xref: /linux/mm/shmem.c (revision 71ca97da9d027009d318d319cbacf54a72f666c1)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33 
34 static struct vfsmount *shm_mnt;
35 
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42 
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
67 
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
70 
71 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73 
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
76 
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
79 
80 struct shmem_xattr {
81 	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
82 	char *name;		/* xattr name */
83 	size_t size;
84 	char value[0];
85 };
86 
87 /*
88  * shmem_fallocate and shmem_writepage communicate via inode->i_private
89  * (with i_mutex making sure that it has only one user at a time):
90  * we would prefer not to enlarge the shmem inode just for that.
91  */
92 struct shmem_falloc {
93 	pgoff_t start;		/* start of range currently being fallocated */
94 	pgoff_t next;		/* the next page offset to be fallocated */
95 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
96 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
97 };
98 
99 /* Flag allocation requirements to shmem_getpage */
100 enum sgp_type {
101 	SGP_READ,	/* don't exceed i_size, don't allocate page */
102 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
103 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
104 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
105 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
106 };
107 
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 	return totalram_pages / 2;
112 }
113 
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119 
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 				struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
125 
126 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
127 	struct page **pagep, enum sgp_type sgp, int *fault_type)
128 {
129 	return shmem_getpage_gfp(inode, index, pagep, sgp,
130 			mapping_gfp_mask(inode->i_mapping), fault_type);
131 }
132 
133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
134 {
135 	return sb->s_fs_info;
136 }
137 
138 /*
139  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140  * for shared memory and for shared anonymous (/dev/zero) mappings
141  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142  * consistent with the pre-accounting of private mappings ...
143  */
144 static inline int shmem_acct_size(unsigned long flags, loff_t size)
145 {
146 	return (flags & VM_NORESERVE) ?
147 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
148 }
149 
150 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
151 {
152 	if (!(flags & VM_NORESERVE))
153 		vm_unacct_memory(VM_ACCT(size));
154 }
155 
156 /*
157  * ... whereas tmpfs objects are accounted incrementally as
158  * pages are allocated, in order to allow huge sparse files.
159  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
160  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
161  */
162 static inline int shmem_acct_block(unsigned long flags)
163 {
164 	return (flags & VM_NORESERVE) ?
165 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
166 }
167 
168 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
169 {
170 	if (flags & VM_NORESERVE)
171 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
172 }
173 
174 static const struct super_operations shmem_ops;
175 static const struct address_space_operations shmem_aops;
176 static const struct file_operations shmem_file_operations;
177 static const struct inode_operations shmem_inode_operations;
178 static const struct inode_operations shmem_dir_inode_operations;
179 static const struct inode_operations shmem_special_inode_operations;
180 static const struct vm_operations_struct shmem_vm_ops;
181 
182 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
183 	.ra_pages	= 0,	/* No readahead */
184 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
185 };
186 
187 static LIST_HEAD(shmem_swaplist);
188 static DEFINE_MUTEX(shmem_swaplist_mutex);
189 
190 static int shmem_reserve_inode(struct super_block *sb)
191 {
192 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
193 	if (sbinfo->max_inodes) {
194 		spin_lock(&sbinfo->stat_lock);
195 		if (!sbinfo->free_inodes) {
196 			spin_unlock(&sbinfo->stat_lock);
197 			return -ENOSPC;
198 		}
199 		sbinfo->free_inodes--;
200 		spin_unlock(&sbinfo->stat_lock);
201 	}
202 	return 0;
203 }
204 
205 static void shmem_free_inode(struct super_block *sb)
206 {
207 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
208 	if (sbinfo->max_inodes) {
209 		spin_lock(&sbinfo->stat_lock);
210 		sbinfo->free_inodes++;
211 		spin_unlock(&sbinfo->stat_lock);
212 	}
213 }
214 
215 /**
216  * shmem_recalc_inode - recalculate the block usage of an inode
217  * @inode: inode to recalc
218  *
219  * We have to calculate the free blocks since the mm can drop
220  * undirtied hole pages behind our back.
221  *
222  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
223  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
224  *
225  * It has to be called with the spinlock held.
226  */
227 static void shmem_recalc_inode(struct inode *inode)
228 {
229 	struct shmem_inode_info *info = SHMEM_I(inode);
230 	long freed;
231 
232 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
233 	if (freed > 0) {
234 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 		if (sbinfo->max_blocks)
236 			percpu_counter_add(&sbinfo->used_blocks, -freed);
237 		info->alloced -= freed;
238 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
239 		shmem_unacct_blocks(info->flags, freed);
240 	}
241 }
242 
243 /*
244  * Replace item expected in radix tree by a new item, while holding tree lock.
245  */
246 static int shmem_radix_tree_replace(struct address_space *mapping,
247 			pgoff_t index, void *expected, void *replacement)
248 {
249 	void **pslot;
250 	void *item = NULL;
251 
252 	VM_BUG_ON(!expected);
253 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
254 	if (pslot)
255 		item = radix_tree_deref_slot_protected(pslot,
256 							&mapping->tree_lock);
257 	if (item != expected)
258 		return -ENOENT;
259 	if (replacement)
260 		radix_tree_replace_slot(pslot, replacement);
261 	else
262 		radix_tree_delete(&mapping->page_tree, index);
263 	return 0;
264 }
265 
266 /*
267  * Like add_to_page_cache_locked, but error if expected item has gone.
268  */
269 static int shmem_add_to_page_cache(struct page *page,
270 				   struct address_space *mapping,
271 				   pgoff_t index, gfp_t gfp, void *expected)
272 {
273 	int error = 0;
274 
275 	VM_BUG_ON(!PageLocked(page));
276 	VM_BUG_ON(!PageSwapBacked(page));
277 
278 	if (!expected)
279 		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
280 	if (!error) {
281 		page_cache_get(page);
282 		page->mapping = mapping;
283 		page->index = index;
284 
285 		spin_lock_irq(&mapping->tree_lock);
286 		if (!expected)
287 			error = radix_tree_insert(&mapping->page_tree,
288 							index, page);
289 		else
290 			error = shmem_radix_tree_replace(mapping, index,
291 							expected, page);
292 		if (!error) {
293 			mapping->nrpages++;
294 			__inc_zone_page_state(page, NR_FILE_PAGES);
295 			__inc_zone_page_state(page, NR_SHMEM);
296 			spin_unlock_irq(&mapping->tree_lock);
297 		} else {
298 			page->mapping = NULL;
299 			spin_unlock_irq(&mapping->tree_lock);
300 			page_cache_release(page);
301 		}
302 		if (!expected)
303 			radix_tree_preload_end();
304 	}
305 	if (error)
306 		mem_cgroup_uncharge_cache_page(page);
307 	return error;
308 }
309 
310 /*
311  * Like delete_from_page_cache, but substitutes swap for page.
312  */
313 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
314 {
315 	struct address_space *mapping = page->mapping;
316 	int error;
317 
318 	spin_lock_irq(&mapping->tree_lock);
319 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
320 	page->mapping = NULL;
321 	mapping->nrpages--;
322 	__dec_zone_page_state(page, NR_FILE_PAGES);
323 	__dec_zone_page_state(page, NR_SHMEM);
324 	spin_unlock_irq(&mapping->tree_lock);
325 	page_cache_release(page);
326 	BUG_ON(error);
327 }
328 
329 /*
330  * Like find_get_pages, but collecting swap entries as well as pages.
331  */
332 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
333 					pgoff_t start, unsigned int nr_pages,
334 					struct page **pages, pgoff_t *indices)
335 {
336 	unsigned int i;
337 	unsigned int ret;
338 	unsigned int nr_found;
339 
340 	rcu_read_lock();
341 restart:
342 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
343 				(void ***)pages, indices, start, nr_pages);
344 	ret = 0;
345 	for (i = 0; i < nr_found; i++) {
346 		struct page *page;
347 repeat:
348 		page = radix_tree_deref_slot((void **)pages[i]);
349 		if (unlikely(!page))
350 			continue;
351 		if (radix_tree_exception(page)) {
352 			if (radix_tree_deref_retry(page))
353 				goto restart;
354 			/*
355 			 * Otherwise, we must be storing a swap entry
356 			 * here as an exceptional entry: so return it
357 			 * without attempting to raise page count.
358 			 */
359 			goto export;
360 		}
361 		if (!page_cache_get_speculative(page))
362 			goto repeat;
363 
364 		/* Has the page moved? */
365 		if (unlikely(page != *((void **)pages[i]))) {
366 			page_cache_release(page);
367 			goto repeat;
368 		}
369 export:
370 		indices[ret] = indices[i];
371 		pages[ret] = page;
372 		ret++;
373 	}
374 	if (unlikely(!ret && nr_found))
375 		goto restart;
376 	rcu_read_unlock();
377 	return ret;
378 }
379 
380 /*
381  * Remove swap entry from radix tree, free the swap and its page cache.
382  */
383 static int shmem_free_swap(struct address_space *mapping,
384 			   pgoff_t index, void *radswap)
385 {
386 	int error;
387 
388 	spin_lock_irq(&mapping->tree_lock);
389 	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
390 	spin_unlock_irq(&mapping->tree_lock);
391 	if (!error)
392 		free_swap_and_cache(radix_to_swp_entry(radswap));
393 	return error;
394 }
395 
396 /*
397  * Pagevec may contain swap entries, so shuffle up pages before releasing.
398  */
399 static void shmem_deswap_pagevec(struct pagevec *pvec)
400 {
401 	int i, j;
402 
403 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
404 		struct page *page = pvec->pages[i];
405 		if (!radix_tree_exceptional_entry(page))
406 			pvec->pages[j++] = page;
407 	}
408 	pvec->nr = j;
409 }
410 
411 /*
412  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
413  */
414 void shmem_unlock_mapping(struct address_space *mapping)
415 {
416 	struct pagevec pvec;
417 	pgoff_t indices[PAGEVEC_SIZE];
418 	pgoff_t index = 0;
419 
420 	pagevec_init(&pvec, 0);
421 	/*
422 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
423 	 */
424 	while (!mapping_unevictable(mapping)) {
425 		/*
426 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
427 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
428 		 */
429 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
430 					PAGEVEC_SIZE, pvec.pages, indices);
431 		if (!pvec.nr)
432 			break;
433 		index = indices[pvec.nr - 1] + 1;
434 		shmem_deswap_pagevec(&pvec);
435 		check_move_unevictable_pages(pvec.pages, pvec.nr);
436 		pagevec_release(&pvec);
437 		cond_resched();
438 	}
439 }
440 
441 /*
442  * Remove range of pages and swap entries from radix tree, and free them.
443  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
444  */
445 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
446 								 bool unfalloc)
447 {
448 	struct address_space *mapping = inode->i_mapping;
449 	struct shmem_inode_info *info = SHMEM_I(inode);
450 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
451 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
452 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
453 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
454 	struct pagevec pvec;
455 	pgoff_t indices[PAGEVEC_SIZE];
456 	long nr_swaps_freed = 0;
457 	pgoff_t index;
458 	int i;
459 
460 	if (lend == -1)
461 		end = -1;	/* unsigned, so actually very big */
462 
463 	pagevec_init(&pvec, 0);
464 	index = start;
465 	while (index < end) {
466 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
467 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
468 							pvec.pages, indices);
469 		if (!pvec.nr)
470 			break;
471 		mem_cgroup_uncharge_start();
472 		for (i = 0; i < pagevec_count(&pvec); i++) {
473 			struct page *page = pvec.pages[i];
474 
475 			index = indices[i];
476 			if (index >= end)
477 				break;
478 
479 			if (radix_tree_exceptional_entry(page)) {
480 				if (unfalloc)
481 					continue;
482 				nr_swaps_freed += !shmem_free_swap(mapping,
483 								index, page);
484 				continue;
485 			}
486 
487 			if (!trylock_page(page))
488 				continue;
489 			if (!unfalloc || !PageUptodate(page)) {
490 				if (page->mapping == mapping) {
491 					VM_BUG_ON(PageWriteback(page));
492 					truncate_inode_page(mapping, page);
493 				}
494 			}
495 			unlock_page(page);
496 		}
497 		shmem_deswap_pagevec(&pvec);
498 		pagevec_release(&pvec);
499 		mem_cgroup_uncharge_end();
500 		cond_resched();
501 		index++;
502 	}
503 
504 	if (partial_start) {
505 		struct page *page = NULL;
506 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
507 		if (page) {
508 			unsigned int top = PAGE_CACHE_SIZE;
509 			if (start > end) {
510 				top = partial_end;
511 				partial_end = 0;
512 			}
513 			zero_user_segment(page, partial_start, top);
514 			set_page_dirty(page);
515 			unlock_page(page);
516 			page_cache_release(page);
517 		}
518 	}
519 	if (partial_end) {
520 		struct page *page = NULL;
521 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
522 		if (page) {
523 			zero_user_segment(page, 0, partial_end);
524 			set_page_dirty(page);
525 			unlock_page(page);
526 			page_cache_release(page);
527 		}
528 	}
529 	if (start >= end)
530 		return;
531 
532 	index = start;
533 	for ( ; ; ) {
534 		cond_resched();
535 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
536 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
537 							pvec.pages, indices);
538 		if (!pvec.nr) {
539 			if (index == start || unfalloc)
540 				break;
541 			index = start;
542 			continue;
543 		}
544 		if ((index == start || unfalloc) && indices[0] >= end) {
545 			shmem_deswap_pagevec(&pvec);
546 			pagevec_release(&pvec);
547 			break;
548 		}
549 		mem_cgroup_uncharge_start();
550 		for (i = 0; i < pagevec_count(&pvec); i++) {
551 			struct page *page = pvec.pages[i];
552 
553 			index = indices[i];
554 			if (index >= end)
555 				break;
556 
557 			if (radix_tree_exceptional_entry(page)) {
558 				if (unfalloc)
559 					continue;
560 				nr_swaps_freed += !shmem_free_swap(mapping,
561 								index, page);
562 				continue;
563 			}
564 
565 			lock_page(page);
566 			if (!unfalloc || !PageUptodate(page)) {
567 				if (page->mapping == mapping) {
568 					VM_BUG_ON(PageWriteback(page));
569 					truncate_inode_page(mapping, page);
570 				}
571 			}
572 			unlock_page(page);
573 		}
574 		shmem_deswap_pagevec(&pvec);
575 		pagevec_release(&pvec);
576 		mem_cgroup_uncharge_end();
577 		index++;
578 	}
579 
580 	spin_lock(&info->lock);
581 	info->swapped -= nr_swaps_freed;
582 	shmem_recalc_inode(inode);
583 	spin_unlock(&info->lock);
584 }
585 
586 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
587 {
588 	shmem_undo_range(inode, lstart, lend, false);
589 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
590 }
591 EXPORT_SYMBOL_GPL(shmem_truncate_range);
592 
593 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
594 {
595 	struct inode *inode = dentry->d_inode;
596 	int error;
597 
598 	error = inode_change_ok(inode, attr);
599 	if (error)
600 		return error;
601 
602 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
603 		loff_t oldsize = inode->i_size;
604 		loff_t newsize = attr->ia_size;
605 
606 		if (newsize != oldsize) {
607 			i_size_write(inode, newsize);
608 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
609 		}
610 		if (newsize < oldsize) {
611 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
612 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
613 			shmem_truncate_range(inode, newsize, (loff_t)-1);
614 			/* unmap again to remove racily COWed private pages */
615 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
616 		}
617 	}
618 
619 	setattr_copy(inode, attr);
620 #ifdef CONFIG_TMPFS_POSIX_ACL
621 	if (attr->ia_valid & ATTR_MODE)
622 		error = generic_acl_chmod(inode);
623 #endif
624 	return error;
625 }
626 
627 static void shmem_evict_inode(struct inode *inode)
628 {
629 	struct shmem_inode_info *info = SHMEM_I(inode);
630 	struct shmem_xattr *xattr, *nxattr;
631 
632 	if (inode->i_mapping->a_ops == &shmem_aops) {
633 		shmem_unacct_size(info->flags, inode->i_size);
634 		inode->i_size = 0;
635 		shmem_truncate_range(inode, 0, (loff_t)-1);
636 		if (!list_empty(&info->swaplist)) {
637 			mutex_lock(&shmem_swaplist_mutex);
638 			list_del_init(&info->swaplist);
639 			mutex_unlock(&shmem_swaplist_mutex);
640 		}
641 	} else
642 		kfree(info->symlink);
643 
644 	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
645 		kfree(xattr->name);
646 		kfree(xattr);
647 	}
648 	BUG_ON(inode->i_blocks);
649 	shmem_free_inode(inode->i_sb);
650 	clear_inode(inode);
651 }
652 
653 /*
654  * If swap found in inode, free it and move page from swapcache to filecache.
655  */
656 static int shmem_unuse_inode(struct shmem_inode_info *info,
657 			     swp_entry_t swap, struct page **pagep)
658 {
659 	struct address_space *mapping = info->vfs_inode.i_mapping;
660 	void *radswap;
661 	pgoff_t index;
662 	gfp_t gfp;
663 	int error = 0;
664 
665 	radswap = swp_to_radix_entry(swap);
666 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
667 	if (index == -1)
668 		return 0;
669 
670 	/*
671 	 * Move _head_ to start search for next from here.
672 	 * But be careful: shmem_evict_inode checks list_empty without taking
673 	 * mutex, and there's an instant in list_move_tail when info->swaplist
674 	 * would appear empty, if it were the only one on shmem_swaplist.
675 	 */
676 	if (shmem_swaplist.next != &info->swaplist)
677 		list_move_tail(&shmem_swaplist, &info->swaplist);
678 
679 	gfp = mapping_gfp_mask(mapping);
680 	if (shmem_should_replace_page(*pagep, gfp)) {
681 		mutex_unlock(&shmem_swaplist_mutex);
682 		error = shmem_replace_page(pagep, gfp, info, index);
683 		mutex_lock(&shmem_swaplist_mutex);
684 		/*
685 		 * We needed to drop mutex to make that restrictive page
686 		 * allocation; but the inode might already be freed by now,
687 		 * and we cannot refer to inode or mapping or info to check.
688 		 * However, we do hold page lock on the PageSwapCache page,
689 		 * so can check if that still has our reference remaining.
690 		 */
691 		if (!page_swapcount(*pagep))
692 			error = -ENOENT;
693 	}
694 
695 	/*
696 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
697 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
698 	 * beneath us (pagelock doesn't help until the page is in pagecache).
699 	 */
700 	if (!error)
701 		error = shmem_add_to_page_cache(*pagep, mapping, index,
702 						GFP_NOWAIT, radswap);
703 	if (error != -ENOMEM) {
704 		/*
705 		 * Truncation and eviction use free_swap_and_cache(), which
706 		 * only does trylock page: if we raced, best clean up here.
707 		 */
708 		delete_from_swap_cache(*pagep);
709 		set_page_dirty(*pagep);
710 		if (!error) {
711 			spin_lock(&info->lock);
712 			info->swapped--;
713 			spin_unlock(&info->lock);
714 			swap_free(swap);
715 		}
716 		error = 1;	/* not an error, but entry was found */
717 	}
718 	return error;
719 }
720 
721 /*
722  * Search through swapped inodes to find and replace swap by page.
723  */
724 int shmem_unuse(swp_entry_t swap, struct page *page)
725 {
726 	struct list_head *this, *next;
727 	struct shmem_inode_info *info;
728 	int found = 0;
729 	int error = 0;
730 
731 	/*
732 	 * There's a faint possibility that swap page was replaced before
733 	 * caller locked it: it will come back later with the right page.
734 	 */
735 	if (unlikely(!PageSwapCache(page)))
736 		goto out;
737 
738 	/*
739 	 * Charge page using GFP_KERNEL while we can wait, before taking
740 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
741 	 * Charged back to the user (not to caller) when swap account is used.
742 	 */
743 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
744 	if (error)
745 		goto out;
746 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
747 
748 	mutex_lock(&shmem_swaplist_mutex);
749 	list_for_each_safe(this, next, &shmem_swaplist) {
750 		info = list_entry(this, struct shmem_inode_info, swaplist);
751 		if (info->swapped)
752 			found = shmem_unuse_inode(info, swap, &page);
753 		else
754 			list_del_init(&info->swaplist);
755 		cond_resched();
756 		if (found)
757 			break;
758 	}
759 	mutex_unlock(&shmem_swaplist_mutex);
760 
761 	if (found < 0)
762 		error = found;
763 out:
764 	unlock_page(page);
765 	page_cache_release(page);
766 	return error;
767 }
768 
769 /*
770  * Move the page from the page cache to the swap cache.
771  */
772 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
773 {
774 	struct shmem_inode_info *info;
775 	struct address_space *mapping;
776 	struct inode *inode;
777 	swp_entry_t swap;
778 	pgoff_t index;
779 
780 	BUG_ON(!PageLocked(page));
781 	mapping = page->mapping;
782 	index = page->index;
783 	inode = mapping->host;
784 	info = SHMEM_I(inode);
785 	if (info->flags & VM_LOCKED)
786 		goto redirty;
787 	if (!total_swap_pages)
788 		goto redirty;
789 
790 	/*
791 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
792 	 * sync from ever calling shmem_writepage; but a stacking filesystem
793 	 * might use ->writepage of its underlying filesystem, in which case
794 	 * tmpfs should write out to swap only in response to memory pressure,
795 	 * and not for the writeback threads or sync.
796 	 */
797 	if (!wbc->for_reclaim) {
798 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
799 		goto redirty;
800 	}
801 
802 	/*
803 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
804 	 * value into swapfile.c, the only way we can correctly account for a
805 	 * fallocated page arriving here is now to initialize it and write it.
806 	 *
807 	 * That's okay for a page already fallocated earlier, but if we have
808 	 * not yet completed the fallocation, then (a) we want to keep track
809 	 * of this page in case we have to undo it, and (b) it may not be a
810 	 * good idea to continue anyway, once we're pushing into swap.  So
811 	 * reactivate the page, and let shmem_fallocate() quit when too many.
812 	 */
813 	if (!PageUptodate(page)) {
814 		if (inode->i_private) {
815 			struct shmem_falloc *shmem_falloc;
816 			spin_lock(&inode->i_lock);
817 			shmem_falloc = inode->i_private;
818 			if (shmem_falloc &&
819 			    index >= shmem_falloc->start &&
820 			    index < shmem_falloc->next)
821 				shmem_falloc->nr_unswapped++;
822 			else
823 				shmem_falloc = NULL;
824 			spin_unlock(&inode->i_lock);
825 			if (shmem_falloc)
826 				goto redirty;
827 		}
828 		clear_highpage(page);
829 		flush_dcache_page(page);
830 		SetPageUptodate(page);
831 	}
832 
833 	swap = get_swap_page();
834 	if (!swap.val)
835 		goto redirty;
836 
837 	/*
838 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
839 	 * if it's not already there.  Do it now before the page is
840 	 * moved to swap cache, when its pagelock no longer protects
841 	 * the inode from eviction.  But don't unlock the mutex until
842 	 * we've incremented swapped, because shmem_unuse_inode() will
843 	 * prune a !swapped inode from the swaplist under this mutex.
844 	 */
845 	mutex_lock(&shmem_swaplist_mutex);
846 	if (list_empty(&info->swaplist))
847 		list_add_tail(&info->swaplist, &shmem_swaplist);
848 
849 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
850 		swap_shmem_alloc(swap);
851 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
852 
853 		spin_lock(&info->lock);
854 		info->swapped++;
855 		shmem_recalc_inode(inode);
856 		spin_unlock(&info->lock);
857 
858 		mutex_unlock(&shmem_swaplist_mutex);
859 		BUG_ON(page_mapped(page));
860 		swap_writepage(page, wbc);
861 		return 0;
862 	}
863 
864 	mutex_unlock(&shmem_swaplist_mutex);
865 	swapcache_free(swap, NULL);
866 redirty:
867 	set_page_dirty(page);
868 	if (wbc->for_reclaim)
869 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
870 	unlock_page(page);
871 	return 0;
872 }
873 
874 #ifdef CONFIG_NUMA
875 #ifdef CONFIG_TMPFS
876 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
877 {
878 	char buffer[64];
879 
880 	if (!mpol || mpol->mode == MPOL_DEFAULT)
881 		return;		/* show nothing */
882 
883 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
884 
885 	seq_printf(seq, ",mpol=%s", buffer);
886 }
887 
888 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
889 {
890 	struct mempolicy *mpol = NULL;
891 	if (sbinfo->mpol) {
892 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
893 		mpol = sbinfo->mpol;
894 		mpol_get(mpol);
895 		spin_unlock(&sbinfo->stat_lock);
896 	}
897 	return mpol;
898 }
899 #endif /* CONFIG_TMPFS */
900 
901 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
902 			struct shmem_inode_info *info, pgoff_t index)
903 {
904 	struct mempolicy mpol, *spol;
905 	struct vm_area_struct pvma;
906 
907 	spol = mpol_cond_copy(&mpol,
908 			mpol_shared_policy_lookup(&info->policy, index));
909 
910 	/* Create a pseudo vma that just contains the policy */
911 	pvma.vm_start = 0;
912 	pvma.vm_pgoff = index;
913 	pvma.vm_ops = NULL;
914 	pvma.vm_policy = spol;
915 	return swapin_readahead(swap, gfp, &pvma, 0);
916 }
917 
918 static struct page *shmem_alloc_page(gfp_t gfp,
919 			struct shmem_inode_info *info, pgoff_t index)
920 {
921 	struct vm_area_struct pvma;
922 
923 	/* Create a pseudo vma that just contains the policy */
924 	pvma.vm_start = 0;
925 	pvma.vm_pgoff = index;
926 	pvma.vm_ops = NULL;
927 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
928 
929 	/*
930 	 * alloc_page_vma() will drop the shared policy reference
931 	 */
932 	return alloc_page_vma(gfp, &pvma, 0);
933 }
934 #else /* !CONFIG_NUMA */
935 #ifdef CONFIG_TMPFS
936 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
937 {
938 }
939 #endif /* CONFIG_TMPFS */
940 
941 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
942 			struct shmem_inode_info *info, pgoff_t index)
943 {
944 	return swapin_readahead(swap, gfp, NULL, 0);
945 }
946 
947 static inline struct page *shmem_alloc_page(gfp_t gfp,
948 			struct shmem_inode_info *info, pgoff_t index)
949 {
950 	return alloc_page(gfp);
951 }
952 #endif /* CONFIG_NUMA */
953 
954 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
955 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
956 {
957 	return NULL;
958 }
959 #endif
960 
961 /*
962  * When a page is moved from swapcache to shmem filecache (either by the
963  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
964  * shmem_unuse_inode()), it may have been read in earlier from swap, in
965  * ignorance of the mapping it belongs to.  If that mapping has special
966  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
967  * we may need to copy to a suitable page before moving to filecache.
968  *
969  * In a future release, this may well be extended to respect cpuset and
970  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
971  * but for now it is a simple matter of zone.
972  */
973 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
974 {
975 	return page_zonenum(page) > gfp_zone(gfp);
976 }
977 
978 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
979 				struct shmem_inode_info *info, pgoff_t index)
980 {
981 	struct page *oldpage, *newpage;
982 	struct address_space *swap_mapping;
983 	pgoff_t swap_index;
984 	int error;
985 
986 	oldpage = *pagep;
987 	swap_index = page_private(oldpage);
988 	swap_mapping = page_mapping(oldpage);
989 
990 	/*
991 	 * We have arrived here because our zones are constrained, so don't
992 	 * limit chance of success by further cpuset and node constraints.
993 	 */
994 	gfp &= ~GFP_CONSTRAINT_MASK;
995 	newpage = shmem_alloc_page(gfp, info, index);
996 	if (!newpage)
997 		return -ENOMEM;
998 	VM_BUG_ON(shmem_should_replace_page(newpage, gfp));
999 
1000 	*pagep = newpage;
1001 	page_cache_get(newpage);
1002 	copy_highpage(newpage, oldpage);
1003 
1004 	VM_BUG_ON(!PageLocked(oldpage));
1005 	__set_page_locked(newpage);
1006 	VM_BUG_ON(!PageUptodate(oldpage));
1007 	SetPageUptodate(newpage);
1008 	VM_BUG_ON(!PageSwapBacked(oldpage));
1009 	SetPageSwapBacked(newpage);
1010 	VM_BUG_ON(!swap_index);
1011 	set_page_private(newpage, swap_index);
1012 	VM_BUG_ON(!PageSwapCache(oldpage));
1013 	SetPageSwapCache(newpage);
1014 
1015 	/*
1016 	 * Our caller will very soon move newpage out of swapcache, but it's
1017 	 * a nice clean interface for us to replace oldpage by newpage there.
1018 	 */
1019 	spin_lock_irq(&swap_mapping->tree_lock);
1020 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1021 								   newpage);
1022 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
1023 	__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1024 	spin_unlock_irq(&swap_mapping->tree_lock);
1025 	BUG_ON(error);
1026 
1027 	mem_cgroup_replace_page_cache(oldpage, newpage);
1028 	lru_cache_add_anon(newpage);
1029 
1030 	ClearPageSwapCache(oldpage);
1031 	set_page_private(oldpage, 0);
1032 
1033 	unlock_page(oldpage);
1034 	page_cache_release(oldpage);
1035 	page_cache_release(oldpage);
1036 	return 0;
1037 }
1038 
1039 /*
1040  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1041  *
1042  * If we allocate a new one we do not mark it dirty. That's up to the
1043  * vm. If we swap it in we mark it dirty since we also free the swap
1044  * entry since a page cannot live in both the swap and page cache
1045  */
1046 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1047 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1048 {
1049 	struct address_space *mapping = inode->i_mapping;
1050 	struct shmem_inode_info *info;
1051 	struct shmem_sb_info *sbinfo;
1052 	struct page *page;
1053 	swp_entry_t swap;
1054 	int error;
1055 	int once = 0;
1056 	int alloced = 0;
1057 
1058 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1059 		return -EFBIG;
1060 repeat:
1061 	swap.val = 0;
1062 	page = find_lock_page(mapping, index);
1063 	if (radix_tree_exceptional_entry(page)) {
1064 		swap = radix_to_swp_entry(page);
1065 		page = NULL;
1066 	}
1067 
1068 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1069 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1070 		error = -EINVAL;
1071 		goto failed;
1072 	}
1073 
1074 	/* fallocated page? */
1075 	if (page && !PageUptodate(page)) {
1076 		if (sgp != SGP_READ)
1077 			goto clear;
1078 		unlock_page(page);
1079 		page_cache_release(page);
1080 		page = NULL;
1081 	}
1082 	if (page || (sgp == SGP_READ && !swap.val)) {
1083 		*pagep = page;
1084 		return 0;
1085 	}
1086 
1087 	/*
1088 	 * Fast cache lookup did not find it:
1089 	 * bring it back from swap or allocate.
1090 	 */
1091 	info = SHMEM_I(inode);
1092 	sbinfo = SHMEM_SB(inode->i_sb);
1093 
1094 	if (swap.val) {
1095 		/* Look it up and read it in.. */
1096 		page = lookup_swap_cache(swap);
1097 		if (!page) {
1098 			/* here we actually do the io */
1099 			if (fault_type)
1100 				*fault_type |= VM_FAULT_MAJOR;
1101 			page = shmem_swapin(swap, gfp, info, index);
1102 			if (!page) {
1103 				error = -ENOMEM;
1104 				goto failed;
1105 			}
1106 		}
1107 
1108 		/* We have to do this with page locked to prevent races */
1109 		lock_page(page);
1110 		if (!PageSwapCache(page) || page->mapping) {
1111 			error = -EEXIST;	/* try again */
1112 			goto failed;
1113 		}
1114 		if (!PageUptodate(page)) {
1115 			error = -EIO;
1116 			goto failed;
1117 		}
1118 		wait_on_page_writeback(page);
1119 
1120 		if (shmem_should_replace_page(page, gfp)) {
1121 			error = shmem_replace_page(&page, gfp, info, index);
1122 			if (error)
1123 				goto failed;
1124 		}
1125 
1126 		error = mem_cgroup_cache_charge(page, current->mm,
1127 						gfp & GFP_RECLAIM_MASK);
1128 		if (!error)
1129 			error = shmem_add_to_page_cache(page, mapping, index,
1130 						gfp, swp_to_radix_entry(swap));
1131 		if (error)
1132 			goto failed;
1133 
1134 		spin_lock(&info->lock);
1135 		info->swapped--;
1136 		shmem_recalc_inode(inode);
1137 		spin_unlock(&info->lock);
1138 
1139 		delete_from_swap_cache(page);
1140 		set_page_dirty(page);
1141 		swap_free(swap);
1142 
1143 	} else {
1144 		if (shmem_acct_block(info->flags)) {
1145 			error = -ENOSPC;
1146 			goto failed;
1147 		}
1148 		if (sbinfo->max_blocks) {
1149 			if (percpu_counter_compare(&sbinfo->used_blocks,
1150 						sbinfo->max_blocks) >= 0) {
1151 				error = -ENOSPC;
1152 				goto unacct;
1153 			}
1154 			percpu_counter_inc(&sbinfo->used_blocks);
1155 		}
1156 
1157 		page = shmem_alloc_page(gfp, info, index);
1158 		if (!page) {
1159 			error = -ENOMEM;
1160 			goto decused;
1161 		}
1162 
1163 		SetPageSwapBacked(page);
1164 		__set_page_locked(page);
1165 		error = mem_cgroup_cache_charge(page, current->mm,
1166 						gfp & GFP_RECLAIM_MASK);
1167 		if (!error)
1168 			error = shmem_add_to_page_cache(page, mapping, index,
1169 						gfp, NULL);
1170 		if (error)
1171 			goto decused;
1172 		lru_cache_add_anon(page);
1173 
1174 		spin_lock(&info->lock);
1175 		info->alloced++;
1176 		inode->i_blocks += BLOCKS_PER_PAGE;
1177 		shmem_recalc_inode(inode);
1178 		spin_unlock(&info->lock);
1179 		alloced = true;
1180 
1181 		/*
1182 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1183 		 */
1184 		if (sgp == SGP_FALLOC)
1185 			sgp = SGP_WRITE;
1186 clear:
1187 		/*
1188 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1189 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1190 		 * it now, lest undo on failure cancel our earlier guarantee.
1191 		 */
1192 		if (sgp != SGP_WRITE) {
1193 			clear_highpage(page);
1194 			flush_dcache_page(page);
1195 			SetPageUptodate(page);
1196 		}
1197 		if (sgp == SGP_DIRTY)
1198 			set_page_dirty(page);
1199 	}
1200 
1201 	/* Perhaps the file has been truncated since we checked */
1202 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1203 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1204 		error = -EINVAL;
1205 		if (alloced)
1206 			goto trunc;
1207 		else
1208 			goto failed;
1209 	}
1210 	*pagep = page;
1211 	return 0;
1212 
1213 	/*
1214 	 * Error recovery.
1215 	 */
1216 trunc:
1217 	info = SHMEM_I(inode);
1218 	ClearPageDirty(page);
1219 	delete_from_page_cache(page);
1220 	spin_lock(&info->lock);
1221 	info->alloced--;
1222 	inode->i_blocks -= BLOCKS_PER_PAGE;
1223 	spin_unlock(&info->lock);
1224 decused:
1225 	sbinfo = SHMEM_SB(inode->i_sb);
1226 	if (sbinfo->max_blocks)
1227 		percpu_counter_add(&sbinfo->used_blocks, -1);
1228 unacct:
1229 	shmem_unacct_blocks(info->flags, 1);
1230 failed:
1231 	if (swap.val && error != -EINVAL) {
1232 		struct page *test = find_get_page(mapping, index);
1233 		if (test && !radix_tree_exceptional_entry(test))
1234 			page_cache_release(test);
1235 		/* Have another try if the entry has changed */
1236 		if (test != swp_to_radix_entry(swap))
1237 			error = -EEXIST;
1238 	}
1239 	if (page) {
1240 		unlock_page(page);
1241 		page_cache_release(page);
1242 	}
1243 	if (error == -ENOSPC && !once++) {
1244 		info = SHMEM_I(inode);
1245 		spin_lock(&info->lock);
1246 		shmem_recalc_inode(inode);
1247 		spin_unlock(&info->lock);
1248 		goto repeat;
1249 	}
1250 	if (error == -EEXIST)
1251 		goto repeat;
1252 	return error;
1253 }
1254 
1255 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1256 {
1257 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1258 	int error;
1259 	int ret = VM_FAULT_LOCKED;
1260 
1261 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1262 	if (error)
1263 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1264 
1265 	if (ret & VM_FAULT_MAJOR) {
1266 		count_vm_event(PGMAJFAULT);
1267 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1268 	}
1269 	return ret;
1270 }
1271 
1272 #ifdef CONFIG_NUMA
1273 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1274 {
1275 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1276 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1277 }
1278 
1279 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1280 					  unsigned long addr)
1281 {
1282 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1283 	pgoff_t index;
1284 
1285 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1286 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1287 }
1288 #endif
1289 
1290 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1291 {
1292 	struct inode *inode = file->f_path.dentry->d_inode;
1293 	struct shmem_inode_info *info = SHMEM_I(inode);
1294 	int retval = -ENOMEM;
1295 
1296 	spin_lock(&info->lock);
1297 	if (lock && !(info->flags & VM_LOCKED)) {
1298 		if (!user_shm_lock(inode->i_size, user))
1299 			goto out_nomem;
1300 		info->flags |= VM_LOCKED;
1301 		mapping_set_unevictable(file->f_mapping);
1302 	}
1303 	if (!lock && (info->flags & VM_LOCKED) && user) {
1304 		user_shm_unlock(inode->i_size, user);
1305 		info->flags &= ~VM_LOCKED;
1306 		mapping_clear_unevictable(file->f_mapping);
1307 	}
1308 	retval = 0;
1309 
1310 out_nomem:
1311 	spin_unlock(&info->lock);
1312 	return retval;
1313 }
1314 
1315 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1316 {
1317 	file_accessed(file);
1318 	vma->vm_ops = &shmem_vm_ops;
1319 	vma->vm_flags |= VM_CAN_NONLINEAR;
1320 	return 0;
1321 }
1322 
1323 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1324 				     umode_t mode, dev_t dev, unsigned long flags)
1325 {
1326 	struct inode *inode;
1327 	struct shmem_inode_info *info;
1328 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1329 
1330 	if (shmem_reserve_inode(sb))
1331 		return NULL;
1332 
1333 	inode = new_inode(sb);
1334 	if (inode) {
1335 		inode->i_ino = get_next_ino();
1336 		inode_init_owner(inode, dir, mode);
1337 		inode->i_blocks = 0;
1338 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1339 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1340 		inode->i_generation = get_seconds();
1341 		info = SHMEM_I(inode);
1342 		memset(info, 0, (char *)inode - (char *)info);
1343 		spin_lock_init(&info->lock);
1344 		info->flags = flags & VM_NORESERVE;
1345 		INIT_LIST_HEAD(&info->swaplist);
1346 		INIT_LIST_HEAD(&info->xattr_list);
1347 		cache_no_acl(inode);
1348 
1349 		switch (mode & S_IFMT) {
1350 		default:
1351 			inode->i_op = &shmem_special_inode_operations;
1352 			init_special_inode(inode, mode, dev);
1353 			break;
1354 		case S_IFREG:
1355 			inode->i_mapping->a_ops = &shmem_aops;
1356 			inode->i_op = &shmem_inode_operations;
1357 			inode->i_fop = &shmem_file_operations;
1358 			mpol_shared_policy_init(&info->policy,
1359 						 shmem_get_sbmpol(sbinfo));
1360 			break;
1361 		case S_IFDIR:
1362 			inc_nlink(inode);
1363 			/* Some things misbehave if size == 0 on a directory */
1364 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1365 			inode->i_op = &shmem_dir_inode_operations;
1366 			inode->i_fop = &simple_dir_operations;
1367 			break;
1368 		case S_IFLNK:
1369 			/*
1370 			 * Must not load anything in the rbtree,
1371 			 * mpol_free_shared_policy will not be called.
1372 			 */
1373 			mpol_shared_policy_init(&info->policy, NULL);
1374 			break;
1375 		}
1376 	} else
1377 		shmem_free_inode(sb);
1378 	return inode;
1379 }
1380 
1381 #ifdef CONFIG_TMPFS
1382 static const struct inode_operations shmem_symlink_inode_operations;
1383 static const struct inode_operations shmem_short_symlink_operations;
1384 
1385 #ifdef CONFIG_TMPFS_XATTR
1386 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1387 #else
1388 #define shmem_initxattrs NULL
1389 #endif
1390 
1391 static int
1392 shmem_write_begin(struct file *file, struct address_space *mapping,
1393 			loff_t pos, unsigned len, unsigned flags,
1394 			struct page **pagep, void **fsdata)
1395 {
1396 	struct inode *inode = mapping->host;
1397 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1398 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1399 }
1400 
1401 static int
1402 shmem_write_end(struct file *file, struct address_space *mapping,
1403 			loff_t pos, unsigned len, unsigned copied,
1404 			struct page *page, void *fsdata)
1405 {
1406 	struct inode *inode = mapping->host;
1407 
1408 	if (pos + copied > inode->i_size)
1409 		i_size_write(inode, pos + copied);
1410 
1411 	if (!PageUptodate(page)) {
1412 		if (copied < PAGE_CACHE_SIZE) {
1413 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1414 			zero_user_segments(page, 0, from,
1415 					from + copied, PAGE_CACHE_SIZE);
1416 		}
1417 		SetPageUptodate(page);
1418 	}
1419 	set_page_dirty(page);
1420 	unlock_page(page);
1421 	page_cache_release(page);
1422 
1423 	return copied;
1424 }
1425 
1426 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1427 {
1428 	struct inode *inode = filp->f_path.dentry->d_inode;
1429 	struct address_space *mapping = inode->i_mapping;
1430 	pgoff_t index;
1431 	unsigned long offset;
1432 	enum sgp_type sgp = SGP_READ;
1433 
1434 	/*
1435 	 * Might this read be for a stacking filesystem?  Then when reading
1436 	 * holes of a sparse file, we actually need to allocate those pages,
1437 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1438 	 */
1439 	if (segment_eq(get_fs(), KERNEL_DS))
1440 		sgp = SGP_DIRTY;
1441 
1442 	index = *ppos >> PAGE_CACHE_SHIFT;
1443 	offset = *ppos & ~PAGE_CACHE_MASK;
1444 
1445 	for (;;) {
1446 		struct page *page = NULL;
1447 		pgoff_t end_index;
1448 		unsigned long nr, ret;
1449 		loff_t i_size = i_size_read(inode);
1450 
1451 		end_index = i_size >> PAGE_CACHE_SHIFT;
1452 		if (index > end_index)
1453 			break;
1454 		if (index == end_index) {
1455 			nr = i_size & ~PAGE_CACHE_MASK;
1456 			if (nr <= offset)
1457 				break;
1458 		}
1459 
1460 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1461 		if (desc->error) {
1462 			if (desc->error == -EINVAL)
1463 				desc->error = 0;
1464 			break;
1465 		}
1466 		if (page)
1467 			unlock_page(page);
1468 
1469 		/*
1470 		 * We must evaluate after, since reads (unlike writes)
1471 		 * are called without i_mutex protection against truncate
1472 		 */
1473 		nr = PAGE_CACHE_SIZE;
1474 		i_size = i_size_read(inode);
1475 		end_index = i_size >> PAGE_CACHE_SHIFT;
1476 		if (index == end_index) {
1477 			nr = i_size & ~PAGE_CACHE_MASK;
1478 			if (nr <= offset) {
1479 				if (page)
1480 					page_cache_release(page);
1481 				break;
1482 			}
1483 		}
1484 		nr -= offset;
1485 
1486 		if (page) {
1487 			/*
1488 			 * If users can be writing to this page using arbitrary
1489 			 * virtual addresses, take care about potential aliasing
1490 			 * before reading the page on the kernel side.
1491 			 */
1492 			if (mapping_writably_mapped(mapping))
1493 				flush_dcache_page(page);
1494 			/*
1495 			 * Mark the page accessed if we read the beginning.
1496 			 */
1497 			if (!offset)
1498 				mark_page_accessed(page);
1499 		} else {
1500 			page = ZERO_PAGE(0);
1501 			page_cache_get(page);
1502 		}
1503 
1504 		/*
1505 		 * Ok, we have the page, and it's up-to-date, so
1506 		 * now we can copy it to user space...
1507 		 *
1508 		 * The actor routine returns how many bytes were actually used..
1509 		 * NOTE! This may not be the same as how much of a user buffer
1510 		 * we filled up (we may be padding etc), so we can only update
1511 		 * "pos" here (the actor routine has to update the user buffer
1512 		 * pointers and the remaining count).
1513 		 */
1514 		ret = actor(desc, page, offset, nr);
1515 		offset += ret;
1516 		index += offset >> PAGE_CACHE_SHIFT;
1517 		offset &= ~PAGE_CACHE_MASK;
1518 
1519 		page_cache_release(page);
1520 		if (ret != nr || !desc->count)
1521 			break;
1522 
1523 		cond_resched();
1524 	}
1525 
1526 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1527 	file_accessed(filp);
1528 }
1529 
1530 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1531 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1532 {
1533 	struct file *filp = iocb->ki_filp;
1534 	ssize_t retval;
1535 	unsigned long seg;
1536 	size_t count;
1537 	loff_t *ppos = &iocb->ki_pos;
1538 
1539 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1540 	if (retval)
1541 		return retval;
1542 
1543 	for (seg = 0; seg < nr_segs; seg++) {
1544 		read_descriptor_t desc;
1545 
1546 		desc.written = 0;
1547 		desc.arg.buf = iov[seg].iov_base;
1548 		desc.count = iov[seg].iov_len;
1549 		if (desc.count == 0)
1550 			continue;
1551 		desc.error = 0;
1552 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1553 		retval += desc.written;
1554 		if (desc.error) {
1555 			retval = retval ?: desc.error;
1556 			break;
1557 		}
1558 		if (desc.count > 0)
1559 			break;
1560 	}
1561 	return retval;
1562 }
1563 
1564 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1565 				struct pipe_inode_info *pipe, size_t len,
1566 				unsigned int flags)
1567 {
1568 	struct address_space *mapping = in->f_mapping;
1569 	struct inode *inode = mapping->host;
1570 	unsigned int loff, nr_pages, req_pages;
1571 	struct page *pages[PIPE_DEF_BUFFERS];
1572 	struct partial_page partial[PIPE_DEF_BUFFERS];
1573 	struct page *page;
1574 	pgoff_t index, end_index;
1575 	loff_t isize, left;
1576 	int error, page_nr;
1577 	struct splice_pipe_desc spd = {
1578 		.pages = pages,
1579 		.partial = partial,
1580 		.flags = flags,
1581 		.ops = &page_cache_pipe_buf_ops,
1582 		.spd_release = spd_release_page,
1583 	};
1584 
1585 	isize = i_size_read(inode);
1586 	if (unlikely(*ppos >= isize))
1587 		return 0;
1588 
1589 	left = isize - *ppos;
1590 	if (unlikely(left < len))
1591 		len = left;
1592 
1593 	if (splice_grow_spd(pipe, &spd))
1594 		return -ENOMEM;
1595 
1596 	index = *ppos >> PAGE_CACHE_SHIFT;
1597 	loff = *ppos & ~PAGE_CACHE_MASK;
1598 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1599 	nr_pages = min(req_pages, pipe->buffers);
1600 
1601 	spd.nr_pages = find_get_pages_contig(mapping, index,
1602 						nr_pages, spd.pages);
1603 	index += spd.nr_pages;
1604 	error = 0;
1605 
1606 	while (spd.nr_pages < nr_pages) {
1607 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1608 		if (error)
1609 			break;
1610 		unlock_page(page);
1611 		spd.pages[spd.nr_pages++] = page;
1612 		index++;
1613 	}
1614 
1615 	index = *ppos >> PAGE_CACHE_SHIFT;
1616 	nr_pages = spd.nr_pages;
1617 	spd.nr_pages = 0;
1618 
1619 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1620 		unsigned int this_len;
1621 
1622 		if (!len)
1623 			break;
1624 
1625 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1626 		page = spd.pages[page_nr];
1627 
1628 		if (!PageUptodate(page) || page->mapping != mapping) {
1629 			error = shmem_getpage(inode, index, &page,
1630 							SGP_CACHE, NULL);
1631 			if (error)
1632 				break;
1633 			unlock_page(page);
1634 			page_cache_release(spd.pages[page_nr]);
1635 			spd.pages[page_nr] = page;
1636 		}
1637 
1638 		isize = i_size_read(inode);
1639 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1640 		if (unlikely(!isize || index > end_index))
1641 			break;
1642 
1643 		if (end_index == index) {
1644 			unsigned int plen;
1645 
1646 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1647 			if (plen <= loff)
1648 				break;
1649 
1650 			this_len = min(this_len, plen - loff);
1651 			len = this_len;
1652 		}
1653 
1654 		spd.partial[page_nr].offset = loff;
1655 		spd.partial[page_nr].len = this_len;
1656 		len -= this_len;
1657 		loff = 0;
1658 		spd.nr_pages++;
1659 		index++;
1660 	}
1661 
1662 	while (page_nr < nr_pages)
1663 		page_cache_release(spd.pages[page_nr++]);
1664 
1665 	if (spd.nr_pages)
1666 		error = splice_to_pipe(pipe, &spd);
1667 
1668 	splice_shrink_spd(pipe, &spd);
1669 
1670 	if (error > 0) {
1671 		*ppos += error;
1672 		file_accessed(in);
1673 	}
1674 	return error;
1675 }
1676 
1677 /*
1678  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1679  */
1680 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1681 				    pgoff_t index, pgoff_t end, int origin)
1682 {
1683 	struct page *page;
1684 	struct pagevec pvec;
1685 	pgoff_t indices[PAGEVEC_SIZE];
1686 	bool done = false;
1687 	int i;
1688 
1689 	pagevec_init(&pvec, 0);
1690 	pvec.nr = 1;		/* start small: we may be there already */
1691 	while (!done) {
1692 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1693 					pvec.nr, pvec.pages, indices);
1694 		if (!pvec.nr) {
1695 			if (origin == SEEK_DATA)
1696 				index = end;
1697 			break;
1698 		}
1699 		for (i = 0; i < pvec.nr; i++, index++) {
1700 			if (index < indices[i]) {
1701 				if (origin == SEEK_HOLE) {
1702 					done = true;
1703 					break;
1704 				}
1705 				index = indices[i];
1706 			}
1707 			page = pvec.pages[i];
1708 			if (page && !radix_tree_exceptional_entry(page)) {
1709 				if (!PageUptodate(page))
1710 					page = NULL;
1711 			}
1712 			if (index >= end ||
1713 			    (page && origin == SEEK_DATA) ||
1714 			    (!page && origin == SEEK_HOLE)) {
1715 				done = true;
1716 				break;
1717 			}
1718 		}
1719 		shmem_deswap_pagevec(&pvec);
1720 		pagevec_release(&pvec);
1721 		pvec.nr = PAGEVEC_SIZE;
1722 		cond_resched();
1723 	}
1724 	return index;
1725 }
1726 
1727 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int origin)
1728 {
1729 	struct address_space *mapping;
1730 	struct inode *inode;
1731 	pgoff_t start, end;
1732 	loff_t new_offset;
1733 
1734 	if (origin != SEEK_DATA && origin != SEEK_HOLE)
1735 		return generic_file_llseek_size(file, offset, origin,
1736 							MAX_LFS_FILESIZE);
1737 	mapping = file->f_mapping;
1738 	inode = mapping->host;
1739 	mutex_lock(&inode->i_mutex);
1740 	/* We're holding i_mutex so we can access i_size directly */
1741 
1742 	if (offset < 0)
1743 		offset = -EINVAL;
1744 	else if (offset >= inode->i_size)
1745 		offset = -ENXIO;
1746 	else {
1747 		start = offset >> PAGE_CACHE_SHIFT;
1748 		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1749 		new_offset = shmem_seek_hole_data(mapping, start, end, origin);
1750 		new_offset <<= PAGE_CACHE_SHIFT;
1751 		if (new_offset > offset) {
1752 			if (new_offset < inode->i_size)
1753 				offset = new_offset;
1754 			else if (origin == SEEK_DATA)
1755 				offset = -ENXIO;
1756 			else
1757 				offset = inode->i_size;
1758 		}
1759 	}
1760 
1761 	if (offset >= 0 && offset != file->f_pos) {
1762 		file->f_pos = offset;
1763 		file->f_version = 0;
1764 	}
1765 	mutex_unlock(&inode->i_mutex);
1766 	return offset;
1767 }
1768 
1769 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1770 							 loff_t len)
1771 {
1772 	struct inode *inode = file->f_path.dentry->d_inode;
1773 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1774 	struct shmem_falloc shmem_falloc;
1775 	pgoff_t start, index, end;
1776 	int error;
1777 
1778 	mutex_lock(&inode->i_mutex);
1779 
1780 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1781 		struct address_space *mapping = file->f_mapping;
1782 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1783 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1784 
1785 		if ((u64)unmap_end > (u64)unmap_start)
1786 			unmap_mapping_range(mapping, unmap_start,
1787 					    1 + unmap_end - unmap_start, 0);
1788 		shmem_truncate_range(inode, offset, offset + len - 1);
1789 		/* No need to unmap again: hole-punching leaves COWed pages */
1790 		error = 0;
1791 		goto out;
1792 	}
1793 
1794 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1795 	error = inode_newsize_ok(inode, offset + len);
1796 	if (error)
1797 		goto out;
1798 
1799 	start = offset >> PAGE_CACHE_SHIFT;
1800 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1801 	/* Try to avoid a swapstorm if len is impossible to satisfy */
1802 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1803 		error = -ENOSPC;
1804 		goto out;
1805 	}
1806 
1807 	shmem_falloc.start = start;
1808 	shmem_falloc.next  = start;
1809 	shmem_falloc.nr_falloced = 0;
1810 	shmem_falloc.nr_unswapped = 0;
1811 	spin_lock(&inode->i_lock);
1812 	inode->i_private = &shmem_falloc;
1813 	spin_unlock(&inode->i_lock);
1814 
1815 	for (index = start; index < end; index++) {
1816 		struct page *page;
1817 
1818 		/*
1819 		 * Good, the fallocate(2) manpage permits EINTR: we may have
1820 		 * been interrupted because we are using up too much memory.
1821 		 */
1822 		if (signal_pending(current))
1823 			error = -EINTR;
1824 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1825 			error = -ENOMEM;
1826 		else
1827 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1828 									NULL);
1829 		if (error) {
1830 			/* Remove the !PageUptodate pages we added */
1831 			shmem_undo_range(inode,
1832 				(loff_t)start << PAGE_CACHE_SHIFT,
1833 				(loff_t)index << PAGE_CACHE_SHIFT, true);
1834 			goto undone;
1835 		}
1836 
1837 		/*
1838 		 * Inform shmem_writepage() how far we have reached.
1839 		 * No need for lock or barrier: we have the page lock.
1840 		 */
1841 		shmem_falloc.next++;
1842 		if (!PageUptodate(page))
1843 			shmem_falloc.nr_falloced++;
1844 
1845 		/*
1846 		 * If !PageUptodate, leave it that way so that freeable pages
1847 		 * can be recognized if we need to rollback on error later.
1848 		 * But set_page_dirty so that memory pressure will swap rather
1849 		 * than free the pages we are allocating (and SGP_CACHE pages
1850 		 * might still be clean: we now need to mark those dirty too).
1851 		 */
1852 		set_page_dirty(page);
1853 		unlock_page(page);
1854 		page_cache_release(page);
1855 		cond_resched();
1856 	}
1857 
1858 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1859 		i_size_write(inode, offset + len);
1860 	inode->i_ctime = CURRENT_TIME;
1861 undone:
1862 	spin_lock(&inode->i_lock);
1863 	inode->i_private = NULL;
1864 	spin_unlock(&inode->i_lock);
1865 out:
1866 	mutex_unlock(&inode->i_mutex);
1867 	return error;
1868 }
1869 
1870 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1871 {
1872 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1873 
1874 	buf->f_type = TMPFS_MAGIC;
1875 	buf->f_bsize = PAGE_CACHE_SIZE;
1876 	buf->f_namelen = NAME_MAX;
1877 	if (sbinfo->max_blocks) {
1878 		buf->f_blocks = sbinfo->max_blocks;
1879 		buf->f_bavail =
1880 		buf->f_bfree  = sbinfo->max_blocks -
1881 				percpu_counter_sum(&sbinfo->used_blocks);
1882 	}
1883 	if (sbinfo->max_inodes) {
1884 		buf->f_files = sbinfo->max_inodes;
1885 		buf->f_ffree = sbinfo->free_inodes;
1886 	}
1887 	/* else leave those fields 0 like simple_statfs */
1888 	return 0;
1889 }
1890 
1891 /*
1892  * File creation. Allocate an inode, and we're done..
1893  */
1894 static int
1895 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1896 {
1897 	struct inode *inode;
1898 	int error = -ENOSPC;
1899 
1900 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1901 	if (inode) {
1902 		error = security_inode_init_security(inode, dir,
1903 						     &dentry->d_name,
1904 						     shmem_initxattrs, NULL);
1905 		if (error) {
1906 			if (error != -EOPNOTSUPP) {
1907 				iput(inode);
1908 				return error;
1909 			}
1910 		}
1911 #ifdef CONFIG_TMPFS_POSIX_ACL
1912 		error = generic_acl_init(inode, dir);
1913 		if (error) {
1914 			iput(inode);
1915 			return error;
1916 		}
1917 #else
1918 		error = 0;
1919 #endif
1920 		dir->i_size += BOGO_DIRENT_SIZE;
1921 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1922 		d_instantiate(dentry, inode);
1923 		dget(dentry); /* Extra count - pin the dentry in core */
1924 	}
1925 	return error;
1926 }
1927 
1928 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1929 {
1930 	int error;
1931 
1932 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1933 		return error;
1934 	inc_nlink(dir);
1935 	return 0;
1936 }
1937 
1938 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1939 		struct nameidata *nd)
1940 {
1941 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1942 }
1943 
1944 /*
1945  * Link a file..
1946  */
1947 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1948 {
1949 	struct inode *inode = old_dentry->d_inode;
1950 	int ret;
1951 
1952 	/*
1953 	 * No ordinary (disk based) filesystem counts links as inodes;
1954 	 * but each new link needs a new dentry, pinning lowmem, and
1955 	 * tmpfs dentries cannot be pruned until they are unlinked.
1956 	 */
1957 	ret = shmem_reserve_inode(inode->i_sb);
1958 	if (ret)
1959 		goto out;
1960 
1961 	dir->i_size += BOGO_DIRENT_SIZE;
1962 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1963 	inc_nlink(inode);
1964 	ihold(inode);	/* New dentry reference */
1965 	dget(dentry);		/* Extra pinning count for the created dentry */
1966 	d_instantiate(dentry, inode);
1967 out:
1968 	return ret;
1969 }
1970 
1971 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1972 {
1973 	struct inode *inode = dentry->d_inode;
1974 
1975 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1976 		shmem_free_inode(inode->i_sb);
1977 
1978 	dir->i_size -= BOGO_DIRENT_SIZE;
1979 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1980 	drop_nlink(inode);
1981 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1982 	return 0;
1983 }
1984 
1985 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1986 {
1987 	if (!simple_empty(dentry))
1988 		return -ENOTEMPTY;
1989 
1990 	drop_nlink(dentry->d_inode);
1991 	drop_nlink(dir);
1992 	return shmem_unlink(dir, dentry);
1993 }
1994 
1995 /*
1996  * The VFS layer already does all the dentry stuff for rename,
1997  * we just have to decrement the usage count for the target if
1998  * it exists so that the VFS layer correctly free's it when it
1999  * gets overwritten.
2000  */
2001 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2002 {
2003 	struct inode *inode = old_dentry->d_inode;
2004 	int they_are_dirs = S_ISDIR(inode->i_mode);
2005 
2006 	if (!simple_empty(new_dentry))
2007 		return -ENOTEMPTY;
2008 
2009 	if (new_dentry->d_inode) {
2010 		(void) shmem_unlink(new_dir, new_dentry);
2011 		if (they_are_dirs)
2012 			drop_nlink(old_dir);
2013 	} else if (they_are_dirs) {
2014 		drop_nlink(old_dir);
2015 		inc_nlink(new_dir);
2016 	}
2017 
2018 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2019 	new_dir->i_size += BOGO_DIRENT_SIZE;
2020 	old_dir->i_ctime = old_dir->i_mtime =
2021 	new_dir->i_ctime = new_dir->i_mtime =
2022 	inode->i_ctime = CURRENT_TIME;
2023 	return 0;
2024 }
2025 
2026 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2027 {
2028 	int error;
2029 	int len;
2030 	struct inode *inode;
2031 	struct page *page;
2032 	char *kaddr;
2033 	struct shmem_inode_info *info;
2034 
2035 	len = strlen(symname) + 1;
2036 	if (len > PAGE_CACHE_SIZE)
2037 		return -ENAMETOOLONG;
2038 
2039 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2040 	if (!inode)
2041 		return -ENOSPC;
2042 
2043 	error = security_inode_init_security(inode, dir, &dentry->d_name,
2044 					     shmem_initxattrs, NULL);
2045 	if (error) {
2046 		if (error != -EOPNOTSUPP) {
2047 			iput(inode);
2048 			return error;
2049 		}
2050 		error = 0;
2051 	}
2052 
2053 	info = SHMEM_I(inode);
2054 	inode->i_size = len-1;
2055 	if (len <= SHORT_SYMLINK_LEN) {
2056 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2057 		if (!info->symlink) {
2058 			iput(inode);
2059 			return -ENOMEM;
2060 		}
2061 		inode->i_op = &shmem_short_symlink_operations;
2062 	} else {
2063 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2064 		if (error) {
2065 			iput(inode);
2066 			return error;
2067 		}
2068 		inode->i_mapping->a_ops = &shmem_aops;
2069 		inode->i_op = &shmem_symlink_inode_operations;
2070 		kaddr = kmap_atomic(page);
2071 		memcpy(kaddr, symname, len);
2072 		kunmap_atomic(kaddr);
2073 		SetPageUptodate(page);
2074 		set_page_dirty(page);
2075 		unlock_page(page);
2076 		page_cache_release(page);
2077 	}
2078 	dir->i_size += BOGO_DIRENT_SIZE;
2079 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2080 	d_instantiate(dentry, inode);
2081 	dget(dentry);
2082 	return 0;
2083 }
2084 
2085 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2086 {
2087 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2088 	return NULL;
2089 }
2090 
2091 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2092 {
2093 	struct page *page = NULL;
2094 	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2095 	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2096 	if (page)
2097 		unlock_page(page);
2098 	return page;
2099 }
2100 
2101 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2102 {
2103 	if (!IS_ERR(nd_get_link(nd))) {
2104 		struct page *page = cookie;
2105 		kunmap(page);
2106 		mark_page_accessed(page);
2107 		page_cache_release(page);
2108 	}
2109 }
2110 
2111 #ifdef CONFIG_TMPFS_XATTR
2112 /*
2113  * Superblocks without xattr inode operations may get some security.* xattr
2114  * support from the LSM "for free". As soon as we have any other xattrs
2115  * like ACLs, we also need to implement the security.* handlers at
2116  * filesystem level, though.
2117  */
2118 
2119 /*
2120  * Allocate new xattr and copy in the value; but leave the name to callers.
2121  */
2122 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
2123 {
2124 	struct shmem_xattr *new_xattr;
2125 	size_t len;
2126 
2127 	/* wrap around? */
2128 	len = sizeof(*new_xattr) + size;
2129 	if (len <= sizeof(*new_xattr))
2130 		return NULL;
2131 
2132 	new_xattr = kmalloc(len, GFP_KERNEL);
2133 	if (!new_xattr)
2134 		return NULL;
2135 
2136 	new_xattr->size = size;
2137 	memcpy(new_xattr->value, value, size);
2138 	return new_xattr;
2139 }
2140 
2141 /*
2142  * Callback for security_inode_init_security() for acquiring xattrs.
2143  */
2144 static int shmem_initxattrs(struct inode *inode,
2145 			    const struct xattr *xattr_array,
2146 			    void *fs_info)
2147 {
2148 	struct shmem_inode_info *info = SHMEM_I(inode);
2149 	const struct xattr *xattr;
2150 	struct shmem_xattr *new_xattr;
2151 	size_t len;
2152 
2153 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2154 		new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
2155 		if (!new_xattr)
2156 			return -ENOMEM;
2157 
2158 		len = strlen(xattr->name) + 1;
2159 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2160 					  GFP_KERNEL);
2161 		if (!new_xattr->name) {
2162 			kfree(new_xattr);
2163 			return -ENOMEM;
2164 		}
2165 
2166 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2167 		       XATTR_SECURITY_PREFIX_LEN);
2168 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2169 		       xattr->name, len);
2170 
2171 		spin_lock(&info->lock);
2172 		list_add(&new_xattr->list, &info->xattr_list);
2173 		spin_unlock(&info->lock);
2174 	}
2175 
2176 	return 0;
2177 }
2178 
2179 static int shmem_xattr_get(struct dentry *dentry, const char *name,
2180 			   void *buffer, size_t size)
2181 {
2182 	struct shmem_inode_info *info;
2183 	struct shmem_xattr *xattr;
2184 	int ret = -ENODATA;
2185 
2186 	info = SHMEM_I(dentry->d_inode);
2187 
2188 	spin_lock(&info->lock);
2189 	list_for_each_entry(xattr, &info->xattr_list, list) {
2190 		if (strcmp(name, xattr->name))
2191 			continue;
2192 
2193 		ret = xattr->size;
2194 		if (buffer) {
2195 			if (size < xattr->size)
2196 				ret = -ERANGE;
2197 			else
2198 				memcpy(buffer, xattr->value, xattr->size);
2199 		}
2200 		break;
2201 	}
2202 	spin_unlock(&info->lock);
2203 	return ret;
2204 }
2205 
2206 static int shmem_xattr_set(struct inode *inode, const char *name,
2207 			   const void *value, size_t size, int flags)
2208 {
2209 	struct shmem_inode_info *info = SHMEM_I(inode);
2210 	struct shmem_xattr *xattr;
2211 	struct shmem_xattr *new_xattr = NULL;
2212 	int err = 0;
2213 
2214 	/* value == NULL means remove */
2215 	if (value) {
2216 		new_xattr = shmem_xattr_alloc(value, size);
2217 		if (!new_xattr)
2218 			return -ENOMEM;
2219 
2220 		new_xattr->name = kstrdup(name, GFP_KERNEL);
2221 		if (!new_xattr->name) {
2222 			kfree(new_xattr);
2223 			return -ENOMEM;
2224 		}
2225 	}
2226 
2227 	spin_lock(&info->lock);
2228 	list_for_each_entry(xattr, &info->xattr_list, list) {
2229 		if (!strcmp(name, xattr->name)) {
2230 			if (flags & XATTR_CREATE) {
2231 				xattr = new_xattr;
2232 				err = -EEXIST;
2233 			} else if (new_xattr) {
2234 				list_replace(&xattr->list, &new_xattr->list);
2235 			} else {
2236 				list_del(&xattr->list);
2237 			}
2238 			goto out;
2239 		}
2240 	}
2241 	if (flags & XATTR_REPLACE) {
2242 		xattr = new_xattr;
2243 		err = -ENODATA;
2244 	} else {
2245 		list_add(&new_xattr->list, &info->xattr_list);
2246 		xattr = NULL;
2247 	}
2248 out:
2249 	spin_unlock(&info->lock);
2250 	if (xattr)
2251 		kfree(xattr->name);
2252 	kfree(xattr);
2253 	return err;
2254 }
2255 
2256 static const struct xattr_handler *shmem_xattr_handlers[] = {
2257 #ifdef CONFIG_TMPFS_POSIX_ACL
2258 	&generic_acl_access_handler,
2259 	&generic_acl_default_handler,
2260 #endif
2261 	NULL
2262 };
2263 
2264 static int shmem_xattr_validate(const char *name)
2265 {
2266 	struct { const char *prefix; size_t len; } arr[] = {
2267 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2268 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2269 	};
2270 	int i;
2271 
2272 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2273 		size_t preflen = arr[i].len;
2274 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2275 			if (!name[preflen])
2276 				return -EINVAL;
2277 			return 0;
2278 		}
2279 	}
2280 	return -EOPNOTSUPP;
2281 }
2282 
2283 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2284 			      void *buffer, size_t size)
2285 {
2286 	int err;
2287 
2288 	/*
2289 	 * If this is a request for a synthetic attribute in the system.*
2290 	 * namespace use the generic infrastructure to resolve a handler
2291 	 * for it via sb->s_xattr.
2292 	 */
2293 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2294 		return generic_getxattr(dentry, name, buffer, size);
2295 
2296 	err = shmem_xattr_validate(name);
2297 	if (err)
2298 		return err;
2299 
2300 	return shmem_xattr_get(dentry, name, buffer, size);
2301 }
2302 
2303 static int shmem_setxattr(struct dentry *dentry, const char *name,
2304 			  const void *value, size_t size, int flags)
2305 {
2306 	int err;
2307 
2308 	/*
2309 	 * If this is a request for a synthetic attribute in the system.*
2310 	 * namespace use the generic infrastructure to resolve a handler
2311 	 * for it via sb->s_xattr.
2312 	 */
2313 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2314 		return generic_setxattr(dentry, name, value, size, flags);
2315 
2316 	err = shmem_xattr_validate(name);
2317 	if (err)
2318 		return err;
2319 
2320 	if (size == 0)
2321 		value = "";  /* empty EA, do not remove */
2322 
2323 	return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
2324 
2325 }
2326 
2327 static int shmem_removexattr(struct dentry *dentry, const char *name)
2328 {
2329 	int err;
2330 
2331 	/*
2332 	 * If this is a request for a synthetic attribute in the system.*
2333 	 * namespace use the generic infrastructure to resolve a handler
2334 	 * for it via sb->s_xattr.
2335 	 */
2336 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2337 		return generic_removexattr(dentry, name);
2338 
2339 	err = shmem_xattr_validate(name);
2340 	if (err)
2341 		return err;
2342 
2343 	return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
2344 }
2345 
2346 static bool xattr_is_trusted(const char *name)
2347 {
2348 	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2349 }
2350 
2351 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2352 {
2353 	bool trusted = capable(CAP_SYS_ADMIN);
2354 	struct shmem_xattr *xattr;
2355 	struct shmem_inode_info *info;
2356 	size_t used = 0;
2357 
2358 	info = SHMEM_I(dentry->d_inode);
2359 
2360 	spin_lock(&info->lock);
2361 	list_for_each_entry(xattr, &info->xattr_list, list) {
2362 		size_t len;
2363 
2364 		/* skip "trusted." attributes for unprivileged callers */
2365 		if (!trusted && xattr_is_trusted(xattr->name))
2366 			continue;
2367 
2368 		len = strlen(xattr->name) + 1;
2369 		used += len;
2370 		if (buffer) {
2371 			if (size < used) {
2372 				used = -ERANGE;
2373 				break;
2374 			}
2375 			memcpy(buffer, xattr->name, len);
2376 			buffer += len;
2377 		}
2378 	}
2379 	spin_unlock(&info->lock);
2380 
2381 	return used;
2382 }
2383 #endif /* CONFIG_TMPFS_XATTR */
2384 
2385 static const struct inode_operations shmem_short_symlink_operations = {
2386 	.readlink	= generic_readlink,
2387 	.follow_link	= shmem_follow_short_symlink,
2388 #ifdef CONFIG_TMPFS_XATTR
2389 	.setxattr	= shmem_setxattr,
2390 	.getxattr	= shmem_getxattr,
2391 	.listxattr	= shmem_listxattr,
2392 	.removexattr	= shmem_removexattr,
2393 #endif
2394 };
2395 
2396 static const struct inode_operations shmem_symlink_inode_operations = {
2397 	.readlink	= generic_readlink,
2398 	.follow_link	= shmem_follow_link,
2399 	.put_link	= shmem_put_link,
2400 #ifdef CONFIG_TMPFS_XATTR
2401 	.setxattr	= shmem_setxattr,
2402 	.getxattr	= shmem_getxattr,
2403 	.listxattr	= shmem_listxattr,
2404 	.removexattr	= shmem_removexattr,
2405 #endif
2406 };
2407 
2408 static struct dentry *shmem_get_parent(struct dentry *child)
2409 {
2410 	return ERR_PTR(-ESTALE);
2411 }
2412 
2413 static int shmem_match(struct inode *ino, void *vfh)
2414 {
2415 	__u32 *fh = vfh;
2416 	__u64 inum = fh[2];
2417 	inum = (inum << 32) | fh[1];
2418 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2419 }
2420 
2421 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2422 		struct fid *fid, int fh_len, int fh_type)
2423 {
2424 	struct inode *inode;
2425 	struct dentry *dentry = NULL;
2426 	u64 inum = fid->raw[2];
2427 	inum = (inum << 32) | fid->raw[1];
2428 
2429 	if (fh_len < 3)
2430 		return NULL;
2431 
2432 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2433 			shmem_match, fid->raw);
2434 	if (inode) {
2435 		dentry = d_find_alias(inode);
2436 		iput(inode);
2437 	}
2438 
2439 	return dentry;
2440 }
2441 
2442 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2443 				int connectable)
2444 {
2445 	struct inode *inode = dentry->d_inode;
2446 
2447 	if (*len < 3) {
2448 		*len = 3;
2449 		return 255;
2450 	}
2451 
2452 	if (inode_unhashed(inode)) {
2453 		/* Unfortunately insert_inode_hash is not idempotent,
2454 		 * so as we hash inodes here rather than at creation
2455 		 * time, we need a lock to ensure we only try
2456 		 * to do it once
2457 		 */
2458 		static DEFINE_SPINLOCK(lock);
2459 		spin_lock(&lock);
2460 		if (inode_unhashed(inode))
2461 			__insert_inode_hash(inode,
2462 					    inode->i_ino + inode->i_generation);
2463 		spin_unlock(&lock);
2464 	}
2465 
2466 	fh[0] = inode->i_generation;
2467 	fh[1] = inode->i_ino;
2468 	fh[2] = ((__u64)inode->i_ino) >> 32;
2469 
2470 	*len = 3;
2471 	return 1;
2472 }
2473 
2474 static const struct export_operations shmem_export_ops = {
2475 	.get_parent     = shmem_get_parent,
2476 	.encode_fh      = shmem_encode_fh,
2477 	.fh_to_dentry	= shmem_fh_to_dentry,
2478 };
2479 
2480 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2481 			       bool remount)
2482 {
2483 	char *this_char, *value, *rest;
2484 	uid_t uid;
2485 	gid_t gid;
2486 
2487 	while (options != NULL) {
2488 		this_char = options;
2489 		for (;;) {
2490 			/*
2491 			 * NUL-terminate this option: unfortunately,
2492 			 * mount options form a comma-separated list,
2493 			 * but mpol's nodelist may also contain commas.
2494 			 */
2495 			options = strchr(options, ',');
2496 			if (options == NULL)
2497 				break;
2498 			options++;
2499 			if (!isdigit(*options)) {
2500 				options[-1] = '\0';
2501 				break;
2502 			}
2503 		}
2504 		if (!*this_char)
2505 			continue;
2506 		if ((value = strchr(this_char,'=')) != NULL) {
2507 			*value++ = 0;
2508 		} else {
2509 			printk(KERN_ERR
2510 			    "tmpfs: No value for mount option '%s'\n",
2511 			    this_char);
2512 			return 1;
2513 		}
2514 
2515 		if (!strcmp(this_char,"size")) {
2516 			unsigned long long size;
2517 			size = memparse(value,&rest);
2518 			if (*rest == '%') {
2519 				size <<= PAGE_SHIFT;
2520 				size *= totalram_pages;
2521 				do_div(size, 100);
2522 				rest++;
2523 			}
2524 			if (*rest)
2525 				goto bad_val;
2526 			sbinfo->max_blocks =
2527 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2528 		} else if (!strcmp(this_char,"nr_blocks")) {
2529 			sbinfo->max_blocks = memparse(value, &rest);
2530 			if (*rest)
2531 				goto bad_val;
2532 		} else if (!strcmp(this_char,"nr_inodes")) {
2533 			sbinfo->max_inodes = memparse(value, &rest);
2534 			if (*rest)
2535 				goto bad_val;
2536 		} else if (!strcmp(this_char,"mode")) {
2537 			if (remount)
2538 				continue;
2539 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2540 			if (*rest)
2541 				goto bad_val;
2542 		} else if (!strcmp(this_char,"uid")) {
2543 			if (remount)
2544 				continue;
2545 			uid = simple_strtoul(value, &rest, 0);
2546 			if (*rest)
2547 				goto bad_val;
2548 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2549 			if (!uid_valid(sbinfo->uid))
2550 				goto bad_val;
2551 		} else if (!strcmp(this_char,"gid")) {
2552 			if (remount)
2553 				continue;
2554 			gid = simple_strtoul(value, &rest, 0);
2555 			if (*rest)
2556 				goto bad_val;
2557 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2558 			if (!gid_valid(sbinfo->gid))
2559 				goto bad_val;
2560 		} else if (!strcmp(this_char,"mpol")) {
2561 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2562 				goto bad_val;
2563 		} else {
2564 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2565 			       this_char);
2566 			return 1;
2567 		}
2568 	}
2569 	return 0;
2570 
2571 bad_val:
2572 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2573 	       value, this_char);
2574 	return 1;
2575 
2576 }
2577 
2578 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2579 {
2580 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2581 	struct shmem_sb_info config = *sbinfo;
2582 	unsigned long inodes;
2583 	int error = -EINVAL;
2584 
2585 	if (shmem_parse_options(data, &config, true))
2586 		return error;
2587 
2588 	spin_lock(&sbinfo->stat_lock);
2589 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2590 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2591 		goto out;
2592 	if (config.max_inodes < inodes)
2593 		goto out;
2594 	/*
2595 	 * Those tests disallow limited->unlimited while any are in use;
2596 	 * but we must separately disallow unlimited->limited, because
2597 	 * in that case we have no record of how much is already in use.
2598 	 */
2599 	if (config.max_blocks && !sbinfo->max_blocks)
2600 		goto out;
2601 	if (config.max_inodes && !sbinfo->max_inodes)
2602 		goto out;
2603 
2604 	error = 0;
2605 	sbinfo->max_blocks  = config.max_blocks;
2606 	sbinfo->max_inodes  = config.max_inodes;
2607 	sbinfo->free_inodes = config.max_inodes - inodes;
2608 
2609 	mpol_put(sbinfo->mpol);
2610 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2611 out:
2612 	spin_unlock(&sbinfo->stat_lock);
2613 	return error;
2614 }
2615 
2616 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2617 {
2618 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2619 
2620 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2621 		seq_printf(seq, ",size=%luk",
2622 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2623 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2624 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2625 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2626 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2627 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2628 		seq_printf(seq, ",uid=%u",
2629 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2630 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2631 		seq_printf(seq, ",gid=%u",
2632 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2633 	shmem_show_mpol(seq, sbinfo->mpol);
2634 	return 0;
2635 }
2636 #endif /* CONFIG_TMPFS */
2637 
2638 static void shmem_put_super(struct super_block *sb)
2639 {
2640 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2641 
2642 	percpu_counter_destroy(&sbinfo->used_blocks);
2643 	kfree(sbinfo);
2644 	sb->s_fs_info = NULL;
2645 }
2646 
2647 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2648 {
2649 	struct inode *inode;
2650 	struct shmem_sb_info *sbinfo;
2651 	int err = -ENOMEM;
2652 
2653 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2654 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2655 				L1_CACHE_BYTES), GFP_KERNEL);
2656 	if (!sbinfo)
2657 		return -ENOMEM;
2658 
2659 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2660 	sbinfo->uid = current_fsuid();
2661 	sbinfo->gid = current_fsgid();
2662 	sb->s_fs_info = sbinfo;
2663 
2664 #ifdef CONFIG_TMPFS
2665 	/*
2666 	 * Per default we only allow half of the physical ram per
2667 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2668 	 * but the internal instance is left unlimited.
2669 	 */
2670 	if (!(sb->s_flags & MS_NOUSER)) {
2671 		sbinfo->max_blocks = shmem_default_max_blocks();
2672 		sbinfo->max_inodes = shmem_default_max_inodes();
2673 		if (shmem_parse_options(data, sbinfo, false)) {
2674 			err = -EINVAL;
2675 			goto failed;
2676 		}
2677 	}
2678 	sb->s_export_op = &shmem_export_ops;
2679 	sb->s_flags |= MS_NOSEC;
2680 #else
2681 	sb->s_flags |= MS_NOUSER;
2682 #endif
2683 
2684 	spin_lock_init(&sbinfo->stat_lock);
2685 	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2686 		goto failed;
2687 	sbinfo->free_inodes = sbinfo->max_inodes;
2688 
2689 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2690 	sb->s_blocksize = PAGE_CACHE_SIZE;
2691 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2692 	sb->s_magic = TMPFS_MAGIC;
2693 	sb->s_op = &shmem_ops;
2694 	sb->s_time_gran = 1;
2695 #ifdef CONFIG_TMPFS_XATTR
2696 	sb->s_xattr = shmem_xattr_handlers;
2697 #endif
2698 #ifdef CONFIG_TMPFS_POSIX_ACL
2699 	sb->s_flags |= MS_POSIXACL;
2700 #endif
2701 
2702 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2703 	if (!inode)
2704 		goto failed;
2705 	inode->i_uid = sbinfo->uid;
2706 	inode->i_gid = sbinfo->gid;
2707 	sb->s_root = d_make_root(inode);
2708 	if (!sb->s_root)
2709 		goto failed;
2710 	return 0;
2711 
2712 failed:
2713 	shmem_put_super(sb);
2714 	return err;
2715 }
2716 
2717 static struct kmem_cache *shmem_inode_cachep;
2718 
2719 static struct inode *shmem_alloc_inode(struct super_block *sb)
2720 {
2721 	struct shmem_inode_info *info;
2722 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2723 	if (!info)
2724 		return NULL;
2725 	return &info->vfs_inode;
2726 }
2727 
2728 static void shmem_destroy_callback(struct rcu_head *head)
2729 {
2730 	struct inode *inode = container_of(head, struct inode, i_rcu);
2731 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2732 }
2733 
2734 static void shmem_destroy_inode(struct inode *inode)
2735 {
2736 	if (S_ISREG(inode->i_mode))
2737 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2738 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2739 }
2740 
2741 static void shmem_init_inode(void *foo)
2742 {
2743 	struct shmem_inode_info *info = foo;
2744 	inode_init_once(&info->vfs_inode);
2745 }
2746 
2747 static int shmem_init_inodecache(void)
2748 {
2749 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2750 				sizeof(struct shmem_inode_info),
2751 				0, SLAB_PANIC, shmem_init_inode);
2752 	return 0;
2753 }
2754 
2755 static void shmem_destroy_inodecache(void)
2756 {
2757 	kmem_cache_destroy(shmem_inode_cachep);
2758 }
2759 
2760 static const struct address_space_operations shmem_aops = {
2761 	.writepage	= shmem_writepage,
2762 	.set_page_dirty	= __set_page_dirty_no_writeback,
2763 #ifdef CONFIG_TMPFS
2764 	.write_begin	= shmem_write_begin,
2765 	.write_end	= shmem_write_end,
2766 #endif
2767 	.migratepage	= migrate_page,
2768 	.error_remove_page = generic_error_remove_page,
2769 };
2770 
2771 static const struct file_operations shmem_file_operations = {
2772 	.mmap		= shmem_mmap,
2773 #ifdef CONFIG_TMPFS
2774 	.llseek		= shmem_file_llseek,
2775 	.read		= do_sync_read,
2776 	.write		= do_sync_write,
2777 	.aio_read	= shmem_file_aio_read,
2778 	.aio_write	= generic_file_aio_write,
2779 	.fsync		= noop_fsync,
2780 	.splice_read	= shmem_file_splice_read,
2781 	.splice_write	= generic_file_splice_write,
2782 	.fallocate	= shmem_fallocate,
2783 #endif
2784 };
2785 
2786 static const struct inode_operations shmem_inode_operations = {
2787 	.setattr	= shmem_setattr,
2788 #ifdef CONFIG_TMPFS_XATTR
2789 	.setxattr	= shmem_setxattr,
2790 	.getxattr	= shmem_getxattr,
2791 	.listxattr	= shmem_listxattr,
2792 	.removexattr	= shmem_removexattr,
2793 #endif
2794 };
2795 
2796 static const struct inode_operations shmem_dir_inode_operations = {
2797 #ifdef CONFIG_TMPFS
2798 	.create		= shmem_create,
2799 	.lookup		= simple_lookup,
2800 	.link		= shmem_link,
2801 	.unlink		= shmem_unlink,
2802 	.symlink	= shmem_symlink,
2803 	.mkdir		= shmem_mkdir,
2804 	.rmdir		= shmem_rmdir,
2805 	.mknod		= shmem_mknod,
2806 	.rename		= shmem_rename,
2807 #endif
2808 #ifdef CONFIG_TMPFS_XATTR
2809 	.setxattr	= shmem_setxattr,
2810 	.getxattr	= shmem_getxattr,
2811 	.listxattr	= shmem_listxattr,
2812 	.removexattr	= shmem_removexattr,
2813 #endif
2814 #ifdef CONFIG_TMPFS_POSIX_ACL
2815 	.setattr	= shmem_setattr,
2816 #endif
2817 };
2818 
2819 static const struct inode_operations shmem_special_inode_operations = {
2820 #ifdef CONFIG_TMPFS_XATTR
2821 	.setxattr	= shmem_setxattr,
2822 	.getxattr	= shmem_getxattr,
2823 	.listxattr	= shmem_listxattr,
2824 	.removexattr	= shmem_removexattr,
2825 #endif
2826 #ifdef CONFIG_TMPFS_POSIX_ACL
2827 	.setattr	= shmem_setattr,
2828 #endif
2829 };
2830 
2831 static const struct super_operations shmem_ops = {
2832 	.alloc_inode	= shmem_alloc_inode,
2833 	.destroy_inode	= shmem_destroy_inode,
2834 #ifdef CONFIG_TMPFS
2835 	.statfs		= shmem_statfs,
2836 	.remount_fs	= shmem_remount_fs,
2837 	.show_options	= shmem_show_options,
2838 #endif
2839 	.evict_inode	= shmem_evict_inode,
2840 	.drop_inode	= generic_delete_inode,
2841 	.put_super	= shmem_put_super,
2842 };
2843 
2844 static const struct vm_operations_struct shmem_vm_ops = {
2845 	.fault		= shmem_fault,
2846 #ifdef CONFIG_NUMA
2847 	.set_policy     = shmem_set_policy,
2848 	.get_policy     = shmem_get_policy,
2849 #endif
2850 };
2851 
2852 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2853 	int flags, const char *dev_name, void *data)
2854 {
2855 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2856 }
2857 
2858 static struct file_system_type shmem_fs_type = {
2859 	.owner		= THIS_MODULE,
2860 	.name		= "tmpfs",
2861 	.mount		= shmem_mount,
2862 	.kill_sb	= kill_litter_super,
2863 };
2864 
2865 int __init shmem_init(void)
2866 {
2867 	int error;
2868 
2869 	error = bdi_init(&shmem_backing_dev_info);
2870 	if (error)
2871 		goto out4;
2872 
2873 	error = shmem_init_inodecache();
2874 	if (error)
2875 		goto out3;
2876 
2877 	error = register_filesystem(&shmem_fs_type);
2878 	if (error) {
2879 		printk(KERN_ERR "Could not register tmpfs\n");
2880 		goto out2;
2881 	}
2882 
2883 	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2884 				 shmem_fs_type.name, NULL);
2885 	if (IS_ERR(shm_mnt)) {
2886 		error = PTR_ERR(shm_mnt);
2887 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2888 		goto out1;
2889 	}
2890 	return 0;
2891 
2892 out1:
2893 	unregister_filesystem(&shmem_fs_type);
2894 out2:
2895 	shmem_destroy_inodecache();
2896 out3:
2897 	bdi_destroy(&shmem_backing_dev_info);
2898 out4:
2899 	shm_mnt = ERR_PTR(error);
2900 	return error;
2901 }
2902 
2903 #else /* !CONFIG_SHMEM */
2904 
2905 /*
2906  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2907  *
2908  * This is intended for small system where the benefits of the full
2909  * shmem code (swap-backed and resource-limited) are outweighed by
2910  * their complexity. On systems without swap this code should be
2911  * effectively equivalent, but much lighter weight.
2912  */
2913 
2914 #include <linux/ramfs.h>
2915 
2916 static struct file_system_type shmem_fs_type = {
2917 	.name		= "tmpfs",
2918 	.mount		= ramfs_mount,
2919 	.kill_sb	= kill_litter_super,
2920 };
2921 
2922 int __init shmem_init(void)
2923 {
2924 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2925 
2926 	shm_mnt = kern_mount(&shmem_fs_type);
2927 	BUG_ON(IS_ERR(shm_mnt));
2928 
2929 	return 0;
2930 }
2931 
2932 int shmem_unuse(swp_entry_t swap, struct page *page)
2933 {
2934 	return 0;
2935 }
2936 
2937 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2938 {
2939 	return 0;
2940 }
2941 
2942 void shmem_unlock_mapping(struct address_space *mapping)
2943 {
2944 }
2945 
2946 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2947 {
2948 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2949 }
2950 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2951 
2952 #define shmem_vm_ops				generic_file_vm_ops
2953 #define shmem_file_operations			ramfs_file_operations
2954 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2955 #define shmem_acct_size(flags, size)		0
2956 #define shmem_unacct_size(flags, size)		do {} while (0)
2957 
2958 #endif /* CONFIG_SHMEM */
2959 
2960 /* common code */
2961 
2962 /**
2963  * shmem_file_setup - get an unlinked file living in tmpfs
2964  * @name: name for dentry (to be seen in /proc/<pid>/maps
2965  * @size: size to be set for the file
2966  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2967  */
2968 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2969 {
2970 	int error;
2971 	struct file *file;
2972 	struct inode *inode;
2973 	struct path path;
2974 	struct dentry *root;
2975 	struct qstr this;
2976 
2977 	if (IS_ERR(shm_mnt))
2978 		return (void *)shm_mnt;
2979 
2980 	if (size < 0 || size > MAX_LFS_FILESIZE)
2981 		return ERR_PTR(-EINVAL);
2982 
2983 	if (shmem_acct_size(flags, size))
2984 		return ERR_PTR(-ENOMEM);
2985 
2986 	error = -ENOMEM;
2987 	this.name = name;
2988 	this.len = strlen(name);
2989 	this.hash = 0; /* will go */
2990 	root = shm_mnt->mnt_root;
2991 	path.dentry = d_alloc(root, &this);
2992 	if (!path.dentry)
2993 		goto put_memory;
2994 	path.mnt = mntget(shm_mnt);
2995 
2996 	error = -ENOSPC;
2997 	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2998 	if (!inode)
2999 		goto put_dentry;
3000 
3001 	d_instantiate(path.dentry, inode);
3002 	inode->i_size = size;
3003 	clear_nlink(inode);	/* It is unlinked */
3004 #ifndef CONFIG_MMU
3005 	error = ramfs_nommu_expand_for_mapping(inode, size);
3006 	if (error)
3007 		goto put_dentry;
3008 #endif
3009 
3010 	error = -ENFILE;
3011 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3012 		  &shmem_file_operations);
3013 	if (!file)
3014 		goto put_dentry;
3015 
3016 	return file;
3017 
3018 put_dentry:
3019 	path_put(&path);
3020 put_memory:
3021 	shmem_unacct_size(flags, size);
3022 	return ERR_PTR(error);
3023 }
3024 EXPORT_SYMBOL_GPL(shmem_file_setup);
3025 
3026 /**
3027  * shmem_zero_setup - setup a shared anonymous mapping
3028  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3029  */
3030 int shmem_zero_setup(struct vm_area_struct *vma)
3031 {
3032 	struct file *file;
3033 	loff_t size = vma->vm_end - vma->vm_start;
3034 
3035 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3036 	if (IS_ERR(file))
3037 		return PTR_ERR(file);
3038 
3039 	if (vma->vm_file)
3040 		fput(vma->vm_file);
3041 	vma->vm_file = file;
3042 	vma->vm_ops = &shmem_vm_ops;
3043 	vma->vm_flags |= VM_CAN_NONLINEAR;
3044 	return 0;
3045 }
3046 
3047 /**
3048  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3049  * @mapping:	the page's address_space
3050  * @index:	the page index
3051  * @gfp:	the page allocator flags to use if allocating
3052  *
3053  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3054  * with any new page allocations done using the specified allocation flags.
3055  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3056  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3057  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3058  *
3059  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3060  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3061  */
3062 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3063 					 pgoff_t index, gfp_t gfp)
3064 {
3065 #ifdef CONFIG_SHMEM
3066 	struct inode *inode = mapping->host;
3067 	struct page *page;
3068 	int error;
3069 
3070 	BUG_ON(mapping->a_ops != &shmem_aops);
3071 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3072 	if (error)
3073 		page = ERR_PTR(error);
3074 	else
3075 		unlock_page(page);
3076 	return page;
3077 #else
3078 	/*
3079 	 * The tiny !SHMEM case uses ramfs without swap
3080 	 */
3081 	return read_cache_page_gfp(mapping, index, gfp);
3082 #endif
3083 }
3084 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3085