1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Resizable virtual memory filesystem for Linux. 4 * 5 * Copyright (C) 2000 Linus Torvalds. 6 * 2000 Transmeta Corp. 7 * 2000-2001 Christoph Rohland 8 * 2000-2001 SAP AG 9 * 2002 Red Hat Inc. 10 * Copyright (C) 2002-2011 Hugh Dickins. 11 * Copyright (C) 2011 Google Inc. 12 * Copyright (C) 2002-2005 VERITAS Software Corporation. 13 * Copyright (C) 2004 Andi Kleen, SuSE Labs 14 * 15 * Extended attribute support for tmpfs: 16 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 17 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 18 * 19 * tiny-shmem: 20 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 21 */ 22 23 #include <linux/fs.h> 24 #include <linux/init.h> 25 #include <linux/vfs.h> 26 #include <linux/mount.h> 27 #include <linux/ramfs.h> 28 #include <linux/pagemap.h> 29 #include <linux/file.h> 30 #include <linux/fileattr.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/shmem_fs.h> 36 #include <linux/swap.h> 37 #include <linux/uio.h> 38 #include <linux/hugetlb.h> 39 #include <linux/fs_parser.h> 40 #include <linux/swapfile.h> 41 #include <linux/iversion.h> 42 #include <linux/unicode.h> 43 #include "swap.h" 44 45 static struct vfsmount *shm_mnt __ro_after_init; 46 47 #ifdef CONFIG_SHMEM 48 /* 49 * This virtual memory filesystem is heavily based on the ramfs. It 50 * extends ramfs by the ability to use swap and honor resource limits 51 * which makes it a completely usable filesystem. 52 */ 53 54 #include <linux/xattr.h> 55 #include <linux/exportfs.h> 56 #include <linux/posix_acl.h> 57 #include <linux/posix_acl_xattr.h> 58 #include <linux/mman.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/backing-dev.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/leafops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 #include <linux/quotaops.h> 82 #include <linux/rcupdate_wait.h> 83 84 #include <linux/uaccess.h> 85 86 #include "internal.h" 87 88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 89 90 /* Pretend that each entry is of this size in directory's i_size */ 91 #define BOGO_DIRENT_SIZE 20 92 93 /* Pretend that one inode + its dentry occupy this much memory */ 94 #define BOGO_INODE_SIZE 1024 95 96 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 97 #define SHORT_SYMLINK_LEN 128 98 99 /* 100 * shmem_fallocate communicates with shmem_fault or shmem_writeout via 101 * inode->i_private (with i_rwsem making sure that it has only one user at 102 * a time): we would prefer not to enlarge the shmem inode just for that. 103 */ 104 struct shmem_falloc { 105 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 106 pgoff_t start; /* start of range currently being fallocated */ 107 pgoff_t next; /* the next page offset to be fallocated */ 108 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 109 pgoff_t nr_unswapped; /* how often writeout refused to swap out */ 110 }; 111 112 struct shmem_options { 113 unsigned long long blocks; 114 unsigned long long inodes; 115 struct mempolicy *mpol; 116 kuid_t uid; 117 kgid_t gid; 118 umode_t mode; 119 bool full_inums; 120 int huge; 121 int seen; 122 bool noswap; 123 unsigned short quota_types; 124 struct shmem_quota_limits qlimits; 125 #if IS_ENABLED(CONFIG_UNICODE) 126 struct unicode_map *encoding; 127 bool strict_encoding; 128 #endif 129 #define SHMEM_SEEN_BLOCKS 1 130 #define SHMEM_SEEN_INODES 2 131 #define SHMEM_SEEN_HUGE 4 132 #define SHMEM_SEEN_INUMS 8 133 #define SHMEM_SEEN_QUOTA 16 134 }; 135 136 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 137 static unsigned long huge_shmem_orders_always __read_mostly; 138 static unsigned long huge_shmem_orders_madvise __read_mostly; 139 static unsigned long huge_shmem_orders_inherit __read_mostly; 140 static unsigned long huge_shmem_orders_within_size __read_mostly; 141 static bool shmem_orders_configured __initdata; 142 #endif 143 144 #ifdef CONFIG_TMPFS 145 static unsigned long shmem_default_max_blocks(void) 146 { 147 return totalram_pages() / 2; 148 } 149 150 static unsigned long shmem_default_max_inodes(void) 151 { 152 unsigned long nr_pages = totalram_pages(); 153 154 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 155 ULONG_MAX / BOGO_INODE_SIZE); 156 } 157 #endif 158 159 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 160 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 161 struct vm_area_struct *vma, vm_fault_t *fault_type); 162 163 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 164 { 165 return sb->s_fs_info; 166 } 167 168 /* 169 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 170 * for shared memory and for shared anonymous (/dev/zero) mappings 171 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 172 * consistent with the pre-accounting of private mappings ... 173 */ 174 static inline int shmem_acct_size(unsigned long flags, loff_t size) 175 { 176 return (flags & SHMEM_F_NORESERVE) ? 177 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 178 } 179 180 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 181 { 182 if (!(flags & SHMEM_F_NORESERVE)) 183 vm_unacct_memory(VM_ACCT(size)); 184 } 185 186 static inline int shmem_reacct_size(unsigned long flags, 187 loff_t oldsize, loff_t newsize) 188 { 189 if (!(flags & SHMEM_F_NORESERVE)) { 190 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 191 return security_vm_enough_memory_mm(current->mm, 192 VM_ACCT(newsize) - VM_ACCT(oldsize)); 193 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 194 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 195 } 196 return 0; 197 } 198 199 /* 200 * ... whereas tmpfs objects are accounted incrementally as 201 * pages are allocated, in order to allow large sparse files. 202 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 203 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 204 */ 205 static inline int shmem_acct_blocks(unsigned long flags, long pages) 206 { 207 if (!(flags & SHMEM_F_NORESERVE)) 208 return 0; 209 210 return security_vm_enough_memory_mm(current->mm, 211 pages * VM_ACCT(PAGE_SIZE)); 212 } 213 214 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 215 { 216 if (flags & SHMEM_F_NORESERVE) 217 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 218 } 219 220 int shmem_inode_acct_blocks(struct inode *inode, long pages) 221 { 222 struct shmem_inode_info *info = SHMEM_I(inode); 223 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 224 int err = -ENOSPC; 225 226 if (shmem_acct_blocks(info->flags, pages)) 227 return err; 228 229 might_sleep(); /* when quotas */ 230 if (sbinfo->max_blocks) { 231 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 232 sbinfo->max_blocks, pages)) 233 goto unacct; 234 235 err = dquot_alloc_block_nodirty(inode, pages); 236 if (err) { 237 percpu_counter_sub(&sbinfo->used_blocks, pages); 238 goto unacct; 239 } 240 } else { 241 err = dquot_alloc_block_nodirty(inode, pages); 242 if (err) 243 goto unacct; 244 } 245 246 return 0; 247 248 unacct: 249 shmem_unacct_blocks(info->flags, pages); 250 return err; 251 } 252 253 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 254 { 255 struct shmem_inode_info *info = SHMEM_I(inode); 256 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 257 258 might_sleep(); /* when quotas */ 259 dquot_free_block_nodirty(inode, pages); 260 261 if (sbinfo->max_blocks) 262 percpu_counter_sub(&sbinfo->used_blocks, pages); 263 shmem_unacct_blocks(info->flags, pages); 264 } 265 266 static const struct super_operations shmem_ops; 267 static const struct address_space_operations shmem_aops; 268 static const struct file_operations shmem_file_operations; 269 static const struct inode_operations shmem_inode_operations; 270 static const struct inode_operations shmem_dir_inode_operations; 271 static const struct inode_operations shmem_special_inode_operations; 272 static const struct vm_operations_struct shmem_vm_ops; 273 static const struct vm_operations_struct shmem_anon_vm_ops; 274 static struct file_system_type shmem_fs_type; 275 276 bool shmem_mapping(const struct address_space *mapping) 277 { 278 return mapping->a_ops == &shmem_aops; 279 } 280 EXPORT_SYMBOL_GPL(shmem_mapping); 281 282 bool vma_is_anon_shmem(const struct vm_area_struct *vma) 283 { 284 return vma->vm_ops == &shmem_anon_vm_ops; 285 } 286 287 bool vma_is_shmem(const struct vm_area_struct *vma) 288 { 289 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 290 } 291 292 static LIST_HEAD(shmem_swaplist); 293 static DEFINE_SPINLOCK(shmem_swaplist_lock); 294 295 #ifdef CONFIG_TMPFS_QUOTA 296 297 static int shmem_enable_quotas(struct super_block *sb, 298 unsigned short quota_types) 299 { 300 int type, err = 0; 301 302 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 303 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 304 if (!(quota_types & (1 << type))) 305 continue; 306 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 307 DQUOT_USAGE_ENABLED | 308 DQUOT_LIMITS_ENABLED); 309 if (err) 310 goto out_err; 311 } 312 return 0; 313 314 out_err: 315 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 316 type, err); 317 for (type--; type >= 0; type--) 318 dquot_quota_off(sb, type); 319 return err; 320 } 321 322 static void shmem_disable_quotas(struct super_block *sb) 323 { 324 int type; 325 326 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 327 dquot_quota_off(sb, type); 328 } 329 330 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 331 { 332 return SHMEM_I(inode)->i_dquot; 333 } 334 #endif /* CONFIG_TMPFS_QUOTA */ 335 336 /* 337 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 338 * produces a novel ino for the newly allocated inode. 339 * 340 * It may also be called when making a hard link to permit the space needed by 341 * each dentry. However, in that case, no new inode number is needed since that 342 * internally draws from another pool of inode numbers (currently global 343 * get_next_ino()). This case is indicated by passing NULL as inop. 344 */ 345 #define SHMEM_INO_BATCH 1024 346 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 347 { 348 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 349 ino_t ino; 350 351 if (!(sb->s_flags & SB_KERNMOUNT)) { 352 raw_spin_lock(&sbinfo->stat_lock); 353 if (sbinfo->max_inodes) { 354 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 355 raw_spin_unlock(&sbinfo->stat_lock); 356 return -ENOSPC; 357 } 358 sbinfo->free_ispace -= BOGO_INODE_SIZE; 359 } 360 if (inop) { 361 ino = sbinfo->next_ino++; 362 if (unlikely(is_zero_ino(ino))) 363 ino = sbinfo->next_ino++; 364 if (unlikely(!sbinfo->full_inums && 365 ino > UINT_MAX)) { 366 /* 367 * Emulate get_next_ino uint wraparound for 368 * compatibility 369 */ 370 if (IS_ENABLED(CONFIG_64BIT)) 371 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 372 __func__, MINOR(sb->s_dev)); 373 sbinfo->next_ino = 1; 374 ino = sbinfo->next_ino++; 375 } 376 *inop = ino; 377 } 378 raw_spin_unlock(&sbinfo->stat_lock); 379 } else if (inop) { 380 /* 381 * __shmem_file_setup, one of our callers, is lock-free: it 382 * doesn't hold stat_lock in shmem_reserve_inode since 383 * max_inodes is always 0, and is called from potentially 384 * unknown contexts. As such, use a per-cpu batched allocator 385 * which doesn't require the per-sb stat_lock unless we are at 386 * the batch boundary. 387 * 388 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 389 * shmem mounts are not exposed to userspace, so we don't need 390 * to worry about things like glibc compatibility. 391 */ 392 ino_t *next_ino; 393 394 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 395 ino = *next_ino; 396 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 397 raw_spin_lock(&sbinfo->stat_lock); 398 ino = sbinfo->next_ino; 399 sbinfo->next_ino += SHMEM_INO_BATCH; 400 raw_spin_unlock(&sbinfo->stat_lock); 401 if (unlikely(is_zero_ino(ino))) 402 ino++; 403 } 404 *inop = ino; 405 *next_ino = ++ino; 406 put_cpu(); 407 } 408 409 return 0; 410 } 411 412 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 413 { 414 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 415 if (sbinfo->max_inodes) { 416 raw_spin_lock(&sbinfo->stat_lock); 417 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 418 raw_spin_unlock(&sbinfo->stat_lock); 419 } 420 } 421 422 /** 423 * shmem_recalc_inode - recalculate the block usage of an inode 424 * @inode: inode to recalc 425 * @alloced: the change in number of pages allocated to inode 426 * @swapped: the change in number of pages swapped from inode 427 * 428 * We have to calculate the free blocks since the mm can drop 429 * undirtied hole pages behind our back. 430 * 431 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 432 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 433 * 434 * Return: true if swapped was incremented from 0, for shmem_writeout(). 435 */ 436 bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 437 { 438 struct shmem_inode_info *info = SHMEM_I(inode); 439 bool first_swapped = false; 440 long freed; 441 442 spin_lock(&info->lock); 443 info->alloced += alloced; 444 info->swapped += swapped; 445 freed = info->alloced - info->swapped - 446 READ_ONCE(inode->i_mapping->nrpages); 447 /* 448 * Special case: whereas normally shmem_recalc_inode() is called 449 * after i_mapping->nrpages has already been adjusted (up or down), 450 * shmem_writeout() has to raise swapped before nrpages is lowered - 451 * to stop a racing shmem_recalc_inode() from thinking that a page has 452 * been freed. Compensate here, to avoid the need for a followup call. 453 */ 454 if (swapped > 0) { 455 if (info->swapped == swapped) 456 first_swapped = true; 457 freed += swapped; 458 } 459 if (freed > 0) 460 info->alloced -= freed; 461 spin_unlock(&info->lock); 462 463 /* The quota case may block */ 464 if (freed > 0) 465 shmem_inode_unacct_blocks(inode, freed); 466 return first_swapped; 467 } 468 469 bool shmem_charge(struct inode *inode, long pages) 470 { 471 struct address_space *mapping = inode->i_mapping; 472 473 if (shmem_inode_acct_blocks(inode, pages)) 474 return false; 475 476 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 477 xa_lock_irq(&mapping->i_pages); 478 mapping->nrpages += pages; 479 xa_unlock_irq(&mapping->i_pages); 480 481 shmem_recalc_inode(inode, pages, 0); 482 return true; 483 } 484 485 void shmem_uncharge(struct inode *inode, long pages) 486 { 487 /* pages argument is currently unused: keep it to help debugging */ 488 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 489 490 shmem_recalc_inode(inode, 0, 0); 491 } 492 493 /* 494 * Replace item expected in xarray by a new item, while holding xa_lock. 495 */ 496 static int shmem_replace_entry(struct address_space *mapping, 497 pgoff_t index, void *expected, void *replacement) 498 { 499 XA_STATE(xas, &mapping->i_pages, index); 500 void *item; 501 502 VM_BUG_ON(!expected); 503 VM_BUG_ON(!replacement); 504 item = xas_load(&xas); 505 if (item != expected) 506 return -ENOENT; 507 xas_store(&xas, replacement); 508 return 0; 509 } 510 511 /* 512 * Sometimes, before we decide whether to proceed or to fail, we must check 513 * that an entry was not already brought back or split by a racing thread. 514 * 515 * Checking folio is not enough: by the time a swapcache folio is locked, it 516 * might be reused, and again be swapcache, using the same swap as before. 517 * Returns the swap entry's order if it still presents, else returns -1. 518 */ 519 static int shmem_confirm_swap(struct address_space *mapping, pgoff_t index, 520 swp_entry_t swap) 521 { 522 XA_STATE(xas, &mapping->i_pages, index); 523 int ret = -1; 524 void *entry; 525 526 rcu_read_lock(); 527 do { 528 entry = xas_load(&xas); 529 if (entry == swp_to_radix_entry(swap)) 530 ret = xas_get_order(&xas); 531 } while (xas_retry(&xas, entry)); 532 rcu_read_unlock(); 533 return ret; 534 } 535 536 /* 537 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 538 * 539 * SHMEM_HUGE_NEVER: 540 * disables huge pages for the mount; 541 * SHMEM_HUGE_ALWAYS: 542 * enables huge pages for the mount; 543 * SHMEM_HUGE_WITHIN_SIZE: 544 * only allocate huge pages if the page will be fully within i_size, 545 * also respect madvise() hints; 546 * SHMEM_HUGE_ADVISE: 547 * only allocate huge pages if requested with madvise(); 548 */ 549 550 #define SHMEM_HUGE_NEVER 0 551 #define SHMEM_HUGE_ALWAYS 1 552 #define SHMEM_HUGE_WITHIN_SIZE 2 553 #define SHMEM_HUGE_ADVISE 3 554 555 /* 556 * Special values. 557 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 558 * 559 * SHMEM_HUGE_DENY: 560 * disables huge on shm_mnt and all mounts, for emergency use; 561 * SHMEM_HUGE_FORCE: 562 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 563 * 564 */ 565 #define SHMEM_HUGE_DENY (-1) 566 #define SHMEM_HUGE_FORCE (-2) 567 568 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 569 /* ifdef here to avoid bloating shmem.o when not necessary */ 570 571 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_NEVER) 572 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER 573 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ALWAYS) 574 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ALWAYS 575 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_WITHIN_SIZE) 576 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE 577 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ADVISE) 578 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ADVISE 579 #else 580 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER 581 #endif 582 583 static int shmem_huge __read_mostly = SHMEM_HUGE_DEFAULT; 584 585 #undef SHMEM_HUGE_DEFAULT 586 587 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_NEVER) 588 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER 589 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ALWAYS) 590 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ALWAYS 591 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_WITHIN_SIZE) 592 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE 593 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ADVISE) 594 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ADVISE 595 #else 596 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER 597 #endif 598 599 static int tmpfs_huge __read_mostly = TMPFS_HUGE_DEFAULT; 600 601 #undef TMPFS_HUGE_DEFAULT 602 603 static unsigned int shmem_get_orders_within_size(struct inode *inode, 604 unsigned long within_size_orders, pgoff_t index, 605 loff_t write_end) 606 { 607 pgoff_t aligned_index; 608 unsigned long order; 609 loff_t i_size; 610 611 order = highest_order(within_size_orders); 612 while (within_size_orders) { 613 aligned_index = round_up(index + 1, 1 << order); 614 i_size = max(write_end, i_size_read(inode)); 615 i_size = round_up(i_size, PAGE_SIZE); 616 if (i_size >> PAGE_SHIFT >= aligned_index) 617 return within_size_orders; 618 619 order = next_order(&within_size_orders, order); 620 } 621 622 return 0; 623 } 624 625 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 626 loff_t write_end, bool shmem_huge_force, 627 struct vm_area_struct *vma, 628 vm_flags_t vm_flags) 629 { 630 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ? 631 0 : BIT(HPAGE_PMD_ORDER); 632 unsigned long within_size_orders; 633 634 if (!S_ISREG(inode->i_mode)) 635 return 0; 636 if (shmem_huge == SHMEM_HUGE_DENY) 637 return 0; 638 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 639 return maybe_pmd_order; 640 641 /* 642 * The huge order allocation for anon shmem is controlled through 643 * the mTHP interface, so we still use PMD-sized huge order to 644 * check whether global control is enabled. 645 * 646 * For tmpfs with 'huge=always' or 'huge=within_size' mount option, 647 * we will always try PMD-sized order first. If that failed, it will 648 * fall back to small large folios. 649 */ 650 switch (SHMEM_SB(inode->i_sb)->huge) { 651 case SHMEM_HUGE_ALWAYS: 652 return THP_ORDERS_ALL_FILE_DEFAULT; 653 case SHMEM_HUGE_WITHIN_SIZE: 654 within_size_orders = shmem_get_orders_within_size(inode, 655 THP_ORDERS_ALL_FILE_DEFAULT, index, write_end); 656 if (within_size_orders > 0) 657 return within_size_orders; 658 659 fallthrough; 660 case SHMEM_HUGE_ADVISE: 661 if (vm_flags & VM_HUGEPAGE) 662 return THP_ORDERS_ALL_FILE_DEFAULT; 663 fallthrough; 664 default: 665 return 0; 666 } 667 } 668 669 static int shmem_parse_huge(const char *str) 670 { 671 int huge; 672 673 if (!str) 674 return -EINVAL; 675 676 if (!strcmp(str, "never")) 677 huge = SHMEM_HUGE_NEVER; 678 else if (!strcmp(str, "always")) 679 huge = SHMEM_HUGE_ALWAYS; 680 else if (!strcmp(str, "within_size")) 681 huge = SHMEM_HUGE_WITHIN_SIZE; 682 else if (!strcmp(str, "advise")) 683 huge = SHMEM_HUGE_ADVISE; 684 else if (!strcmp(str, "deny")) 685 huge = SHMEM_HUGE_DENY; 686 else if (!strcmp(str, "force")) 687 huge = SHMEM_HUGE_FORCE; 688 else 689 return -EINVAL; 690 691 if (!has_transparent_hugepage() && 692 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 693 return -EINVAL; 694 695 /* Do not override huge allocation policy with non-PMD sized mTHP */ 696 if (huge == SHMEM_HUGE_FORCE && 697 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER)) 698 return -EINVAL; 699 700 return huge; 701 } 702 703 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 704 static const char *shmem_format_huge(int huge) 705 { 706 switch (huge) { 707 case SHMEM_HUGE_NEVER: 708 return "never"; 709 case SHMEM_HUGE_ALWAYS: 710 return "always"; 711 case SHMEM_HUGE_WITHIN_SIZE: 712 return "within_size"; 713 case SHMEM_HUGE_ADVISE: 714 return "advise"; 715 case SHMEM_HUGE_DENY: 716 return "deny"; 717 case SHMEM_HUGE_FORCE: 718 return "force"; 719 default: 720 VM_BUG_ON(1); 721 return "bad_val"; 722 } 723 } 724 #endif 725 726 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 727 struct shrink_control *sc, unsigned long nr_to_free) 728 { 729 LIST_HEAD(list), *pos, *next; 730 struct inode *inode; 731 struct shmem_inode_info *info; 732 struct folio *folio; 733 unsigned long batch = sc ? sc->nr_to_scan : 128; 734 unsigned long split = 0, freed = 0; 735 736 if (list_empty(&sbinfo->shrinklist)) 737 return SHRINK_STOP; 738 739 spin_lock(&sbinfo->shrinklist_lock); 740 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 741 info = list_entry(pos, struct shmem_inode_info, shrinklist); 742 743 /* pin the inode */ 744 inode = igrab(&info->vfs_inode); 745 746 /* inode is about to be evicted */ 747 if (!inode) { 748 list_del_init(&info->shrinklist); 749 goto next; 750 } 751 752 list_move(&info->shrinklist, &list); 753 next: 754 sbinfo->shrinklist_len--; 755 if (!--batch) 756 break; 757 } 758 spin_unlock(&sbinfo->shrinklist_lock); 759 760 list_for_each_safe(pos, next, &list) { 761 pgoff_t next, end; 762 loff_t i_size; 763 int ret; 764 765 info = list_entry(pos, struct shmem_inode_info, shrinklist); 766 inode = &info->vfs_inode; 767 768 if (nr_to_free && freed >= nr_to_free) 769 goto move_back; 770 771 i_size = i_size_read(inode); 772 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE); 773 if (!folio || xa_is_value(folio)) 774 goto drop; 775 776 /* No large folio at the end of the file: nothing to split */ 777 if (!folio_test_large(folio)) { 778 folio_put(folio); 779 goto drop; 780 } 781 782 /* Check if there is anything to gain from splitting */ 783 next = folio_next_index(folio); 784 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE)); 785 if (end <= folio->index || end >= next) { 786 folio_put(folio); 787 goto drop; 788 } 789 790 /* 791 * Move the inode on the list back to shrinklist if we failed 792 * to lock the page at this time. 793 * 794 * Waiting for the lock may lead to deadlock in the 795 * reclaim path. 796 */ 797 if (!folio_trylock(folio)) { 798 folio_put(folio); 799 goto move_back; 800 } 801 802 ret = split_folio(folio); 803 folio_unlock(folio); 804 folio_put(folio); 805 806 /* If split failed move the inode on the list back to shrinklist */ 807 if (ret) 808 goto move_back; 809 810 freed += next - end; 811 split++; 812 drop: 813 list_del_init(&info->shrinklist); 814 goto put; 815 move_back: 816 /* 817 * Make sure the inode is either on the global list or deleted 818 * from any local list before iput() since it could be deleted 819 * in another thread once we put the inode (then the local list 820 * is corrupted). 821 */ 822 spin_lock(&sbinfo->shrinklist_lock); 823 list_move(&info->shrinklist, &sbinfo->shrinklist); 824 sbinfo->shrinklist_len++; 825 spin_unlock(&sbinfo->shrinklist_lock); 826 put: 827 iput(inode); 828 } 829 830 return split; 831 } 832 833 static long shmem_unused_huge_scan(struct super_block *sb, 834 struct shrink_control *sc) 835 { 836 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 837 838 if (!READ_ONCE(sbinfo->shrinklist_len)) 839 return SHRINK_STOP; 840 841 return shmem_unused_huge_shrink(sbinfo, sc, 0); 842 } 843 844 static long shmem_unused_huge_count(struct super_block *sb, 845 struct shrink_control *sc) 846 { 847 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 848 return READ_ONCE(sbinfo->shrinklist_len); 849 } 850 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 851 852 #define shmem_huge SHMEM_HUGE_DENY 853 854 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 855 struct shrink_control *sc, unsigned long nr_to_free) 856 { 857 return 0; 858 } 859 860 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 861 loff_t write_end, bool shmem_huge_force, 862 struct vm_area_struct *vma, 863 vm_flags_t vm_flags) 864 { 865 return 0; 866 } 867 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 868 869 static void shmem_update_stats(struct folio *folio, int nr_pages) 870 { 871 if (folio_test_pmd_mappable(folio)) 872 lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages); 873 lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages); 874 lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages); 875 } 876 877 /* 878 * Somewhat like filemap_add_folio, but error if expected item has gone. 879 */ 880 int shmem_add_to_page_cache(struct folio *folio, 881 struct address_space *mapping, 882 pgoff_t index, void *expected, gfp_t gfp) 883 { 884 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 885 unsigned long nr = folio_nr_pages(folio); 886 swp_entry_t iter, swap; 887 void *entry; 888 889 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 890 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 891 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 892 893 folio_ref_add(folio, nr); 894 folio->mapping = mapping; 895 folio->index = index; 896 897 gfp &= GFP_RECLAIM_MASK; 898 folio_throttle_swaprate(folio, gfp); 899 swap = radix_to_swp_entry(expected); 900 901 do { 902 iter = swap; 903 xas_lock_irq(&xas); 904 xas_for_each_conflict(&xas, entry) { 905 /* 906 * The range must either be empty, or filled with 907 * expected swap entries. Shmem swap entries are never 908 * partially freed without split of both entry and 909 * folio, so there shouldn't be any holes. 910 */ 911 if (!expected || entry != swp_to_radix_entry(iter)) { 912 xas_set_err(&xas, -EEXIST); 913 goto unlock; 914 } 915 iter.val += 1 << xas_get_order(&xas); 916 } 917 if (expected && iter.val - nr != swap.val) { 918 xas_set_err(&xas, -EEXIST); 919 goto unlock; 920 } 921 xas_store(&xas, folio); 922 if (xas_error(&xas)) 923 goto unlock; 924 shmem_update_stats(folio, nr); 925 mapping->nrpages += nr; 926 unlock: 927 xas_unlock_irq(&xas); 928 } while (xas_nomem(&xas, gfp)); 929 930 if (xas_error(&xas)) { 931 folio->mapping = NULL; 932 folio_ref_sub(folio, nr); 933 return xas_error(&xas); 934 } 935 936 return 0; 937 } 938 939 /* 940 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 941 */ 942 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 943 { 944 struct address_space *mapping = folio->mapping; 945 long nr = folio_nr_pages(folio); 946 int error; 947 948 xa_lock_irq(&mapping->i_pages); 949 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 950 folio->mapping = NULL; 951 mapping->nrpages -= nr; 952 shmem_update_stats(folio, -nr); 953 xa_unlock_irq(&mapping->i_pages); 954 folio_put_refs(folio, nr); 955 BUG_ON(error); 956 } 957 958 /* 959 * Remove swap entry from page cache, free the swap and its page cache. Returns 960 * the number of pages being freed. 0 means entry not found in XArray (0 pages 961 * being freed). 962 */ 963 static long shmem_free_swap(struct address_space *mapping, 964 pgoff_t index, pgoff_t end, void *radswap) 965 { 966 XA_STATE(xas, &mapping->i_pages, index); 967 unsigned int nr_pages = 0; 968 pgoff_t base; 969 void *entry; 970 971 xas_lock_irq(&xas); 972 entry = xas_load(&xas); 973 if (entry == radswap) { 974 nr_pages = 1 << xas_get_order(&xas); 975 base = round_down(xas.xa_index, nr_pages); 976 if (base < index || base + nr_pages - 1 > end) 977 nr_pages = 0; 978 else 979 xas_store(&xas, NULL); 980 } 981 xas_unlock_irq(&xas); 982 983 if (nr_pages) 984 swap_put_entries_direct(radix_to_swp_entry(radswap), nr_pages); 985 986 return nr_pages; 987 } 988 989 /* 990 * Determine (in bytes) how many of the shmem object's pages mapped by the 991 * given offsets are swapped out. 992 * 993 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 994 * as long as the inode doesn't go away and racy results are not a problem. 995 */ 996 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 997 pgoff_t start, pgoff_t end) 998 { 999 XA_STATE(xas, &mapping->i_pages, start); 1000 struct folio *folio; 1001 unsigned long swapped = 0; 1002 unsigned long max = end - 1; 1003 1004 rcu_read_lock(); 1005 xas_for_each(&xas, folio, max) { 1006 if (xas_retry(&xas, folio)) 1007 continue; 1008 if (xa_is_value(folio)) 1009 swapped += 1 << xas_get_order(&xas); 1010 if (xas.xa_index == max) 1011 break; 1012 if (need_resched()) { 1013 xas_pause(&xas); 1014 cond_resched_rcu(); 1015 } 1016 } 1017 rcu_read_unlock(); 1018 1019 return swapped << PAGE_SHIFT; 1020 } 1021 1022 /* 1023 * Determine (in bytes) how many of the shmem object's pages mapped by the 1024 * given vma is swapped out. 1025 * 1026 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 1027 * as long as the inode doesn't go away and racy results are not a problem. 1028 */ 1029 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 1030 { 1031 struct inode *inode = file_inode(vma->vm_file); 1032 struct shmem_inode_info *info = SHMEM_I(inode); 1033 struct address_space *mapping = inode->i_mapping; 1034 unsigned long swapped; 1035 1036 /* Be careful as we don't hold info->lock */ 1037 swapped = READ_ONCE(info->swapped); 1038 1039 /* 1040 * The easier cases are when the shmem object has nothing in swap, or 1041 * the vma maps it whole. Then we can simply use the stats that we 1042 * already track. 1043 */ 1044 if (!swapped) 1045 return 0; 1046 1047 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 1048 return swapped << PAGE_SHIFT; 1049 1050 /* Here comes the more involved part */ 1051 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 1052 vma->vm_pgoff + vma_pages(vma)); 1053 } 1054 1055 /* 1056 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 1057 */ 1058 void shmem_unlock_mapping(struct address_space *mapping) 1059 { 1060 struct folio_batch fbatch; 1061 pgoff_t index = 0; 1062 1063 folio_batch_init(&fbatch); 1064 /* 1065 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 1066 */ 1067 while (!mapping_unevictable(mapping) && 1068 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 1069 check_move_unevictable_folios(&fbatch); 1070 folio_batch_release(&fbatch); 1071 cond_resched(); 1072 } 1073 } 1074 1075 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 1076 { 1077 struct folio *folio; 1078 1079 /* 1080 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 1081 * beyond i_size, and reports fallocated folios as holes. 1082 */ 1083 folio = filemap_get_entry(inode->i_mapping, index); 1084 if (!folio) 1085 return folio; 1086 if (!xa_is_value(folio)) { 1087 folio_lock(folio); 1088 if (folio->mapping == inode->i_mapping) 1089 return folio; 1090 /* The folio has been swapped out */ 1091 folio_unlock(folio); 1092 folio_put(folio); 1093 } 1094 /* 1095 * But read a folio back from swap if any of it is within i_size 1096 * (although in some cases this is just a waste of time). 1097 */ 1098 folio = NULL; 1099 shmem_get_folio(inode, index, 0, &folio, SGP_READ); 1100 return folio; 1101 } 1102 1103 /* 1104 * Remove range of pages and swap entries from page cache, and free them. 1105 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 1106 */ 1107 static void shmem_undo_range(struct inode *inode, loff_t lstart, uoff_t lend, 1108 bool unfalloc) 1109 { 1110 struct address_space *mapping = inode->i_mapping; 1111 struct shmem_inode_info *info = SHMEM_I(inode); 1112 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 1113 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 1114 struct folio_batch fbatch; 1115 pgoff_t indices[PAGEVEC_SIZE]; 1116 struct folio *folio; 1117 bool same_folio; 1118 long nr_swaps_freed = 0; 1119 pgoff_t index; 1120 int i; 1121 1122 if (lend == -1) 1123 end = -1; /* unsigned, so actually very big */ 1124 1125 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1126 info->fallocend = start; 1127 1128 folio_batch_init(&fbatch); 1129 index = start; 1130 while (index < end && find_lock_entries(mapping, &index, end - 1, 1131 &fbatch, indices)) { 1132 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1133 folio = fbatch.folios[i]; 1134 1135 if (xa_is_value(folio)) { 1136 if (unfalloc) 1137 continue; 1138 nr_swaps_freed += shmem_free_swap(mapping, indices[i], 1139 end - 1, folio); 1140 continue; 1141 } 1142 1143 if (!unfalloc || !folio_test_uptodate(folio)) 1144 truncate_inode_folio(mapping, folio); 1145 folio_unlock(folio); 1146 } 1147 folio_batch_remove_exceptionals(&fbatch); 1148 folio_batch_release(&fbatch); 1149 cond_resched(); 1150 } 1151 1152 /* 1153 * When undoing a failed fallocate, we want none of the partial folio 1154 * zeroing and splitting below, but shall want to truncate the whole 1155 * folio when !uptodate indicates that it was added by this fallocate, 1156 * even when [lstart, lend] covers only a part of the folio. 1157 */ 1158 if (unfalloc) 1159 goto whole_folios; 1160 1161 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1162 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1163 if (folio) { 1164 same_folio = lend < folio_next_pos(folio); 1165 folio_mark_dirty(folio); 1166 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1167 start = folio_next_index(folio); 1168 if (same_folio) 1169 end = folio->index; 1170 } 1171 folio_unlock(folio); 1172 folio_put(folio); 1173 folio = NULL; 1174 } 1175 1176 if (!same_folio) 1177 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1178 if (folio) { 1179 folio_mark_dirty(folio); 1180 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1181 end = folio->index; 1182 folio_unlock(folio); 1183 folio_put(folio); 1184 } 1185 1186 whole_folios: 1187 1188 index = start; 1189 while (index < end) { 1190 cond_resched(); 1191 1192 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1193 indices)) { 1194 /* If all gone or hole-punch or unfalloc, we're done */ 1195 if (index == start || end != -1) 1196 break; 1197 /* But if truncating, restart to make sure all gone */ 1198 index = start; 1199 continue; 1200 } 1201 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1202 folio = fbatch.folios[i]; 1203 1204 if (xa_is_value(folio)) { 1205 int order; 1206 long swaps_freed; 1207 1208 if (unfalloc) 1209 continue; 1210 swaps_freed = shmem_free_swap(mapping, indices[i], 1211 end - 1, folio); 1212 if (!swaps_freed) { 1213 /* 1214 * If found a large swap entry cross the end border, 1215 * skip it as the truncate_inode_partial_folio above 1216 * should have at least zerod its content once. 1217 */ 1218 order = shmem_confirm_swap(mapping, indices[i], 1219 radix_to_swp_entry(folio)); 1220 if (order > 0 && indices[i] + (1 << order) > end) 1221 continue; 1222 /* Swap was replaced by page: retry */ 1223 index = indices[i]; 1224 break; 1225 } 1226 nr_swaps_freed += swaps_freed; 1227 continue; 1228 } 1229 1230 folio_lock(folio); 1231 1232 if (!unfalloc || !folio_test_uptodate(folio)) { 1233 if (folio_mapping(folio) != mapping) { 1234 /* Page was replaced by swap: retry */ 1235 folio_unlock(folio); 1236 index = indices[i]; 1237 break; 1238 } 1239 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1240 folio); 1241 1242 if (!folio_test_large(folio)) { 1243 truncate_inode_folio(mapping, folio); 1244 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1245 /* 1246 * If we split a page, reset the loop so 1247 * that we pick up the new sub pages. 1248 * Otherwise the THP was entirely 1249 * dropped or the target range was 1250 * zeroed, so just continue the loop as 1251 * is. 1252 */ 1253 if (!folio_test_large(folio)) { 1254 folio_unlock(folio); 1255 index = start; 1256 break; 1257 } 1258 } 1259 } 1260 folio_unlock(folio); 1261 } 1262 folio_batch_remove_exceptionals(&fbatch); 1263 folio_batch_release(&fbatch); 1264 } 1265 1266 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1267 } 1268 1269 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend) 1270 { 1271 shmem_undo_range(inode, lstart, lend, false); 1272 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1273 inode_inc_iversion(inode); 1274 } 1275 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1276 1277 static int shmem_getattr(struct mnt_idmap *idmap, 1278 const struct path *path, struct kstat *stat, 1279 u32 request_mask, unsigned int query_flags) 1280 { 1281 struct inode *inode = path->dentry->d_inode; 1282 struct shmem_inode_info *info = SHMEM_I(inode); 1283 1284 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1285 shmem_recalc_inode(inode, 0, 0); 1286 1287 if (info->fsflags & FS_APPEND_FL) 1288 stat->attributes |= STATX_ATTR_APPEND; 1289 if (info->fsflags & FS_IMMUTABLE_FL) 1290 stat->attributes |= STATX_ATTR_IMMUTABLE; 1291 if (info->fsflags & FS_NODUMP_FL) 1292 stat->attributes |= STATX_ATTR_NODUMP; 1293 stat->attributes_mask |= (STATX_ATTR_APPEND | 1294 STATX_ATTR_IMMUTABLE | 1295 STATX_ATTR_NODUMP); 1296 generic_fillattr(idmap, request_mask, inode, stat); 1297 1298 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0)) 1299 stat->blksize = HPAGE_PMD_SIZE; 1300 1301 if (request_mask & STATX_BTIME) { 1302 stat->result_mask |= STATX_BTIME; 1303 stat->btime.tv_sec = info->i_crtime.tv_sec; 1304 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1305 } 1306 1307 return 0; 1308 } 1309 1310 static int shmem_setattr(struct mnt_idmap *idmap, 1311 struct dentry *dentry, struct iattr *attr) 1312 { 1313 struct inode *inode = d_inode(dentry); 1314 struct shmem_inode_info *info = SHMEM_I(inode); 1315 int error; 1316 bool update_mtime = false; 1317 bool update_ctime = true; 1318 1319 error = setattr_prepare(idmap, dentry, attr); 1320 if (error) 1321 return error; 1322 1323 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1324 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1325 return -EPERM; 1326 } 1327 } 1328 1329 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1330 loff_t oldsize = inode->i_size; 1331 loff_t newsize = attr->ia_size; 1332 1333 /* protected by i_rwsem */ 1334 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1335 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1336 return -EPERM; 1337 1338 if (newsize != oldsize) { 1339 if (info->flags & SHMEM_F_MAPPING_FROZEN) 1340 return -EPERM; 1341 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1342 oldsize, newsize); 1343 if (error) 1344 return error; 1345 i_size_write(inode, newsize); 1346 update_mtime = true; 1347 } else { 1348 update_ctime = false; 1349 } 1350 if (newsize <= oldsize) { 1351 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1352 if (oldsize > holebegin) 1353 unmap_mapping_range(inode->i_mapping, 1354 holebegin, 0, 1); 1355 if (info->alloced) 1356 shmem_truncate_range(inode, 1357 newsize, (loff_t)-1); 1358 /* unmap again to remove racily COWed private pages */ 1359 if (oldsize > holebegin) 1360 unmap_mapping_range(inode->i_mapping, 1361 holebegin, 0, 1); 1362 } 1363 } 1364 1365 if (is_quota_modification(idmap, inode, attr)) { 1366 error = dquot_initialize(inode); 1367 if (error) 1368 return error; 1369 } 1370 1371 /* Transfer quota accounting */ 1372 if (i_uid_needs_update(idmap, attr, inode) || 1373 i_gid_needs_update(idmap, attr, inode)) { 1374 error = dquot_transfer(idmap, inode, attr); 1375 if (error) 1376 return error; 1377 } 1378 1379 setattr_copy(idmap, inode, attr); 1380 if (attr->ia_valid & ATTR_MODE) 1381 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1382 if (!error && update_ctime) { 1383 inode_set_ctime_current(inode); 1384 if (update_mtime) 1385 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1386 inode_inc_iversion(inode); 1387 } 1388 return error; 1389 } 1390 1391 static void shmem_evict_inode(struct inode *inode) 1392 { 1393 struct shmem_inode_info *info = SHMEM_I(inode); 1394 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1395 size_t freed = 0; 1396 1397 if (shmem_mapping(inode->i_mapping)) { 1398 shmem_unacct_size(info->flags, inode->i_size); 1399 inode->i_size = 0; 1400 mapping_set_exiting(inode->i_mapping); 1401 shmem_truncate_range(inode, 0, (loff_t)-1); 1402 if (!list_empty(&info->shrinklist)) { 1403 spin_lock(&sbinfo->shrinklist_lock); 1404 if (!list_empty(&info->shrinklist)) { 1405 list_del_init(&info->shrinklist); 1406 sbinfo->shrinklist_len--; 1407 } 1408 spin_unlock(&sbinfo->shrinklist_lock); 1409 } 1410 while (!list_empty(&info->swaplist)) { 1411 /* Wait while shmem_unuse() is scanning this inode... */ 1412 wait_var_event(&info->stop_eviction, 1413 !atomic_read(&info->stop_eviction)); 1414 spin_lock(&shmem_swaplist_lock); 1415 /* ...but beware of the race if we peeked too early */ 1416 if (!atomic_read(&info->stop_eviction)) 1417 list_del_init(&info->swaplist); 1418 spin_unlock(&shmem_swaplist_lock); 1419 } 1420 } 1421 1422 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1423 shmem_free_inode(inode->i_sb, freed); 1424 WARN_ON(inode->i_blocks); 1425 clear_inode(inode); 1426 #ifdef CONFIG_TMPFS_QUOTA 1427 dquot_free_inode(inode); 1428 dquot_drop(inode); 1429 #endif 1430 } 1431 1432 static unsigned int shmem_find_swap_entries(struct address_space *mapping, 1433 pgoff_t start, struct folio_batch *fbatch, 1434 pgoff_t *indices, unsigned int type) 1435 { 1436 XA_STATE(xas, &mapping->i_pages, start); 1437 struct folio *folio; 1438 swp_entry_t entry; 1439 1440 rcu_read_lock(); 1441 xas_for_each(&xas, folio, ULONG_MAX) { 1442 if (xas_retry(&xas, folio)) 1443 continue; 1444 1445 if (!xa_is_value(folio)) 1446 continue; 1447 1448 entry = radix_to_swp_entry(folio); 1449 /* 1450 * swapin error entries can be found in the mapping. But they're 1451 * deliberately ignored here as we've done everything we can do. 1452 */ 1453 if (swp_type(entry) != type) 1454 continue; 1455 1456 indices[folio_batch_count(fbatch)] = xas.xa_index; 1457 if (!folio_batch_add(fbatch, folio)) 1458 break; 1459 1460 if (need_resched()) { 1461 xas_pause(&xas); 1462 cond_resched_rcu(); 1463 } 1464 } 1465 rcu_read_unlock(); 1466 1467 return folio_batch_count(fbatch); 1468 } 1469 1470 /* 1471 * Move the swapped pages for an inode to page cache. Returns the count 1472 * of pages swapped in, or the error in case of failure. 1473 */ 1474 static int shmem_unuse_swap_entries(struct inode *inode, 1475 struct folio_batch *fbatch, pgoff_t *indices) 1476 { 1477 int i = 0; 1478 int ret = 0; 1479 int error = 0; 1480 struct address_space *mapping = inode->i_mapping; 1481 1482 for (i = 0; i < folio_batch_count(fbatch); i++) { 1483 struct folio *folio = fbatch->folios[i]; 1484 1485 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1486 mapping_gfp_mask(mapping), NULL, NULL); 1487 if (error == 0) { 1488 folio_unlock(folio); 1489 folio_put(folio); 1490 ret++; 1491 } 1492 if (error == -ENOMEM) 1493 break; 1494 error = 0; 1495 } 1496 return error ? error : ret; 1497 } 1498 1499 /* 1500 * If swap found in inode, free it and move page from swapcache to filecache. 1501 */ 1502 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1503 { 1504 struct address_space *mapping = inode->i_mapping; 1505 pgoff_t start = 0; 1506 struct folio_batch fbatch; 1507 pgoff_t indices[PAGEVEC_SIZE]; 1508 int ret = 0; 1509 1510 do { 1511 folio_batch_init(&fbatch); 1512 if (!shmem_find_swap_entries(mapping, start, &fbatch, 1513 indices, type)) { 1514 ret = 0; 1515 break; 1516 } 1517 1518 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1519 if (ret < 0) 1520 break; 1521 1522 start = indices[folio_batch_count(&fbatch) - 1]; 1523 } while (true); 1524 1525 return ret; 1526 } 1527 1528 /* 1529 * Read all the shared memory data that resides in the swap 1530 * device 'type' back into memory, so the swap device can be 1531 * unused. 1532 */ 1533 int shmem_unuse(unsigned int type) 1534 { 1535 struct shmem_inode_info *info, *next; 1536 int error = 0; 1537 1538 if (list_empty(&shmem_swaplist)) 1539 return 0; 1540 1541 spin_lock(&shmem_swaplist_lock); 1542 start_over: 1543 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1544 if (!info->swapped) { 1545 list_del_init(&info->swaplist); 1546 continue; 1547 } 1548 /* 1549 * Drop the swaplist mutex while searching the inode for swap; 1550 * but before doing so, make sure shmem_evict_inode() will not 1551 * remove placeholder inode from swaplist, nor let it be freed 1552 * (igrab() would protect from unlink, but not from unmount). 1553 */ 1554 atomic_inc(&info->stop_eviction); 1555 spin_unlock(&shmem_swaplist_lock); 1556 1557 error = shmem_unuse_inode(&info->vfs_inode, type); 1558 cond_resched(); 1559 1560 spin_lock(&shmem_swaplist_lock); 1561 if (atomic_dec_and_test(&info->stop_eviction)) 1562 wake_up_var(&info->stop_eviction); 1563 if (error) 1564 break; 1565 if (list_empty(&info->swaplist)) 1566 goto start_over; 1567 next = list_next_entry(info, swaplist); 1568 if (!info->swapped) 1569 list_del_init(&info->swaplist); 1570 } 1571 spin_unlock(&shmem_swaplist_lock); 1572 1573 return error; 1574 } 1575 1576 /** 1577 * shmem_writeout - Write the folio to swap 1578 * @folio: The folio to write 1579 * @plug: swap plug 1580 * @folio_list: list to put back folios on split 1581 * 1582 * Move the folio from the page cache to the swap cache. 1583 */ 1584 int shmem_writeout(struct folio *folio, struct swap_iocb **plug, 1585 struct list_head *folio_list) 1586 { 1587 struct address_space *mapping = folio->mapping; 1588 struct inode *inode = mapping->host; 1589 struct shmem_inode_info *info = SHMEM_I(inode); 1590 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1591 pgoff_t index; 1592 int nr_pages; 1593 bool split = false; 1594 1595 if ((info->flags & SHMEM_F_LOCKED) || sbinfo->noswap) 1596 goto redirty; 1597 1598 if (!total_swap_pages) 1599 goto redirty; 1600 1601 /* 1602 * If CONFIG_THP_SWAP is not enabled, the large folio should be 1603 * split when swapping. 1604 * 1605 * And shrinkage of pages beyond i_size does not split swap, so 1606 * swapout of a large folio crossing i_size needs to split too 1607 * (unless fallocate has been used to preallocate beyond EOF). 1608 */ 1609 if (folio_test_large(folio)) { 1610 index = shmem_fallocend(inode, 1611 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 1612 if ((index > folio->index && index < folio_next_index(folio)) || 1613 !IS_ENABLED(CONFIG_THP_SWAP)) 1614 split = true; 1615 } 1616 1617 if (split) { 1618 int order; 1619 1620 try_split: 1621 order = folio_order(folio); 1622 /* Ensure the subpages are still dirty */ 1623 folio_test_set_dirty(folio); 1624 if (split_folio_to_list(folio, folio_list)) 1625 goto redirty; 1626 1627 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1628 if (order >= HPAGE_PMD_ORDER) { 1629 count_memcg_folio_events(folio, THP_SWPOUT_FALLBACK, 1); 1630 count_vm_event(THP_SWPOUT_FALLBACK); 1631 } 1632 #endif 1633 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK); 1634 1635 folio_clear_dirty(folio); 1636 } 1637 1638 index = folio->index; 1639 nr_pages = folio_nr_pages(folio); 1640 1641 /* 1642 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1643 * value into swapfile.c, the only way we can correctly account for a 1644 * fallocated folio arriving here is now to initialize it and write it. 1645 * 1646 * That's okay for a folio already fallocated earlier, but if we have 1647 * not yet completed the fallocation, then (a) we want to keep track 1648 * of this folio in case we have to undo it, and (b) it may not be a 1649 * good idea to continue anyway, once we're pushing into swap. So 1650 * reactivate the folio, and let shmem_fallocate() quit when too many. 1651 */ 1652 if (!folio_test_uptodate(folio)) { 1653 if (inode->i_private) { 1654 struct shmem_falloc *shmem_falloc; 1655 spin_lock(&inode->i_lock); 1656 shmem_falloc = inode->i_private; 1657 if (shmem_falloc && 1658 !shmem_falloc->waitq && 1659 index >= shmem_falloc->start && 1660 index < shmem_falloc->next) 1661 shmem_falloc->nr_unswapped += nr_pages; 1662 else 1663 shmem_falloc = NULL; 1664 spin_unlock(&inode->i_lock); 1665 if (shmem_falloc) 1666 goto redirty; 1667 } 1668 folio_zero_range(folio, 0, folio_size(folio)); 1669 flush_dcache_folio(folio); 1670 folio_mark_uptodate(folio); 1671 } 1672 1673 if (!folio_alloc_swap(folio)) { 1674 bool first_swapped = shmem_recalc_inode(inode, 0, nr_pages); 1675 int error; 1676 1677 /* 1678 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1679 * if it's not already there. Do it now before the folio is 1680 * removed from page cache, when its pagelock no longer 1681 * protects the inode from eviction. And do it now, after 1682 * we've incremented swapped, because shmem_unuse() will 1683 * prune a !swapped inode from the swaplist. 1684 */ 1685 if (first_swapped) { 1686 spin_lock(&shmem_swaplist_lock); 1687 if (list_empty(&info->swaplist)) 1688 list_add(&info->swaplist, &shmem_swaplist); 1689 spin_unlock(&shmem_swaplist_lock); 1690 } 1691 1692 folio_dup_swap(folio, NULL); 1693 shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap)); 1694 1695 BUG_ON(folio_mapped(folio)); 1696 error = swap_writeout(folio, plug); 1697 if (error != AOP_WRITEPAGE_ACTIVATE) { 1698 /* folio has been unlocked */ 1699 return error; 1700 } 1701 1702 /* 1703 * The intention here is to avoid holding on to the swap when 1704 * zswap was unable to compress and unable to writeback; but 1705 * it will be appropriate if other reactivate cases are added. 1706 */ 1707 error = shmem_add_to_page_cache(folio, mapping, index, 1708 swp_to_radix_entry(folio->swap), 1709 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 1710 /* Swap entry might be erased by racing shmem_free_swap() */ 1711 if (!error) { 1712 shmem_recalc_inode(inode, 0, -nr_pages); 1713 folio_put_swap(folio, NULL); 1714 } 1715 1716 /* 1717 * The swap_cache_del_folio() below could be left for 1718 * shrink_folio_list()'s folio_free_swap() to dispose of; 1719 * but I'm a little nervous about letting this folio out of 1720 * shmem_writeout() in a hybrid half-tmpfs-half-swap state 1721 * e.g. folio_mapping(folio) might give an unexpected answer. 1722 */ 1723 swap_cache_del_folio(folio); 1724 goto redirty; 1725 } 1726 if (nr_pages > 1) 1727 goto try_split; 1728 redirty: 1729 folio_mark_dirty(folio); 1730 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1731 } 1732 EXPORT_SYMBOL_GPL(shmem_writeout); 1733 1734 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1735 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1736 { 1737 char buffer[64]; 1738 1739 if (!mpol || mpol->mode == MPOL_DEFAULT) 1740 return; /* show nothing */ 1741 1742 mpol_to_str(buffer, sizeof(buffer), mpol); 1743 1744 seq_printf(seq, ",mpol=%s", buffer); 1745 } 1746 1747 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1748 { 1749 struct mempolicy *mpol = NULL; 1750 if (sbinfo->mpol) { 1751 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1752 mpol = sbinfo->mpol; 1753 mpol_get(mpol); 1754 raw_spin_unlock(&sbinfo->stat_lock); 1755 } 1756 return mpol; 1757 } 1758 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1759 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1760 { 1761 } 1762 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1763 { 1764 return NULL; 1765 } 1766 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1767 1768 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1769 pgoff_t index, unsigned int order, pgoff_t *ilx); 1770 1771 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1772 struct shmem_inode_info *info, pgoff_t index) 1773 { 1774 struct mempolicy *mpol; 1775 pgoff_t ilx; 1776 struct folio *folio; 1777 1778 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1779 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1780 mpol_cond_put(mpol); 1781 1782 return folio; 1783 } 1784 1785 /* 1786 * Make sure huge_gfp is always more limited than limit_gfp. 1787 * Some of the flags set permissions, while others set limitations. 1788 */ 1789 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1790 { 1791 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1792 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1793 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1794 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1795 1796 /* Allow allocations only from the originally specified zones. */ 1797 result |= zoneflags; 1798 1799 /* 1800 * Minimize the result gfp by taking the union with the deny flags, 1801 * and the intersection of the allow flags. 1802 */ 1803 result |= (limit_gfp & denyflags); 1804 result |= (huge_gfp & limit_gfp) & allowflags; 1805 1806 return result; 1807 } 1808 1809 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1810 bool shmem_hpage_pmd_enabled(void) 1811 { 1812 if (shmem_huge == SHMEM_HUGE_DENY) 1813 return false; 1814 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always)) 1815 return true; 1816 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise)) 1817 return true; 1818 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size)) 1819 return true; 1820 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) && 1821 shmem_huge != SHMEM_HUGE_NEVER) 1822 return true; 1823 1824 return false; 1825 } 1826 1827 unsigned long shmem_allowable_huge_orders(struct inode *inode, 1828 struct vm_area_struct *vma, pgoff_t index, 1829 loff_t write_end, bool shmem_huge_force) 1830 { 1831 unsigned long mask = READ_ONCE(huge_shmem_orders_always); 1832 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size); 1833 vm_flags_t vm_flags = vma ? vma->vm_flags : 0; 1834 unsigned int global_orders; 1835 1836 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags, shmem_huge_force))) 1837 return 0; 1838 1839 global_orders = shmem_huge_global_enabled(inode, index, write_end, 1840 shmem_huge_force, vma, vm_flags); 1841 /* Tmpfs huge pages allocation */ 1842 if (!vma || !vma_is_anon_shmem(vma)) 1843 return global_orders; 1844 1845 /* 1846 * Following the 'deny' semantics of the top level, force the huge 1847 * option off from all mounts. 1848 */ 1849 if (shmem_huge == SHMEM_HUGE_DENY) 1850 return 0; 1851 1852 /* 1853 * Only allow inherit orders if the top-level value is 'force', which 1854 * means non-PMD sized THP can not override 'huge' mount option now. 1855 */ 1856 if (shmem_huge == SHMEM_HUGE_FORCE) 1857 return READ_ONCE(huge_shmem_orders_inherit); 1858 1859 /* Allow mTHP that will be fully within i_size. */ 1860 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0); 1861 1862 if (vm_flags & VM_HUGEPAGE) 1863 mask |= READ_ONCE(huge_shmem_orders_madvise); 1864 1865 if (global_orders > 0) 1866 mask |= READ_ONCE(huge_shmem_orders_inherit); 1867 1868 return THP_ORDERS_ALL_FILE_DEFAULT & mask; 1869 } 1870 1871 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1872 struct address_space *mapping, pgoff_t index, 1873 unsigned long orders) 1874 { 1875 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1876 pgoff_t aligned_index; 1877 unsigned long pages; 1878 int order; 1879 1880 if (vma) { 1881 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 1882 if (!orders) 1883 return 0; 1884 } 1885 1886 /* Find the highest order that can add into the page cache */ 1887 order = highest_order(orders); 1888 while (orders) { 1889 pages = 1UL << order; 1890 aligned_index = round_down(index, pages); 1891 /* 1892 * Check for conflict before waiting on a huge allocation. 1893 * Conflict might be that a huge page has just been allocated 1894 * and added to page cache by a racing thread, or that there 1895 * is already at least one small page in the huge extent. 1896 * Be careful to retry when appropriate, but not forever! 1897 * Elsewhere -EEXIST would be the right code, but not here. 1898 */ 1899 if (!xa_find(&mapping->i_pages, &aligned_index, 1900 aligned_index + pages - 1, XA_PRESENT)) 1901 break; 1902 order = next_order(&orders, order); 1903 } 1904 1905 return orders; 1906 } 1907 #else 1908 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1909 struct address_space *mapping, pgoff_t index, 1910 unsigned long orders) 1911 { 1912 return 0; 1913 } 1914 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1915 1916 static struct folio *shmem_alloc_folio(gfp_t gfp, int order, 1917 struct shmem_inode_info *info, pgoff_t index) 1918 { 1919 struct mempolicy *mpol; 1920 pgoff_t ilx; 1921 struct folio *folio; 1922 1923 mpol = shmem_get_pgoff_policy(info, index, order, &ilx); 1924 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id()); 1925 mpol_cond_put(mpol); 1926 1927 return folio; 1928 } 1929 1930 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf, 1931 gfp_t gfp, struct inode *inode, pgoff_t index, 1932 struct mm_struct *fault_mm, unsigned long orders) 1933 { 1934 struct address_space *mapping = inode->i_mapping; 1935 struct shmem_inode_info *info = SHMEM_I(inode); 1936 unsigned long suitable_orders = 0; 1937 struct folio *folio = NULL; 1938 pgoff_t aligned_index; 1939 long pages; 1940 int error, order; 1941 1942 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1943 orders = 0; 1944 1945 if (orders > 0) { 1946 suitable_orders = shmem_suitable_orders(inode, vmf, 1947 mapping, index, orders); 1948 1949 order = highest_order(suitable_orders); 1950 while (suitable_orders) { 1951 pages = 1UL << order; 1952 aligned_index = round_down(index, pages); 1953 folio = shmem_alloc_folio(gfp, order, info, aligned_index); 1954 if (folio) { 1955 index = aligned_index; 1956 goto allocated; 1957 } 1958 1959 if (pages == HPAGE_PMD_NR) 1960 count_vm_event(THP_FILE_FALLBACK); 1961 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK); 1962 order = next_order(&suitable_orders, order); 1963 } 1964 } else { 1965 pages = 1; 1966 folio = shmem_alloc_folio(gfp, 0, info, index); 1967 } 1968 if (!folio) 1969 return ERR_PTR(-ENOMEM); 1970 1971 allocated: 1972 __folio_set_locked(folio); 1973 __folio_set_swapbacked(folio); 1974 1975 gfp &= GFP_RECLAIM_MASK; 1976 error = mem_cgroup_charge(folio, fault_mm, gfp); 1977 if (error) { 1978 if (xa_find(&mapping->i_pages, &index, 1979 index + pages - 1, XA_PRESENT)) { 1980 error = -EEXIST; 1981 } else if (pages > 1) { 1982 if (pages == HPAGE_PMD_NR) { 1983 count_vm_event(THP_FILE_FALLBACK); 1984 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1985 } 1986 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK); 1987 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE); 1988 } 1989 goto unlock; 1990 } 1991 1992 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1993 if (error) 1994 goto unlock; 1995 1996 error = shmem_inode_acct_blocks(inode, pages); 1997 if (error) { 1998 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1999 long freed; 2000 /* 2001 * Try to reclaim some space by splitting a few 2002 * large folios beyond i_size on the filesystem. 2003 */ 2004 shmem_unused_huge_shrink(sbinfo, NULL, pages); 2005 /* 2006 * And do a shmem_recalc_inode() to account for freed pages: 2007 * except our folio is there in cache, so not quite balanced. 2008 */ 2009 spin_lock(&info->lock); 2010 freed = pages + info->alloced - info->swapped - 2011 READ_ONCE(mapping->nrpages); 2012 if (freed > 0) 2013 info->alloced -= freed; 2014 spin_unlock(&info->lock); 2015 if (freed > 0) 2016 shmem_inode_unacct_blocks(inode, freed); 2017 error = shmem_inode_acct_blocks(inode, pages); 2018 if (error) { 2019 filemap_remove_folio(folio); 2020 goto unlock; 2021 } 2022 } 2023 2024 shmem_recalc_inode(inode, pages, 0); 2025 folio_add_lru(folio); 2026 return folio; 2027 2028 unlock: 2029 folio_unlock(folio); 2030 folio_put(folio); 2031 return ERR_PTR(error); 2032 } 2033 2034 static struct folio *shmem_swap_alloc_folio(struct inode *inode, 2035 struct vm_area_struct *vma, pgoff_t index, 2036 swp_entry_t entry, int order, gfp_t gfp) 2037 { 2038 struct shmem_inode_info *info = SHMEM_I(inode); 2039 struct folio *new, *swapcache; 2040 int nr_pages = 1 << order; 2041 gfp_t alloc_gfp; 2042 2043 /* 2044 * We have arrived here because our zones are constrained, so don't 2045 * limit chance of success with further cpuset and node constraints. 2046 */ 2047 gfp &= ~GFP_CONSTRAINT_MASK; 2048 alloc_gfp = gfp; 2049 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 2050 if (WARN_ON_ONCE(order)) 2051 return ERR_PTR(-EINVAL); 2052 } else if (order) { 2053 /* 2054 * If uffd is active for the vma, we need per-page fault 2055 * fidelity to maintain the uffd semantics, then fallback 2056 * to swapin order-0 folio, as well as for zswap case. 2057 * Any existing sub folio in the swap cache also blocks 2058 * mTHP swapin. 2059 */ 2060 if ((vma && unlikely(userfaultfd_armed(vma))) || 2061 !zswap_never_enabled() || 2062 non_swapcache_batch(entry, nr_pages) != nr_pages) 2063 goto fallback; 2064 2065 alloc_gfp = limit_gfp_mask(vma_thp_gfp_mask(vma), gfp); 2066 } 2067 retry: 2068 new = shmem_alloc_folio(alloc_gfp, order, info, index); 2069 if (!new) { 2070 new = ERR_PTR(-ENOMEM); 2071 goto fallback; 2072 } 2073 2074 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL, 2075 alloc_gfp, entry)) { 2076 folio_put(new); 2077 new = ERR_PTR(-ENOMEM); 2078 goto fallback; 2079 } 2080 2081 swapcache = swapin_folio(entry, new); 2082 if (swapcache != new) { 2083 folio_put(new); 2084 if (!swapcache) { 2085 /* 2086 * The new folio is charged already, swapin can 2087 * only fail due to another raced swapin. 2088 */ 2089 new = ERR_PTR(-EEXIST); 2090 goto fallback; 2091 } 2092 } 2093 return swapcache; 2094 fallback: 2095 /* Order 0 swapin failed, nothing to fallback to, abort */ 2096 if (!order) 2097 return new; 2098 entry.val += index - round_down(index, nr_pages); 2099 alloc_gfp = gfp; 2100 nr_pages = 1; 2101 order = 0; 2102 goto retry; 2103 } 2104 2105 /* 2106 * When a page is moved from swapcache to shmem filecache (either by the 2107 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 2108 * shmem_unuse_inode()), it may have been read in earlier from swap, in 2109 * ignorance of the mapping it belongs to. If that mapping has special 2110 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 2111 * we may need to copy to a suitable page before moving to filecache. 2112 * 2113 * In a future release, this may well be extended to respect cpuset and 2114 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 2115 * but for now it is a simple matter of zone. 2116 */ 2117 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 2118 { 2119 return folio_zonenum(folio) > gfp_zone(gfp); 2120 } 2121 2122 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 2123 struct shmem_inode_info *info, pgoff_t index, 2124 struct vm_area_struct *vma) 2125 { 2126 struct swap_cluster_info *ci; 2127 struct folio *new, *old = *foliop; 2128 swp_entry_t entry = old->swap; 2129 int nr_pages = folio_nr_pages(old); 2130 int error = 0; 2131 2132 /* 2133 * We have arrived here because our zones are constrained, so don't 2134 * limit chance of success by further cpuset and node constraints. 2135 */ 2136 gfp &= ~GFP_CONSTRAINT_MASK; 2137 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2138 if (nr_pages > 1) { 2139 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 2140 2141 gfp = limit_gfp_mask(huge_gfp, gfp); 2142 } 2143 #endif 2144 2145 new = shmem_alloc_folio(gfp, folio_order(old), info, index); 2146 if (!new) 2147 return -ENOMEM; 2148 2149 folio_ref_add(new, nr_pages); 2150 folio_copy(new, old); 2151 flush_dcache_folio(new); 2152 2153 __folio_set_locked(new); 2154 __folio_set_swapbacked(new); 2155 folio_mark_uptodate(new); 2156 new->swap = entry; 2157 folio_set_swapcache(new); 2158 2159 ci = swap_cluster_get_and_lock_irq(old); 2160 __swap_cache_replace_folio(ci, old, new); 2161 mem_cgroup_replace_folio(old, new); 2162 shmem_update_stats(new, nr_pages); 2163 shmem_update_stats(old, -nr_pages); 2164 swap_cluster_unlock_irq(ci); 2165 2166 folio_add_lru(new); 2167 *foliop = new; 2168 2169 folio_clear_swapcache(old); 2170 old->private = NULL; 2171 2172 folio_unlock(old); 2173 /* 2174 * The old folio are removed from swap cache, drop the 'nr_pages' 2175 * reference, as well as one temporary reference getting from swap 2176 * cache. 2177 */ 2178 folio_put_refs(old, nr_pages + 1); 2179 return error; 2180 } 2181 2182 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 2183 struct folio *folio, swp_entry_t swap) 2184 { 2185 struct address_space *mapping = inode->i_mapping; 2186 swp_entry_t swapin_error; 2187 void *old; 2188 int nr_pages; 2189 2190 swapin_error = make_poisoned_swp_entry(); 2191 old = xa_cmpxchg_irq(&mapping->i_pages, index, 2192 swp_to_radix_entry(swap), 2193 swp_to_radix_entry(swapin_error), 0); 2194 if (old != swp_to_radix_entry(swap)) 2195 return; 2196 2197 nr_pages = folio_nr_pages(folio); 2198 folio_wait_writeback(folio); 2199 folio_put_swap(folio, NULL); 2200 swap_cache_del_folio(folio); 2201 /* 2202 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 2203 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 2204 * in shmem_evict_inode(). 2205 */ 2206 shmem_recalc_inode(inode, -nr_pages, -nr_pages); 2207 } 2208 2209 static int shmem_split_large_entry(struct inode *inode, pgoff_t index, 2210 swp_entry_t swap, gfp_t gfp) 2211 { 2212 struct address_space *mapping = inode->i_mapping; 2213 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0); 2214 int split_order = 0; 2215 int i; 2216 2217 /* Convert user data gfp flags to xarray node gfp flags */ 2218 gfp &= GFP_RECLAIM_MASK; 2219 2220 for (;;) { 2221 void *old = NULL; 2222 int cur_order; 2223 pgoff_t swap_index; 2224 2225 xas_lock_irq(&xas); 2226 old = xas_load(&xas); 2227 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) { 2228 xas_set_err(&xas, -EEXIST); 2229 goto unlock; 2230 } 2231 2232 cur_order = xas_get_order(&xas); 2233 if (!cur_order) 2234 goto unlock; 2235 2236 /* Try to split large swap entry in pagecache */ 2237 swap_index = round_down(index, 1 << cur_order); 2238 split_order = xas_try_split_min_order(cur_order); 2239 2240 while (cur_order > 0) { 2241 pgoff_t aligned_index = 2242 round_down(index, 1 << cur_order); 2243 pgoff_t swap_offset = aligned_index - swap_index; 2244 2245 xas_set_order(&xas, index, split_order); 2246 xas_try_split(&xas, old, cur_order); 2247 if (xas_error(&xas)) 2248 goto unlock; 2249 2250 /* 2251 * Re-set the swap entry after splitting, and the swap 2252 * offset of the original large entry must be continuous. 2253 */ 2254 for (i = 0; i < 1 << cur_order; 2255 i += (1 << split_order)) { 2256 swp_entry_t tmp; 2257 2258 tmp = swp_entry(swp_type(swap), 2259 swp_offset(swap) + swap_offset + 2260 i); 2261 __xa_store(&mapping->i_pages, aligned_index + i, 2262 swp_to_radix_entry(tmp), 0); 2263 } 2264 cur_order = split_order; 2265 split_order = xas_try_split_min_order(split_order); 2266 } 2267 2268 unlock: 2269 xas_unlock_irq(&xas); 2270 2271 if (!xas_nomem(&xas, gfp)) 2272 break; 2273 } 2274 2275 if (xas_error(&xas)) 2276 return xas_error(&xas); 2277 2278 return 0; 2279 } 2280 2281 /* 2282 * Swap in the folio pointed to by *foliop. 2283 * Caller has to make sure that *foliop contains a valid swapped folio. 2284 * Returns 0 and the folio in foliop if success. On failure, returns the 2285 * error code and NULL in *foliop. 2286 */ 2287 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 2288 struct folio **foliop, enum sgp_type sgp, 2289 gfp_t gfp, struct vm_area_struct *vma, 2290 vm_fault_t *fault_type) 2291 { 2292 struct address_space *mapping = inode->i_mapping; 2293 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL; 2294 struct shmem_inode_info *info = SHMEM_I(inode); 2295 swp_entry_t swap; 2296 softleaf_t index_entry; 2297 struct swap_info_struct *si; 2298 struct folio *folio = NULL; 2299 int error, nr_pages, order; 2300 pgoff_t offset; 2301 2302 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 2303 index_entry = radix_to_swp_entry(*foliop); 2304 swap = index_entry; 2305 *foliop = NULL; 2306 2307 if (softleaf_is_poison_marker(index_entry)) 2308 return -EIO; 2309 2310 si = get_swap_device(index_entry); 2311 order = shmem_confirm_swap(mapping, index, index_entry); 2312 if (unlikely(!si)) { 2313 if (order < 0) 2314 return -EEXIST; 2315 else 2316 return -EINVAL; 2317 } 2318 if (unlikely(order < 0)) { 2319 put_swap_device(si); 2320 return -EEXIST; 2321 } 2322 2323 /* index may point to the middle of a large entry, get the sub entry */ 2324 if (order) { 2325 offset = index - round_down(index, 1 << order); 2326 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2327 } 2328 2329 /* Look it up and read it in.. */ 2330 folio = swap_cache_get_folio(swap); 2331 if (!folio) { 2332 if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) { 2333 /* Direct swapin skipping swap cache & readahead */ 2334 folio = shmem_swap_alloc_folio(inode, vma, index, 2335 index_entry, order, gfp); 2336 if (IS_ERR(folio)) { 2337 error = PTR_ERR(folio); 2338 folio = NULL; 2339 goto failed; 2340 } 2341 } else { 2342 /* Cached swapin only supports order 0 folio */ 2343 folio = shmem_swapin_cluster(swap, gfp, info, index); 2344 if (!folio) { 2345 error = -ENOMEM; 2346 goto failed; 2347 } 2348 } 2349 if (fault_type) { 2350 *fault_type |= VM_FAULT_MAJOR; 2351 count_vm_event(PGMAJFAULT); 2352 count_memcg_event_mm(fault_mm, PGMAJFAULT); 2353 } 2354 } else { 2355 swap_update_readahead(folio, NULL, 0); 2356 } 2357 2358 if (order > folio_order(folio)) { 2359 /* 2360 * Swapin may get smaller folios due to various reasons: 2361 * It may fallback to order 0 due to memory pressure or race, 2362 * swap readahead may swap in order 0 folios into swapcache 2363 * asynchronously, while the shmem mapping can still stores 2364 * large swap entries. In such cases, we should split the 2365 * large swap entry to prevent possible data corruption. 2366 */ 2367 error = shmem_split_large_entry(inode, index, index_entry, gfp); 2368 if (error) 2369 goto failed_nolock; 2370 } 2371 2372 /* 2373 * If the folio is large, round down swap and index by folio size. 2374 * No matter what race occurs, the swap layer ensures we either get 2375 * a valid folio that has its swap entry aligned by size, or a 2376 * temporarily invalid one which we'll abort very soon and retry. 2377 * 2378 * shmem_add_to_page_cache ensures the whole range contains expected 2379 * entries and prevents any corruption, so any race split is fine 2380 * too, it will succeed as long as the entries are still there. 2381 */ 2382 nr_pages = folio_nr_pages(folio); 2383 if (nr_pages > 1) { 2384 swap.val = round_down(swap.val, nr_pages); 2385 index = round_down(index, nr_pages); 2386 } 2387 2388 /* 2389 * We have to do this with the folio locked to prevent races. 2390 * The shmem_confirm_swap below only checks if the first swap 2391 * entry matches the folio, that's enough to ensure the folio 2392 * is not used outside of shmem, as shmem swap entries 2393 * and swap cache folios are never partially freed. 2394 */ 2395 folio_lock(folio); 2396 if (!folio_matches_swap_entry(folio, swap) || 2397 shmem_confirm_swap(mapping, index, swap) < 0) { 2398 error = -EEXIST; 2399 goto unlock; 2400 } 2401 if (!folio_test_uptodate(folio)) { 2402 error = -EIO; 2403 goto failed; 2404 } 2405 folio_wait_writeback(folio); 2406 2407 /* 2408 * Some architectures may have to restore extra metadata to the 2409 * folio after reading from swap. 2410 */ 2411 arch_swap_restore(folio_swap(swap, folio), folio); 2412 2413 if (shmem_should_replace_folio(folio, gfp)) { 2414 error = shmem_replace_folio(&folio, gfp, info, index, vma); 2415 if (error) 2416 goto failed; 2417 } 2418 2419 error = shmem_add_to_page_cache(folio, mapping, index, 2420 swp_to_radix_entry(swap), gfp); 2421 if (error) 2422 goto failed; 2423 2424 shmem_recalc_inode(inode, 0, -nr_pages); 2425 2426 if (sgp == SGP_WRITE) 2427 folio_mark_accessed(folio); 2428 2429 folio_put_swap(folio, NULL); 2430 swap_cache_del_folio(folio); 2431 folio_mark_dirty(folio); 2432 put_swap_device(si); 2433 2434 *foliop = folio; 2435 return 0; 2436 failed: 2437 if (shmem_confirm_swap(mapping, index, swap) < 0) 2438 error = -EEXIST; 2439 if (error == -EIO) 2440 shmem_set_folio_swapin_error(inode, index, folio, swap); 2441 unlock: 2442 if (folio) 2443 folio_unlock(folio); 2444 failed_nolock: 2445 if (folio) 2446 folio_put(folio); 2447 put_swap_device(si); 2448 2449 return error; 2450 } 2451 2452 /* 2453 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 2454 * 2455 * If we allocate a new one we do not mark it dirty. That's up to the 2456 * vm. If we swap it in we mark it dirty since we also free the swap 2457 * entry since a page cannot live in both the swap and page cache. 2458 * 2459 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 2460 */ 2461 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 2462 loff_t write_end, struct folio **foliop, enum sgp_type sgp, 2463 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type) 2464 { 2465 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 2466 struct mm_struct *fault_mm; 2467 struct folio *folio; 2468 int error; 2469 bool alloced; 2470 unsigned long orders = 0; 2471 2472 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 2473 return -EINVAL; 2474 2475 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 2476 return -EFBIG; 2477 repeat: 2478 if (sgp <= SGP_CACHE && 2479 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 2480 return -EINVAL; 2481 2482 alloced = false; 2483 fault_mm = vma ? vma->vm_mm : NULL; 2484 2485 folio = filemap_get_entry(inode->i_mapping, index); 2486 if (folio && vma && userfaultfd_minor(vma)) { 2487 if (!xa_is_value(folio)) 2488 folio_put(folio); 2489 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 2490 return 0; 2491 } 2492 2493 if (xa_is_value(folio)) { 2494 error = shmem_swapin_folio(inode, index, &folio, 2495 sgp, gfp, vma, fault_type); 2496 if (error == -EEXIST) 2497 goto repeat; 2498 2499 *foliop = folio; 2500 return error; 2501 } 2502 2503 if (folio) { 2504 folio_lock(folio); 2505 2506 /* Has the folio been truncated or swapped out? */ 2507 if (unlikely(folio->mapping != inode->i_mapping)) { 2508 folio_unlock(folio); 2509 folio_put(folio); 2510 goto repeat; 2511 } 2512 if (sgp == SGP_WRITE) 2513 folio_mark_accessed(folio); 2514 if (folio_test_uptodate(folio)) 2515 goto out; 2516 /* fallocated folio */ 2517 if (sgp != SGP_READ) 2518 goto clear; 2519 folio_unlock(folio); 2520 folio_put(folio); 2521 } 2522 2523 /* 2524 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2525 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2526 */ 2527 *foliop = NULL; 2528 if (sgp == SGP_READ) 2529 return 0; 2530 if (sgp == SGP_NOALLOC) 2531 return -ENOENT; 2532 2533 /* 2534 * Fast cache lookup and swap lookup did not find it: allocate. 2535 */ 2536 2537 if (vma && userfaultfd_missing(vma)) { 2538 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2539 return 0; 2540 } 2541 2542 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */ 2543 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false); 2544 if (orders > 0) { 2545 gfp_t huge_gfp; 2546 2547 huge_gfp = vma_thp_gfp_mask(vma); 2548 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2549 folio = shmem_alloc_and_add_folio(vmf, huge_gfp, 2550 inode, index, fault_mm, orders); 2551 if (!IS_ERR(folio)) { 2552 if (folio_test_pmd_mappable(folio)) 2553 count_vm_event(THP_FILE_ALLOC); 2554 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC); 2555 goto alloced; 2556 } 2557 if (PTR_ERR(folio) == -EEXIST) 2558 goto repeat; 2559 } 2560 2561 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0); 2562 if (IS_ERR(folio)) { 2563 error = PTR_ERR(folio); 2564 if (error == -EEXIST) 2565 goto repeat; 2566 folio = NULL; 2567 goto unlock; 2568 } 2569 2570 alloced: 2571 alloced = true; 2572 if (folio_test_large(folio) && 2573 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2574 folio_next_index(folio)) { 2575 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2576 struct shmem_inode_info *info = SHMEM_I(inode); 2577 /* 2578 * Part of the large folio is beyond i_size: subject 2579 * to shrink under memory pressure. 2580 */ 2581 spin_lock(&sbinfo->shrinklist_lock); 2582 /* 2583 * _careful to defend against unlocked access to 2584 * ->shrink_list in shmem_unused_huge_shrink() 2585 */ 2586 if (list_empty_careful(&info->shrinklist)) { 2587 list_add_tail(&info->shrinklist, 2588 &sbinfo->shrinklist); 2589 sbinfo->shrinklist_len++; 2590 } 2591 spin_unlock(&sbinfo->shrinklist_lock); 2592 } 2593 2594 if (sgp == SGP_WRITE) 2595 folio_set_referenced(folio); 2596 /* 2597 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2598 */ 2599 if (sgp == SGP_FALLOC) 2600 sgp = SGP_WRITE; 2601 clear: 2602 /* 2603 * Let SGP_WRITE caller clear ends if write does not fill folio; 2604 * but SGP_FALLOC on a folio fallocated earlier must initialize 2605 * it now, lest undo on failure cancel our earlier guarantee. 2606 */ 2607 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2608 long i, n = folio_nr_pages(folio); 2609 2610 for (i = 0; i < n; i++) 2611 clear_highpage(folio_page(folio, i)); 2612 flush_dcache_folio(folio); 2613 folio_mark_uptodate(folio); 2614 } 2615 2616 /* Perhaps the file has been truncated since we checked */ 2617 if (sgp <= SGP_CACHE && 2618 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2619 error = -EINVAL; 2620 goto unlock; 2621 } 2622 out: 2623 *foliop = folio; 2624 return 0; 2625 2626 /* 2627 * Error recovery. 2628 */ 2629 unlock: 2630 if (alloced) 2631 filemap_remove_folio(folio); 2632 shmem_recalc_inode(inode, 0, 0); 2633 if (folio) { 2634 folio_unlock(folio); 2635 folio_put(folio); 2636 } 2637 return error; 2638 } 2639 2640 /** 2641 * shmem_get_folio - find, and lock a shmem folio. 2642 * @inode: inode to search 2643 * @index: the page index. 2644 * @write_end: end of a write, could extend inode size 2645 * @foliop: pointer to the folio if found 2646 * @sgp: SGP_* flags to control behavior 2647 * 2648 * Looks up the page cache entry at @inode & @index. If a folio is 2649 * present, it is returned locked with an increased refcount. 2650 * 2651 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2652 * before unlocking the folio to ensure that the folio is not reclaimed. 2653 * There is no need to reserve space before calling folio_mark_dirty(). 2654 * 2655 * When no folio is found, the behavior depends on @sgp: 2656 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2657 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2658 * - for all other flags a new folio is allocated, inserted into the 2659 * page cache and returned locked in @foliop. 2660 * 2661 * Context: May sleep. 2662 * Return: 0 if successful, else a negative error code. 2663 */ 2664 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end, 2665 struct folio **foliop, enum sgp_type sgp) 2666 { 2667 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp, 2668 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2669 } 2670 EXPORT_SYMBOL_GPL(shmem_get_folio); 2671 2672 /* 2673 * This is like autoremove_wake_function, but it removes the wait queue 2674 * entry unconditionally - even if something else had already woken the 2675 * target. 2676 */ 2677 static int synchronous_wake_function(wait_queue_entry_t *wait, 2678 unsigned int mode, int sync, void *key) 2679 { 2680 int ret = default_wake_function(wait, mode, sync, key); 2681 list_del_init(&wait->entry); 2682 return ret; 2683 } 2684 2685 /* 2686 * Trinity finds that probing a hole which tmpfs is punching can 2687 * prevent the hole-punch from ever completing: which in turn 2688 * locks writers out with its hold on i_rwsem. So refrain from 2689 * faulting pages into the hole while it's being punched. Although 2690 * shmem_undo_range() does remove the additions, it may be unable to 2691 * keep up, as each new page needs its own unmap_mapping_range() call, 2692 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2693 * 2694 * It does not matter if we sometimes reach this check just before the 2695 * hole-punch begins, so that one fault then races with the punch: 2696 * we just need to make racing faults a rare case. 2697 * 2698 * The implementation below would be much simpler if we just used a 2699 * standard mutex or completion: but we cannot take i_rwsem in fault, 2700 * and bloating every shmem inode for this unlikely case would be sad. 2701 */ 2702 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2703 { 2704 struct shmem_falloc *shmem_falloc; 2705 struct file *fpin = NULL; 2706 vm_fault_t ret = 0; 2707 2708 spin_lock(&inode->i_lock); 2709 shmem_falloc = inode->i_private; 2710 if (shmem_falloc && 2711 shmem_falloc->waitq && 2712 vmf->pgoff >= shmem_falloc->start && 2713 vmf->pgoff < shmem_falloc->next) { 2714 wait_queue_head_t *shmem_falloc_waitq; 2715 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2716 2717 ret = VM_FAULT_NOPAGE; 2718 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2719 shmem_falloc_waitq = shmem_falloc->waitq; 2720 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2721 TASK_UNINTERRUPTIBLE); 2722 spin_unlock(&inode->i_lock); 2723 schedule(); 2724 2725 /* 2726 * shmem_falloc_waitq points into the shmem_fallocate() 2727 * stack of the hole-punching task: shmem_falloc_waitq 2728 * is usually invalid by the time we reach here, but 2729 * finish_wait() does not dereference it in that case; 2730 * though i_lock needed lest racing with wake_up_all(). 2731 */ 2732 spin_lock(&inode->i_lock); 2733 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2734 } 2735 spin_unlock(&inode->i_lock); 2736 if (fpin) { 2737 fput(fpin); 2738 ret = VM_FAULT_RETRY; 2739 } 2740 return ret; 2741 } 2742 2743 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2744 { 2745 struct inode *inode = file_inode(vmf->vma->vm_file); 2746 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2747 struct folio *folio = NULL; 2748 vm_fault_t ret = 0; 2749 int err; 2750 2751 /* 2752 * Trinity finds that probing a hole which tmpfs is punching can 2753 * prevent the hole-punch from ever completing: noted in i_private. 2754 */ 2755 if (unlikely(inode->i_private)) { 2756 ret = shmem_falloc_wait(vmf, inode); 2757 if (ret) 2758 return ret; 2759 } 2760 2761 WARN_ON_ONCE(vmf->page != NULL); 2762 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE, 2763 gfp, vmf, &ret); 2764 if (err) 2765 return vmf_error(err); 2766 if (folio) { 2767 vmf->page = folio_file_page(folio, vmf->pgoff); 2768 ret |= VM_FAULT_LOCKED; 2769 } 2770 return ret; 2771 } 2772 2773 unsigned long shmem_get_unmapped_area(struct file *file, 2774 unsigned long uaddr, unsigned long len, 2775 unsigned long pgoff, unsigned long flags) 2776 { 2777 unsigned long addr; 2778 unsigned long offset; 2779 unsigned long inflated_len; 2780 unsigned long inflated_addr; 2781 unsigned long inflated_offset; 2782 unsigned long hpage_size; 2783 2784 if (len > TASK_SIZE) 2785 return -ENOMEM; 2786 2787 addr = mm_get_unmapped_area(file, uaddr, len, pgoff, flags); 2788 2789 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2790 return addr; 2791 if (IS_ERR_VALUE(addr)) 2792 return addr; 2793 if (addr & ~PAGE_MASK) 2794 return addr; 2795 if (addr > TASK_SIZE - len) 2796 return addr; 2797 2798 if (shmem_huge == SHMEM_HUGE_DENY) 2799 return addr; 2800 if (flags & MAP_FIXED) 2801 return addr; 2802 /* 2803 * Our priority is to support MAP_SHARED mapped hugely; 2804 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2805 * But if caller specified an address hint and we allocated area there 2806 * successfully, respect that as before. 2807 */ 2808 if (uaddr == addr) 2809 return addr; 2810 2811 hpage_size = HPAGE_PMD_SIZE; 2812 if (shmem_huge != SHMEM_HUGE_FORCE) { 2813 struct super_block *sb; 2814 unsigned long __maybe_unused hpage_orders; 2815 int order = 0; 2816 2817 if (file) { 2818 VM_BUG_ON(file->f_op != &shmem_file_operations); 2819 sb = file_inode(file)->i_sb; 2820 } else { 2821 /* 2822 * Called directly from mm/mmap.c, or drivers/char/mem.c 2823 * for "/dev/zero", to create a shared anonymous object. 2824 */ 2825 if (IS_ERR(shm_mnt)) 2826 return addr; 2827 sb = shm_mnt->mnt_sb; 2828 2829 /* 2830 * Find the highest mTHP order used for anonymous shmem to 2831 * provide a suitable alignment address. 2832 */ 2833 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2834 hpage_orders = READ_ONCE(huge_shmem_orders_always); 2835 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size); 2836 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise); 2837 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 2838 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit); 2839 2840 if (hpage_orders > 0) { 2841 order = highest_order(hpage_orders); 2842 hpage_size = PAGE_SIZE << order; 2843 } 2844 #endif 2845 } 2846 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order) 2847 return addr; 2848 } 2849 2850 if (len < hpage_size) 2851 return addr; 2852 2853 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1); 2854 if (offset && offset + len < 2 * hpage_size) 2855 return addr; 2856 if ((addr & (hpage_size - 1)) == offset) 2857 return addr; 2858 2859 inflated_len = len + hpage_size - PAGE_SIZE; 2860 if (inflated_len > TASK_SIZE) 2861 return addr; 2862 if (inflated_len < len) 2863 return addr; 2864 2865 inflated_addr = mm_get_unmapped_area(NULL, uaddr, inflated_len, 0, flags); 2866 if (IS_ERR_VALUE(inflated_addr)) 2867 return addr; 2868 if (inflated_addr & ~PAGE_MASK) 2869 return addr; 2870 2871 inflated_offset = inflated_addr & (hpage_size - 1); 2872 inflated_addr += offset - inflated_offset; 2873 if (inflated_offset > offset) 2874 inflated_addr += hpage_size; 2875 2876 if (inflated_addr > TASK_SIZE - len) 2877 return addr; 2878 return inflated_addr; 2879 } 2880 2881 #ifdef CONFIG_NUMA 2882 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2883 { 2884 struct inode *inode = file_inode(vma->vm_file); 2885 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2886 } 2887 2888 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2889 unsigned long addr, pgoff_t *ilx) 2890 { 2891 struct inode *inode = file_inode(vma->vm_file); 2892 pgoff_t index; 2893 2894 /* 2895 * Bias interleave by inode number to distribute better across nodes; 2896 * but this interface is independent of which page order is used, so 2897 * supplies only that bias, letting caller apply the offset (adjusted 2898 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2899 */ 2900 *ilx = inode->i_ino; 2901 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2902 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2903 } 2904 2905 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2906 pgoff_t index, unsigned int order, pgoff_t *ilx) 2907 { 2908 struct mempolicy *mpol; 2909 2910 /* Bias interleave by inode number to distribute better across nodes */ 2911 *ilx = info->vfs_inode.i_ino + (index >> order); 2912 2913 mpol = mpol_shared_policy_lookup(&info->policy, index); 2914 return mpol ? mpol : get_task_policy(current); 2915 } 2916 #else 2917 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2918 pgoff_t index, unsigned int order, pgoff_t *ilx) 2919 { 2920 *ilx = 0; 2921 return NULL; 2922 } 2923 #endif /* CONFIG_NUMA */ 2924 2925 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2926 { 2927 struct inode *inode = file_inode(file); 2928 struct shmem_inode_info *info = SHMEM_I(inode); 2929 int retval = -ENOMEM; 2930 2931 /* 2932 * What serializes the accesses to info->flags? 2933 * ipc_lock_object() when called from shmctl_do_lock(), 2934 * no serialization needed when called from shm_destroy(). 2935 */ 2936 if (lock && !(info->flags & SHMEM_F_LOCKED)) { 2937 if (!user_shm_lock(inode->i_size, ucounts)) 2938 goto out_nomem; 2939 info->flags |= SHMEM_F_LOCKED; 2940 mapping_set_unevictable(file->f_mapping); 2941 } 2942 if (!lock && (info->flags & SHMEM_F_LOCKED) && ucounts) { 2943 user_shm_unlock(inode->i_size, ucounts); 2944 info->flags &= ~SHMEM_F_LOCKED; 2945 mapping_clear_unevictable(file->f_mapping); 2946 } 2947 retval = 0; 2948 2949 out_nomem: 2950 return retval; 2951 } 2952 2953 static int shmem_mmap_prepare(struct vm_area_desc *desc) 2954 { 2955 struct file *file = desc->file; 2956 struct inode *inode = file_inode(file); 2957 2958 file_accessed(file); 2959 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2960 if (inode->i_nlink) 2961 desc->vm_ops = &shmem_vm_ops; 2962 else 2963 desc->vm_ops = &shmem_anon_vm_ops; 2964 return 0; 2965 } 2966 2967 static int shmem_file_open(struct inode *inode, struct file *file) 2968 { 2969 file->f_mode |= FMODE_CAN_ODIRECT; 2970 return generic_file_open(inode, file); 2971 } 2972 2973 #ifdef CONFIG_TMPFS_XATTR 2974 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2975 2976 #if IS_ENABLED(CONFIG_UNICODE) 2977 /* 2978 * shmem_inode_casefold_flags - Deal with casefold file attribute flag 2979 * 2980 * The casefold file attribute needs some special checks. I can just be added to 2981 * an empty dir, and can't be removed from a non-empty dir. 2982 */ 2983 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 2984 struct dentry *dentry, unsigned int *i_flags) 2985 { 2986 unsigned int old = inode->i_flags; 2987 struct super_block *sb = inode->i_sb; 2988 2989 if (fsflags & FS_CASEFOLD_FL) { 2990 if (!(old & S_CASEFOLD)) { 2991 if (!sb->s_encoding) 2992 return -EOPNOTSUPP; 2993 2994 if (!S_ISDIR(inode->i_mode)) 2995 return -ENOTDIR; 2996 2997 if (dentry && !simple_empty(dentry)) 2998 return -ENOTEMPTY; 2999 } 3000 3001 *i_flags = *i_flags | S_CASEFOLD; 3002 } else if (old & S_CASEFOLD) { 3003 if (dentry && !simple_empty(dentry)) 3004 return -ENOTEMPTY; 3005 } 3006 3007 return 0; 3008 } 3009 #else 3010 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 3011 struct dentry *dentry, unsigned int *i_flags) 3012 { 3013 if (fsflags & FS_CASEFOLD_FL) 3014 return -EOPNOTSUPP; 3015 3016 return 0; 3017 } 3018 #endif 3019 3020 /* 3021 * chattr's fsflags are unrelated to extended attributes, 3022 * but tmpfs has chosen to enable them under the same config option. 3023 */ 3024 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3025 { 3026 unsigned int i_flags = 0; 3027 int ret; 3028 3029 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags); 3030 if (ret) 3031 return ret; 3032 3033 if (fsflags & FS_NOATIME_FL) 3034 i_flags |= S_NOATIME; 3035 if (fsflags & FS_APPEND_FL) 3036 i_flags |= S_APPEND; 3037 if (fsflags & FS_IMMUTABLE_FL) 3038 i_flags |= S_IMMUTABLE; 3039 /* 3040 * But FS_NODUMP_FL does not require any action in i_flags. 3041 */ 3042 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD); 3043 3044 return 0; 3045 } 3046 #else 3047 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3048 { 3049 } 3050 #define shmem_initxattrs NULL 3051 #endif 3052 3053 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 3054 { 3055 return &SHMEM_I(inode)->dir_offsets; 3056 } 3057 3058 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 3059 struct super_block *sb, 3060 struct inode *dir, umode_t mode, 3061 dev_t dev, vma_flags_t flags) 3062 { 3063 struct inode *inode; 3064 struct shmem_inode_info *info; 3065 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3066 ino_t ino; 3067 int err; 3068 3069 err = shmem_reserve_inode(sb, &ino); 3070 if (err) 3071 return ERR_PTR(err); 3072 3073 inode = new_inode(sb); 3074 if (!inode) { 3075 shmem_free_inode(sb, 0); 3076 return ERR_PTR(-ENOSPC); 3077 } 3078 3079 inode->i_ino = ino; 3080 inode_init_owner(idmap, inode, dir, mode); 3081 inode->i_blocks = 0; 3082 simple_inode_init_ts(inode); 3083 inode->i_generation = get_random_u32(); 3084 info = SHMEM_I(inode); 3085 memset(info, 0, (char *)inode - (char *)info); 3086 spin_lock_init(&info->lock); 3087 atomic_set(&info->stop_eviction, 0); 3088 info->seals = F_SEAL_SEAL; 3089 info->flags = vma_flags_test(&flags, VMA_NORESERVE_BIT) 3090 ? SHMEM_F_NORESERVE : 0; 3091 info->i_crtime = inode_get_mtime(inode); 3092 info->fsflags = (dir == NULL) ? 0 : 3093 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 3094 if (info->fsflags) 3095 shmem_set_inode_flags(inode, info->fsflags, NULL); 3096 INIT_LIST_HEAD(&info->shrinklist); 3097 INIT_LIST_HEAD(&info->swaplist); 3098 simple_xattrs_init(&info->xattrs); 3099 cache_no_acl(inode); 3100 if (sbinfo->noswap) 3101 mapping_set_unevictable(inode->i_mapping); 3102 3103 /* Don't consider 'deny' for emergencies and 'force' for testing */ 3104 if (sbinfo->huge) 3105 mapping_set_large_folios(inode->i_mapping); 3106 3107 switch (mode & S_IFMT) { 3108 default: 3109 inode->i_op = &shmem_special_inode_operations; 3110 init_special_inode(inode, mode, dev); 3111 break; 3112 case S_IFREG: 3113 inode->i_mapping->a_ops = &shmem_aops; 3114 inode->i_op = &shmem_inode_operations; 3115 inode->i_fop = &shmem_file_operations; 3116 mpol_shared_policy_init(&info->policy, 3117 shmem_get_sbmpol(sbinfo)); 3118 break; 3119 case S_IFDIR: 3120 inc_nlink(inode); 3121 /* Some things misbehave if size == 0 on a directory */ 3122 inode->i_size = 2 * BOGO_DIRENT_SIZE; 3123 inode->i_op = &shmem_dir_inode_operations; 3124 inode->i_fop = &simple_offset_dir_operations; 3125 simple_offset_init(shmem_get_offset_ctx(inode)); 3126 break; 3127 case S_IFLNK: 3128 /* 3129 * Must not load anything in the rbtree, 3130 * mpol_free_shared_policy will not be called. 3131 */ 3132 mpol_shared_policy_init(&info->policy, NULL); 3133 break; 3134 } 3135 3136 lockdep_annotate_inode_mutex_key(inode); 3137 return inode; 3138 } 3139 3140 #ifdef CONFIG_TMPFS_QUOTA 3141 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3142 struct super_block *sb, struct inode *dir, 3143 umode_t mode, dev_t dev, vma_flags_t flags) 3144 { 3145 int err; 3146 struct inode *inode; 3147 3148 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3149 if (IS_ERR(inode)) 3150 return inode; 3151 3152 err = dquot_initialize(inode); 3153 if (err) 3154 goto errout; 3155 3156 err = dquot_alloc_inode(inode); 3157 if (err) { 3158 dquot_drop(inode); 3159 goto errout; 3160 } 3161 return inode; 3162 3163 errout: 3164 inode->i_flags |= S_NOQUOTA; 3165 iput(inode); 3166 return ERR_PTR(err); 3167 } 3168 #else 3169 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3170 struct super_block *sb, struct inode *dir, 3171 umode_t mode, dev_t dev, vma_flags_t flags) 3172 { 3173 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3174 } 3175 #endif /* CONFIG_TMPFS_QUOTA */ 3176 3177 #ifdef CONFIG_USERFAULTFD 3178 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 3179 struct vm_area_struct *dst_vma, 3180 unsigned long dst_addr, 3181 unsigned long src_addr, 3182 uffd_flags_t flags, 3183 struct folio **foliop) 3184 { 3185 struct inode *inode = file_inode(dst_vma->vm_file); 3186 struct shmem_inode_info *info = SHMEM_I(inode); 3187 struct address_space *mapping = inode->i_mapping; 3188 gfp_t gfp = mapping_gfp_mask(mapping); 3189 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 3190 void *page_kaddr; 3191 struct folio *folio; 3192 int ret; 3193 pgoff_t max_off; 3194 3195 if (shmem_inode_acct_blocks(inode, 1)) { 3196 /* 3197 * We may have got a page, returned -ENOENT triggering a retry, 3198 * and now we find ourselves with -ENOMEM. Release the page, to 3199 * avoid a BUG_ON in our caller. 3200 */ 3201 if (unlikely(*foliop)) { 3202 folio_put(*foliop); 3203 *foliop = NULL; 3204 } 3205 return -ENOMEM; 3206 } 3207 3208 if (!*foliop) { 3209 ret = -ENOMEM; 3210 folio = shmem_alloc_folio(gfp, 0, info, pgoff); 3211 if (!folio) 3212 goto out_unacct_blocks; 3213 3214 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 3215 page_kaddr = kmap_local_folio(folio, 0); 3216 /* 3217 * The read mmap_lock is held here. Despite the 3218 * mmap_lock being read recursive a deadlock is still 3219 * possible if a writer has taken a lock. For example: 3220 * 3221 * process A thread 1 takes read lock on own mmap_lock 3222 * process A thread 2 calls mmap, blocks taking write lock 3223 * process B thread 1 takes page fault, read lock on own mmap lock 3224 * process B thread 2 calls mmap, blocks taking write lock 3225 * process A thread 1 blocks taking read lock on process B 3226 * process B thread 1 blocks taking read lock on process A 3227 * 3228 * Disable page faults to prevent potential deadlock 3229 * and retry the copy outside the mmap_lock. 3230 */ 3231 pagefault_disable(); 3232 ret = copy_from_user(page_kaddr, 3233 (const void __user *)src_addr, 3234 PAGE_SIZE); 3235 pagefault_enable(); 3236 kunmap_local(page_kaddr); 3237 3238 /* fallback to copy_from_user outside mmap_lock */ 3239 if (unlikely(ret)) { 3240 *foliop = folio; 3241 ret = -ENOENT; 3242 /* don't free the page */ 3243 goto out_unacct_blocks; 3244 } 3245 3246 flush_dcache_folio(folio); 3247 } else { /* ZEROPAGE */ 3248 clear_user_highpage(&folio->page, dst_addr); 3249 } 3250 } else { 3251 folio = *foliop; 3252 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 3253 *foliop = NULL; 3254 } 3255 3256 VM_BUG_ON(folio_test_locked(folio)); 3257 VM_BUG_ON(folio_test_swapbacked(folio)); 3258 __folio_set_locked(folio); 3259 __folio_set_swapbacked(folio); 3260 __folio_mark_uptodate(folio); 3261 3262 ret = -EFAULT; 3263 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3264 if (unlikely(pgoff >= max_off)) 3265 goto out_release; 3266 3267 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 3268 if (ret) 3269 goto out_release; 3270 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 3271 if (ret) 3272 goto out_release; 3273 3274 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 3275 &folio->page, true, flags); 3276 if (ret) 3277 goto out_delete_from_cache; 3278 3279 shmem_recalc_inode(inode, 1, 0); 3280 folio_unlock(folio); 3281 return 0; 3282 out_delete_from_cache: 3283 filemap_remove_folio(folio); 3284 out_release: 3285 folio_unlock(folio); 3286 folio_put(folio); 3287 out_unacct_blocks: 3288 shmem_inode_unacct_blocks(inode, 1); 3289 return ret; 3290 } 3291 #endif /* CONFIG_USERFAULTFD */ 3292 3293 #ifdef CONFIG_TMPFS 3294 static const struct inode_operations shmem_symlink_inode_operations; 3295 static const struct inode_operations shmem_short_symlink_operations; 3296 3297 static int 3298 shmem_write_begin(const struct kiocb *iocb, struct address_space *mapping, 3299 loff_t pos, unsigned len, 3300 struct folio **foliop, void **fsdata) 3301 { 3302 struct inode *inode = mapping->host; 3303 struct shmem_inode_info *info = SHMEM_I(inode); 3304 pgoff_t index = pos >> PAGE_SHIFT; 3305 struct folio *folio; 3306 int ret = 0; 3307 3308 /* i_rwsem is held by caller */ 3309 if (unlikely(info->seals & (F_SEAL_GROW | 3310 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 3311 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 3312 return -EPERM; 3313 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 3314 return -EPERM; 3315 } 3316 3317 if (unlikely((info->flags & SHMEM_F_MAPPING_FROZEN) && 3318 pos + len > inode->i_size)) 3319 return -EPERM; 3320 3321 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE); 3322 if (ret) 3323 return ret; 3324 3325 if (folio_contain_hwpoisoned_page(folio)) { 3326 folio_unlock(folio); 3327 folio_put(folio); 3328 return -EIO; 3329 } 3330 3331 *foliop = folio; 3332 return 0; 3333 } 3334 3335 static int 3336 shmem_write_end(const struct kiocb *iocb, struct address_space *mapping, 3337 loff_t pos, unsigned len, unsigned copied, 3338 struct folio *folio, void *fsdata) 3339 { 3340 struct inode *inode = mapping->host; 3341 3342 if (pos + copied > inode->i_size) 3343 i_size_write(inode, pos + copied); 3344 3345 if (!folio_test_uptodate(folio)) { 3346 if (copied < folio_size(folio)) { 3347 size_t from = offset_in_folio(folio, pos); 3348 folio_zero_segments(folio, 0, from, 3349 from + copied, folio_size(folio)); 3350 } 3351 folio_mark_uptodate(folio); 3352 } 3353 folio_mark_dirty(folio); 3354 folio_unlock(folio); 3355 folio_put(folio); 3356 3357 return copied; 3358 } 3359 3360 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3361 { 3362 struct file *file = iocb->ki_filp; 3363 struct inode *inode = file_inode(file); 3364 struct address_space *mapping = inode->i_mapping; 3365 pgoff_t index; 3366 unsigned long offset; 3367 int error = 0; 3368 ssize_t retval = 0; 3369 3370 for (;;) { 3371 struct folio *folio = NULL; 3372 struct page *page = NULL; 3373 unsigned long nr, ret; 3374 loff_t end_offset, i_size = i_size_read(inode); 3375 bool fallback_page_copy = false; 3376 size_t fsize; 3377 3378 if (unlikely(iocb->ki_pos >= i_size)) 3379 break; 3380 3381 index = iocb->ki_pos >> PAGE_SHIFT; 3382 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3383 if (error) { 3384 if (error == -EINVAL) 3385 error = 0; 3386 break; 3387 } 3388 if (folio) { 3389 folio_unlock(folio); 3390 3391 page = folio_file_page(folio, index); 3392 if (PageHWPoison(page)) { 3393 folio_put(folio); 3394 error = -EIO; 3395 break; 3396 } 3397 3398 if (folio_test_large(folio) && 3399 folio_test_has_hwpoisoned(folio)) 3400 fallback_page_copy = true; 3401 } 3402 3403 /* 3404 * We must evaluate after, since reads (unlike writes) 3405 * are called without i_rwsem protection against truncate 3406 */ 3407 i_size = i_size_read(inode); 3408 if (unlikely(iocb->ki_pos >= i_size)) { 3409 if (folio) 3410 folio_put(folio); 3411 break; 3412 } 3413 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count); 3414 if (folio && likely(!fallback_page_copy)) 3415 fsize = folio_size(folio); 3416 else 3417 fsize = PAGE_SIZE; 3418 offset = iocb->ki_pos & (fsize - 1); 3419 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset); 3420 3421 if (folio) { 3422 /* 3423 * If users can be writing to this page using arbitrary 3424 * virtual addresses, take care about potential aliasing 3425 * before reading the page on the kernel side. 3426 */ 3427 if (mapping_writably_mapped(mapping)) { 3428 if (likely(!fallback_page_copy)) 3429 flush_dcache_folio(folio); 3430 else 3431 flush_dcache_page(page); 3432 } 3433 3434 /* 3435 * Mark the folio accessed if we read the beginning. 3436 */ 3437 if (!offset) 3438 folio_mark_accessed(folio); 3439 /* 3440 * Ok, we have the page, and it's up-to-date, so 3441 * now we can copy it to user space... 3442 */ 3443 if (likely(!fallback_page_copy)) 3444 ret = copy_folio_to_iter(folio, offset, nr, to); 3445 else 3446 ret = copy_page_to_iter(page, offset, nr, to); 3447 folio_put(folio); 3448 } else if (user_backed_iter(to)) { 3449 /* 3450 * Copy to user tends to be so well optimized, but 3451 * clear_user() not so much, that it is noticeably 3452 * faster to copy the zero page instead of clearing. 3453 */ 3454 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 3455 } else { 3456 /* 3457 * But submitting the same page twice in a row to 3458 * splice() - or others? - can result in confusion: 3459 * so don't attempt that optimization on pipes etc. 3460 */ 3461 ret = iov_iter_zero(nr, to); 3462 } 3463 3464 retval += ret; 3465 iocb->ki_pos += ret; 3466 3467 if (!iov_iter_count(to)) 3468 break; 3469 if (ret < nr) { 3470 error = -EFAULT; 3471 break; 3472 } 3473 cond_resched(); 3474 } 3475 3476 file_accessed(file); 3477 return retval ? retval : error; 3478 } 3479 3480 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3481 { 3482 struct file *file = iocb->ki_filp; 3483 struct inode *inode = file->f_mapping->host; 3484 ssize_t ret; 3485 3486 inode_lock(inode); 3487 ret = generic_write_checks(iocb, from); 3488 if (ret <= 0) 3489 goto unlock; 3490 ret = file_remove_privs(file); 3491 if (ret) 3492 goto unlock; 3493 ret = file_update_time(file); 3494 if (ret) 3495 goto unlock; 3496 ret = generic_perform_write(iocb, from); 3497 unlock: 3498 inode_unlock(inode); 3499 return ret; 3500 } 3501 3502 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 3503 struct pipe_buffer *buf) 3504 { 3505 return true; 3506 } 3507 3508 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 3509 struct pipe_buffer *buf) 3510 { 3511 } 3512 3513 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 3514 struct pipe_buffer *buf) 3515 { 3516 return false; 3517 } 3518 3519 static const struct pipe_buf_operations zero_pipe_buf_ops = { 3520 .release = zero_pipe_buf_release, 3521 .try_steal = zero_pipe_buf_try_steal, 3522 .get = zero_pipe_buf_get, 3523 }; 3524 3525 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 3526 loff_t fpos, size_t size) 3527 { 3528 size_t offset = fpos & ~PAGE_MASK; 3529 3530 size = min_t(size_t, size, PAGE_SIZE - offset); 3531 3532 if (!pipe_is_full(pipe)) { 3533 struct pipe_buffer *buf = pipe_head_buf(pipe); 3534 3535 *buf = (struct pipe_buffer) { 3536 .ops = &zero_pipe_buf_ops, 3537 .page = ZERO_PAGE(0), 3538 .offset = offset, 3539 .len = size, 3540 }; 3541 pipe->head++; 3542 } 3543 3544 return size; 3545 } 3546 3547 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 3548 struct pipe_inode_info *pipe, 3549 size_t len, unsigned int flags) 3550 { 3551 struct inode *inode = file_inode(in); 3552 struct address_space *mapping = inode->i_mapping; 3553 struct folio *folio = NULL; 3554 size_t total_spliced = 0, used, npages, n, part; 3555 loff_t isize; 3556 int error = 0; 3557 3558 /* Work out how much data we can actually add into the pipe */ 3559 used = pipe_buf_usage(pipe); 3560 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3561 len = min_t(size_t, len, npages * PAGE_SIZE); 3562 3563 do { 3564 bool fallback_page_splice = false; 3565 struct page *page = NULL; 3566 pgoff_t index; 3567 size_t size; 3568 3569 if (*ppos >= i_size_read(inode)) 3570 break; 3571 3572 index = *ppos >> PAGE_SHIFT; 3573 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3574 if (error) { 3575 if (error == -EINVAL) 3576 error = 0; 3577 break; 3578 } 3579 if (folio) { 3580 folio_unlock(folio); 3581 3582 page = folio_file_page(folio, index); 3583 if (PageHWPoison(page)) { 3584 error = -EIO; 3585 break; 3586 } 3587 3588 if (folio_test_large(folio) && 3589 folio_test_has_hwpoisoned(folio)) 3590 fallback_page_splice = true; 3591 } 3592 3593 /* 3594 * i_size must be checked after we know the pages are Uptodate. 3595 * 3596 * Checking i_size after the check allows us to calculate 3597 * the correct value for "nr", which means the zero-filled 3598 * part of the page is not copied back to userspace (unless 3599 * another truncate extends the file - this is desired though). 3600 */ 3601 isize = i_size_read(inode); 3602 if (unlikely(*ppos >= isize)) 3603 break; 3604 /* 3605 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned 3606 * pages. 3607 */ 3608 size = len; 3609 if (unlikely(fallback_page_splice)) { 3610 size_t offset = *ppos & ~PAGE_MASK; 3611 3612 size = umin(size, PAGE_SIZE - offset); 3613 } 3614 part = min_t(loff_t, isize - *ppos, size); 3615 3616 if (folio) { 3617 /* 3618 * If users can be writing to this page using arbitrary 3619 * virtual addresses, take care about potential aliasing 3620 * before reading the page on the kernel side. 3621 */ 3622 if (mapping_writably_mapped(mapping)) { 3623 if (likely(!fallback_page_splice)) 3624 flush_dcache_folio(folio); 3625 else 3626 flush_dcache_page(page); 3627 } 3628 folio_mark_accessed(folio); 3629 /* 3630 * Ok, we have the page, and it's up-to-date, so we can 3631 * now splice it into the pipe. 3632 */ 3633 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3634 folio_put(folio); 3635 folio = NULL; 3636 } else { 3637 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3638 } 3639 3640 if (!n) 3641 break; 3642 len -= n; 3643 total_spliced += n; 3644 *ppos += n; 3645 in->f_ra.prev_pos = *ppos; 3646 if (pipe_is_full(pipe)) 3647 break; 3648 3649 cond_resched(); 3650 } while (len); 3651 3652 if (folio) 3653 folio_put(folio); 3654 3655 file_accessed(in); 3656 return total_spliced ? total_spliced : error; 3657 } 3658 3659 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3660 { 3661 struct address_space *mapping = file->f_mapping; 3662 struct inode *inode = mapping->host; 3663 3664 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3665 return generic_file_llseek_size(file, offset, whence, 3666 MAX_LFS_FILESIZE, i_size_read(inode)); 3667 if (offset < 0) 3668 return -ENXIO; 3669 3670 inode_lock(inode); 3671 /* We're holding i_rwsem so we can access i_size directly */ 3672 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3673 if (offset >= 0) 3674 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3675 inode_unlock(inode); 3676 return offset; 3677 } 3678 3679 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3680 loff_t len) 3681 { 3682 struct inode *inode = file_inode(file); 3683 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3684 struct shmem_inode_info *info = SHMEM_I(inode); 3685 struct shmem_falloc shmem_falloc; 3686 pgoff_t start, index, end, undo_fallocend; 3687 int error; 3688 3689 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3690 return -EOPNOTSUPP; 3691 3692 inode_lock(inode); 3693 3694 if (info->flags & SHMEM_F_MAPPING_FROZEN) { 3695 error = -EPERM; 3696 goto out; 3697 } 3698 3699 if (mode & FALLOC_FL_PUNCH_HOLE) { 3700 struct address_space *mapping = file->f_mapping; 3701 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3702 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3703 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3704 3705 /* protected by i_rwsem */ 3706 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3707 error = -EPERM; 3708 goto out; 3709 } 3710 3711 shmem_falloc.waitq = &shmem_falloc_waitq; 3712 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3713 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3714 spin_lock(&inode->i_lock); 3715 inode->i_private = &shmem_falloc; 3716 spin_unlock(&inode->i_lock); 3717 3718 if ((u64)unmap_end > (u64)unmap_start) 3719 unmap_mapping_range(mapping, unmap_start, 3720 1 + unmap_end - unmap_start, 0); 3721 shmem_truncate_range(inode, offset, offset + len - 1); 3722 /* No need to unmap again: hole-punching leaves COWed pages */ 3723 3724 spin_lock(&inode->i_lock); 3725 inode->i_private = NULL; 3726 wake_up_all(&shmem_falloc_waitq); 3727 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3728 spin_unlock(&inode->i_lock); 3729 error = 0; 3730 goto out; 3731 } 3732 3733 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3734 error = inode_newsize_ok(inode, offset + len); 3735 if (error) 3736 goto out; 3737 3738 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3739 error = -EPERM; 3740 goto out; 3741 } 3742 3743 start = offset >> PAGE_SHIFT; 3744 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3745 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3746 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3747 error = -ENOSPC; 3748 goto out; 3749 } 3750 3751 shmem_falloc.waitq = NULL; 3752 shmem_falloc.start = start; 3753 shmem_falloc.next = start; 3754 shmem_falloc.nr_falloced = 0; 3755 shmem_falloc.nr_unswapped = 0; 3756 spin_lock(&inode->i_lock); 3757 inode->i_private = &shmem_falloc; 3758 spin_unlock(&inode->i_lock); 3759 3760 /* 3761 * info->fallocend is only relevant when huge pages might be 3762 * involved: to prevent split_huge_page() freeing fallocated 3763 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3764 */ 3765 undo_fallocend = info->fallocend; 3766 if (info->fallocend < end) 3767 info->fallocend = end; 3768 3769 for (index = start; index < end; ) { 3770 struct folio *folio; 3771 3772 /* 3773 * Check for fatal signal so that we abort early in OOM 3774 * situations. We don't want to abort in case of non-fatal 3775 * signals as large fallocate can take noticeable time and 3776 * e.g. periodic timers may result in fallocate constantly 3777 * restarting. 3778 */ 3779 if (fatal_signal_pending(current)) 3780 error = -EINTR; 3781 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3782 error = -ENOMEM; 3783 else 3784 error = shmem_get_folio(inode, index, offset + len, 3785 &folio, SGP_FALLOC); 3786 if (error) { 3787 info->fallocend = undo_fallocend; 3788 /* Remove the !uptodate folios we added */ 3789 if (index > start) { 3790 shmem_undo_range(inode, 3791 (loff_t)start << PAGE_SHIFT, 3792 ((loff_t)index << PAGE_SHIFT) - 1, true); 3793 } 3794 goto undone; 3795 } 3796 3797 /* 3798 * Here is a more important optimization than it appears: 3799 * a second SGP_FALLOC on the same large folio will clear it, 3800 * making it uptodate and un-undoable if we fail later. 3801 */ 3802 index = folio_next_index(folio); 3803 /* Beware 32-bit wraparound */ 3804 if (!index) 3805 index--; 3806 3807 /* 3808 * Inform shmem_writeout() how far we have reached. 3809 * No need for lock or barrier: we have the page lock. 3810 */ 3811 if (!folio_test_uptodate(folio)) 3812 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3813 shmem_falloc.next = index; 3814 3815 /* 3816 * If !uptodate, leave it that way so that freeable folios 3817 * can be recognized if we need to rollback on error later. 3818 * But mark it dirty so that memory pressure will swap rather 3819 * than free the folios we are allocating (and SGP_CACHE folios 3820 * might still be clean: we now need to mark those dirty too). 3821 */ 3822 folio_mark_dirty(folio); 3823 folio_unlock(folio); 3824 folio_put(folio); 3825 cond_resched(); 3826 } 3827 3828 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3829 i_size_write(inode, offset + len); 3830 undone: 3831 spin_lock(&inode->i_lock); 3832 inode->i_private = NULL; 3833 spin_unlock(&inode->i_lock); 3834 out: 3835 if (!error) 3836 file_modified(file); 3837 inode_unlock(inode); 3838 return error; 3839 } 3840 3841 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3842 { 3843 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3844 3845 buf->f_type = TMPFS_MAGIC; 3846 buf->f_bsize = PAGE_SIZE; 3847 buf->f_namelen = NAME_MAX; 3848 if (sbinfo->max_blocks) { 3849 buf->f_blocks = sbinfo->max_blocks; 3850 buf->f_bavail = 3851 buf->f_bfree = sbinfo->max_blocks - 3852 percpu_counter_sum(&sbinfo->used_blocks); 3853 } 3854 if (sbinfo->max_inodes) { 3855 buf->f_files = sbinfo->max_inodes; 3856 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3857 } 3858 /* else leave those fields 0 like simple_statfs */ 3859 3860 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3861 3862 return 0; 3863 } 3864 3865 /* 3866 * File creation. Allocate an inode, and we're done.. 3867 */ 3868 static int 3869 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3870 struct dentry *dentry, umode_t mode, dev_t dev) 3871 { 3872 struct inode *inode; 3873 int error; 3874 3875 if (!generic_ci_validate_strict_name(dir, &dentry->d_name)) 3876 return -EINVAL; 3877 3878 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, 3879 mk_vma_flags(VMA_NORESERVE_BIT)); 3880 if (IS_ERR(inode)) 3881 return PTR_ERR(inode); 3882 3883 error = simple_acl_create(dir, inode); 3884 if (error) 3885 goto out_iput; 3886 error = security_inode_init_security(inode, dir, &dentry->d_name, 3887 shmem_initxattrs, NULL); 3888 if (error && error != -EOPNOTSUPP) 3889 goto out_iput; 3890 3891 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3892 if (error) 3893 goto out_iput; 3894 3895 dir->i_size += BOGO_DIRENT_SIZE; 3896 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3897 inode_inc_iversion(dir); 3898 3899 d_make_persistent(dentry, inode); 3900 return error; 3901 3902 out_iput: 3903 iput(inode); 3904 return error; 3905 } 3906 3907 static int 3908 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3909 struct file *file, umode_t mode) 3910 { 3911 struct inode *inode; 3912 int error; 3913 3914 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, 3915 mk_vma_flags(VMA_NORESERVE_BIT)); 3916 if (IS_ERR(inode)) { 3917 error = PTR_ERR(inode); 3918 goto err_out; 3919 } 3920 error = security_inode_init_security(inode, dir, NULL, 3921 shmem_initxattrs, NULL); 3922 if (error && error != -EOPNOTSUPP) 3923 goto out_iput; 3924 error = simple_acl_create(dir, inode); 3925 if (error) 3926 goto out_iput; 3927 d_tmpfile(file, inode); 3928 3929 err_out: 3930 return finish_open_simple(file, error); 3931 out_iput: 3932 iput(inode); 3933 return error; 3934 } 3935 3936 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3937 struct dentry *dentry, umode_t mode) 3938 { 3939 int error; 3940 3941 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3942 if (error) 3943 return ERR_PTR(error); 3944 inc_nlink(dir); 3945 return NULL; 3946 } 3947 3948 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3949 struct dentry *dentry, umode_t mode, bool excl) 3950 { 3951 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3952 } 3953 3954 /* 3955 * Link a file.. 3956 */ 3957 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3958 struct dentry *dentry) 3959 { 3960 struct inode *inode = d_inode(old_dentry); 3961 int ret; 3962 3963 /* 3964 * No ordinary (disk based) filesystem counts links as inodes; 3965 * but each new link needs a new dentry, pinning lowmem, and 3966 * tmpfs dentries cannot be pruned until they are unlinked. 3967 * But if an O_TMPFILE file is linked into the tmpfs, the 3968 * first link must skip that, to get the accounting right. 3969 */ 3970 if (inode->i_nlink) { 3971 ret = shmem_reserve_inode(inode->i_sb, NULL); 3972 if (ret) 3973 return ret; 3974 } 3975 3976 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3977 if (ret) { 3978 if (inode->i_nlink) 3979 shmem_free_inode(inode->i_sb, 0); 3980 return ret; 3981 } 3982 3983 dir->i_size += BOGO_DIRENT_SIZE; 3984 inode_inc_iversion(dir); 3985 return simple_link(old_dentry, dir, dentry); 3986 } 3987 3988 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3989 { 3990 struct inode *inode = d_inode(dentry); 3991 3992 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3993 shmem_free_inode(inode->i_sb, 0); 3994 3995 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3996 3997 dir->i_size -= BOGO_DIRENT_SIZE; 3998 inode_inc_iversion(dir); 3999 simple_unlink(dir, dentry); 4000 4001 /* 4002 * For now, VFS can't deal with case-insensitive negative dentries, so 4003 * we invalidate them 4004 */ 4005 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 4006 d_invalidate(dentry); 4007 4008 return 0; 4009 } 4010 4011 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 4012 { 4013 if (!simple_empty(dentry)) 4014 return -ENOTEMPTY; 4015 4016 drop_nlink(d_inode(dentry)); 4017 drop_nlink(dir); 4018 return shmem_unlink(dir, dentry); 4019 } 4020 4021 static int shmem_whiteout(struct mnt_idmap *idmap, 4022 struct inode *old_dir, struct dentry *old_dentry) 4023 { 4024 struct dentry *whiteout; 4025 int error; 4026 4027 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 4028 if (!whiteout) 4029 return -ENOMEM; 4030 error = shmem_mknod(idmap, old_dir, whiteout, 4031 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4032 dput(whiteout); 4033 return error; 4034 } 4035 4036 /* 4037 * The VFS layer already does all the dentry stuff for rename, 4038 * we just have to decrement the usage count for the target if 4039 * it exists so that the VFS layer correctly free's it when it 4040 * gets overwritten. 4041 */ 4042 static int shmem_rename2(struct mnt_idmap *idmap, 4043 struct inode *old_dir, struct dentry *old_dentry, 4044 struct inode *new_dir, struct dentry *new_dentry, 4045 unsigned int flags) 4046 { 4047 struct inode *inode = d_inode(old_dentry); 4048 int they_are_dirs = S_ISDIR(inode->i_mode); 4049 bool had_offset = false; 4050 int error; 4051 4052 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4053 return -EINVAL; 4054 4055 if (flags & RENAME_EXCHANGE) 4056 return simple_offset_rename_exchange(old_dir, old_dentry, 4057 new_dir, new_dentry); 4058 4059 if (!simple_empty(new_dentry)) 4060 return -ENOTEMPTY; 4061 4062 error = simple_offset_add(shmem_get_offset_ctx(new_dir), new_dentry); 4063 if (error == -EBUSY) 4064 had_offset = true; 4065 else if (unlikely(error)) 4066 return error; 4067 4068 if (flags & RENAME_WHITEOUT) { 4069 error = shmem_whiteout(idmap, old_dir, old_dentry); 4070 if (error) { 4071 if (!had_offset) 4072 simple_offset_remove(shmem_get_offset_ctx(new_dir), 4073 new_dentry); 4074 return error; 4075 } 4076 } 4077 4078 simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 4079 if (d_really_is_positive(new_dentry)) { 4080 (void) shmem_unlink(new_dir, new_dentry); 4081 if (they_are_dirs) { 4082 drop_nlink(d_inode(new_dentry)); 4083 drop_nlink(old_dir); 4084 } 4085 } else if (they_are_dirs) { 4086 drop_nlink(old_dir); 4087 inc_nlink(new_dir); 4088 } 4089 4090 old_dir->i_size -= BOGO_DIRENT_SIZE; 4091 new_dir->i_size += BOGO_DIRENT_SIZE; 4092 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 4093 inode_inc_iversion(old_dir); 4094 inode_inc_iversion(new_dir); 4095 return 0; 4096 } 4097 4098 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 4099 struct dentry *dentry, const char *symname) 4100 { 4101 int error; 4102 int len; 4103 struct inode *inode; 4104 struct folio *folio; 4105 char *link; 4106 4107 len = strlen(symname) + 1; 4108 if (len > PAGE_SIZE) 4109 return -ENAMETOOLONG; 4110 4111 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 4112 mk_vma_flags(VMA_NORESERVE_BIT)); 4113 if (IS_ERR(inode)) 4114 return PTR_ERR(inode); 4115 4116 error = security_inode_init_security(inode, dir, &dentry->d_name, 4117 shmem_initxattrs, NULL); 4118 if (error && error != -EOPNOTSUPP) 4119 goto out_iput; 4120 4121 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 4122 if (error) 4123 goto out_iput; 4124 4125 inode->i_size = len-1; 4126 if (len <= SHORT_SYMLINK_LEN) { 4127 link = kmemdup(symname, len, GFP_KERNEL); 4128 if (!link) { 4129 error = -ENOMEM; 4130 goto out_remove_offset; 4131 } 4132 inode->i_op = &shmem_short_symlink_operations; 4133 inode_set_cached_link(inode, link, len - 1); 4134 } else { 4135 inode_nohighmem(inode); 4136 inode->i_mapping->a_ops = &shmem_aops; 4137 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE); 4138 if (error) 4139 goto out_remove_offset; 4140 inode->i_op = &shmem_symlink_inode_operations; 4141 memcpy(folio_address(folio), symname, len); 4142 folio_mark_uptodate(folio); 4143 folio_mark_dirty(folio); 4144 folio_unlock(folio); 4145 folio_put(folio); 4146 } 4147 dir->i_size += BOGO_DIRENT_SIZE; 4148 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 4149 inode_inc_iversion(dir); 4150 d_make_persistent(dentry, inode); 4151 return 0; 4152 4153 out_remove_offset: 4154 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 4155 out_iput: 4156 iput(inode); 4157 return error; 4158 } 4159 4160 static void shmem_put_link(void *arg) 4161 { 4162 folio_mark_accessed(arg); 4163 folio_put(arg); 4164 } 4165 4166 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 4167 struct delayed_call *done) 4168 { 4169 struct folio *folio = NULL; 4170 int error; 4171 4172 if (!dentry) { 4173 folio = filemap_get_folio(inode->i_mapping, 0); 4174 if (IS_ERR(folio)) 4175 return ERR_PTR(-ECHILD); 4176 if (PageHWPoison(folio_page(folio, 0)) || 4177 !folio_test_uptodate(folio)) { 4178 folio_put(folio); 4179 return ERR_PTR(-ECHILD); 4180 } 4181 } else { 4182 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ); 4183 if (error) 4184 return ERR_PTR(error); 4185 if (!folio) 4186 return ERR_PTR(-ECHILD); 4187 if (PageHWPoison(folio_page(folio, 0))) { 4188 folio_unlock(folio); 4189 folio_put(folio); 4190 return ERR_PTR(-ECHILD); 4191 } 4192 folio_unlock(folio); 4193 } 4194 set_delayed_call(done, shmem_put_link, folio); 4195 return folio_address(folio); 4196 } 4197 4198 #ifdef CONFIG_TMPFS_XATTR 4199 4200 static int shmem_fileattr_get(struct dentry *dentry, struct file_kattr *fa) 4201 { 4202 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4203 4204 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 4205 4206 return 0; 4207 } 4208 4209 static int shmem_fileattr_set(struct mnt_idmap *idmap, 4210 struct dentry *dentry, struct file_kattr *fa) 4211 { 4212 struct inode *inode = d_inode(dentry); 4213 struct shmem_inode_info *info = SHMEM_I(inode); 4214 int ret, flags; 4215 4216 if (fileattr_has_fsx(fa)) 4217 return -EOPNOTSUPP; 4218 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 4219 return -EOPNOTSUPP; 4220 4221 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 4222 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 4223 4224 ret = shmem_set_inode_flags(inode, flags, dentry); 4225 4226 if (ret) 4227 return ret; 4228 4229 info->fsflags = flags; 4230 4231 inode_set_ctime_current(inode); 4232 inode_inc_iversion(inode); 4233 return 0; 4234 } 4235 4236 /* 4237 * Superblocks without xattr inode operations may get some security.* xattr 4238 * support from the LSM "for free". As soon as we have any other xattrs 4239 * like ACLs, we also need to implement the security.* handlers at 4240 * filesystem level, though. 4241 */ 4242 4243 /* 4244 * Callback for security_inode_init_security() for acquiring xattrs. 4245 */ 4246 static int shmem_initxattrs(struct inode *inode, 4247 const struct xattr *xattr_array, void *fs_info) 4248 { 4249 struct shmem_inode_info *info = SHMEM_I(inode); 4250 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4251 const struct xattr *xattr; 4252 struct simple_xattr *new_xattr; 4253 size_t ispace = 0; 4254 size_t len; 4255 4256 if (sbinfo->max_inodes) { 4257 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4258 ispace += simple_xattr_space(xattr->name, 4259 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 4260 } 4261 if (ispace) { 4262 raw_spin_lock(&sbinfo->stat_lock); 4263 if (sbinfo->free_ispace < ispace) 4264 ispace = 0; 4265 else 4266 sbinfo->free_ispace -= ispace; 4267 raw_spin_unlock(&sbinfo->stat_lock); 4268 if (!ispace) 4269 return -ENOSPC; 4270 } 4271 } 4272 4273 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4274 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 4275 if (!new_xattr) 4276 break; 4277 4278 len = strlen(xattr->name) + 1; 4279 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 4280 GFP_KERNEL_ACCOUNT); 4281 if (!new_xattr->name) { 4282 kvfree(new_xattr); 4283 break; 4284 } 4285 4286 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 4287 XATTR_SECURITY_PREFIX_LEN); 4288 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 4289 xattr->name, len); 4290 4291 simple_xattr_add(&info->xattrs, new_xattr); 4292 } 4293 4294 if (xattr->name != NULL) { 4295 if (ispace) { 4296 raw_spin_lock(&sbinfo->stat_lock); 4297 sbinfo->free_ispace += ispace; 4298 raw_spin_unlock(&sbinfo->stat_lock); 4299 } 4300 simple_xattrs_free(&info->xattrs, NULL); 4301 return -ENOMEM; 4302 } 4303 4304 return 0; 4305 } 4306 4307 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 4308 struct dentry *unused, struct inode *inode, 4309 const char *name, void *buffer, size_t size) 4310 { 4311 struct shmem_inode_info *info = SHMEM_I(inode); 4312 4313 name = xattr_full_name(handler, name); 4314 return simple_xattr_get(&info->xattrs, name, buffer, size); 4315 } 4316 4317 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 4318 struct mnt_idmap *idmap, 4319 struct dentry *unused, struct inode *inode, 4320 const char *name, const void *value, 4321 size_t size, int flags) 4322 { 4323 struct shmem_inode_info *info = SHMEM_I(inode); 4324 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4325 struct simple_xattr *old_xattr; 4326 size_t ispace = 0; 4327 4328 name = xattr_full_name(handler, name); 4329 if (value && sbinfo->max_inodes) { 4330 ispace = simple_xattr_space(name, size); 4331 raw_spin_lock(&sbinfo->stat_lock); 4332 if (sbinfo->free_ispace < ispace) 4333 ispace = 0; 4334 else 4335 sbinfo->free_ispace -= ispace; 4336 raw_spin_unlock(&sbinfo->stat_lock); 4337 if (!ispace) 4338 return -ENOSPC; 4339 } 4340 4341 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 4342 if (!IS_ERR(old_xattr)) { 4343 ispace = 0; 4344 if (old_xattr && sbinfo->max_inodes) 4345 ispace = simple_xattr_space(old_xattr->name, 4346 old_xattr->size); 4347 simple_xattr_free(old_xattr); 4348 old_xattr = NULL; 4349 inode_set_ctime_current(inode); 4350 inode_inc_iversion(inode); 4351 } 4352 if (ispace) { 4353 raw_spin_lock(&sbinfo->stat_lock); 4354 sbinfo->free_ispace += ispace; 4355 raw_spin_unlock(&sbinfo->stat_lock); 4356 } 4357 return PTR_ERR(old_xattr); 4358 } 4359 4360 static const struct xattr_handler shmem_security_xattr_handler = { 4361 .prefix = XATTR_SECURITY_PREFIX, 4362 .get = shmem_xattr_handler_get, 4363 .set = shmem_xattr_handler_set, 4364 }; 4365 4366 static const struct xattr_handler shmem_trusted_xattr_handler = { 4367 .prefix = XATTR_TRUSTED_PREFIX, 4368 .get = shmem_xattr_handler_get, 4369 .set = shmem_xattr_handler_set, 4370 }; 4371 4372 static const struct xattr_handler shmem_user_xattr_handler = { 4373 .prefix = XATTR_USER_PREFIX, 4374 .get = shmem_xattr_handler_get, 4375 .set = shmem_xattr_handler_set, 4376 }; 4377 4378 static const struct xattr_handler * const shmem_xattr_handlers[] = { 4379 &shmem_security_xattr_handler, 4380 &shmem_trusted_xattr_handler, 4381 &shmem_user_xattr_handler, 4382 NULL 4383 }; 4384 4385 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 4386 { 4387 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4388 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 4389 } 4390 #endif /* CONFIG_TMPFS_XATTR */ 4391 4392 static const struct inode_operations shmem_short_symlink_operations = { 4393 .getattr = shmem_getattr, 4394 .setattr = shmem_setattr, 4395 .get_link = simple_get_link, 4396 #ifdef CONFIG_TMPFS_XATTR 4397 .listxattr = shmem_listxattr, 4398 #endif 4399 }; 4400 4401 static const struct inode_operations shmem_symlink_inode_operations = { 4402 .getattr = shmem_getattr, 4403 .setattr = shmem_setattr, 4404 .get_link = shmem_get_link, 4405 #ifdef CONFIG_TMPFS_XATTR 4406 .listxattr = shmem_listxattr, 4407 #endif 4408 }; 4409 4410 static struct dentry *shmem_get_parent(struct dentry *child) 4411 { 4412 return ERR_PTR(-ESTALE); 4413 } 4414 4415 static int shmem_match(struct inode *ino, void *vfh) 4416 { 4417 __u32 *fh = vfh; 4418 __u64 inum = fh[2]; 4419 inum = (inum << 32) | fh[1]; 4420 return ino->i_ino == inum && fh[0] == ino->i_generation; 4421 } 4422 4423 /* Find any alias of inode, but prefer a hashed alias */ 4424 static struct dentry *shmem_find_alias(struct inode *inode) 4425 { 4426 struct dentry *alias = d_find_alias(inode); 4427 4428 return alias ?: d_find_any_alias(inode); 4429 } 4430 4431 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 4432 struct fid *fid, int fh_len, int fh_type) 4433 { 4434 struct inode *inode; 4435 struct dentry *dentry = NULL; 4436 u64 inum; 4437 4438 if (fh_len < 3) 4439 return NULL; 4440 4441 inum = fid->raw[2]; 4442 inum = (inum << 32) | fid->raw[1]; 4443 4444 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 4445 shmem_match, fid->raw); 4446 if (inode) { 4447 dentry = shmem_find_alias(inode); 4448 iput(inode); 4449 } 4450 4451 return dentry; 4452 } 4453 4454 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 4455 struct inode *parent) 4456 { 4457 if (*len < 3) { 4458 *len = 3; 4459 return FILEID_INVALID; 4460 } 4461 4462 if (inode_unhashed(inode)) { 4463 /* Unfortunately insert_inode_hash is not idempotent, 4464 * so as we hash inodes here rather than at creation 4465 * time, we need a lock to ensure we only try 4466 * to do it once 4467 */ 4468 static DEFINE_SPINLOCK(lock); 4469 spin_lock(&lock); 4470 if (inode_unhashed(inode)) 4471 __insert_inode_hash(inode, 4472 inode->i_ino + inode->i_generation); 4473 spin_unlock(&lock); 4474 } 4475 4476 fh[0] = inode->i_generation; 4477 fh[1] = inode->i_ino; 4478 fh[2] = ((__u64)inode->i_ino) >> 32; 4479 4480 *len = 3; 4481 return 1; 4482 } 4483 4484 static const struct export_operations shmem_export_ops = { 4485 .get_parent = shmem_get_parent, 4486 .encode_fh = shmem_encode_fh, 4487 .fh_to_dentry = shmem_fh_to_dentry, 4488 }; 4489 4490 enum shmem_param { 4491 Opt_gid, 4492 Opt_huge, 4493 Opt_mode, 4494 Opt_mpol, 4495 Opt_nr_blocks, 4496 Opt_nr_inodes, 4497 Opt_size, 4498 Opt_uid, 4499 Opt_inode32, 4500 Opt_inode64, 4501 Opt_noswap, 4502 Opt_quota, 4503 Opt_usrquota, 4504 Opt_grpquota, 4505 Opt_usrquota_block_hardlimit, 4506 Opt_usrquota_inode_hardlimit, 4507 Opt_grpquota_block_hardlimit, 4508 Opt_grpquota_inode_hardlimit, 4509 Opt_casefold_version, 4510 Opt_casefold, 4511 Opt_strict_encoding, 4512 }; 4513 4514 static const struct constant_table shmem_param_enums_huge[] = { 4515 {"never", SHMEM_HUGE_NEVER }, 4516 {"always", SHMEM_HUGE_ALWAYS }, 4517 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 4518 {"advise", SHMEM_HUGE_ADVISE }, 4519 {} 4520 }; 4521 4522 const struct fs_parameter_spec shmem_fs_parameters[] = { 4523 fsparam_gid ("gid", Opt_gid), 4524 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 4525 fsparam_u32oct("mode", Opt_mode), 4526 fsparam_string("mpol", Opt_mpol), 4527 fsparam_string("nr_blocks", Opt_nr_blocks), 4528 fsparam_string("nr_inodes", Opt_nr_inodes), 4529 fsparam_string("size", Opt_size), 4530 fsparam_uid ("uid", Opt_uid), 4531 fsparam_flag ("inode32", Opt_inode32), 4532 fsparam_flag ("inode64", Opt_inode64), 4533 fsparam_flag ("noswap", Opt_noswap), 4534 #ifdef CONFIG_TMPFS_QUOTA 4535 fsparam_flag ("quota", Opt_quota), 4536 fsparam_flag ("usrquota", Opt_usrquota), 4537 fsparam_flag ("grpquota", Opt_grpquota), 4538 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 4539 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 4540 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 4541 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 4542 #endif 4543 fsparam_string("casefold", Opt_casefold_version), 4544 fsparam_flag ("casefold", Opt_casefold), 4545 fsparam_flag ("strict_encoding", Opt_strict_encoding), 4546 {} 4547 }; 4548 4549 #if IS_ENABLED(CONFIG_UNICODE) 4550 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4551 bool latest_version) 4552 { 4553 struct shmem_options *ctx = fc->fs_private; 4554 int version = UTF8_LATEST; 4555 struct unicode_map *encoding; 4556 char *version_str = param->string + 5; 4557 4558 if (!latest_version) { 4559 if (strncmp(param->string, "utf8-", 5)) 4560 return invalfc(fc, "Only UTF-8 encodings are supported " 4561 "in the format: utf8-<version number>"); 4562 4563 version = utf8_parse_version(version_str); 4564 if (version < 0) 4565 return invalfc(fc, "Invalid UTF-8 version: %s", version_str); 4566 } 4567 4568 encoding = utf8_load(version); 4569 4570 if (IS_ERR(encoding)) { 4571 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n", 4572 unicode_major(version), unicode_minor(version), 4573 unicode_rev(version)); 4574 } 4575 4576 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n", 4577 unicode_major(version), unicode_minor(version), unicode_rev(version)); 4578 4579 ctx->encoding = encoding; 4580 4581 return 0; 4582 } 4583 #else 4584 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4585 bool latest_version) 4586 { 4587 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4588 } 4589 #endif 4590 4591 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 4592 { 4593 struct shmem_options *ctx = fc->fs_private; 4594 struct fs_parse_result result; 4595 unsigned long long size; 4596 char *rest; 4597 int opt; 4598 kuid_t kuid; 4599 kgid_t kgid; 4600 4601 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 4602 if (opt < 0) 4603 return opt; 4604 4605 switch (opt) { 4606 case Opt_size: 4607 size = memparse(param->string, &rest); 4608 if (*rest == '%') { 4609 size <<= PAGE_SHIFT; 4610 size *= totalram_pages(); 4611 do_div(size, 100); 4612 rest++; 4613 } 4614 if (*rest) 4615 goto bad_value; 4616 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 4617 ctx->seen |= SHMEM_SEEN_BLOCKS; 4618 break; 4619 case Opt_nr_blocks: 4620 ctx->blocks = memparse(param->string, &rest); 4621 if (*rest || ctx->blocks > LONG_MAX) 4622 goto bad_value; 4623 ctx->seen |= SHMEM_SEEN_BLOCKS; 4624 break; 4625 case Opt_nr_inodes: 4626 ctx->inodes = memparse(param->string, &rest); 4627 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 4628 goto bad_value; 4629 ctx->seen |= SHMEM_SEEN_INODES; 4630 break; 4631 case Opt_mode: 4632 ctx->mode = result.uint_32 & 07777; 4633 break; 4634 case Opt_uid: 4635 kuid = result.uid; 4636 4637 /* 4638 * The requested uid must be representable in the 4639 * filesystem's idmapping. 4640 */ 4641 if (!kuid_has_mapping(fc->user_ns, kuid)) 4642 goto bad_value; 4643 4644 ctx->uid = kuid; 4645 break; 4646 case Opt_gid: 4647 kgid = result.gid; 4648 4649 /* 4650 * The requested gid must be representable in the 4651 * filesystem's idmapping. 4652 */ 4653 if (!kgid_has_mapping(fc->user_ns, kgid)) 4654 goto bad_value; 4655 4656 ctx->gid = kgid; 4657 break; 4658 case Opt_huge: 4659 ctx->huge = result.uint_32; 4660 if (ctx->huge != SHMEM_HUGE_NEVER && 4661 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4662 has_transparent_hugepage())) 4663 goto unsupported_parameter; 4664 ctx->seen |= SHMEM_SEEN_HUGE; 4665 break; 4666 case Opt_mpol: 4667 if (IS_ENABLED(CONFIG_NUMA)) { 4668 mpol_put(ctx->mpol); 4669 ctx->mpol = NULL; 4670 if (mpol_parse_str(param->string, &ctx->mpol)) 4671 goto bad_value; 4672 break; 4673 } 4674 goto unsupported_parameter; 4675 case Opt_inode32: 4676 ctx->full_inums = false; 4677 ctx->seen |= SHMEM_SEEN_INUMS; 4678 break; 4679 case Opt_inode64: 4680 if (sizeof(ino_t) < 8) { 4681 return invalfc(fc, 4682 "Cannot use inode64 with <64bit inums in kernel\n"); 4683 } 4684 ctx->full_inums = true; 4685 ctx->seen |= SHMEM_SEEN_INUMS; 4686 break; 4687 case Opt_noswap: 4688 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4689 return invalfc(fc, 4690 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4691 } 4692 ctx->noswap = true; 4693 break; 4694 case Opt_quota: 4695 if (fc->user_ns != &init_user_ns) 4696 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4697 ctx->seen |= SHMEM_SEEN_QUOTA; 4698 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4699 break; 4700 case Opt_usrquota: 4701 if (fc->user_ns != &init_user_ns) 4702 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4703 ctx->seen |= SHMEM_SEEN_QUOTA; 4704 ctx->quota_types |= QTYPE_MASK_USR; 4705 break; 4706 case Opt_grpquota: 4707 if (fc->user_ns != &init_user_ns) 4708 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4709 ctx->seen |= SHMEM_SEEN_QUOTA; 4710 ctx->quota_types |= QTYPE_MASK_GRP; 4711 break; 4712 case Opt_usrquota_block_hardlimit: 4713 size = memparse(param->string, &rest); 4714 if (*rest || !size) 4715 goto bad_value; 4716 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4717 return invalfc(fc, 4718 "User quota block hardlimit too large."); 4719 ctx->qlimits.usrquota_bhardlimit = size; 4720 break; 4721 case Opt_grpquota_block_hardlimit: 4722 size = memparse(param->string, &rest); 4723 if (*rest || !size) 4724 goto bad_value; 4725 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4726 return invalfc(fc, 4727 "Group quota block hardlimit too large."); 4728 ctx->qlimits.grpquota_bhardlimit = size; 4729 break; 4730 case Opt_usrquota_inode_hardlimit: 4731 size = memparse(param->string, &rest); 4732 if (*rest || !size) 4733 goto bad_value; 4734 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4735 return invalfc(fc, 4736 "User quota inode hardlimit too large."); 4737 ctx->qlimits.usrquota_ihardlimit = size; 4738 break; 4739 case Opt_grpquota_inode_hardlimit: 4740 size = memparse(param->string, &rest); 4741 if (*rest || !size) 4742 goto bad_value; 4743 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4744 return invalfc(fc, 4745 "Group quota inode hardlimit too large."); 4746 ctx->qlimits.grpquota_ihardlimit = size; 4747 break; 4748 case Opt_casefold_version: 4749 return shmem_parse_opt_casefold(fc, param, false); 4750 case Opt_casefold: 4751 return shmem_parse_opt_casefold(fc, param, true); 4752 case Opt_strict_encoding: 4753 #if IS_ENABLED(CONFIG_UNICODE) 4754 ctx->strict_encoding = true; 4755 break; 4756 #else 4757 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4758 #endif 4759 } 4760 return 0; 4761 4762 unsupported_parameter: 4763 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4764 bad_value: 4765 return invalfc(fc, "Bad value for '%s'", param->key); 4766 } 4767 4768 static char *shmem_next_opt(char **s) 4769 { 4770 char *sbegin = *s; 4771 char *p; 4772 4773 if (sbegin == NULL) 4774 return NULL; 4775 4776 /* 4777 * NUL-terminate this option: unfortunately, 4778 * mount options form a comma-separated list, 4779 * but mpol's nodelist may also contain commas. 4780 */ 4781 for (;;) { 4782 p = strchr(*s, ','); 4783 if (p == NULL) 4784 break; 4785 *s = p + 1; 4786 if (!isdigit(*(p+1))) { 4787 *p = '\0'; 4788 return sbegin; 4789 } 4790 } 4791 4792 *s = NULL; 4793 return sbegin; 4794 } 4795 4796 static int shmem_parse_monolithic(struct fs_context *fc, void *data) 4797 { 4798 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt); 4799 } 4800 4801 /* 4802 * Reconfigure a shmem filesystem. 4803 */ 4804 static int shmem_reconfigure(struct fs_context *fc) 4805 { 4806 struct shmem_options *ctx = fc->fs_private; 4807 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4808 unsigned long used_isp; 4809 struct mempolicy *mpol = NULL; 4810 const char *err; 4811 4812 raw_spin_lock(&sbinfo->stat_lock); 4813 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4814 4815 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4816 if (!sbinfo->max_blocks) { 4817 err = "Cannot retroactively limit size"; 4818 goto out; 4819 } 4820 if (percpu_counter_compare(&sbinfo->used_blocks, 4821 ctx->blocks) > 0) { 4822 err = "Too small a size for current use"; 4823 goto out; 4824 } 4825 } 4826 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4827 if (!sbinfo->max_inodes) { 4828 err = "Cannot retroactively limit inodes"; 4829 goto out; 4830 } 4831 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4832 err = "Too few inodes for current use"; 4833 goto out; 4834 } 4835 } 4836 4837 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4838 sbinfo->next_ino > UINT_MAX) { 4839 err = "Current inum too high to switch to 32-bit inums"; 4840 goto out; 4841 } 4842 4843 /* 4844 * "noswap" doesn't use fsparam_flag_no, i.e. there's no "swap" 4845 * counterpart for (re-)enabling swap. 4846 */ 4847 if (ctx->noswap && !sbinfo->noswap) { 4848 err = "Cannot disable swap on remount"; 4849 goto out; 4850 } 4851 4852 if (ctx->seen & SHMEM_SEEN_QUOTA && 4853 !sb_any_quota_loaded(fc->root->d_sb)) { 4854 err = "Cannot enable quota on remount"; 4855 goto out; 4856 } 4857 4858 #ifdef CONFIG_TMPFS_QUOTA 4859 #define CHANGED_LIMIT(name) \ 4860 (ctx->qlimits.name## hardlimit && \ 4861 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4862 4863 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4864 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4865 err = "Cannot change global quota limit on remount"; 4866 goto out; 4867 } 4868 #endif /* CONFIG_TMPFS_QUOTA */ 4869 4870 if (ctx->seen & SHMEM_SEEN_HUGE) 4871 sbinfo->huge = ctx->huge; 4872 if (ctx->seen & SHMEM_SEEN_INUMS) 4873 sbinfo->full_inums = ctx->full_inums; 4874 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4875 sbinfo->max_blocks = ctx->blocks; 4876 if (ctx->seen & SHMEM_SEEN_INODES) { 4877 sbinfo->max_inodes = ctx->inodes; 4878 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4879 } 4880 4881 /* 4882 * Preserve previous mempolicy unless mpol remount option was specified. 4883 */ 4884 if (ctx->mpol) { 4885 mpol = sbinfo->mpol; 4886 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4887 ctx->mpol = NULL; 4888 } 4889 4890 if (ctx->noswap) 4891 sbinfo->noswap = true; 4892 4893 raw_spin_unlock(&sbinfo->stat_lock); 4894 mpol_put(mpol); 4895 return 0; 4896 out: 4897 raw_spin_unlock(&sbinfo->stat_lock); 4898 return invalfc(fc, "%s", err); 4899 } 4900 4901 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4902 { 4903 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4904 struct mempolicy *mpol; 4905 4906 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4907 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4908 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4909 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4910 if (sbinfo->mode != (0777 | S_ISVTX)) 4911 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4912 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4913 seq_printf(seq, ",uid=%u", 4914 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4915 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4916 seq_printf(seq, ",gid=%u", 4917 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4918 4919 /* 4920 * Showing inode{64,32} might be useful even if it's the system default, 4921 * since then people don't have to resort to checking both here and 4922 * /proc/config.gz to confirm 64-bit inums were successfully applied 4923 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4924 * 4925 * We hide it when inode64 isn't the default and we are using 32-bit 4926 * inodes, since that probably just means the feature isn't even under 4927 * consideration. 4928 * 4929 * As such: 4930 * 4931 * +-----------------+-----------------+ 4932 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4933 * +------------------+-----------------+-----------------+ 4934 * | full_inums=true | show | show | 4935 * | full_inums=false | show | hide | 4936 * +------------------+-----------------+-----------------+ 4937 * 4938 */ 4939 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4940 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4941 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4942 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4943 if (sbinfo->huge) 4944 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4945 #endif 4946 mpol = shmem_get_sbmpol(sbinfo); 4947 shmem_show_mpol(seq, mpol); 4948 mpol_put(mpol); 4949 if (sbinfo->noswap) 4950 seq_printf(seq, ",noswap"); 4951 #ifdef CONFIG_TMPFS_QUOTA 4952 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4953 seq_printf(seq, ",usrquota"); 4954 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4955 seq_printf(seq, ",grpquota"); 4956 if (sbinfo->qlimits.usrquota_bhardlimit) 4957 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4958 sbinfo->qlimits.usrquota_bhardlimit); 4959 if (sbinfo->qlimits.grpquota_bhardlimit) 4960 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4961 sbinfo->qlimits.grpquota_bhardlimit); 4962 if (sbinfo->qlimits.usrquota_ihardlimit) 4963 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4964 sbinfo->qlimits.usrquota_ihardlimit); 4965 if (sbinfo->qlimits.grpquota_ihardlimit) 4966 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4967 sbinfo->qlimits.grpquota_ihardlimit); 4968 #endif 4969 return 0; 4970 } 4971 4972 #endif /* CONFIG_TMPFS */ 4973 4974 static void shmem_put_super(struct super_block *sb) 4975 { 4976 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4977 4978 #if IS_ENABLED(CONFIG_UNICODE) 4979 if (sb->s_encoding) 4980 utf8_unload(sb->s_encoding); 4981 #endif 4982 4983 #ifdef CONFIG_TMPFS_QUOTA 4984 shmem_disable_quotas(sb); 4985 #endif 4986 free_percpu(sbinfo->ino_batch); 4987 percpu_counter_destroy(&sbinfo->used_blocks); 4988 mpol_put(sbinfo->mpol); 4989 kfree(sbinfo); 4990 sb->s_fs_info = NULL; 4991 } 4992 4993 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS) 4994 static const struct dentry_operations shmem_ci_dentry_ops = { 4995 .d_hash = generic_ci_d_hash, 4996 .d_compare = generic_ci_d_compare, 4997 }; 4998 #endif 4999 5000 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 5001 { 5002 struct shmem_options *ctx = fc->fs_private; 5003 struct inode *inode; 5004 struct shmem_sb_info *sbinfo; 5005 int error = -ENOMEM; 5006 5007 /* Round up to L1_CACHE_BYTES to resist false sharing */ 5008 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 5009 L1_CACHE_BYTES), GFP_KERNEL); 5010 if (!sbinfo) 5011 return error; 5012 5013 sb->s_fs_info = sbinfo; 5014 5015 #ifdef CONFIG_TMPFS 5016 /* 5017 * Per default we only allow half of the physical ram per 5018 * tmpfs instance, limiting inodes to one per page of lowmem; 5019 * but the internal instance is left unlimited. 5020 */ 5021 if (!(sb->s_flags & SB_KERNMOUNT)) { 5022 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 5023 ctx->blocks = shmem_default_max_blocks(); 5024 if (!(ctx->seen & SHMEM_SEEN_INODES)) 5025 ctx->inodes = shmem_default_max_inodes(); 5026 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 5027 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 5028 sbinfo->noswap = ctx->noswap; 5029 } else { 5030 sb->s_flags |= SB_NOUSER; 5031 } 5032 sb->s_export_op = &shmem_export_ops; 5033 sb->s_flags |= SB_NOSEC; 5034 5035 #if IS_ENABLED(CONFIG_UNICODE) 5036 if (!ctx->encoding && ctx->strict_encoding) { 5037 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n"); 5038 error = -EINVAL; 5039 goto failed; 5040 } 5041 5042 if (ctx->encoding) { 5043 sb->s_encoding = ctx->encoding; 5044 set_default_d_op(sb, &shmem_ci_dentry_ops); 5045 if (ctx->strict_encoding) 5046 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL; 5047 } 5048 #endif 5049 5050 #else 5051 sb->s_flags |= SB_NOUSER; 5052 #endif /* CONFIG_TMPFS */ 5053 sb->s_d_flags |= DCACHE_DONTCACHE; 5054 sbinfo->max_blocks = ctx->blocks; 5055 sbinfo->max_inodes = ctx->inodes; 5056 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 5057 if (sb->s_flags & SB_KERNMOUNT) { 5058 sbinfo->ino_batch = alloc_percpu(ino_t); 5059 if (!sbinfo->ino_batch) 5060 goto failed; 5061 } 5062 sbinfo->uid = ctx->uid; 5063 sbinfo->gid = ctx->gid; 5064 sbinfo->full_inums = ctx->full_inums; 5065 sbinfo->mode = ctx->mode; 5066 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5067 if (ctx->seen & SHMEM_SEEN_HUGE) 5068 sbinfo->huge = ctx->huge; 5069 else 5070 sbinfo->huge = tmpfs_huge; 5071 #endif 5072 sbinfo->mpol = ctx->mpol; 5073 ctx->mpol = NULL; 5074 5075 raw_spin_lock_init(&sbinfo->stat_lock); 5076 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 5077 goto failed; 5078 spin_lock_init(&sbinfo->shrinklist_lock); 5079 INIT_LIST_HEAD(&sbinfo->shrinklist); 5080 5081 sb->s_maxbytes = MAX_LFS_FILESIZE; 5082 sb->s_blocksize = PAGE_SIZE; 5083 sb->s_blocksize_bits = PAGE_SHIFT; 5084 sb->s_magic = TMPFS_MAGIC; 5085 sb->s_op = &shmem_ops; 5086 sb->s_time_gran = 1; 5087 #ifdef CONFIG_TMPFS_XATTR 5088 sb->s_xattr = shmem_xattr_handlers; 5089 #endif 5090 #ifdef CONFIG_TMPFS_POSIX_ACL 5091 sb->s_flags |= SB_POSIXACL; 5092 #endif 5093 uuid_t uuid; 5094 uuid_gen(&uuid); 5095 super_set_uuid(sb, uuid.b, sizeof(uuid)); 5096 5097 #ifdef CONFIG_TMPFS_QUOTA 5098 if (ctx->seen & SHMEM_SEEN_QUOTA) { 5099 sb->dq_op = &shmem_quota_operations; 5100 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5101 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 5102 5103 /* Copy the default limits from ctx into sbinfo */ 5104 memcpy(&sbinfo->qlimits, &ctx->qlimits, 5105 sizeof(struct shmem_quota_limits)); 5106 5107 if (shmem_enable_quotas(sb, ctx->quota_types)) 5108 goto failed; 5109 } 5110 #endif /* CONFIG_TMPFS_QUOTA */ 5111 5112 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 5113 S_IFDIR | sbinfo->mode, 0, 5114 mk_vma_flags(VMA_NORESERVE_BIT)); 5115 if (IS_ERR(inode)) { 5116 error = PTR_ERR(inode); 5117 goto failed; 5118 } 5119 inode->i_uid = sbinfo->uid; 5120 inode->i_gid = sbinfo->gid; 5121 sb->s_root = d_make_root(inode); 5122 if (!sb->s_root) 5123 goto failed; 5124 return 0; 5125 5126 failed: 5127 shmem_put_super(sb); 5128 return error; 5129 } 5130 5131 static int shmem_get_tree(struct fs_context *fc) 5132 { 5133 return get_tree_nodev(fc, shmem_fill_super); 5134 } 5135 5136 static void shmem_free_fc(struct fs_context *fc) 5137 { 5138 struct shmem_options *ctx = fc->fs_private; 5139 5140 if (ctx) { 5141 mpol_put(ctx->mpol); 5142 kfree(ctx); 5143 } 5144 } 5145 5146 static const struct fs_context_operations shmem_fs_context_ops = { 5147 .free = shmem_free_fc, 5148 .get_tree = shmem_get_tree, 5149 #ifdef CONFIG_TMPFS 5150 .parse_monolithic = shmem_parse_monolithic, 5151 .parse_param = shmem_parse_one, 5152 .reconfigure = shmem_reconfigure, 5153 #endif 5154 }; 5155 5156 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 5157 5158 static struct inode *shmem_alloc_inode(struct super_block *sb) 5159 { 5160 struct shmem_inode_info *info; 5161 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 5162 if (!info) 5163 return NULL; 5164 return &info->vfs_inode; 5165 } 5166 5167 static void shmem_free_in_core_inode(struct inode *inode) 5168 { 5169 if (S_ISLNK(inode->i_mode)) 5170 kfree(inode->i_link); 5171 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 5172 } 5173 5174 static void shmem_destroy_inode(struct inode *inode) 5175 { 5176 if (S_ISREG(inode->i_mode)) 5177 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 5178 if (S_ISDIR(inode->i_mode)) 5179 simple_offset_destroy(shmem_get_offset_ctx(inode)); 5180 } 5181 5182 static void shmem_init_inode(void *foo) 5183 { 5184 struct shmem_inode_info *info = foo; 5185 inode_init_once(&info->vfs_inode); 5186 } 5187 5188 static void __init shmem_init_inodecache(void) 5189 { 5190 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 5191 sizeof(struct shmem_inode_info), 5192 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 5193 } 5194 5195 static void __init shmem_destroy_inodecache(void) 5196 { 5197 kmem_cache_destroy(shmem_inode_cachep); 5198 } 5199 5200 /* Keep the page in page cache instead of truncating it */ 5201 static int shmem_error_remove_folio(struct address_space *mapping, 5202 struct folio *folio) 5203 { 5204 return 0; 5205 } 5206 5207 static const struct address_space_operations shmem_aops = { 5208 .dirty_folio = noop_dirty_folio, 5209 #ifdef CONFIG_TMPFS 5210 .write_begin = shmem_write_begin, 5211 .write_end = shmem_write_end, 5212 #endif 5213 #ifdef CONFIG_MIGRATION 5214 .migrate_folio = migrate_folio, 5215 #endif 5216 .error_remove_folio = shmem_error_remove_folio, 5217 }; 5218 5219 static const struct file_operations shmem_file_operations = { 5220 .mmap_prepare = shmem_mmap_prepare, 5221 .open = shmem_file_open, 5222 .get_unmapped_area = shmem_get_unmapped_area, 5223 #ifdef CONFIG_TMPFS 5224 .llseek = shmem_file_llseek, 5225 .read_iter = shmem_file_read_iter, 5226 .write_iter = shmem_file_write_iter, 5227 .fsync = noop_fsync, 5228 .splice_read = shmem_file_splice_read, 5229 .splice_write = iter_file_splice_write, 5230 .fallocate = shmem_fallocate, 5231 #endif 5232 }; 5233 5234 static const struct inode_operations shmem_inode_operations = { 5235 .getattr = shmem_getattr, 5236 .setattr = shmem_setattr, 5237 #ifdef CONFIG_TMPFS_XATTR 5238 .listxattr = shmem_listxattr, 5239 .set_acl = simple_set_acl, 5240 .fileattr_get = shmem_fileattr_get, 5241 .fileattr_set = shmem_fileattr_set, 5242 #endif 5243 }; 5244 5245 static const struct inode_operations shmem_dir_inode_operations = { 5246 #ifdef CONFIG_TMPFS 5247 .getattr = shmem_getattr, 5248 .create = shmem_create, 5249 .lookup = simple_lookup, 5250 .link = shmem_link, 5251 .unlink = shmem_unlink, 5252 .symlink = shmem_symlink, 5253 .mkdir = shmem_mkdir, 5254 .rmdir = shmem_rmdir, 5255 .mknod = shmem_mknod, 5256 .rename = shmem_rename2, 5257 .tmpfile = shmem_tmpfile, 5258 .get_offset_ctx = shmem_get_offset_ctx, 5259 #endif 5260 #ifdef CONFIG_TMPFS_XATTR 5261 .listxattr = shmem_listxattr, 5262 .fileattr_get = shmem_fileattr_get, 5263 .fileattr_set = shmem_fileattr_set, 5264 #endif 5265 #ifdef CONFIG_TMPFS_POSIX_ACL 5266 .setattr = shmem_setattr, 5267 .set_acl = simple_set_acl, 5268 #endif 5269 }; 5270 5271 static const struct inode_operations shmem_special_inode_operations = { 5272 .getattr = shmem_getattr, 5273 #ifdef CONFIG_TMPFS_XATTR 5274 .listxattr = shmem_listxattr, 5275 #endif 5276 #ifdef CONFIG_TMPFS_POSIX_ACL 5277 .setattr = shmem_setattr, 5278 .set_acl = simple_set_acl, 5279 #endif 5280 }; 5281 5282 static const struct super_operations shmem_ops = { 5283 .alloc_inode = shmem_alloc_inode, 5284 .free_inode = shmem_free_in_core_inode, 5285 .destroy_inode = shmem_destroy_inode, 5286 #ifdef CONFIG_TMPFS 5287 .statfs = shmem_statfs, 5288 .show_options = shmem_show_options, 5289 #endif 5290 #ifdef CONFIG_TMPFS_QUOTA 5291 .get_dquots = shmem_get_dquots, 5292 #endif 5293 .evict_inode = shmem_evict_inode, 5294 .drop_inode = inode_just_drop, 5295 .put_super = shmem_put_super, 5296 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5297 .nr_cached_objects = shmem_unused_huge_count, 5298 .free_cached_objects = shmem_unused_huge_scan, 5299 #endif 5300 }; 5301 5302 static const struct vm_operations_struct shmem_vm_ops = { 5303 .fault = shmem_fault, 5304 .map_pages = filemap_map_pages, 5305 #ifdef CONFIG_NUMA 5306 .set_policy = shmem_set_policy, 5307 .get_policy = shmem_get_policy, 5308 #endif 5309 }; 5310 5311 static const struct vm_operations_struct shmem_anon_vm_ops = { 5312 .fault = shmem_fault, 5313 .map_pages = filemap_map_pages, 5314 #ifdef CONFIG_NUMA 5315 .set_policy = shmem_set_policy, 5316 .get_policy = shmem_get_policy, 5317 #endif 5318 }; 5319 5320 int shmem_init_fs_context(struct fs_context *fc) 5321 { 5322 struct shmem_options *ctx; 5323 5324 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 5325 if (!ctx) 5326 return -ENOMEM; 5327 5328 ctx->mode = 0777 | S_ISVTX; 5329 ctx->uid = current_fsuid(); 5330 ctx->gid = current_fsgid(); 5331 5332 #if IS_ENABLED(CONFIG_UNICODE) 5333 ctx->encoding = NULL; 5334 #endif 5335 5336 fc->fs_private = ctx; 5337 fc->ops = &shmem_fs_context_ops; 5338 #ifdef CONFIG_TMPFS 5339 fc->sb_flags |= SB_I_VERSION; 5340 #endif 5341 return 0; 5342 } 5343 5344 static struct file_system_type shmem_fs_type = { 5345 .owner = THIS_MODULE, 5346 .name = "tmpfs", 5347 .init_fs_context = shmem_init_fs_context, 5348 #ifdef CONFIG_TMPFS 5349 .parameters = shmem_fs_parameters, 5350 #endif 5351 .kill_sb = kill_anon_super, 5352 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME, 5353 }; 5354 5355 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5356 5357 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \ 5358 { \ 5359 .attr = { .name = __stringify(_name), .mode = _mode }, \ 5360 .show = _show, \ 5361 .store = _store, \ 5362 } 5363 5364 #define TMPFS_ATTR_W(_name, _store) \ 5365 static struct kobj_attribute tmpfs_attr_##_name = \ 5366 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store) 5367 5368 #define TMPFS_ATTR_RW(_name, _show, _store) \ 5369 static struct kobj_attribute tmpfs_attr_##_name = \ 5370 __INIT_KOBJ_ATTR(_name, 0644, _show, _store) 5371 5372 #define TMPFS_ATTR_RO(_name, _show) \ 5373 static struct kobj_attribute tmpfs_attr_##_name = \ 5374 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL) 5375 5376 #if IS_ENABLED(CONFIG_UNICODE) 5377 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a, 5378 char *buf) 5379 { 5380 return sysfs_emit(buf, "supported\n"); 5381 } 5382 TMPFS_ATTR_RO(casefold, casefold_show); 5383 #endif 5384 5385 static struct attribute *tmpfs_attributes[] = { 5386 #if IS_ENABLED(CONFIG_UNICODE) 5387 &tmpfs_attr_casefold.attr, 5388 #endif 5389 NULL 5390 }; 5391 5392 static const struct attribute_group tmpfs_attribute_group = { 5393 .attrs = tmpfs_attributes, 5394 .name = "features" 5395 }; 5396 5397 static struct kobject *tmpfs_kobj; 5398 5399 static int __init tmpfs_sysfs_init(void) 5400 { 5401 int ret; 5402 5403 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj); 5404 if (!tmpfs_kobj) 5405 return -ENOMEM; 5406 5407 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group); 5408 if (ret) 5409 kobject_put(tmpfs_kobj); 5410 5411 return ret; 5412 } 5413 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */ 5414 5415 void __init shmem_init(void) 5416 { 5417 int error; 5418 5419 shmem_init_inodecache(); 5420 5421 #ifdef CONFIG_TMPFS_QUOTA 5422 register_quota_format(&shmem_quota_format); 5423 #endif 5424 5425 error = register_filesystem(&shmem_fs_type); 5426 if (error) { 5427 pr_err("Could not register tmpfs\n"); 5428 goto out2; 5429 } 5430 5431 shm_mnt = kern_mount(&shmem_fs_type); 5432 if (IS_ERR(shm_mnt)) { 5433 error = PTR_ERR(shm_mnt); 5434 pr_err("Could not kern_mount tmpfs\n"); 5435 goto out1; 5436 } 5437 5438 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5439 error = tmpfs_sysfs_init(); 5440 if (error) { 5441 pr_err("Could not init tmpfs sysfs\n"); 5442 goto out1; 5443 } 5444 #endif 5445 5446 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5447 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 5448 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5449 else 5450 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 5451 5452 /* 5453 * Default to setting PMD-sized THP to inherit the global setting and 5454 * disable all other multi-size THPs. 5455 */ 5456 if (!shmem_orders_configured) 5457 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER); 5458 #endif 5459 return; 5460 5461 out1: 5462 unregister_filesystem(&shmem_fs_type); 5463 out2: 5464 #ifdef CONFIG_TMPFS_QUOTA 5465 unregister_quota_format(&shmem_quota_format); 5466 #endif 5467 shmem_destroy_inodecache(); 5468 shm_mnt = ERR_PTR(error); 5469 } 5470 5471 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 5472 static ssize_t shmem_enabled_show(struct kobject *kobj, 5473 struct kobj_attribute *attr, char *buf) 5474 { 5475 static const int values[] = { 5476 SHMEM_HUGE_ALWAYS, 5477 SHMEM_HUGE_WITHIN_SIZE, 5478 SHMEM_HUGE_ADVISE, 5479 SHMEM_HUGE_NEVER, 5480 SHMEM_HUGE_DENY, 5481 SHMEM_HUGE_FORCE, 5482 }; 5483 int len = 0; 5484 int i; 5485 5486 for (i = 0; i < ARRAY_SIZE(values); i++) { 5487 len += sysfs_emit_at(buf, len, 5488 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 5489 i ? " " : "", shmem_format_huge(values[i])); 5490 } 5491 len += sysfs_emit_at(buf, len, "\n"); 5492 5493 return len; 5494 } 5495 5496 static ssize_t shmem_enabled_store(struct kobject *kobj, 5497 struct kobj_attribute *attr, const char *buf, size_t count) 5498 { 5499 char tmp[16]; 5500 int huge, err; 5501 5502 if (count + 1 > sizeof(tmp)) 5503 return -EINVAL; 5504 memcpy(tmp, buf, count); 5505 tmp[count] = '\0'; 5506 if (count && tmp[count - 1] == '\n') 5507 tmp[count - 1] = '\0'; 5508 5509 huge = shmem_parse_huge(tmp); 5510 if (huge == -EINVAL) 5511 return huge; 5512 5513 shmem_huge = huge; 5514 if (shmem_huge > SHMEM_HUGE_DENY) 5515 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5516 5517 err = start_stop_khugepaged(); 5518 return err ? err : count; 5519 } 5520 5521 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 5522 static DEFINE_SPINLOCK(huge_shmem_orders_lock); 5523 5524 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj, 5525 struct kobj_attribute *attr, char *buf) 5526 { 5527 int order = to_thpsize(kobj)->order; 5528 const char *output; 5529 5530 if (test_bit(order, &huge_shmem_orders_always)) 5531 output = "[always] inherit within_size advise never"; 5532 else if (test_bit(order, &huge_shmem_orders_inherit)) 5533 output = "always [inherit] within_size advise never"; 5534 else if (test_bit(order, &huge_shmem_orders_within_size)) 5535 output = "always inherit [within_size] advise never"; 5536 else if (test_bit(order, &huge_shmem_orders_madvise)) 5537 output = "always inherit within_size [advise] never"; 5538 else 5539 output = "always inherit within_size advise [never]"; 5540 5541 return sysfs_emit(buf, "%s\n", output); 5542 } 5543 5544 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj, 5545 struct kobj_attribute *attr, 5546 const char *buf, size_t count) 5547 { 5548 int order = to_thpsize(kobj)->order; 5549 ssize_t ret = count; 5550 5551 if (sysfs_streq(buf, "always")) { 5552 spin_lock(&huge_shmem_orders_lock); 5553 clear_bit(order, &huge_shmem_orders_inherit); 5554 clear_bit(order, &huge_shmem_orders_madvise); 5555 clear_bit(order, &huge_shmem_orders_within_size); 5556 set_bit(order, &huge_shmem_orders_always); 5557 spin_unlock(&huge_shmem_orders_lock); 5558 } else if (sysfs_streq(buf, "inherit")) { 5559 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5560 if (shmem_huge == SHMEM_HUGE_FORCE && 5561 order != HPAGE_PMD_ORDER) 5562 return -EINVAL; 5563 5564 spin_lock(&huge_shmem_orders_lock); 5565 clear_bit(order, &huge_shmem_orders_always); 5566 clear_bit(order, &huge_shmem_orders_madvise); 5567 clear_bit(order, &huge_shmem_orders_within_size); 5568 set_bit(order, &huge_shmem_orders_inherit); 5569 spin_unlock(&huge_shmem_orders_lock); 5570 } else if (sysfs_streq(buf, "within_size")) { 5571 spin_lock(&huge_shmem_orders_lock); 5572 clear_bit(order, &huge_shmem_orders_always); 5573 clear_bit(order, &huge_shmem_orders_inherit); 5574 clear_bit(order, &huge_shmem_orders_madvise); 5575 set_bit(order, &huge_shmem_orders_within_size); 5576 spin_unlock(&huge_shmem_orders_lock); 5577 } else if (sysfs_streq(buf, "advise")) { 5578 spin_lock(&huge_shmem_orders_lock); 5579 clear_bit(order, &huge_shmem_orders_always); 5580 clear_bit(order, &huge_shmem_orders_inherit); 5581 clear_bit(order, &huge_shmem_orders_within_size); 5582 set_bit(order, &huge_shmem_orders_madvise); 5583 spin_unlock(&huge_shmem_orders_lock); 5584 } else if (sysfs_streq(buf, "never")) { 5585 spin_lock(&huge_shmem_orders_lock); 5586 clear_bit(order, &huge_shmem_orders_always); 5587 clear_bit(order, &huge_shmem_orders_inherit); 5588 clear_bit(order, &huge_shmem_orders_within_size); 5589 clear_bit(order, &huge_shmem_orders_madvise); 5590 spin_unlock(&huge_shmem_orders_lock); 5591 } else { 5592 ret = -EINVAL; 5593 } 5594 5595 if (ret > 0) { 5596 int err = start_stop_khugepaged(); 5597 5598 if (err) 5599 ret = err; 5600 } 5601 return ret; 5602 } 5603 5604 struct kobj_attribute thpsize_shmem_enabled_attr = 5605 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store); 5606 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 5607 5608 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 5609 5610 static int __init setup_transparent_hugepage_shmem(char *str) 5611 { 5612 int huge; 5613 5614 huge = shmem_parse_huge(str); 5615 if (huge == -EINVAL) { 5616 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n"); 5617 return huge; 5618 } 5619 5620 shmem_huge = huge; 5621 return 1; 5622 } 5623 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem); 5624 5625 static int __init setup_transparent_hugepage_tmpfs(char *str) 5626 { 5627 int huge; 5628 5629 huge = shmem_parse_huge(str); 5630 if (huge < 0) { 5631 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n"); 5632 return huge; 5633 } 5634 5635 tmpfs_huge = huge; 5636 return 1; 5637 } 5638 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs); 5639 5640 static char str_dup[PAGE_SIZE] __initdata; 5641 static int __init setup_thp_shmem(char *str) 5642 { 5643 char *token, *range, *policy, *subtoken; 5644 unsigned long always, inherit, madvise, within_size; 5645 char *start_size, *end_size; 5646 int start, end, nr; 5647 char *p; 5648 5649 if (!str || strlen(str) + 1 > PAGE_SIZE) 5650 goto err; 5651 strscpy(str_dup, str); 5652 5653 always = huge_shmem_orders_always; 5654 inherit = huge_shmem_orders_inherit; 5655 madvise = huge_shmem_orders_madvise; 5656 within_size = huge_shmem_orders_within_size; 5657 p = str_dup; 5658 while ((token = strsep(&p, ";")) != NULL) { 5659 range = strsep(&token, ":"); 5660 policy = token; 5661 5662 if (!policy) 5663 goto err; 5664 5665 while ((subtoken = strsep(&range, ",")) != NULL) { 5666 if (strchr(subtoken, '-')) { 5667 start_size = strsep(&subtoken, "-"); 5668 end_size = subtoken; 5669 5670 start = get_order_from_str(start_size, 5671 THP_ORDERS_ALL_FILE_DEFAULT); 5672 end = get_order_from_str(end_size, 5673 THP_ORDERS_ALL_FILE_DEFAULT); 5674 } else { 5675 start_size = end_size = subtoken; 5676 start = end = get_order_from_str(subtoken, 5677 THP_ORDERS_ALL_FILE_DEFAULT); 5678 } 5679 5680 if (start < 0) { 5681 pr_err("invalid size %s in thp_shmem boot parameter\n", 5682 start_size); 5683 goto err; 5684 } 5685 5686 if (end < 0) { 5687 pr_err("invalid size %s in thp_shmem boot parameter\n", 5688 end_size); 5689 goto err; 5690 } 5691 5692 if (start > end) 5693 goto err; 5694 5695 nr = end - start + 1; 5696 if (!strcmp(policy, "always")) { 5697 bitmap_set(&always, start, nr); 5698 bitmap_clear(&inherit, start, nr); 5699 bitmap_clear(&madvise, start, nr); 5700 bitmap_clear(&within_size, start, nr); 5701 } else if (!strcmp(policy, "advise")) { 5702 bitmap_set(&madvise, start, nr); 5703 bitmap_clear(&inherit, start, nr); 5704 bitmap_clear(&always, start, nr); 5705 bitmap_clear(&within_size, start, nr); 5706 } else if (!strcmp(policy, "inherit")) { 5707 bitmap_set(&inherit, start, nr); 5708 bitmap_clear(&madvise, start, nr); 5709 bitmap_clear(&always, start, nr); 5710 bitmap_clear(&within_size, start, nr); 5711 } else if (!strcmp(policy, "within_size")) { 5712 bitmap_set(&within_size, start, nr); 5713 bitmap_clear(&inherit, start, nr); 5714 bitmap_clear(&madvise, start, nr); 5715 bitmap_clear(&always, start, nr); 5716 } else if (!strcmp(policy, "never")) { 5717 bitmap_clear(&inherit, start, nr); 5718 bitmap_clear(&madvise, start, nr); 5719 bitmap_clear(&always, start, nr); 5720 bitmap_clear(&within_size, start, nr); 5721 } else { 5722 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy); 5723 goto err; 5724 } 5725 } 5726 } 5727 5728 huge_shmem_orders_always = always; 5729 huge_shmem_orders_madvise = madvise; 5730 huge_shmem_orders_inherit = inherit; 5731 huge_shmem_orders_within_size = within_size; 5732 shmem_orders_configured = true; 5733 return 1; 5734 5735 err: 5736 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str); 5737 return 0; 5738 } 5739 __setup("thp_shmem=", setup_thp_shmem); 5740 5741 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5742 5743 #else /* !CONFIG_SHMEM */ 5744 5745 /* 5746 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 5747 * 5748 * This is intended for small system where the benefits of the full 5749 * shmem code (swap-backed and resource-limited) are outweighed by 5750 * their complexity. On systems without swap this code should be 5751 * effectively equivalent, but much lighter weight. 5752 */ 5753 5754 static struct file_system_type shmem_fs_type = { 5755 .name = "tmpfs", 5756 .init_fs_context = ramfs_init_fs_context, 5757 .parameters = ramfs_fs_parameters, 5758 .kill_sb = ramfs_kill_sb, 5759 .fs_flags = FS_USERNS_MOUNT, 5760 }; 5761 5762 void __init shmem_init(void) 5763 { 5764 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 5765 5766 shm_mnt = kern_mount(&shmem_fs_type); 5767 BUG_ON(IS_ERR(shm_mnt)); 5768 } 5769 5770 int shmem_unuse(unsigned int type) 5771 { 5772 return 0; 5773 } 5774 5775 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 5776 { 5777 return 0; 5778 } 5779 5780 void shmem_unlock_mapping(struct address_space *mapping) 5781 { 5782 } 5783 5784 #ifdef CONFIG_MMU 5785 unsigned long shmem_get_unmapped_area(struct file *file, 5786 unsigned long addr, unsigned long len, 5787 unsigned long pgoff, unsigned long flags) 5788 { 5789 return mm_get_unmapped_area(file, addr, len, pgoff, flags); 5790 } 5791 #endif 5792 5793 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend) 5794 { 5795 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 5796 } 5797 EXPORT_SYMBOL_GPL(shmem_truncate_range); 5798 5799 #define shmem_vm_ops generic_file_vm_ops 5800 #define shmem_anon_vm_ops generic_file_vm_ops 5801 #define shmem_file_operations ramfs_file_operations 5802 5803 static inline int shmem_acct_size(unsigned long flags, loff_t size) 5804 { 5805 return 0; 5806 } 5807 5808 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 5809 { 5810 } 5811 5812 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 5813 struct super_block *sb, struct inode *dir, 5814 umode_t mode, dev_t dev, vma_flags_t flags) 5815 { 5816 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 5817 return inode ? inode : ERR_PTR(-ENOSPC); 5818 } 5819 5820 #endif /* CONFIG_SHMEM */ 5821 5822 /* common code */ 5823 5824 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 5825 loff_t size, vma_flags_t flags, 5826 unsigned int i_flags) 5827 { 5828 const unsigned long shmem_flags = 5829 vma_flags_test(&flags, VMA_NORESERVE_BIT) ? SHMEM_F_NORESERVE : 0; 5830 struct inode *inode; 5831 struct file *res; 5832 5833 if (IS_ERR(mnt)) 5834 return ERR_CAST(mnt); 5835 5836 if (size < 0 || size > MAX_LFS_FILESIZE) 5837 return ERR_PTR(-EINVAL); 5838 5839 if (is_idmapped_mnt(mnt)) 5840 return ERR_PTR(-EINVAL); 5841 5842 if (shmem_acct_size(shmem_flags, size)) 5843 return ERR_PTR(-ENOMEM); 5844 5845 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 5846 S_IFREG | S_IRWXUGO, 0, flags); 5847 if (IS_ERR(inode)) { 5848 shmem_unacct_size(shmem_flags, size); 5849 return ERR_CAST(inode); 5850 } 5851 inode->i_flags |= i_flags; 5852 inode->i_size = size; 5853 clear_nlink(inode); /* It is unlinked */ 5854 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 5855 if (!IS_ERR(res)) 5856 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 5857 &shmem_file_operations); 5858 if (IS_ERR(res)) 5859 iput(inode); 5860 return res; 5861 } 5862 5863 /** 5864 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 5865 * kernel internal. There will be NO LSM permission checks against the 5866 * underlying inode. So users of this interface must do LSM checks at a 5867 * higher layer. The users are the big_key and shm implementations. LSM 5868 * checks are provided at the key or shm level rather than the inode. 5869 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5870 * @size: size to be set for the file 5871 * @flags: VMA_NORESERVE_BIT suppresses pre-accounting of the entire object size 5872 */ 5873 struct file *shmem_kernel_file_setup(const char *name, loff_t size, 5874 vma_flags_t flags) 5875 { 5876 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 5877 } 5878 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 5879 5880 /** 5881 * shmem_file_setup - get an unlinked file living in tmpfs 5882 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5883 * @size: size to be set for the file 5884 * @flags: VMA_NORESERVE_BIT suppresses pre-accounting of the entire object size 5885 */ 5886 struct file *shmem_file_setup(const char *name, loff_t size, vma_flags_t flags) 5887 { 5888 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 5889 } 5890 EXPORT_SYMBOL_GPL(shmem_file_setup); 5891 5892 /** 5893 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 5894 * @mnt: the tmpfs mount where the file will be created 5895 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5896 * @size: size to be set for the file 5897 * @flags: VMA_NORESERVE_BIT suppresses pre-accounting of the entire object size 5898 */ 5899 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 5900 loff_t size, vma_flags_t flags) 5901 { 5902 return __shmem_file_setup(mnt, name, size, flags, 0); 5903 } 5904 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 5905 5906 static struct file *__shmem_zero_setup(unsigned long start, unsigned long end, 5907 vma_flags_t flags) 5908 { 5909 loff_t size = end - start; 5910 5911 /* 5912 * Cloning a new file under mmap_lock leads to a lock ordering conflict 5913 * between XFS directory reading and selinux: since this file is only 5914 * accessible to the user through its mapping, use S_PRIVATE flag to 5915 * bypass file security, in the same way as shmem_kernel_file_setup(). 5916 */ 5917 return shmem_kernel_file_setup("dev/zero", size, flags); 5918 } 5919 5920 /** 5921 * shmem_zero_setup - setup a shared anonymous mapping 5922 * @vma: the vma to be mmapped is prepared by do_mmap 5923 * Returns: 0 on success, or error 5924 */ 5925 int shmem_zero_setup(struct vm_area_struct *vma) 5926 { 5927 struct file *file = __shmem_zero_setup(vma->vm_start, vma->vm_end, vma->flags); 5928 5929 if (IS_ERR(file)) 5930 return PTR_ERR(file); 5931 5932 if (vma->vm_file) 5933 fput(vma->vm_file); 5934 vma->vm_file = file; 5935 vma->vm_ops = &shmem_anon_vm_ops; 5936 5937 return 0; 5938 } 5939 5940 /** 5941 * shmem_zero_setup_desc - same as shmem_zero_setup, but determined by VMA 5942 * descriptor for convenience. 5943 * @desc: Describes VMA 5944 * Returns: 0 on success, or error 5945 */ 5946 int shmem_zero_setup_desc(struct vm_area_desc *desc) 5947 { 5948 struct file *file = __shmem_zero_setup(desc->start, desc->end, desc->vma_flags); 5949 5950 if (IS_ERR(file)) 5951 return PTR_ERR(file); 5952 5953 desc->vm_file = file; 5954 desc->vm_ops = &shmem_anon_vm_ops; 5955 5956 return 0; 5957 } 5958 5959 /** 5960 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 5961 * @mapping: the folio's address_space 5962 * @index: the folio index 5963 * @gfp: the page allocator flags to use if allocating 5964 * 5965 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 5966 * with any new page allocations done using the specified allocation flags. 5967 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 5968 * suit tmpfs, since it may have pages in swapcache, and needs to find those 5969 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 5970 * 5971 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 5972 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 5973 */ 5974 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 5975 pgoff_t index, gfp_t gfp) 5976 { 5977 #ifdef CONFIG_SHMEM 5978 struct inode *inode = mapping->host; 5979 struct folio *folio; 5980 int error; 5981 5982 error = shmem_get_folio_gfp(inode, index, i_size_read(inode), 5983 &folio, SGP_CACHE, gfp, NULL, NULL); 5984 if (error) 5985 return ERR_PTR(error); 5986 5987 folio_unlock(folio); 5988 return folio; 5989 #else 5990 /* 5991 * The tiny !SHMEM case uses ramfs without swap 5992 */ 5993 return mapping_read_folio_gfp(mapping, index, gfp); 5994 #endif 5995 } 5996 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 5997 5998 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 5999 pgoff_t index, gfp_t gfp) 6000 { 6001 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 6002 struct page *page; 6003 6004 if (IS_ERR(folio)) 6005 return &folio->page; 6006 6007 page = folio_file_page(folio, index); 6008 if (PageHWPoison(page)) { 6009 folio_put(folio); 6010 return ERR_PTR(-EIO); 6011 } 6012 6013 return page; 6014 } 6015 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 6016