 		*len = 3;
4150 		return FILEID_INVALID;
4151 	}
4152 
4153 	if (inode_unhashed(inode)) {
4154 		/* Unfortunately insert_inode_hash is not idempotent,
4155 		 * so as we hash inodes here rather than at creation
4156 		 * time, we need a lock to ensure we only try
4157 		 * to do it once
4158 		 */
4159 		static DEFINE_SPINLOCK(lock);
4160 		spin_lock(&lock);
4161 		if (inode_unhashed(inode))
4162 			__insert_inode_hash(inode,
4163 					    inode->i_ino + inode->i_generation);
4164 		spin_unlock(&lock);
4165 	}
4166 
4167 	fh[0] = inode->i_generation;
4168 	fh[1] = inode->i_ino;
4169 	fh[2] = ((__u64)inode->i_ino) >> 32;
4170 
4171 	*len = 3;
4172 	return 1;
4173 }
4174 
4175 static const struct export_operations shmem_export_ops = {
4176 	.get_parent     = shmem_get_parent,
4177 	.encode_fh      = shmem_encode_fh,
4178 	.fh_to_dentry	= shmem_fh_to_dentry,
4179 };
4180 
4181 enum shmem_param {
4182 	Opt_gid,
4183 	Opt_huge,
4184 	Opt_mode,
4185 	Opt_mpol,
4186 	Opt_nr_blocks,
4187 	Opt_nr_inodes,
4188 	Opt_size,
4189 	Opt_uid,
4190 	Opt_inode32,
4191 	Opt_inode64,
4192 	Opt_noswap,
4193 	Opt_quota,
4194 	Opt_usrquota,
4195 	Opt_grpquota,
4196 	Opt_usrquota_block_hardlimit,
4197 	Opt_usrquota_inode_hardlimit,
4198 	Opt_grpquota_block_hardlimit,
4199 	Opt_grpquota_inode_hardlimit,
4200 };
4201 
4202 static const struct constant_table shmem_param_enums_huge[] = {
4203 	{"never",	SHMEM_HUGE_NEVER },
4204 	{"always",	SHMEM_HUGE_ALWAYS },
4205 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
4206 	{"advise",	SHMEM_HUGE_ADVISE },
4207 	{}
4208 };
4209 
4210 const struct fs_parameter_spec shmem_fs_parameters[] = {
4211 	fsparam_gid   ("gid",		Opt_gid),
4212 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
4213 	fsparam_u32oct("mode",		Opt_mode),
4214 	fsparam_string("mpol",		Opt_mpol),
4215 	fsparam_string("nr_blocks",	Opt_nr_blocks),
4216 	fsparam_string("nr_inodes",	Opt_nr_inodes),
4217 	fsparam_string("size",		Opt_size),
4218 	fsparam_uid   ("uid",		Opt_uid),
4219 	fsparam_flag  ("inode32",	Opt_inode32),
4220 	fsparam_flag  ("inode64",	Opt_inode64),
4221 	fsparam_flag  ("noswap",	Opt_noswap),
4222 #ifdef CONFIG_TMPFS_QUOTA
4223 	fsparam_flag  ("quota",		Opt_quota),
4224 	fsparam_flag  ("usrquota",	Opt_usrquota),
4225 	fsparam_flag  ("grpquota",	Opt_grpquota),
4226 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4227 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4228 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4229 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4230 #endif
4231 	{}
4232 };
4233 
4234 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4235 {
4236 	struct shmem_options *ctx = fc->fs_private;
4237 	struct fs_parse_result result;
4238 	unsigned long long size;
4239 	char *rest;
4240 	int opt;
4241 	kuid_t kuid;
4242 	kgid_t kgid;
4243 
4244 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4245 	if (opt < 0)
4246 		return opt;
4247 
4248 	switch (opt) {
4249 	case Opt_size:
4250 		size = memparse(param->string, &rest);
4251 		if (*rest == '%') {
4252 			size <<= PAGE_SHIFT;
4253 			size *= totalram_pages();
4254 			do_div(size, 100);
4255 			rest++;
4256 		}
4257 		if (*rest)
4258 			goto bad_value;
4259 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4260 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4261 		break;
4262 	case Opt_nr_blocks:
4263 		ctx->blocks = memparse(param->string, &rest);
4264 		if (*rest || ctx->blocks > LONG_MAX)
4265 			goto bad_value;
4266 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4267 		break;
4268 	case Opt_nr_inodes:
4269 		ctx->inodes = memparse(param->string, &rest);
4270 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4271 			goto bad_value;
4272 		ctx->seen |= SHMEM_SEEN_INODES;
4273 		break;
4274 	case Opt_mode:
4275 		ctx->mode = result.uint_32 & 07777;
4276 		break;
4277 	case Opt_uid:
4278 		kuid = result.uid;
4279 
4280 		/*
4281 		 * The requested uid must be representable in the
4282 		 * filesystem's idmapping.
4283 		 */
4284 		if (!kuid_has_mapping(fc->user_ns, kuid))
4285 			goto bad_value;
4286 
4287 		ctx->uid = kuid;
4288 		break;
4289 	case Opt_gid:
4290 		kgid = result.gid;
4291 
4292 		/*
4293 		 * The requested gid must be representable in the
4294 		 * filesystem's idmapping.
4295 		 */
4296 		if (!kgid_has_mapping(fc->user_ns, kgid))
4297 			goto bad_value;
4298 
4299 		ctx->gid = kgid;
4300 		break;
4301 	case Opt_huge:
4302 		ctx->huge = result.uint_32;
4303 		if (ctx->huge != SHMEM_HUGE_NEVER &&
4304 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4305 		      has_transparent_hugepage()))
4306 			goto unsupported_parameter;
4307 		ctx->seen |= SHMEM_SEEN_HUGE;
4308 		break;
4309 	case Opt_mpol:
4310 		if (IS_ENABLED(CONFIG_NUMA)) {
4311 			mpol_put(ctx->mpol);
4312 			ctx->mpol = NULL;
4313 			if (mpol_parse_str(param->string, &ctx->mpol))
4314 				goto bad_value;
4315 			break;
4316 		}
4317 		goto unsupported_parameter;
4318 	case Opt_inode32:
4319 		ctx->full_inums = false;
4320 		ctx->seen |= SHMEM_SEEN_INUMS;
4321 		break;
4322 	case Opt_inode64:
4323 		if (sizeof(ino_t) < 8) {
4324 			return invalfc(fc,
4325 				       "Cannot use inode64 with <64bit inums in kernel\n");
4326 		}
4327 		ctx->full_inums = true;
4328 		ctx->seen |= SHMEM_SEEN_INUMS;
4329 		break;
4330 	case Opt_noswap:
4331 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4332 			return invalfc(fc,
4333 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4334 		}
4335 		ctx->noswap = true;
4336 		ctx->seen |= SHMEM_SEEN_NOSWAP;
4337 		break;
4338 	case Opt_quota:
4339 		if (fc->user_ns != &init_user_ns)
4340 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4341 		ctx->seen |= SHMEM_SEEN_QUOTA;
4342 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4343 		break;
4344 	case Opt_usrquota:
4345 		if (fc->user_ns != &init_user_ns)
4346 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4347 		ctx->seen |= SHMEM_SEEN_QUOTA;
4348 		ctx->quota_types |= QTYPE_MASK_USR;
4349 		break;
4350 	case Opt_grpquota:
4351 		if (fc->user_ns != &init_user_ns)
4352 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4353 		ctx->seen |= SHMEM_SEEN_QUOTA;
4354 		ctx->quota_types |= QTYPE_MASK_GRP;
4355 		break;
4356 	case Opt_usrquota_block_hardlimit:
4357 		size = memparse(param->string, &rest);
4358 		if (*rest || !size)
4359 			goto bad_value;
4360 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4361 			return invalfc(fc,
4362 				       "User quota block hardlimit too large.");
4363 		ctx->qlimits.usrquota_bhardlimit = size;
4364 		break;
4365 	case Opt_grpquota_block_hardlimit:
4366 		size = memparse(param->string, &rest);
4367 		if (*rest || !size)
4368 			goto bad_value;
4369 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4370 			return invalfc(fc,
4371 				       "Group quota block hardlimit too large.");
4372 		ctx->qlimits.grpquota_bhardlimit = size;
4373 		break;
4374 	case Opt_usrquota_inode_hardlimit:
4375 		size = memparse(param->string, &rest);
4376 		if (*rest || !size)
4377 			goto bad_value;
4378 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4379 			return invalfc(fc,
4380 				       "User quota inode hardlimit too large.");
4381 		ctx->qlimits.usrquota_ihardlimit = size;
4382 		break;
4383 	case Opt_grpquota_inode_hardlimit:
4384 		size = memparse(param->string, &rest);
4385 		if (*rest || !size)
4386 			goto bad_value;
4387 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4388 			return invalfc(fc,
4389 				       "Group quota inode hardlimit too large.");
4390 		ctx->qlimits.grpquota_ihardlimit = size;
4391 		break;
4392 	}
4393 	return 0;
4394 
4395 unsupported_parameter:
4396 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4397 bad_value:
4398 	return invalfc(fc, "Bad value for '%s'", param->key);
4399 }
4400 
4401 static int shmem_parse_options(struct fs_context *fc, void *data)
4402 {
4403 	char *options = data;
4404 
4405 	if (options) {
4406 		int err = security_sb_eat_lsm_opts(options, &fc->security);
4407 		if (err)
4408 			return err;
4409 	}
4410 
4411 	while (options != NULL) {
4412 		char *this_char = options;
4413 		for (;;) {
4414 			/*
4415 			 * NUL-terminate this option: unfortunately,
4416 			 * mount options form a comma-separated list,
4417 			 * but mpol's nodelist may also contain commas.
4418 			 */
4419 			options = strchr(options, ',');
4420 			if (options == NULL)
4421 				break;
4422 			options++;
4423 			if (!isdigit(*options)) {
4424 				options[-1] = '\0';
4425 				break;
4426 			}
4427 		}
4428 		if (*this_char) {
4429 			char *value = strchr(this_char, '=');
4430 			size_t len = 0;
4431 			int err;
4432 
4433 			if (value) {
4434 				*value++ = '\0';
4435 				len = strlen(value);
4436 			}
4437 			err = vfs_parse_fs_string(fc, this_char, value, len);
4438 			if (err < 0)
4439 				return err;
4440 		}
4441 	}
4442 	return 0;
4443 }
4444 
4445 /*
4446  * Reconfigure a shmem filesystem.
4447  */
4448 static int shmem_reconfigure(struct fs_context *fc)
4449 {
4450 	struct shmem_options *ctx = fc->fs_private;
4451 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4452 	unsigned long used_isp;
4453 	struct mempolicy *mpol = NULL;
4454 	const char *err;
4455 
4456 	raw_spin_lock(&sbinfo->stat_lock);
4457 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4458 
4459 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4460 		if (!sbinfo->max_blocks) {
4461 			err = "Cannot retroactively limit size";
4462 			goto out;
4463 		}
4464 		if (percpu_counter_compare(&sbinfo->used_blocks,
4465 					   ctx->blocks) > 0) {
4466 			err = "Too small a size for current use";
4467 			goto out;
4468 		}
4469 	}
4470 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4471 		if (!sbinfo->max_inodes) {
4472 			err = "Cannot retroactively limit inodes";
4473 			goto out;
4474 		}
4475 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4476 			err = "Too few inodes for current use";
4477 			goto out;
4478 		}
4479 	}
4480 
4481 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4482 	    sbinfo->next_ino > UINT_MAX) {
4483 		err = "Current inum too high to switch to 32-bit inums";
4484 		goto out;
4485 	}
4486 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4487 		err = "Cannot disable swap on remount";
4488 		goto out;
4489 	}
4490 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4491 		err = "Cannot enable swap on remount if it was disabled on first mount";
4492 		goto out;
4493 	}
4494 
4495 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4496 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4497 		err = "Cannot enable quota on remount";
4498 		goto out;
4499 	}
4500 
4501 #ifdef CONFIG_TMPFS_QUOTA
4502 #define CHANGED_LIMIT(name)						\
4503 	(ctx->qlimits.name## hardlimit &&				\
4504 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4505 
4506 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4507 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4508 		err = "Cannot change global quota limit on remount";
4509 		goto out;
4510 	}
4511 #endif /* CONFIG_TMPFS_QUOTA */
4512 
4513 	if (ctx->seen & SHMEM_SEEN_HUGE)
4514 		sbinfo->huge = ctx->huge;
4515 	if (ctx->seen & SHMEM_SEEN_INUMS)
4516 		sbinfo->full_inums = ctx->full_inums;
4517 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4518 		sbinfo->max_blocks  = ctx->blocks;
4519 	if (ctx->seen & SHMEM_SEEN_INODES) {
4520 		sbinfo->max_inodes  = ctx->inodes;
4521 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4522 	}
4523 
4524 	/*
4525 	 * Preserve previous mempolicy unless mpol remount option was specified.
4526 	 */
4527 	if (ctx->mpol) {
4528 		mpol = sbinfo->mpol;
4529 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4530 		ctx->mpol = NULL;
4531 	}
4532 
4533 	if (ctx->noswap)
4534 		sbinfo->noswap = true;
4535 
4536 	raw_spin_unlock(&sbinfo->stat_lock);
4537 	mpol_put(mpol);
4538 	return 0;
4539 out:
4540 	raw_spin_unlock(&sbinfo->stat_lock);
4541 	return invalfc(fc, "%s", err);
4542 }
4543 
4544 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4545 {
4546 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4547 	struct mempolicy *mpol;
4548 
4549 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4550 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4551 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4552 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4553 	if (sbinfo->mode != (0777 | S_ISVTX))
4554 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4555 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4556 		seq_printf(seq, ",uid=%u",
4557 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4558 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4559 		seq_printf(seq, ",gid=%u",
4560 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4561 
4562 	/*
4563 	 * Showing inode{64,32} might be useful even if it's the system default,
4564 	 * since then people don't have to resort to checking both here and
4565 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4566 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4567 	 *
4568 	 * We hide it when inode64 isn't the default and we are using 32-bit
4569 	 * inodes, since that probably just means the feature isn't even under
4570 	 * consideration.
4571 	 *
4572 	 * As such:
4573 	 *
4574 	 *                     +-----------------+-----------------+
4575 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4576 	 *  +------------------+-----------------+-----------------+
4577 	 *  | full_inums=true  | show            | show            |
4578 	 *  | full_inums=false | show            | hide            |
4579 	 *  +------------------+-----------------+-----------------+
4580 	 *
4581 	 */
4582 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4583 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4584 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4585 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4586 	if (sbinfo->huge)
4587 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4588 #endif
4589 	mpol = shmem_get_sbmpol(sbinfo);
4590 	shmem_show_mpol(seq, mpol);
4591 	mpol_put(mpol);
4592 	if (sbinfo->noswap)
4593 		seq_printf(seq, ",noswap");
4594 #ifdef CONFIG_TMPFS_QUOTA
4595 	if (sb_has_quota_active(root->d_sb, USRQUOTA))
4596 		seq_printf(seq, ",usrquota");
4597 	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4598 		seq_printf(seq, ",grpquota");
4599 	if (sbinfo->qlimits.usrquota_bhardlimit)
4600 		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4601 			   sbinfo->qlimits.usrquota_bhardlimit);
4602 	if (sbinfo->qlimits.grpquota_bhardlimit)
4603 		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4604 			   sbinfo->qlimits.grpquota_bhardlimit);
4605 	if (sbinfo->qlimits.usrquota_ihardlimit)
4606 		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4607 			   sbinfo->qlimits.usrquota_ihardlimit);
4608 	if (sbinfo->qlimits.grpquota_ihardlimit)
4609 		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4610 			   sbinfo->qlimits.grpquota_ihardlimit);
4611 #endif
4612 	return 0;
4613 }
4614 
4615 #endif /* CONFIG_TMPFS */
4616 
4617 static void shmem_put_super(struct super_block *sb)
4618 {
4619 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4620 
4621 #ifdef CONFIG_TMPFS_QUOTA
4622 	shmem_disable_quotas(sb);
4623 #endif
4624 	free_percpu(sbinfo->ino_batch);
4625 	percpu_counter_destroy(&sbinfo->used_blocks);
4626 	mpol_put(sbinfo->mpol);
4627 	kfree(sbinfo);
4628 	sb->s_fs_info = NULL;
4629 }
4630 
4631 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4632 {
4633 	struct shmem_options *ctx = fc->fs_private;
4634 	struct inode *inode;
4635 	struct shmem_sb_info *sbinfo;
4636 	int error = -ENOMEM;
4637 
4638 	/* Round up to L1_CACHE_BYTES to resist false sharing */
4639 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4640 				L1_CACHE_BYTES), GFP_KERNEL);
4641 	if (!sbinfo)
4642 		return error;
4643 
4644 	sb->s_fs_info = sbinfo;
4645 
4646 #ifdef CONFIG_TMPFS
4647 	/*
4648 	 * Per default we only allow half of the physical ram per
4649 	 * tmpfs instance, limiting inodes to one per page of lowmem;
4650 	 * but the internal instance is left unlimited.
4651 	 */
4652 	if (!(sb->s_flags & SB_KERNMOUNT)) {
4653 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4654 			ctx->blocks = shmem_default_max_blocks();
4655 		if (!(ctx->seen & SHMEM_SEEN_INODES))
4656 			ctx->inodes = shmem_default_max_inodes();
4657 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4658 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4659 		sbinfo->noswap = ctx->noswap;
4660 	} else {
4661 		sb->s_flags |= SB_NOUSER;
4662 	}
4663 	sb->s_export_op = &shmem_export_ops;
4664 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4665 #else
4666 	sb->s_flags |= SB_NOUSER;
4667 #endif
4668 	sbinfo->max_blocks = ctx->blocks;
4669 	sbinfo->max_inodes = ctx->inodes;
4670 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4671 	if (sb->s_flags & SB_KERNMOUNT) {
4672 		sbinfo->ino_batch = alloc_percpu(ino_t);
4673 		if (!sbinfo->ino_batch)
4674 			goto failed;
4675 	}
4676 	sbinfo->uid = ctx->uid;
4677 	sbinfo->gid = ctx->gid;
4678 	sbinfo->full_inums = ctx->full_inums;
4679 	sbinfo->mode = ctx->mode;
4680 	sbinfo->huge = ctx->huge;
4681 	sbinfo->mpol = ctx->mpol;
4682 	ctx->mpol = NULL;
4683 
4684 	raw_spin_lock_init(&sbinfo->stat_lock);
4685 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4686 		goto failed;
4687 	spin_lock_init(&sbinfo->shrinklist_lock);
4688 	INIT_LIST_HEAD(&sbinfo->shrinklist);
4689 
4690 	sb->s_maxbytes = MAX_LFS_FILESIZE;
4691 	sb->s_blocksize = PAGE_SIZE;
4692 	sb->s_blocksize_bits = PAGE_SHIFT;
4693 	sb->s_magic = TMPFS_MAGIC;
4694 	sb->s_op = &shmem_ops;
4695 	sb->s_time_gran = 1;
4696 #ifdef CONFIG_TMPFS_XATTR
4697 	sb->s_xattr = shmem_xattr_handlers;
4698 #endif
4699 #ifdef CONFIG_TMPFS_POSIX_ACL
4700 	sb->s_flags |= SB_POSIXACL;
4701 #endif
4702 	uuid_t uuid;
4703 	uuid_gen(&uuid);
4704 	super_set_uuid(sb, uuid.b, sizeof(uuid));
4705 
4706 #ifdef CONFIG_TMPFS_QUOTA
4707 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4708 		sb->dq_op = &shmem_quota_operations;
4709 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4710 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4711 
4712 		/* Copy the default limits from ctx into sbinfo */
4713 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4714 		       sizeof(struct shmem_quota_limits));
4715 
4716 		if (shmem_enable_quotas(sb, ctx->quota_types))
4717 			goto failed;
4718 	}
4719 #endif /* CONFIG_TMPFS_QUOTA */
4720 
4721 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
4722 				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
4723 	if (IS_ERR(inode)) {
4724 		error = PTR_ERR(inode);
4725 		goto failed;
4726 	}
4727 	inode->i_uid = sbinfo->uid;
4728 	inode->i_gid = sbinfo->gid;
4729 	sb->s_root = d_make_root(inode);
4730 	if (!sb->s_root)
4731 		goto failed;
4732 	return 0;
4733 
4734 failed:
4735 	shmem_put_super(sb);
4736 	return error;
4737 }
4738 
4739 static int shmem_get_tree(struct fs_context *fc)
4740 {
4741 	return get_tree_nodev(fc, shmem_fill_super);
4742 }
4743 
4744 static void shmem_free_fc(struct fs_context *fc)
4745 {
4746 	struct shmem_options *ctx = fc->fs_private;
4747 
4748 	if (ctx) {
4749 		mpol_put(ctx->mpol);
4750 		kfree(ctx);
4751 	}
4752 }
4753 
4754 static const struct fs_context_operations shmem_fs_context_ops = {
4755 	.free			= shmem_free_fc,
4756 	.get_tree		= shmem_get_tree,
4757 #ifdef CONFIG_TMPFS
4758 	.parse_monolithic	= shmem_parse_options,
4759 	.parse_param		= shmem_parse_one,
4760 	.reconfigure		= shmem_reconfigure,
4761 #endif
4762 };
4763 
4764 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4765 
4766 static struct inode *shmem_alloc_inode(struct super_block *sb)
4767 {
4768 	struct shmem_inode_info *info;
4769 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4770 	if (!info)
4771 		return NULL;
4772 	return &info->vfs_inode;
4773 }
4774 
4775 static void shmem_free_in_core_inode(struct inode *inode)
4776 {
4777 	if (S_ISLNK(inode->i_mode))
4778 		kfree(inode->i_link);
4779 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4780 }
4781 
4782 static void shmem_destroy_inode(struct inode *inode)
4783 {
4784 	if (S_ISREG(inode->i_mode))
4785 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4786 	if (S_ISDIR(inode->i_mode))
4787 		simple_offset_destroy(shmem_get_offset_ctx(inode));
4788 }
4789 
4790 static void shmem_init_inode(void *foo)
4791 {
4792 	struct shmem_inode_info *info = foo;
4793 	inode_init_once(&info->vfs_inode);
4794 }
4795 
4796 static void __init shmem_init_inodecache(void)
4797 {
4798 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4799 				sizeof(struct shmem_inode_info),
4800 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4801 }
4802 
4803 static void __init shmem_destroy_inodecache(void)
4804 {
4805 	kmem_cache_destroy(shmem_inode_cachep);
4806 }
4807 
4808 /* Keep the page in page cache instead of truncating it */
4809 static int shmem_error_remove_folio(struct address_space *mapping,
4810 				   struct folio *folio)
4811 {
4812 	return 0;
4813 }
4814 
4815 static const struct address_space_operations shmem_aops = {
4816 	.writepage	= shmem_writepage,
4817 	.dirty_folio	= noop_dirty_folio,
4818 #ifdef CONFIG_TMPFS
4819 	.write_begin	= shmem_write_begin,
4820 	.write_end	= shmem_write_end,
4821 #endif
4822 #ifdef CONFIG_MIGRATION
4823 	.migrate_folio	= migrate_folio,
4824 #endif
4825 	.error_remove_folio = shmem_error_remove_folio,
4826 };
4827 
4828 static const struct file_operations shmem_file_operations = {
4829 	.mmap		= shmem_mmap,
4830 	.open		= shmem_file_open,
4831 	.get_unmapped_area = shmem_get_unmapped_area,
4832 #ifdef CONFIG_TMPFS
4833 	.llseek		= shmem_file_llseek,
4834 	.read_iter	= shmem_file_read_iter,
4835 	.write_iter	= shmem_file_write_iter,
4836 	.fsync		= noop_fsync,
4837 	.splice_read	= shmem_file_splice_read,
4838 	.splice_write	= iter_file_splice_write,
4839 	.fallocate	= shmem_fallocate,
4840 #endif
4841 };
4842 
4843 static const struct inode_operations shmem_inode_operations = {
4844 	.getattr	= shmem_getattr,
4845 	.setattr	= shmem_setattr,
4846 #ifdef CONFIG_TMPFS_XATTR
4847 	.listxattr	= shmem_listxattr,
4848 	.set_acl	= simple_set_acl,
4849 	.fileattr_get	= shmem_fileattr_get,
4850 	.fileattr_set	= shmem_fileattr_set,
4851 #endif
4852 };
4853 
4854 static const struct inode_operations shmem_dir_inode_operations = {
4855 #ifdef CONFIG_TMPFS
4856 	.getattr	= shmem_getattr,
4857 	.create		= shmem_create,
4858 	.lookup		= simple_lookup,
4859 	.link		= shmem_link,
4860 	.unlink		= shmem_unlink,
4861 	.symlink	= shmem_symlink,
4862 	.mkdir		= shmem_mkdir,
4863 	.rmdir		= shmem_rmdir,
4864 	.mknod		= shmem_mknod,
4865 	.rename		= shmem_rename2,
4866 	.tmpfile	= shmem_tmpfile,
4867 	.get_offset_ctx	= shmem_get_offset_ctx,
4868 #endif
4869 #ifdef CONFIG_TMPFS_XATTR
4870 	.listxattr	= shmem_listxattr,
4871 	.fileattr_get	= shmem_fileattr_get,
4872 	.fileattr_set	= shmem_fileattr_set,
4873 #endif
4874 #ifdef CONFIG_TMPFS_POSIX_ACL
4875 	.setattr	= shmem_setattr,
4876 	.set_acl	= simple_set_acl,
4877 #endif
4878 };
4879 
4880 static const struct inode_operations shmem_special_inode_operations = {
4881 	.getattr	= shmem_getattr,
4882 #ifdef CONFIG_TMPFS_XATTR
4883 	.listxattr	= shmem_listxattr,
4884 #endif
4885 #ifdef CONFIG_TMPFS_POSIX_ACL
4886 	.setattr	= shmem_setattr,
4887 	.set_acl	= simple_set_acl,
4888 #endif
4889 };
4890 
4891 static const struct super_operations shmem_ops = {
4892 	.alloc_inode	= shmem_alloc_inode,
4893 	.free_inode	= shmem_free_in_core_inode,
4894 	.destroy_inode	= shmem_destroy_inode,
4895 #ifdef CONFIG_TMPFS
4896 	.statfs		= shmem_statfs,
4897 	.show_options	= shmem_show_options,
4898 #endif
4899 #ifdef CONFIG_TMPFS_QUOTA
4900 	.get_dquots	= shmem_get_dquots,
4901 #endif
4902 	.evict_inode	= shmem_evict_inode,
4903 	.drop_inode	= generic_delete_inode,
4904 	.put_super	= shmem_put_super,
4905 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4906 	.nr_cached_objects	= shmem_unused_huge_count,
4907 	.free_cached_objects	= shmem_unused_huge_scan,
4908 #endif
4909 };
4910 
4911 static const struct vm_operations_struct shmem_vm_ops = {
4912 	.fault		= shmem_fault,
4913 	.map_pages	= filemap_map_pages,
4914 #ifdef CONFIG_NUMA
4915 	.set_policy     = shmem_set_policy,
4916 	.get_policy     = shmem_get_policy,
4917 #endif
4918 };
4919 
4920 static const struct vm_operations_struct shmem_anon_vm_ops = {
4921 	.fault		= shmem_fault,
4922 	.map_pages	= filemap_map_pages,
4923 #ifdef CONFIG_NUMA
4924 	.set_policy     = shmem_set_policy,
4925 	.get_policy     = shmem_get_policy,
4926 #endif
4927 };
4928 
4929 int shmem_init_fs_context(struct fs_context *fc)
4930 {
4931 	struct shmem_options *ctx;
4932 
4933 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4934 	if (!ctx)
4935 		return -ENOMEM;
4936 
4937 	ctx->mode = 0777 | S_ISVTX;
4938 	ctx->uid = current_fsuid();
4939 	ctx->gid = current_fsgid();
4940 
4941 	fc->fs_private = ctx;
4942 	fc->ops = &shmem_fs_context_ops;
4943 	return 0;
4944 }
4945 
4946 static struct file_system_type shmem_fs_type = {
4947 	.owner		= THIS_MODULE,
4948 	.name		= "tmpfs",
4949 	.init_fs_context = shmem_init_fs_context,
4950 #ifdef CONFIG_TMPFS
4951 	.parameters	= shmem_fs_parameters,
4952 #endif
4953 	.kill_sb	= kill_litter_super,
4954 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4955 };
4956 
4957 void __init shmem_init(void)
4958 {
4959 	int error;
4960 
4961 	shmem_init_inodecache();
4962 
4963 #ifdef CONFIG_TMPFS_QUOTA
4964 	register_quota_format(&shmem_quota_format);
4965 #endif
4966 
4967 	error = register_filesystem(&shmem_fs_type);
4968 	if (error) {
4969 		pr_err("Could not register tmpfs\n");
4970 		goto out2;
4971 	}
4972 
4973 	shm_mnt = kern_mount(&shmem_fs_type);
4974 	if (IS_ERR(shm_mnt)) {
4975 		error = PTR_ERR(shm_mnt);
4976 		pr_err("Could not kern_mount tmpfs\n");
4977 		goto out1;
4978 	}
4979 
4980 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4981 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4982 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4983 	else
4984 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4985 
4986 	/*
4987 	 * Default to setting PMD-sized THP to inherit the global setting and
4988 	 * disable all other multi-size THPs.
4989 	 */
4990 	huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
4991 #endif
4992 	return;
4993 
4994 out1:
4995 	unregister_filesystem(&shmem_fs_type);
4996 out2:
4997 #ifdef CONFIG_TMPFS_QUOTA
4998 	unregister_quota_format(&shmem_quota_format);
4999 #endif
5000 	shmem_destroy_inodecache();
5001 	shm_mnt = ERR_PTR(error);
5002 }
5003 
5004 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5005 static ssize_t shmem_enabled_show(struct kobject *kobj,
5006 				  struct kobj_attribute *attr, char *buf)
5007 {
5008 	static const int values[] = {
5009 		SHMEM_HUGE_ALWAYS,
5010 		SHMEM_HUGE_WITHIN_SIZE,
5011 		SHMEM_HUGE_ADVISE,
5012 		SHMEM_HUGE_NEVER,
5013 		SHMEM_HUGE_DENY,
5014 		SHMEM_HUGE_FORCE,
5015 	};
5016 	int len = 0;
5017 	int i;
5018 
5019 	for (i = 0; i < ARRAY_SIZE(values); i++) {
5020 		len += sysfs_emit_at(buf, len,
5021 				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5022 				i ? " " : "", shmem_format_huge(values[i]));
5023 	}
5024 	len += sysfs_emit_at(buf, len, "\n");
5025 
5026 	return len;
5027 }
5028 
5029 static ssize_t shmem_enabled_store(struct kobject *kobj,
5030 		struct kobj_attribute *attr, const char *buf, size_t count)
5031 {
5032 	char tmp[16];
5033 	int huge;
5034 
5035 	if (count + 1 > sizeof(tmp))
5036 		return -EINVAL;
5037 	memcpy(tmp, buf, count);
5038 	tmp[count] = '\0';
5039 	if (count && tmp[count - 1] == '\n')
5040 		tmp[count - 1] = '\0';
5041 
5042 	huge = shmem_parse_huge(tmp);
5043 	if (huge == -EINVAL)
5044 		return -EINVAL;
5045 	if (!has_transparent_hugepage() &&
5046 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
5047 		return -EINVAL;
5048 
5049 	/* Do not override huge allocation policy with non-PMD sized mTHP */
5050 	if (huge == SHMEM_HUGE_FORCE &&
5051 	    huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
5052 		return -EINVAL;
5053 
5054 	shmem_huge = huge;
5055 	if (shmem_huge > SHMEM_HUGE_DENY)
5056 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5057 	return count;
5058 }
5059 
5060 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5061 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5062 
5063 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5064 					  struct kobj_attribute *attr, char *buf)
5065 {
5066 	int order = to_thpsize(kobj)->order;
5067 	const char *output;
5068 
5069 	if (test_bit(order, &huge_shmem_orders_always))
5070 		output = "[always] inherit within_size advise never";
5071 	else if (test_bit(order, &huge_shmem_orders_inherit))
5072 		output = "always [inherit] within_size advise never";
5073 	else if (test_bit(order, &huge_shmem_orders_within_size))
5074 		output = "always inherit [within_size] advise never";
5075 	else if (test_bit(order, &huge_shmem_orders_madvise))
5076 		output = "always inherit within_size [advise] never";
5077 	else
5078 		output = "always inherit within_size advise [never]";
5079 
5080 	return sysfs_emit(buf, "%s\n", output);
5081 }
5082 
5083 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5084 					   struct kobj_attribute *attr,
5085 					   const char *buf, size_t count)
5086 {
5087 	int order = to_thpsize(kobj)->order;
5088 	ssize_t ret = count;
5089 
5090 	if (sysfs_streq(buf, "always")) {
5091 		spin_lock(&huge_shmem_orders_lock);
5092 		clear_bit(order, &huge_shmem_orders_inherit);
5093 		clear_bit(order, &huge_shmem_orders_madvise);
5094 		clear_bit(order, &huge_shmem_orders_within_size);
5095 		set_bit(order, &huge_shmem_orders_always);
5096 		spin_unlock(&huge_shmem_orders_lock);
5097 	} else if (sysfs_streq(buf, "inherit")) {
5098 		/* Do not override huge allocation policy with non-PMD sized mTHP */
5099 		if (shmem_huge == SHMEM_HUGE_FORCE &&
5100 		    order != HPAGE_PMD_ORDER)
5101 			return -EINVAL;
5102 
5103 		spin_lock(&huge_shmem_orders_lock);
5104 		clear_bit(order, &huge_shmem_orders_always);
5105 		clear_bit(order, &huge_shmem_orders_madvise);
5106 		clear_bit(order, &huge_shmem_orders_within_size);
5107 		set_bit(order, &huge_shmem_orders_inherit);
5108 		spin_unlock(&huge_shmem_orders_lock);
5109 	} else if (sysfs_streq(buf, "within_size")) {
5110 		spin_lock(&huge_shmem_orders_lock);
5111 		clear_bit(order, &huge_shmem_orders_always);
5112 		clear_bit(order, &huge_shmem_orders_inherit);
5113 		clear_bit(order, &huge_shmem_orders_madvise);
5114 		set_bit(order, &huge_shmem_orders_within_size);
5115 		spin_unlock(&huge_shmem_orders_lock);
5116 	} else if (sysfs_streq(buf, "advise")) {
5117 		spin_lock(&huge_shmem_orders_lock);
5118 		clear_bit(order, &huge_shmem_orders_always);
5119 		clear_bit(order, &huge_shmem_orders_inherit);
5120 		clear_bit(order, &huge_shmem_orders_within_size);
5121 		set_bit(order, &huge_shmem_orders_madvise);
5122 		spin_unlock(&huge_shmem_orders_lock);
5123 	} else if (sysfs_streq(buf, "never")) {
5124 		spin_lock(&huge_shmem_orders_lock);
5125 		clear_bit(order, &huge_shmem_orders_always);
5126 		clear_bit(order, &huge_shmem_orders_inherit);
5127 		clear_bit(order, &huge_shmem_orders_within_size);
5128 		clear_bit(order, &huge_shmem_orders_madvise);
5129 		spin_unlock(&huge_shmem_orders_lock);
5130 	} else {
5131 		ret = -EINVAL;
5132 	}
5133 
5134 	return ret;
5135 }
5136 
5137 struct kobj_attribute thpsize_shmem_enabled_attr =
5138 	__ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5139 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5140 
5141 #else /* !CONFIG_SHMEM */
5142 
5143 /*
5144  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5145  *
5146  * This is intended for small system where the benefits of the full
5147  * shmem code (swap-backed and resource-limited) are outweighed by
5148  * their complexity. On systems without swap this code should be
5149  * effectively equivalent, but much lighter weight.
5150  */
5151 
5152 static struct file_system_type shmem_fs_type = {
5153 	.name		= "tmpfs",
5154 	.init_fs_context = ramfs_init_fs_context,
5155 	.parameters	= ramfs_fs_parameters,
5156 	.kill_sb	= ramfs_kill_sb,
5157 	.fs_flags	= FS_USERNS_MOUNT,
5158 };
5159 
5160 void __init shmem_init(void)
5161 {
5162 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5163 
5164 	shm_mnt = kern_mount(&shmem_fs_type);
5165 	BUG_ON(IS_ERR(shm_mnt));
5166 }
5167 
5168 int shmem_unuse(unsigned int type)
5169 {
5170 	return 0;
5171 }
5172 
5173 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5174 {
5175 	return 0;
5176 }
5177 
5178 void shmem_unlock_mapping(struct address_space *mapping)
5179 {
5180 }
5181 
5182 #ifdef CONFIG_MMU
5183 unsigned long shmem_get_unmapped_area(struct file *file,
5184 				      unsigned long addr, unsigned long len,
5185 				      unsigned long pgoff, unsigned long flags)
5186 {
5187 	return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5188 }
5189 #endif
5190 
5191 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5192 {
5193 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5194 }
5195 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5196 
5197 #define shmem_vm_ops				generic_file_vm_ops
5198 #define shmem_anon_vm_ops			generic_file_vm_ops
5199 #define shmem_file_operations			ramfs_file_operations
5200 #define shmem_acct_size(flags, size)		0
5201 #define shmem_unacct_size(flags, size)		do {} while (0)
5202 
5203 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5204 				struct super_block *sb, struct inode *dir,
5205 				umode_t mode, dev_t dev, unsigned long flags)
5206 {
5207 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5208 	return inode ? inode : ERR_PTR(-ENOSPC);
5209 }
5210 
5211 #endif /* CONFIG_SHMEM */
5212 
5213 /* common code */
5214 
5215 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5216 			loff_t size, unsigned long flags, unsigned int i_flags)
5217 {
5218 	struct inode *inode;
5219 	struct file *res;
5220 
5221 	if (IS_ERR(mnt))
5222 		return ERR_CAST(mnt);
5223 
5224 	if (size < 0 || size > MAX_LFS_FILESIZE)
5225 		return ERR_PTR(-EINVAL);
5226 
5227 	if (shmem_acct_size(flags, size))
5228 		return ERR_PTR(-ENOMEM);
5229 
5230 	if (is_idmapped_mnt(mnt))
5231 		return ERR_PTR(-EINVAL);
5232 
5233 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5234 				S_IFREG | S_IRWXUGO, 0, flags);
5235 	if (IS_ERR(inode)) {
5236 		shmem_unacct_size(flags, size);
5237 		return ERR_CAST(inode);
5238 	}
5239 	inode->i_flags |= i_flags;
5240 	inode->i_size = size;
5241 	clear_nlink(inode);	/* It is unlinked */
5242 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5243 	if (!IS_ERR(res))
5244 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5245 				&shmem_file_operations);
5246 	if (IS_ERR(res))
5247 		iput(inode);
5248 	return res;
5249 }
5250 
5251 /**
5252  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5253  * 	kernel internal.  There will be NO LSM permission checks against the
5254  * 	underlying inode.  So users of this interface must do LSM checks at a
5255  *	higher layer.  The users are the big_key and shm implementations.  LSM
5256  *	checks are provided at the key or shm level rather than the inode.
5257  * @name: name for dentry (to be seen in /proc/<pid>/maps
5258  * @size: size to be set for the file
5259  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5260  */
5261 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5262 {
5263 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5264 }
5265 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5266 
5267 /**
5268  * shmem_file_setup - get an unlinked file living in tmpfs
5269  * @name: name for dentry (to be seen in /proc/<pid>/maps
5270  * @size: size to be set for the file
5271  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5272  */
5273 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5274 {
5275 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5276 }
5277 EXPORT_SYMBOL_GPL(shmem_file_setup);
5278 
5279 /**
5280  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5281  * @mnt: the tmpfs mount where the file will be created
5282  * @name: name for dentry (to be seen in /proc/<pid>/maps
5283  * @size: size to be set for the file
5284  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5285  */
5286 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5287 				       loff_t size, unsigned long flags)
5288 {
5289 	return __shmem_file_setup(mnt, name, size, flags, 0);
5290 }
5291 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5292 
5293 /**
5294  * shmem_zero_setup - setup a shared anonymous mapping
5295  * @vma: the vma to be mmapped is prepared by do_mmap
5296  */
5297 int shmem_zero_setup(struct vm_area_struct *vma)
5298 {
5299 	struct file *file;
5300 	loff_t size = vma->vm_end - vma->vm_start;
5301 
5302 	/*
5303 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5304 	 * between XFS directory reading and selinux: since this file is only
5305 	 * accessible to the user through its mapping, use S_PRIVATE flag to
5306 	 * bypass file security, in the same way as shmem_kernel_file_setup().
5307 	 */
5308 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5309 	if (IS_ERR(file))
5310 		return PTR_ERR(file);
5311 
5312 	if (vma->vm_file)
5313 		fput(vma->vm_file);
5314 	vma->vm_file = file;
5315 	vma->vm_ops = &shmem_anon_vm_ops;
5316 
5317 	return 0;
5318 }
5319 
5320 /**
5321  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5322  * @mapping:	the folio's address_space
5323  * @index:	the folio index
5324  * @gfp:	the page allocator flags to use if allocating
5325  *
5326  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5327  * with any new page allocations done using the specified allocation flags.
5328  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5329  * suit tmpfs, since it may have pages in swapcache, and needs to find those
5330  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5331  *
5332  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5333  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5334  */
5335 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5336 		pgoff_t index, gfp_t gfp)
5337 {
5338 #ifdef CONFIG_SHMEM
5339 	struct inode *inode = mapping->host;
5340 	struct folio *folio;
5341 	int error;
5342 
5343 	error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE,
5344 				    gfp, NULL, NULL);
5345 	if (error)
5346 		return ERR_PTR(error);
5347 
5348 	folio_unlock(folio);
5349 	return folio;
5350 #else
5351 	/*
5352 	 * The tiny !SHMEM case uses ramfs without swap
5353 	 */
5354 	return mapping_read_folio_gfp(mapping, index, gfp);
5355 #endif
5356 }
5357 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5358 
5359 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5360 					 pgoff_t index, gfp_t gfp)
5361 {
5362 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5363 	struct page *page;
5364 
5365 	if (IS_ERR(folio))
5366 		return &folio->page;
5367 
5368 	page = folio_file_page(folio, index);
5369 	if (PageHWPoison(page)) {
5370 		folio_put(folio);
5371 		return ERR_PTR(-EIO);
5372 	}
5373 
5374 	return page;
5375 }
5376 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5377