xref: /linux/mm/shmem.c (revision 74ce1896c6c65b2f8cccbf59162d542988835835)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 #include <linux/hugetlb.h>
38 
39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40 
41 static struct vfsmount *shm_mnt;
42 
43 #ifdef CONFIG_SHMEM
44 /*
45  * This virtual memory filesystem is heavily based on the ramfs. It
46  * extends ramfs by the ability to use swap and honor resource limits
47  * which makes it a completely usable filesystem.
48  */
49 
50 #include <linux/xattr.h>
51 #include <linux/exportfs.h>
52 #include <linux/posix_acl.h>
53 #include <linux/posix_acl_xattr.h>
54 #include <linux/mman.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <linux/backing-dev.h>
58 #include <linux/shmem_fs.h>
59 #include <linux/writeback.h>
60 #include <linux/blkdev.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80 
81 #include <linux/uaccess.h>
82 #include <asm/pgtable.h>
83 
84 #include "internal.h"
85 
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88 
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91 
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94 
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_mutex making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 	pgoff_t start;		/* start of range currently being fallocated */
103 	pgoff_t next;		/* the next page offset to be fallocated */
104 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
105 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
106 };
107 
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 	return totalram_pages / 2;
112 }
113 
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119 
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 				struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 		struct page **pagep, enum sgp_type sgp,
125 		gfp_t gfp, struct vm_area_struct *vma,
126 		struct vm_fault *vmf, int *fault_type);
127 
128 int shmem_getpage(struct inode *inode, pgoff_t index,
129 		struct page **pagep, enum sgp_type sgp)
130 {
131 	return shmem_getpage_gfp(inode, index, pagep, sgp,
132 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
133 }
134 
135 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136 {
137 	return sb->s_fs_info;
138 }
139 
140 /*
141  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142  * for shared memory and for shared anonymous (/dev/zero) mappings
143  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144  * consistent with the pre-accounting of private mappings ...
145  */
146 static inline int shmem_acct_size(unsigned long flags, loff_t size)
147 {
148 	return (flags & VM_NORESERVE) ?
149 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
150 }
151 
152 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153 {
154 	if (!(flags & VM_NORESERVE))
155 		vm_unacct_memory(VM_ACCT(size));
156 }
157 
158 static inline int shmem_reacct_size(unsigned long flags,
159 		loff_t oldsize, loff_t newsize)
160 {
161 	if (!(flags & VM_NORESERVE)) {
162 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
163 			return security_vm_enough_memory_mm(current->mm,
164 					VM_ACCT(newsize) - VM_ACCT(oldsize));
165 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
166 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
167 	}
168 	return 0;
169 }
170 
171 /*
172  * ... whereas tmpfs objects are accounted incrementally as
173  * pages are allocated, in order to allow large sparse files.
174  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176  */
177 static inline int shmem_acct_block(unsigned long flags, long pages)
178 {
179 	if (!(flags & VM_NORESERVE))
180 		return 0;
181 
182 	return security_vm_enough_memory_mm(current->mm,
183 			pages * VM_ACCT(PAGE_SIZE));
184 }
185 
186 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187 {
188 	if (flags & VM_NORESERVE)
189 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
190 }
191 
192 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
193 {
194 	struct shmem_inode_info *info = SHMEM_I(inode);
195 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
196 
197 	if (shmem_acct_block(info->flags, pages))
198 		return false;
199 
200 	if (sbinfo->max_blocks) {
201 		if (percpu_counter_compare(&sbinfo->used_blocks,
202 					   sbinfo->max_blocks - pages) > 0)
203 			goto unacct;
204 		percpu_counter_add(&sbinfo->used_blocks, pages);
205 	}
206 
207 	return true;
208 
209 unacct:
210 	shmem_unacct_blocks(info->flags, pages);
211 	return false;
212 }
213 
214 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
215 {
216 	struct shmem_inode_info *info = SHMEM_I(inode);
217 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218 
219 	if (sbinfo->max_blocks)
220 		percpu_counter_sub(&sbinfo->used_blocks, pages);
221 	shmem_unacct_blocks(info->flags, pages);
222 }
223 
224 static const struct super_operations shmem_ops;
225 static const struct address_space_operations shmem_aops;
226 static const struct file_operations shmem_file_operations;
227 static const struct inode_operations shmem_inode_operations;
228 static const struct inode_operations shmem_dir_inode_operations;
229 static const struct inode_operations shmem_special_inode_operations;
230 static const struct vm_operations_struct shmem_vm_ops;
231 static struct file_system_type shmem_fs_type;
232 
233 bool vma_is_shmem(struct vm_area_struct *vma)
234 {
235 	return vma->vm_ops == &shmem_vm_ops;
236 }
237 
238 static LIST_HEAD(shmem_swaplist);
239 static DEFINE_MUTEX(shmem_swaplist_mutex);
240 
241 static int shmem_reserve_inode(struct super_block *sb)
242 {
243 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
244 	if (sbinfo->max_inodes) {
245 		spin_lock(&sbinfo->stat_lock);
246 		if (!sbinfo->free_inodes) {
247 			spin_unlock(&sbinfo->stat_lock);
248 			return -ENOSPC;
249 		}
250 		sbinfo->free_inodes--;
251 		spin_unlock(&sbinfo->stat_lock);
252 	}
253 	return 0;
254 }
255 
256 static void shmem_free_inode(struct super_block *sb)
257 {
258 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259 	if (sbinfo->max_inodes) {
260 		spin_lock(&sbinfo->stat_lock);
261 		sbinfo->free_inodes++;
262 		spin_unlock(&sbinfo->stat_lock);
263 	}
264 }
265 
266 /**
267  * shmem_recalc_inode - recalculate the block usage of an inode
268  * @inode: inode to recalc
269  *
270  * We have to calculate the free blocks since the mm can drop
271  * undirtied hole pages behind our back.
272  *
273  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
274  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
275  *
276  * It has to be called with the spinlock held.
277  */
278 static void shmem_recalc_inode(struct inode *inode)
279 {
280 	struct shmem_inode_info *info = SHMEM_I(inode);
281 	long freed;
282 
283 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
284 	if (freed > 0) {
285 		info->alloced -= freed;
286 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
287 		shmem_inode_unacct_blocks(inode, freed);
288 	}
289 }
290 
291 bool shmem_charge(struct inode *inode, long pages)
292 {
293 	struct shmem_inode_info *info = SHMEM_I(inode);
294 	unsigned long flags;
295 
296 	if (!shmem_inode_acct_block(inode, pages))
297 		return false;
298 
299 	spin_lock_irqsave(&info->lock, flags);
300 	info->alloced += pages;
301 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
302 	shmem_recalc_inode(inode);
303 	spin_unlock_irqrestore(&info->lock, flags);
304 	inode->i_mapping->nrpages += pages;
305 
306 	return true;
307 }
308 
309 void shmem_uncharge(struct inode *inode, long pages)
310 {
311 	struct shmem_inode_info *info = SHMEM_I(inode);
312 	unsigned long flags;
313 
314 	spin_lock_irqsave(&info->lock, flags);
315 	info->alloced -= pages;
316 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
317 	shmem_recalc_inode(inode);
318 	spin_unlock_irqrestore(&info->lock, flags);
319 
320 	shmem_inode_unacct_blocks(inode, pages);
321 }
322 
323 /*
324  * Replace item expected in radix tree by a new item, while holding tree lock.
325  */
326 static int shmem_radix_tree_replace(struct address_space *mapping,
327 			pgoff_t index, void *expected, void *replacement)
328 {
329 	struct radix_tree_node *node;
330 	void **pslot;
331 	void *item;
332 
333 	VM_BUG_ON(!expected);
334 	VM_BUG_ON(!replacement);
335 	item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
336 	if (!item)
337 		return -ENOENT;
338 	if (item != expected)
339 		return -ENOENT;
340 	__radix_tree_replace(&mapping->page_tree, node, pslot,
341 			     replacement, NULL, NULL);
342 	return 0;
343 }
344 
345 /*
346  * Sometimes, before we decide whether to proceed or to fail, we must check
347  * that an entry was not already brought back from swap by a racing thread.
348  *
349  * Checking page is not enough: by the time a SwapCache page is locked, it
350  * might be reused, and again be SwapCache, using the same swap as before.
351  */
352 static bool shmem_confirm_swap(struct address_space *mapping,
353 			       pgoff_t index, swp_entry_t swap)
354 {
355 	void *item;
356 
357 	rcu_read_lock();
358 	item = radix_tree_lookup(&mapping->page_tree, index);
359 	rcu_read_unlock();
360 	return item == swp_to_radix_entry(swap);
361 }
362 
363 /*
364  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
365  *
366  * SHMEM_HUGE_NEVER:
367  *	disables huge pages for the mount;
368  * SHMEM_HUGE_ALWAYS:
369  *	enables huge pages for the mount;
370  * SHMEM_HUGE_WITHIN_SIZE:
371  *	only allocate huge pages if the page will be fully within i_size,
372  *	also respect fadvise()/madvise() hints;
373  * SHMEM_HUGE_ADVISE:
374  *	only allocate huge pages if requested with fadvise()/madvise();
375  */
376 
377 #define SHMEM_HUGE_NEVER	0
378 #define SHMEM_HUGE_ALWAYS	1
379 #define SHMEM_HUGE_WITHIN_SIZE	2
380 #define SHMEM_HUGE_ADVISE	3
381 
382 /*
383  * Special values.
384  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
385  *
386  * SHMEM_HUGE_DENY:
387  *	disables huge on shm_mnt and all mounts, for emergency use;
388  * SHMEM_HUGE_FORCE:
389  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
390  *
391  */
392 #define SHMEM_HUGE_DENY		(-1)
393 #define SHMEM_HUGE_FORCE	(-2)
394 
395 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
396 /* ifdef here to avoid bloating shmem.o when not necessary */
397 
398 int shmem_huge __read_mostly;
399 
400 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
401 static int shmem_parse_huge(const char *str)
402 {
403 	if (!strcmp(str, "never"))
404 		return SHMEM_HUGE_NEVER;
405 	if (!strcmp(str, "always"))
406 		return SHMEM_HUGE_ALWAYS;
407 	if (!strcmp(str, "within_size"))
408 		return SHMEM_HUGE_WITHIN_SIZE;
409 	if (!strcmp(str, "advise"))
410 		return SHMEM_HUGE_ADVISE;
411 	if (!strcmp(str, "deny"))
412 		return SHMEM_HUGE_DENY;
413 	if (!strcmp(str, "force"))
414 		return SHMEM_HUGE_FORCE;
415 	return -EINVAL;
416 }
417 
418 static const char *shmem_format_huge(int huge)
419 {
420 	switch (huge) {
421 	case SHMEM_HUGE_NEVER:
422 		return "never";
423 	case SHMEM_HUGE_ALWAYS:
424 		return "always";
425 	case SHMEM_HUGE_WITHIN_SIZE:
426 		return "within_size";
427 	case SHMEM_HUGE_ADVISE:
428 		return "advise";
429 	case SHMEM_HUGE_DENY:
430 		return "deny";
431 	case SHMEM_HUGE_FORCE:
432 		return "force";
433 	default:
434 		VM_BUG_ON(1);
435 		return "bad_val";
436 	}
437 }
438 #endif
439 
440 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
441 		struct shrink_control *sc, unsigned long nr_to_split)
442 {
443 	LIST_HEAD(list), *pos, *next;
444 	LIST_HEAD(to_remove);
445 	struct inode *inode;
446 	struct shmem_inode_info *info;
447 	struct page *page;
448 	unsigned long batch = sc ? sc->nr_to_scan : 128;
449 	int removed = 0, split = 0;
450 
451 	if (list_empty(&sbinfo->shrinklist))
452 		return SHRINK_STOP;
453 
454 	spin_lock(&sbinfo->shrinklist_lock);
455 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
456 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
457 
458 		/* pin the inode */
459 		inode = igrab(&info->vfs_inode);
460 
461 		/* inode is about to be evicted */
462 		if (!inode) {
463 			list_del_init(&info->shrinklist);
464 			removed++;
465 			goto next;
466 		}
467 
468 		/* Check if there's anything to gain */
469 		if (round_up(inode->i_size, PAGE_SIZE) ==
470 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
471 			list_move(&info->shrinklist, &to_remove);
472 			removed++;
473 			goto next;
474 		}
475 
476 		list_move(&info->shrinklist, &list);
477 next:
478 		if (!--batch)
479 			break;
480 	}
481 	spin_unlock(&sbinfo->shrinklist_lock);
482 
483 	list_for_each_safe(pos, next, &to_remove) {
484 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
485 		inode = &info->vfs_inode;
486 		list_del_init(&info->shrinklist);
487 		iput(inode);
488 	}
489 
490 	list_for_each_safe(pos, next, &list) {
491 		int ret;
492 
493 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
494 		inode = &info->vfs_inode;
495 
496 		if (nr_to_split && split >= nr_to_split) {
497 			iput(inode);
498 			continue;
499 		}
500 
501 		page = find_lock_page(inode->i_mapping,
502 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
503 		if (!page)
504 			goto drop;
505 
506 		if (!PageTransHuge(page)) {
507 			unlock_page(page);
508 			put_page(page);
509 			goto drop;
510 		}
511 
512 		ret = split_huge_page(page);
513 		unlock_page(page);
514 		put_page(page);
515 
516 		if (ret) {
517 			/* split failed: leave it on the list */
518 			iput(inode);
519 			continue;
520 		}
521 
522 		split++;
523 drop:
524 		list_del_init(&info->shrinklist);
525 		removed++;
526 		iput(inode);
527 	}
528 
529 	spin_lock(&sbinfo->shrinklist_lock);
530 	list_splice_tail(&list, &sbinfo->shrinklist);
531 	sbinfo->shrinklist_len -= removed;
532 	spin_unlock(&sbinfo->shrinklist_lock);
533 
534 	return split;
535 }
536 
537 static long shmem_unused_huge_scan(struct super_block *sb,
538 		struct shrink_control *sc)
539 {
540 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
541 
542 	if (!READ_ONCE(sbinfo->shrinklist_len))
543 		return SHRINK_STOP;
544 
545 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
546 }
547 
548 static long shmem_unused_huge_count(struct super_block *sb,
549 		struct shrink_control *sc)
550 {
551 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
552 	return READ_ONCE(sbinfo->shrinklist_len);
553 }
554 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
555 
556 #define shmem_huge SHMEM_HUGE_DENY
557 
558 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
559 		struct shrink_control *sc, unsigned long nr_to_split)
560 {
561 	return 0;
562 }
563 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
564 
565 /*
566  * Like add_to_page_cache_locked, but error if expected item has gone.
567  */
568 static int shmem_add_to_page_cache(struct page *page,
569 				   struct address_space *mapping,
570 				   pgoff_t index, void *expected)
571 {
572 	int error, nr = hpage_nr_pages(page);
573 
574 	VM_BUG_ON_PAGE(PageTail(page), page);
575 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
576 	VM_BUG_ON_PAGE(!PageLocked(page), page);
577 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
578 	VM_BUG_ON(expected && PageTransHuge(page));
579 
580 	page_ref_add(page, nr);
581 	page->mapping = mapping;
582 	page->index = index;
583 
584 	spin_lock_irq(&mapping->tree_lock);
585 	if (PageTransHuge(page)) {
586 		void __rcu **results;
587 		pgoff_t idx;
588 		int i;
589 
590 		error = 0;
591 		if (radix_tree_gang_lookup_slot(&mapping->page_tree,
592 					&results, &idx, index, 1) &&
593 				idx < index + HPAGE_PMD_NR) {
594 			error = -EEXIST;
595 		}
596 
597 		if (!error) {
598 			for (i = 0; i < HPAGE_PMD_NR; i++) {
599 				error = radix_tree_insert(&mapping->page_tree,
600 						index + i, page + i);
601 				VM_BUG_ON(error);
602 			}
603 			count_vm_event(THP_FILE_ALLOC);
604 		}
605 	} else if (!expected) {
606 		error = radix_tree_insert(&mapping->page_tree, index, page);
607 	} else {
608 		error = shmem_radix_tree_replace(mapping, index, expected,
609 								 page);
610 	}
611 
612 	if (!error) {
613 		mapping->nrpages += nr;
614 		if (PageTransHuge(page))
615 			__inc_node_page_state(page, NR_SHMEM_THPS);
616 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
617 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
618 		spin_unlock_irq(&mapping->tree_lock);
619 	} else {
620 		page->mapping = NULL;
621 		spin_unlock_irq(&mapping->tree_lock);
622 		page_ref_sub(page, nr);
623 	}
624 	return error;
625 }
626 
627 /*
628  * Like delete_from_page_cache, but substitutes swap for page.
629  */
630 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
631 {
632 	struct address_space *mapping = page->mapping;
633 	int error;
634 
635 	VM_BUG_ON_PAGE(PageCompound(page), page);
636 
637 	spin_lock_irq(&mapping->tree_lock);
638 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
639 	page->mapping = NULL;
640 	mapping->nrpages--;
641 	__dec_node_page_state(page, NR_FILE_PAGES);
642 	__dec_node_page_state(page, NR_SHMEM);
643 	spin_unlock_irq(&mapping->tree_lock);
644 	put_page(page);
645 	BUG_ON(error);
646 }
647 
648 /*
649  * Remove swap entry from radix tree, free the swap and its page cache.
650  */
651 static int shmem_free_swap(struct address_space *mapping,
652 			   pgoff_t index, void *radswap)
653 {
654 	void *old;
655 
656 	spin_lock_irq(&mapping->tree_lock);
657 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
658 	spin_unlock_irq(&mapping->tree_lock);
659 	if (old != radswap)
660 		return -ENOENT;
661 	free_swap_and_cache(radix_to_swp_entry(radswap));
662 	return 0;
663 }
664 
665 /*
666  * Determine (in bytes) how many of the shmem object's pages mapped by the
667  * given offsets are swapped out.
668  *
669  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
670  * as long as the inode doesn't go away and racy results are not a problem.
671  */
672 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
673 						pgoff_t start, pgoff_t end)
674 {
675 	struct radix_tree_iter iter;
676 	void **slot;
677 	struct page *page;
678 	unsigned long swapped = 0;
679 
680 	rcu_read_lock();
681 
682 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
683 		if (iter.index >= end)
684 			break;
685 
686 		page = radix_tree_deref_slot(slot);
687 
688 		if (radix_tree_deref_retry(page)) {
689 			slot = radix_tree_iter_retry(&iter);
690 			continue;
691 		}
692 
693 		if (radix_tree_exceptional_entry(page))
694 			swapped++;
695 
696 		if (need_resched()) {
697 			slot = radix_tree_iter_resume(slot, &iter);
698 			cond_resched_rcu();
699 		}
700 	}
701 
702 	rcu_read_unlock();
703 
704 	return swapped << PAGE_SHIFT;
705 }
706 
707 /*
708  * Determine (in bytes) how many of the shmem object's pages mapped by the
709  * given vma is swapped out.
710  *
711  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
712  * as long as the inode doesn't go away and racy results are not a problem.
713  */
714 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
715 {
716 	struct inode *inode = file_inode(vma->vm_file);
717 	struct shmem_inode_info *info = SHMEM_I(inode);
718 	struct address_space *mapping = inode->i_mapping;
719 	unsigned long swapped;
720 
721 	/* Be careful as we don't hold info->lock */
722 	swapped = READ_ONCE(info->swapped);
723 
724 	/*
725 	 * The easier cases are when the shmem object has nothing in swap, or
726 	 * the vma maps it whole. Then we can simply use the stats that we
727 	 * already track.
728 	 */
729 	if (!swapped)
730 		return 0;
731 
732 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
733 		return swapped << PAGE_SHIFT;
734 
735 	/* Here comes the more involved part */
736 	return shmem_partial_swap_usage(mapping,
737 			linear_page_index(vma, vma->vm_start),
738 			linear_page_index(vma, vma->vm_end));
739 }
740 
741 /*
742  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
743  */
744 void shmem_unlock_mapping(struct address_space *mapping)
745 {
746 	struct pagevec pvec;
747 	pgoff_t indices[PAGEVEC_SIZE];
748 	pgoff_t index = 0;
749 
750 	pagevec_init(&pvec, 0);
751 	/*
752 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
753 	 */
754 	while (!mapping_unevictable(mapping)) {
755 		/*
756 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
757 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
758 		 */
759 		pvec.nr = find_get_entries(mapping, index,
760 					   PAGEVEC_SIZE, pvec.pages, indices);
761 		if (!pvec.nr)
762 			break;
763 		index = indices[pvec.nr - 1] + 1;
764 		pagevec_remove_exceptionals(&pvec);
765 		check_move_unevictable_pages(pvec.pages, pvec.nr);
766 		pagevec_release(&pvec);
767 		cond_resched();
768 	}
769 }
770 
771 /*
772  * Remove range of pages and swap entries from radix tree, and free them.
773  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
774  */
775 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
776 								 bool unfalloc)
777 {
778 	struct address_space *mapping = inode->i_mapping;
779 	struct shmem_inode_info *info = SHMEM_I(inode);
780 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
781 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
782 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
783 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
784 	struct pagevec pvec;
785 	pgoff_t indices[PAGEVEC_SIZE];
786 	long nr_swaps_freed = 0;
787 	pgoff_t index;
788 	int i;
789 
790 	if (lend == -1)
791 		end = -1;	/* unsigned, so actually very big */
792 
793 	pagevec_init(&pvec, 0);
794 	index = start;
795 	while (index < end) {
796 		pvec.nr = find_get_entries(mapping, index,
797 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
798 			pvec.pages, indices);
799 		if (!pvec.nr)
800 			break;
801 		for (i = 0; i < pagevec_count(&pvec); i++) {
802 			struct page *page = pvec.pages[i];
803 
804 			index = indices[i];
805 			if (index >= end)
806 				break;
807 
808 			if (radix_tree_exceptional_entry(page)) {
809 				if (unfalloc)
810 					continue;
811 				nr_swaps_freed += !shmem_free_swap(mapping,
812 								index, page);
813 				continue;
814 			}
815 
816 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
817 
818 			if (!trylock_page(page))
819 				continue;
820 
821 			if (PageTransTail(page)) {
822 				/* Middle of THP: zero out the page */
823 				clear_highpage(page);
824 				unlock_page(page);
825 				continue;
826 			} else if (PageTransHuge(page)) {
827 				if (index == round_down(end, HPAGE_PMD_NR)) {
828 					/*
829 					 * Range ends in the middle of THP:
830 					 * zero out the page
831 					 */
832 					clear_highpage(page);
833 					unlock_page(page);
834 					continue;
835 				}
836 				index += HPAGE_PMD_NR - 1;
837 				i += HPAGE_PMD_NR - 1;
838 			}
839 
840 			if (!unfalloc || !PageUptodate(page)) {
841 				VM_BUG_ON_PAGE(PageTail(page), page);
842 				if (page_mapping(page) == mapping) {
843 					VM_BUG_ON_PAGE(PageWriteback(page), page);
844 					truncate_inode_page(mapping, page);
845 				}
846 			}
847 			unlock_page(page);
848 		}
849 		pagevec_remove_exceptionals(&pvec);
850 		pagevec_release(&pvec);
851 		cond_resched();
852 		index++;
853 	}
854 
855 	if (partial_start) {
856 		struct page *page = NULL;
857 		shmem_getpage(inode, start - 1, &page, SGP_READ);
858 		if (page) {
859 			unsigned int top = PAGE_SIZE;
860 			if (start > end) {
861 				top = partial_end;
862 				partial_end = 0;
863 			}
864 			zero_user_segment(page, partial_start, top);
865 			set_page_dirty(page);
866 			unlock_page(page);
867 			put_page(page);
868 		}
869 	}
870 	if (partial_end) {
871 		struct page *page = NULL;
872 		shmem_getpage(inode, end, &page, SGP_READ);
873 		if (page) {
874 			zero_user_segment(page, 0, partial_end);
875 			set_page_dirty(page);
876 			unlock_page(page);
877 			put_page(page);
878 		}
879 	}
880 	if (start >= end)
881 		return;
882 
883 	index = start;
884 	while (index < end) {
885 		cond_resched();
886 
887 		pvec.nr = find_get_entries(mapping, index,
888 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
889 				pvec.pages, indices);
890 		if (!pvec.nr) {
891 			/* If all gone or hole-punch or unfalloc, we're done */
892 			if (index == start || end != -1)
893 				break;
894 			/* But if truncating, restart to make sure all gone */
895 			index = start;
896 			continue;
897 		}
898 		for (i = 0; i < pagevec_count(&pvec); i++) {
899 			struct page *page = pvec.pages[i];
900 
901 			index = indices[i];
902 			if (index >= end)
903 				break;
904 
905 			if (radix_tree_exceptional_entry(page)) {
906 				if (unfalloc)
907 					continue;
908 				if (shmem_free_swap(mapping, index, page)) {
909 					/* Swap was replaced by page: retry */
910 					index--;
911 					break;
912 				}
913 				nr_swaps_freed++;
914 				continue;
915 			}
916 
917 			lock_page(page);
918 
919 			if (PageTransTail(page)) {
920 				/* Middle of THP: zero out the page */
921 				clear_highpage(page);
922 				unlock_page(page);
923 				/*
924 				 * Partial thp truncate due 'start' in middle
925 				 * of THP: don't need to look on these pages
926 				 * again on !pvec.nr restart.
927 				 */
928 				if (index != round_down(end, HPAGE_PMD_NR))
929 					start++;
930 				continue;
931 			} else if (PageTransHuge(page)) {
932 				if (index == round_down(end, HPAGE_PMD_NR)) {
933 					/*
934 					 * Range ends in the middle of THP:
935 					 * zero out the page
936 					 */
937 					clear_highpage(page);
938 					unlock_page(page);
939 					continue;
940 				}
941 				index += HPAGE_PMD_NR - 1;
942 				i += HPAGE_PMD_NR - 1;
943 			}
944 
945 			if (!unfalloc || !PageUptodate(page)) {
946 				VM_BUG_ON_PAGE(PageTail(page), page);
947 				if (page_mapping(page) == mapping) {
948 					VM_BUG_ON_PAGE(PageWriteback(page), page);
949 					truncate_inode_page(mapping, page);
950 				} else {
951 					/* Page was replaced by swap: retry */
952 					unlock_page(page);
953 					index--;
954 					break;
955 				}
956 			}
957 			unlock_page(page);
958 		}
959 		pagevec_remove_exceptionals(&pvec);
960 		pagevec_release(&pvec);
961 		index++;
962 	}
963 
964 	spin_lock_irq(&info->lock);
965 	info->swapped -= nr_swaps_freed;
966 	shmem_recalc_inode(inode);
967 	spin_unlock_irq(&info->lock);
968 }
969 
970 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
971 {
972 	shmem_undo_range(inode, lstart, lend, false);
973 	inode->i_ctime = inode->i_mtime = current_time(inode);
974 }
975 EXPORT_SYMBOL_GPL(shmem_truncate_range);
976 
977 static int shmem_getattr(const struct path *path, struct kstat *stat,
978 			 u32 request_mask, unsigned int query_flags)
979 {
980 	struct inode *inode = path->dentry->d_inode;
981 	struct shmem_inode_info *info = SHMEM_I(inode);
982 
983 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
984 		spin_lock_irq(&info->lock);
985 		shmem_recalc_inode(inode);
986 		spin_unlock_irq(&info->lock);
987 	}
988 	generic_fillattr(inode, stat);
989 	return 0;
990 }
991 
992 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
993 {
994 	struct inode *inode = d_inode(dentry);
995 	struct shmem_inode_info *info = SHMEM_I(inode);
996 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
997 	int error;
998 
999 	error = setattr_prepare(dentry, attr);
1000 	if (error)
1001 		return error;
1002 
1003 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1004 		loff_t oldsize = inode->i_size;
1005 		loff_t newsize = attr->ia_size;
1006 
1007 		/* protected by i_mutex */
1008 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1009 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1010 			return -EPERM;
1011 
1012 		if (newsize != oldsize) {
1013 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1014 					oldsize, newsize);
1015 			if (error)
1016 				return error;
1017 			i_size_write(inode, newsize);
1018 			inode->i_ctime = inode->i_mtime = current_time(inode);
1019 		}
1020 		if (newsize <= oldsize) {
1021 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1022 			if (oldsize > holebegin)
1023 				unmap_mapping_range(inode->i_mapping,
1024 							holebegin, 0, 1);
1025 			if (info->alloced)
1026 				shmem_truncate_range(inode,
1027 							newsize, (loff_t)-1);
1028 			/* unmap again to remove racily COWed private pages */
1029 			if (oldsize > holebegin)
1030 				unmap_mapping_range(inode->i_mapping,
1031 							holebegin, 0, 1);
1032 
1033 			/*
1034 			 * Part of the huge page can be beyond i_size: subject
1035 			 * to shrink under memory pressure.
1036 			 */
1037 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1038 				spin_lock(&sbinfo->shrinklist_lock);
1039 				/*
1040 				 * _careful to defend against unlocked access to
1041 				 * ->shrink_list in shmem_unused_huge_shrink()
1042 				 */
1043 				if (list_empty_careful(&info->shrinklist)) {
1044 					list_add_tail(&info->shrinklist,
1045 							&sbinfo->shrinklist);
1046 					sbinfo->shrinklist_len++;
1047 				}
1048 				spin_unlock(&sbinfo->shrinklist_lock);
1049 			}
1050 		}
1051 	}
1052 
1053 	setattr_copy(inode, attr);
1054 	if (attr->ia_valid & ATTR_MODE)
1055 		error = posix_acl_chmod(inode, inode->i_mode);
1056 	return error;
1057 }
1058 
1059 static void shmem_evict_inode(struct inode *inode)
1060 {
1061 	struct shmem_inode_info *info = SHMEM_I(inode);
1062 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1063 
1064 	if (inode->i_mapping->a_ops == &shmem_aops) {
1065 		shmem_unacct_size(info->flags, inode->i_size);
1066 		inode->i_size = 0;
1067 		shmem_truncate_range(inode, 0, (loff_t)-1);
1068 		if (!list_empty(&info->shrinklist)) {
1069 			spin_lock(&sbinfo->shrinklist_lock);
1070 			if (!list_empty(&info->shrinklist)) {
1071 				list_del_init(&info->shrinklist);
1072 				sbinfo->shrinklist_len--;
1073 			}
1074 			spin_unlock(&sbinfo->shrinklist_lock);
1075 		}
1076 		if (!list_empty(&info->swaplist)) {
1077 			mutex_lock(&shmem_swaplist_mutex);
1078 			list_del_init(&info->swaplist);
1079 			mutex_unlock(&shmem_swaplist_mutex);
1080 		}
1081 	}
1082 
1083 	simple_xattrs_free(&info->xattrs);
1084 	WARN_ON(inode->i_blocks);
1085 	shmem_free_inode(inode->i_sb);
1086 	clear_inode(inode);
1087 }
1088 
1089 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1090 {
1091 	struct radix_tree_iter iter;
1092 	void **slot;
1093 	unsigned long found = -1;
1094 	unsigned int checked = 0;
1095 
1096 	rcu_read_lock();
1097 	radix_tree_for_each_slot(slot, root, &iter, 0) {
1098 		if (*slot == item) {
1099 			found = iter.index;
1100 			break;
1101 		}
1102 		checked++;
1103 		if ((checked % 4096) != 0)
1104 			continue;
1105 		slot = radix_tree_iter_resume(slot, &iter);
1106 		cond_resched_rcu();
1107 	}
1108 
1109 	rcu_read_unlock();
1110 	return found;
1111 }
1112 
1113 /*
1114  * If swap found in inode, free it and move page from swapcache to filecache.
1115  */
1116 static int shmem_unuse_inode(struct shmem_inode_info *info,
1117 			     swp_entry_t swap, struct page **pagep)
1118 {
1119 	struct address_space *mapping = info->vfs_inode.i_mapping;
1120 	void *radswap;
1121 	pgoff_t index;
1122 	gfp_t gfp;
1123 	int error = 0;
1124 
1125 	radswap = swp_to_radix_entry(swap);
1126 	index = find_swap_entry(&mapping->page_tree, radswap);
1127 	if (index == -1)
1128 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1129 
1130 	/*
1131 	 * Move _head_ to start search for next from here.
1132 	 * But be careful: shmem_evict_inode checks list_empty without taking
1133 	 * mutex, and there's an instant in list_move_tail when info->swaplist
1134 	 * would appear empty, if it were the only one on shmem_swaplist.
1135 	 */
1136 	if (shmem_swaplist.next != &info->swaplist)
1137 		list_move_tail(&shmem_swaplist, &info->swaplist);
1138 
1139 	gfp = mapping_gfp_mask(mapping);
1140 	if (shmem_should_replace_page(*pagep, gfp)) {
1141 		mutex_unlock(&shmem_swaplist_mutex);
1142 		error = shmem_replace_page(pagep, gfp, info, index);
1143 		mutex_lock(&shmem_swaplist_mutex);
1144 		/*
1145 		 * We needed to drop mutex to make that restrictive page
1146 		 * allocation, but the inode might have been freed while we
1147 		 * dropped it: although a racing shmem_evict_inode() cannot
1148 		 * complete without emptying the radix_tree, our page lock
1149 		 * on this swapcache page is not enough to prevent that -
1150 		 * free_swap_and_cache() of our swap entry will only
1151 		 * trylock_page(), removing swap from radix_tree whatever.
1152 		 *
1153 		 * We must not proceed to shmem_add_to_page_cache() if the
1154 		 * inode has been freed, but of course we cannot rely on
1155 		 * inode or mapping or info to check that.  However, we can
1156 		 * safely check if our swap entry is still in use (and here
1157 		 * it can't have got reused for another page): if it's still
1158 		 * in use, then the inode cannot have been freed yet, and we
1159 		 * can safely proceed (if it's no longer in use, that tells
1160 		 * nothing about the inode, but we don't need to unuse swap).
1161 		 */
1162 		if (!page_swapcount(*pagep))
1163 			error = -ENOENT;
1164 	}
1165 
1166 	/*
1167 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1168 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1169 	 * beneath us (pagelock doesn't help until the page is in pagecache).
1170 	 */
1171 	if (!error)
1172 		error = shmem_add_to_page_cache(*pagep, mapping, index,
1173 						radswap);
1174 	if (error != -ENOMEM) {
1175 		/*
1176 		 * Truncation and eviction use free_swap_and_cache(), which
1177 		 * only does trylock page: if we raced, best clean up here.
1178 		 */
1179 		delete_from_swap_cache(*pagep);
1180 		set_page_dirty(*pagep);
1181 		if (!error) {
1182 			spin_lock_irq(&info->lock);
1183 			info->swapped--;
1184 			spin_unlock_irq(&info->lock);
1185 			swap_free(swap);
1186 		}
1187 	}
1188 	return error;
1189 }
1190 
1191 /*
1192  * Search through swapped inodes to find and replace swap by page.
1193  */
1194 int shmem_unuse(swp_entry_t swap, struct page *page)
1195 {
1196 	struct list_head *this, *next;
1197 	struct shmem_inode_info *info;
1198 	struct mem_cgroup *memcg;
1199 	int error = 0;
1200 
1201 	/*
1202 	 * There's a faint possibility that swap page was replaced before
1203 	 * caller locked it: caller will come back later with the right page.
1204 	 */
1205 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1206 		goto out;
1207 
1208 	/*
1209 	 * Charge page using GFP_KERNEL while we can wait, before taking
1210 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1211 	 * Charged back to the user (not to caller) when swap account is used.
1212 	 */
1213 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1214 			false);
1215 	if (error)
1216 		goto out;
1217 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
1218 	error = -EAGAIN;
1219 
1220 	mutex_lock(&shmem_swaplist_mutex);
1221 	list_for_each_safe(this, next, &shmem_swaplist) {
1222 		info = list_entry(this, struct shmem_inode_info, swaplist);
1223 		if (info->swapped)
1224 			error = shmem_unuse_inode(info, swap, &page);
1225 		else
1226 			list_del_init(&info->swaplist);
1227 		cond_resched();
1228 		if (error != -EAGAIN)
1229 			break;
1230 		/* found nothing in this: move on to search the next */
1231 	}
1232 	mutex_unlock(&shmem_swaplist_mutex);
1233 
1234 	if (error) {
1235 		if (error != -ENOMEM)
1236 			error = 0;
1237 		mem_cgroup_cancel_charge(page, memcg, false);
1238 	} else
1239 		mem_cgroup_commit_charge(page, memcg, true, false);
1240 out:
1241 	unlock_page(page);
1242 	put_page(page);
1243 	return error;
1244 }
1245 
1246 /*
1247  * Move the page from the page cache to the swap cache.
1248  */
1249 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1250 {
1251 	struct shmem_inode_info *info;
1252 	struct address_space *mapping;
1253 	struct inode *inode;
1254 	swp_entry_t swap;
1255 	pgoff_t index;
1256 
1257 	VM_BUG_ON_PAGE(PageCompound(page), page);
1258 	BUG_ON(!PageLocked(page));
1259 	mapping = page->mapping;
1260 	index = page->index;
1261 	inode = mapping->host;
1262 	info = SHMEM_I(inode);
1263 	if (info->flags & VM_LOCKED)
1264 		goto redirty;
1265 	if (!total_swap_pages)
1266 		goto redirty;
1267 
1268 	/*
1269 	 * Our capabilities prevent regular writeback or sync from ever calling
1270 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1271 	 * its underlying filesystem, in which case tmpfs should write out to
1272 	 * swap only in response to memory pressure, and not for the writeback
1273 	 * threads or sync.
1274 	 */
1275 	if (!wbc->for_reclaim) {
1276 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1277 		goto redirty;
1278 	}
1279 
1280 	/*
1281 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1282 	 * value into swapfile.c, the only way we can correctly account for a
1283 	 * fallocated page arriving here is now to initialize it and write it.
1284 	 *
1285 	 * That's okay for a page already fallocated earlier, but if we have
1286 	 * not yet completed the fallocation, then (a) we want to keep track
1287 	 * of this page in case we have to undo it, and (b) it may not be a
1288 	 * good idea to continue anyway, once we're pushing into swap.  So
1289 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1290 	 */
1291 	if (!PageUptodate(page)) {
1292 		if (inode->i_private) {
1293 			struct shmem_falloc *shmem_falloc;
1294 			spin_lock(&inode->i_lock);
1295 			shmem_falloc = inode->i_private;
1296 			if (shmem_falloc &&
1297 			    !shmem_falloc->waitq &&
1298 			    index >= shmem_falloc->start &&
1299 			    index < shmem_falloc->next)
1300 				shmem_falloc->nr_unswapped++;
1301 			else
1302 				shmem_falloc = NULL;
1303 			spin_unlock(&inode->i_lock);
1304 			if (shmem_falloc)
1305 				goto redirty;
1306 		}
1307 		clear_highpage(page);
1308 		flush_dcache_page(page);
1309 		SetPageUptodate(page);
1310 	}
1311 
1312 	swap = get_swap_page(page);
1313 	if (!swap.val)
1314 		goto redirty;
1315 
1316 	if (mem_cgroup_try_charge_swap(page, swap))
1317 		goto free_swap;
1318 
1319 	/*
1320 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1321 	 * if it's not already there.  Do it now before the page is
1322 	 * moved to swap cache, when its pagelock no longer protects
1323 	 * the inode from eviction.  But don't unlock the mutex until
1324 	 * we've incremented swapped, because shmem_unuse_inode() will
1325 	 * prune a !swapped inode from the swaplist under this mutex.
1326 	 */
1327 	mutex_lock(&shmem_swaplist_mutex);
1328 	if (list_empty(&info->swaplist))
1329 		list_add_tail(&info->swaplist, &shmem_swaplist);
1330 
1331 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1332 		spin_lock_irq(&info->lock);
1333 		shmem_recalc_inode(inode);
1334 		info->swapped++;
1335 		spin_unlock_irq(&info->lock);
1336 
1337 		swap_shmem_alloc(swap);
1338 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1339 
1340 		mutex_unlock(&shmem_swaplist_mutex);
1341 		BUG_ON(page_mapped(page));
1342 		swap_writepage(page, wbc);
1343 		return 0;
1344 	}
1345 
1346 	mutex_unlock(&shmem_swaplist_mutex);
1347 free_swap:
1348 	put_swap_page(page, swap);
1349 redirty:
1350 	set_page_dirty(page);
1351 	if (wbc->for_reclaim)
1352 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1353 	unlock_page(page);
1354 	return 0;
1355 }
1356 
1357 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1358 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1359 {
1360 	char buffer[64];
1361 
1362 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1363 		return;		/* show nothing */
1364 
1365 	mpol_to_str(buffer, sizeof(buffer), mpol);
1366 
1367 	seq_printf(seq, ",mpol=%s", buffer);
1368 }
1369 
1370 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1371 {
1372 	struct mempolicy *mpol = NULL;
1373 	if (sbinfo->mpol) {
1374 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1375 		mpol = sbinfo->mpol;
1376 		mpol_get(mpol);
1377 		spin_unlock(&sbinfo->stat_lock);
1378 	}
1379 	return mpol;
1380 }
1381 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1382 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1383 {
1384 }
1385 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1386 {
1387 	return NULL;
1388 }
1389 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1390 #ifndef CONFIG_NUMA
1391 #define vm_policy vm_private_data
1392 #endif
1393 
1394 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1395 		struct shmem_inode_info *info, pgoff_t index)
1396 {
1397 	/* Create a pseudo vma that just contains the policy */
1398 	vma->vm_start = 0;
1399 	/* Bias interleave by inode number to distribute better across nodes */
1400 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1401 	vma->vm_ops = NULL;
1402 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1403 }
1404 
1405 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1406 {
1407 	/* Drop reference taken by mpol_shared_policy_lookup() */
1408 	mpol_cond_put(vma->vm_policy);
1409 }
1410 
1411 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1412 			struct shmem_inode_info *info, pgoff_t index)
1413 {
1414 	struct vm_area_struct pvma;
1415 	struct page *page;
1416 
1417 	shmem_pseudo_vma_init(&pvma, info, index);
1418 	page = swapin_readahead(swap, gfp, &pvma, 0);
1419 	shmem_pseudo_vma_destroy(&pvma);
1420 
1421 	return page;
1422 }
1423 
1424 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1425 		struct shmem_inode_info *info, pgoff_t index)
1426 {
1427 	struct vm_area_struct pvma;
1428 	struct inode *inode = &info->vfs_inode;
1429 	struct address_space *mapping = inode->i_mapping;
1430 	pgoff_t idx, hindex;
1431 	void __rcu **results;
1432 	struct page *page;
1433 
1434 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1435 		return NULL;
1436 
1437 	hindex = round_down(index, HPAGE_PMD_NR);
1438 	rcu_read_lock();
1439 	if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1440 				hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1441 		rcu_read_unlock();
1442 		return NULL;
1443 	}
1444 	rcu_read_unlock();
1445 
1446 	shmem_pseudo_vma_init(&pvma, info, hindex);
1447 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1448 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1449 	shmem_pseudo_vma_destroy(&pvma);
1450 	if (page)
1451 		prep_transhuge_page(page);
1452 	return page;
1453 }
1454 
1455 static struct page *shmem_alloc_page(gfp_t gfp,
1456 			struct shmem_inode_info *info, pgoff_t index)
1457 {
1458 	struct vm_area_struct pvma;
1459 	struct page *page;
1460 
1461 	shmem_pseudo_vma_init(&pvma, info, index);
1462 	page = alloc_page_vma(gfp, &pvma, 0);
1463 	shmem_pseudo_vma_destroy(&pvma);
1464 
1465 	return page;
1466 }
1467 
1468 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1469 		struct inode *inode,
1470 		pgoff_t index, bool huge)
1471 {
1472 	struct shmem_inode_info *info = SHMEM_I(inode);
1473 	struct page *page;
1474 	int nr;
1475 	int err = -ENOSPC;
1476 
1477 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1478 		huge = false;
1479 	nr = huge ? HPAGE_PMD_NR : 1;
1480 
1481 	if (!shmem_inode_acct_block(inode, nr))
1482 		goto failed;
1483 
1484 	if (huge)
1485 		page = shmem_alloc_hugepage(gfp, info, index);
1486 	else
1487 		page = shmem_alloc_page(gfp, info, index);
1488 	if (page) {
1489 		__SetPageLocked(page);
1490 		__SetPageSwapBacked(page);
1491 		return page;
1492 	}
1493 
1494 	err = -ENOMEM;
1495 	shmem_inode_unacct_blocks(inode, nr);
1496 failed:
1497 	return ERR_PTR(err);
1498 }
1499 
1500 /*
1501  * When a page is moved from swapcache to shmem filecache (either by the
1502  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1503  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1504  * ignorance of the mapping it belongs to.  If that mapping has special
1505  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1506  * we may need to copy to a suitable page before moving to filecache.
1507  *
1508  * In a future release, this may well be extended to respect cpuset and
1509  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1510  * but for now it is a simple matter of zone.
1511  */
1512 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1513 {
1514 	return page_zonenum(page) > gfp_zone(gfp);
1515 }
1516 
1517 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1518 				struct shmem_inode_info *info, pgoff_t index)
1519 {
1520 	struct page *oldpage, *newpage;
1521 	struct address_space *swap_mapping;
1522 	pgoff_t swap_index;
1523 	int error;
1524 
1525 	oldpage = *pagep;
1526 	swap_index = page_private(oldpage);
1527 	swap_mapping = page_mapping(oldpage);
1528 
1529 	/*
1530 	 * We have arrived here because our zones are constrained, so don't
1531 	 * limit chance of success by further cpuset and node constraints.
1532 	 */
1533 	gfp &= ~GFP_CONSTRAINT_MASK;
1534 	newpage = shmem_alloc_page(gfp, info, index);
1535 	if (!newpage)
1536 		return -ENOMEM;
1537 
1538 	get_page(newpage);
1539 	copy_highpage(newpage, oldpage);
1540 	flush_dcache_page(newpage);
1541 
1542 	__SetPageLocked(newpage);
1543 	__SetPageSwapBacked(newpage);
1544 	SetPageUptodate(newpage);
1545 	set_page_private(newpage, swap_index);
1546 	SetPageSwapCache(newpage);
1547 
1548 	/*
1549 	 * Our caller will very soon move newpage out of swapcache, but it's
1550 	 * a nice clean interface for us to replace oldpage by newpage there.
1551 	 */
1552 	spin_lock_irq(&swap_mapping->tree_lock);
1553 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1554 								   newpage);
1555 	if (!error) {
1556 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1557 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1558 	}
1559 	spin_unlock_irq(&swap_mapping->tree_lock);
1560 
1561 	if (unlikely(error)) {
1562 		/*
1563 		 * Is this possible?  I think not, now that our callers check
1564 		 * both PageSwapCache and page_private after getting page lock;
1565 		 * but be defensive.  Reverse old to newpage for clear and free.
1566 		 */
1567 		oldpage = newpage;
1568 	} else {
1569 		mem_cgroup_migrate(oldpage, newpage);
1570 		lru_cache_add_anon(newpage);
1571 		*pagep = newpage;
1572 	}
1573 
1574 	ClearPageSwapCache(oldpage);
1575 	set_page_private(oldpage, 0);
1576 
1577 	unlock_page(oldpage);
1578 	put_page(oldpage);
1579 	put_page(oldpage);
1580 	return error;
1581 }
1582 
1583 /*
1584  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1585  *
1586  * If we allocate a new one we do not mark it dirty. That's up to the
1587  * vm. If we swap it in we mark it dirty since we also free the swap
1588  * entry since a page cannot live in both the swap and page cache.
1589  *
1590  * fault_mm and fault_type are only supplied by shmem_fault:
1591  * otherwise they are NULL.
1592  */
1593 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1594 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1595 	struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1596 {
1597 	struct address_space *mapping = inode->i_mapping;
1598 	struct shmem_inode_info *info = SHMEM_I(inode);
1599 	struct shmem_sb_info *sbinfo;
1600 	struct mm_struct *charge_mm;
1601 	struct mem_cgroup *memcg;
1602 	struct page *page;
1603 	swp_entry_t swap;
1604 	enum sgp_type sgp_huge = sgp;
1605 	pgoff_t hindex = index;
1606 	int error;
1607 	int once = 0;
1608 	int alloced = 0;
1609 
1610 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1611 		return -EFBIG;
1612 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1613 		sgp = SGP_CACHE;
1614 repeat:
1615 	swap.val = 0;
1616 	page = find_lock_entry(mapping, index);
1617 	if (radix_tree_exceptional_entry(page)) {
1618 		swap = radix_to_swp_entry(page);
1619 		page = NULL;
1620 	}
1621 
1622 	if (sgp <= SGP_CACHE &&
1623 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1624 		error = -EINVAL;
1625 		goto unlock;
1626 	}
1627 
1628 	if (page && sgp == SGP_WRITE)
1629 		mark_page_accessed(page);
1630 
1631 	/* fallocated page? */
1632 	if (page && !PageUptodate(page)) {
1633 		if (sgp != SGP_READ)
1634 			goto clear;
1635 		unlock_page(page);
1636 		put_page(page);
1637 		page = NULL;
1638 	}
1639 	if (page || (sgp == SGP_READ && !swap.val)) {
1640 		*pagep = page;
1641 		return 0;
1642 	}
1643 
1644 	/*
1645 	 * Fast cache lookup did not find it:
1646 	 * bring it back from swap or allocate.
1647 	 */
1648 	sbinfo = SHMEM_SB(inode->i_sb);
1649 	charge_mm = vma ? vma->vm_mm : current->mm;
1650 
1651 	if (swap.val) {
1652 		/* Look it up and read it in.. */
1653 		page = lookup_swap_cache(swap, NULL, 0);
1654 		if (!page) {
1655 			/* Or update major stats only when swapin succeeds?? */
1656 			if (fault_type) {
1657 				*fault_type |= VM_FAULT_MAJOR;
1658 				count_vm_event(PGMAJFAULT);
1659 				count_memcg_event_mm(charge_mm, PGMAJFAULT);
1660 			}
1661 			/* Here we actually start the io */
1662 			page = shmem_swapin(swap, gfp, info, index);
1663 			if (!page) {
1664 				error = -ENOMEM;
1665 				goto failed;
1666 			}
1667 		}
1668 
1669 		/* We have to do this with page locked to prevent races */
1670 		lock_page(page);
1671 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1672 		    !shmem_confirm_swap(mapping, index, swap)) {
1673 			error = -EEXIST;	/* try again */
1674 			goto unlock;
1675 		}
1676 		if (!PageUptodate(page)) {
1677 			error = -EIO;
1678 			goto failed;
1679 		}
1680 		wait_on_page_writeback(page);
1681 
1682 		if (shmem_should_replace_page(page, gfp)) {
1683 			error = shmem_replace_page(&page, gfp, info, index);
1684 			if (error)
1685 				goto failed;
1686 		}
1687 
1688 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1689 				false);
1690 		if (!error) {
1691 			error = shmem_add_to_page_cache(page, mapping, index,
1692 						swp_to_radix_entry(swap));
1693 			/*
1694 			 * We already confirmed swap under page lock, and make
1695 			 * no memory allocation here, so usually no possibility
1696 			 * of error; but free_swap_and_cache() only trylocks a
1697 			 * page, so it is just possible that the entry has been
1698 			 * truncated or holepunched since swap was confirmed.
1699 			 * shmem_undo_range() will have done some of the
1700 			 * unaccounting, now delete_from_swap_cache() will do
1701 			 * the rest.
1702 			 * Reset swap.val? No, leave it so "failed" goes back to
1703 			 * "repeat": reading a hole and writing should succeed.
1704 			 */
1705 			if (error) {
1706 				mem_cgroup_cancel_charge(page, memcg, false);
1707 				delete_from_swap_cache(page);
1708 			}
1709 		}
1710 		if (error)
1711 			goto failed;
1712 
1713 		mem_cgroup_commit_charge(page, memcg, true, false);
1714 
1715 		spin_lock_irq(&info->lock);
1716 		info->swapped--;
1717 		shmem_recalc_inode(inode);
1718 		spin_unlock_irq(&info->lock);
1719 
1720 		if (sgp == SGP_WRITE)
1721 			mark_page_accessed(page);
1722 
1723 		delete_from_swap_cache(page);
1724 		set_page_dirty(page);
1725 		swap_free(swap);
1726 
1727 	} else {
1728 		if (vma && userfaultfd_missing(vma)) {
1729 			*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1730 			return 0;
1731 		}
1732 
1733 		/* shmem_symlink() */
1734 		if (mapping->a_ops != &shmem_aops)
1735 			goto alloc_nohuge;
1736 		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1737 			goto alloc_nohuge;
1738 		if (shmem_huge == SHMEM_HUGE_FORCE)
1739 			goto alloc_huge;
1740 		switch (sbinfo->huge) {
1741 			loff_t i_size;
1742 			pgoff_t off;
1743 		case SHMEM_HUGE_NEVER:
1744 			goto alloc_nohuge;
1745 		case SHMEM_HUGE_WITHIN_SIZE:
1746 			off = round_up(index, HPAGE_PMD_NR);
1747 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1748 			if (i_size >= HPAGE_PMD_SIZE &&
1749 					i_size >> PAGE_SHIFT >= off)
1750 				goto alloc_huge;
1751 			/* fallthrough */
1752 		case SHMEM_HUGE_ADVISE:
1753 			if (sgp_huge == SGP_HUGE)
1754 				goto alloc_huge;
1755 			/* TODO: implement fadvise() hints */
1756 			goto alloc_nohuge;
1757 		}
1758 
1759 alloc_huge:
1760 		page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1761 		if (IS_ERR(page)) {
1762 alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, inode,
1763 					index, false);
1764 		}
1765 		if (IS_ERR(page)) {
1766 			int retry = 5;
1767 			error = PTR_ERR(page);
1768 			page = NULL;
1769 			if (error != -ENOSPC)
1770 				goto failed;
1771 			/*
1772 			 * Try to reclaim some spece by splitting a huge page
1773 			 * beyond i_size on the filesystem.
1774 			 */
1775 			while (retry--) {
1776 				int ret;
1777 				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1778 				if (ret == SHRINK_STOP)
1779 					break;
1780 				if (ret)
1781 					goto alloc_nohuge;
1782 			}
1783 			goto failed;
1784 		}
1785 
1786 		if (PageTransHuge(page))
1787 			hindex = round_down(index, HPAGE_PMD_NR);
1788 		else
1789 			hindex = index;
1790 
1791 		if (sgp == SGP_WRITE)
1792 			__SetPageReferenced(page);
1793 
1794 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1795 				PageTransHuge(page));
1796 		if (error)
1797 			goto unacct;
1798 		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1799 				compound_order(page));
1800 		if (!error) {
1801 			error = shmem_add_to_page_cache(page, mapping, hindex,
1802 							NULL);
1803 			radix_tree_preload_end();
1804 		}
1805 		if (error) {
1806 			mem_cgroup_cancel_charge(page, memcg,
1807 					PageTransHuge(page));
1808 			goto unacct;
1809 		}
1810 		mem_cgroup_commit_charge(page, memcg, false,
1811 				PageTransHuge(page));
1812 		lru_cache_add_anon(page);
1813 
1814 		spin_lock_irq(&info->lock);
1815 		info->alloced += 1 << compound_order(page);
1816 		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1817 		shmem_recalc_inode(inode);
1818 		spin_unlock_irq(&info->lock);
1819 		alloced = true;
1820 
1821 		if (PageTransHuge(page) &&
1822 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1823 				hindex + HPAGE_PMD_NR - 1) {
1824 			/*
1825 			 * Part of the huge page is beyond i_size: subject
1826 			 * to shrink under memory pressure.
1827 			 */
1828 			spin_lock(&sbinfo->shrinklist_lock);
1829 			/*
1830 			 * _careful to defend against unlocked access to
1831 			 * ->shrink_list in shmem_unused_huge_shrink()
1832 			 */
1833 			if (list_empty_careful(&info->shrinklist)) {
1834 				list_add_tail(&info->shrinklist,
1835 						&sbinfo->shrinklist);
1836 				sbinfo->shrinklist_len++;
1837 			}
1838 			spin_unlock(&sbinfo->shrinklist_lock);
1839 		}
1840 
1841 		/*
1842 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1843 		 */
1844 		if (sgp == SGP_FALLOC)
1845 			sgp = SGP_WRITE;
1846 clear:
1847 		/*
1848 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1849 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1850 		 * it now, lest undo on failure cancel our earlier guarantee.
1851 		 */
1852 		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1853 			struct page *head = compound_head(page);
1854 			int i;
1855 
1856 			for (i = 0; i < (1 << compound_order(head)); i++) {
1857 				clear_highpage(head + i);
1858 				flush_dcache_page(head + i);
1859 			}
1860 			SetPageUptodate(head);
1861 		}
1862 	}
1863 
1864 	/* Perhaps the file has been truncated since we checked */
1865 	if (sgp <= SGP_CACHE &&
1866 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1867 		if (alloced) {
1868 			ClearPageDirty(page);
1869 			delete_from_page_cache(page);
1870 			spin_lock_irq(&info->lock);
1871 			shmem_recalc_inode(inode);
1872 			spin_unlock_irq(&info->lock);
1873 		}
1874 		error = -EINVAL;
1875 		goto unlock;
1876 	}
1877 	*pagep = page + index - hindex;
1878 	return 0;
1879 
1880 	/*
1881 	 * Error recovery.
1882 	 */
1883 unacct:
1884 	shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1885 
1886 	if (PageTransHuge(page)) {
1887 		unlock_page(page);
1888 		put_page(page);
1889 		goto alloc_nohuge;
1890 	}
1891 failed:
1892 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1893 		error = -EEXIST;
1894 unlock:
1895 	if (page) {
1896 		unlock_page(page);
1897 		put_page(page);
1898 	}
1899 	if (error == -ENOSPC && !once++) {
1900 		spin_lock_irq(&info->lock);
1901 		shmem_recalc_inode(inode);
1902 		spin_unlock_irq(&info->lock);
1903 		goto repeat;
1904 	}
1905 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1906 		goto repeat;
1907 	return error;
1908 }
1909 
1910 /*
1911  * This is like autoremove_wake_function, but it removes the wait queue
1912  * entry unconditionally - even if something else had already woken the
1913  * target.
1914  */
1915 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1916 {
1917 	int ret = default_wake_function(wait, mode, sync, key);
1918 	list_del_init(&wait->entry);
1919 	return ret;
1920 }
1921 
1922 static int shmem_fault(struct vm_fault *vmf)
1923 {
1924 	struct vm_area_struct *vma = vmf->vma;
1925 	struct inode *inode = file_inode(vma->vm_file);
1926 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1927 	enum sgp_type sgp;
1928 	int error;
1929 	int ret = VM_FAULT_LOCKED;
1930 
1931 	/*
1932 	 * Trinity finds that probing a hole which tmpfs is punching can
1933 	 * prevent the hole-punch from ever completing: which in turn
1934 	 * locks writers out with its hold on i_mutex.  So refrain from
1935 	 * faulting pages into the hole while it's being punched.  Although
1936 	 * shmem_undo_range() does remove the additions, it may be unable to
1937 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1938 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1939 	 *
1940 	 * It does not matter if we sometimes reach this check just before the
1941 	 * hole-punch begins, so that one fault then races with the punch:
1942 	 * we just need to make racing faults a rare case.
1943 	 *
1944 	 * The implementation below would be much simpler if we just used a
1945 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1946 	 * and bloating every shmem inode for this unlikely case would be sad.
1947 	 */
1948 	if (unlikely(inode->i_private)) {
1949 		struct shmem_falloc *shmem_falloc;
1950 
1951 		spin_lock(&inode->i_lock);
1952 		shmem_falloc = inode->i_private;
1953 		if (shmem_falloc &&
1954 		    shmem_falloc->waitq &&
1955 		    vmf->pgoff >= shmem_falloc->start &&
1956 		    vmf->pgoff < shmem_falloc->next) {
1957 			wait_queue_head_t *shmem_falloc_waitq;
1958 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1959 
1960 			ret = VM_FAULT_NOPAGE;
1961 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1962 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1963 				/* It's polite to up mmap_sem if we can */
1964 				up_read(&vma->vm_mm->mmap_sem);
1965 				ret = VM_FAULT_RETRY;
1966 			}
1967 
1968 			shmem_falloc_waitq = shmem_falloc->waitq;
1969 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1970 					TASK_UNINTERRUPTIBLE);
1971 			spin_unlock(&inode->i_lock);
1972 			schedule();
1973 
1974 			/*
1975 			 * shmem_falloc_waitq points into the shmem_fallocate()
1976 			 * stack of the hole-punching task: shmem_falloc_waitq
1977 			 * is usually invalid by the time we reach here, but
1978 			 * finish_wait() does not dereference it in that case;
1979 			 * though i_lock needed lest racing with wake_up_all().
1980 			 */
1981 			spin_lock(&inode->i_lock);
1982 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1983 			spin_unlock(&inode->i_lock);
1984 			return ret;
1985 		}
1986 		spin_unlock(&inode->i_lock);
1987 	}
1988 
1989 	sgp = SGP_CACHE;
1990 
1991 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
1992 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
1993 		sgp = SGP_NOHUGE;
1994 	else if (vma->vm_flags & VM_HUGEPAGE)
1995 		sgp = SGP_HUGE;
1996 
1997 	error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1998 				  gfp, vma, vmf, &ret);
1999 	if (error)
2000 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
2001 	return ret;
2002 }
2003 
2004 unsigned long shmem_get_unmapped_area(struct file *file,
2005 				      unsigned long uaddr, unsigned long len,
2006 				      unsigned long pgoff, unsigned long flags)
2007 {
2008 	unsigned long (*get_area)(struct file *,
2009 		unsigned long, unsigned long, unsigned long, unsigned long);
2010 	unsigned long addr;
2011 	unsigned long offset;
2012 	unsigned long inflated_len;
2013 	unsigned long inflated_addr;
2014 	unsigned long inflated_offset;
2015 
2016 	if (len > TASK_SIZE)
2017 		return -ENOMEM;
2018 
2019 	get_area = current->mm->get_unmapped_area;
2020 	addr = get_area(file, uaddr, len, pgoff, flags);
2021 
2022 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2023 		return addr;
2024 	if (IS_ERR_VALUE(addr))
2025 		return addr;
2026 	if (addr & ~PAGE_MASK)
2027 		return addr;
2028 	if (addr > TASK_SIZE - len)
2029 		return addr;
2030 
2031 	if (shmem_huge == SHMEM_HUGE_DENY)
2032 		return addr;
2033 	if (len < HPAGE_PMD_SIZE)
2034 		return addr;
2035 	if (flags & MAP_FIXED)
2036 		return addr;
2037 	/*
2038 	 * Our priority is to support MAP_SHARED mapped hugely;
2039 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2040 	 * But if caller specified an address hint, respect that as before.
2041 	 */
2042 	if (uaddr)
2043 		return addr;
2044 
2045 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2046 		struct super_block *sb;
2047 
2048 		if (file) {
2049 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2050 			sb = file_inode(file)->i_sb;
2051 		} else {
2052 			/*
2053 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2054 			 * for "/dev/zero", to create a shared anonymous object.
2055 			 */
2056 			if (IS_ERR(shm_mnt))
2057 				return addr;
2058 			sb = shm_mnt->mnt_sb;
2059 		}
2060 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2061 			return addr;
2062 	}
2063 
2064 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2065 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2066 		return addr;
2067 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2068 		return addr;
2069 
2070 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2071 	if (inflated_len > TASK_SIZE)
2072 		return addr;
2073 	if (inflated_len < len)
2074 		return addr;
2075 
2076 	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2077 	if (IS_ERR_VALUE(inflated_addr))
2078 		return addr;
2079 	if (inflated_addr & ~PAGE_MASK)
2080 		return addr;
2081 
2082 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2083 	inflated_addr += offset - inflated_offset;
2084 	if (inflated_offset > offset)
2085 		inflated_addr += HPAGE_PMD_SIZE;
2086 
2087 	if (inflated_addr > TASK_SIZE - len)
2088 		return addr;
2089 	return inflated_addr;
2090 }
2091 
2092 #ifdef CONFIG_NUMA
2093 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2094 {
2095 	struct inode *inode = file_inode(vma->vm_file);
2096 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2097 }
2098 
2099 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2100 					  unsigned long addr)
2101 {
2102 	struct inode *inode = file_inode(vma->vm_file);
2103 	pgoff_t index;
2104 
2105 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2106 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2107 }
2108 #endif
2109 
2110 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2111 {
2112 	struct inode *inode = file_inode(file);
2113 	struct shmem_inode_info *info = SHMEM_I(inode);
2114 	int retval = -ENOMEM;
2115 
2116 	spin_lock_irq(&info->lock);
2117 	if (lock && !(info->flags & VM_LOCKED)) {
2118 		if (!user_shm_lock(inode->i_size, user))
2119 			goto out_nomem;
2120 		info->flags |= VM_LOCKED;
2121 		mapping_set_unevictable(file->f_mapping);
2122 	}
2123 	if (!lock && (info->flags & VM_LOCKED) && user) {
2124 		user_shm_unlock(inode->i_size, user);
2125 		info->flags &= ~VM_LOCKED;
2126 		mapping_clear_unevictable(file->f_mapping);
2127 	}
2128 	retval = 0;
2129 
2130 out_nomem:
2131 	spin_unlock_irq(&info->lock);
2132 	return retval;
2133 }
2134 
2135 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2136 {
2137 	file_accessed(file);
2138 	vma->vm_ops = &shmem_vm_ops;
2139 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2140 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2141 			(vma->vm_end & HPAGE_PMD_MASK)) {
2142 		khugepaged_enter(vma, vma->vm_flags);
2143 	}
2144 	return 0;
2145 }
2146 
2147 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2148 				     umode_t mode, dev_t dev, unsigned long flags)
2149 {
2150 	struct inode *inode;
2151 	struct shmem_inode_info *info;
2152 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2153 
2154 	if (shmem_reserve_inode(sb))
2155 		return NULL;
2156 
2157 	inode = new_inode(sb);
2158 	if (inode) {
2159 		inode->i_ino = get_next_ino();
2160 		inode_init_owner(inode, dir, mode);
2161 		inode->i_blocks = 0;
2162 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2163 		inode->i_generation = get_seconds();
2164 		info = SHMEM_I(inode);
2165 		memset(info, 0, (char *)inode - (char *)info);
2166 		spin_lock_init(&info->lock);
2167 		info->seals = F_SEAL_SEAL;
2168 		info->flags = flags & VM_NORESERVE;
2169 		INIT_LIST_HEAD(&info->shrinklist);
2170 		INIT_LIST_HEAD(&info->swaplist);
2171 		simple_xattrs_init(&info->xattrs);
2172 		cache_no_acl(inode);
2173 
2174 		switch (mode & S_IFMT) {
2175 		default:
2176 			inode->i_op = &shmem_special_inode_operations;
2177 			init_special_inode(inode, mode, dev);
2178 			break;
2179 		case S_IFREG:
2180 			inode->i_mapping->a_ops = &shmem_aops;
2181 			inode->i_op = &shmem_inode_operations;
2182 			inode->i_fop = &shmem_file_operations;
2183 			mpol_shared_policy_init(&info->policy,
2184 						 shmem_get_sbmpol(sbinfo));
2185 			break;
2186 		case S_IFDIR:
2187 			inc_nlink(inode);
2188 			/* Some things misbehave if size == 0 on a directory */
2189 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2190 			inode->i_op = &shmem_dir_inode_operations;
2191 			inode->i_fop = &simple_dir_operations;
2192 			break;
2193 		case S_IFLNK:
2194 			/*
2195 			 * Must not load anything in the rbtree,
2196 			 * mpol_free_shared_policy will not be called.
2197 			 */
2198 			mpol_shared_policy_init(&info->policy, NULL);
2199 			break;
2200 		}
2201 	} else
2202 		shmem_free_inode(sb);
2203 	return inode;
2204 }
2205 
2206 bool shmem_mapping(struct address_space *mapping)
2207 {
2208 	return mapping->a_ops == &shmem_aops;
2209 }
2210 
2211 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2212 				  pmd_t *dst_pmd,
2213 				  struct vm_area_struct *dst_vma,
2214 				  unsigned long dst_addr,
2215 				  unsigned long src_addr,
2216 				  bool zeropage,
2217 				  struct page **pagep)
2218 {
2219 	struct inode *inode = file_inode(dst_vma->vm_file);
2220 	struct shmem_inode_info *info = SHMEM_I(inode);
2221 	struct address_space *mapping = inode->i_mapping;
2222 	gfp_t gfp = mapping_gfp_mask(mapping);
2223 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2224 	struct mem_cgroup *memcg;
2225 	spinlock_t *ptl;
2226 	void *page_kaddr;
2227 	struct page *page;
2228 	pte_t _dst_pte, *dst_pte;
2229 	int ret;
2230 
2231 	ret = -ENOMEM;
2232 	if (!shmem_inode_acct_block(inode, 1))
2233 		goto out;
2234 
2235 	if (!*pagep) {
2236 		page = shmem_alloc_page(gfp, info, pgoff);
2237 		if (!page)
2238 			goto out_unacct_blocks;
2239 
2240 		if (!zeropage) {	/* mcopy_atomic */
2241 			page_kaddr = kmap_atomic(page);
2242 			ret = copy_from_user(page_kaddr,
2243 					     (const void __user *)src_addr,
2244 					     PAGE_SIZE);
2245 			kunmap_atomic(page_kaddr);
2246 
2247 			/* fallback to copy_from_user outside mmap_sem */
2248 			if (unlikely(ret)) {
2249 				*pagep = page;
2250 				shmem_inode_unacct_blocks(inode, 1);
2251 				/* don't free the page */
2252 				return -EFAULT;
2253 			}
2254 		} else {		/* mfill_zeropage_atomic */
2255 			clear_highpage(page);
2256 		}
2257 	} else {
2258 		page = *pagep;
2259 		*pagep = NULL;
2260 	}
2261 
2262 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2263 	__SetPageLocked(page);
2264 	__SetPageSwapBacked(page);
2265 	__SetPageUptodate(page);
2266 
2267 	ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2268 	if (ret)
2269 		goto out_release;
2270 
2271 	ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2272 	if (!ret) {
2273 		ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2274 		radix_tree_preload_end();
2275 	}
2276 	if (ret)
2277 		goto out_release_uncharge;
2278 
2279 	mem_cgroup_commit_charge(page, memcg, false, false);
2280 
2281 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2282 	if (dst_vma->vm_flags & VM_WRITE)
2283 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2284 
2285 	ret = -EEXIST;
2286 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2287 	if (!pte_none(*dst_pte))
2288 		goto out_release_uncharge_unlock;
2289 
2290 	lru_cache_add_anon(page);
2291 
2292 	spin_lock(&info->lock);
2293 	info->alloced++;
2294 	inode->i_blocks += BLOCKS_PER_PAGE;
2295 	shmem_recalc_inode(inode);
2296 	spin_unlock(&info->lock);
2297 
2298 	inc_mm_counter(dst_mm, mm_counter_file(page));
2299 	page_add_file_rmap(page, false);
2300 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2301 
2302 	/* No need to invalidate - it was non-present before */
2303 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2304 	unlock_page(page);
2305 	pte_unmap_unlock(dst_pte, ptl);
2306 	ret = 0;
2307 out:
2308 	return ret;
2309 out_release_uncharge_unlock:
2310 	pte_unmap_unlock(dst_pte, ptl);
2311 out_release_uncharge:
2312 	mem_cgroup_cancel_charge(page, memcg, false);
2313 out_release:
2314 	unlock_page(page);
2315 	put_page(page);
2316 out_unacct_blocks:
2317 	shmem_inode_unacct_blocks(inode, 1);
2318 	goto out;
2319 }
2320 
2321 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2322 			   pmd_t *dst_pmd,
2323 			   struct vm_area_struct *dst_vma,
2324 			   unsigned long dst_addr,
2325 			   unsigned long src_addr,
2326 			   struct page **pagep)
2327 {
2328 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2329 				      dst_addr, src_addr, false, pagep);
2330 }
2331 
2332 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2333 			     pmd_t *dst_pmd,
2334 			     struct vm_area_struct *dst_vma,
2335 			     unsigned long dst_addr)
2336 {
2337 	struct page *page = NULL;
2338 
2339 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2340 				      dst_addr, 0, true, &page);
2341 }
2342 
2343 #ifdef CONFIG_TMPFS
2344 static const struct inode_operations shmem_symlink_inode_operations;
2345 static const struct inode_operations shmem_short_symlink_operations;
2346 
2347 #ifdef CONFIG_TMPFS_XATTR
2348 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2349 #else
2350 #define shmem_initxattrs NULL
2351 #endif
2352 
2353 static int
2354 shmem_write_begin(struct file *file, struct address_space *mapping,
2355 			loff_t pos, unsigned len, unsigned flags,
2356 			struct page **pagep, void **fsdata)
2357 {
2358 	struct inode *inode = mapping->host;
2359 	struct shmem_inode_info *info = SHMEM_I(inode);
2360 	pgoff_t index = pos >> PAGE_SHIFT;
2361 
2362 	/* i_mutex is held by caller */
2363 	if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2364 		if (info->seals & F_SEAL_WRITE)
2365 			return -EPERM;
2366 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2367 			return -EPERM;
2368 	}
2369 
2370 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2371 }
2372 
2373 static int
2374 shmem_write_end(struct file *file, struct address_space *mapping,
2375 			loff_t pos, unsigned len, unsigned copied,
2376 			struct page *page, void *fsdata)
2377 {
2378 	struct inode *inode = mapping->host;
2379 
2380 	if (pos + copied > inode->i_size)
2381 		i_size_write(inode, pos + copied);
2382 
2383 	if (!PageUptodate(page)) {
2384 		struct page *head = compound_head(page);
2385 		if (PageTransCompound(page)) {
2386 			int i;
2387 
2388 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2389 				if (head + i == page)
2390 					continue;
2391 				clear_highpage(head + i);
2392 				flush_dcache_page(head + i);
2393 			}
2394 		}
2395 		if (copied < PAGE_SIZE) {
2396 			unsigned from = pos & (PAGE_SIZE - 1);
2397 			zero_user_segments(page, 0, from,
2398 					from + copied, PAGE_SIZE);
2399 		}
2400 		SetPageUptodate(head);
2401 	}
2402 	set_page_dirty(page);
2403 	unlock_page(page);
2404 	put_page(page);
2405 
2406 	return copied;
2407 }
2408 
2409 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2410 {
2411 	struct file *file = iocb->ki_filp;
2412 	struct inode *inode = file_inode(file);
2413 	struct address_space *mapping = inode->i_mapping;
2414 	pgoff_t index;
2415 	unsigned long offset;
2416 	enum sgp_type sgp = SGP_READ;
2417 	int error = 0;
2418 	ssize_t retval = 0;
2419 	loff_t *ppos = &iocb->ki_pos;
2420 
2421 	/*
2422 	 * Might this read be for a stacking filesystem?  Then when reading
2423 	 * holes of a sparse file, we actually need to allocate those pages,
2424 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2425 	 */
2426 	if (!iter_is_iovec(to))
2427 		sgp = SGP_CACHE;
2428 
2429 	index = *ppos >> PAGE_SHIFT;
2430 	offset = *ppos & ~PAGE_MASK;
2431 
2432 	for (;;) {
2433 		struct page *page = NULL;
2434 		pgoff_t end_index;
2435 		unsigned long nr, ret;
2436 		loff_t i_size = i_size_read(inode);
2437 
2438 		end_index = i_size >> PAGE_SHIFT;
2439 		if (index > end_index)
2440 			break;
2441 		if (index == end_index) {
2442 			nr = i_size & ~PAGE_MASK;
2443 			if (nr <= offset)
2444 				break;
2445 		}
2446 
2447 		error = shmem_getpage(inode, index, &page, sgp);
2448 		if (error) {
2449 			if (error == -EINVAL)
2450 				error = 0;
2451 			break;
2452 		}
2453 		if (page) {
2454 			if (sgp == SGP_CACHE)
2455 				set_page_dirty(page);
2456 			unlock_page(page);
2457 		}
2458 
2459 		/*
2460 		 * We must evaluate after, since reads (unlike writes)
2461 		 * are called without i_mutex protection against truncate
2462 		 */
2463 		nr = PAGE_SIZE;
2464 		i_size = i_size_read(inode);
2465 		end_index = i_size >> PAGE_SHIFT;
2466 		if (index == end_index) {
2467 			nr = i_size & ~PAGE_MASK;
2468 			if (nr <= offset) {
2469 				if (page)
2470 					put_page(page);
2471 				break;
2472 			}
2473 		}
2474 		nr -= offset;
2475 
2476 		if (page) {
2477 			/*
2478 			 * If users can be writing to this page using arbitrary
2479 			 * virtual addresses, take care about potential aliasing
2480 			 * before reading the page on the kernel side.
2481 			 */
2482 			if (mapping_writably_mapped(mapping))
2483 				flush_dcache_page(page);
2484 			/*
2485 			 * Mark the page accessed if we read the beginning.
2486 			 */
2487 			if (!offset)
2488 				mark_page_accessed(page);
2489 		} else {
2490 			page = ZERO_PAGE(0);
2491 			get_page(page);
2492 		}
2493 
2494 		/*
2495 		 * Ok, we have the page, and it's up-to-date, so
2496 		 * now we can copy it to user space...
2497 		 */
2498 		ret = copy_page_to_iter(page, offset, nr, to);
2499 		retval += ret;
2500 		offset += ret;
2501 		index += offset >> PAGE_SHIFT;
2502 		offset &= ~PAGE_MASK;
2503 
2504 		put_page(page);
2505 		if (!iov_iter_count(to))
2506 			break;
2507 		if (ret < nr) {
2508 			error = -EFAULT;
2509 			break;
2510 		}
2511 		cond_resched();
2512 	}
2513 
2514 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2515 	file_accessed(file);
2516 	return retval ? retval : error;
2517 }
2518 
2519 /*
2520  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2521  */
2522 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2523 				    pgoff_t index, pgoff_t end, int whence)
2524 {
2525 	struct page *page;
2526 	struct pagevec pvec;
2527 	pgoff_t indices[PAGEVEC_SIZE];
2528 	bool done = false;
2529 	int i;
2530 
2531 	pagevec_init(&pvec, 0);
2532 	pvec.nr = 1;		/* start small: we may be there already */
2533 	while (!done) {
2534 		pvec.nr = find_get_entries(mapping, index,
2535 					pvec.nr, pvec.pages, indices);
2536 		if (!pvec.nr) {
2537 			if (whence == SEEK_DATA)
2538 				index = end;
2539 			break;
2540 		}
2541 		for (i = 0; i < pvec.nr; i++, index++) {
2542 			if (index < indices[i]) {
2543 				if (whence == SEEK_HOLE) {
2544 					done = true;
2545 					break;
2546 				}
2547 				index = indices[i];
2548 			}
2549 			page = pvec.pages[i];
2550 			if (page && !radix_tree_exceptional_entry(page)) {
2551 				if (!PageUptodate(page))
2552 					page = NULL;
2553 			}
2554 			if (index >= end ||
2555 			    (page && whence == SEEK_DATA) ||
2556 			    (!page && whence == SEEK_HOLE)) {
2557 				done = true;
2558 				break;
2559 			}
2560 		}
2561 		pagevec_remove_exceptionals(&pvec);
2562 		pagevec_release(&pvec);
2563 		pvec.nr = PAGEVEC_SIZE;
2564 		cond_resched();
2565 	}
2566 	return index;
2567 }
2568 
2569 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2570 {
2571 	struct address_space *mapping = file->f_mapping;
2572 	struct inode *inode = mapping->host;
2573 	pgoff_t start, end;
2574 	loff_t new_offset;
2575 
2576 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2577 		return generic_file_llseek_size(file, offset, whence,
2578 					MAX_LFS_FILESIZE, i_size_read(inode));
2579 	inode_lock(inode);
2580 	/* We're holding i_mutex so we can access i_size directly */
2581 
2582 	if (offset < 0)
2583 		offset = -EINVAL;
2584 	else if (offset >= inode->i_size)
2585 		offset = -ENXIO;
2586 	else {
2587 		start = offset >> PAGE_SHIFT;
2588 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2589 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2590 		new_offset <<= PAGE_SHIFT;
2591 		if (new_offset > offset) {
2592 			if (new_offset < inode->i_size)
2593 				offset = new_offset;
2594 			else if (whence == SEEK_DATA)
2595 				offset = -ENXIO;
2596 			else
2597 				offset = inode->i_size;
2598 		}
2599 	}
2600 
2601 	if (offset >= 0)
2602 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2603 	inode_unlock(inode);
2604 	return offset;
2605 }
2606 
2607 /*
2608  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2609  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2610  */
2611 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2612 #define LAST_SCAN               4       /* about 150ms max */
2613 
2614 static void shmem_tag_pins(struct address_space *mapping)
2615 {
2616 	struct radix_tree_iter iter;
2617 	void **slot;
2618 	pgoff_t start;
2619 	struct page *page;
2620 
2621 	lru_add_drain();
2622 	start = 0;
2623 	rcu_read_lock();
2624 
2625 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2626 		page = radix_tree_deref_slot(slot);
2627 		if (!page || radix_tree_exception(page)) {
2628 			if (radix_tree_deref_retry(page)) {
2629 				slot = radix_tree_iter_retry(&iter);
2630 				continue;
2631 			}
2632 		} else if (page_count(page) - page_mapcount(page) > 1) {
2633 			spin_lock_irq(&mapping->tree_lock);
2634 			radix_tree_tag_set(&mapping->page_tree, iter.index,
2635 					   SHMEM_TAG_PINNED);
2636 			spin_unlock_irq(&mapping->tree_lock);
2637 		}
2638 
2639 		if (need_resched()) {
2640 			slot = radix_tree_iter_resume(slot, &iter);
2641 			cond_resched_rcu();
2642 		}
2643 	}
2644 	rcu_read_unlock();
2645 }
2646 
2647 /*
2648  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2649  * via get_user_pages(), drivers might have some pending I/O without any active
2650  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2651  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2652  * them to be dropped.
2653  * The caller must guarantee that no new user will acquire writable references
2654  * to those pages to avoid races.
2655  */
2656 static int shmem_wait_for_pins(struct address_space *mapping)
2657 {
2658 	struct radix_tree_iter iter;
2659 	void **slot;
2660 	pgoff_t start;
2661 	struct page *page;
2662 	int error, scan;
2663 
2664 	shmem_tag_pins(mapping);
2665 
2666 	error = 0;
2667 	for (scan = 0; scan <= LAST_SCAN; scan++) {
2668 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2669 			break;
2670 
2671 		if (!scan)
2672 			lru_add_drain_all();
2673 		else if (schedule_timeout_killable((HZ << scan) / 200))
2674 			scan = LAST_SCAN;
2675 
2676 		start = 0;
2677 		rcu_read_lock();
2678 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2679 					   start, SHMEM_TAG_PINNED) {
2680 
2681 			page = radix_tree_deref_slot(slot);
2682 			if (radix_tree_exception(page)) {
2683 				if (radix_tree_deref_retry(page)) {
2684 					slot = radix_tree_iter_retry(&iter);
2685 					continue;
2686 				}
2687 
2688 				page = NULL;
2689 			}
2690 
2691 			if (page &&
2692 			    page_count(page) - page_mapcount(page) != 1) {
2693 				if (scan < LAST_SCAN)
2694 					goto continue_resched;
2695 
2696 				/*
2697 				 * On the last scan, we clean up all those tags
2698 				 * we inserted; but make a note that we still
2699 				 * found pages pinned.
2700 				 */
2701 				error = -EBUSY;
2702 			}
2703 
2704 			spin_lock_irq(&mapping->tree_lock);
2705 			radix_tree_tag_clear(&mapping->page_tree,
2706 					     iter.index, SHMEM_TAG_PINNED);
2707 			spin_unlock_irq(&mapping->tree_lock);
2708 continue_resched:
2709 			if (need_resched()) {
2710 				slot = radix_tree_iter_resume(slot, &iter);
2711 				cond_resched_rcu();
2712 			}
2713 		}
2714 		rcu_read_unlock();
2715 	}
2716 
2717 	return error;
2718 }
2719 
2720 #define F_ALL_SEALS (F_SEAL_SEAL | \
2721 		     F_SEAL_SHRINK | \
2722 		     F_SEAL_GROW | \
2723 		     F_SEAL_WRITE)
2724 
2725 int shmem_add_seals(struct file *file, unsigned int seals)
2726 {
2727 	struct inode *inode = file_inode(file);
2728 	struct shmem_inode_info *info = SHMEM_I(inode);
2729 	int error;
2730 
2731 	/*
2732 	 * SEALING
2733 	 * Sealing allows multiple parties to share a shmem-file but restrict
2734 	 * access to a specific subset of file operations. Seals can only be
2735 	 * added, but never removed. This way, mutually untrusted parties can
2736 	 * share common memory regions with a well-defined policy. A malicious
2737 	 * peer can thus never perform unwanted operations on a shared object.
2738 	 *
2739 	 * Seals are only supported on special shmem-files and always affect
2740 	 * the whole underlying inode. Once a seal is set, it may prevent some
2741 	 * kinds of access to the file. Currently, the following seals are
2742 	 * defined:
2743 	 *   SEAL_SEAL: Prevent further seals from being set on this file
2744 	 *   SEAL_SHRINK: Prevent the file from shrinking
2745 	 *   SEAL_GROW: Prevent the file from growing
2746 	 *   SEAL_WRITE: Prevent write access to the file
2747 	 *
2748 	 * As we don't require any trust relationship between two parties, we
2749 	 * must prevent seals from being removed. Therefore, sealing a file
2750 	 * only adds a given set of seals to the file, it never touches
2751 	 * existing seals. Furthermore, the "setting seals"-operation can be
2752 	 * sealed itself, which basically prevents any further seal from being
2753 	 * added.
2754 	 *
2755 	 * Semantics of sealing are only defined on volatile files. Only
2756 	 * anonymous shmem files support sealing. More importantly, seals are
2757 	 * never written to disk. Therefore, there's no plan to support it on
2758 	 * other file types.
2759 	 */
2760 
2761 	if (file->f_op != &shmem_file_operations)
2762 		return -EINVAL;
2763 	if (!(file->f_mode & FMODE_WRITE))
2764 		return -EPERM;
2765 	if (seals & ~(unsigned int)F_ALL_SEALS)
2766 		return -EINVAL;
2767 
2768 	inode_lock(inode);
2769 
2770 	if (info->seals & F_SEAL_SEAL) {
2771 		error = -EPERM;
2772 		goto unlock;
2773 	}
2774 
2775 	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2776 		error = mapping_deny_writable(file->f_mapping);
2777 		if (error)
2778 			goto unlock;
2779 
2780 		error = shmem_wait_for_pins(file->f_mapping);
2781 		if (error) {
2782 			mapping_allow_writable(file->f_mapping);
2783 			goto unlock;
2784 		}
2785 	}
2786 
2787 	info->seals |= seals;
2788 	error = 0;
2789 
2790 unlock:
2791 	inode_unlock(inode);
2792 	return error;
2793 }
2794 EXPORT_SYMBOL_GPL(shmem_add_seals);
2795 
2796 int shmem_get_seals(struct file *file)
2797 {
2798 	if (file->f_op != &shmem_file_operations)
2799 		return -EINVAL;
2800 
2801 	return SHMEM_I(file_inode(file))->seals;
2802 }
2803 EXPORT_SYMBOL_GPL(shmem_get_seals);
2804 
2805 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2806 {
2807 	long error;
2808 
2809 	switch (cmd) {
2810 	case F_ADD_SEALS:
2811 		/* disallow upper 32bit */
2812 		if (arg > UINT_MAX)
2813 			return -EINVAL;
2814 
2815 		error = shmem_add_seals(file, arg);
2816 		break;
2817 	case F_GET_SEALS:
2818 		error = shmem_get_seals(file);
2819 		break;
2820 	default:
2821 		error = -EINVAL;
2822 		break;
2823 	}
2824 
2825 	return error;
2826 }
2827 
2828 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2829 							 loff_t len)
2830 {
2831 	struct inode *inode = file_inode(file);
2832 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2833 	struct shmem_inode_info *info = SHMEM_I(inode);
2834 	struct shmem_falloc shmem_falloc;
2835 	pgoff_t start, index, end;
2836 	int error;
2837 
2838 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2839 		return -EOPNOTSUPP;
2840 
2841 	inode_lock(inode);
2842 
2843 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2844 		struct address_space *mapping = file->f_mapping;
2845 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2846 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2847 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2848 
2849 		/* protected by i_mutex */
2850 		if (info->seals & F_SEAL_WRITE) {
2851 			error = -EPERM;
2852 			goto out;
2853 		}
2854 
2855 		shmem_falloc.waitq = &shmem_falloc_waitq;
2856 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2857 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2858 		spin_lock(&inode->i_lock);
2859 		inode->i_private = &shmem_falloc;
2860 		spin_unlock(&inode->i_lock);
2861 
2862 		if ((u64)unmap_end > (u64)unmap_start)
2863 			unmap_mapping_range(mapping, unmap_start,
2864 					    1 + unmap_end - unmap_start, 0);
2865 		shmem_truncate_range(inode, offset, offset + len - 1);
2866 		/* No need to unmap again: hole-punching leaves COWed pages */
2867 
2868 		spin_lock(&inode->i_lock);
2869 		inode->i_private = NULL;
2870 		wake_up_all(&shmem_falloc_waitq);
2871 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2872 		spin_unlock(&inode->i_lock);
2873 		error = 0;
2874 		goto out;
2875 	}
2876 
2877 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2878 	error = inode_newsize_ok(inode, offset + len);
2879 	if (error)
2880 		goto out;
2881 
2882 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2883 		error = -EPERM;
2884 		goto out;
2885 	}
2886 
2887 	start = offset >> PAGE_SHIFT;
2888 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2889 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2890 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2891 		error = -ENOSPC;
2892 		goto out;
2893 	}
2894 
2895 	shmem_falloc.waitq = NULL;
2896 	shmem_falloc.start = start;
2897 	shmem_falloc.next  = start;
2898 	shmem_falloc.nr_falloced = 0;
2899 	shmem_falloc.nr_unswapped = 0;
2900 	spin_lock(&inode->i_lock);
2901 	inode->i_private = &shmem_falloc;
2902 	spin_unlock(&inode->i_lock);
2903 
2904 	for (index = start; index < end; index++) {
2905 		struct page *page;
2906 
2907 		/*
2908 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2909 		 * been interrupted because we are using up too much memory.
2910 		 */
2911 		if (signal_pending(current))
2912 			error = -EINTR;
2913 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2914 			error = -ENOMEM;
2915 		else
2916 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2917 		if (error) {
2918 			/* Remove the !PageUptodate pages we added */
2919 			if (index > start) {
2920 				shmem_undo_range(inode,
2921 				    (loff_t)start << PAGE_SHIFT,
2922 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2923 			}
2924 			goto undone;
2925 		}
2926 
2927 		/*
2928 		 * Inform shmem_writepage() how far we have reached.
2929 		 * No need for lock or barrier: we have the page lock.
2930 		 */
2931 		shmem_falloc.next++;
2932 		if (!PageUptodate(page))
2933 			shmem_falloc.nr_falloced++;
2934 
2935 		/*
2936 		 * If !PageUptodate, leave it that way so that freeable pages
2937 		 * can be recognized if we need to rollback on error later.
2938 		 * But set_page_dirty so that memory pressure will swap rather
2939 		 * than free the pages we are allocating (and SGP_CACHE pages
2940 		 * might still be clean: we now need to mark those dirty too).
2941 		 */
2942 		set_page_dirty(page);
2943 		unlock_page(page);
2944 		put_page(page);
2945 		cond_resched();
2946 	}
2947 
2948 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2949 		i_size_write(inode, offset + len);
2950 	inode->i_ctime = current_time(inode);
2951 undone:
2952 	spin_lock(&inode->i_lock);
2953 	inode->i_private = NULL;
2954 	spin_unlock(&inode->i_lock);
2955 out:
2956 	inode_unlock(inode);
2957 	return error;
2958 }
2959 
2960 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2961 {
2962 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2963 
2964 	buf->f_type = TMPFS_MAGIC;
2965 	buf->f_bsize = PAGE_SIZE;
2966 	buf->f_namelen = NAME_MAX;
2967 	if (sbinfo->max_blocks) {
2968 		buf->f_blocks = sbinfo->max_blocks;
2969 		buf->f_bavail =
2970 		buf->f_bfree  = sbinfo->max_blocks -
2971 				percpu_counter_sum(&sbinfo->used_blocks);
2972 	}
2973 	if (sbinfo->max_inodes) {
2974 		buf->f_files = sbinfo->max_inodes;
2975 		buf->f_ffree = sbinfo->free_inodes;
2976 	}
2977 	/* else leave those fields 0 like simple_statfs */
2978 	return 0;
2979 }
2980 
2981 /*
2982  * File creation. Allocate an inode, and we're done..
2983  */
2984 static int
2985 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2986 {
2987 	struct inode *inode;
2988 	int error = -ENOSPC;
2989 
2990 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2991 	if (inode) {
2992 		error = simple_acl_create(dir, inode);
2993 		if (error)
2994 			goto out_iput;
2995 		error = security_inode_init_security(inode, dir,
2996 						     &dentry->d_name,
2997 						     shmem_initxattrs, NULL);
2998 		if (error && error != -EOPNOTSUPP)
2999 			goto out_iput;
3000 
3001 		error = 0;
3002 		dir->i_size += BOGO_DIRENT_SIZE;
3003 		dir->i_ctime = dir->i_mtime = current_time(dir);
3004 		d_instantiate(dentry, inode);
3005 		dget(dentry); /* Extra count - pin the dentry in core */
3006 	}
3007 	return error;
3008 out_iput:
3009 	iput(inode);
3010 	return error;
3011 }
3012 
3013 static int
3014 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3015 {
3016 	struct inode *inode;
3017 	int error = -ENOSPC;
3018 
3019 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3020 	if (inode) {
3021 		error = security_inode_init_security(inode, dir,
3022 						     NULL,
3023 						     shmem_initxattrs, NULL);
3024 		if (error && error != -EOPNOTSUPP)
3025 			goto out_iput;
3026 		error = simple_acl_create(dir, inode);
3027 		if (error)
3028 			goto out_iput;
3029 		d_tmpfile(dentry, inode);
3030 	}
3031 	return error;
3032 out_iput:
3033 	iput(inode);
3034 	return error;
3035 }
3036 
3037 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3038 {
3039 	int error;
3040 
3041 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3042 		return error;
3043 	inc_nlink(dir);
3044 	return 0;
3045 }
3046 
3047 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3048 		bool excl)
3049 {
3050 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3051 }
3052 
3053 /*
3054  * Link a file..
3055  */
3056 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3057 {
3058 	struct inode *inode = d_inode(old_dentry);
3059 	int ret;
3060 
3061 	/*
3062 	 * No ordinary (disk based) filesystem counts links as inodes;
3063 	 * but each new link needs a new dentry, pinning lowmem, and
3064 	 * tmpfs dentries cannot be pruned until they are unlinked.
3065 	 */
3066 	ret = shmem_reserve_inode(inode->i_sb);
3067 	if (ret)
3068 		goto out;
3069 
3070 	dir->i_size += BOGO_DIRENT_SIZE;
3071 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3072 	inc_nlink(inode);
3073 	ihold(inode);	/* New dentry reference */
3074 	dget(dentry);		/* Extra pinning count for the created dentry */
3075 	d_instantiate(dentry, inode);
3076 out:
3077 	return ret;
3078 }
3079 
3080 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3081 {
3082 	struct inode *inode = d_inode(dentry);
3083 
3084 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3085 		shmem_free_inode(inode->i_sb);
3086 
3087 	dir->i_size -= BOGO_DIRENT_SIZE;
3088 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3089 	drop_nlink(inode);
3090 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3091 	return 0;
3092 }
3093 
3094 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3095 {
3096 	if (!simple_empty(dentry))
3097 		return -ENOTEMPTY;
3098 
3099 	drop_nlink(d_inode(dentry));
3100 	drop_nlink(dir);
3101 	return shmem_unlink(dir, dentry);
3102 }
3103 
3104 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3105 {
3106 	bool old_is_dir = d_is_dir(old_dentry);
3107 	bool new_is_dir = d_is_dir(new_dentry);
3108 
3109 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3110 		if (old_is_dir) {
3111 			drop_nlink(old_dir);
3112 			inc_nlink(new_dir);
3113 		} else {
3114 			drop_nlink(new_dir);
3115 			inc_nlink(old_dir);
3116 		}
3117 	}
3118 	old_dir->i_ctime = old_dir->i_mtime =
3119 	new_dir->i_ctime = new_dir->i_mtime =
3120 	d_inode(old_dentry)->i_ctime =
3121 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3122 
3123 	return 0;
3124 }
3125 
3126 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3127 {
3128 	struct dentry *whiteout;
3129 	int error;
3130 
3131 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3132 	if (!whiteout)
3133 		return -ENOMEM;
3134 
3135 	error = shmem_mknod(old_dir, whiteout,
3136 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3137 	dput(whiteout);
3138 	if (error)
3139 		return error;
3140 
3141 	/*
3142 	 * Cheat and hash the whiteout while the old dentry is still in
3143 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3144 	 *
3145 	 * d_lookup() will consistently find one of them at this point,
3146 	 * not sure which one, but that isn't even important.
3147 	 */
3148 	d_rehash(whiteout);
3149 	return 0;
3150 }
3151 
3152 /*
3153  * The VFS layer already does all the dentry stuff for rename,
3154  * we just have to decrement the usage count for the target if
3155  * it exists so that the VFS layer correctly free's it when it
3156  * gets overwritten.
3157  */
3158 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3159 {
3160 	struct inode *inode = d_inode(old_dentry);
3161 	int they_are_dirs = S_ISDIR(inode->i_mode);
3162 
3163 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3164 		return -EINVAL;
3165 
3166 	if (flags & RENAME_EXCHANGE)
3167 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3168 
3169 	if (!simple_empty(new_dentry))
3170 		return -ENOTEMPTY;
3171 
3172 	if (flags & RENAME_WHITEOUT) {
3173 		int error;
3174 
3175 		error = shmem_whiteout(old_dir, old_dentry);
3176 		if (error)
3177 			return error;
3178 	}
3179 
3180 	if (d_really_is_positive(new_dentry)) {
3181 		(void) shmem_unlink(new_dir, new_dentry);
3182 		if (they_are_dirs) {
3183 			drop_nlink(d_inode(new_dentry));
3184 			drop_nlink(old_dir);
3185 		}
3186 	} else if (they_are_dirs) {
3187 		drop_nlink(old_dir);
3188 		inc_nlink(new_dir);
3189 	}
3190 
3191 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3192 	new_dir->i_size += BOGO_DIRENT_SIZE;
3193 	old_dir->i_ctime = old_dir->i_mtime =
3194 	new_dir->i_ctime = new_dir->i_mtime =
3195 	inode->i_ctime = current_time(old_dir);
3196 	return 0;
3197 }
3198 
3199 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3200 {
3201 	int error;
3202 	int len;
3203 	struct inode *inode;
3204 	struct page *page;
3205 	struct shmem_inode_info *info;
3206 
3207 	len = strlen(symname) + 1;
3208 	if (len > PAGE_SIZE)
3209 		return -ENAMETOOLONG;
3210 
3211 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3212 	if (!inode)
3213 		return -ENOSPC;
3214 
3215 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3216 					     shmem_initxattrs, NULL);
3217 	if (error) {
3218 		if (error != -EOPNOTSUPP) {
3219 			iput(inode);
3220 			return error;
3221 		}
3222 		error = 0;
3223 	}
3224 
3225 	info = SHMEM_I(inode);
3226 	inode->i_size = len-1;
3227 	if (len <= SHORT_SYMLINK_LEN) {
3228 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3229 		if (!inode->i_link) {
3230 			iput(inode);
3231 			return -ENOMEM;
3232 		}
3233 		inode->i_op = &shmem_short_symlink_operations;
3234 	} else {
3235 		inode_nohighmem(inode);
3236 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3237 		if (error) {
3238 			iput(inode);
3239 			return error;
3240 		}
3241 		inode->i_mapping->a_ops = &shmem_aops;
3242 		inode->i_op = &shmem_symlink_inode_operations;
3243 		memcpy(page_address(page), symname, len);
3244 		SetPageUptodate(page);
3245 		set_page_dirty(page);
3246 		unlock_page(page);
3247 		put_page(page);
3248 	}
3249 	dir->i_size += BOGO_DIRENT_SIZE;
3250 	dir->i_ctime = dir->i_mtime = current_time(dir);
3251 	d_instantiate(dentry, inode);
3252 	dget(dentry);
3253 	return 0;
3254 }
3255 
3256 static void shmem_put_link(void *arg)
3257 {
3258 	mark_page_accessed(arg);
3259 	put_page(arg);
3260 }
3261 
3262 static const char *shmem_get_link(struct dentry *dentry,
3263 				  struct inode *inode,
3264 				  struct delayed_call *done)
3265 {
3266 	struct page *page = NULL;
3267 	int error;
3268 	if (!dentry) {
3269 		page = find_get_page(inode->i_mapping, 0);
3270 		if (!page)
3271 			return ERR_PTR(-ECHILD);
3272 		if (!PageUptodate(page)) {
3273 			put_page(page);
3274 			return ERR_PTR(-ECHILD);
3275 		}
3276 	} else {
3277 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3278 		if (error)
3279 			return ERR_PTR(error);
3280 		unlock_page(page);
3281 	}
3282 	set_delayed_call(done, shmem_put_link, page);
3283 	return page_address(page);
3284 }
3285 
3286 #ifdef CONFIG_TMPFS_XATTR
3287 /*
3288  * Superblocks without xattr inode operations may get some security.* xattr
3289  * support from the LSM "for free". As soon as we have any other xattrs
3290  * like ACLs, we also need to implement the security.* handlers at
3291  * filesystem level, though.
3292  */
3293 
3294 /*
3295  * Callback for security_inode_init_security() for acquiring xattrs.
3296  */
3297 static int shmem_initxattrs(struct inode *inode,
3298 			    const struct xattr *xattr_array,
3299 			    void *fs_info)
3300 {
3301 	struct shmem_inode_info *info = SHMEM_I(inode);
3302 	const struct xattr *xattr;
3303 	struct simple_xattr *new_xattr;
3304 	size_t len;
3305 
3306 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3307 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3308 		if (!new_xattr)
3309 			return -ENOMEM;
3310 
3311 		len = strlen(xattr->name) + 1;
3312 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3313 					  GFP_KERNEL);
3314 		if (!new_xattr->name) {
3315 			kfree(new_xattr);
3316 			return -ENOMEM;
3317 		}
3318 
3319 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3320 		       XATTR_SECURITY_PREFIX_LEN);
3321 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3322 		       xattr->name, len);
3323 
3324 		simple_xattr_list_add(&info->xattrs, new_xattr);
3325 	}
3326 
3327 	return 0;
3328 }
3329 
3330 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3331 				   struct dentry *unused, struct inode *inode,
3332 				   const char *name, void *buffer, size_t size)
3333 {
3334 	struct shmem_inode_info *info = SHMEM_I(inode);
3335 
3336 	name = xattr_full_name(handler, name);
3337 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3338 }
3339 
3340 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3341 				   struct dentry *unused, struct inode *inode,
3342 				   const char *name, const void *value,
3343 				   size_t size, int flags)
3344 {
3345 	struct shmem_inode_info *info = SHMEM_I(inode);
3346 
3347 	name = xattr_full_name(handler, name);
3348 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3349 }
3350 
3351 static const struct xattr_handler shmem_security_xattr_handler = {
3352 	.prefix = XATTR_SECURITY_PREFIX,
3353 	.get = shmem_xattr_handler_get,
3354 	.set = shmem_xattr_handler_set,
3355 };
3356 
3357 static const struct xattr_handler shmem_trusted_xattr_handler = {
3358 	.prefix = XATTR_TRUSTED_PREFIX,
3359 	.get = shmem_xattr_handler_get,
3360 	.set = shmem_xattr_handler_set,
3361 };
3362 
3363 static const struct xattr_handler *shmem_xattr_handlers[] = {
3364 #ifdef CONFIG_TMPFS_POSIX_ACL
3365 	&posix_acl_access_xattr_handler,
3366 	&posix_acl_default_xattr_handler,
3367 #endif
3368 	&shmem_security_xattr_handler,
3369 	&shmem_trusted_xattr_handler,
3370 	NULL
3371 };
3372 
3373 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3374 {
3375 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3376 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3377 }
3378 #endif /* CONFIG_TMPFS_XATTR */
3379 
3380 static const struct inode_operations shmem_short_symlink_operations = {
3381 	.get_link	= simple_get_link,
3382 #ifdef CONFIG_TMPFS_XATTR
3383 	.listxattr	= shmem_listxattr,
3384 #endif
3385 };
3386 
3387 static const struct inode_operations shmem_symlink_inode_operations = {
3388 	.get_link	= shmem_get_link,
3389 #ifdef CONFIG_TMPFS_XATTR
3390 	.listxattr	= shmem_listxattr,
3391 #endif
3392 };
3393 
3394 static struct dentry *shmem_get_parent(struct dentry *child)
3395 {
3396 	return ERR_PTR(-ESTALE);
3397 }
3398 
3399 static int shmem_match(struct inode *ino, void *vfh)
3400 {
3401 	__u32 *fh = vfh;
3402 	__u64 inum = fh[2];
3403 	inum = (inum << 32) | fh[1];
3404 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3405 }
3406 
3407 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3408 		struct fid *fid, int fh_len, int fh_type)
3409 {
3410 	struct inode *inode;
3411 	struct dentry *dentry = NULL;
3412 	u64 inum;
3413 
3414 	if (fh_len < 3)
3415 		return NULL;
3416 
3417 	inum = fid->raw[2];
3418 	inum = (inum << 32) | fid->raw[1];
3419 
3420 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3421 			shmem_match, fid->raw);
3422 	if (inode) {
3423 		dentry = d_find_alias(inode);
3424 		iput(inode);
3425 	}
3426 
3427 	return dentry;
3428 }
3429 
3430 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3431 				struct inode *parent)
3432 {
3433 	if (*len < 3) {
3434 		*len = 3;
3435 		return FILEID_INVALID;
3436 	}
3437 
3438 	if (inode_unhashed(inode)) {
3439 		/* Unfortunately insert_inode_hash is not idempotent,
3440 		 * so as we hash inodes here rather than at creation
3441 		 * time, we need a lock to ensure we only try
3442 		 * to do it once
3443 		 */
3444 		static DEFINE_SPINLOCK(lock);
3445 		spin_lock(&lock);
3446 		if (inode_unhashed(inode))
3447 			__insert_inode_hash(inode,
3448 					    inode->i_ino + inode->i_generation);
3449 		spin_unlock(&lock);
3450 	}
3451 
3452 	fh[0] = inode->i_generation;
3453 	fh[1] = inode->i_ino;
3454 	fh[2] = ((__u64)inode->i_ino) >> 32;
3455 
3456 	*len = 3;
3457 	return 1;
3458 }
3459 
3460 static const struct export_operations shmem_export_ops = {
3461 	.get_parent     = shmem_get_parent,
3462 	.encode_fh      = shmem_encode_fh,
3463 	.fh_to_dentry	= shmem_fh_to_dentry,
3464 };
3465 
3466 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3467 			       bool remount)
3468 {
3469 	char *this_char, *value, *rest;
3470 	struct mempolicy *mpol = NULL;
3471 	uid_t uid;
3472 	gid_t gid;
3473 
3474 	while (options != NULL) {
3475 		this_char = options;
3476 		for (;;) {
3477 			/*
3478 			 * NUL-terminate this option: unfortunately,
3479 			 * mount options form a comma-separated list,
3480 			 * but mpol's nodelist may also contain commas.
3481 			 */
3482 			options = strchr(options, ',');
3483 			if (options == NULL)
3484 				break;
3485 			options++;
3486 			if (!isdigit(*options)) {
3487 				options[-1] = '\0';
3488 				break;
3489 			}
3490 		}
3491 		if (!*this_char)
3492 			continue;
3493 		if ((value = strchr(this_char,'=')) != NULL) {
3494 			*value++ = 0;
3495 		} else {
3496 			pr_err("tmpfs: No value for mount option '%s'\n",
3497 			       this_char);
3498 			goto error;
3499 		}
3500 
3501 		if (!strcmp(this_char,"size")) {
3502 			unsigned long long size;
3503 			size = memparse(value,&rest);
3504 			if (*rest == '%') {
3505 				size <<= PAGE_SHIFT;
3506 				size *= totalram_pages;
3507 				do_div(size, 100);
3508 				rest++;
3509 			}
3510 			if (*rest)
3511 				goto bad_val;
3512 			sbinfo->max_blocks =
3513 				DIV_ROUND_UP(size, PAGE_SIZE);
3514 		} else if (!strcmp(this_char,"nr_blocks")) {
3515 			sbinfo->max_blocks = memparse(value, &rest);
3516 			if (*rest)
3517 				goto bad_val;
3518 		} else if (!strcmp(this_char,"nr_inodes")) {
3519 			sbinfo->max_inodes = memparse(value, &rest);
3520 			if (*rest)
3521 				goto bad_val;
3522 		} else if (!strcmp(this_char,"mode")) {
3523 			if (remount)
3524 				continue;
3525 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3526 			if (*rest)
3527 				goto bad_val;
3528 		} else if (!strcmp(this_char,"uid")) {
3529 			if (remount)
3530 				continue;
3531 			uid = simple_strtoul(value, &rest, 0);
3532 			if (*rest)
3533 				goto bad_val;
3534 			sbinfo->uid = make_kuid(current_user_ns(), uid);
3535 			if (!uid_valid(sbinfo->uid))
3536 				goto bad_val;
3537 		} else if (!strcmp(this_char,"gid")) {
3538 			if (remount)
3539 				continue;
3540 			gid = simple_strtoul(value, &rest, 0);
3541 			if (*rest)
3542 				goto bad_val;
3543 			sbinfo->gid = make_kgid(current_user_ns(), gid);
3544 			if (!gid_valid(sbinfo->gid))
3545 				goto bad_val;
3546 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3547 		} else if (!strcmp(this_char, "huge")) {
3548 			int huge;
3549 			huge = shmem_parse_huge(value);
3550 			if (huge < 0)
3551 				goto bad_val;
3552 			if (!has_transparent_hugepage() &&
3553 					huge != SHMEM_HUGE_NEVER)
3554 				goto bad_val;
3555 			sbinfo->huge = huge;
3556 #endif
3557 #ifdef CONFIG_NUMA
3558 		} else if (!strcmp(this_char,"mpol")) {
3559 			mpol_put(mpol);
3560 			mpol = NULL;
3561 			if (mpol_parse_str(value, &mpol))
3562 				goto bad_val;
3563 #endif
3564 		} else {
3565 			pr_err("tmpfs: Bad mount option %s\n", this_char);
3566 			goto error;
3567 		}
3568 	}
3569 	sbinfo->mpol = mpol;
3570 	return 0;
3571 
3572 bad_val:
3573 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3574 	       value, this_char);
3575 error:
3576 	mpol_put(mpol);
3577 	return 1;
3578 
3579 }
3580 
3581 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3582 {
3583 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3584 	struct shmem_sb_info config = *sbinfo;
3585 	unsigned long inodes;
3586 	int error = -EINVAL;
3587 
3588 	config.mpol = NULL;
3589 	if (shmem_parse_options(data, &config, true))
3590 		return error;
3591 
3592 	spin_lock(&sbinfo->stat_lock);
3593 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3594 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3595 		goto out;
3596 	if (config.max_inodes < inodes)
3597 		goto out;
3598 	/*
3599 	 * Those tests disallow limited->unlimited while any are in use;
3600 	 * but we must separately disallow unlimited->limited, because
3601 	 * in that case we have no record of how much is already in use.
3602 	 */
3603 	if (config.max_blocks && !sbinfo->max_blocks)
3604 		goto out;
3605 	if (config.max_inodes && !sbinfo->max_inodes)
3606 		goto out;
3607 
3608 	error = 0;
3609 	sbinfo->huge = config.huge;
3610 	sbinfo->max_blocks  = config.max_blocks;
3611 	sbinfo->max_inodes  = config.max_inodes;
3612 	sbinfo->free_inodes = config.max_inodes - inodes;
3613 
3614 	/*
3615 	 * Preserve previous mempolicy unless mpol remount option was specified.
3616 	 */
3617 	if (config.mpol) {
3618 		mpol_put(sbinfo->mpol);
3619 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3620 	}
3621 out:
3622 	spin_unlock(&sbinfo->stat_lock);
3623 	return error;
3624 }
3625 
3626 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3627 {
3628 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3629 
3630 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3631 		seq_printf(seq, ",size=%luk",
3632 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3633 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3634 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3635 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3636 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3637 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3638 		seq_printf(seq, ",uid=%u",
3639 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3640 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3641 		seq_printf(seq, ",gid=%u",
3642 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3643 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3644 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3645 	if (sbinfo->huge)
3646 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3647 #endif
3648 	shmem_show_mpol(seq, sbinfo->mpol);
3649 	return 0;
3650 }
3651 
3652 #define MFD_NAME_PREFIX "memfd:"
3653 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3654 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3655 
3656 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
3657 
3658 SYSCALL_DEFINE2(memfd_create,
3659 		const char __user *, uname,
3660 		unsigned int, flags)
3661 {
3662 	struct shmem_inode_info *info;
3663 	struct file *file;
3664 	int fd, error;
3665 	char *name;
3666 	long len;
3667 
3668 	if (!(flags & MFD_HUGETLB)) {
3669 		if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3670 			return -EINVAL;
3671 	} else {
3672 		/* Sealing not supported in hugetlbfs (MFD_HUGETLB) */
3673 		if (flags & MFD_ALLOW_SEALING)
3674 			return -EINVAL;
3675 		/* Allow huge page size encoding in flags. */
3676 		if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3677 				(MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3678 			return -EINVAL;
3679 	}
3680 
3681 	/* length includes terminating zero */
3682 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3683 	if (len <= 0)
3684 		return -EFAULT;
3685 	if (len > MFD_NAME_MAX_LEN + 1)
3686 		return -EINVAL;
3687 
3688 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
3689 	if (!name)
3690 		return -ENOMEM;
3691 
3692 	strcpy(name, MFD_NAME_PREFIX);
3693 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3694 		error = -EFAULT;
3695 		goto err_name;
3696 	}
3697 
3698 	/* terminating-zero may have changed after strnlen_user() returned */
3699 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3700 		error = -EFAULT;
3701 		goto err_name;
3702 	}
3703 
3704 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3705 	if (fd < 0) {
3706 		error = fd;
3707 		goto err_name;
3708 	}
3709 
3710 	if (flags & MFD_HUGETLB) {
3711 		struct user_struct *user = NULL;
3712 
3713 		file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3714 					HUGETLB_ANONHUGE_INODE,
3715 					(flags >> MFD_HUGE_SHIFT) &
3716 					MFD_HUGE_MASK);
3717 	} else
3718 		file = shmem_file_setup(name, 0, VM_NORESERVE);
3719 	if (IS_ERR(file)) {
3720 		error = PTR_ERR(file);
3721 		goto err_fd;
3722 	}
3723 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3724 	file->f_flags |= O_RDWR | O_LARGEFILE;
3725 
3726 	if (flags & MFD_ALLOW_SEALING) {
3727 		/*
3728 		 * flags check at beginning of function ensures
3729 		 * this is not a hugetlbfs (MFD_HUGETLB) file.
3730 		 */
3731 		info = SHMEM_I(file_inode(file));
3732 		info->seals &= ~F_SEAL_SEAL;
3733 	}
3734 
3735 	fd_install(fd, file);
3736 	kfree(name);
3737 	return fd;
3738 
3739 err_fd:
3740 	put_unused_fd(fd);
3741 err_name:
3742 	kfree(name);
3743 	return error;
3744 }
3745 
3746 #endif /* CONFIG_TMPFS */
3747 
3748 static void shmem_put_super(struct super_block *sb)
3749 {
3750 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3751 
3752 	percpu_counter_destroy(&sbinfo->used_blocks);
3753 	mpol_put(sbinfo->mpol);
3754 	kfree(sbinfo);
3755 	sb->s_fs_info = NULL;
3756 }
3757 
3758 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3759 {
3760 	struct inode *inode;
3761 	struct shmem_sb_info *sbinfo;
3762 	int err = -ENOMEM;
3763 
3764 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3765 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3766 				L1_CACHE_BYTES), GFP_KERNEL);
3767 	if (!sbinfo)
3768 		return -ENOMEM;
3769 
3770 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3771 	sbinfo->uid = current_fsuid();
3772 	sbinfo->gid = current_fsgid();
3773 	sb->s_fs_info = sbinfo;
3774 
3775 #ifdef CONFIG_TMPFS
3776 	/*
3777 	 * Per default we only allow half of the physical ram per
3778 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3779 	 * but the internal instance is left unlimited.
3780 	 */
3781 	if (!(sb->s_flags & MS_KERNMOUNT)) {
3782 		sbinfo->max_blocks = shmem_default_max_blocks();
3783 		sbinfo->max_inodes = shmem_default_max_inodes();
3784 		if (shmem_parse_options(data, sbinfo, false)) {
3785 			err = -EINVAL;
3786 			goto failed;
3787 		}
3788 	} else {
3789 		sb->s_flags |= MS_NOUSER;
3790 	}
3791 	sb->s_export_op = &shmem_export_ops;
3792 	sb->s_flags |= MS_NOSEC;
3793 #else
3794 	sb->s_flags |= MS_NOUSER;
3795 #endif
3796 
3797 	spin_lock_init(&sbinfo->stat_lock);
3798 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3799 		goto failed;
3800 	sbinfo->free_inodes = sbinfo->max_inodes;
3801 	spin_lock_init(&sbinfo->shrinklist_lock);
3802 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3803 
3804 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3805 	sb->s_blocksize = PAGE_SIZE;
3806 	sb->s_blocksize_bits = PAGE_SHIFT;
3807 	sb->s_magic = TMPFS_MAGIC;
3808 	sb->s_op = &shmem_ops;
3809 	sb->s_time_gran = 1;
3810 #ifdef CONFIG_TMPFS_XATTR
3811 	sb->s_xattr = shmem_xattr_handlers;
3812 #endif
3813 #ifdef CONFIG_TMPFS_POSIX_ACL
3814 	sb->s_flags |= MS_POSIXACL;
3815 #endif
3816 	uuid_gen(&sb->s_uuid);
3817 
3818 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3819 	if (!inode)
3820 		goto failed;
3821 	inode->i_uid = sbinfo->uid;
3822 	inode->i_gid = sbinfo->gid;
3823 	sb->s_root = d_make_root(inode);
3824 	if (!sb->s_root)
3825 		goto failed;
3826 	return 0;
3827 
3828 failed:
3829 	shmem_put_super(sb);
3830 	return err;
3831 }
3832 
3833 static struct kmem_cache *shmem_inode_cachep;
3834 
3835 static struct inode *shmem_alloc_inode(struct super_block *sb)
3836 {
3837 	struct shmem_inode_info *info;
3838 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3839 	if (!info)
3840 		return NULL;
3841 	return &info->vfs_inode;
3842 }
3843 
3844 static void shmem_destroy_callback(struct rcu_head *head)
3845 {
3846 	struct inode *inode = container_of(head, struct inode, i_rcu);
3847 	if (S_ISLNK(inode->i_mode))
3848 		kfree(inode->i_link);
3849 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3850 }
3851 
3852 static void shmem_destroy_inode(struct inode *inode)
3853 {
3854 	if (S_ISREG(inode->i_mode))
3855 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3856 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3857 }
3858 
3859 static void shmem_init_inode(void *foo)
3860 {
3861 	struct shmem_inode_info *info = foo;
3862 	inode_init_once(&info->vfs_inode);
3863 }
3864 
3865 static int shmem_init_inodecache(void)
3866 {
3867 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3868 				sizeof(struct shmem_inode_info),
3869 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3870 	return 0;
3871 }
3872 
3873 static void shmem_destroy_inodecache(void)
3874 {
3875 	kmem_cache_destroy(shmem_inode_cachep);
3876 }
3877 
3878 static const struct address_space_operations shmem_aops = {
3879 	.writepage	= shmem_writepage,
3880 	.set_page_dirty	= __set_page_dirty_no_writeback,
3881 #ifdef CONFIG_TMPFS
3882 	.write_begin	= shmem_write_begin,
3883 	.write_end	= shmem_write_end,
3884 #endif
3885 #ifdef CONFIG_MIGRATION
3886 	.migratepage	= migrate_page,
3887 #endif
3888 	.error_remove_page = generic_error_remove_page,
3889 };
3890 
3891 static const struct file_operations shmem_file_operations = {
3892 	.mmap		= shmem_mmap,
3893 	.get_unmapped_area = shmem_get_unmapped_area,
3894 #ifdef CONFIG_TMPFS
3895 	.llseek		= shmem_file_llseek,
3896 	.read_iter	= shmem_file_read_iter,
3897 	.write_iter	= generic_file_write_iter,
3898 	.fsync		= noop_fsync,
3899 	.splice_read	= generic_file_splice_read,
3900 	.splice_write	= iter_file_splice_write,
3901 	.fallocate	= shmem_fallocate,
3902 #endif
3903 };
3904 
3905 static const struct inode_operations shmem_inode_operations = {
3906 	.getattr	= shmem_getattr,
3907 	.setattr	= shmem_setattr,
3908 #ifdef CONFIG_TMPFS_XATTR
3909 	.listxattr	= shmem_listxattr,
3910 	.set_acl	= simple_set_acl,
3911 #endif
3912 };
3913 
3914 static const struct inode_operations shmem_dir_inode_operations = {
3915 #ifdef CONFIG_TMPFS
3916 	.create		= shmem_create,
3917 	.lookup		= simple_lookup,
3918 	.link		= shmem_link,
3919 	.unlink		= shmem_unlink,
3920 	.symlink	= shmem_symlink,
3921 	.mkdir		= shmem_mkdir,
3922 	.rmdir		= shmem_rmdir,
3923 	.mknod		= shmem_mknod,
3924 	.rename		= shmem_rename2,
3925 	.tmpfile	= shmem_tmpfile,
3926 #endif
3927 #ifdef CONFIG_TMPFS_XATTR
3928 	.listxattr	= shmem_listxattr,
3929 #endif
3930 #ifdef CONFIG_TMPFS_POSIX_ACL
3931 	.setattr	= shmem_setattr,
3932 	.set_acl	= simple_set_acl,
3933 #endif
3934 };
3935 
3936 static const struct inode_operations shmem_special_inode_operations = {
3937 #ifdef CONFIG_TMPFS_XATTR
3938 	.listxattr	= shmem_listxattr,
3939 #endif
3940 #ifdef CONFIG_TMPFS_POSIX_ACL
3941 	.setattr	= shmem_setattr,
3942 	.set_acl	= simple_set_acl,
3943 #endif
3944 };
3945 
3946 static const struct super_operations shmem_ops = {
3947 	.alloc_inode	= shmem_alloc_inode,
3948 	.destroy_inode	= shmem_destroy_inode,
3949 #ifdef CONFIG_TMPFS
3950 	.statfs		= shmem_statfs,
3951 	.remount_fs	= shmem_remount_fs,
3952 	.show_options	= shmem_show_options,
3953 #endif
3954 	.evict_inode	= shmem_evict_inode,
3955 	.drop_inode	= generic_delete_inode,
3956 	.put_super	= shmem_put_super,
3957 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3958 	.nr_cached_objects	= shmem_unused_huge_count,
3959 	.free_cached_objects	= shmem_unused_huge_scan,
3960 #endif
3961 };
3962 
3963 static const struct vm_operations_struct shmem_vm_ops = {
3964 	.fault		= shmem_fault,
3965 	.map_pages	= filemap_map_pages,
3966 #ifdef CONFIG_NUMA
3967 	.set_policy     = shmem_set_policy,
3968 	.get_policy     = shmem_get_policy,
3969 #endif
3970 };
3971 
3972 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3973 	int flags, const char *dev_name, void *data)
3974 {
3975 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3976 }
3977 
3978 static struct file_system_type shmem_fs_type = {
3979 	.owner		= THIS_MODULE,
3980 	.name		= "tmpfs",
3981 	.mount		= shmem_mount,
3982 	.kill_sb	= kill_litter_super,
3983 	.fs_flags	= FS_USERNS_MOUNT,
3984 };
3985 
3986 int __init shmem_init(void)
3987 {
3988 	int error;
3989 
3990 	/* If rootfs called this, don't re-init */
3991 	if (shmem_inode_cachep)
3992 		return 0;
3993 
3994 	error = shmem_init_inodecache();
3995 	if (error)
3996 		goto out3;
3997 
3998 	error = register_filesystem(&shmem_fs_type);
3999 	if (error) {
4000 		pr_err("Could not register tmpfs\n");
4001 		goto out2;
4002 	}
4003 
4004 	shm_mnt = kern_mount(&shmem_fs_type);
4005 	if (IS_ERR(shm_mnt)) {
4006 		error = PTR_ERR(shm_mnt);
4007 		pr_err("Could not kern_mount tmpfs\n");
4008 		goto out1;
4009 	}
4010 
4011 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4012 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4013 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4014 	else
4015 		shmem_huge = 0; /* just in case it was patched */
4016 #endif
4017 	return 0;
4018 
4019 out1:
4020 	unregister_filesystem(&shmem_fs_type);
4021 out2:
4022 	shmem_destroy_inodecache();
4023 out3:
4024 	shm_mnt = ERR_PTR(error);
4025 	return error;
4026 }
4027 
4028 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
4029 static ssize_t shmem_enabled_show(struct kobject *kobj,
4030 		struct kobj_attribute *attr, char *buf)
4031 {
4032 	int values[] = {
4033 		SHMEM_HUGE_ALWAYS,
4034 		SHMEM_HUGE_WITHIN_SIZE,
4035 		SHMEM_HUGE_ADVISE,
4036 		SHMEM_HUGE_NEVER,
4037 		SHMEM_HUGE_DENY,
4038 		SHMEM_HUGE_FORCE,
4039 	};
4040 	int i, count;
4041 
4042 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4043 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4044 
4045 		count += sprintf(buf + count, fmt,
4046 				shmem_format_huge(values[i]));
4047 	}
4048 	buf[count - 1] = '\n';
4049 	return count;
4050 }
4051 
4052 static ssize_t shmem_enabled_store(struct kobject *kobj,
4053 		struct kobj_attribute *attr, const char *buf, size_t count)
4054 {
4055 	char tmp[16];
4056 	int huge;
4057 
4058 	if (count + 1 > sizeof(tmp))
4059 		return -EINVAL;
4060 	memcpy(tmp, buf, count);
4061 	tmp[count] = '\0';
4062 	if (count && tmp[count - 1] == '\n')
4063 		tmp[count - 1] = '\0';
4064 
4065 	huge = shmem_parse_huge(tmp);
4066 	if (huge == -EINVAL)
4067 		return -EINVAL;
4068 	if (!has_transparent_hugepage() &&
4069 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4070 		return -EINVAL;
4071 
4072 	shmem_huge = huge;
4073 	if (shmem_huge > SHMEM_HUGE_DENY)
4074 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4075 	return count;
4076 }
4077 
4078 struct kobj_attribute shmem_enabled_attr =
4079 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4080 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4081 
4082 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4083 bool shmem_huge_enabled(struct vm_area_struct *vma)
4084 {
4085 	struct inode *inode = file_inode(vma->vm_file);
4086 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4087 	loff_t i_size;
4088 	pgoff_t off;
4089 
4090 	if (shmem_huge == SHMEM_HUGE_FORCE)
4091 		return true;
4092 	if (shmem_huge == SHMEM_HUGE_DENY)
4093 		return false;
4094 	switch (sbinfo->huge) {
4095 		case SHMEM_HUGE_NEVER:
4096 			return false;
4097 		case SHMEM_HUGE_ALWAYS:
4098 			return true;
4099 		case SHMEM_HUGE_WITHIN_SIZE:
4100 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4101 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4102 			if (i_size >= HPAGE_PMD_SIZE &&
4103 					i_size >> PAGE_SHIFT >= off)
4104 				return true;
4105 		case SHMEM_HUGE_ADVISE:
4106 			/* TODO: implement fadvise() hints */
4107 			return (vma->vm_flags & VM_HUGEPAGE);
4108 		default:
4109 			VM_BUG_ON(1);
4110 			return false;
4111 	}
4112 }
4113 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4114 
4115 #else /* !CONFIG_SHMEM */
4116 
4117 /*
4118  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4119  *
4120  * This is intended for small system where the benefits of the full
4121  * shmem code (swap-backed and resource-limited) are outweighed by
4122  * their complexity. On systems without swap this code should be
4123  * effectively equivalent, but much lighter weight.
4124  */
4125 
4126 static struct file_system_type shmem_fs_type = {
4127 	.name		= "tmpfs",
4128 	.mount		= ramfs_mount,
4129 	.kill_sb	= kill_litter_super,
4130 	.fs_flags	= FS_USERNS_MOUNT,
4131 };
4132 
4133 int __init shmem_init(void)
4134 {
4135 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4136 
4137 	shm_mnt = kern_mount(&shmem_fs_type);
4138 	BUG_ON(IS_ERR(shm_mnt));
4139 
4140 	return 0;
4141 }
4142 
4143 int shmem_unuse(swp_entry_t swap, struct page *page)
4144 {
4145 	return 0;
4146 }
4147 
4148 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4149 {
4150 	return 0;
4151 }
4152 
4153 void shmem_unlock_mapping(struct address_space *mapping)
4154 {
4155 }
4156 
4157 #ifdef CONFIG_MMU
4158 unsigned long shmem_get_unmapped_area(struct file *file,
4159 				      unsigned long addr, unsigned long len,
4160 				      unsigned long pgoff, unsigned long flags)
4161 {
4162 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4163 }
4164 #endif
4165 
4166 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4167 {
4168 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4169 }
4170 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4171 
4172 #define shmem_vm_ops				generic_file_vm_ops
4173 #define shmem_file_operations			ramfs_file_operations
4174 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4175 #define shmem_acct_size(flags, size)		0
4176 #define shmem_unacct_size(flags, size)		do {} while (0)
4177 
4178 #endif /* CONFIG_SHMEM */
4179 
4180 /* common code */
4181 
4182 static const struct dentry_operations anon_ops = {
4183 	.d_dname = simple_dname
4184 };
4185 
4186 static struct file *__shmem_file_setup(const char *name, loff_t size,
4187 				       unsigned long flags, unsigned int i_flags)
4188 {
4189 	struct file *res;
4190 	struct inode *inode;
4191 	struct path path;
4192 	struct super_block *sb;
4193 	struct qstr this;
4194 
4195 	if (IS_ERR(shm_mnt))
4196 		return ERR_CAST(shm_mnt);
4197 
4198 	if (size < 0 || size > MAX_LFS_FILESIZE)
4199 		return ERR_PTR(-EINVAL);
4200 
4201 	if (shmem_acct_size(flags, size))
4202 		return ERR_PTR(-ENOMEM);
4203 
4204 	res = ERR_PTR(-ENOMEM);
4205 	this.name = name;
4206 	this.len = strlen(name);
4207 	this.hash = 0; /* will go */
4208 	sb = shm_mnt->mnt_sb;
4209 	path.mnt = mntget(shm_mnt);
4210 	path.dentry = d_alloc_pseudo(sb, &this);
4211 	if (!path.dentry)
4212 		goto put_memory;
4213 	d_set_d_op(path.dentry, &anon_ops);
4214 
4215 	res = ERR_PTR(-ENOSPC);
4216 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4217 	if (!inode)
4218 		goto put_memory;
4219 
4220 	inode->i_flags |= i_flags;
4221 	d_instantiate(path.dentry, inode);
4222 	inode->i_size = size;
4223 	clear_nlink(inode);	/* It is unlinked */
4224 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4225 	if (IS_ERR(res))
4226 		goto put_path;
4227 
4228 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4229 		  &shmem_file_operations);
4230 	if (IS_ERR(res))
4231 		goto put_path;
4232 
4233 	return res;
4234 
4235 put_memory:
4236 	shmem_unacct_size(flags, size);
4237 put_path:
4238 	path_put(&path);
4239 	return res;
4240 }
4241 
4242 /**
4243  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4244  * 	kernel internal.  There will be NO LSM permission checks against the
4245  * 	underlying inode.  So users of this interface must do LSM checks at a
4246  *	higher layer.  The users are the big_key and shm implementations.  LSM
4247  *	checks are provided at the key or shm level rather than the inode.
4248  * @name: name for dentry (to be seen in /proc/<pid>/maps
4249  * @size: size to be set for the file
4250  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4251  */
4252 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4253 {
4254 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
4255 }
4256 
4257 /**
4258  * shmem_file_setup - get an unlinked file living in tmpfs
4259  * @name: name for dentry (to be seen in /proc/<pid>/maps
4260  * @size: size to be set for the file
4261  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4262  */
4263 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4264 {
4265 	return __shmem_file_setup(name, size, flags, 0);
4266 }
4267 EXPORT_SYMBOL_GPL(shmem_file_setup);
4268 
4269 /**
4270  * shmem_zero_setup - setup a shared anonymous mapping
4271  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4272  */
4273 int shmem_zero_setup(struct vm_area_struct *vma)
4274 {
4275 	struct file *file;
4276 	loff_t size = vma->vm_end - vma->vm_start;
4277 
4278 	/*
4279 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4280 	 * between XFS directory reading and selinux: since this file is only
4281 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4282 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4283 	 */
4284 	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4285 	if (IS_ERR(file))
4286 		return PTR_ERR(file);
4287 
4288 	if (vma->vm_file)
4289 		fput(vma->vm_file);
4290 	vma->vm_file = file;
4291 	vma->vm_ops = &shmem_vm_ops;
4292 
4293 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4294 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4295 			(vma->vm_end & HPAGE_PMD_MASK)) {
4296 		khugepaged_enter(vma, vma->vm_flags);
4297 	}
4298 
4299 	return 0;
4300 }
4301 
4302 /**
4303  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4304  * @mapping:	the page's address_space
4305  * @index:	the page index
4306  * @gfp:	the page allocator flags to use if allocating
4307  *
4308  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4309  * with any new page allocations done using the specified allocation flags.
4310  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4311  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4312  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4313  *
4314  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4315  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4316  */
4317 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4318 					 pgoff_t index, gfp_t gfp)
4319 {
4320 #ifdef CONFIG_SHMEM
4321 	struct inode *inode = mapping->host;
4322 	struct page *page;
4323 	int error;
4324 
4325 	BUG_ON(mapping->a_ops != &shmem_aops);
4326 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4327 				  gfp, NULL, NULL, NULL);
4328 	if (error)
4329 		page = ERR_PTR(error);
4330 	else
4331 		unlock_page(page);
4332 	return page;
4333 #else
4334 	/*
4335 	 * The tiny !SHMEM case uses ramfs without swap
4336 	 */
4337 	return read_cache_page_gfp(mapping, index, gfp);
4338 #endif
4339 }
4340 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4341