1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/pagemap.h> 29 #include <linux/file.h> 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/swap.h> 33 34 static struct vfsmount *shm_mnt; 35 36 #ifdef CONFIG_SHMEM 37 /* 38 * This virtual memory filesystem is heavily based on the ramfs. It 39 * extends ramfs by the ability to use swap and honor resource limits 40 * which makes it a completely usable filesystem. 41 */ 42 43 #include <linux/xattr.h> 44 #include <linux/exportfs.h> 45 #include <linux/posix_acl.h> 46 #include <linux/generic_acl.h> 47 #include <linux/mman.h> 48 #include <linux/string.h> 49 #include <linux/slab.h> 50 #include <linux/backing-dev.h> 51 #include <linux/shmem_fs.h> 52 #include <linux/writeback.h> 53 #include <linux/blkdev.h> 54 #include <linux/pagevec.h> 55 #include <linux/percpu_counter.h> 56 #include <linux/falloc.h> 57 #include <linux/splice.h> 58 #include <linux/security.h> 59 #include <linux/swapops.h> 60 #include <linux/mempolicy.h> 61 #include <linux/namei.h> 62 #include <linux/ctype.h> 63 #include <linux/migrate.h> 64 #include <linux/highmem.h> 65 #include <linux/seq_file.h> 66 #include <linux/magic.h> 67 68 #include <asm/uaccess.h> 69 #include <asm/pgtable.h> 70 71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 73 74 /* Pretend that each entry is of this size in directory's i_size */ 75 #define BOGO_DIRENT_SIZE 20 76 77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 78 #define SHORT_SYMLINK_LEN 128 79 80 struct shmem_xattr { 81 struct list_head list; /* anchored by shmem_inode_info->xattr_list */ 82 char *name; /* xattr name */ 83 size_t size; 84 char value[0]; 85 }; 86 87 /* 88 * shmem_fallocate and shmem_writepage communicate via inode->i_private 89 * (with i_mutex making sure that it has only one user at a time): 90 * we would prefer not to enlarge the shmem inode just for that. 91 */ 92 struct shmem_falloc { 93 pgoff_t start; /* start of range currently being fallocated */ 94 pgoff_t next; /* the next page offset to be fallocated */ 95 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 96 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 97 }; 98 99 /* Flag allocation requirements to shmem_getpage */ 100 enum sgp_type { 101 SGP_READ, /* don't exceed i_size, don't allocate page */ 102 SGP_CACHE, /* don't exceed i_size, may allocate page */ 103 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 104 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */ 105 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */ 106 }; 107 108 #ifdef CONFIG_TMPFS 109 static unsigned long shmem_default_max_blocks(void) 110 { 111 return totalram_pages / 2; 112 } 113 114 static unsigned long shmem_default_max_inodes(void) 115 { 116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 117 } 118 #endif 119 120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 121 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 122 struct shmem_inode_info *info, pgoff_t index); 123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 124 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type); 125 126 static inline int shmem_getpage(struct inode *inode, pgoff_t index, 127 struct page **pagep, enum sgp_type sgp, int *fault_type) 128 { 129 return shmem_getpage_gfp(inode, index, pagep, sgp, 130 mapping_gfp_mask(inode->i_mapping), fault_type); 131 } 132 133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 134 { 135 return sb->s_fs_info; 136 } 137 138 /* 139 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 140 * for shared memory and for shared anonymous (/dev/zero) mappings 141 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 142 * consistent with the pre-accounting of private mappings ... 143 */ 144 static inline int shmem_acct_size(unsigned long flags, loff_t size) 145 { 146 return (flags & VM_NORESERVE) ? 147 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 148 } 149 150 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 151 { 152 if (!(flags & VM_NORESERVE)) 153 vm_unacct_memory(VM_ACCT(size)); 154 } 155 156 /* 157 * ... whereas tmpfs objects are accounted incrementally as 158 * pages are allocated, in order to allow huge sparse files. 159 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 160 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 161 */ 162 static inline int shmem_acct_block(unsigned long flags) 163 { 164 return (flags & VM_NORESERVE) ? 165 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0; 166 } 167 168 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 169 { 170 if (flags & VM_NORESERVE) 171 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 172 } 173 174 static const struct super_operations shmem_ops; 175 static const struct address_space_operations shmem_aops; 176 static const struct file_operations shmem_file_operations; 177 static const struct inode_operations shmem_inode_operations; 178 static const struct inode_operations shmem_dir_inode_operations; 179 static const struct inode_operations shmem_special_inode_operations; 180 static const struct vm_operations_struct shmem_vm_ops; 181 182 static struct backing_dev_info shmem_backing_dev_info __read_mostly = { 183 .ra_pages = 0, /* No readahead */ 184 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 185 }; 186 187 static LIST_HEAD(shmem_swaplist); 188 static DEFINE_MUTEX(shmem_swaplist_mutex); 189 190 static int shmem_reserve_inode(struct super_block *sb) 191 { 192 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 193 if (sbinfo->max_inodes) { 194 spin_lock(&sbinfo->stat_lock); 195 if (!sbinfo->free_inodes) { 196 spin_unlock(&sbinfo->stat_lock); 197 return -ENOSPC; 198 } 199 sbinfo->free_inodes--; 200 spin_unlock(&sbinfo->stat_lock); 201 } 202 return 0; 203 } 204 205 static void shmem_free_inode(struct super_block *sb) 206 { 207 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 208 if (sbinfo->max_inodes) { 209 spin_lock(&sbinfo->stat_lock); 210 sbinfo->free_inodes++; 211 spin_unlock(&sbinfo->stat_lock); 212 } 213 } 214 215 /** 216 * shmem_recalc_inode - recalculate the block usage of an inode 217 * @inode: inode to recalc 218 * 219 * We have to calculate the free blocks since the mm can drop 220 * undirtied hole pages behind our back. 221 * 222 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 223 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 224 * 225 * It has to be called with the spinlock held. 226 */ 227 static void shmem_recalc_inode(struct inode *inode) 228 { 229 struct shmem_inode_info *info = SHMEM_I(inode); 230 long freed; 231 232 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 233 if (freed > 0) { 234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 235 if (sbinfo->max_blocks) 236 percpu_counter_add(&sbinfo->used_blocks, -freed); 237 info->alloced -= freed; 238 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 239 shmem_unacct_blocks(info->flags, freed); 240 } 241 } 242 243 /* 244 * Replace item expected in radix tree by a new item, while holding tree lock. 245 */ 246 static int shmem_radix_tree_replace(struct address_space *mapping, 247 pgoff_t index, void *expected, void *replacement) 248 { 249 void **pslot; 250 void *item = NULL; 251 252 VM_BUG_ON(!expected); 253 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 254 if (pslot) 255 item = radix_tree_deref_slot_protected(pslot, 256 &mapping->tree_lock); 257 if (item != expected) 258 return -ENOENT; 259 if (replacement) 260 radix_tree_replace_slot(pslot, replacement); 261 else 262 radix_tree_delete(&mapping->page_tree, index); 263 return 0; 264 } 265 266 /* 267 * Like add_to_page_cache_locked, but error if expected item has gone. 268 */ 269 static int shmem_add_to_page_cache(struct page *page, 270 struct address_space *mapping, 271 pgoff_t index, gfp_t gfp, void *expected) 272 { 273 int error = 0; 274 275 VM_BUG_ON(!PageLocked(page)); 276 VM_BUG_ON(!PageSwapBacked(page)); 277 278 if (!expected) 279 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK); 280 if (!error) { 281 page_cache_get(page); 282 page->mapping = mapping; 283 page->index = index; 284 285 spin_lock_irq(&mapping->tree_lock); 286 if (!expected) 287 error = radix_tree_insert(&mapping->page_tree, 288 index, page); 289 else 290 error = shmem_radix_tree_replace(mapping, index, 291 expected, page); 292 if (!error) { 293 mapping->nrpages++; 294 __inc_zone_page_state(page, NR_FILE_PAGES); 295 __inc_zone_page_state(page, NR_SHMEM); 296 spin_unlock_irq(&mapping->tree_lock); 297 } else { 298 page->mapping = NULL; 299 spin_unlock_irq(&mapping->tree_lock); 300 page_cache_release(page); 301 } 302 if (!expected) 303 radix_tree_preload_end(); 304 } 305 if (error) 306 mem_cgroup_uncharge_cache_page(page); 307 return error; 308 } 309 310 /* 311 * Like delete_from_page_cache, but substitutes swap for page. 312 */ 313 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 314 { 315 struct address_space *mapping = page->mapping; 316 int error; 317 318 spin_lock_irq(&mapping->tree_lock); 319 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 320 page->mapping = NULL; 321 mapping->nrpages--; 322 __dec_zone_page_state(page, NR_FILE_PAGES); 323 __dec_zone_page_state(page, NR_SHMEM); 324 spin_unlock_irq(&mapping->tree_lock); 325 page_cache_release(page); 326 BUG_ON(error); 327 } 328 329 /* 330 * Like find_get_pages, but collecting swap entries as well as pages. 331 */ 332 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping, 333 pgoff_t start, unsigned int nr_pages, 334 struct page **pages, pgoff_t *indices) 335 { 336 unsigned int i; 337 unsigned int ret; 338 unsigned int nr_found; 339 340 rcu_read_lock(); 341 restart: 342 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 343 (void ***)pages, indices, start, nr_pages); 344 ret = 0; 345 for (i = 0; i < nr_found; i++) { 346 struct page *page; 347 repeat: 348 page = radix_tree_deref_slot((void **)pages[i]); 349 if (unlikely(!page)) 350 continue; 351 if (radix_tree_exception(page)) { 352 if (radix_tree_deref_retry(page)) 353 goto restart; 354 /* 355 * Otherwise, we must be storing a swap entry 356 * here as an exceptional entry: so return it 357 * without attempting to raise page count. 358 */ 359 goto export; 360 } 361 if (!page_cache_get_speculative(page)) 362 goto repeat; 363 364 /* Has the page moved? */ 365 if (unlikely(page != *((void **)pages[i]))) { 366 page_cache_release(page); 367 goto repeat; 368 } 369 export: 370 indices[ret] = indices[i]; 371 pages[ret] = page; 372 ret++; 373 } 374 if (unlikely(!ret && nr_found)) 375 goto restart; 376 rcu_read_unlock(); 377 return ret; 378 } 379 380 /* 381 * Remove swap entry from radix tree, free the swap and its page cache. 382 */ 383 static int shmem_free_swap(struct address_space *mapping, 384 pgoff_t index, void *radswap) 385 { 386 int error; 387 388 spin_lock_irq(&mapping->tree_lock); 389 error = shmem_radix_tree_replace(mapping, index, radswap, NULL); 390 spin_unlock_irq(&mapping->tree_lock); 391 if (!error) 392 free_swap_and_cache(radix_to_swp_entry(radswap)); 393 return error; 394 } 395 396 /* 397 * Pagevec may contain swap entries, so shuffle up pages before releasing. 398 */ 399 static void shmem_deswap_pagevec(struct pagevec *pvec) 400 { 401 int i, j; 402 403 for (i = 0, j = 0; i < pagevec_count(pvec); i++) { 404 struct page *page = pvec->pages[i]; 405 if (!radix_tree_exceptional_entry(page)) 406 pvec->pages[j++] = page; 407 } 408 pvec->nr = j; 409 } 410 411 /* 412 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 413 */ 414 void shmem_unlock_mapping(struct address_space *mapping) 415 { 416 struct pagevec pvec; 417 pgoff_t indices[PAGEVEC_SIZE]; 418 pgoff_t index = 0; 419 420 pagevec_init(&pvec, 0); 421 /* 422 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 423 */ 424 while (!mapping_unevictable(mapping)) { 425 /* 426 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 427 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 428 */ 429 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 430 PAGEVEC_SIZE, pvec.pages, indices); 431 if (!pvec.nr) 432 break; 433 index = indices[pvec.nr - 1] + 1; 434 shmem_deswap_pagevec(&pvec); 435 check_move_unevictable_pages(pvec.pages, pvec.nr); 436 pagevec_release(&pvec); 437 cond_resched(); 438 } 439 } 440 441 /* 442 * Remove range of pages and swap entries from radix tree, and free them. 443 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 444 */ 445 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 446 bool unfalloc) 447 { 448 struct address_space *mapping = inode->i_mapping; 449 struct shmem_inode_info *info = SHMEM_I(inode); 450 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 451 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT; 452 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1); 453 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 454 struct pagevec pvec; 455 pgoff_t indices[PAGEVEC_SIZE]; 456 long nr_swaps_freed = 0; 457 pgoff_t index; 458 int i; 459 460 if (lend == -1) 461 end = -1; /* unsigned, so actually very big */ 462 463 pagevec_init(&pvec, 0); 464 index = start; 465 while (index < end) { 466 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 467 min(end - index, (pgoff_t)PAGEVEC_SIZE), 468 pvec.pages, indices); 469 if (!pvec.nr) 470 break; 471 mem_cgroup_uncharge_start(); 472 for (i = 0; i < pagevec_count(&pvec); i++) { 473 struct page *page = pvec.pages[i]; 474 475 index = indices[i]; 476 if (index >= end) 477 break; 478 479 if (radix_tree_exceptional_entry(page)) { 480 if (unfalloc) 481 continue; 482 nr_swaps_freed += !shmem_free_swap(mapping, 483 index, page); 484 continue; 485 } 486 487 if (!trylock_page(page)) 488 continue; 489 if (!unfalloc || !PageUptodate(page)) { 490 if (page->mapping == mapping) { 491 VM_BUG_ON(PageWriteback(page)); 492 truncate_inode_page(mapping, page); 493 } 494 } 495 unlock_page(page); 496 } 497 shmem_deswap_pagevec(&pvec); 498 pagevec_release(&pvec); 499 mem_cgroup_uncharge_end(); 500 cond_resched(); 501 index++; 502 } 503 504 if (partial_start) { 505 struct page *page = NULL; 506 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL); 507 if (page) { 508 unsigned int top = PAGE_CACHE_SIZE; 509 if (start > end) { 510 top = partial_end; 511 partial_end = 0; 512 } 513 zero_user_segment(page, partial_start, top); 514 set_page_dirty(page); 515 unlock_page(page); 516 page_cache_release(page); 517 } 518 } 519 if (partial_end) { 520 struct page *page = NULL; 521 shmem_getpage(inode, end, &page, SGP_READ, NULL); 522 if (page) { 523 zero_user_segment(page, 0, partial_end); 524 set_page_dirty(page); 525 unlock_page(page); 526 page_cache_release(page); 527 } 528 } 529 if (start >= end) 530 return; 531 532 index = start; 533 for ( ; ; ) { 534 cond_resched(); 535 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 536 min(end - index, (pgoff_t)PAGEVEC_SIZE), 537 pvec.pages, indices); 538 if (!pvec.nr) { 539 if (index == start || unfalloc) 540 break; 541 index = start; 542 continue; 543 } 544 if ((index == start || unfalloc) && indices[0] >= end) { 545 shmem_deswap_pagevec(&pvec); 546 pagevec_release(&pvec); 547 break; 548 } 549 mem_cgroup_uncharge_start(); 550 for (i = 0; i < pagevec_count(&pvec); i++) { 551 struct page *page = pvec.pages[i]; 552 553 index = indices[i]; 554 if (index >= end) 555 break; 556 557 if (radix_tree_exceptional_entry(page)) { 558 if (unfalloc) 559 continue; 560 nr_swaps_freed += !shmem_free_swap(mapping, 561 index, page); 562 continue; 563 } 564 565 lock_page(page); 566 if (!unfalloc || !PageUptodate(page)) { 567 if (page->mapping == mapping) { 568 VM_BUG_ON(PageWriteback(page)); 569 truncate_inode_page(mapping, page); 570 } 571 } 572 unlock_page(page); 573 } 574 shmem_deswap_pagevec(&pvec); 575 pagevec_release(&pvec); 576 mem_cgroup_uncharge_end(); 577 index++; 578 } 579 580 spin_lock(&info->lock); 581 info->swapped -= nr_swaps_freed; 582 shmem_recalc_inode(inode); 583 spin_unlock(&info->lock); 584 } 585 586 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 587 { 588 shmem_undo_range(inode, lstart, lend, false); 589 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 590 } 591 EXPORT_SYMBOL_GPL(shmem_truncate_range); 592 593 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 594 { 595 struct inode *inode = dentry->d_inode; 596 int error; 597 598 error = inode_change_ok(inode, attr); 599 if (error) 600 return error; 601 602 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 603 loff_t oldsize = inode->i_size; 604 loff_t newsize = attr->ia_size; 605 606 if (newsize != oldsize) { 607 i_size_write(inode, newsize); 608 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 609 } 610 if (newsize < oldsize) { 611 loff_t holebegin = round_up(newsize, PAGE_SIZE); 612 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 613 shmem_truncate_range(inode, newsize, (loff_t)-1); 614 /* unmap again to remove racily COWed private pages */ 615 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 616 } 617 } 618 619 setattr_copy(inode, attr); 620 #ifdef CONFIG_TMPFS_POSIX_ACL 621 if (attr->ia_valid & ATTR_MODE) 622 error = generic_acl_chmod(inode); 623 #endif 624 return error; 625 } 626 627 static void shmem_evict_inode(struct inode *inode) 628 { 629 struct shmem_inode_info *info = SHMEM_I(inode); 630 struct shmem_xattr *xattr, *nxattr; 631 632 if (inode->i_mapping->a_ops == &shmem_aops) { 633 shmem_unacct_size(info->flags, inode->i_size); 634 inode->i_size = 0; 635 shmem_truncate_range(inode, 0, (loff_t)-1); 636 if (!list_empty(&info->swaplist)) { 637 mutex_lock(&shmem_swaplist_mutex); 638 list_del_init(&info->swaplist); 639 mutex_unlock(&shmem_swaplist_mutex); 640 } 641 } else 642 kfree(info->symlink); 643 644 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) { 645 kfree(xattr->name); 646 kfree(xattr); 647 } 648 BUG_ON(inode->i_blocks); 649 shmem_free_inode(inode->i_sb); 650 clear_inode(inode); 651 } 652 653 /* 654 * If swap found in inode, free it and move page from swapcache to filecache. 655 */ 656 static int shmem_unuse_inode(struct shmem_inode_info *info, 657 swp_entry_t swap, struct page **pagep) 658 { 659 struct address_space *mapping = info->vfs_inode.i_mapping; 660 void *radswap; 661 pgoff_t index; 662 gfp_t gfp; 663 int error = 0; 664 665 radswap = swp_to_radix_entry(swap); 666 index = radix_tree_locate_item(&mapping->page_tree, radswap); 667 if (index == -1) 668 return 0; 669 670 /* 671 * Move _head_ to start search for next from here. 672 * But be careful: shmem_evict_inode checks list_empty without taking 673 * mutex, and there's an instant in list_move_tail when info->swaplist 674 * would appear empty, if it were the only one on shmem_swaplist. 675 */ 676 if (shmem_swaplist.next != &info->swaplist) 677 list_move_tail(&shmem_swaplist, &info->swaplist); 678 679 gfp = mapping_gfp_mask(mapping); 680 if (shmem_should_replace_page(*pagep, gfp)) { 681 mutex_unlock(&shmem_swaplist_mutex); 682 error = shmem_replace_page(pagep, gfp, info, index); 683 mutex_lock(&shmem_swaplist_mutex); 684 /* 685 * We needed to drop mutex to make that restrictive page 686 * allocation; but the inode might already be freed by now, 687 * and we cannot refer to inode or mapping or info to check. 688 * However, we do hold page lock on the PageSwapCache page, 689 * so can check if that still has our reference remaining. 690 */ 691 if (!page_swapcount(*pagep)) 692 error = -ENOENT; 693 } 694 695 /* 696 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 697 * but also to hold up shmem_evict_inode(): so inode cannot be freed 698 * beneath us (pagelock doesn't help until the page is in pagecache). 699 */ 700 if (!error) 701 error = shmem_add_to_page_cache(*pagep, mapping, index, 702 GFP_NOWAIT, radswap); 703 if (error != -ENOMEM) { 704 /* 705 * Truncation and eviction use free_swap_and_cache(), which 706 * only does trylock page: if we raced, best clean up here. 707 */ 708 delete_from_swap_cache(*pagep); 709 set_page_dirty(*pagep); 710 if (!error) { 711 spin_lock(&info->lock); 712 info->swapped--; 713 spin_unlock(&info->lock); 714 swap_free(swap); 715 } 716 error = 1; /* not an error, but entry was found */ 717 } 718 return error; 719 } 720 721 /* 722 * Search through swapped inodes to find and replace swap by page. 723 */ 724 int shmem_unuse(swp_entry_t swap, struct page *page) 725 { 726 struct list_head *this, *next; 727 struct shmem_inode_info *info; 728 int found = 0; 729 int error = 0; 730 731 /* 732 * There's a faint possibility that swap page was replaced before 733 * caller locked it: it will come back later with the right page. 734 */ 735 if (unlikely(!PageSwapCache(page))) 736 goto out; 737 738 /* 739 * Charge page using GFP_KERNEL while we can wait, before taking 740 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 741 * Charged back to the user (not to caller) when swap account is used. 742 */ 743 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL); 744 if (error) 745 goto out; 746 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 747 748 mutex_lock(&shmem_swaplist_mutex); 749 list_for_each_safe(this, next, &shmem_swaplist) { 750 info = list_entry(this, struct shmem_inode_info, swaplist); 751 if (info->swapped) 752 found = shmem_unuse_inode(info, swap, &page); 753 else 754 list_del_init(&info->swaplist); 755 cond_resched(); 756 if (found) 757 break; 758 } 759 mutex_unlock(&shmem_swaplist_mutex); 760 761 if (found < 0) 762 error = found; 763 out: 764 unlock_page(page); 765 page_cache_release(page); 766 return error; 767 } 768 769 /* 770 * Move the page from the page cache to the swap cache. 771 */ 772 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 773 { 774 struct shmem_inode_info *info; 775 struct address_space *mapping; 776 struct inode *inode; 777 swp_entry_t swap; 778 pgoff_t index; 779 780 BUG_ON(!PageLocked(page)); 781 mapping = page->mapping; 782 index = page->index; 783 inode = mapping->host; 784 info = SHMEM_I(inode); 785 if (info->flags & VM_LOCKED) 786 goto redirty; 787 if (!total_swap_pages) 788 goto redirty; 789 790 /* 791 * shmem_backing_dev_info's capabilities prevent regular writeback or 792 * sync from ever calling shmem_writepage; but a stacking filesystem 793 * might use ->writepage of its underlying filesystem, in which case 794 * tmpfs should write out to swap only in response to memory pressure, 795 * and not for the writeback threads or sync. 796 */ 797 if (!wbc->for_reclaim) { 798 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 799 goto redirty; 800 } 801 802 /* 803 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 804 * value into swapfile.c, the only way we can correctly account for a 805 * fallocated page arriving here is now to initialize it and write it. 806 * 807 * That's okay for a page already fallocated earlier, but if we have 808 * not yet completed the fallocation, then (a) we want to keep track 809 * of this page in case we have to undo it, and (b) it may not be a 810 * good idea to continue anyway, once we're pushing into swap. So 811 * reactivate the page, and let shmem_fallocate() quit when too many. 812 */ 813 if (!PageUptodate(page)) { 814 if (inode->i_private) { 815 struct shmem_falloc *shmem_falloc; 816 spin_lock(&inode->i_lock); 817 shmem_falloc = inode->i_private; 818 if (shmem_falloc && 819 index >= shmem_falloc->start && 820 index < shmem_falloc->next) 821 shmem_falloc->nr_unswapped++; 822 else 823 shmem_falloc = NULL; 824 spin_unlock(&inode->i_lock); 825 if (shmem_falloc) 826 goto redirty; 827 } 828 clear_highpage(page); 829 flush_dcache_page(page); 830 SetPageUptodate(page); 831 } 832 833 swap = get_swap_page(); 834 if (!swap.val) 835 goto redirty; 836 837 /* 838 * Add inode to shmem_unuse()'s list of swapped-out inodes, 839 * if it's not already there. Do it now before the page is 840 * moved to swap cache, when its pagelock no longer protects 841 * the inode from eviction. But don't unlock the mutex until 842 * we've incremented swapped, because shmem_unuse_inode() will 843 * prune a !swapped inode from the swaplist under this mutex. 844 */ 845 mutex_lock(&shmem_swaplist_mutex); 846 if (list_empty(&info->swaplist)) 847 list_add_tail(&info->swaplist, &shmem_swaplist); 848 849 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 850 swap_shmem_alloc(swap); 851 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 852 853 spin_lock(&info->lock); 854 info->swapped++; 855 shmem_recalc_inode(inode); 856 spin_unlock(&info->lock); 857 858 mutex_unlock(&shmem_swaplist_mutex); 859 BUG_ON(page_mapped(page)); 860 swap_writepage(page, wbc); 861 return 0; 862 } 863 864 mutex_unlock(&shmem_swaplist_mutex); 865 swapcache_free(swap, NULL); 866 redirty: 867 set_page_dirty(page); 868 if (wbc->for_reclaim) 869 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 870 unlock_page(page); 871 return 0; 872 } 873 874 #ifdef CONFIG_NUMA 875 #ifdef CONFIG_TMPFS 876 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 877 { 878 char buffer[64]; 879 880 if (!mpol || mpol->mode == MPOL_DEFAULT) 881 return; /* show nothing */ 882 883 mpol_to_str(buffer, sizeof(buffer), mpol, 1); 884 885 seq_printf(seq, ",mpol=%s", buffer); 886 } 887 888 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 889 { 890 struct mempolicy *mpol = NULL; 891 if (sbinfo->mpol) { 892 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 893 mpol = sbinfo->mpol; 894 mpol_get(mpol); 895 spin_unlock(&sbinfo->stat_lock); 896 } 897 return mpol; 898 } 899 #endif /* CONFIG_TMPFS */ 900 901 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 902 struct shmem_inode_info *info, pgoff_t index) 903 { 904 struct mempolicy mpol, *spol; 905 struct vm_area_struct pvma; 906 907 spol = mpol_cond_copy(&mpol, 908 mpol_shared_policy_lookup(&info->policy, index)); 909 910 /* Create a pseudo vma that just contains the policy */ 911 pvma.vm_start = 0; 912 pvma.vm_pgoff = index; 913 pvma.vm_ops = NULL; 914 pvma.vm_policy = spol; 915 return swapin_readahead(swap, gfp, &pvma, 0); 916 } 917 918 static struct page *shmem_alloc_page(gfp_t gfp, 919 struct shmem_inode_info *info, pgoff_t index) 920 { 921 struct vm_area_struct pvma; 922 923 /* Create a pseudo vma that just contains the policy */ 924 pvma.vm_start = 0; 925 pvma.vm_pgoff = index; 926 pvma.vm_ops = NULL; 927 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 928 929 /* 930 * alloc_page_vma() will drop the shared policy reference 931 */ 932 return alloc_page_vma(gfp, &pvma, 0); 933 } 934 #else /* !CONFIG_NUMA */ 935 #ifdef CONFIG_TMPFS 936 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 937 { 938 } 939 #endif /* CONFIG_TMPFS */ 940 941 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 942 struct shmem_inode_info *info, pgoff_t index) 943 { 944 return swapin_readahead(swap, gfp, NULL, 0); 945 } 946 947 static inline struct page *shmem_alloc_page(gfp_t gfp, 948 struct shmem_inode_info *info, pgoff_t index) 949 { 950 return alloc_page(gfp); 951 } 952 #endif /* CONFIG_NUMA */ 953 954 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 955 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 956 { 957 return NULL; 958 } 959 #endif 960 961 /* 962 * When a page is moved from swapcache to shmem filecache (either by the 963 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 964 * shmem_unuse_inode()), it may have been read in earlier from swap, in 965 * ignorance of the mapping it belongs to. If that mapping has special 966 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 967 * we may need to copy to a suitable page before moving to filecache. 968 * 969 * In a future release, this may well be extended to respect cpuset and 970 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 971 * but for now it is a simple matter of zone. 972 */ 973 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 974 { 975 return page_zonenum(page) > gfp_zone(gfp); 976 } 977 978 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 979 struct shmem_inode_info *info, pgoff_t index) 980 { 981 struct page *oldpage, *newpage; 982 struct address_space *swap_mapping; 983 pgoff_t swap_index; 984 int error; 985 986 oldpage = *pagep; 987 swap_index = page_private(oldpage); 988 swap_mapping = page_mapping(oldpage); 989 990 /* 991 * We have arrived here because our zones are constrained, so don't 992 * limit chance of success by further cpuset and node constraints. 993 */ 994 gfp &= ~GFP_CONSTRAINT_MASK; 995 newpage = shmem_alloc_page(gfp, info, index); 996 if (!newpage) 997 return -ENOMEM; 998 VM_BUG_ON(shmem_should_replace_page(newpage, gfp)); 999 1000 *pagep = newpage; 1001 page_cache_get(newpage); 1002 copy_highpage(newpage, oldpage); 1003 1004 VM_BUG_ON(!PageLocked(oldpage)); 1005 __set_page_locked(newpage); 1006 VM_BUG_ON(!PageUptodate(oldpage)); 1007 SetPageUptodate(newpage); 1008 VM_BUG_ON(!PageSwapBacked(oldpage)); 1009 SetPageSwapBacked(newpage); 1010 VM_BUG_ON(!swap_index); 1011 set_page_private(newpage, swap_index); 1012 VM_BUG_ON(!PageSwapCache(oldpage)); 1013 SetPageSwapCache(newpage); 1014 1015 /* 1016 * Our caller will very soon move newpage out of swapcache, but it's 1017 * a nice clean interface for us to replace oldpage by newpage there. 1018 */ 1019 spin_lock_irq(&swap_mapping->tree_lock); 1020 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1021 newpage); 1022 __inc_zone_page_state(newpage, NR_FILE_PAGES); 1023 __dec_zone_page_state(oldpage, NR_FILE_PAGES); 1024 spin_unlock_irq(&swap_mapping->tree_lock); 1025 BUG_ON(error); 1026 1027 mem_cgroup_replace_page_cache(oldpage, newpage); 1028 lru_cache_add_anon(newpage); 1029 1030 ClearPageSwapCache(oldpage); 1031 set_page_private(oldpage, 0); 1032 1033 unlock_page(oldpage); 1034 page_cache_release(oldpage); 1035 page_cache_release(oldpage); 1036 return 0; 1037 } 1038 1039 /* 1040 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1041 * 1042 * If we allocate a new one we do not mark it dirty. That's up to the 1043 * vm. If we swap it in we mark it dirty since we also free the swap 1044 * entry since a page cannot live in both the swap and page cache 1045 */ 1046 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1047 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type) 1048 { 1049 struct address_space *mapping = inode->i_mapping; 1050 struct shmem_inode_info *info; 1051 struct shmem_sb_info *sbinfo; 1052 struct page *page; 1053 swp_entry_t swap; 1054 int error; 1055 int once = 0; 1056 int alloced = 0; 1057 1058 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT)) 1059 return -EFBIG; 1060 repeat: 1061 swap.val = 0; 1062 page = find_lock_page(mapping, index); 1063 if (radix_tree_exceptional_entry(page)) { 1064 swap = radix_to_swp_entry(page); 1065 page = NULL; 1066 } 1067 1068 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1069 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1070 error = -EINVAL; 1071 goto failed; 1072 } 1073 1074 /* fallocated page? */ 1075 if (page && !PageUptodate(page)) { 1076 if (sgp != SGP_READ) 1077 goto clear; 1078 unlock_page(page); 1079 page_cache_release(page); 1080 page = NULL; 1081 } 1082 if (page || (sgp == SGP_READ && !swap.val)) { 1083 *pagep = page; 1084 return 0; 1085 } 1086 1087 /* 1088 * Fast cache lookup did not find it: 1089 * bring it back from swap or allocate. 1090 */ 1091 info = SHMEM_I(inode); 1092 sbinfo = SHMEM_SB(inode->i_sb); 1093 1094 if (swap.val) { 1095 /* Look it up and read it in.. */ 1096 page = lookup_swap_cache(swap); 1097 if (!page) { 1098 /* here we actually do the io */ 1099 if (fault_type) 1100 *fault_type |= VM_FAULT_MAJOR; 1101 page = shmem_swapin(swap, gfp, info, index); 1102 if (!page) { 1103 error = -ENOMEM; 1104 goto failed; 1105 } 1106 } 1107 1108 /* We have to do this with page locked to prevent races */ 1109 lock_page(page); 1110 if (!PageSwapCache(page) || page->mapping) { 1111 error = -EEXIST; /* try again */ 1112 goto failed; 1113 } 1114 if (!PageUptodate(page)) { 1115 error = -EIO; 1116 goto failed; 1117 } 1118 wait_on_page_writeback(page); 1119 1120 if (shmem_should_replace_page(page, gfp)) { 1121 error = shmem_replace_page(&page, gfp, info, index); 1122 if (error) 1123 goto failed; 1124 } 1125 1126 error = mem_cgroup_cache_charge(page, current->mm, 1127 gfp & GFP_RECLAIM_MASK); 1128 if (!error) 1129 error = shmem_add_to_page_cache(page, mapping, index, 1130 gfp, swp_to_radix_entry(swap)); 1131 if (error) 1132 goto failed; 1133 1134 spin_lock(&info->lock); 1135 info->swapped--; 1136 shmem_recalc_inode(inode); 1137 spin_unlock(&info->lock); 1138 1139 delete_from_swap_cache(page); 1140 set_page_dirty(page); 1141 swap_free(swap); 1142 1143 } else { 1144 if (shmem_acct_block(info->flags)) { 1145 error = -ENOSPC; 1146 goto failed; 1147 } 1148 if (sbinfo->max_blocks) { 1149 if (percpu_counter_compare(&sbinfo->used_blocks, 1150 sbinfo->max_blocks) >= 0) { 1151 error = -ENOSPC; 1152 goto unacct; 1153 } 1154 percpu_counter_inc(&sbinfo->used_blocks); 1155 } 1156 1157 page = shmem_alloc_page(gfp, info, index); 1158 if (!page) { 1159 error = -ENOMEM; 1160 goto decused; 1161 } 1162 1163 SetPageSwapBacked(page); 1164 __set_page_locked(page); 1165 error = mem_cgroup_cache_charge(page, current->mm, 1166 gfp & GFP_RECLAIM_MASK); 1167 if (!error) 1168 error = shmem_add_to_page_cache(page, mapping, index, 1169 gfp, NULL); 1170 if (error) 1171 goto decused; 1172 lru_cache_add_anon(page); 1173 1174 spin_lock(&info->lock); 1175 info->alloced++; 1176 inode->i_blocks += BLOCKS_PER_PAGE; 1177 shmem_recalc_inode(inode); 1178 spin_unlock(&info->lock); 1179 alloced = true; 1180 1181 /* 1182 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1183 */ 1184 if (sgp == SGP_FALLOC) 1185 sgp = SGP_WRITE; 1186 clear: 1187 /* 1188 * Let SGP_WRITE caller clear ends if write does not fill page; 1189 * but SGP_FALLOC on a page fallocated earlier must initialize 1190 * it now, lest undo on failure cancel our earlier guarantee. 1191 */ 1192 if (sgp != SGP_WRITE) { 1193 clear_highpage(page); 1194 flush_dcache_page(page); 1195 SetPageUptodate(page); 1196 } 1197 if (sgp == SGP_DIRTY) 1198 set_page_dirty(page); 1199 } 1200 1201 /* Perhaps the file has been truncated since we checked */ 1202 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1203 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1204 error = -EINVAL; 1205 if (alloced) 1206 goto trunc; 1207 else 1208 goto failed; 1209 } 1210 *pagep = page; 1211 return 0; 1212 1213 /* 1214 * Error recovery. 1215 */ 1216 trunc: 1217 info = SHMEM_I(inode); 1218 ClearPageDirty(page); 1219 delete_from_page_cache(page); 1220 spin_lock(&info->lock); 1221 info->alloced--; 1222 inode->i_blocks -= BLOCKS_PER_PAGE; 1223 spin_unlock(&info->lock); 1224 decused: 1225 sbinfo = SHMEM_SB(inode->i_sb); 1226 if (sbinfo->max_blocks) 1227 percpu_counter_add(&sbinfo->used_blocks, -1); 1228 unacct: 1229 shmem_unacct_blocks(info->flags, 1); 1230 failed: 1231 if (swap.val && error != -EINVAL) { 1232 struct page *test = find_get_page(mapping, index); 1233 if (test && !radix_tree_exceptional_entry(test)) 1234 page_cache_release(test); 1235 /* Have another try if the entry has changed */ 1236 if (test != swp_to_radix_entry(swap)) 1237 error = -EEXIST; 1238 } 1239 if (page) { 1240 unlock_page(page); 1241 page_cache_release(page); 1242 } 1243 if (error == -ENOSPC && !once++) { 1244 info = SHMEM_I(inode); 1245 spin_lock(&info->lock); 1246 shmem_recalc_inode(inode); 1247 spin_unlock(&info->lock); 1248 goto repeat; 1249 } 1250 if (error == -EEXIST) 1251 goto repeat; 1252 return error; 1253 } 1254 1255 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1256 { 1257 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1258 int error; 1259 int ret = VM_FAULT_LOCKED; 1260 1261 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1262 if (error) 1263 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1264 1265 if (ret & VM_FAULT_MAJOR) { 1266 count_vm_event(PGMAJFAULT); 1267 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1268 } 1269 return ret; 1270 } 1271 1272 #ifdef CONFIG_NUMA 1273 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 1274 { 1275 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1276 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 1277 } 1278 1279 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1280 unsigned long addr) 1281 { 1282 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1283 pgoff_t index; 1284 1285 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1286 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 1287 } 1288 #endif 1289 1290 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1291 { 1292 struct inode *inode = file->f_path.dentry->d_inode; 1293 struct shmem_inode_info *info = SHMEM_I(inode); 1294 int retval = -ENOMEM; 1295 1296 spin_lock(&info->lock); 1297 if (lock && !(info->flags & VM_LOCKED)) { 1298 if (!user_shm_lock(inode->i_size, user)) 1299 goto out_nomem; 1300 info->flags |= VM_LOCKED; 1301 mapping_set_unevictable(file->f_mapping); 1302 } 1303 if (!lock && (info->flags & VM_LOCKED) && user) { 1304 user_shm_unlock(inode->i_size, user); 1305 info->flags &= ~VM_LOCKED; 1306 mapping_clear_unevictable(file->f_mapping); 1307 } 1308 retval = 0; 1309 1310 out_nomem: 1311 spin_unlock(&info->lock); 1312 return retval; 1313 } 1314 1315 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1316 { 1317 file_accessed(file); 1318 vma->vm_ops = &shmem_vm_ops; 1319 vma->vm_flags |= VM_CAN_NONLINEAR; 1320 return 0; 1321 } 1322 1323 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 1324 umode_t mode, dev_t dev, unsigned long flags) 1325 { 1326 struct inode *inode; 1327 struct shmem_inode_info *info; 1328 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1329 1330 if (shmem_reserve_inode(sb)) 1331 return NULL; 1332 1333 inode = new_inode(sb); 1334 if (inode) { 1335 inode->i_ino = get_next_ino(); 1336 inode_init_owner(inode, dir, mode); 1337 inode->i_blocks = 0; 1338 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; 1339 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1340 inode->i_generation = get_seconds(); 1341 info = SHMEM_I(inode); 1342 memset(info, 0, (char *)inode - (char *)info); 1343 spin_lock_init(&info->lock); 1344 info->flags = flags & VM_NORESERVE; 1345 INIT_LIST_HEAD(&info->swaplist); 1346 INIT_LIST_HEAD(&info->xattr_list); 1347 cache_no_acl(inode); 1348 1349 switch (mode & S_IFMT) { 1350 default: 1351 inode->i_op = &shmem_special_inode_operations; 1352 init_special_inode(inode, mode, dev); 1353 break; 1354 case S_IFREG: 1355 inode->i_mapping->a_ops = &shmem_aops; 1356 inode->i_op = &shmem_inode_operations; 1357 inode->i_fop = &shmem_file_operations; 1358 mpol_shared_policy_init(&info->policy, 1359 shmem_get_sbmpol(sbinfo)); 1360 break; 1361 case S_IFDIR: 1362 inc_nlink(inode); 1363 /* Some things misbehave if size == 0 on a directory */ 1364 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1365 inode->i_op = &shmem_dir_inode_operations; 1366 inode->i_fop = &simple_dir_operations; 1367 break; 1368 case S_IFLNK: 1369 /* 1370 * Must not load anything in the rbtree, 1371 * mpol_free_shared_policy will not be called. 1372 */ 1373 mpol_shared_policy_init(&info->policy, NULL); 1374 break; 1375 } 1376 } else 1377 shmem_free_inode(sb); 1378 return inode; 1379 } 1380 1381 #ifdef CONFIG_TMPFS 1382 static const struct inode_operations shmem_symlink_inode_operations; 1383 static const struct inode_operations shmem_short_symlink_operations; 1384 1385 #ifdef CONFIG_TMPFS_XATTR 1386 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 1387 #else 1388 #define shmem_initxattrs NULL 1389 #endif 1390 1391 static int 1392 shmem_write_begin(struct file *file, struct address_space *mapping, 1393 loff_t pos, unsigned len, unsigned flags, 1394 struct page **pagep, void **fsdata) 1395 { 1396 struct inode *inode = mapping->host; 1397 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1398 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1399 } 1400 1401 static int 1402 shmem_write_end(struct file *file, struct address_space *mapping, 1403 loff_t pos, unsigned len, unsigned copied, 1404 struct page *page, void *fsdata) 1405 { 1406 struct inode *inode = mapping->host; 1407 1408 if (pos + copied > inode->i_size) 1409 i_size_write(inode, pos + copied); 1410 1411 if (!PageUptodate(page)) { 1412 if (copied < PAGE_CACHE_SIZE) { 1413 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1414 zero_user_segments(page, 0, from, 1415 from + copied, PAGE_CACHE_SIZE); 1416 } 1417 SetPageUptodate(page); 1418 } 1419 set_page_dirty(page); 1420 unlock_page(page); 1421 page_cache_release(page); 1422 1423 return copied; 1424 } 1425 1426 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor) 1427 { 1428 struct inode *inode = filp->f_path.dentry->d_inode; 1429 struct address_space *mapping = inode->i_mapping; 1430 pgoff_t index; 1431 unsigned long offset; 1432 enum sgp_type sgp = SGP_READ; 1433 1434 /* 1435 * Might this read be for a stacking filesystem? Then when reading 1436 * holes of a sparse file, we actually need to allocate those pages, 1437 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1438 */ 1439 if (segment_eq(get_fs(), KERNEL_DS)) 1440 sgp = SGP_DIRTY; 1441 1442 index = *ppos >> PAGE_CACHE_SHIFT; 1443 offset = *ppos & ~PAGE_CACHE_MASK; 1444 1445 for (;;) { 1446 struct page *page = NULL; 1447 pgoff_t end_index; 1448 unsigned long nr, ret; 1449 loff_t i_size = i_size_read(inode); 1450 1451 end_index = i_size >> PAGE_CACHE_SHIFT; 1452 if (index > end_index) 1453 break; 1454 if (index == end_index) { 1455 nr = i_size & ~PAGE_CACHE_MASK; 1456 if (nr <= offset) 1457 break; 1458 } 1459 1460 desc->error = shmem_getpage(inode, index, &page, sgp, NULL); 1461 if (desc->error) { 1462 if (desc->error == -EINVAL) 1463 desc->error = 0; 1464 break; 1465 } 1466 if (page) 1467 unlock_page(page); 1468 1469 /* 1470 * We must evaluate after, since reads (unlike writes) 1471 * are called without i_mutex protection against truncate 1472 */ 1473 nr = PAGE_CACHE_SIZE; 1474 i_size = i_size_read(inode); 1475 end_index = i_size >> PAGE_CACHE_SHIFT; 1476 if (index == end_index) { 1477 nr = i_size & ~PAGE_CACHE_MASK; 1478 if (nr <= offset) { 1479 if (page) 1480 page_cache_release(page); 1481 break; 1482 } 1483 } 1484 nr -= offset; 1485 1486 if (page) { 1487 /* 1488 * If users can be writing to this page using arbitrary 1489 * virtual addresses, take care about potential aliasing 1490 * before reading the page on the kernel side. 1491 */ 1492 if (mapping_writably_mapped(mapping)) 1493 flush_dcache_page(page); 1494 /* 1495 * Mark the page accessed if we read the beginning. 1496 */ 1497 if (!offset) 1498 mark_page_accessed(page); 1499 } else { 1500 page = ZERO_PAGE(0); 1501 page_cache_get(page); 1502 } 1503 1504 /* 1505 * Ok, we have the page, and it's up-to-date, so 1506 * now we can copy it to user space... 1507 * 1508 * The actor routine returns how many bytes were actually used.. 1509 * NOTE! This may not be the same as how much of a user buffer 1510 * we filled up (we may be padding etc), so we can only update 1511 * "pos" here (the actor routine has to update the user buffer 1512 * pointers and the remaining count). 1513 */ 1514 ret = actor(desc, page, offset, nr); 1515 offset += ret; 1516 index += offset >> PAGE_CACHE_SHIFT; 1517 offset &= ~PAGE_CACHE_MASK; 1518 1519 page_cache_release(page); 1520 if (ret != nr || !desc->count) 1521 break; 1522 1523 cond_resched(); 1524 } 1525 1526 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1527 file_accessed(filp); 1528 } 1529 1530 static ssize_t shmem_file_aio_read(struct kiocb *iocb, 1531 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 1532 { 1533 struct file *filp = iocb->ki_filp; 1534 ssize_t retval; 1535 unsigned long seg; 1536 size_t count; 1537 loff_t *ppos = &iocb->ki_pos; 1538 1539 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1540 if (retval) 1541 return retval; 1542 1543 for (seg = 0; seg < nr_segs; seg++) { 1544 read_descriptor_t desc; 1545 1546 desc.written = 0; 1547 desc.arg.buf = iov[seg].iov_base; 1548 desc.count = iov[seg].iov_len; 1549 if (desc.count == 0) 1550 continue; 1551 desc.error = 0; 1552 do_shmem_file_read(filp, ppos, &desc, file_read_actor); 1553 retval += desc.written; 1554 if (desc.error) { 1555 retval = retval ?: desc.error; 1556 break; 1557 } 1558 if (desc.count > 0) 1559 break; 1560 } 1561 return retval; 1562 } 1563 1564 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 1565 struct pipe_inode_info *pipe, size_t len, 1566 unsigned int flags) 1567 { 1568 struct address_space *mapping = in->f_mapping; 1569 struct inode *inode = mapping->host; 1570 unsigned int loff, nr_pages, req_pages; 1571 struct page *pages[PIPE_DEF_BUFFERS]; 1572 struct partial_page partial[PIPE_DEF_BUFFERS]; 1573 struct page *page; 1574 pgoff_t index, end_index; 1575 loff_t isize, left; 1576 int error, page_nr; 1577 struct splice_pipe_desc spd = { 1578 .pages = pages, 1579 .partial = partial, 1580 .flags = flags, 1581 .ops = &page_cache_pipe_buf_ops, 1582 .spd_release = spd_release_page, 1583 }; 1584 1585 isize = i_size_read(inode); 1586 if (unlikely(*ppos >= isize)) 1587 return 0; 1588 1589 left = isize - *ppos; 1590 if (unlikely(left < len)) 1591 len = left; 1592 1593 if (splice_grow_spd(pipe, &spd)) 1594 return -ENOMEM; 1595 1596 index = *ppos >> PAGE_CACHE_SHIFT; 1597 loff = *ppos & ~PAGE_CACHE_MASK; 1598 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1599 nr_pages = min(req_pages, pipe->buffers); 1600 1601 spd.nr_pages = find_get_pages_contig(mapping, index, 1602 nr_pages, spd.pages); 1603 index += spd.nr_pages; 1604 error = 0; 1605 1606 while (spd.nr_pages < nr_pages) { 1607 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL); 1608 if (error) 1609 break; 1610 unlock_page(page); 1611 spd.pages[spd.nr_pages++] = page; 1612 index++; 1613 } 1614 1615 index = *ppos >> PAGE_CACHE_SHIFT; 1616 nr_pages = spd.nr_pages; 1617 spd.nr_pages = 0; 1618 1619 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 1620 unsigned int this_len; 1621 1622 if (!len) 1623 break; 1624 1625 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 1626 page = spd.pages[page_nr]; 1627 1628 if (!PageUptodate(page) || page->mapping != mapping) { 1629 error = shmem_getpage(inode, index, &page, 1630 SGP_CACHE, NULL); 1631 if (error) 1632 break; 1633 unlock_page(page); 1634 page_cache_release(spd.pages[page_nr]); 1635 spd.pages[page_nr] = page; 1636 } 1637 1638 isize = i_size_read(inode); 1639 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1640 if (unlikely(!isize || index > end_index)) 1641 break; 1642 1643 if (end_index == index) { 1644 unsigned int plen; 1645 1646 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1647 if (plen <= loff) 1648 break; 1649 1650 this_len = min(this_len, plen - loff); 1651 len = this_len; 1652 } 1653 1654 spd.partial[page_nr].offset = loff; 1655 spd.partial[page_nr].len = this_len; 1656 len -= this_len; 1657 loff = 0; 1658 spd.nr_pages++; 1659 index++; 1660 } 1661 1662 while (page_nr < nr_pages) 1663 page_cache_release(spd.pages[page_nr++]); 1664 1665 if (spd.nr_pages) 1666 error = splice_to_pipe(pipe, &spd); 1667 1668 splice_shrink_spd(pipe, &spd); 1669 1670 if (error > 0) { 1671 *ppos += error; 1672 file_accessed(in); 1673 } 1674 return error; 1675 } 1676 1677 /* 1678 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 1679 */ 1680 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 1681 pgoff_t index, pgoff_t end, int origin) 1682 { 1683 struct page *page; 1684 struct pagevec pvec; 1685 pgoff_t indices[PAGEVEC_SIZE]; 1686 bool done = false; 1687 int i; 1688 1689 pagevec_init(&pvec, 0); 1690 pvec.nr = 1; /* start small: we may be there already */ 1691 while (!done) { 1692 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 1693 pvec.nr, pvec.pages, indices); 1694 if (!pvec.nr) { 1695 if (origin == SEEK_DATA) 1696 index = end; 1697 break; 1698 } 1699 for (i = 0; i < pvec.nr; i++, index++) { 1700 if (index < indices[i]) { 1701 if (origin == SEEK_HOLE) { 1702 done = true; 1703 break; 1704 } 1705 index = indices[i]; 1706 } 1707 page = pvec.pages[i]; 1708 if (page && !radix_tree_exceptional_entry(page)) { 1709 if (!PageUptodate(page)) 1710 page = NULL; 1711 } 1712 if (index >= end || 1713 (page && origin == SEEK_DATA) || 1714 (!page && origin == SEEK_HOLE)) { 1715 done = true; 1716 break; 1717 } 1718 } 1719 shmem_deswap_pagevec(&pvec); 1720 pagevec_release(&pvec); 1721 pvec.nr = PAGEVEC_SIZE; 1722 cond_resched(); 1723 } 1724 return index; 1725 } 1726 1727 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int origin) 1728 { 1729 struct address_space *mapping; 1730 struct inode *inode; 1731 pgoff_t start, end; 1732 loff_t new_offset; 1733 1734 if (origin != SEEK_DATA && origin != SEEK_HOLE) 1735 return generic_file_llseek_size(file, offset, origin, 1736 MAX_LFS_FILESIZE); 1737 mapping = file->f_mapping; 1738 inode = mapping->host; 1739 mutex_lock(&inode->i_mutex); 1740 /* We're holding i_mutex so we can access i_size directly */ 1741 1742 if (offset < 0) 1743 offset = -EINVAL; 1744 else if (offset >= inode->i_size) 1745 offset = -ENXIO; 1746 else { 1747 start = offset >> PAGE_CACHE_SHIFT; 1748 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1749 new_offset = shmem_seek_hole_data(mapping, start, end, origin); 1750 new_offset <<= PAGE_CACHE_SHIFT; 1751 if (new_offset > offset) { 1752 if (new_offset < inode->i_size) 1753 offset = new_offset; 1754 else if (origin == SEEK_DATA) 1755 offset = -ENXIO; 1756 else 1757 offset = inode->i_size; 1758 } 1759 } 1760 1761 if (offset >= 0 && offset != file->f_pos) { 1762 file->f_pos = offset; 1763 file->f_version = 0; 1764 } 1765 mutex_unlock(&inode->i_mutex); 1766 return offset; 1767 } 1768 1769 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 1770 loff_t len) 1771 { 1772 struct inode *inode = file->f_path.dentry->d_inode; 1773 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1774 struct shmem_falloc shmem_falloc; 1775 pgoff_t start, index, end; 1776 int error; 1777 1778 mutex_lock(&inode->i_mutex); 1779 1780 if (mode & FALLOC_FL_PUNCH_HOLE) { 1781 struct address_space *mapping = file->f_mapping; 1782 loff_t unmap_start = round_up(offset, PAGE_SIZE); 1783 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 1784 1785 if ((u64)unmap_end > (u64)unmap_start) 1786 unmap_mapping_range(mapping, unmap_start, 1787 1 + unmap_end - unmap_start, 0); 1788 shmem_truncate_range(inode, offset, offset + len - 1); 1789 /* No need to unmap again: hole-punching leaves COWed pages */ 1790 error = 0; 1791 goto out; 1792 } 1793 1794 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 1795 error = inode_newsize_ok(inode, offset + len); 1796 if (error) 1797 goto out; 1798 1799 start = offset >> PAGE_CACHE_SHIFT; 1800 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1801 /* Try to avoid a swapstorm if len is impossible to satisfy */ 1802 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 1803 error = -ENOSPC; 1804 goto out; 1805 } 1806 1807 shmem_falloc.start = start; 1808 shmem_falloc.next = start; 1809 shmem_falloc.nr_falloced = 0; 1810 shmem_falloc.nr_unswapped = 0; 1811 spin_lock(&inode->i_lock); 1812 inode->i_private = &shmem_falloc; 1813 spin_unlock(&inode->i_lock); 1814 1815 for (index = start; index < end; index++) { 1816 struct page *page; 1817 1818 /* 1819 * Good, the fallocate(2) manpage permits EINTR: we may have 1820 * been interrupted because we are using up too much memory. 1821 */ 1822 if (signal_pending(current)) 1823 error = -EINTR; 1824 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 1825 error = -ENOMEM; 1826 else 1827 error = shmem_getpage(inode, index, &page, SGP_FALLOC, 1828 NULL); 1829 if (error) { 1830 /* Remove the !PageUptodate pages we added */ 1831 shmem_undo_range(inode, 1832 (loff_t)start << PAGE_CACHE_SHIFT, 1833 (loff_t)index << PAGE_CACHE_SHIFT, true); 1834 goto undone; 1835 } 1836 1837 /* 1838 * Inform shmem_writepage() how far we have reached. 1839 * No need for lock or barrier: we have the page lock. 1840 */ 1841 shmem_falloc.next++; 1842 if (!PageUptodate(page)) 1843 shmem_falloc.nr_falloced++; 1844 1845 /* 1846 * If !PageUptodate, leave it that way so that freeable pages 1847 * can be recognized if we need to rollback on error later. 1848 * But set_page_dirty so that memory pressure will swap rather 1849 * than free the pages we are allocating (and SGP_CACHE pages 1850 * might still be clean: we now need to mark those dirty too). 1851 */ 1852 set_page_dirty(page); 1853 unlock_page(page); 1854 page_cache_release(page); 1855 cond_resched(); 1856 } 1857 1858 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 1859 i_size_write(inode, offset + len); 1860 inode->i_ctime = CURRENT_TIME; 1861 undone: 1862 spin_lock(&inode->i_lock); 1863 inode->i_private = NULL; 1864 spin_unlock(&inode->i_lock); 1865 out: 1866 mutex_unlock(&inode->i_mutex); 1867 return error; 1868 } 1869 1870 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 1871 { 1872 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 1873 1874 buf->f_type = TMPFS_MAGIC; 1875 buf->f_bsize = PAGE_CACHE_SIZE; 1876 buf->f_namelen = NAME_MAX; 1877 if (sbinfo->max_blocks) { 1878 buf->f_blocks = sbinfo->max_blocks; 1879 buf->f_bavail = 1880 buf->f_bfree = sbinfo->max_blocks - 1881 percpu_counter_sum(&sbinfo->used_blocks); 1882 } 1883 if (sbinfo->max_inodes) { 1884 buf->f_files = sbinfo->max_inodes; 1885 buf->f_ffree = sbinfo->free_inodes; 1886 } 1887 /* else leave those fields 0 like simple_statfs */ 1888 return 0; 1889 } 1890 1891 /* 1892 * File creation. Allocate an inode, and we're done.. 1893 */ 1894 static int 1895 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1896 { 1897 struct inode *inode; 1898 int error = -ENOSPC; 1899 1900 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 1901 if (inode) { 1902 error = security_inode_init_security(inode, dir, 1903 &dentry->d_name, 1904 shmem_initxattrs, NULL); 1905 if (error) { 1906 if (error != -EOPNOTSUPP) { 1907 iput(inode); 1908 return error; 1909 } 1910 } 1911 #ifdef CONFIG_TMPFS_POSIX_ACL 1912 error = generic_acl_init(inode, dir); 1913 if (error) { 1914 iput(inode); 1915 return error; 1916 } 1917 #else 1918 error = 0; 1919 #endif 1920 dir->i_size += BOGO_DIRENT_SIZE; 1921 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1922 d_instantiate(dentry, inode); 1923 dget(dentry); /* Extra count - pin the dentry in core */ 1924 } 1925 return error; 1926 } 1927 1928 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1929 { 1930 int error; 1931 1932 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 1933 return error; 1934 inc_nlink(dir); 1935 return 0; 1936 } 1937 1938 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 1939 struct nameidata *nd) 1940 { 1941 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 1942 } 1943 1944 /* 1945 * Link a file.. 1946 */ 1947 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1948 { 1949 struct inode *inode = old_dentry->d_inode; 1950 int ret; 1951 1952 /* 1953 * No ordinary (disk based) filesystem counts links as inodes; 1954 * but each new link needs a new dentry, pinning lowmem, and 1955 * tmpfs dentries cannot be pruned until they are unlinked. 1956 */ 1957 ret = shmem_reserve_inode(inode->i_sb); 1958 if (ret) 1959 goto out; 1960 1961 dir->i_size += BOGO_DIRENT_SIZE; 1962 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1963 inc_nlink(inode); 1964 ihold(inode); /* New dentry reference */ 1965 dget(dentry); /* Extra pinning count for the created dentry */ 1966 d_instantiate(dentry, inode); 1967 out: 1968 return ret; 1969 } 1970 1971 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 1972 { 1973 struct inode *inode = dentry->d_inode; 1974 1975 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 1976 shmem_free_inode(inode->i_sb); 1977 1978 dir->i_size -= BOGO_DIRENT_SIZE; 1979 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1980 drop_nlink(inode); 1981 dput(dentry); /* Undo the count from "create" - this does all the work */ 1982 return 0; 1983 } 1984 1985 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 1986 { 1987 if (!simple_empty(dentry)) 1988 return -ENOTEMPTY; 1989 1990 drop_nlink(dentry->d_inode); 1991 drop_nlink(dir); 1992 return shmem_unlink(dir, dentry); 1993 } 1994 1995 /* 1996 * The VFS layer already does all the dentry stuff for rename, 1997 * we just have to decrement the usage count for the target if 1998 * it exists so that the VFS layer correctly free's it when it 1999 * gets overwritten. 2000 */ 2001 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2002 { 2003 struct inode *inode = old_dentry->d_inode; 2004 int they_are_dirs = S_ISDIR(inode->i_mode); 2005 2006 if (!simple_empty(new_dentry)) 2007 return -ENOTEMPTY; 2008 2009 if (new_dentry->d_inode) { 2010 (void) shmem_unlink(new_dir, new_dentry); 2011 if (they_are_dirs) 2012 drop_nlink(old_dir); 2013 } else if (they_are_dirs) { 2014 drop_nlink(old_dir); 2015 inc_nlink(new_dir); 2016 } 2017 2018 old_dir->i_size -= BOGO_DIRENT_SIZE; 2019 new_dir->i_size += BOGO_DIRENT_SIZE; 2020 old_dir->i_ctime = old_dir->i_mtime = 2021 new_dir->i_ctime = new_dir->i_mtime = 2022 inode->i_ctime = CURRENT_TIME; 2023 return 0; 2024 } 2025 2026 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2027 { 2028 int error; 2029 int len; 2030 struct inode *inode; 2031 struct page *page; 2032 char *kaddr; 2033 struct shmem_inode_info *info; 2034 2035 len = strlen(symname) + 1; 2036 if (len > PAGE_CACHE_SIZE) 2037 return -ENAMETOOLONG; 2038 2039 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 2040 if (!inode) 2041 return -ENOSPC; 2042 2043 error = security_inode_init_security(inode, dir, &dentry->d_name, 2044 shmem_initxattrs, NULL); 2045 if (error) { 2046 if (error != -EOPNOTSUPP) { 2047 iput(inode); 2048 return error; 2049 } 2050 error = 0; 2051 } 2052 2053 info = SHMEM_I(inode); 2054 inode->i_size = len-1; 2055 if (len <= SHORT_SYMLINK_LEN) { 2056 info->symlink = kmemdup(symname, len, GFP_KERNEL); 2057 if (!info->symlink) { 2058 iput(inode); 2059 return -ENOMEM; 2060 } 2061 inode->i_op = &shmem_short_symlink_operations; 2062 } else { 2063 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 2064 if (error) { 2065 iput(inode); 2066 return error; 2067 } 2068 inode->i_mapping->a_ops = &shmem_aops; 2069 inode->i_op = &shmem_symlink_inode_operations; 2070 kaddr = kmap_atomic(page); 2071 memcpy(kaddr, symname, len); 2072 kunmap_atomic(kaddr); 2073 SetPageUptodate(page); 2074 set_page_dirty(page); 2075 unlock_page(page); 2076 page_cache_release(page); 2077 } 2078 dir->i_size += BOGO_DIRENT_SIZE; 2079 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2080 d_instantiate(dentry, inode); 2081 dget(dentry); 2082 return 0; 2083 } 2084 2085 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd) 2086 { 2087 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink); 2088 return NULL; 2089 } 2090 2091 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) 2092 { 2093 struct page *page = NULL; 2094 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); 2095 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page)); 2096 if (page) 2097 unlock_page(page); 2098 return page; 2099 } 2100 2101 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2102 { 2103 if (!IS_ERR(nd_get_link(nd))) { 2104 struct page *page = cookie; 2105 kunmap(page); 2106 mark_page_accessed(page); 2107 page_cache_release(page); 2108 } 2109 } 2110 2111 #ifdef CONFIG_TMPFS_XATTR 2112 /* 2113 * Superblocks without xattr inode operations may get some security.* xattr 2114 * support from the LSM "for free". As soon as we have any other xattrs 2115 * like ACLs, we also need to implement the security.* handlers at 2116 * filesystem level, though. 2117 */ 2118 2119 /* 2120 * Allocate new xattr and copy in the value; but leave the name to callers. 2121 */ 2122 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size) 2123 { 2124 struct shmem_xattr *new_xattr; 2125 size_t len; 2126 2127 /* wrap around? */ 2128 len = sizeof(*new_xattr) + size; 2129 if (len <= sizeof(*new_xattr)) 2130 return NULL; 2131 2132 new_xattr = kmalloc(len, GFP_KERNEL); 2133 if (!new_xattr) 2134 return NULL; 2135 2136 new_xattr->size = size; 2137 memcpy(new_xattr->value, value, size); 2138 return new_xattr; 2139 } 2140 2141 /* 2142 * Callback for security_inode_init_security() for acquiring xattrs. 2143 */ 2144 static int shmem_initxattrs(struct inode *inode, 2145 const struct xattr *xattr_array, 2146 void *fs_info) 2147 { 2148 struct shmem_inode_info *info = SHMEM_I(inode); 2149 const struct xattr *xattr; 2150 struct shmem_xattr *new_xattr; 2151 size_t len; 2152 2153 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 2154 new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len); 2155 if (!new_xattr) 2156 return -ENOMEM; 2157 2158 len = strlen(xattr->name) + 1; 2159 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 2160 GFP_KERNEL); 2161 if (!new_xattr->name) { 2162 kfree(new_xattr); 2163 return -ENOMEM; 2164 } 2165 2166 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 2167 XATTR_SECURITY_PREFIX_LEN); 2168 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 2169 xattr->name, len); 2170 2171 spin_lock(&info->lock); 2172 list_add(&new_xattr->list, &info->xattr_list); 2173 spin_unlock(&info->lock); 2174 } 2175 2176 return 0; 2177 } 2178 2179 static int shmem_xattr_get(struct dentry *dentry, const char *name, 2180 void *buffer, size_t size) 2181 { 2182 struct shmem_inode_info *info; 2183 struct shmem_xattr *xattr; 2184 int ret = -ENODATA; 2185 2186 info = SHMEM_I(dentry->d_inode); 2187 2188 spin_lock(&info->lock); 2189 list_for_each_entry(xattr, &info->xattr_list, list) { 2190 if (strcmp(name, xattr->name)) 2191 continue; 2192 2193 ret = xattr->size; 2194 if (buffer) { 2195 if (size < xattr->size) 2196 ret = -ERANGE; 2197 else 2198 memcpy(buffer, xattr->value, xattr->size); 2199 } 2200 break; 2201 } 2202 spin_unlock(&info->lock); 2203 return ret; 2204 } 2205 2206 static int shmem_xattr_set(struct inode *inode, const char *name, 2207 const void *value, size_t size, int flags) 2208 { 2209 struct shmem_inode_info *info = SHMEM_I(inode); 2210 struct shmem_xattr *xattr; 2211 struct shmem_xattr *new_xattr = NULL; 2212 int err = 0; 2213 2214 /* value == NULL means remove */ 2215 if (value) { 2216 new_xattr = shmem_xattr_alloc(value, size); 2217 if (!new_xattr) 2218 return -ENOMEM; 2219 2220 new_xattr->name = kstrdup(name, GFP_KERNEL); 2221 if (!new_xattr->name) { 2222 kfree(new_xattr); 2223 return -ENOMEM; 2224 } 2225 } 2226 2227 spin_lock(&info->lock); 2228 list_for_each_entry(xattr, &info->xattr_list, list) { 2229 if (!strcmp(name, xattr->name)) { 2230 if (flags & XATTR_CREATE) { 2231 xattr = new_xattr; 2232 err = -EEXIST; 2233 } else if (new_xattr) { 2234 list_replace(&xattr->list, &new_xattr->list); 2235 } else { 2236 list_del(&xattr->list); 2237 } 2238 goto out; 2239 } 2240 } 2241 if (flags & XATTR_REPLACE) { 2242 xattr = new_xattr; 2243 err = -ENODATA; 2244 } else { 2245 list_add(&new_xattr->list, &info->xattr_list); 2246 xattr = NULL; 2247 } 2248 out: 2249 spin_unlock(&info->lock); 2250 if (xattr) 2251 kfree(xattr->name); 2252 kfree(xattr); 2253 return err; 2254 } 2255 2256 static const struct xattr_handler *shmem_xattr_handlers[] = { 2257 #ifdef CONFIG_TMPFS_POSIX_ACL 2258 &generic_acl_access_handler, 2259 &generic_acl_default_handler, 2260 #endif 2261 NULL 2262 }; 2263 2264 static int shmem_xattr_validate(const char *name) 2265 { 2266 struct { const char *prefix; size_t len; } arr[] = { 2267 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN }, 2268 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN } 2269 }; 2270 int i; 2271 2272 for (i = 0; i < ARRAY_SIZE(arr); i++) { 2273 size_t preflen = arr[i].len; 2274 if (strncmp(name, arr[i].prefix, preflen) == 0) { 2275 if (!name[preflen]) 2276 return -EINVAL; 2277 return 0; 2278 } 2279 } 2280 return -EOPNOTSUPP; 2281 } 2282 2283 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name, 2284 void *buffer, size_t size) 2285 { 2286 int err; 2287 2288 /* 2289 * If this is a request for a synthetic attribute in the system.* 2290 * namespace use the generic infrastructure to resolve a handler 2291 * for it via sb->s_xattr. 2292 */ 2293 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2294 return generic_getxattr(dentry, name, buffer, size); 2295 2296 err = shmem_xattr_validate(name); 2297 if (err) 2298 return err; 2299 2300 return shmem_xattr_get(dentry, name, buffer, size); 2301 } 2302 2303 static int shmem_setxattr(struct dentry *dentry, const char *name, 2304 const void *value, size_t size, int flags) 2305 { 2306 int err; 2307 2308 /* 2309 * If this is a request for a synthetic attribute in the system.* 2310 * namespace use the generic infrastructure to resolve a handler 2311 * for it via sb->s_xattr. 2312 */ 2313 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2314 return generic_setxattr(dentry, name, value, size, flags); 2315 2316 err = shmem_xattr_validate(name); 2317 if (err) 2318 return err; 2319 2320 if (size == 0) 2321 value = ""; /* empty EA, do not remove */ 2322 2323 return shmem_xattr_set(dentry->d_inode, name, value, size, flags); 2324 2325 } 2326 2327 static int shmem_removexattr(struct dentry *dentry, const char *name) 2328 { 2329 int err; 2330 2331 /* 2332 * If this is a request for a synthetic attribute in the system.* 2333 * namespace use the generic infrastructure to resolve a handler 2334 * for it via sb->s_xattr. 2335 */ 2336 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2337 return generic_removexattr(dentry, name); 2338 2339 err = shmem_xattr_validate(name); 2340 if (err) 2341 return err; 2342 2343 return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE); 2344 } 2345 2346 static bool xattr_is_trusted(const char *name) 2347 { 2348 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN); 2349 } 2350 2351 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 2352 { 2353 bool trusted = capable(CAP_SYS_ADMIN); 2354 struct shmem_xattr *xattr; 2355 struct shmem_inode_info *info; 2356 size_t used = 0; 2357 2358 info = SHMEM_I(dentry->d_inode); 2359 2360 spin_lock(&info->lock); 2361 list_for_each_entry(xattr, &info->xattr_list, list) { 2362 size_t len; 2363 2364 /* skip "trusted." attributes for unprivileged callers */ 2365 if (!trusted && xattr_is_trusted(xattr->name)) 2366 continue; 2367 2368 len = strlen(xattr->name) + 1; 2369 used += len; 2370 if (buffer) { 2371 if (size < used) { 2372 used = -ERANGE; 2373 break; 2374 } 2375 memcpy(buffer, xattr->name, len); 2376 buffer += len; 2377 } 2378 } 2379 spin_unlock(&info->lock); 2380 2381 return used; 2382 } 2383 #endif /* CONFIG_TMPFS_XATTR */ 2384 2385 static const struct inode_operations shmem_short_symlink_operations = { 2386 .readlink = generic_readlink, 2387 .follow_link = shmem_follow_short_symlink, 2388 #ifdef CONFIG_TMPFS_XATTR 2389 .setxattr = shmem_setxattr, 2390 .getxattr = shmem_getxattr, 2391 .listxattr = shmem_listxattr, 2392 .removexattr = shmem_removexattr, 2393 #endif 2394 }; 2395 2396 static const struct inode_operations shmem_symlink_inode_operations = { 2397 .readlink = generic_readlink, 2398 .follow_link = shmem_follow_link, 2399 .put_link = shmem_put_link, 2400 #ifdef CONFIG_TMPFS_XATTR 2401 .setxattr = shmem_setxattr, 2402 .getxattr = shmem_getxattr, 2403 .listxattr = shmem_listxattr, 2404 .removexattr = shmem_removexattr, 2405 #endif 2406 }; 2407 2408 static struct dentry *shmem_get_parent(struct dentry *child) 2409 { 2410 return ERR_PTR(-ESTALE); 2411 } 2412 2413 static int shmem_match(struct inode *ino, void *vfh) 2414 { 2415 __u32 *fh = vfh; 2416 __u64 inum = fh[2]; 2417 inum = (inum << 32) | fh[1]; 2418 return ino->i_ino == inum && fh[0] == ino->i_generation; 2419 } 2420 2421 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2422 struct fid *fid, int fh_len, int fh_type) 2423 { 2424 struct inode *inode; 2425 struct dentry *dentry = NULL; 2426 u64 inum = fid->raw[2]; 2427 inum = (inum << 32) | fid->raw[1]; 2428 2429 if (fh_len < 3) 2430 return NULL; 2431 2432 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2433 shmem_match, fid->raw); 2434 if (inode) { 2435 dentry = d_find_alias(inode); 2436 iput(inode); 2437 } 2438 2439 return dentry; 2440 } 2441 2442 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len, 2443 int connectable) 2444 { 2445 struct inode *inode = dentry->d_inode; 2446 2447 if (*len < 3) { 2448 *len = 3; 2449 return 255; 2450 } 2451 2452 if (inode_unhashed(inode)) { 2453 /* Unfortunately insert_inode_hash is not idempotent, 2454 * so as we hash inodes here rather than at creation 2455 * time, we need a lock to ensure we only try 2456 * to do it once 2457 */ 2458 static DEFINE_SPINLOCK(lock); 2459 spin_lock(&lock); 2460 if (inode_unhashed(inode)) 2461 __insert_inode_hash(inode, 2462 inode->i_ino + inode->i_generation); 2463 spin_unlock(&lock); 2464 } 2465 2466 fh[0] = inode->i_generation; 2467 fh[1] = inode->i_ino; 2468 fh[2] = ((__u64)inode->i_ino) >> 32; 2469 2470 *len = 3; 2471 return 1; 2472 } 2473 2474 static const struct export_operations shmem_export_ops = { 2475 .get_parent = shmem_get_parent, 2476 .encode_fh = shmem_encode_fh, 2477 .fh_to_dentry = shmem_fh_to_dentry, 2478 }; 2479 2480 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2481 bool remount) 2482 { 2483 char *this_char, *value, *rest; 2484 uid_t uid; 2485 gid_t gid; 2486 2487 while (options != NULL) { 2488 this_char = options; 2489 for (;;) { 2490 /* 2491 * NUL-terminate this option: unfortunately, 2492 * mount options form a comma-separated list, 2493 * but mpol's nodelist may also contain commas. 2494 */ 2495 options = strchr(options, ','); 2496 if (options == NULL) 2497 break; 2498 options++; 2499 if (!isdigit(*options)) { 2500 options[-1] = '\0'; 2501 break; 2502 } 2503 } 2504 if (!*this_char) 2505 continue; 2506 if ((value = strchr(this_char,'=')) != NULL) { 2507 *value++ = 0; 2508 } else { 2509 printk(KERN_ERR 2510 "tmpfs: No value for mount option '%s'\n", 2511 this_char); 2512 return 1; 2513 } 2514 2515 if (!strcmp(this_char,"size")) { 2516 unsigned long long size; 2517 size = memparse(value,&rest); 2518 if (*rest == '%') { 2519 size <<= PAGE_SHIFT; 2520 size *= totalram_pages; 2521 do_div(size, 100); 2522 rest++; 2523 } 2524 if (*rest) 2525 goto bad_val; 2526 sbinfo->max_blocks = 2527 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2528 } else if (!strcmp(this_char,"nr_blocks")) { 2529 sbinfo->max_blocks = memparse(value, &rest); 2530 if (*rest) 2531 goto bad_val; 2532 } else if (!strcmp(this_char,"nr_inodes")) { 2533 sbinfo->max_inodes = memparse(value, &rest); 2534 if (*rest) 2535 goto bad_val; 2536 } else if (!strcmp(this_char,"mode")) { 2537 if (remount) 2538 continue; 2539 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2540 if (*rest) 2541 goto bad_val; 2542 } else if (!strcmp(this_char,"uid")) { 2543 if (remount) 2544 continue; 2545 uid = simple_strtoul(value, &rest, 0); 2546 if (*rest) 2547 goto bad_val; 2548 sbinfo->uid = make_kuid(current_user_ns(), uid); 2549 if (!uid_valid(sbinfo->uid)) 2550 goto bad_val; 2551 } else if (!strcmp(this_char,"gid")) { 2552 if (remount) 2553 continue; 2554 gid = simple_strtoul(value, &rest, 0); 2555 if (*rest) 2556 goto bad_val; 2557 sbinfo->gid = make_kgid(current_user_ns(), gid); 2558 if (!gid_valid(sbinfo->gid)) 2559 goto bad_val; 2560 } else if (!strcmp(this_char,"mpol")) { 2561 if (mpol_parse_str(value, &sbinfo->mpol, 1)) 2562 goto bad_val; 2563 } else { 2564 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2565 this_char); 2566 return 1; 2567 } 2568 } 2569 return 0; 2570 2571 bad_val: 2572 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2573 value, this_char); 2574 return 1; 2575 2576 } 2577 2578 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2579 { 2580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2581 struct shmem_sb_info config = *sbinfo; 2582 unsigned long inodes; 2583 int error = -EINVAL; 2584 2585 if (shmem_parse_options(data, &config, true)) 2586 return error; 2587 2588 spin_lock(&sbinfo->stat_lock); 2589 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2590 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 2591 goto out; 2592 if (config.max_inodes < inodes) 2593 goto out; 2594 /* 2595 * Those tests disallow limited->unlimited while any are in use; 2596 * but we must separately disallow unlimited->limited, because 2597 * in that case we have no record of how much is already in use. 2598 */ 2599 if (config.max_blocks && !sbinfo->max_blocks) 2600 goto out; 2601 if (config.max_inodes && !sbinfo->max_inodes) 2602 goto out; 2603 2604 error = 0; 2605 sbinfo->max_blocks = config.max_blocks; 2606 sbinfo->max_inodes = config.max_inodes; 2607 sbinfo->free_inodes = config.max_inodes - inodes; 2608 2609 mpol_put(sbinfo->mpol); 2610 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2611 out: 2612 spin_unlock(&sbinfo->stat_lock); 2613 return error; 2614 } 2615 2616 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 2617 { 2618 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 2619 2620 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2621 seq_printf(seq, ",size=%luk", 2622 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2623 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2624 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2625 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2626 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 2627 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 2628 seq_printf(seq, ",uid=%u", 2629 from_kuid_munged(&init_user_ns, sbinfo->uid)); 2630 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 2631 seq_printf(seq, ",gid=%u", 2632 from_kgid_munged(&init_user_ns, sbinfo->gid)); 2633 shmem_show_mpol(seq, sbinfo->mpol); 2634 return 0; 2635 } 2636 #endif /* CONFIG_TMPFS */ 2637 2638 static void shmem_put_super(struct super_block *sb) 2639 { 2640 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2641 2642 percpu_counter_destroy(&sbinfo->used_blocks); 2643 kfree(sbinfo); 2644 sb->s_fs_info = NULL; 2645 } 2646 2647 int shmem_fill_super(struct super_block *sb, void *data, int silent) 2648 { 2649 struct inode *inode; 2650 struct shmem_sb_info *sbinfo; 2651 int err = -ENOMEM; 2652 2653 /* Round up to L1_CACHE_BYTES to resist false sharing */ 2654 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 2655 L1_CACHE_BYTES), GFP_KERNEL); 2656 if (!sbinfo) 2657 return -ENOMEM; 2658 2659 sbinfo->mode = S_IRWXUGO | S_ISVTX; 2660 sbinfo->uid = current_fsuid(); 2661 sbinfo->gid = current_fsgid(); 2662 sb->s_fs_info = sbinfo; 2663 2664 #ifdef CONFIG_TMPFS 2665 /* 2666 * Per default we only allow half of the physical ram per 2667 * tmpfs instance, limiting inodes to one per page of lowmem; 2668 * but the internal instance is left unlimited. 2669 */ 2670 if (!(sb->s_flags & MS_NOUSER)) { 2671 sbinfo->max_blocks = shmem_default_max_blocks(); 2672 sbinfo->max_inodes = shmem_default_max_inodes(); 2673 if (shmem_parse_options(data, sbinfo, false)) { 2674 err = -EINVAL; 2675 goto failed; 2676 } 2677 } 2678 sb->s_export_op = &shmem_export_ops; 2679 sb->s_flags |= MS_NOSEC; 2680 #else 2681 sb->s_flags |= MS_NOUSER; 2682 #endif 2683 2684 spin_lock_init(&sbinfo->stat_lock); 2685 if (percpu_counter_init(&sbinfo->used_blocks, 0)) 2686 goto failed; 2687 sbinfo->free_inodes = sbinfo->max_inodes; 2688 2689 sb->s_maxbytes = MAX_LFS_FILESIZE; 2690 sb->s_blocksize = PAGE_CACHE_SIZE; 2691 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 2692 sb->s_magic = TMPFS_MAGIC; 2693 sb->s_op = &shmem_ops; 2694 sb->s_time_gran = 1; 2695 #ifdef CONFIG_TMPFS_XATTR 2696 sb->s_xattr = shmem_xattr_handlers; 2697 #endif 2698 #ifdef CONFIG_TMPFS_POSIX_ACL 2699 sb->s_flags |= MS_POSIXACL; 2700 #endif 2701 2702 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 2703 if (!inode) 2704 goto failed; 2705 inode->i_uid = sbinfo->uid; 2706 inode->i_gid = sbinfo->gid; 2707 sb->s_root = d_make_root(inode); 2708 if (!sb->s_root) 2709 goto failed; 2710 return 0; 2711 2712 failed: 2713 shmem_put_super(sb); 2714 return err; 2715 } 2716 2717 static struct kmem_cache *shmem_inode_cachep; 2718 2719 static struct inode *shmem_alloc_inode(struct super_block *sb) 2720 { 2721 struct shmem_inode_info *info; 2722 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 2723 if (!info) 2724 return NULL; 2725 return &info->vfs_inode; 2726 } 2727 2728 static void shmem_destroy_callback(struct rcu_head *head) 2729 { 2730 struct inode *inode = container_of(head, struct inode, i_rcu); 2731 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 2732 } 2733 2734 static void shmem_destroy_inode(struct inode *inode) 2735 { 2736 if (S_ISREG(inode->i_mode)) 2737 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 2738 call_rcu(&inode->i_rcu, shmem_destroy_callback); 2739 } 2740 2741 static void shmem_init_inode(void *foo) 2742 { 2743 struct shmem_inode_info *info = foo; 2744 inode_init_once(&info->vfs_inode); 2745 } 2746 2747 static int shmem_init_inodecache(void) 2748 { 2749 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 2750 sizeof(struct shmem_inode_info), 2751 0, SLAB_PANIC, shmem_init_inode); 2752 return 0; 2753 } 2754 2755 static void shmem_destroy_inodecache(void) 2756 { 2757 kmem_cache_destroy(shmem_inode_cachep); 2758 } 2759 2760 static const struct address_space_operations shmem_aops = { 2761 .writepage = shmem_writepage, 2762 .set_page_dirty = __set_page_dirty_no_writeback, 2763 #ifdef CONFIG_TMPFS 2764 .write_begin = shmem_write_begin, 2765 .write_end = shmem_write_end, 2766 #endif 2767 .migratepage = migrate_page, 2768 .error_remove_page = generic_error_remove_page, 2769 }; 2770 2771 static const struct file_operations shmem_file_operations = { 2772 .mmap = shmem_mmap, 2773 #ifdef CONFIG_TMPFS 2774 .llseek = shmem_file_llseek, 2775 .read = do_sync_read, 2776 .write = do_sync_write, 2777 .aio_read = shmem_file_aio_read, 2778 .aio_write = generic_file_aio_write, 2779 .fsync = noop_fsync, 2780 .splice_read = shmem_file_splice_read, 2781 .splice_write = generic_file_splice_write, 2782 .fallocate = shmem_fallocate, 2783 #endif 2784 }; 2785 2786 static const struct inode_operations shmem_inode_operations = { 2787 .setattr = shmem_setattr, 2788 #ifdef CONFIG_TMPFS_XATTR 2789 .setxattr = shmem_setxattr, 2790 .getxattr = shmem_getxattr, 2791 .listxattr = shmem_listxattr, 2792 .removexattr = shmem_removexattr, 2793 #endif 2794 }; 2795 2796 static const struct inode_operations shmem_dir_inode_operations = { 2797 #ifdef CONFIG_TMPFS 2798 .create = shmem_create, 2799 .lookup = simple_lookup, 2800 .link = shmem_link, 2801 .unlink = shmem_unlink, 2802 .symlink = shmem_symlink, 2803 .mkdir = shmem_mkdir, 2804 .rmdir = shmem_rmdir, 2805 .mknod = shmem_mknod, 2806 .rename = shmem_rename, 2807 #endif 2808 #ifdef CONFIG_TMPFS_XATTR 2809 .setxattr = shmem_setxattr, 2810 .getxattr = shmem_getxattr, 2811 .listxattr = shmem_listxattr, 2812 .removexattr = shmem_removexattr, 2813 #endif 2814 #ifdef CONFIG_TMPFS_POSIX_ACL 2815 .setattr = shmem_setattr, 2816 #endif 2817 }; 2818 2819 static const struct inode_operations shmem_special_inode_operations = { 2820 #ifdef CONFIG_TMPFS_XATTR 2821 .setxattr = shmem_setxattr, 2822 .getxattr = shmem_getxattr, 2823 .listxattr = shmem_listxattr, 2824 .removexattr = shmem_removexattr, 2825 #endif 2826 #ifdef CONFIG_TMPFS_POSIX_ACL 2827 .setattr = shmem_setattr, 2828 #endif 2829 }; 2830 2831 static const struct super_operations shmem_ops = { 2832 .alloc_inode = shmem_alloc_inode, 2833 .destroy_inode = shmem_destroy_inode, 2834 #ifdef CONFIG_TMPFS 2835 .statfs = shmem_statfs, 2836 .remount_fs = shmem_remount_fs, 2837 .show_options = shmem_show_options, 2838 #endif 2839 .evict_inode = shmem_evict_inode, 2840 .drop_inode = generic_delete_inode, 2841 .put_super = shmem_put_super, 2842 }; 2843 2844 static const struct vm_operations_struct shmem_vm_ops = { 2845 .fault = shmem_fault, 2846 #ifdef CONFIG_NUMA 2847 .set_policy = shmem_set_policy, 2848 .get_policy = shmem_get_policy, 2849 #endif 2850 }; 2851 2852 static struct dentry *shmem_mount(struct file_system_type *fs_type, 2853 int flags, const char *dev_name, void *data) 2854 { 2855 return mount_nodev(fs_type, flags, data, shmem_fill_super); 2856 } 2857 2858 static struct file_system_type shmem_fs_type = { 2859 .owner = THIS_MODULE, 2860 .name = "tmpfs", 2861 .mount = shmem_mount, 2862 .kill_sb = kill_litter_super, 2863 }; 2864 2865 int __init shmem_init(void) 2866 { 2867 int error; 2868 2869 error = bdi_init(&shmem_backing_dev_info); 2870 if (error) 2871 goto out4; 2872 2873 error = shmem_init_inodecache(); 2874 if (error) 2875 goto out3; 2876 2877 error = register_filesystem(&shmem_fs_type); 2878 if (error) { 2879 printk(KERN_ERR "Could not register tmpfs\n"); 2880 goto out2; 2881 } 2882 2883 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER, 2884 shmem_fs_type.name, NULL); 2885 if (IS_ERR(shm_mnt)) { 2886 error = PTR_ERR(shm_mnt); 2887 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 2888 goto out1; 2889 } 2890 return 0; 2891 2892 out1: 2893 unregister_filesystem(&shmem_fs_type); 2894 out2: 2895 shmem_destroy_inodecache(); 2896 out3: 2897 bdi_destroy(&shmem_backing_dev_info); 2898 out4: 2899 shm_mnt = ERR_PTR(error); 2900 return error; 2901 } 2902 2903 #else /* !CONFIG_SHMEM */ 2904 2905 /* 2906 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 2907 * 2908 * This is intended for small system where the benefits of the full 2909 * shmem code (swap-backed and resource-limited) are outweighed by 2910 * their complexity. On systems without swap this code should be 2911 * effectively equivalent, but much lighter weight. 2912 */ 2913 2914 #include <linux/ramfs.h> 2915 2916 static struct file_system_type shmem_fs_type = { 2917 .name = "tmpfs", 2918 .mount = ramfs_mount, 2919 .kill_sb = kill_litter_super, 2920 }; 2921 2922 int __init shmem_init(void) 2923 { 2924 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 2925 2926 shm_mnt = kern_mount(&shmem_fs_type); 2927 BUG_ON(IS_ERR(shm_mnt)); 2928 2929 return 0; 2930 } 2931 2932 int shmem_unuse(swp_entry_t swap, struct page *page) 2933 { 2934 return 0; 2935 } 2936 2937 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2938 { 2939 return 0; 2940 } 2941 2942 void shmem_unlock_mapping(struct address_space *mapping) 2943 { 2944 } 2945 2946 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 2947 { 2948 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 2949 } 2950 EXPORT_SYMBOL_GPL(shmem_truncate_range); 2951 2952 #define shmem_vm_ops generic_file_vm_ops 2953 #define shmem_file_operations ramfs_file_operations 2954 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 2955 #define shmem_acct_size(flags, size) 0 2956 #define shmem_unacct_size(flags, size) do {} while (0) 2957 2958 #endif /* CONFIG_SHMEM */ 2959 2960 /* common code */ 2961 2962 /** 2963 * shmem_file_setup - get an unlinked file living in tmpfs 2964 * @name: name for dentry (to be seen in /proc/<pid>/maps 2965 * @size: size to be set for the file 2966 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 2967 */ 2968 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 2969 { 2970 int error; 2971 struct file *file; 2972 struct inode *inode; 2973 struct path path; 2974 struct dentry *root; 2975 struct qstr this; 2976 2977 if (IS_ERR(shm_mnt)) 2978 return (void *)shm_mnt; 2979 2980 if (size < 0 || size > MAX_LFS_FILESIZE) 2981 return ERR_PTR(-EINVAL); 2982 2983 if (shmem_acct_size(flags, size)) 2984 return ERR_PTR(-ENOMEM); 2985 2986 error = -ENOMEM; 2987 this.name = name; 2988 this.len = strlen(name); 2989 this.hash = 0; /* will go */ 2990 root = shm_mnt->mnt_root; 2991 path.dentry = d_alloc(root, &this); 2992 if (!path.dentry) 2993 goto put_memory; 2994 path.mnt = mntget(shm_mnt); 2995 2996 error = -ENOSPC; 2997 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 2998 if (!inode) 2999 goto put_dentry; 3000 3001 d_instantiate(path.dentry, inode); 3002 inode->i_size = size; 3003 clear_nlink(inode); /* It is unlinked */ 3004 #ifndef CONFIG_MMU 3005 error = ramfs_nommu_expand_for_mapping(inode, size); 3006 if (error) 3007 goto put_dentry; 3008 #endif 3009 3010 error = -ENFILE; 3011 file = alloc_file(&path, FMODE_WRITE | FMODE_READ, 3012 &shmem_file_operations); 3013 if (!file) 3014 goto put_dentry; 3015 3016 return file; 3017 3018 put_dentry: 3019 path_put(&path); 3020 put_memory: 3021 shmem_unacct_size(flags, size); 3022 return ERR_PTR(error); 3023 } 3024 EXPORT_SYMBOL_GPL(shmem_file_setup); 3025 3026 /** 3027 * shmem_zero_setup - setup a shared anonymous mapping 3028 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 3029 */ 3030 int shmem_zero_setup(struct vm_area_struct *vma) 3031 { 3032 struct file *file; 3033 loff_t size = vma->vm_end - vma->vm_start; 3034 3035 file = shmem_file_setup("dev/zero", size, vma->vm_flags); 3036 if (IS_ERR(file)) 3037 return PTR_ERR(file); 3038 3039 if (vma->vm_file) 3040 fput(vma->vm_file); 3041 vma->vm_file = file; 3042 vma->vm_ops = &shmem_vm_ops; 3043 vma->vm_flags |= VM_CAN_NONLINEAR; 3044 return 0; 3045 } 3046 3047 /** 3048 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 3049 * @mapping: the page's address_space 3050 * @index: the page index 3051 * @gfp: the page allocator flags to use if allocating 3052 * 3053 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 3054 * with any new page allocations done using the specified allocation flags. 3055 * But read_cache_page_gfp() uses the ->readpage() method: which does not 3056 * suit tmpfs, since it may have pages in swapcache, and needs to find those 3057 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 3058 * 3059 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 3060 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 3061 */ 3062 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 3063 pgoff_t index, gfp_t gfp) 3064 { 3065 #ifdef CONFIG_SHMEM 3066 struct inode *inode = mapping->host; 3067 struct page *page; 3068 int error; 3069 3070 BUG_ON(mapping->a_ops != &shmem_aops); 3071 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL); 3072 if (error) 3073 page = ERR_PTR(error); 3074 else 3075 unlock_page(page); 3076 return page; 3077 #else 3078 /* 3079 * The tiny !SHMEM case uses ramfs without swap 3080 */ 3081 return read_cache_page_gfp(mapping, index, gfp); 3082 #endif 3083 } 3084 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 3085