1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Resizable virtual memory filesystem for Linux. 4 * 5 * Copyright (C) 2000 Linus Torvalds. 6 * 2000 Transmeta Corp. 7 * 2000-2001 Christoph Rohland 8 * 2000-2001 SAP AG 9 * 2002 Red Hat Inc. 10 * Copyright (C) 2002-2011 Hugh Dickins. 11 * Copyright (C) 2011 Google Inc. 12 * Copyright (C) 2002-2005 VERITAS Software Corporation. 13 * Copyright (C) 2004 Andi Kleen, SuSE Labs 14 * 15 * Extended attribute support for tmpfs: 16 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 17 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 18 * 19 * tiny-shmem: 20 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 21 */ 22 23 #include <linux/fs.h> 24 #include <linux/init.h> 25 #include <linux/vfs.h> 26 #include <linux/mount.h> 27 #include <linux/ramfs.h> 28 #include <linux/pagemap.h> 29 #include <linux/file.h> 30 #include <linux/fileattr.h> 31 #include <linux/filelock.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include <linux/unicode.h> 44 #include "swap.h" 45 46 static struct vfsmount *shm_mnt __ro_after_init; 47 48 #ifdef CONFIG_SHMEM 49 /* 50 * This virtual memory filesystem is heavily based on the ramfs. It 51 * extends ramfs by the ability to use swap and honor resource limits 52 * which makes it a completely usable filesystem. 53 */ 54 55 #include <linux/xattr.h> 56 #include <linux/exportfs.h> 57 #include <linux/posix_acl.h> 58 #include <linux/posix_acl_xattr.h> 59 #include <linux/mman.h> 60 #include <linux/string.h> 61 #include <linux/slab.h> 62 #include <linux/backing-dev.h> 63 #include <linux/writeback.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/leafops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 #include <linux/quotaops.h> 83 #include <linux/rcupdate_wait.h> 84 85 #include <linux/uaccess.h> 86 87 #include "internal.h" 88 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Pretend that one inode + its dentry occupy this much memory */ 95 #define BOGO_INODE_SIZE 1024 96 97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 98 #define SHORT_SYMLINK_LEN 128 99 100 /* 101 * shmem_fallocate communicates with shmem_fault or shmem_writeout via 102 * inode->i_private (with i_rwsem making sure that it has only one user at 103 * a time): we would prefer not to enlarge the shmem inode just for that. 104 */ 105 struct shmem_falloc { 106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 107 pgoff_t start; /* start of range currently being fallocated */ 108 pgoff_t next; /* the next page offset to be fallocated */ 109 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 110 pgoff_t nr_unswapped; /* how often writeout refused to swap out */ 111 }; 112 113 struct shmem_options { 114 unsigned long long blocks; 115 unsigned long long inodes; 116 struct mempolicy *mpol; 117 kuid_t uid; 118 kgid_t gid; 119 umode_t mode; 120 bool full_inums; 121 int huge; 122 int seen; 123 bool noswap; 124 unsigned short quota_types; 125 struct shmem_quota_limits qlimits; 126 #if IS_ENABLED(CONFIG_UNICODE) 127 struct unicode_map *encoding; 128 bool strict_encoding; 129 #endif 130 #define SHMEM_SEEN_BLOCKS 1 131 #define SHMEM_SEEN_INODES 2 132 #define SHMEM_SEEN_HUGE 4 133 #define SHMEM_SEEN_INUMS 8 134 #define SHMEM_SEEN_QUOTA 16 135 }; 136 137 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 138 static unsigned long huge_shmem_orders_always __read_mostly; 139 static unsigned long huge_shmem_orders_madvise __read_mostly; 140 static unsigned long huge_shmem_orders_inherit __read_mostly; 141 static unsigned long huge_shmem_orders_within_size __read_mostly; 142 static bool shmem_orders_configured __initdata; 143 #endif 144 145 #ifdef CONFIG_TMPFS 146 static unsigned long shmem_default_max_blocks(void) 147 { 148 return totalram_pages() / 2; 149 } 150 151 static unsigned long shmem_default_max_inodes(void) 152 { 153 unsigned long nr_pages = totalram_pages(); 154 155 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 156 ULONG_MAX / BOGO_INODE_SIZE); 157 } 158 #endif 159 160 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 161 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 162 struct vm_area_struct *vma, vm_fault_t *fault_type); 163 164 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 165 { 166 return sb->s_fs_info; 167 } 168 169 /* 170 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 171 * for shared memory and for shared anonymous (/dev/zero) mappings 172 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 173 * consistent with the pre-accounting of private mappings ... 174 */ 175 static inline int shmem_acct_size(unsigned long flags, loff_t size) 176 { 177 return (flags & SHMEM_F_NORESERVE) ? 178 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 179 } 180 181 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 182 { 183 if (!(flags & SHMEM_F_NORESERVE)) 184 vm_unacct_memory(VM_ACCT(size)); 185 } 186 187 static inline int shmem_reacct_size(unsigned long flags, 188 loff_t oldsize, loff_t newsize) 189 { 190 if (!(flags & SHMEM_F_NORESERVE)) { 191 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 192 return security_vm_enough_memory_mm(current->mm, 193 VM_ACCT(newsize) - VM_ACCT(oldsize)); 194 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 195 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 196 } 197 return 0; 198 } 199 200 /* 201 * ... whereas tmpfs objects are accounted incrementally as 202 * pages are allocated, in order to allow large sparse files. 203 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 204 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 205 */ 206 static inline int shmem_acct_blocks(unsigned long flags, long pages) 207 { 208 if (!(flags & SHMEM_F_NORESERVE)) 209 return 0; 210 211 return security_vm_enough_memory_mm(current->mm, 212 pages * VM_ACCT(PAGE_SIZE)); 213 } 214 215 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 216 { 217 if (flags & SHMEM_F_NORESERVE) 218 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 219 } 220 221 int shmem_inode_acct_blocks(struct inode *inode, long pages) 222 { 223 struct shmem_inode_info *info = SHMEM_I(inode); 224 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 225 int err = -ENOSPC; 226 227 if (shmem_acct_blocks(info->flags, pages)) 228 return err; 229 230 might_sleep(); /* when quotas */ 231 if (sbinfo->max_blocks) { 232 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 233 sbinfo->max_blocks, pages)) 234 goto unacct; 235 236 err = dquot_alloc_block_nodirty(inode, pages); 237 if (err) { 238 percpu_counter_sub(&sbinfo->used_blocks, pages); 239 goto unacct; 240 } 241 } else { 242 err = dquot_alloc_block_nodirty(inode, pages); 243 if (err) 244 goto unacct; 245 } 246 247 return 0; 248 249 unacct: 250 shmem_unacct_blocks(info->flags, pages); 251 return err; 252 } 253 254 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 255 { 256 struct shmem_inode_info *info = SHMEM_I(inode); 257 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 258 259 might_sleep(); /* when quotas */ 260 dquot_free_block_nodirty(inode, pages); 261 262 if (sbinfo->max_blocks) 263 percpu_counter_sub(&sbinfo->used_blocks, pages); 264 shmem_unacct_blocks(info->flags, pages); 265 } 266 267 static const struct super_operations shmem_ops; 268 static const struct address_space_operations shmem_aops; 269 static const struct file_operations shmem_file_operations; 270 static const struct inode_operations shmem_inode_operations; 271 static const struct inode_operations shmem_dir_inode_operations; 272 static const struct inode_operations shmem_special_inode_operations; 273 static const struct vm_operations_struct shmem_vm_ops; 274 static const struct vm_operations_struct shmem_anon_vm_ops; 275 static struct file_system_type shmem_fs_type; 276 277 bool shmem_mapping(const struct address_space *mapping) 278 { 279 return mapping->a_ops == &shmem_aops; 280 } 281 EXPORT_SYMBOL_GPL(shmem_mapping); 282 283 bool vma_is_anon_shmem(const struct vm_area_struct *vma) 284 { 285 return vma->vm_ops == &shmem_anon_vm_ops; 286 } 287 288 bool vma_is_shmem(const struct vm_area_struct *vma) 289 { 290 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 291 } 292 293 static LIST_HEAD(shmem_swaplist); 294 static DEFINE_SPINLOCK(shmem_swaplist_lock); 295 296 #ifdef CONFIG_TMPFS_QUOTA 297 298 static int shmem_enable_quotas(struct super_block *sb, 299 unsigned short quota_types) 300 { 301 int type, err = 0; 302 303 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 304 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 305 if (!(quota_types & (1 << type))) 306 continue; 307 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 308 DQUOT_USAGE_ENABLED | 309 DQUOT_LIMITS_ENABLED); 310 if (err) 311 goto out_err; 312 } 313 return 0; 314 315 out_err: 316 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 317 type, err); 318 for (type--; type >= 0; type--) 319 dquot_quota_off(sb, type); 320 return err; 321 } 322 323 static void shmem_disable_quotas(struct super_block *sb) 324 { 325 int type; 326 327 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 328 dquot_quota_off(sb, type); 329 } 330 331 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 332 { 333 return SHMEM_I(inode)->i_dquot; 334 } 335 #endif /* CONFIG_TMPFS_QUOTA */ 336 337 /* 338 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 339 * produces a novel ino for the newly allocated inode. 340 * 341 * It may also be called when making a hard link to permit the space needed by 342 * each dentry. However, in that case, no new inode number is needed since that 343 * internally draws from another pool of inode numbers (currently global 344 * get_next_ino()). This case is indicated by passing NULL as inop. 345 */ 346 #define SHMEM_INO_BATCH 1024 347 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 348 { 349 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 350 ino_t ino; 351 352 if (!(sb->s_flags & SB_KERNMOUNT)) { 353 raw_spin_lock(&sbinfo->stat_lock); 354 if (sbinfo->max_inodes) { 355 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 356 raw_spin_unlock(&sbinfo->stat_lock); 357 return -ENOSPC; 358 } 359 sbinfo->free_ispace -= BOGO_INODE_SIZE; 360 } 361 if (inop) { 362 ino = sbinfo->next_ino++; 363 if (unlikely(is_zero_ino(ino))) 364 ino = sbinfo->next_ino++; 365 if (unlikely(!sbinfo->full_inums && 366 ino > UINT_MAX)) { 367 /* 368 * Emulate get_next_ino uint wraparound for 369 * compatibility 370 */ 371 if (IS_ENABLED(CONFIG_64BIT)) 372 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 373 __func__, MINOR(sb->s_dev)); 374 sbinfo->next_ino = 1; 375 ino = sbinfo->next_ino++; 376 } 377 *inop = ino; 378 } 379 raw_spin_unlock(&sbinfo->stat_lock); 380 } else if (inop) { 381 /* 382 * __shmem_file_setup, one of our callers, is lock-free: it 383 * doesn't hold stat_lock in shmem_reserve_inode since 384 * max_inodes is always 0, and is called from potentially 385 * unknown contexts. As such, use a per-cpu batched allocator 386 * which doesn't require the per-sb stat_lock unless we are at 387 * the batch boundary. 388 * 389 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 390 * shmem mounts are not exposed to userspace, so we don't need 391 * to worry about things like glibc compatibility. 392 */ 393 ino_t *next_ino; 394 395 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 396 ino = *next_ino; 397 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 398 raw_spin_lock(&sbinfo->stat_lock); 399 ino = sbinfo->next_ino; 400 sbinfo->next_ino += SHMEM_INO_BATCH; 401 raw_spin_unlock(&sbinfo->stat_lock); 402 if (unlikely(is_zero_ino(ino))) 403 ino++; 404 } 405 *inop = ino; 406 *next_ino = ++ino; 407 put_cpu(); 408 } 409 410 return 0; 411 } 412 413 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 414 { 415 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 416 if (sbinfo->max_inodes) { 417 raw_spin_lock(&sbinfo->stat_lock); 418 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 419 raw_spin_unlock(&sbinfo->stat_lock); 420 } 421 } 422 423 /** 424 * shmem_recalc_inode - recalculate the block usage of an inode 425 * @inode: inode to recalc 426 * @alloced: the change in number of pages allocated to inode 427 * @swapped: the change in number of pages swapped from inode 428 * 429 * We have to calculate the free blocks since the mm can drop 430 * undirtied hole pages behind our back. 431 * 432 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 433 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 434 * 435 * Return: true if swapped was incremented from 0, for shmem_writeout(). 436 */ 437 bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 438 { 439 struct shmem_inode_info *info = SHMEM_I(inode); 440 bool first_swapped = false; 441 long freed; 442 443 spin_lock(&info->lock); 444 info->alloced += alloced; 445 info->swapped += swapped; 446 freed = info->alloced - info->swapped - 447 READ_ONCE(inode->i_mapping->nrpages); 448 /* 449 * Special case: whereas normally shmem_recalc_inode() is called 450 * after i_mapping->nrpages has already been adjusted (up or down), 451 * shmem_writeout() has to raise swapped before nrpages is lowered - 452 * to stop a racing shmem_recalc_inode() from thinking that a page has 453 * been freed. Compensate here, to avoid the need for a followup call. 454 */ 455 if (swapped > 0) { 456 if (info->swapped == swapped) 457 first_swapped = true; 458 freed += swapped; 459 } 460 if (freed > 0) 461 info->alloced -= freed; 462 spin_unlock(&info->lock); 463 464 /* The quota case may block */ 465 if (freed > 0) 466 shmem_inode_unacct_blocks(inode, freed); 467 return first_swapped; 468 } 469 470 bool shmem_charge(struct inode *inode, long pages) 471 { 472 struct address_space *mapping = inode->i_mapping; 473 474 if (shmem_inode_acct_blocks(inode, pages)) 475 return false; 476 477 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 478 xa_lock_irq(&mapping->i_pages); 479 mapping->nrpages += pages; 480 xa_unlock_irq(&mapping->i_pages); 481 482 shmem_recalc_inode(inode, pages, 0); 483 return true; 484 } 485 486 void shmem_uncharge(struct inode *inode, long pages) 487 { 488 /* pages argument is currently unused: keep it to help debugging */ 489 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 490 491 shmem_recalc_inode(inode, 0, 0); 492 } 493 494 /* 495 * Replace item expected in xarray by a new item, while holding xa_lock. 496 */ 497 static int shmem_replace_entry(struct address_space *mapping, 498 pgoff_t index, void *expected, void *replacement) 499 { 500 XA_STATE(xas, &mapping->i_pages, index); 501 void *item; 502 503 VM_BUG_ON(!expected); 504 VM_BUG_ON(!replacement); 505 item = xas_load(&xas); 506 if (item != expected) 507 return -ENOENT; 508 xas_store(&xas, replacement); 509 return 0; 510 } 511 512 /* 513 * Sometimes, before we decide whether to proceed or to fail, we must check 514 * that an entry was not already brought back or split by a racing thread. 515 * 516 * Checking folio is not enough: by the time a swapcache folio is locked, it 517 * might be reused, and again be swapcache, using the same swap as before. 518 * Returns the swap entry's order if it still presents, else returns -1. 519 */ 520 static int shmem_confirm_swap(struct address_space *mapping, pgoff_t index, 521 swp_entry_t swap) 522 { 523 XA_STATE(xas, &mapping->i_pages, index); 524 int ret = -1; 525 void *entry; 526 527 rcu_read_lock(); 528 do { 529 entry = xas_load(&xas); 530 if (entry == swp_to_radix_entry(swap)) 531 ret = xas_get_order(&xas); 532 } while (xas_retry(&xas, entry)); 533 rcu_read_unlock(); 534 return ret; 535 } 536 537 /* 538 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 539 * 540 * SHMEM_HUGE_NEVER: 541 * disables huge pages for the mount; 542 * SHMEM_HUGE_ALWAYS: 543 * enables huge pages for the mount; 544 * SHMEM_HUGE_WITHIN_SIZE: 545 * only allocate huge pages if the page will be fully within i_size, 546 * also respect madvise() hints; 547 * SHMEM_HUGE_ADVISE: 548 * only allocate huge pages if requested with madvise(); 549 */ 550 551 #define SHMEM_HUGE_NEVER 0 552 #define SHMEM_HUGE_ALWAYS 1 553 #define SHMEM_HUGE_WITHIN_SIZE 2 554 #define SHMEM_HUGE_ADVISE 3 555 556 /* 557 * Special values. 558 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 559 * 560 * SHMEM_HUGE_DENY: 561 * disables huge on shm_mnt and all mounts, for emergency use; 562 * SHMEM_HUGE_FORCE: 563 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 564 * 565 */ 566 #define SHMEM_HUGE_DENY (-1) 567 #define SHMEM_HUGE_FORCE (-2) 568 569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 570 /* ifdef here to avoid bloating shmem.o when not necessary */ 571 572 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_NEVER) 573 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER 574 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ALWAYS) 575 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ALWAYS 576 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_WITHIN_SIZE) 577 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE 578 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ADVISE) 579 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ADVISE 580 #else 581 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER 582 #endif 583 584 static int shmem_huge __read_mostly = SHMEM_HUGE_DEFAULT; 585 586 #undef SHMEM_HUGE_DEFAULT 587 588 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_NEVER) 589 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER 590 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ALWAYS) 591 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ALWAYS 592 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_WITHIN_SIZE) 593 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE 594 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ADVISE) 595 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ADVISE 596 #else 597 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER 598 #endif 599 600 static int tmpfs_huge __read_mostly = TMPFS_HUGE_DEFAULT; 601 602 #undef TMPFS_HUGE_DEFAULT 603 604 static unsigned int shmem_get_orders_within_size(struct inode *inode, 605 unsigned long within_size_orders, pgoff_t index, 606 loff_t write_end) 607 { 608 pgoff_t aligned_index; 609 unsigned long order; 610 loff_t i_size; 611 612 order = highest_order(within_size_orders); 613 while (within_size_orders) { 614 aligned_index = round_up(index + 1, 1 << order); 615 i_size = max(write_end, i_size_read(inode)); 616 i_size = round_up(i_size, PAGE_SIZE); 617 if (i_size >> PAGE_SHIFT >= aligned_index) 618 return within_size_orders; 619 620 order = next_order(&within_size_orders, order); 621 } 622 623 return 0; 624 } 625 626 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 627 loff_t write_end, bool shmem_huge_force, 628 struct vm_area_struct *vma, 629 vm_flags_t vm_flags) 630 { 631 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ? 632 0 : BIT(HPAGE_PMD_ORDER); 633 unsigned long within_size_orders; 634 635 if (!S_ISREG(inode->i_mode)) 636 return 0; 637 if (shmem_huge == SHMEM_HUGE_DENY) 638 return 0; 639 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 640 return maybe_pmd_order; 641 642 /* 643 * The huge order allocation for anon shmem is controlled through 644 * the mTHP interface, so we still use PMD-sized huge order to 645 * check whether global control is enabled. 646 * 647 * For tmpfs with 'huge=always' or 'huge=within_size' mount option, 648 * we will always try PMD-sized order first. If that failed, it will 649 * fall back to small large folios. 650 */ 651 switch (SHMEM_SB(inode->i_sb)->huge) { 652 case SHMEM_HUGE_ALWAYS: 653 return THP_ORDERS_ALL_FILE_DEFAULT; 654 case SHMEM_HUGE_WITHIN_SIZE: 655 within_size_orders = shmem_get_orders_within_size(inode, 656 THP_ORDERS_ALL_FILE_DEFAULT, index, write_end); 657 if (within_size_orders > 0) 658 return within_size_orders; 659 660 fallthrough; 661 case SHMEM_HUGE_ADVISE: 662 if (vm_flags & VM_HUGEPAGE) 663 return THP_ORDERS_ALL_FILE_DEFAULT; 664 fallthrough; 665 default: 666 return 0; 667 } 668 } 669 670 static int shmem_parse_huge(const char *str) 671 { 672 int huge; 673 674 if (!str) 675 return -EINVAL; 676 677 if (!strcmp(str, "never")) 678 huge = SHMEM_HUGE_NEVER; 679 else if (!strcmp(str, "always")) 680 huge = SHMEM_HUGE_ALWAYS; 681 else if (!strcmp(str, "within_size")) 682 huge = SHMEM_HUGE_WITHIN_SIZE; 683 else if (!strcmp(str, "advise")) 684 huge = SHMEM_HUGE_ADVISE; 685 else if (!strcmp(str, "deny")) 686 huge = SHMEM_HUGE_DENY; 687 else if (!strcmp(str, "force")) 688 huge = SHMEM_HUGE_FORCE; 689 else 690 return -EINVAL; 691 692 if (!has_transparent_hugepage() && 693 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 694 return -EINVAL; 695 696 /* Do not override huge allocation policy with non-PMD sized mTHP */ 697 if (huge == SHMEM_HUGE_FORCE && 698 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER)) 699 return -EINVAL; 700 701 return huge; 702 } 703 704 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 705 static const char *shmem_format_huge(int huge) 706 { 707 switch (huge) { 708 case SHMEM_HUGE_NEVER: 709 return "never"; 710 case SHMEM_HUGE_ALWAYS: 711 return "always"; 712 case SHMEM_HUGE_WITHIN_SIZE: 713 return "within_size"; 714 case SHMEM_HUGE_ADVISE: 715 return "advise"; 716 case SHMEM_HUGE_DENY: 717 return "deny"; 718 case SHMEM_HUGE_FORCE: 719 return "force"; 720 default: 721 VM_BUG_ON(1); 722 return "bad_val"; 723 } 724 } 725 #endif 726 727 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 728 struct shrink_control *sc, unsigned long nr_to_free) 729 { 730 LIST_HEAD(list), *pos, *next; 731 struct inode *inode; 732 struct shmem_inode_info *info; 733 struct folio *folio; 734 unsigned long batch = sc ? sc->nr_to_scan : 128; 735 unsigned long split = 0, freed = 0; 736 737 if (list_empty(&sbinfo->shrinklist)) 738 return SHRINK_STOP; 739 740 spin_lock(&sbinfo->shrinklist_lock); 741 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 742 info = list_entry(pos, struct shmem_inode_info, shrinklist); 743 744 /* pin the inode */ 745 inode = igrab(&info->vfs_inode); 746 747 /* inode is about to be evicted */ 748 if (!inode) { 749 list_del_init(&info->shrinklist); 750 goto next; 751 } 752 753 list_move(&info->shrinklist, &list); 754 next: 755 sbinfo->shrinklist_len--; 756 if (!--batch) 757 break; 758 } 759 spin_unlock(&sbinfo->shrinklist_lock); 760 761 list_for_each_safe(pos, next, &list) { 762 pgoff_t next, end; 763 loff_t i_size; 764 int ret; 765 766 info = list_entry(pos, struct shmem_inode_info, shrinklist); 767 inode = &info->vfs_inode; 768 769 if (nr_to_free && freed >= nr_to_free) 770 goto move_back; 771 772 i_size = i_size_read(inode); 773 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE); 774 if (!folio || xa_is_value(folio)) 775 goto drop; 776 777 /* No large folio at the end of the file: nothing to split */ 778 if (!folio_test_large(folio)) { 779 folio_put(folio); 780 goto drop; 781 } 782 783 /* Check if there is anything to gain from splitting */ 784 next = folio_next_index(folio); 785 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE)); 786 if (end <= folio->index || end >= next) { 787 folio_put(folio); 788 goto drop; 789 } 790 791 /* 792 * Move the inode on the list back to shrinklist if we failed 793 * to lock the page at this time. 794 * 795 * Waiting for the lock may lead to deadlock in the 796 * reclaim path. 797 */ 798 if (!folio_trylock(folio)) { 799 folio_put(folio); 800 goto move_back; 801 } 802 803 ret = split_folio(folio); 804 folio_unlock(folio); 805 folio_put(folio); 806 807 /* If split failed move the inode on the list back to shrinklist */ 808 if (ret) 809 goto move_back; 810 811 freed += next - end; 812 split++; 813 drop: 814 list_del_init(&info->shrinklist); 815 goto put; 816 move_back: 817 /* 818 * Make sure the inode is either on the global list or deleted 819 * from any local list before iput() since it could be deleted 820 * in another thread once we put the inode (then the local list 821 * is corrupted). 822 */ 823 spin_lock(&sbinfo->shrinklist_lock); 824 list_move(&info->shrinklist, &sbinfo->shrinklist); 825 sbinfo->shrinklist_len++; 826 spin_unlock(&sbinfo->shrinklist_lock); 827 put: 828 iput(inode); 829 } 830 831 return split; 832 } 833 834 static long shmem_unused_huge_scan(struct super_block *sb, 835 struct shrink_control *sc) 836 { 837 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 838 839 if (!READ_ONCE(sbinfo->shrinklist_len)) 840 return SHRINK_STOP; 841 842 return shmem_unused_huge_shrink(sbinfo, sc, 0); 843 } 844 845 static long shmem_unused_huge_count(struct super_block *sb, 846 struct shrink_control *sc) 847 { 848 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 849 return READ_ONCE(sbinfo->shrinklist_len); 850 } 851 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 852 853 #define shmem_huge SHMEM_HUGE_DENY 854 855 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 856 struct shrink_control *sc, unsigned long nr_to_free) 857 { 858 return 0; 859 } 860 861 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 862 loff_t write_end, bool shmem_huge_force, 863 struct vm_area_struct *vma, 864 vm_flags_t vm_flags) 865 { 866 return 0; 867 } 868 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 869 870 static void shmem_update_stats(struct folio *folio, int nr_pages) 871 { 872 if (folio_test_pmd_mappable(folio)) 873 lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages); 874 lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages); 875 lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages); 876 } 877 878 /* 879 * Somewhat like filemap_add_folio, but error if expected item has gone. 880 */ 881 int shmem_add_to_page_cache(struct folio *folio, 882 struct address_space *mapping, 883 pgoff_t index, void *expected, gfp_t gfp) 884 { 885 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 886 unsigned long nr = folio_nr_pages(folio); 887 swp_entry_t iter, swap; 888 void *entry; 889 890 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 891 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 892 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 893 894 folio_ref_add(folio, nr); 895 folio->mapping = mapping; 896 folio->index = index; 897 898 gfp &= GFP_RECLAIM_MASK; 899 folio_throttle_swaprate(folio, gfp); 900 swap = radix_to_swp_entry(expected); 901 902 do { 903 iter = swap; 904 xas_lock_irq(&xas); 905 xas_for_each_conflict(&xas, entry) { 906 /* 907 * The range must either be empty, or filled with 908 * expected swap entries. Shmem swap entries are never 909 * partially freed without split of both entry and 910 * folio, so there shouldn't be any holes. 911 */ 912 if (!expected || entry != swp_to_radix_entry(iter)) { 913 xas_set_err(&xas, -EEXIST); 914 goto unlock; 915 } 916 iter.val += 1 << xas_get_order(&xas); 917 } 918 if (expected && iter.val - nr != swap.val) { 919 xas_set_err(&xas, -EEXIST); 920 goto unlock; 921 } 922 xas_store(&xas, folio); 923 if (xas_error(&xas)) 924 goto unlock; 925 shmem_update_stats(folio, nr); 926 mapping->nrpages += nr; 927 unlock: 928 xas_unlock_irq(&xas); 929 } while (xas_nomem(&xas, gfp)); 930 931 if (xas_error(&xas)) { 932 folio->mapping = NULL; 933 folio_ref_sub(folio, nr); 934 return xas_error(&xas); 935 } 936 937 return 0; 938 } 939 940 /* 941 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 942 */ 943 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 944 { 945 struct address_space *mapping = folio->mapping; 946 long nr = folio_nr_pages(folio); 947 int error; 948 949 xa_lock_irq(&mapping->i_pages); 950 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 951 folio->mapping = NULL; 952 mapping->nrpages -= nr; 953 shmem_update_stats(folio, -nr); 954 xa_unlock_irq(&mapping->i_pages); 955 folio_put_refs(folio, nr); 956 BUG_ON(error); 957 } 958 959 /* 960 * Remove swap entry from page cache, free the swap and its page cache. Returns 961 * the number of pages being freed. 0 means entry not found in XArray (0 pages 962 * being freed). 963 */ 964 static long shmem_free_swap(struct address_space *mapping, 965 pgoff_t index, pgoff_t end, void *radswap) 966 { 967 XA_STATE(xas, &mapping->i_pages, index); 968 unsigned int nr_pages = 0; 969 pgoff_t base; 970 void *entry; 971 972 xas_lock_irq(&xas); 973 entry = xas_load(&xas); 974 if (entry == radswap) { 975 nr_pages = 1 << xas_get_order(&xas); 976 base = round_down(xas.xa_index, nr_pages); 977 if (base < index || base + nr_pages - 1 > end) 978 nr_pages = 0; 979 else 980 xas_store(&xas, NULL); 981 } 982 xas_unlock_irq(&xas); 983 984 if (nr_pages) 985 swap_put_entries_direct(radix_to_swp_entry(radswap), nr_pages); 986 987 return nr_pages; 988 } 989 990 /* 991 * Determine (in bytes) how many of the shmem object's pages mapped by the 992 * given offsets are swapped out. 993 * 994 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 995 * as long as the inode doesn't go away and racy results are not a problem. 996 */ 997 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 998 pgoff_t start, pgoff_t end) 999 { 1000 XA_STATE(xas, &mapping->i_pages, start); 1001 struct folio *folio; 1002 unsigned long swapped = 0; 1003 unsigned long max = end - 1; 1004 1005 rcu_read_lock(); 1006 xas_for_each(&xas, folio, max) { 1007 if (xas_retry(&xas, folio)) 1008 continue; 1009 if (xa_is_value(folio)) 1010 swapped += 1 << xas_get_order(&xas); 1011 if (xas.xa_index == max) 1012 break; 1013 if (need_resched()) { 1014 xas_pause(&xas); 1015 cond_resched_rcu(); 1016 } 1017 } 1018 rcu_read_unlock(); 1019 1020 return swapped << PAGE_SHIFT; 1021 } 1022 1023 /* 1024 * Determine (in bytes) how many of the shmem object's pages mapped by the 1025 * given vma is swapped out. 1026 * 1027 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 1028 * as long as the inode doesn't go away and racy results are not a problem. 1029 */ 1030 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 1031 { 1032 struct inode *inode = file_inode(vma->vm_file); 1033 struct shmem_inode_info *info = SHMEM_I(inode); 1034 struct address_space *mapping = inode->i_mapping; 1035 unsigned long swapped; 1036 1037 /* Be careful as we don't hold info->lock */ 1038 swapped = READ_ONCE(info->swapped); 1039 1040 /* 1041 * The easier cases are when the shmem object has nothing in swap, or 1042 * the vma maps it whole. Then we can simply use the stats that we 1043 * already track. 1044 */ 1045 if (!swapped) 1046 return 0; 1047 1048 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 1049 return swapped << PAGE_SHIFT; 1050 1051 /* Here comes the more involved part */ 1052 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 1053 vma->vm_pgoff + vma_pages(vma)); 1054 } 1055 1056 /* 1057 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 1058 */ 1059 void shmem_unlock_mapping(struct address_space *mapping) 1060 { 1061 struct folio_batch fbatch; 1062 pgoff_t index = 0; 1063 1064 folio_batch_init(&fbatch); 1065 /* 1066 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 1067 */ 1068 while (!mapping_unevictable(mapping) && 1069 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 1070 check_move_unevictable_folios(&fbatch); 1071 folio_batch_release(&fbatch); 1072 cond_resched(); 1073 } 1074 } 1075 1076 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 1077 { 1078 struct folio *folio; 1079 1080 /* 1081 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 1082 * beyond i_size, and reports fallocated folios as holes. 1083 */ 1084 folio = filemap_get_entry(inode->i_mapping, index); 1085 if (!folio) 1086 return folio; 1087 if (!xa_is_value(folio)) { 1088 folio_lock(folio); 1089 if (folio->mapping == inode->i_mapping) 1090 return folio; 1091 /* The folio has been swapped out */ 1092 folio_unlock(folio); 1093 folio_put(folio); 1094 } 1095 /* 1096 * But read a folio back from swap if any of it is within i_size 1097 * (although in some cases this is just a waste of time). 1098 */ 1099 folio = NULL; 1100 shmem_get_folio(inode, index, 0, &folio, SGP_READ); 1101 return folio; 1102 } 1103 1104 /* 1105 * Remove range of pages and swap entries from page cache, and free them. 1106 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 1107 */ 1108 static void shmem_undo_range(struct inode *inode, loff_t lstart, uoff_t lend, 1109 bool unfalloc) 1110 { 1111 struct address_space *mapping = inode->i_mapping; 1112 struct shmem_inode_info *info = SHMEM_I(inode); 1113 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 1114 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 1115 struct folio_batch fbatch; 1116 pgoff_t indices[PAGEVEC_SIZE]; 1117 struct folio *folio; 1118 bool same_folio; 1119 long nr_swaps_freed = 0; 1120 pgoff_t index; 1121 int i; 1122 1123 if (lend == -1) 1124 end = -1; /* unsigned, so actually very big */ 1125 1126 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1127 info->fallocend = start; 1128 1129 folio_batch_init(&fbatch); 1130 index = start; 1131 while (index < end && find_lock_entries(mapping, &index, end - 1, 1132 &fbatch, indices)) { 1133 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1134 folio = fbatch.folios[i]; 1135 1136 if (xa_is_value(folio)) { 1137 if (unfalloc) 1138 continue; 1139 nr_swaps_freed += shmem_free_swap(mapping, indices[i], 1140 end - 1, folio); 1141 continue; 1142 } 1143 1144 if (!unfalloc || !folio_test_uptodate(folio)) 1145 truncate_inode_folio(mapping, folio); 1146 folio_unlock(folio); 1147 } 1148 folio_batch_remove_exceptionals(&fbatch); 1149 folio_batch_release(&fbatch); 1150 cond_resched(); 1151 } 1152 1153 /* 1154 * When undoing a failed fallocate, we want none of the partial folio 1155 * zeroing and splitting below, but shall want to truncate the whole 1156 * folio when !uptodate indicates that it was added by this fallocate, 1157 * even when [lstart, lend] covers only a part of the folio. 1158 */ 1159 if (unfalloc) 1160 goto whole_folios; 1161 1162 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1163 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1164 if (folio) { 1165 same_folio = lend < folio_next_pos(folio); 1166 folio_mark_dirty(folio); 1167 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1168 start = folio_next_index(folio); 1169 if (same_folio) 1170 end = folio->index; 1171 } 1172 folio_unlock(folio); 1173 folio_put(folio); 1174 folio = NULL; 1175 } 1176 1177 if (!same_folio) 1178 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1179 if (folio) { 1180 folio_mark_dirty(folio); 1181 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1182 end = folio->index; 1183 folio_unlock(folio); 1184 folio_put(folio); 1185 } 1186 1187 whole_folios: 1188 1189 index = start; 1190 while (index < end) { 1191 cond_resched(); 1192 1193 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1194 indices)) { 1195 /* If all gone or hole-punch or unfalloc, we're done */ 1196 if (index == start || end != -1) 1197 break; 1198 /* But if truncating, restart to make sure all gone */ 1199 index = start; 1200 continue; 1201 } 1202 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1203 folio = fbatch.folios[i]; 1204 1205 if (xa_is_value(folio)) { 1206 int order; 1207 long swaps_freed; 1208 1209 if (unfalloc) 1210 continue; 1211 swaps_freed = shmem_free_swap(mapping, indices[i], 1212 end - 1, folio); 1213 if (!swaps_freed) { 1214 pgoff_t base = indices[i]; 1215 1216 order = shmem_confirm_swap(mapping, indices[i], 1217 radix_to_swp_entry(folio)); 1218 /* 1219 * If found a large swap entry cross the end or start 1220 * border, skip it as the truncate_inode_partial_folio 1221 * above should have at least zerod its content once. 1222 */ 1223 if (order > 0) { 1224 base = round_down(base, 1 << order); 1225 if (base < start || base + (1 << order) > end) 1226 continue; 1227 } 1228 /* Swap was replaced by page or extended, retry */ 1229 index = base; 1230 break; 1231 } 1232 nr_swaps_freed += swaps_freed; 1233 continue; 1234 } 1235 1236 folio_lock(folio); 1237 1238 if (!unfalloc || !folio_test_uptodate(folio)) { 1239 if (folio_mapping(folio) != mapping) { 1240 /* Page was replaced by swap: retry */ 1241 folio_unlock(folio); 1242 index = indices[i]; 1243 break; 1244 } 1245 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1246 folio); 1247 1248 if (!folio_test_large(folio)) { 1249 truncate_inode_folio(mapping, folio); 1250 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1251 /* 1252 * If we split a page, reset the loop so 1253 * that we pick up the new sub pages. 1254 * Otherwise the THP was entirely 1255 * dropped or the target range was 1256 * zeroed, so just continue the loop as 1257 * is. 1258 */ 1259 if (!folio_test_large(folio)) { 1260 folio_unlock(folio); 1261 index = start; 1262 break; 1263 } 1264 } 1265 } 1266 folio_unlock(folio); 1267 } 1268 folio_batch_remove_exceptionals(&fbatch); 1269 folio_batch_release(&fbatch); 1270 } 1271 1272 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1273 } 1274 1275 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend) 1276 { 1277 shmem_undo_range(inode, lstart, lend, false); 1278 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1279 inode_inc_iversion(inode); 1280 } 1281 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1282 1283 static int shmem_getattr(struct mnt_idmap *idmap, 1284 const struct path *path, struct kstat *stat, 1285 u32 request_mask, unsigned int query_flags) 1286 { 1287 struct inode *inode = path->dentry->d_inode; 1288 struct shmem_inode_info *info = SHMEM_I(inode); 1289 1290 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1291 shmem_recalc_inode(inode, 0, 0); 1292 1293 if (info->fsflags & FS_APPEND_FL) 1294 stat->attributes |= STATX_ATTR_APPEND; 1295 if (info->fsflags & FS_IMMUTABLE_FL) 1296 stat->attributes |= STATX_ATTR_IMMUTABLE; 1297 if (info->fsflags & FS_NODUMP_FL) 1298 stat->attributes |= STATX_ATTR_NODUMP; 1299 stat->attributes_mask |= (STATX_ATTR_APPEND | 1300 STATX_ATTR_IMMUTABLE | 1301 STATX_ATTR_NODUMP); 1302 generic_fillattr(idmap, request_mask, inode, stat); 1303 1304 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0)) 1305 stat->blksize = HPAGE_PMD_SIZE; 1306 1307 if (request_mask & STATX_BTIME) { 1308 stat->result_mask |= STATX_BTIME; 1309 stat->btime.tv_sec = info->i_crtime.tv_sec; 1310 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1311 } 1312 1313 return 0; 1314 } 1315 1316 static int shmem_setattr(struct mnt_idmap *idmap, 1317 struct dentry *dentry, struct iattr *attr) 1318 { 1319 struct inode *inode = d_inode(dentry); 1320 struct shmem_inode_info *info = SHMEM_I(inode); 1321 int error; 1322 bool update_mtime = false; 1323 bool update_ctime = true; 1324 1325 error = setattr_prepare(idmap, dentry, attr); 1326 if (error) 1327 return error; 1328 1329 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1330 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1331 return -EPERM; 1332 } 1333 } 1334 1335 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1336 loff_t oldsize = inode->i_size; 1337 loff_t newsize = attr->ia_size; 1338 1339 /* protected by i_rwsem */ 1340 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1341 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1342 return -EPERM; 1343 1344 if (newsize != oldsize) { 1345 if (info->flags & SHMEM_F_MAPPING_FROZEN) 1346 return -EPERM; 1347 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1348 oldsize, newsize); 1349 if (error) 1350 return error; 1351 i_size_write(inode, newsize); 1352 update_mtime = true; 1353 } else { 1354 update_ctime = false; 1355 } 1356 if (newsize <= oldsize) { 1357 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1358 if (oldsize > holebegin) 1359 unmap_mapping_range(inode->i_mapping, 1360 holebegin, 0, 1); 1361 if (info->alloced) 1362 shmem_truncate_range(inode, 1363 newsize, (loff_t)-1); 1364 /* unmap again to remove racily COWed private pages */ 1365 if (oldsize > holebegin) 1366 unmap_mapping_range(inode->i_mapping, 1367 holebegin, 0, 1); 1368 } 1369 } 1370 1371 if (is_quota_modification(idmap, inode, attr)) { 1372 error = dquot_initialize(inode); 1373 if (error) 1374 return error; 1375 } 1376 1377 /* Transfer quota accounting */ 1378 if (i_uid_needs_update(idmap, attr, inode) || 1379 i_gid_needs_update(idmap, attr, inode)) { 1380 error = dquot_transfer(idmap, inode, attr); 1381 if (error) 1382 return error; 1383 } 1384 1385 setattr_copy(idmap, inode, attr); 1386 if (attr->ia_valid & ATTR_MODE) 1387 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1388 if (!error && update_ctime) { 1389 inode_set_ctime_current(inode); 1390 if (update_mtime) 1391 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1392 inode_inc_iversion(inode); 1393 } 1394 return error; 1395 } 1396 1397 static void shmem_evict_inode(struct inode *inode) 1398 { 1399 struct shmem_inode_info *info = SHMEM_I(inode); 1400 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1401 size_t freed = 0; 1402 1403 if (shmem_mapping(inode->i_mapping)) { 1404 shmem_unacct_size(info->flags, inode->i_size); 1405 inode->i_size = 0; 1406 mapping_set_exiting(inode->i_mapping); 1407 shmem_truncate_range(inode, 0, (loff_t)-1); 1408 if (!list_empty(&info->shrinklist)) { 1409 spin_lock(&sbinfo->shrinklist_lock); 1410 if (!list_empty(&info->shrinklist)) { 1411 list_del_init(&info->shrinklist); 1412 sbinfo->shrinklist_len--; 1413 } 1414 spin_unlock(&sbinfo->shrinklist_lock); 1415 } 1416 while (!list_empty(&info->swaplist)) { 1417 /* Wait while shmem_unuse() is scanning this inode... */ 1418 wait_var_event(&info->stop_eviction, 1419 !atomic_read(&info->stop_eviction)); 1420 spin_lock(&shmem_swaplist_lock); 1421 /* ...but beware of the race if we peeked too early */ 1422 if (!atomic_read(&info->stop_eviction)) 1423 list_del_init(&info->swaplist); 1424 spin_unlock(&shmem_swaplist_lock); 1425 } 1426 } 1427 1428 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1429 shmem_free_inode(inode->i_sb, freed); 1430 WARN_ON(inode->i_blocks); 1431 clear_inode(inode); 1432 #ifdef CONFIG_TMPFS_QUOTA 1433 dquot_free_inode(inode); 1434 dquot_drop(inode); 1435 #endif 1436 } 1437 1438 static unsigned int shmem_find_swap_entries(struct address_space *mapping, 1439 pgoff_t start, struct folio_batch *fbatch, 1440 pgoff_t *indices, unsigned int type) 1441 { 1442 XA_STATE(xas, &mapping->i_pages, start); 1443 struct folio *folio; 1444 swp_entry_t entry; 1445 1446 rcu_read_lock(); 1447 xas_for_each(&xas, folio, ULONG_MAX) { 1448 if (xas_retry(&xas, folio)) 1449 continue; 1450 1451 if (!xa_is_value(folio)) 1452 continue; 1453 1454 entry = radix_to_swp_entry(folio); 1455 /* 1456 * swapin error entries can be found in the mapping. But they're 1457 * deliberately ignored here as we've done everything we can do. 1458 */ 1459 if (swp_type(entry) != type) 1460 continue; 1461 1462 indices[folio_batch_count(fbatch)] = xas.xa_index; 1463 if (!folio_batch_add(fbatch, folio)) 1464 break; 1465 1466 if (need_resched()) { 1467 xas_pause(&xas); 1468 cond_resched_rcu(); 1469 } 1470 } 1471 rcu_read_unlock(); 1472 1473 return folio_batch_count(fbatch); 1474 } 1475 1476 /* 1477 * Move the swapped pages for an inode to page cache. Returns the count 1478 * of pages swapped in, or the error in case of failure. 1479 */ 1480 static int shmem_unuse_swap_entries(struct inode *inode, 1481 struct folio_batch *fbatch, pgoff_t *indices) 1482 { 1483 int i = 0; 1484 int ret = 0; 1485 int error = 0; 1486 struct address_space *mapping = inode->i_mapping; 1487 1488 for (i = 0; i < folio_batch_count(fbatch); i++) { 1489 struct folio *folio = fbatch->folios[i]; 1490 1491 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1492 mapping_gfp_mask(mapping), NULL, NULL); 1493 if (error == 0) { 1494 folio_unlock(folio); 1495 folio_put(folio); 1496 ret++; 1497 } 1498 if (error == -ENOMEM) 1499 break; 1500 error = 0; 1501 } 1502 return error ? error : ret; 1503 } 1504 1505 /* 1506 * If swap found in inode, free it and move page from swapcache to filecache. 1507 */ 1508 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1509 { 1510 struct address_space *mapping = inode->i_mapping; 1511 pgoff_t start = 0; 1512 struct folio_batch fbatch; 1513 pgoff_t indices[PAGEVEC_SIZE]; 1514 int ret = 0; 1515 1516 do { 1517 folio_batch_init(&fbatch); 1518 if (!shmem_find_swap_entries(mapping, start, &fbatch, 1519 indices, type)) { 1520 ret = 0; 1521 break; 1522 } 1523 1524 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1525 if (ret < 0) 1526 break; 1527 1528 start = indices[folio_batch_count(&fbatch) - 1]; 1529 } while (true); 1530 1531 return ret; 1532 } 1533 1534 /* 1535 * Read all the shared memory data that resides in the swap 1536 * device 'type' back into memory, so the swap device can be 1537 * unused. 1538 */ 1539 int shmem_unuse(unsigned int type) 1540 { 1541 struct shmem_inode_info *info, *next; 1542 int error = 0; 1543 1544 if (list_empty(&shmem_swaplist)) 1545 return 0; 1546 1547 spin_lock(&shmem_swaplist_lock); 1548 start_over: 1549 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1550 if (!info->swapped) { 1551 list_del_init(&info->swaplist); 1552 continue; 1553 } 1554 /* 1555 * Drop the swaplist mutex while searching the inode for swap; 1556 * but before doing so, make sure shmem_evict_inode() will not 1557 * remove placeholder inode from swaplist, nor let it be freed 1558 * (igrab() would protect from unlink, but not from unmount). 1559 */ 1560 atomic_inc(&info->stop_eviction); 1561 spin_unlock(&shmem_swaplist_lock); 1562 1563 error = shmem_unuse_inode(&info->vfs_inode, type); 1564 cond_resched(); 1565 1566 spin_lock(&shmem_swaplist_lock); 1567 if (atomic_dec_and_test(&info->stop_eviction)) 1568 wake_up_var(&info->stop_eviction); 1569 if (error) 1570 break; 1571 if (list_empty(&info->swaplist)) 1572 goto start_over; 1573 next = list_next_entry(info, swaplist); 1574 if (!info->swapped) 1575 list_del_init(&info->swaplist); 1576 } 1577 spin_unlock(&shmem_swaplist_lock); 1578 1579 return error; 1580 } 1581 1582 /** 1583 * shmem_writeout - Write the folio to swap 1584 * @folio: The folio to write 1585 * @plug: swap plug 1586 * @folio_list: list to put back folios on split 1587 * 1588 * Move the folio from the page cache to the swap cache. 1589 */ 1590 int shmem_writeout(struct folio *folio, struct swap_iocb **plug, 1591 struct list_head *folio_list) 1592 { 1593 struct address_space *mapping = folio->mapping; 1594 struct inode *inode = mapping->host; 1595 struct shmem_inode_info *info = SHMEM_I(inode); 1596 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1597 pgoff_t index; 1598 int nr_pages; 1599 bool split = false; 1600 1601 if ((info->flags & SHMEM_F_LOCKED) || sbinfo->noswap) 1602 goto redirty; 1603 1604 if (!total_swap_pages) 1605 goto redirty; 1606 1607 /* 1608 * If CONFIG_THP_SWAP is not enabled, the large folio should be 1609 * split when swapping. 1610 * 1611 * And shrinkage of pages beyond i_size does not split swap, so 1612 * swapout of a large folio crossing i_size needs to split too 1613 * (unless fallocate has been used to preallocate beyond EOF). 1614 */ 1615 if (folio_test_large(folio)) { 1616 index = shmem_fallocend(inode, 1617 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 1618 if ((index > folio->index && index < folio_next_index(folio)) || 1619 !IS_ENABLED(CONFIG_THP_SWAP)) 1620 split = true; 1621 } 1622 1623 if (split) { 1624 int order; 1625 1626 try_split: 1627 order = folio_order(folio); 1628 /* Ensure the subpages are still dirty */ 1629 folio_test_set_dirty(folio); 1630 if (split_folio_to_list(folio, folio_list)) 1631 goto redirty; 1632 1633 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1634 if (order >= HPAGE_PMD_ORDER) { 1635 count_memcg_folio_events(folio, THP_SWPOUT_FALLBACK, 1); 1636 count_vm_event(THP_SWPOUT_FALLBACK); 1637 } 1638 #endif 1639 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK); 1640 1641 folio_clear_dirty(folio); 1642 } 1643 1644 index = folio->index; 1645 nr_pages = folio_nr_pages(folio); 1646 1647 /* 1648 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1649 * value into swapfile.c, the only way we can correctly account for a 1650 * fallocated folio arriving here is now to initialize it and write it. 1651 * 1652 * That's okay for a folio already fallocated earlier, but if we have 1653 * not yet completed the fallocation, then (a) we want to keep track 1654 * of this folio in case we have to undo it, and (b) it may not be a 1655 * good idea to continue anyway, once we're pushing into swap. So 1656 * reactivate the folio, and let shmem_fallocate() quit when too many. 1657 */ 1658 if (!folio_test_uptodate(folio)) { 1659 if (inode->i_private) { 1660 struct shmem_falloc *shmem_falloc; 1661 spin_lock(&inode->i_lock); 1662 shmem_falloc = inode->i_private; 1663 if (shmem_falloc && 1664 !shmem_falloc->waitq && 1665 index >= shmem_falloc->start && 1666 index < shmem_falloc->next) 1667 shmem_falloc->nr_unswapped += nr_pages; 1668 else 1669 shmem_falloc = NULL; 1670 spin_unlock(&inode->i_lock); 1671 if (shmem_falloc) 1672 goto redirty; 1673 } 1674 folio_zero_range(folio, 0, folio_size(folio)); 1675 flush_dcache_folio(folio); 1676 folio_mark_uptodate(folio); 1677 } 1678 1679 if (!folio_alloc_swap(folio)) { 1680 bool first_swapped = shmem_recalc_inode(inode, 0, nr_pages); 1681 int error; 1682 1683 /* 1684 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1685 * if it's not already there. Do it now before the folio is 1686 * removed from page cache, when its pagelock no longer 1687 * protects the inode from eviction. And do it now, after 1688 * we've incremented swapped, because shmem_unuse() will 1689 * prune a !swapped inode from the swaplist. 1690 */ 1691 if (first_swapped) { 1692 spin_lock(&shmem_swaplist_lock); 1693 if (list_empty(&info->swaplist)) 1694 list_add(&info->swaplist, &shmem_swaplist); 1695 spin_unlock(&shmem_swaplist_lock); 1696 } 1697 1698 folio_dup_swap(folio, NULL); 1699 shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap)); 1700 1701 BUG_ON(folio_mapped(folio)); 1702 error = swap_writeout(folio, plug); 1703 if (error != AOP_WRITEPAGE_ACTIVATE) { 1704 /* folio has been unlocked */ 1705 return error; 1706 } 1707 1708 /* 1709 * The intention here is to avoid holding on to the swap when 1710 * zswap was unable to compress and unable to writeback; but 1711 * it will be appropriate if other reactivate cases are added. 1712 */ 1713 error = shmem_add_to_page_cache(folio, mapping, index, 1714 swp_to_radix_entry(folio->swap), 1715 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 1716 /* Swap entry might be erased by racing shmem_free_swap() */ 1717 if (!error) { 1718 shmem_recalc_inode(inode, 0, -nr_pages); 1719 folio_put_swap(folio, NULL); 1720 } 1721 1722 /* 1723 * The swap_cache_del_folio() below could be left for 1724 * shrink_folio_list()'s folio_free_swap() to dispose of; 1725 * but I'm a little nervous about letting this folio out of 1726 * shmem_writeout() in a hybrid half-tmpfs-half-swap state 1727 * e.g. folio_mapping(folio) might give an unexpected answer. 1728 */ 1729 swap_cache_del_folio(folio); 1730 goto redirty; 1731 } 1732 if (nr_pages > 1) 1733 goto try_split; 1734 redirty: 1735 folio_mark_dirty(folio); 1736 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1737 } 1738 EXPORT_SYMBOL_GPL(shmem_writeout); 1739 1740 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1741 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1742 { 1743 char buffer[64]; 1744 1745 if (!mpol || mpol->mode == MPOL_DEFAULT) 1746 return; /* show nothing */ 1747 1748 mpol_to_str(buffer, sizeof(buffer), mpol); 1749 1750 seq_printf(seq, ",mpol=%s", buffer); 1751 } 1752 1753 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1754 { 1755 struct mempolicy *mpol = NULL; 1756 if (sbinfo->mpol) { 1757 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1758 mpol = sbinfo->mpol; 1759 mpol_get(mpol); 1760 raw_spin_unlock(&sbinfo->stat_lock); 1761 } 1762 return mpol; 1763 } 1764 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1765 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1766 { 1767 } 1768 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1769 { 1770 return NULL; 1771 } 1772 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1773 1774 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1775 pgoff_t index, unsigned int order, pgoff_t *ilx); 1776 1777 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1778 struct shmem_inode_info *info, pgoff_t index) 1779 { 1780 struct mempolicy *mpol; 1781 pgoff_t ilx; 1782 struct folio *folio; 1783 1784 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1785 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1786 mpol_cond_put(mpol); 1787 1788 return folio; 1789 } 1790 1791 /* 1792 * Make sure huge_gfp is always more limited than limit_gfp. 1793 * Some of the flags set permissions, while others set limitations. 1794 */ 1795 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1796 { 1797 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1798 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1799 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1800 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1801 1802 /* Allow allocations only from the originally specified zones. */ 1803 result |= zoneflags; 1804 1805 /* 1806 * Minimize the result gfp by taking the union with the deny flags, 1807 * and the intersection of the allow flags. 1808 */ 1809 result |= (limit_gfp & denyflags); 1810 result |= (huge_gfp & limit_gfp) & allowflags; 1811 1812 return result; 1813 } 1814 1815 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1816 bool shmem_hpage_pmd_enabled(void) 1817 { 1818 if (shmem_huge == SHMEM_HUGE_DENY) 1819 return false; 1820 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always)) 1821 return true; 1822 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise)) 1823 return true; 1824 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size)) 1825 return true; 1826 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) && 1827 shmem_huge != SHMEM_HUGE_NEVER) 1828 return true; 1829 1830 return false; 1831 } 1832 1833 unsigned long shmem_allowable_huge_orders(struct inode *inode, 1834 struct vm_area_struct *vma, pgoff_t index, 1835 loff_t write_end, bool shmem_huge_force) 1836 { 1837 unsigned long mask = READ_ONCE(huge_shmem_orders_always); 1838 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size); 1839 vm_flags_t vm_flags = vma ? vma->vm_flags : 0; 1840 unsigned int global_orders; 1841 1842 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags, shmem_huge_force))) 1843 return 0; 1844 1845 global_orders = shmem_huge_global_enabled(inode, index, write_end, 1846 shmem_huge_force, vma, vm_flags); 1847 /* Tmpfs huge pages allocation */ 1848 if (!vma || !vma_is_anon_shmem(vma)) 1849 return global_orders; 1850 1851 /* 1852 * Following the 'deny' semantics of the top level, force the huge 1853 * option off from all mounts. 1854 */ 1855 if (shmem_huge == SHMEM_HUGE_DENY) 1856 return 0; 1857 1858 /* 1859 * Only allow inherit orders if the top-level value is 'force', which 1860 * means non-PMD sized THP can not override 'huge' mount option now. 1861 */ 1862 if (shmem_huge == SHMEM_HUGE_FORCE) 1863 return READ_ONCE(huge_shmem_orders_inherit); 1864 1865 /* Allow mTHP that will be fully within i_size. */ 1866 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0); 1867 1868 if (vm_flags & VM_HUGEPAGE) 1869 mask |= READ_ONCE(huge_shmem_orders_madvise); 1870 1871 if (global_orders > 0) 1872 mask |= READ_ONCE(huge_shmem_orders_inherit); 1873 1874 return THP_ORDERS_ALL_FILE_DEFAULT & mask; 1875 } 1876 1877 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1878 struct address_space *mapping, pgoff_t index, 1879 unsigned long orders) 1880 { 1881 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1882 pgoff_t aligned_index; 1883 unsigned long pages; 1884 int order; 1885 1886 if (vma) { 1887 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 1888 if (!orders) 1889 return 0; 1890 } 1891 1892 /* Find the highest order that can add into the page cache */ 1893 order = highest_order(orders); 1894 while (orders) { 1895 pages = 1UL << order; 1896 aligned_index = round_down(index, pages); 1897 /* 1898 * Check for conflict before waiting on a huge allocation. 1899 * Conflict might be that a huge page has just been allocated 1900 * and added to page cache by a racing thread, or that there 1901 * is already at least one small page in the huge extent. 1902 * Be careful to retry when appropriate, but not forever! 1903 * Elsewhere -EEXIST would be the right code, but not here. 1904 */ 1905 if (!xa_find(&mapping->i_pages, &aligned_index, 1906 aligned_index + pages - 1, XA_PRESENT)) 1907 break; 1908 order = next_order(&orders, order); 1909 } 1910 1911 return orders; 1912 } 1913 #else 1914 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1915 struct address_space *mapping, pgoff_t index, 1916 unsigned long orders) 1917 { 1918 return 0; 1919 } 1920 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1921 1922 static struct folio *shmem_alloc_folio(gfp_t gfp, int order, 1923 struct shmem_inode_info *info, pgoff_t index) 1924 { 1925 struct mempolicy *mpol; 1926 pgoff_t ilx; 1927 struct folio *folio; 1928 1929 mpol = shmem_get_pgoff_policy(info, index, order, &ilx); 1930 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id()); 1931 mpol_cond_put(mpol); 1932 1933 return folio; 1934 } 1935 1936 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf, 1937 gfp_t gfp, struct inode *inode, pgoff_t index, 1938 struct mm_struct *fault_mm, unsigned long orders) 1939 { 1940 struct address_space *mapping = inode->i_mapping; 1941 struct shmem_inode_info *info = SHMEM_I(inode); 1942 unsigned long suitable_orders = 0; 1943 struct folio *folio = NULL; 1944 pgoff_t aligned_index; 1945 long pages; 1946 int error, order; 1947 1948 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1949 orders = 0; 1950 1951 if (orders > 0) { 1952 suitable_orders = shmem_suitable_orders(inode, vmf, 1953 mapping, index, orders); 1954 1955 order = highest_order(suitable_orders); 1956 while (suitable_orders) { 1957 pages = 1UL << order; 1958 aligned_index = round_down(index, pages); 1959 folio = shmem_alloc_folio(gfp, order, info, aligned_index); 1960 if (folio) { 1961 index = aligned_index; 1962 goto allocated; 1963 } 1964 1965 if (pages == HPAGE_PMD_NR) 1966 count_vm_event(THP_FILE_FALLBACK); 1967 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK); 1968 order = next_order(&suitable_orders, order); 1969 } 1970 } else { 1971 pages = 1; 1972 folio = shmem_alloc_folio(gfp, 0, info, index); 1973 } 1974 if (!folio) 1975 return ERR_PTR(-ENOMEM); 1976 1977 allocated: 1978 __folio_set_locked(folio); 1979 __folio_set_swapbacked(folio); 1980 1981 gfp &= GFP_RECLAIM_MASK; 1982 error = mem_cgroup_charge(folio, fault_mm, gfp); 1983 if (error) { 1984 if (xa_find(&mapping->i_pages, &index, 1985 index + pages - 1, XA_PRESENT)) { 1986 error = -EEXIST; 1987 } else if (pages > 1) { 1988 if (pages == HPAGE_PMD_NR) { 1989 count_vm_event(THP_FILE_FALLBACK); 1990 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1991 } 1992 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK); 1993 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE); 1994 } 1995 goto unlock; 1996 } 1997 1998 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1999 if (error) 2000 goto unlock; 2001 2002 error = shmem_inode_acct_blocks(inode, pages); 2003 if (error) { 2004 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2005 long freed; 2006 /* 2007 * Try to reclaim some space by splitting a few 2008 * large folios beyond i_size on the filesystem. 2009 */ 2010 shmem_unused_huge_shrink(sbinfo, NULL, pages); 2011 /* 2012 * And do a shmem_recalc_inode() to account for freed pages: 2013 * except our folio is there in cache, so not quite balanced. 2014 */ 2015 spin_lock(&info->lock); 2016 freed = pages + info->alloced - info->swapped - 2017 READ_ONCE(mapping->nrpages); 2018 if (freed > 0) 2019 info->alloced -= freed; 2020 spin_unlock(&info->lock); 2021 if (freed > 0) 2022 shmem_inode_unacct_blocks(inode, freed); 2023 error = shmem_inode_acct_blocks(inode, pages); 2024 if (error) { 2025 filemap_remove_folio(folio); 2026 goto unlock; 2027 } 2028 } 2029 2030 shmem_recalc_inode(inode, pages, 0); 2031 folio_add_lru(folio); 2032 return folio; 2033 2034 unlock: 2035 folio_unlock(folio); 2036 folio_put(folio); 2037 return ERR_PTR(error); 2038 } 2039 2040 static struct folio *shmem_swap_alloc_folio(struct inode *inode, 2041 struct vm_area_struct *vma, pgoff_t index, 2042 swp_entry_t entry, int order, gfp_t gfp) 2043 { 2044 struct shmem_inode_info *info = SHMEM_I(inode); 2045 struct folio *new, *swapcache; 2046 int nr_pages = 1 << order; 2047 gfp_t alloc_gfp; 2048 2049 /* 2050 * We have arrived here because our zones are constrained, so don't 2051 * limit chance of success with further cpuset and node constraints. 2052 */ 2053 gfp &= ~GFP_CONSTRAINT_MASK; 2054 alloc_gfp = gfp; 2055 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 2056 if (WARN_ON_ONCE(order)) 2057 return ERR_PTR(-EINVAL); 2058 } else if (order) { 2059 /* 2060 * If uffd is active for the vma, we need per-page fault 2061 * fidelity to maintain the uffd semantics, then fallback 2062 * to swapin order-0 folio, as well as for zswap case. 2063 * Any existing sub folio in the swap cache also blocks 2064 * mTHP swapin. 2065 */ 2066 if ((vma && unlikely(userfaultfd_armed(vma))) || 2067 !zswap_never_enabled() || 2068 non_swapcache_batch(entry, nr_pages) != nr_pages) 2069 goto fallback; 2070 2071 alloc_gfp = limit_gfp_mask(vma_thp_gfp_mask(vma), gfp); 2072 } 2073 retry: 2074 new = shmem_alloc_folio(alloc_gfp, order, info, index); 2075 if (!new) { 2076 new = ERR_PTR(-ENOMEM); 2077 goto fallback; 2078 } 2079 2080 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL, 2081 alloc_gfp, entry)) { 2082 folio_put(new); 2083 new = ERR_PTR(-ENOMEM); 2084 goto fallback; 2085 } 2086 2087 swapcache = swapin_folio(entry, new); 2088 if (swapcache != new) { 2089 folio_put(new); 2090 if (!swapcache) { 2091 /* 2092 * The new folio is charged already, swapin can 2093 * only fail due to another raced swapin. 2094 */ 2095 new = ERR_PTR(-EEXIST); 2096 goto fallback; 2097 } 2098 } 2099 return swapcache; 2100 fallback: 2101 /* Order 0 swapin failed, nothing to fallback to, abort */ 2102 if (!order) 2103 return new; 2104 entry.val += index - round_down(index, nr_pages); 2105 alloc_gfp = gfp; 2106 nr_pages = 1; 2107 order = 0; 2108 goto retry; 2109 } 2110 2111 /* 2112 * When a page is moved from swapcache to shmem filecache (either by the 2113 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 2114 * shmem_unuse_inode()), it may have been read in earlier from swap, in 2115 * ignorance of the mapping it belongs to. If that mapping has special 2116 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 2117 * we may need to copy to a suitable page before moving to filecache. 2118 * 2119 * In a future release, this may well be extended to respect cpuset and 2120 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 2121 * but for now it is a simple matter of zone. 2122 */ 2123 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 2124 { 2125 return folio_zonenum(folio) > gfp_zone(gfp); 2126 } 2127 2128 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 2129 struct shmem_inode_info *info, pgoff_t index, 2130 struct vm_area_struct *vma) 2131 { 2132 struct swap_cluster_info *ci; 2133 struct folio *new, *old = *foliop; 2134 swp_entry_t entry = old->swap; 2135 int nr_pages = folio_nr_pages(old); 2136 int error = 0; 2137 2138 /* 2139 * We have arrived here because our zones are constrained, so don't 2140 * limit chance of success by further cpuset and node constraints. 2141 */ 2142 gfp &= ~GFP_CONSTRAINT_MASK; 2143 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2144 if (nr_pages > 1) { 2145 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 2146 2147 gfp = limit_gfp_mask(huge_gfp, gfp); 2148 } 2149 #endif 2150 2151 new = shmem_alloc_folio(gfp, folio_order(old), info, index); 2152 if (!new) 2153 return -ENOMEM; 2154 2155 folio_ref_add(new, nr_pages); 2156 folio_copy(new, old); 2157 flush_dcache_folio(new); 2158 2159 __folio_set_locked(new); 2160 __folio_set_swapbacked(new); 2161 folio_mark_uptodate(new); 2162 new->swap = entry; 2163 folio_set_swapcache(new); 2164 2165 ci = swap_cluster_get_and_lock_irq(old); 2166 __swap_cache_replace_folio(ci, old, new); 2167 mem_cgroup_replace_folio(old, new); 2168 shmem_update_stats(new, nr_pages); 2169 shmem_update_stats(old, -nr_pages); 2170 swap_cluster_unlock_irq(ci); 2171 2172 folio_add_lru(new); 2173 *foliop = new; 2174 2175 folio_clear_swapcache(old); 2176 old->private = NULL; 2177 2178 folio_unlock(old); 2179 /* 2180 * The old folio are removed from swap cache, drop the 'nr_pages' 2181 * reference, as well as one temporary reference getting from swap 2182 * cache. 2183 */ 2184 folio_put_refs(old, nr_pages + 1); 2185 return error; 2186 } 2187 2188 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 2189 struct folio *folio, swp_entry_t swap) 2190 { 2191 struct address_space *mapping = inode->i_mapping; 2192 swp_entry_t swapin_error; 2193 void *old; 2194 int nr_pages; 2195 2196 swapin_error = make_poisoned_swp_entry(); 2197 old = xa_cmpxchg_irq(&mapping->i_pages, index, 2198 swp_to_radix_entry(swap), 2199 swp_to_radix_entry(swapin_error), 0); 2200 if (old != swp_to_radix_entry(swap)) 2201 return; 2202 2203 nr_pages = folio_nr_pages(folio); 2204 folio_wait_writeback(folio); 2205 folio_put_swap(folio, NULL); 2206 swap_cache_del_folio(folio); 2207 /* 2208 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 2209 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 2210 * in shmem_evict_inode(). 2211 */ 2212 shmem_recalc_inode(inode, -nr_pages, -nr_pages); 2213 } 2214 2215 static int shmem_split_large_entry(struct inode *inode, pgoff_t index, 2216 swp_entry_t swap, gfp_t gfp) 2217 { 2218 struct address_space *mapping = inode->i_mapping; 2219 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0); 2220 int split_order = 0; 2221 int i; 2222 2223 /* Convert user data gfp flags to xarray node gfp flags */ 2224 gfp &= GFP_RECLAIM_MASK; 2225 2226 for (;;) { 2227 void *old = NULL; 2228 int cur_order; 2229 pgoff_t swap_index; 2230 2231 xas_lock_irq(&xas); 2232 old = xas_load(&xas); 2233 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) { 2234 xas_set_err(&xas, -EEXIST); 2235 goto unlock; 2236 } 2237 2238 cur_order = xas_get_order(&xas); 2239 if (!cur_order) 2240 goto unlock; 2241 2242 /* Try to split large swap entry in pagecache */ 2243 swap_index = round_down(index, 1 << cur_order); 2244 split_order = xas_try_split_min_order(cur_order); 2245 2246 while (cur_order > 0) { 2247 pgoff_t aligned_index = 2248 round_down(index, 1 << cur_order); 2249 pgoff_t swap_offset = aligned_index - swap_index; 2250 2251 xas_set_order(&xas, index, split_order); 2252 xas_try_split(&xas, old, cur_order); 2253 if (xas_error(&xas)) 2254 goto unlock; 2255 2256 /* 2257 * Re-set the swap entry after splitting, and the swap 2258 * offset of the original large entry must be continuous. 2259 */ 2260 for (i = 0; i < 1 << cur_order; 2261 i += (1 << split_order)) { 2262 swp_entry_t tmp; 2263 2264 tmp = swp_entry(swp_type(swap), 2265 swp_offset(swap) + swap_offset + 2266 i); 2267 __xa_store(&mapping->i_pages, aligned_index + i, 2268 swp_to_radix_entry(tmp), 0); 2269 } 2270 cur_order = split_order; 2271 split_order = xas_try_split_min_order(split_order); 2272 } 2273 2274 unlock: 2275 xas_unlock_irq(&xas); 2276 2277 if (!xas_nomem(&xas, gfp)) 2278 break; 2279 } 2280 2281 if (xas_error(&xas)) 2282 return xas_error(&xas); 2283 2284 return 0; 2285 } 2286 2287 /* 2288 * Swap in the folio pointed to by *foliop. 2289 * Caller has to make sure that *foliop contains a valid swapped folio. 2290 * Returns 0 and the folio in foliop if success. On failure, returns the 2291 * error code and NULL in *foliop. 2292 */ 2293 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 2294 struct folio **foliop, enum sgp_type sgp, 2295 gfp_t gfp, struct vm_area_struct *vma, 2296 vm_fault_t *fault_type) 2297 { 2298 struct address_space *mapping = inode->i_mapping; 2299 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL; 2300 struct shmem_inode_info *info = SHMEM_I(inode); 2301 swp_entry_t swap; 2302 softleaf_t index_entry; 2303 struct swap_info_struct *si; 2304 struct folio *folio = NULL; 2305 int error, nr_pages, order; 2306 pgoff_t offset; 2307 2308 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 2309 index_entry = radix_to_swp_entry(*foliop); 2310 swap = index_entry; 2311 *foliop = NULL; 2312 2313 if (softleaf_is_poison_marker(index_entry)) 2314 return -EIO; 2315 2316 si = get_swap_device(index_entry); 2317 order = shmem_confirm_swap(mapping, index, index_entry); 2318 if (unlikely(!si)) { 2319 if (order < 0) 2320 return -EEXIST; 2321 else 2322 return -EINVAL; 2323 } 2324 if (unlikely(order < 0)) { 2325 put_swap_device(si); 2326 return -EEXIST; 2327 } 2328 2329 /* index may point to the middle of a large entry, get the sub entry */ 2330 if (order) { 2331 offset = index - round_down(index, 1 << order); 2332 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2333 } 2334 2335 /* Look it up and read it in.. */ 2336 folio = swap_cache_get_folio(swap); 2337 if (!folio) { 2338 if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) { 2339 /* Direct swapin skipping swap cache & readahead */ 2340 folio = shmem_swap_alloc_folio(inode, vma, index, 2341 index_entry, order, gfp); 2342 if (IS_ERR(folio)) { 2343 error = PTR_ERR(folio); 2344 folio = NULL; 2345 goto failed; 2346 } 2347 } else { 2348 /* Cached swapin only supports order 0 folio */ 2349 folio = shmem_swapin_cluster(swap, gfp, info, index); 2350 if (!folio) { 2351 error = -ENOMEM; 2352 goto failed; 2353 } 2354 } 2355 if (fault_type) { 2356 *fault_type |= VM_FAULT_MAJOR; 2357 count_vm_event(PGMAJFAULT); 2358 count_memcg_event_mm(fault_mm, PGMAJFAULT); 2359 } 2360 } else { 2361 swap_update_readahead(folio, NULL, 0); 2362 } 2363 2364 if (order > folio_order(folio)) { 2365 /* 2366 * Swapin may get smaller folios due to various reasons: 2367 * It may fallback to order 0 due to memory pressure or race, 2368 * swap readahead may swap in order 0 folios into swapcache 2369 * asynchronously, while the shmem mapping can still stores 2370 * large swap entries. In such cases, we should split the 2371 * large swap entry to prevent possible data corruption. 2372 */ 2373 error = shmem_split_large_entry(inode, index, index_entry, gfp); 2374 if (error) 2375 goto failed_nolock; 2376 } 2377 2378 /* 2379 * If the folio is large, round down swap and index by folio size. 2380 * No matter what race occurs, the swap layer ensures we either get 2381 * a valid folio that has its swap entry aligned by size, or a 2382 * temporarily invalid one which we'll abort very soon and retry. 2383 * 2384 * shmem_add_to_page_cache ensures the whole range contains expected 2385 * entries and prevents any corruption, so any race split is fine 2386 * too, it will succeed as long as the entries are still there. 2387 */ 2388 nr_pages = folio_nr_pages(folio); 2389 if (nr_pages > 1) { 2390 swap.val = round_down(swap.val, nr_pages); 2391 index = round_down(index, nr_pages); 2392 } 2393 2394 /* 2395 * We have to do this with the folio locked to prevent races. 2396 * The shmem_confirm_swap below only checks if the first swap 2397 * entry matches the folio, that's enough to ensure the folio 2398 * is not used outside of shmem, as shmem swap entries 2399 * and swap cache folios are never partially freed. 2400 */ 2401 folio_lock(folio); 2402 if (!folio_matches_swap_entry(folio, swap) || 2403 shmem_confirm_swap(mapping, index, swap) < 0) { 2404 error = -EEXIST; 2405 goto unlock; 2406 } 2407 if (!folio_test_uptodate(folio)) { 2408 error = -EIO; 2409 goto failed; 2410 } 2411 folio_wait_writeback(folio); 2412 2413 /* 2414 * Some architectures may have to restore extra metadata to the 2415 * folio after reading from swap. 2416 */ 2417 arch_swap_restore(folio_swap(swap, folio), folio); 2418 2419 if (shmem_should_replace_folio(folio, gfp)) { 2420 error = shmem_replace_folio(&folio, gfp, info, index, vma); 2421 if (error) 2422 goto failed; 2423 } 2424 2425 error = shmem_add_to_page_cache(folio, mapping, index, 2426 swp_to_radix_entry(swap), gfp); 2427 if (error) 2428 goto failed; 2429 2430 shmem_recalc_inode(inode, 0, -nr_pages); 2431 2432 if (sgp == SGP_WRITE) 2433 folio_mark_accessed(folio); 2434 2435 folio_put_swap(folio, NULL); 2436 swap_cache_del_folio(folio); 2437 folio_mark_dirty(folio); 2438 put_swap_device(si); 2439 2440 *foliop = folio; 2441 return 0; 2442 failed: 2443 if (shmem_confirm_swap(mapping, index, swap) < 0) 2444 error = -EEXIST; 2445 if (error == -EIO) 2446 shmem_set_folio_swapin_error(inode, index, folio, swap); 2447 unlock: 2448 if (folio) 2449 folio_unlock(folio); 2450 failed_nolock: 2451 if (folio) 2452 folio_put(folio); 2453 put_swap_device(si); 2454 2455 return error; 2456 } 2457 2458 /* 2459 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 2460 * 2461 * If we allocate a new one we do not mark it dirty. That's up to the 2462 * vm. If we swap it in we mark it dirty since we also free the swap 2463 * entry since a page cannot live in both the swap and page cache. 2464 * 2465 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 2466 */ 2467 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 2468 loff_t write_end, struct folio **foliop, enum sgp_type sgp, 2469 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type) 2470 { 2471 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 2472 struct mm_struct *fault_mm; 2473 struct folio *folio; 2474 int error; 2475 bool alloced; 2476 unsigned long orders = 0; 2477 2478 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 2479 return -EINVAL; 2480 2481 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 2482 return -EFBIG; 2483 repeat: 2484 if (sgp <= SGP_CACHE && 2485 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 2486 return -EINVAL; 2487 2488 alloced = false; 2489 fault_mm = vma ? vma->vm_mm : NULL; 2490 2491 folio = filemap_get_entry(inode->i_mapping, index); 2492 if (folio && vma && userfaultfd_minor(vma)) { 2493 if (!xa_is_value(folio)) 2494 folio_put(folio); 2495 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 2496 return 0; 2497 } 2498 2499 if (xa_is_value(folio)) { 2500 error = shmem_swapin_folio(inode, index, &folio, 2501 sgp, gfp, vma, fault_type); 2502 if (error == -EEXIST) 2503 goto repeat; 2504 2505 *foliop = folio; 2506 return error; 2507 } 2508 2509 if (folio) { 2510 folio_lock(folio); 2511 2512 /* Has the folio been truncated or swapped out? */ 2513 if (unlikely(folio->mapping != inode->i_mapping)) { 2514 folio_unlock(folio); 2515 folio_put(folio); 2516 goto repeat; 2517 } 2518 if (sgp == SGP_WRITE) 2519 folio_mark_accessed(folio); 2520 if (folio_test_uptodate(folio)) 2521 goto out; 2522 /* fallocated folio */ 2523 if (sgp != SGP_READ) 2524 goto clear; 2525 folio_unlock(folio); 2526 folio_put(folio); 2527 } 2528 2529 /* 2530 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2531 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2532 */ 2533 *foliop = NULL; 2534 if (sgp == SGP_READ) 2535 return 0; 2536 if (sgp == SGP_NOALLOC) 2537 return -ENOENT; 2538 2539 /* 2540 * Fast cache lookup and swap lookup did not find it: allocate. 2541 */ 2542 2543 if (vma && userfaultfd_missing(vma)) { 2544 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2545 return 0; 2546 } 2547 2548 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */ 2549 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false); 2550 if (orders > 0) { 2551 gfp_t huge_gfp; 2552 2553 huge_gfp = vma_thp_gfp_mask(vma); 2554 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2555 folio = shmem_alloc_and_add_folio(vmf, huge_gfp, 2556 inode, index, fault_mm, orders); 2557 if (!IS_ERR(folio)) { 2558 if (folio_test_pmd_mappable(folio)) 2559 count_vm_event(THP_FILE_ALLOC); 2560 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC); 2561 goto alloced; 2562 } 2563 if (PTR_ERR(folio) == -EEXIST) 2564 goto repeat; 2565 } 2566 2567 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0); 2568 if (IS_ERR(folio)) { 2569 error = PTR_ERR(folio); 2570 if (error == -EEXIST) 2571 goto repeat; 2572 folio = NULL; 2573 goto unlock; 2574 } 2575 2576 alloced: 2577 alloced = true; 2578 if (folio_test_large(folio) && 2579 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2580 folio_next_index(folio)) { 2581 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2582 struct shmem_inode_info *info = SHMEM_I(inode); 2583 /* 2584 * Part of the large folio is beyond i_size: subject 2585 * to shrink under memory pressure. 2586 */ 2587 spin_lock(&sbinfo->shrinklist_lock); 2588 /* 2589 * _careful to defend against unlocked access to 2590 * ->shrink_list in shmem_unused_huge_shrink() 2591 */ 2592 if (list_empty_careful(&info->shrinklist)) { 2593 list_add_tail(&info->shrinklist, 2594 &sbinfo->shrinklist); 2595 sbinfo->shrinklist_len++; 2596 } 2597 spin_unlock(&sbinfo->shrinklist_lock); 2598 } 2599 2600 if (sgp == SGP_WRITE) 2601 folio_set_referenced(folio); 2602 /* 2603 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2604 */ 2605 if (sgp == SGP_FALLOC) 2606 sgp = SGP_WRITE; 2607 clear: 2608 /* 2609 * Let SGP_WRITE caller clear ends if write does not fill folio; 2610 * but SGP_FALLOC on a folio fallocated earlier must initialize 2611 * it now, lest undo on failure cancel our earlier guarantee. 2612 */ 2613 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2614 long i, n = folio_nr_pages(folio); 2615 2616 for (i = 0; i < n; i++) 2617 clear_highpage(folio_page(folio, i)); 2618 flush_dcache_folio(folio); 2619 folio_mark_uptodate(folio); 2620 } 2621 2622 /* Perhaps the file has been truncated since we checked */ 2623 if (sgp <= SGP_CACHE && 2624 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2625 error = -EINVAL; 2626 goto unlock; 2627 } 2628 out: 2629 *foliop = folio; 2630 return 0; 2631 2632 /* 2633 * Error recovery. 2634 */ 2635 unlock: 2636 if (alloced) 2637 filemap_remove_folio(folio); 2638 shmem_recalc_inode(inode, 0, 0); 2639 if (folio) { 2640 folio_unlock(folio); 2641 folio_put(folio); 2642 } 2643 return error; 2644 } 2645 2646 /** 2647 * shmem_get_folio - find, and lock a shmem folio. 2648 * @inode: inode to search 2649 * @index: the page index. 2650 * @write_end: end of a write, could extend inode size 2651 * @foliop: pointer to the folio if found 2652 * @sgp: SGP_* flags to control behavior 2653 * 2654 * Looks up the page cache entry at @inode & @index. If a folio is 2655 * present, it is returned locked with an increased refcount. 2656 * 2657 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2658 * before unlocking the folio to ensure that the folio is not reclaimed. 2659 * There is no need to reserve space before calling folio_mark_dirty(). 2660 * 2661 * When no folio is found, the behavior depends on @sgp: 2662 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2663 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2664 * - for all other flags a new folio is allocated, inserted into the 2665 * page cache and returned locked in @foliop. 2666 * 2667 * Context: May sleep. 2668 * Return: 0 if successful, else a negative error code. 2669 */ 2670 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end, 2671 struct folio **foliop, enum sgp_type sgp) 2672 { 2673 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp, 2674 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2675 } 2676 EXPORT_SYMBOL_GPL(shmem_get_folio); 2677 2678 /* 2679 * This is like autoremove_wake_function, but it removes the wait queue 2680 * entry unconditionally - even if something else had already woken the 2681 * target. 2682 */ 2683 static int synchronous_wake_function(wait_queue_entry_t *wait, 2684 unsigned int mode, int sync, void *key) 2685 { 2686 int ret = default_wake_function(wait, mode, sync, key); 2687 list_del_init(&wait->entry); 2688 return ret; 2689 } 2690 2691 /* 2692 * Trinity finds that probing a hole which tmpfs is punching can 2693 * prevent the hole-punch from ever completing: which in turn 2694 * locks writers out with its hold on i_rwsem. So refrain from 2695 * faulting pages into the hole while it's being punched. Although 2696 * shmem_undo_range() does remove the additions, it may be unable to 2697 * keep up, as each new page needs its own unmap_mapping_range() call, 2698 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2699 * 2700 * It does not matter if we sometimes reach this check just before the 2701 * hole-punch begins, so that one fault then races with the punch: 2702 * we just need to make racing faults a rare case. 2703 * 2704 * The implementation below would be much simpler if we just used a 2705 * standard mutex or completion: but we cannot take i_rwsem in fault, 2706 * and bloating every shmem inode for this unlikely case would be sad. 2707 */ 2708 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2709 { 2710 struct shmem_falloc *shmem_falloc; 2711 struct file *fpin = NULL; 2712 vm_fault_t ret = 0; 2713 2714 spin_lock(&inode->i_lock); 2715 shmem_falloc = inode->i_private; 2716 if (shmem_falloc && 2717 shmem_falloc->waitq && 2718 vmf->pgoff >= shmem_falloc->start && 2719 vmf->pgoff < shmem_falloc->next) { 2720 wait_queue_head_t *shmem_falloc_waitq; 2721 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2722 2723 ret = VM_FAULT_NOPAGE; 2724 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2725 shmem_falloc_waitq = shmem_falloc->waitq; 2726 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2727 TASK_UNINTERRUPTIBLE); 2728 spin_unlock(&inode->i_lock); 2729 schedule(); 2730 2731 /* 2732 * shmem_falloc_waitq points into the shmem_fallocate() 2733 * stack of the hole-punching task: shmem_falloc_waitq 2734 * is usually invalid by the time we reach here, but 2735 * finish_wait() does not dereference it in that case; 2736 * though i_lock needed lest racing with wake_up_all(). 2737 */ 2738 spin_lock(&inode->i_lock); 2739 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2740 } 2741 spin_unlock(&inode->i_lock); 2742 if (fpin) { 2743 fput(fpin); 2744 ret = VM_FAULT_RETRY; 2745 } 2746 return ret; 2747 } 2748 2749 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2750 { 2751 struct inode *inode = file_inode(vmf->vma->vm_file); 2752 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2753 struct folio *folio = NULL; 2754 vm_fault_t ret = 0; 2755 int err; 2756 2757 /* 2758 * Trinity finds that probing a hole which tmpfs is punching can 2759 * prevent the hole-punch from ever completing: noted in i_private. 2760 */ 2761 if (unlikely(inode->i_private)) { 2762 ret = shmem_falloc_wait(vmf, inode); 2763 if (ret) 2764 return ret; 2765 } 2766 2767 WARN_ON_ONCE(vmf->page != NULL); 2768 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE, 2769 gfp, vmf, &ret); 2770 if (err) 2771 return vmf_error(err); 2772 if (folio) { 2773 vmf->page = folio_file_page(folio, vmf->pgoff); 2774 ret |= VM_FAULT_LOCKED; 2775 } 2776 return ret; 2777 } 2778 2779 unsigned long shmem_get_unmapped_area(struct file *file, 2780 unsigned long uaddr, unsigned long len, 2781 unsigned long pgoff, unsigned long flags) 2782 { 2783 unsigned long addr; 2784 unsigned long offset; 2785 unsigned long inflated_len; 2786 unsigned long inflated_addr; 2787 unsigned long inflated_offset; 2788 unsigned long hpage_size; 2789 2790 if (len > TASK_SIZE) 2791 return -ENOMEM; 2792 2793 addr = mm_get_unmapped_area(file, uaddr, len, pgoff, flags); 2794 2795 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2796 return addr; 2797 if (IS_ERR_VALUE(addr)) 2798 return addr; 2799 if (addr & ~PAGE_MASK) 2800 return addr; 2801 if (addr > TASK_SIZE - len) 2802 return addr; 2803 2804 if (shmem_huge == SHMEM_HUGE_DENY) 2805 return addr; 2806 if (flags & MAP_FIXED) 2807 return addr; 2808 /* 2809 * Our priority is to support MAP_SHARED mapped hugely; 2810 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2811 * But if caller specified an address hint and we allocated area there 2812 * successfully, respect that as before. 2813 */ 2814 if (uaddr == addr) 2815 return addr; 2816 2817 hpage_size = HPAGE_PMD_SIZE; 2818 if (shmem_huge != SHMEM_HUGE_FORCE) { 2819 struct super_block *sb; 2820 unsigned long __maybe_unused hpage_orders; 2821 int order = 0; 2822 2823 if (file) { 2824 VM_BUG_ON(file->f_op != &shmem_file_operations); 2825 sb = file_inode(file)->i_sb; 2826 } else { 2827 /* 2828 * Called directly from mm/mmap.c, or drivers/char/mem.c 2829 * for "/dev/zero", to create a shared anonymous object. 2830 */ 2831 if (IS_ERR(shm_mnt)) 2832 return addr; 2833 sb = shm_mnt->mnt_sb; 2834 2835 /* 2836 * Find the highest mTHP order used for anonymous shmem to 2837 * provide a suitable alignment address. 2838 */ 2839 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2840 hpage_orders = READ_ONCE(huge_shmem_orders_always); 2841 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size); 2842 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise); 2843 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 2844 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit); 2845 2846 if (hpage_orders > 0) { 2847 order = highest_order(hpage_orders); 2848 hpage_size = PAGE_SIZE << order; 2849 } 2850 #endif 2851 } 2852 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order) 2853 return addr; 2854 } 2855 2856 if (len < hpage_size) 2857 return addr; 2858 2859 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1); 2860 if (offset && offset + len < 2 * hpage_size) 2861 return addr; 2862 if ((addr & (hpage_size - 1)) == offset) 2863 return addr; 2864 2865 inflated_len = len + hpage_size - PAGE_SIZE; 2866 if (inflated_len > TASK_SIZE) 2867 return addr; 2868 if (inflated_len < len) 2869 return addr; 2870 2871 inflated_addr = mm_get_unmapped_area(NULL, uaddr, inflated_len, 0, flags); 2872 if (IS_ERR_VALUE(inflated_addr)) 2873 return addr; 2874 if (inflated_addr & ~PAGE_MASK) 2875 return addr; 2876 2877 inflated_offset = inflated_addr & (hpage_size - 1); 2878 inflated_addr += offset - inflated_offset; 2879 if (inflated_offset > offset) 2880 inflated_addr += hpage_size; 2881 2882 if (inflated_addr > TASK_SIZE - len) 2883 return addr; 2884 return inflated_addr; 2885 } 2886 2887 #ifdef CONFIG_NUMA 2888 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2889 { 2890 struct inode *inode = file_inode(vma->vm_file); 2891 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2892 } 2893 2894 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2895 unsigned long addr, pgoff_t *ilx) 2896 { 2897 struct inode *inode = file_inode(vma->vm_file); 2898 pgoff_t index; 2899 2900 /* 2901 * Bias interleave by inode number to distribute better across nodes; 2902 * but this interface is independent of which page order is used, so 2903 * supplies only that bias, letting caller apply the offset (adjusted 2904 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2905 */ 2906 *ilx = inode->i_ino; 2907 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2908 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2909 } 2910 2911 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2912 pgoff_t index, unsigned int order, pgoff_t *ilx) 2913 { 2914 struct mempolicy *mpol; 2915 2916 /* Bias interleave by inode number to distribute better across nodes */ 2917 *ilx = info->vfs_inode.i_ino + (index >> order); 2918 2919 mpol = mpol_shared_policy_lookup(&info->policy, index); 2920 return mpol ? mpol : get_task_policy(current); 2921 } 2922 #else 2923 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2924 pgoff_t index, unsigned int order, pgoff_t *ilx) 2925 { 2926 *ilx = 0; 2927 return NULL; 2928 } 2929 #endif /* CONFIG_NUMA */ 2930 2931 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2932 { 2933 struct inode *inode = file_inode(file); 2934 struct shmem_inode_info *info = SHMEM_I(inode); 2935 int retval = -ENOMEM; 2936 2937 /* 2938 * What serializes the accesses to info->flags? 2939 * ipc_lock_object() when called from shmctl_do_lock(), 2940 * no serialization needed when called from shm_destroy(). 2941 */ 2942 if (lock && !(info->flags & SHMEM_F_LOCKED)) { 2943 if (!user_shm_lock(inode->i_size, ucounts)) 2944 goto out_nomem; 2945 info->flags |= SHMEM_F_LOCKED; 2946 mapping_set_unevictable(file->f_mapping); 2947 } 2948 if (!lock && (info->flags & SHMEM_F_LOCKED) && ucounts) { 2949 user_shm_unlock(inode->i_size, ucounts); 2950 info->flags &= ~SHMEM_F_LOCKED; 2951 mapping_clear_unevictable(file->f_mapping); 2952 } 2953 retval = 0; 2954 2955 out_nomem: 2956 return retval; 2957 } 2958 2959 static int shmem_mmap_prepare(struct vm_area_desc *desc) 2960 { 2961 struct file *file = desc->file; 2962 struct inode *inode = file_inode(file); 2963 2964 file_accessed(file); 2965 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2966 if (inode->i_nlink) 2967 desc->vm_ops = &shmem_vm_ops; 2968 else 2969 desc->vm_ops = &shmem_anon_vm_ops; 2970 return 0; 2971 } 2972 2973 static int shmem_file_open(struct inode *inode, struct file *file) 2974 { 2975 file->f_mode |= FMODE_CAN_ODIRECT; 2976 return generic_file_open(inode, file); 2977 } 2978 2979 #ifdef CONFIG_TMPFS_XATTR 2980 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2981 2982 #if IS_ENABLED(CONFIG_UNICODE) 2983 /* 2984 * shmem_inode_casefold_flags - Deal with casefold file attribute flag 2985 * 2986 * The casefold file attribute needs some special checks. I can just be added to 2987 * an empty dir, and can't be removed from a non-empty dir. 2988 */ 2989 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 2990 struct dentry *dentry, unsigned int *i_flags) 2991 { 2992 unsigned int old = inode->i_flags; 2993 struct super_block *sb = inode->i_sb; 2994 2995 if (fsflags & FS_CASEFOLD_FL) { 2996 if (!(old & S_CASEFOLD)) { 2997 if (!sb->s_encoding) 2998 return -EOPNOTSUPP; 2999 3000 if (!S_ISDIR(inode->i_mode)) 3001 return -ENOTDIR; 3002 3003 if (dentry && !simple_empty(dentry)) 3004 return -ENOTEMPTY; 3005 } 3006 3007 *i_flags = *i_flags | S_CASEFOLD; 3008 } else if (old & S_CASEFOLD) { 3009 if (dentry && !simple_empty(dentry)) 3010 return -ENOTEMPTY; 3011 } 3012 3013 return 0; 3014 } 3015 #else 3016 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 3017 struct dentry *dentry, unsigned int *i_flags) 3018 { 3019 if (fsflags & FS_CASEFOLD_FL) 3020 return -EOPNOTSUPP; 3021 3022 return 0; 3023 } 3024 #endif 3025 3026 /* 3027 * chattr's fsflags are unrelated to extended attributes, 3028 * but tmpfs has chosen to enable them under the same config option. 3029 */ 3030 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3031 { 3032 unsigned int i_flags = 0; 3033 int ret; 3034 3035 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags); 3036 if (ret) 3037 return ret; 3038 3039 if (fsflags & FS_NOATIME_FL) 3040 i_flags |= S_NOATIME; 3041 if (fsflags & FS_APPEND_FL) 3042 i_flags |= S_APPEND; 3043 if (fsflags & FS_IMMUTABLE_FL) 3044 i_flags |= S_IMMUTABLE; 3045 /* 3046 * But FS_NODUMP_FL does not require any action in i_flags. 3047 */ 3048 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD); 3049 3050 return 0; 3051 } 3052 #else 3053 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3054 { 3055 } 3056 #define shmem_initxattrs NULL 3057 #endif 3058 3059 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 3060 { 3061 return &SHMEM_I(inode)->dir_offsets; 3062 } 3063 3064 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 3065 struct super_block *sb, 3066 struct inode *dir, umode_t mode, 3067 dev_t dev, vma_flags_t flags) 3068 { 3069 struct inode *inode; 3070 struct shmem_inode_info *info; 3071 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3072 ino_t ino; 3073 int err; 3074 3075 err = shmem_reserve_inode(sb, &ino); 3076 if (err) 3077 return ERR_PTR(err); 3078 3079 inode = new_inode(sb); 3080 if (!inode) { 3081 shmem_free_inode(sb, 0); 3082 return ERR_PTR(-ENOSPC); 3083 } 3084 3085 inode->i_ino = ino; 3086 inode_init_owner(idmap, inode, dir, mode); 3087 inode->i_blocks = 0; 3088 simple_inode_init_ts(inode); 3089 inode->i_generation = get_random_u32(); 3090 info = SHMEM_I(inode); 3091 memset(info, 0, (char *)inode - (char *)info); 3092 spin_lock_init(&info->lock); 3093 atomic_set(&info->stop_eviction, 0); 3094 info->seals = F_SEAL_SEAL; 3095 info->flags = vma_flags_test(&flags, VMA_NORESERVE_BIT) 3096 ? SHMEM_F_NORESERVE : 0; 3097 info->i_crtime = inode_get_mtime(inode); 3098 info->fsflags = (dir == NULL) ? 0 : 3099 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 3100 if (info->fsflags) 3101 shmem_set_inode_flags(inode, info->fsflags, NULL); 3102 INIT_LIST_HEAD(&info->shrinklist); 3103 INIT_LIST_HEAD(&info->swaplist); 3104 simple_xattrs_init(&info->xattrs); 3105 cache_no_acl(inode); 3106 if (sbinfo->noswap) 3107 mapping_set_unevictable(inode->i_mapping); 3108 3109 /* Don't consider 'deny' for emergencies and 'force' for testing */ 3110 if (sbinfo->huge) 3111 mapping_set_large_folios(inode->i_mapping); 3112 3113 switch (mode & S_IFMT) { 3114 default: 3115 inode->i_op = &shmem_special_inode_operations; 3116 init_special_inode(inode, mode, dev); 3117 break; 3118 case S_IFREG: 3119 inode->i_mapping->a_ops = &shmem_aops; 3120 inode->i_op = &shmem_inode_operations; 3121 inode->i_fop = &shmem_file_operations; 3122 mpol_shared_policy_init(&info->policy, 3123 shmem_get_sbmpol(sbinfo)); 3124 break; 3125 case S_IFDIR: 3126 inc_nlink(inode); 3127 /* Some things misbehave if size == 0 on a directory */ 3128 inode->i_size = 2 * BOGO_DIRENT_SIZE; 3129 inode->i_op = &shmem_dir_inode_operations; 3130 inode->i_fop = &simple_offset_dir_operations; 3131 simple_offset_init(shmem_get_offset_ctx(inode)); 3132 break; 3133 case S_IFLNK: 3134 /* 3135 * Must not load anything in the rbtree, 3136 * mpol_free_shared_policy will not be called. 3137 */ 3138 mpol_shared_policy_init(&info->policy, NULL); 3139 break; 3140 } 3141 3142 lockdep_annotate_inode_mutex_key(inode); 3143 return inode; 3144 } 3145 3146 #ifdef CONFIG_TMPFS_QUOTA 3147 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3148 struct super_block *sb, struct inode *dir, 3149 umode_t mode, dev_t dev, vma_flags_t flags) 3150 { 3151 int err; 3152 struct inode *inode; 3153 3154 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3155 if (IS_ERR(inode)) 3156 return inode; 3157 3158 err = dquot_initialize(inode); 3159 if (err) 3160 goto errout; 3161 3162 err = dquot_alloc_inode(inode); 3163 if (err) { 3164 dquot_drop(inode); 3165 goto errout; 3166 } 3167 return inode; 3168 3169 errout: 3170 inode->i_flags |= S_NOQUOTA; 3171 iput(inode); 3172 return ERR_PTR(err); 3173 } 3174 #else 3175 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3176 struct super_block *sb, struct inode *dir, 3177 umode_t mode, dev_t dev, vma_flags_t flags) 3178 { 3179 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3180 } 3181 #endif /* CONFIG_TMPFS_QUOTA */ 3182 3183 #ifdef CONFIG_USERFAULTFD 3184 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 3185 struct vm_area_struct *dst_vma, 3186 unsigned long dst_addr, 3187 unsigned long src_addr, 3188 uffd_flags_t flags, 3189 struct folio **foliop) 3190 { 3191 struct inode *inode = file_inode(dst_vma->vm_file); 3192 struct shmem_inode_info *info = SHMEM_I(inode); 3193 struct address_space *mapping = inode->i_mapping; 3194 gfp_t gfp = mapping_gfp_mask(mapping); 3195 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 3196 void *page_kaddr; 3197 struct folio *folio; 3198 int ret; 3199 pgoff_t max_off; 3200 3201 if (shmem_inode_acct_blocks(inode, 1)) { 3202 /* 3203 * We may have got a page, returned -ENOENT triggering a retry, 3204 * and now we find ourselves with -ENOMEM. Release the page, to 3205 * avoid a BUG_ON in our caller. 3206 */ 3207 if (unlikely(*foliop)) { 3208 folio_put(*foliop); 3209 *foliop = NULL; 3210 } 3211 return -ENOMEM; 3212 } 3213 3214 if (!*foliop) { 3215 ret = -ENOMEM; 3216 folio = shmem_alloc_folio(gfp, 0, info, pgoff); 3217 if (!folio) 3218 goto out_unacct_blocks; 3219 3220 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 3221 page_kaddr = kmap_local_folio(folio, 0); 3222 /* 3223 * The read mmap_lock is held here. Despite the 3224 * mmap_lock being read recursive a deadlock is still 3225 * possible if a writer has taken a lock. For example: 3226 * 3227 * process A thread 1 takes read lock on own mmap_lock 3228 * process A thread 2 calls mmap, blocks taking write lock 3229 * process B thread 1 takes page fault, read lock on own mmap lock 3230 * process B thread 2 calls mmap, blocks taking write lock 3231 * process A thread 1 blocks taking read lock on process B 3232 * process B thread 1 blocks taking read lock on process A 3233 * 3234 * Disable page faults to prevent potential deadlock 3235 * and retry the copy outside the mmap_lock. 3236 */ 3237 pagefault_disable(); 3238 ret = copy_from_user(page_kaddr, 3239 (const void __user *)src_addr, 3240 PAGE_SIZE); 3241 pagefault_enable(); 3242 kunmap_local(page_kaddr); 3243 3244 /* fallback to copy_from_user outside mmap_lock */ 3245 if (unlikely(ret)) { 3246 *foliop = folio; 3247 ret = -ENOENT; 3248 /* don't free the page */ 3249 goto out_unacct_blocks; 3250 } 3251 3252 flush_dcache_folio(folio); 3253 } else { /* ZEROPAGE */ 3254 clear_user_highpage(&folio->page, dst_addr); 3255 } 3256 } else { 3257 folio = *foliop; 3258 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 3259 *foliop = NULL; 3260 } 3261 3262 VM_BUG_ON(folio_test_locked(folio)); 3263 VM_BUG_ON(folio_test_swapbacked(folio)); 3264 __folio_set_locked(folio); 3265 __folio_set_swapbacked(folio); 3266 __folio_mark_uptodate(folio); 3267 3268 ret = -EFAULT; 3269 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3270 if (unlikely(pgoff >= max_off)) 3271 goto out_release; 3272 3273 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 3274 if (ret) 3275 goto out_release; 3276 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 3277 if (ret) 3278 goto out_release; 3279 3280 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 3281 &folio->page, true, flags); 3282 if (ret) 3283 goto out_delete_from_cache; 3284 3285 shmem_recalc_inode(inode, 1, 0); 3286 folio_unlock(folio); 3287 return 0; 3288 out_delete_from_cache: 3289 filemap_remove_folio(folio); 3290 out_release: 3291 folio_unlock(folio); 3292 folio_put(folio); 3293 out_unacct_blocks: 3294 shmem_inode_unacct_blocks(inode, 1); 3295 return ret; 3296 } 3297 #endif /* CONFIG_USERFAULTFD */ 3298 3299 #ifdef CONFIG_TMPFS 3300 static const struct inode_operations shmem_symlink_inode_operations; 3301 static const struct inode_operations shmem_short_symlink_operations; 3302 3303 static int 3304 shmem_write_begin(const struct kiocb *iocb, struct address_space *mapping, 3305 loff_t pos, unsigned len, 3306 struct folio **foliop, void **fsdata) 3307 { 3308 struct inode *inode = mapping->host; 3309 struct shmem_inode_info *info = SHMEM_I(inode); 3310 pgoff_t index = pos >> PAGE_SHIFT; 3311 struct folio *folio; 3312 int ret = 0; 3313 3314 /* i_rwsem is held by caller */ 3315 if (unlikely(info->seals & (F_SEAL_GROW | 3316 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 3317 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 3318 return -EPERM; 3319 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 3320 return -EPERM; 3321 } 3322 3323 if (unlikely((info->flags & SHMEM_F_MAPPING_FROZEN) && 3324 pos + len > inode->i_size)) 3325 return -EPERM; 3326 3327 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE); 3328 if (ret) 3329 return ret; 3330 3331 if (folio_contain_hwpoisoned_page(folio)) { 3332 folio_unlock(folio); 3333 folio_put(folio); 3334 return -EIO; 3335 } 3336 3337 *foliop = folio; 3338 return 0; 3339 } 3340 3341 static int 3342 shmem_write_end(const struct kiocb *iocb, struct address_space *mapping, 3343 loff_t pos, unsigned len, unsigned copied, 3344 struct folio *folio, void *fsdata) 3345 { 3346 struct inode *inode = mapping->host; 3347 3348 if (pos + copied > inode->i_size) 3349 i_size_write(inode, pos + copied); 3350 3351 if (!folio_test_uptodate(folio)) { 3352 if (copied < folio_size(folio)) { 3353 size_t from = offset_in_folio(folio, pos); 3354 folio_zero_segments(folio, 0, from, 3355 from + copied, folio_size(folio)); 3356 } 3357 folio_mark_uptodate(folio); 3358 } 3359 folio_mark_dirty(folio); 3360 folio_unlock(folio); 3361 folio_put(folio); 3362 3363 return copied; 3364 } 3365 3366 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3367 { 3368 struct file *file = iocb->ki_filp; 3369 struct inode *inode = file_inode(file); 3370 struct address_space *mapping = inode->i_mapping; 3371 pgoff_t index; 3372 unsigned long offset; 3373 int error = 0; 3374 ssize_t retval = 0; 3375 3376 for (;;) { 3377 struct folio *folio = NULL; 3378 struct page *page = NULL; 3379 unsigned long nr, ret; 3380 loff_t end_offset, i_size = i_size_read(inode); 3381 bool fallback_page_copy = false; 3382 size_t fsize; 3383 3384 if (unlikely(iocb->ki_pos >= i_size)) 3385 break; 3386 3387 index = iocb->ki_pos >> PAGE_SHIFT; 3388 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3389 if (error) { 3390 if (error == -EINVAL) 3391 error = 0; 3392 break; 3393 } 3394 if (folio) { 3395 folio_unlock(folio); 3396 3397 page = folio_file_page(folio, index); 3398 if (PageHWPoison(page)) { 3399 folio_put(folio); 3400 error = -EIO; 3401 break; 3402 } 3403 3404 if (folio_test_large(folio) && 3405 folio_test_has_hwpoisoned(folio)) 3406 fallback_page_copy = true; 3407 } 3408 3409 /* 3410 * We must evaluate after, since reads (unlike writes) 3411 * are called without i_rwsem protection against truncate 3412 */ 3413 i_size = i_size_read(inode); 3414 if (unlikely(iocb->ki_pos >= i_size)) { 3415 if (folio) 3416 folio_put(folio); 3417 break; 3418 } 3419 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count); 3420 if (folio && likely(!fallback_page_copy)) 3421 fsize = folio_size(folio); 3422 else 3423 fsize = PAGE_SIZE; 3424 offset = iocb->ki_pos & (fsize - 1); 3425 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset); 3426 3427 if (folio) { 3428 /* 3429 * If users can be writing to this page using arbitrary 3430 * virtual addresses, take care about potential aliasing 3431 * before reading the page on the kernel side. 3432 */ 3433 if (mapping_writably_mapped(mapping)) { 3434 if (likely(!fallback_page_copy)) 3435 flush_dcache_folio(folio); 3436 else 3437 flush_dcache_page(page); 3438 } 3439 3440 /* 3441 * Mark the folio accessed if we read the beginning. 3442 */ 3443 if (!offset) 3444 folio_mark_accessed(folio); 3445 /* 3446 * Ok, we have the page, and it's up-to-date, so 3447 * now we can copy it to user space... 3448 */ 3449 if (likely(!fallback_page_copy)) 3450 ret = copy_folio_to_iter(folio, offset, nr, to); 3451 else 3452 ret = copy_page_to_iter(page, offset, nr, to); 3453 folio_put(folio); 3454 } else if (user_backed_iter(to)) { 3455 /* 3456 * Copy to user tends to be so well optimized, but 3457 * clear_user() not so much, that it is noticeably 3458 * faster to copy the zero page instead of clearing. 3459 */ 3460 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 3461 } else { 3462 /* 3463 * But submitting the same page twice in a row to 3464 * splice() - or others? - can result in confusion: 3465 * so don't attempt that optimization on pipes etc. 3466 */ 3467 ret = iov_iter_zero(nr, to); 3468 } 3469 3470 retval += ret; 3471 iocb->ki_pos += ret; 3472 3473 if (!iov_iter_count(to)) 3474 break; 3475 if (ret < nr) { 3476 error = -EFAULT; 3477 break; 3478 } 3479 cond_resched(); 3480 } 3481 3482 file_accessed(file); 3483 return retval ? retval : error; 3484 } 3485 3486 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3487 { 3488 struct file *file = iocb->ki_filp; 3489 struct inode *inode = file->f_mapping->host; 3490 ssize_t ret; 3491 3492 inode_lock(inode); 3493 ret = generic_write_checks(iocb, from); 3494 if (ret <= 0) 3495 goto unlock; 3496 ret = file_remove_privs(file); 3497 if (ret) 3498 goto unlock; 3499 ret = file_update_time(file); 3500 if (ret) 3501 goto unlock; 3502 ret = generic_perform_write(iocb, from); 3503 unlock: 3504 inode_unlock(inode); 3505 return ret; 3506 } 3507 3508 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 3509 struct pipe_buffer *buf) 3510 { 3511 return true; 3512 } 3513 3514 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 3515 struct pipe_buffer *buf) 3516 { 3517 } 3518 3519 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 3520 struct pipe_buffer *buf) 3521 { 3522 return false; 3523 } 3524 3525 static const struct pipe_buf_operations zero_pipe_buf_ops = { 3526 .release = zero_pipe_buf_release, 3527 .try_steal = zero_pipe_buf_try_steal, 3528 .get = zero_pipe_buf_get, 3529 }; 3530 3531 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 3532 loff_t fpos, size_t size) 3533 { 3534 size_t offset = fpos & ~PAGE_MASK; 3535 3536 size = min_t(size_t, size, PAGE_SIZE - offset); 3537 3538 if (!pipe_is_full(pipe)) { 3539 struct pipe_buffer *buf = pipe_head_buf(pipe); 3540 3541 *buf = (struct pipe_buffer) { 3542 .ops = &zero_pipe_buf_ops, 3543 .page = ZERO_PAGE(0), 3544 .offset = offset, 3545 .len = size, 3546 }; 3547 pipe->head++; 3548 } 3549 3550 return size; 3551 } 3552 3553 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 3554 struct pipe_inode_info *pipe, 3555 size_t len, unsigned int flags) 3556 { 3557 struct inode *inode = file_inode(in); 3558 struct address_space *mapping = inode->i_mapping; 3559 struct folio *folio = NULL; 3560 size_t total_spliced = 0, used, npages, n, part; 3561 loff_t isize; 3562 int error = 0; 3563 3564 /* Work out how much data we can actually add into the pipe */ 3565 used = pipe_buf_usage(pipe); 3566 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3567 len = min_t(size_t, len, npages * PAGE_SIZE); 3568 3569 do { 3570 bool fallback_page_splice = false; 3571 struct page *page = NULL; 3572 pgoff_t index; 3573 size_t size; 3574 3575 if (*ppos >= i_size_read(inode)) 3576 break; 3577 3578 index = *ppos >> PAGE_SHIFT; 3579 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3580 if (error) { 3581 if (error == -EINVAL) 3582 error = 0; 3583 break; 3584 } 3585 if (folio) { 3586 folio_unlock(folio); 3587 3588 page = folio_file_page(folio, index); 3589 if (PageHWPoison(page)) { 3590 error = -EIO; 3591 break; 3592 } 3593 3594 if (folio_test_large(folio) && 3595 folio_test_has_hwpoisoned(folio)) 3596 fallback_page_splice = true; 3597 } 3598 3599 /* 3600 * i_size must be checked after we know the pages are Uptodate. 3601 * 3602 * Checking i_size after the check allows us to calculate 3603 * the correct value for "nr", which means the zero-filled 3604 * part of the page is not copied back to userspace (unless 3605 * another truncate extends the file - this is desired though). 3606 */ 3607 isize = i_size_read(inode); 3608 if (unlikely(*ppos >= isize)) 3609 break; 3610 /* 3611 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned 3612 * pages. 3613 */ 3614 size = len; 3615 if (unlikely(fallback_page_splice)) { 3616 size_t offset = *ppos & ~PAGE_MASK; 3617 3618 size = umin(size, PAGE_SIZE - offset); 3619 } 3620 part = min_t(loff_t, isize - *ppos, size); 3621 3622 if (folio) { 3623 /* 3624 * If users can be writing to this page using arbitrary 3625 * virtual addresses, take care about potential aliasing 3626 * before reading the page on the kernel side. 3627 */ 3628 if (mapping_writably_mapped(mapping)) { 3629 if (likely(!fallback_page_splice)) 3630 flush_dcache_folio(folio); 3631 else 3632 flush_dcache_page(page); 3633 } 3634 folio_mark_accessed(folio); 3635 /* 3636 * Ok, we have the page, and it's up-to-date, so we can 3637 * now splice it into the pipe. 3638 */ 3639 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3640 folio_put(folio); 3641 folio = NULL; 3642 } else { 3643 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3644 } 3645 3646 if (!n) 3647 break; 3648 len -= n; 3649 total_spliced += n; 3650 *ppos += n; 3651 in->f_ra.prev_pos = *ppos; 3652 if (pipe_is_full(pipe)) 3653 break; 3654 3655 cond_resched(); 3656 } while (len); 3657 3658 if (folio) 3659 folio_put(folio); 3660 3661 file_accessed(in); 3662 return total_spliced ? total_spliced : error; 3663 } 3664 3665 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3666 { 3667 struct address_space *mapping = file->f_mapping; 3668 struct inode *inode = mapping->host; 3669 3670 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3671 return generic_file_llseek_size(file, offset, whence, 3672 MAX_LFS_FILESIZE, i_size_read(inode)); 3673 if (offset < 0) 3674 return -ENXIO; 3675 3676 inode_lock(inode); 3677 /* We're holding i_rwsem so we can access i_size directly */ 3678 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3679 if (offset >= 0) 3680 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3681 inode_unlock(inode); 3682 return offset; 3683 } 3684 3685 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3686 loff_t len) 3687 { 3688 struct inode *inode = file_inode(file); 3689 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3690 struct shmem_inode_info *info = SHMEM_I(inode); 3691 struct shmem_falloc shmem_falloc; 3692 pgoff_t start, index, end, undo_fallocend; 3693 int error; 3694 3695 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3696 return -EOPNOTSUPP; 3697 3698 inode_lock(inode); 3699 3700 if (info->flags & SHMEM_F_MAPPING_FROZEN) { 3701 error = -EPERM; 3702 goto out; 3703 } 3704 3705 if (mode & FALLOC_FL_PUNCH_HOLE) { 3706 struct address_space *mapping = file->f_mapping; 3707 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3708 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3709 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3710 3711 /* protected by i_rwsem */ 3712 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3713 error = -EPERM; 3714 goto out; 3715 } 3716 3717 shmem_falloc.waitq = &shmem_falloc_waitq; 3718 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3719 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3720 spin_lock(&inode->i_lock); 3721 inode->i_private = &shmem_falloc; 3722 spin_unlock(&inode->i_lock); 3723 3724 if ((u64)unmap_end > (u64)unmap_start) 3725 unmap_mapping_range(mapping, unmap_start, 3726 1 + unmap_end - unmap_start, 0); 3727 shmem_truncate_range(inode, offset, offset + len - 1); 3728 /* No need to unmap again: hole-punching leaves COWed pages */ 3729 3730 spin_lock(&inode->i_lock); 3731 inode->i_private = NULL; 3732 wake_up_all(&shmem_falloc_waitq); 3733 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3734 spin_unlock(&inode->i_lock); 3735 error = 0; 3736 goto out; 3737 } 3738 3739 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3740 error = inode_newsize_ok(inode, offset + len); 3741 if (error) 3742 goto out; 3743 3744 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3745 error = -EPERM; 3746 goto out; 3747 } 3748 3749 start = offset >> PAGE_SHIFT; 3750 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3751 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3752 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3753 error = -ENOSPC; 3754 goto out; 3755 } 3756 3757 shmem_falloc.waitq = NULL; 3758 shmem_falloc.start = start; 3759 shmem_falloc.next = start; 3760 shmem_falloc.nr_falloced = 0; 3761 shmem_falloc.nr_unswapped = 0; 3762 spin_lock(&inode->i_lock); 3763 inode->i_private = &shmem_falloc; 3764 spin_unlock(&inode->i_lock); 3765 3766 /* 3767 * info->fallocend is only relevant when huge pages might be 3768 * involved: to prevent split_huge_page() freeing fallocated 3769 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3770 */ 3771 undo_fallocend = info->fallocend; 3772 if (info->fallocend < end) 3773 info->fallocend = end; 3774 3775 for (index = start; index < end; ) { 3776 struct folio *folio; 3777 3778 /* 3779 * Check for fatal signal so that we abort early in OOM 3780 * situations. We don't want to abort in case of non-fatal 3781 * signals as large fallocate can take noticeable time and 3782 * e.g. periodic timers may result in fallocate constantly 3783 * restarting. 3784 */ 3785 if (fatal_signal_pending(current)) 3786 error = -EINTR; 3787 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3788 error = -ENOMEM; 3789 else 3790 error = shmem_get_folio(inode, index, offset + len, 3791 &folio, SGP_FALLOC); 3792 if (error) { 3793 info->fallocend = undo_fallocend; 3794 /* Remove the !uptodate folios we added */ 3795 if (index > start) { 3796 shmem_undo_range(inode, 3797 (loff_t)start << PAGE_SHIFT, 3798 ((loff_t)index << PAGE_SHIFT) - 1, true); 3799 } 3800 goto undone; 3801 } 3802 3803 /* 3804 * Here is a more important optimization than it appears: 3805 * a second SGP_FALLOC on the same large folio will clear it, 3806 * making it uptodate and un-undoable if we fail later. 3807 */ 3808 index = folio_next_index(folio); 3809 /* Beware 32-bit wraparound */ 3810 if (!index) 3811 index--; 3812 3813 /* 3814 * Inform shmem_writeout() how far we have reached. 3815 * No need for lock or barrier: we have the page lock. 3816 */ 3817 if (!folio_test_uptodate(folio)) 3818 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3819 shmem_falloc.next = index; 3820 3821 /* 3822 * If !uptodate, leave it that way so that freeable folios 3823 * can be recognized if we need to rollback on error later. 3824 * But mark it dirty so that memory pressure will swap rather 3825 * than free the folios we are allocating (and SGP_CACHE folios 3826 * might still be clean: we now need to mark those dirty too). 3827 */ 3828 folio_mark_dirty(folio); 3829 folio_unlock(folio); 3830 folio_put(folio); 3831 cond_resched(); 3832 } 3833 3834 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3835 i_size_write(inode, offset + len); 3836 undone: 3837 spin_lock(&inode->i_lock); 3838 inode->i_private = NULL; 3839 spin_unlock(&inode->i_lock); 3840 out: 3841 if (!error) 3842 file_modified(file); 3843 inode_unlock(inode); 3844 return error; 3845 } 3846 3847 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3848 { 3849 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3850 3851 buf->f_type = TMPFS_MAGIC; 3852 buf->f_bsize = PAGE_SIZE; 3853 buf->f_namelen = NAME_MAX; 3854 if (sbinfo->max_blocks) { 3855 buf->f_blocks = sbinfo->max_blocks; 3856 buf->f_bavail = 3857 buf->f_bfree = sbinfo->max_blocks - 3858 percpu_counter_sum(&sbinfo->used_blocks); 3859 } 3860 if (sbinfo->max_inodes) { 3861 buf->f_files = sbinfo->max_inodes; 3862 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3863 } 3864 /* else leave those fields 0 like simple_statfs */ 3865 3866 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3867 3868 return 0; 3869 } 3870 3871 /* 3872 * File creation. Allocate an inode, and we're done.. 3873 */ 3874 static int 3875 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3876 struct dentry *dentry, umode_t mode, dev_t dev) 3877 { 3878 struct inode *inode; 3879 int error; 3880 3881 if (!generic_ci_validate_strict_name(dir, &dentry->d_name)) 3882 return -EINVAL; 3883 3884 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, 3885 mk_vma_flags(VMA_NORESERVE_BIT)); 3886 if (IS_ERR(inode)) 3887 return PTR_ERR(inode); 3888 3889 error = simple_acl_create(dir, inode); 3890 if (error) 3891 goto out_iput; 3892 error = security_inode_init_security(inode, dir, &dentry->d_name, 3893 shmem_initxattrs, NULL); 3894 if (error && error != -EOPNOTSUPP) 3895 goto out_iput; 3896 3897 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3898 if (error) 3899 goto out_iput; 3900 3901 dir->i_size += BOGO_DIRENT_SIZE; 3902 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3903 inode_inc_iversion(dir); 3904 3905 d_make_persistent(dentry, inode); 3906 return error; 3907 3908 out_iput: 3909 iput(inode); 3910 return error; 3911 } 3912 3913 static int 3914 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3915 struct file *file, umode_t mode) 3916 { 3917 struct inode *inode; 3918 int error; 3919 3920 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, 3921 mk_vma_flags(VMA_NORESERVE_BIT)); 3922 if (IS_ERR(inode)) { 3923 error = PTR_ERR(inode); 3924 goto err_out; 3925 } 3926 error = security_inode_init_security(inode, dir, NULL, 3927 shmem_initxattrs, NULL); 3928 if (error && error != -EOPNOTSUPP) 3929 goto out_iput; 3930 error = simple_acl_create(dir, inode); 3931 if (error) 3932 goto out_iput; 3933 d_tmpfile(file, inode); 3934 3935 err_out: 3936 return finish_open_simple(file, error); 3937 out_iput: 3938 iput(inode); 3939 return error; 3940 } 3941 3942 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3943 struct dentry *dentry, umode_t mode) 3944 { 3945 int error; 3946 3947 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3948 if (error) 3949 return ERR_PTR(error); 3950 inc_nlink(dir); 3951 return NULL; 3952 } 3953 3954 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3955 struct dentry *dentry, umode_t mode, bool excl) 3956 { 3957 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3958 } 3959 3960 /* 3961 * Link a file.. 3962 */ 3963 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3964 struct dentry *dentry) 3965 { 3966 struct inode *inode = d_inode(old_dentry); 3967 int ret; 3968 3969 /* 3970 * No ordinary (disk based) filesystem counts links as inodes; 3971 * but each new link needs a new dentry, pinning lowmem, and 3972 * tmpfs dentries cannot be pruned until they are unlinked. 3973 * But if an O_TMPFILE file is linked into the tmpfs, the 3974 * first link must skip that, to get the accounting right. 3975 */ 3976 if (inode->i_nlink) { 3977 ret = shmem_reserve_inode(inode->i_sb, NULL); 3978 if (ret) 3979 return ret; 3980 } 3981 3982 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3983 if (ret) { 3984 if (inode->i_nlink) 3985 shmem_free_inode(inode->i_sb, 0); 3986 return ret; 3987 } 3988 3989 dir->i_size += BOGO_DIRENT_SIZE; 3990 inode_inc_iversion(dir); 3991 return simple_link(old_dentry, dir, dentry); 3992 } 3993 3994 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3995 { 3996 struct inode *inode = d_inode(dentry); 3997 3998 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3999 shmem_free_inode(inode->i_sb, 0); 4000 4001 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 4002 4003 dir->i_size -= BOGO_DIRENT_SIZE; 4004 inode_inc_iversion(dir); 4005 simple_unlink(dir, dentry); 4006 4007 /* 4008 * For now, VFS can't deal with case-insensitive negative dentries, so 4009 * we invalidate them 4010 */ 4011 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 4012 d_invalidate(dentry); 4013 4014 return 0; 4015 } 4016 4017 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 4018 { 4019 if (!simple_empty(dentry)) 4020 return -ENOTEMPTY; 4021 4022 drop_nlink(d_inode(dentry)); 4023 drop_nlink(dir); 4024 return shmem_unlink(dir, dentry); 4025 } 4026 4027 static int shmem_whiteout(struct mnt_idmap *idmap, 4028 struct inode *old_dir, struct dentry *old_dentry) 4029 { 4030 struct dentry *whiteout; 4031 int error; 4032 4033 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 4034 if (!whiteout) 4035 return -ENOMEM; 4036 error = shmem_mknod(idmap, old_dir, whiteout, 4037 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4038 dput(whiteout); 4039 return error; 4040 } 4041 4042 /* 4043 * The VFS layer already does all the dentry stuff for rename, 4044 * we just have to decrement the usage count for the target if 4045 * it exists so that the VFS layer correctly free's it when it 4046 * gets overwritten. 4047 */ 4048 static int shmem_rename2(struct mnt_idmap *idmap, 4049 struct inode *old_dir, struct dentry *old_dentry, 4050 struct inode *new_dir, struct dentry *new_dentry, 4051 unsigned int flags) 4052 { 4053 struct inode *inode = d_inode(old_dentry); 4054 int they_are_dirs = S_ISDIR(inode->i_mode); 4055 bool had_offset = false; 4056 int error; 4057 4058 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4059 return -EINVAL; 4060 4061 if (flags & RENAME_EXCHANGE) 4062 return simple_offset_rename_exchange(old_dir, old_dentry, 4063 new_dir, new_dentry); 4064 4065 if (!simple_empty(new_dentry)) 4066 return -ENOTEMPTY; 4067 4068 error = simple_offset_add(shmem_get_offset_ctx(new_dir), new_dentry); 4069 if (error == -EBUSY) 4070 had_offset = true; 4071 else if (unlikely(error)) 4072 return error; 4073 4074 if (flags & RENAME_WHITEOUT) { 4075 error = shmem_whiteout(idmap, old_dir, old_dentry); 4076 if (error) { 4077 if (!had_offset) 4078 simple_offset_remove(shmem_get_offset_ctx(new_dir), 4079 new_dentry); 4080 return error; 4081 } 4082 } 4083 4084 simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 4085 if (d_really_is_positive(new_dentry)) { 4086 (void) shmem_unlink(new_dir, new_dentry); 4087 if (they_are_dirs) { 4088 drop_nlink(d_inode(new_dentry)); 4089 drop_nlink(old_dir); 4090 } 4091 } else if (they_are_dirs) { 4092 drop_nlink(old_dir); 4093 inc_nlink(new_dir); 4094 } 4095 4096 old_dir->i_size -= BOGO_DIRENT_SIZE; 4097 new_dir->i_size += BOGO_DIRENT_SIZE; 4098 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 4099 inode_inc_iversion(old_dir); 4100 inode_inc_iversion(new_dir); 4101 return 0; 4102 } 4103 4104 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 4105 struct dentry *dentry, const char *symname) 4106 { 4107 int error; 4108 int len; 4109 struct inode *inode; 4110 struct folio *folio; 4111 char *link; 4112 4113 len = strlen(symname) + 1; 4114 if (len > PAGE_SIZE) 4115 return -ENAMETOOLONG; 4116 4117 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 4118 mk_vma_flags(VMA_NORESERVE_BIT)); 4119 if (IS_ERR(inode)) 4120 return PTR_ERR(inode); 4121 4122 error = security_inode_init_security(inode, dir, &dentry->d_name, 4123 shmem_initxattrs, NULL); 4124 if (error && error != -EOPNOTSUPP) 4125 goto out_iput; 4126 4127 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 4128 if (error) 4129 goto out_iput; 4130 4131 inode->i_size = len-1; 4132 if (len <= SHORT_SYMLINK_LEN) { 4133 link = kmemdup(symname, len, GFP_KERNEL); 4134 if (!link) { 4135 error = -ENOMEM; 4136 goto out_remove_offset; 4137 } 4138 inode->i_op = &shmem_short_symlink_operations; 4139 inode_set_cached_link(inode, link, len - 1); 4140 } else { 4141 inode_nohighmem(inode); 4142 inode->i_mapping->a_ops = &shmem_aops; 4143 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE); 4144 if (error) 4145 goto out_remove_offset; 4146 inode->i_op = &shmem_symlink_inode_operations; 4147 memcpy(folio_address(folio), symname, len); 4148 folio_mark_uptodate(folio); 4149 folio_mark_dirty(folio); 4150 folio_unlock(folio); 4151 folio_put(folio); 4152 } 4153 dir->i_size += BOGO_DIRENT_SIZE; 4154 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 4155 inode_inc_iversion(dir); 4156 d_make_persistent(dentry, inode); 4157 return 0; 4158 4159 out_remove_offset: 4160 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 4161 out_iput: 4162 iput(inode); 4163 return error; 4164 } 4165 4166 static void shmem_put_link(void *arg) 4167 { 4168 folio_mark_accessed(arg); 4169 folio_put(arg); 4170 } 4171 4172 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 4173 struct delayed_call *done) 4174 { 4175 struct folio *folio = NULL; 4176 int error; 4177 4178 if (!dentry) { 4179 folio = filemap_get_folio(inode->i_mapping, 0); 4180 if (IS_ERR(folio)) 4181 return ERR_PTR(-ECHILD); 4182 if (PageHWPoison(folio_page(folio, 0)) || 4183 !folio_test_uptodate(folio)) { 4184 folio_put(folio); 4185 return ERR_PTR(-ECHILD); 4186 } 4187 } else { 4188 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ); 4189 if (error) 4190 return ERR_PTR(error); 4191 if (!folio) 4192 return ERR_PTR(-ECHILD); 4193 if (PageHWPoison(folio_page(folio, 0))) { 4194 folio_unlock(folio); 4195 folio_put(folio); 4196 return ERR_PTR(-ECHILD); 4197 } 4198 folio_unlock(folio); 4199 } 4200 set_delayed_call(done, shmem_put_link, folio); 4201 return folio_address(folio); 4202 } 4203 4204 #ifdef CONFIG_TMPFS_XATTR 4205 4206 static int shmem_fileattr_get(struct dentry *dentry, struct file_kattr *fa) 4207 { 4208 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4209 4210 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 4211 4212 return 0; 4213 } 4214 4215 static int shmem_fileattr_set(struct mnt_idmap *idmap, 4216 struct dentry *dentry, struct file_kattr *fa) 4217 { 4218 struct inode *inode = d_inode(dentry); 4219 struct shmem_inode_info *info = SHMEM_I(inode); 4220 int ret, flags; 4221 4222 if (fileattr_has_fsx(fa)) 4223 return -EOPNOTSUPP; 4224 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 4225 return -EOPNOTSUPP; 4226 4227 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 4228 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 4229 4230 ret = shmem_set_inode_flags(inode, flags, dentry); 4231 4232 if (ret) 4233 return ret; 4234 4235 info->fsflags = flags; 4236 4237 inode_set_ctime_current(inode); 4238 inode_inc_iversion(inode); 4239 return 0; 4240 } 4241 4242 /* 4243 * Superblocks without xattr inode operations may get some security.* xattr 4244 * support from the LSM "for free". As soon as we have any other xattrs 4245 * like ACLs, we also need to implement the security.* handlers at 4246 * filesystem level, though. 4247 */ 4248 4249 /* 4250 * Callback for security_inode_init_security() for acquiring xattrs. 4251 */ 4252 static int shmem_initxattrs(struct inode *inode, 4253 const struct xattr *xattr_array, void *fs_info) 4254 { 4255 struct shmem_inode_info *info = SHMEM_I(inode); 4256 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4257 const struct xattr *xattr; 4258 struct simple_xattr *new_xattr; 4259 size_t ispace = 0; 4260 size_t len; 4261 4262 if (sbinfo->max_inodes) { 4263 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4264 ispace += simple_xattr_space(xattr->name, 4265 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 4266 } 4267 if (ispace) { 4268 raw_spin_lock(&sbinfo->stat_lock); 4269 if (sbinfo->free_ispace < ispace) 4270 ispace = 0; 4271 else 4272 sbinfo->free_ispace -= ispace; 4273 raw_spin_unlock(&sbinfo->stat_lock); 4274 if (!ispace) 4275 return -ENOSPC; 4276 } 4277 } 4278 4279 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4280 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 4281 if (!new_xattr) 4282 break; 4283 4284 len = strlen(xattr->name) + 1; 4285 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 4286 GFP_KERNEL_ACCOUNT); 4287 if (!new_xattr->name) { 4288 kvfree(new_xattr); 4289 break; 4290 } 4291 4292 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 4293 XATTR_SECURITY_PREFIX_LEN); 4294 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 4295 xattr->name, len); 4296 4297 simple_xattr_add(&info->xattrs, new_xattr); 4298 } 4299 4300 if (xattr->name != NULL) { 4301 if (ispace) { 4302 raw_spin_lock(&sbinfo->stat_lock); 4303 sbinfo->free_ispace += ispace; 4304 raw_spin_unlock(&sbinfo->stat_lock); 4305 } 4306 simple_xattrs_free(&info->xattrs, NULL); 4307 return -ENOMEM; 4308 } 4309 4310 return 0; 4311 } 4312 4313 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 4314 struct dentry *unused, struct inode *inode, 4315 const char *name, void *buffer, size_t size) 4316 { 4317 struct shmem_inode_info *info = SHMEM_I(inode); 4318 4319 name = xattr_full_name(handler, name); 4320 return simple_xattr_get(&info->xattrs, name, buffer, size); 4321 } 4322 4323 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 4324 struct mnt_idmap *idmap, 4325 struct dentry *unused, struct inode *inode, 4326 const char *name, const void *value, 4327 size_t size, int flags) 4328 { 4329 struct shmem_inode_info *info = SHMEM_I(inode); 4330 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4331 struct simple_xattr *old_xattr; 4332 size_t ispace = 0; 4333 4334 name = xattr_full_name(handler, name); 4335 if (value && sbinfo->max_inodes) { 4336 ispace = simple_xattr_space(name, size); 4337 raw_spin_lock(&sbinfo->stat_lock); 4338 if (sbinfo->free_ispace < ispace) 4339 ispace = 0; 4340 else 4341 sbinfo->free_ispace -= ispace; 4342 raw_spin_unlock(&sbinfo->stat_lock); 4343 if (!ispace) 4344 return -ENOSPC; 4345 } 4346 4347 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 4348 if (!IS_ERR(old_xattr)) { 4349 ispace = 0; 4350 if (old_xattr && sbinfo->max_inodes) 4351 ispace = simple_xattr_space(old_xattr->name, 4352 old_xattr->size); 4353 simple_xattr_free(old_xattr); 4354 old_xattr = NULL; 4355 inode_set_ctime_current(inode); 4356 inode_inc_iversion(inode); 4357 } 4358 if (ispace) { 4359 raw_spin_lock(&sbinfo->stat_lock); 4360 sbinfo->free_ispace += ispace; 4361 raw_spin_unlock(&sbinfo->stat_lock); 4362 } 4363 return PTR_ERR(old_xattr); 4364 } 4365 4366 static const struct xattr_handler shmem_security_xattr_handler = { 4367 .prefix = XATTR_SECURITY_PREFIX, 4368 .get = shmem_xattr_handler_get, 4369 .set = shmem_xattr_handler_set, 4370 }; 4371 4372 static const struct xattr_handler shmem_trusted_xattr_handler = { 4373 .prefix = XATTR_TRUSTED_PREFIX, 4374 .get = shmem_xattr_handler_get, 4375 .set = shmem_xattr_handler_set, 4376 }; 4377 4378 static const struct xattr_handler shmem_user_xattr_handler = { 4379 .prefix = XATTR_USER_PREFIX, 4380 .get = shmem_xattr_handler_get, 4381 .set = shmem_xattr_handler_set, 4382 }; 4383 4384 static const struct xattr_handler * const shmem_xattr_handlers[] = { 4385 &shmem_security_xattr_handler, 4386 &shmem_trusted_xattr_handler, 4387 &shmem_user_xattr_handler, 4388 NULL 4389 }; 4390 4391 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 4392 { 4393 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4394 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 4395 } 4396 #endif /* CONFIG_TMPFS_XATTR */ 4397 4398 static const struct inode_operations shmem_short_symlink_operations = { 4399 .getattr = shmem_getattr, 4400 .setattr = shmem_setattr, 4401 .get_link = simple_get_link, 4402 #ifdef CONFIG_TMPFS_XATTR 4403 .listxattr = shmem_listxattr, 4404 #endif 4405 }; 4406 4407 static const struct inode_operations shmem_symlink_inode_operations = { 4408 .getattr = shmem_getattr, 4409 .setattr = shmem_setattr, 4410 .get_link = shmem_get_link, 4411 #ifdef CONFIG_TMPFS_XATTR 4412 .listxattr = shmem_listxattr, 4413 #endif 4414 }; 4415 4416 static struct dentry *shmem_get_parent(struct dentry *child) 4417 { 4418 return ERR_PTR(-ESTALE); 4419 } 4420 4421 static int shmem_match(struct inode *ino, void *vfh) 4422 { 4423 __u32 *fh = vfh; 4424 __u64 inum = fh[2]; 4425 inum = (inum << 32) | fh[1]; 4426 return ino->i_ino == inum && fh[0] == ino->i_generation; 4427 } 4428 4429 /* Find any alias of inode, but prefer a hashed alias */ 4430 static struct dentry *shmem_find_alias(struct inode *inode) 4431 { 4432 struct dentry *alias = d_find_alias(inode); 4433 4434 return alias ?: d_find_any_alias(inode); 4435 } 4436 4437 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 4438 struct fid *fid, int fh_len, int fh_type) 4439 { 4440 struct inode *inode; 4441 struct dentry *dentry = NULL; 4442 u64 inum; 4443 4444 if (fh_len < 3) 4445 return NULL; 4446 4447 inum = fid->raw[2]; 4448 inum = (inum << 32) | fid->raw[1]; 4449 4450 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 4451 shmem_match, fid->raw); 4452 if (inode) { 4453 dentry = shmem_find_alias(inode); 4454 iput(inode); 4455 } 4456 4457 return dentry; 4458 } 4459 4460 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 4461 struct inode *parent) 4462 { 4463 if (*len < 3) { 4464 *len = 3; 4465 return FILEID_INVALID; 4466 } 4467 4468 if (inode_unhashed(inode)) { 4469 /* Unfortunately insert_inode_hash is not idempotent, 4470 * so as we hash inodes here rather than at creation 4471 * time, we need a lock to ensure we only try 4472 * to do it once 4473 */ 4474 static DEFINE_SPINLOCK(lock); 4475 spin_lock(&lock); 4476 if (inode_unhashed(inode)) 4477 __insert_inode_hash(inode, 4478 inode->i_ino + inode->i_generation); 4479 spin_unlock(&lock); 4480 } 4481 4482 fh[0] = inode->i_generation; 4483 fh[1] = inode->i_ino; 4484 fh[2] = ((__u64)inode->i_ino) >> 32; 4485 4486 *len = 3; 4487 return 1; 4488 } 4489 4490 static const struct export_operations shmem_export_ops = { 4491 .get_parent = shmem_get_parent, 4492 .encode_fh = shmem_encode_fh, 4493 .fh_to_dentry = shmem_fh_to_dentry, 4494 }; 4495 4496 enum shmem_param { 4497 Opt_gid, 4498 Opt_huge, 4499 Opt_mode, 4500 Opt_mpol, 4501 Opt_nr_blocks, 4502 Opt_nr_inodes, 4503 Opt_size, 4504 Opt_uid, 4505 Opt_inode32, 4506 Opt_inode64, 4507 Opt_noswap, 4508 Opt_quota, 4509 Opt_usrquota, 4510 Opt_grpquota, 4511 Opt_usrquota_block_hardlimit, 4512 Opt_usrquota_inode_hardlimit, 4513 Opt_grpquota_block_hardlimit, 4514 Opt_grpquota_inode_hardlimit, 4515 Opt_casefold_version, 4516 Opt_casefold, 4517 Opt_strict_encoding, 4518 }; 4519 4520 static const struct constant_table shmem_param_enums_huge[] = { 4521 {"never", SHMEM_HUGE_NEVER }, 4522 {"always", SHMEM_HUGE_ALWAYS }, 4523 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 4524 {"advise", SHMEM_HUGE_ADVISE }, 4525 {} 4526 }; 4527 4528 const struct fs_parameter_spec shmem_fs_parameters[] = { 4529 fsparam_gid ("gid", Opt_gid), 4530 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 4531 fsparam_u32oct("mode", Opt_mode), 4532 fsparam_string("mpol", Opt_mpol), 4533 fsparam_string("nr_blocks", Opt_nr_blocks), 4534 fsparam_string("nr_inodes", Opt_nr_inodes), 4535 fsparam_string("size", Opt_size), 4536 fsparam_uid ("uid", Opt_uid), 4537 fsparam_flag ("inode32", Opt_inode32), 4538 fsparam_flag ("inode64", Opt_inode64), 4539 fsparam_flag ("noswap", Opt_noswap), 4540 #ifdef CONFIG_TMPFS_QUOTA 4541 fsparam_flag ("quota", Opt_quota), 4542 fsparam_flag ("usrquota", Opt_usrquota), 4543 fsparam_flag ("grpquota", Opt_grpquota), 4544 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 4545 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 4546 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 4547 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 4548 #endif 4549 fsparam_string("casefold", Opt_casefold_version), 4550 fsparam_flag ("casefold", Opt_casefold), 4551 fsparam_flag ("strict_encoding", Opt_strict_encoding), 4552 {} 4553 }; 4554 4555 #if IS_ENABLED(CONFIG_UNICODE) 4556 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4557 bool latest_version) 4558 { 4559 struct shmem_options *ctx = fc->fs_private; 4560 int version = UTF8_LATEST; 4561 struct unicode_map *encoding; 4562 char *version_str = param->string + 5; 4563 4564 if (!latest_version) { 4565 if (strncmp(param->string, "utf8-", 5)) 4566 return invalfc(fc, "Only UTF-8 encodings are supported " 4567 "in the format: utf8-<version number>"); 4568 4569 version = utf8_parse_version(version_str); 4570 if (version < 0) 4571 return invalfc(fc, "Invalid UTF-8 version: %s", version_str); 4572 } 4573 4574 encoding = utf8_load(version); 4575 4576 if (IS_ERR(encoding)) { 4577 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n", 4578 unicode_major(version), unicode_minor(version), 4579 unicode_rev(version)); 4580 } 4581 4582 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n", 4583 unicode_major(version), unicode_minor(version), unicode_rev(version)); 4584 4585 ctx->encoding = encoding; 4586 4587 return 0; 4588 } 4589 #else 4590 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4591 bool latest_version) 4592 { 4593 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4594 } 4595 #endif 4596 4597 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 4598 { 4599 struct shmem_options *ctx = fc->fs_private; 4600 struct fs_parse_result result; 4601 unsigned long long size; 4602 char *rest; 4603 int opt; 4604 kuid_t kuid; 4605 kgid_t kgid; 4606 4607 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 4608 if (opt < 0) 4609 return opt; 4610 4611 switch (opt) { 4612 case Opt_size: 4613 size = memparse(param->string, &rest); 4614 if (*rest == '%') { 4615 size <<= PAGE_SHIFT; 4616 size *= totalram_pages(); 4617 do_div(size, 100); 4618 rest++; 4619 } 4620 if (*rest) 4621 goto bad_value; 4622 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 4623 ctx->seen |= SHMEM_SEEN_BLOCKS; 4624 break; 4625 case Opt_nr_blocks: 4626 ctx->blocks = memparse(param->string, &rest); 4627 if (*rest || ctx->blocks > LONG_MAX) 4628 goto bad_value; 4629 ctx->seen |= SHMEM_SEEN_BLOCKS; 4630 break; 4631 case Opt_nr_inodes: 4632 ctx->inodes = memparse(param->string, &rest); 4633 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 4634 goto bad_value; 4635 ctx->seen |= SHMEM_SEEN_INODES; 4636 break; 4637 case Opt_mode: 4638 ctx->mode = result.uint_32 & 07777; 4639 break; 4640 case Opt_uid: 4641 kuid = result.uid; 4642 4643 /* 4644 * The requested uid must be representable in the 4645 * filesystem's idmapping. 4646 */ 4647 if (!kuid_has_mapping(fc->user_ns, kuid)) 4648 goto bad_value; 4649 4650 ctx->uid = kuid; 4651 break; 4652 case Opt_gid: 4653 kgid = result.gid; 4654 4655 /* 4656 * The requested gid must be representable in the 4657 * filesystem's idmapping. 4658 */ 4659 if (!kgid_has_mapping(fc->user_ns, kgid)) 4660 goto bad_value; 4661 4662 ctx->gid = kgid; 4663 break; 4664 case Opt_huge: 4665 ctx->huge = result.uint_32; 4666 if (ctx->huge != SHMEM_HUGE_NEVER && 4667 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4668 has_transparent_hugepage())) 4669 goto unsupported_parameter; 4670 ctx->seen |= SHMEM_SEEN_HUGE; 4671 break; 4672 case Opt_mpol: 4673 if (IS_ENABLED(CONFIG_NUMA)) { 4674 mpol_put(ctx->mpol); 4675 ctx->mpol = NULL; 4676 if (mpol_parse_str(param->string, &ctx->mpol)) 4677 goto bad_value; 4678 break; 4679 } 4680 goto unsupported_parameter; 4681 case Opt_inode32: 4682 ctx->full_inums = false; 4683 ctx->seen |= SHMEM_SEEN_INUMS; 4684 break; 4685 case Opt_inode64: 4686 if (sizeof(ino_t) < 8) { 4687 return invalfc(fc, 4688 "Cannot use inode64 with <64bit inums in kernel\n"); 4689 } 4690 ctx->full_inums = true; 4691 ctx->seen |= SHMEM_SEEN_INUMS; 4692 break; 4693 case Opt_noswap: 4694 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4695 return invalfc(fc, 4696 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4697 } 4698 ctx->noswap = true; 4699 break; 4700 case Opt_quota: 4701 if (fc->user_ns != &init_user_ns) 4702 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4703 ctx->seen |= SHMEM_SEEN_QUOTA; 4704 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4705 break; 4706 case Opt_usrquota: 4707 if (fc->user_ns != &init_user_ns) 4708 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4709 ctx->seen |= SHMEM_SEEN_QUOTA; 4710 ctx->quota_types |= QTYPE_MASK_USR; 4711 break; 4712 case Opt_grpquota: 4713 if (fc->user_ns != &init_user_ns) 4714 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4715 ctx->seen |= SHMEM_SEEN_QUOTA; 4716 ctx->quota_types |= QTYPE_MASK_GRP; 4717 break; 4718 case Opt_usrquota_block_hardlimit: 4719 size = memparse(param->string, &rest); 4720 if (*rest || !size) 4721 goto bad_value; 4722 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4723 return invalfc(fc, 4724 "User quota block hardlimit too large."); 4725 ctx->qlimits.usrquota_bhardlimit = size; 4726 break; 4727 case Opt_grpquota_block_hardlimit: 4728 size = memparse(param->string, &rest); 4729 if (*rest || !size) 4730 goto bad_value; 4731 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4732 return invalfc(fc, 4733 "Group quota block hardlimit too large."); 4734 ctx->qlimits.grpquota_bhardlimit = size; 4735 break; 4736 case Opt_usrquota_inode_hardlimit: 4737 size = memparse(param->string, &rest); 4738 if (*rest || !size) 4739 goto bad_value; 4740 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4741 return invalfc(fc, 4742 "User quota inode hardlimit too large."); 4743 ctx->qlimits.usrquota_ihardlimit = size; 4744 break; 4745 case Opt_grpquota_inode_hardlimit: 4746 size = memparse(param->string, &rest); 4747 if (*rest || !size) 4748 goto bad_value; 4749 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4750 return invalfc(fc, 4751 "Group quota inode hardlimit too large."); 4752 ctx->qlimits.grpquota_ihardlimit = size; 4753 break; 4754 case Opt_casefold_version: 4755 return shmem_parse_opt_casefold(fc, param, false); 4756 case Opt_casefold: 4757 return shmem_parse_opt_casefold(fc, param, true); 4758 case Opt_strict_encoding: 4759 #if IS_ENABLED(CONFIG_UNICODE) 4760 ctx->strict_encoding = true; 4761 break; 4762 #else 4763 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4764 #endif 4765 } 4766 return 0; 4767 4768 unsupported_parameter: 4769 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4770 bad_value: 4771 return invalfc(fc, "Bad value for '%s'", param->key); 4772 } 4773 4774 static char *shmem_next_opt(char **s) 4775 { 4776 char *sbegin = *s; 4777 char *p; 4778 4779 if (sbegin == NULL) 4780 return NULL; 4781 4782 /* 4783 * NUL-terminate this option: unfortunately, 4784 * mount options form a comma-separated list, 4785 * but mpol's nodelist may also contain commas. 4786 */ 4787 for (;;) { 4788 p = strchr(*s, ','); 4789 if (p == NULL) 4790 break; 4791 *s = p + 1; 4792 if (!isdigit(*(p+1))) { 4793 *p = '\0'; 4794 return sbegin; 4795 } 4796 } 4797 4798 *s = NULL; 4799 return sbegin; 4800 } 4801 4802 static int shmem_parse_monolithic(struct fs_context *fc, void *data) 4803 { 4804 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt); 4805 } 4806 4807 /* 4808 * Reconfigure a shmem filesystem. 4809 */ 4810 static int shmem_reconfigure(struct fs_context *fc) 4811 { 4812 struct shmem_options *ctx = fc->fs_private; 4813 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4814 unsigned long used_isp; 4815 struct mempolicy *mpol = NULL; 4816 const char *err; 4817 4818 raw_spin_lock(&sbinfo->stat_lock); 4819 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4820 4821 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4822 if (!sbinfo->max_blocks) { 4823 err = "Cannot retroactively limit size"; 4824 goto out; 4825 } 4826 if (percpu_counter_compare(&sbinfo->used_blocks, 4827 ctx->blocks) > 0) { 4828 err = "Too small a size for current use"; 4829 goto out; 4830 } 4831 } 4832 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4833 if (!sbinfo->max_inodes) { 4834 err = "Cannot retroactively limit inodes"; 4835 goto out; 4836 } 4837 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4838 err = "Too few inodes for current use"; 4839 goto out; 4840 } 4841 } 4842 4843 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4844 sbinfo->next_ino > UINT_MAX) { 4845 err = "Current inum too high to switch to 32-bit inums"; 4846 goto out; 4847 } 4848 4849 /* 4850 * "noswap" doesn't use fsparam_flag_no, i.e. there's no "swap" 4851 * counterpart for (re-)enabling swap. 4852 */ 4853 if (ctx->noswap && !sbinfo->noswap) { 4854 err = "Cannot disable swap on remount"; 4855 goto out; 4856 } 4857 4858 if (ctx->seen & SHMEM_SEEN_QUOTA && 4859 !sb_any_quota_loaded(fc->root->d_sb)) { 4860 err = "Cannot enable quota on remount"; 4861 goto out; 4862 } 4863 4864 #ifdef CONFIG_TMPFS_QUOTA 4865 #define CHANGED_LIMIT(name) \ 4866 (ctx->qlimits.name## hardlimit && \ 4867 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4868 4869 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4870 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4871 err = "Cannot change global quota limit on remount"; 4872 goto out; 4873 } 4874 #endif /* CONFIG_TMPFS_QUOTA */ 4875 4876 if (ctx->seen & SHMEM_SEEN_HUGE) 4877 sbinfo->huge = ctx->huge; 4878 if (ctx->seen & SHMEM_SEEN_INUMS) 4879 sbinfo->full_inums = ctx->full_inums; 4880 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4881 sbinfo->max_blocks = ctx->blocks; 4882 if (ctx->seen & SHMEM_SEEN_INODES) { 4883 sbinfo->max_inodes = ctx->inodes; 4884 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4885 } 4886 4887 /* 4888 * Preserve previous mempolicy unless mpol remount option was specified. 4889 */ 4890 if (ctx->mpol) { 4891 mpol = sbinfo->mpol; 4892 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4893 ctx->mpol = NULL; 4894 } 4895 4896 if (ctx->noswap) 4897 sbinfo->noswap = true; 4898 4899 raw_spin_unlock(&sbinfo->stat_lock); 4900 mpol_put(mpol); 4901 return 0; 4902 out: 4903 raw_spin_unlock(&sbinfo->stat_lock); 4904 return invalfc(fc, "%s", err); 4905 } 4906 4907 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4908 { 4909 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4910 struct mempolicy *mpol; 4911 4912 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4913 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4914 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4915 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4916 if (sbinfo->mode != (0777 | S_ISVTX)) 4917 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4918 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4919 seq_printf(seq, ",uid=%u", 4920 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4921 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4922 seq_printf(seq, ",gid=%u", 4923 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4924 4925 /* 4926 * Showing inode{64,32} might be useful even if it's the system default, 4927 * since then people don't have to resort to checking both here and 4928 * /proc/config.gz to confirm 64-bit inums were successfully applied 4929 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4930 * 4931 * We hide it when inode64 isn't the default and we are using 32-bit 4932 * inodes, since that probably just means the feature isn't even under 4933 * consideration. 4934 * 4935 * As such: 4936 * 4937 * +-----------------+-----------------+ 4938 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4939 * +------------------+-----------------+-----------------+ 4940 * | full_inums=true | show | show | 4941 * | full_inums=false | show | hide | 4942 * +------------------+-----------------+-----------------+ 4943 * 4944 */ 4945 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4946 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4947 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4948 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4949 if (sbinfo->huge) 4950 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4951 #endif 4952 mpol = shmem_get_sbmpol(sbinfo); 4953 shmem_show_mpol(seq, mpol); 4954 mpol_put(mpol); 4955 if (sbinfo->noswap) 4956 seq_printf(seq, ",noswap"); 4957 #ifdef CONFIG_TMPFS_QUOTA 4958 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4959 seq_printf(seq, ",usrquota"); 4960 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4961 seq_printf(seq, ",grpquota"); 4962 if (sbinfo->qlimits.usrquota_bhardlimit) 4963 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4964 sbinfo->qlimits.usrquota_bhardlimit); 4965 if (sbinfo->qlimits.grpquota_bhardlimit) 4966 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4967 sbinfo->qlimits.grpquota_bhardlimit); 4968 if (sbinfo->qlimits.usrquota_ihardlimit) 4969 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4970 sbinfo->qlimits.usrquota_ihardlimit); 4971 if (sbinfo->qlimits.grpquota_ihardlimit) 4972 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4973 sbinfo->qlimits.grpquota_ihardlimit); 4974 #endif 4975 return 0; 4976 } 4977 4978 #endif /* CONFIG_TMPFS */ 4979 4980 static void shmem_put_super(struct super_block *sb) 4981 { 4982 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4983 4984 #if IS_ENABLED(CONFIG_UNICODE) 4985 if (sb->s_encoding) 4986 utf8_unload(sb->s_encoding); 4987 #endif 4988 4989 #ifdef CONFIG_TMPFS_QUOTA 4990 shmem_disable_quotas(sb); 4991 #endif 4992 free_percpu(sbinfo->ino_batch); 4993 percpu_counter_destroy(&sbinfo->used_blocks); 4994 mpol_put(sbinfo->mpol); 4995 kfree(sbinfo); 4996 sb->s_fs_info = NULL; 4997 } 4998 4999 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS) 5000 static const struct dentry_operations shmem_ci_dentry_ops = { 5001 .d_hash = generic_ci_d_hash, 5002 .d_compare = generic_ci_d_compare, 5003 }; 5004 #endif 5005 5006 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 5007 { 5008 struct shmem_options *ctx = fc->fs_private; 5009 struct inode *inode; 5010 struct shmem_sb_info *sbinfo; 5011 int error = -ENOMEM; 5012 5013 /* Round up to L1_CACHE_BYTES to resist false sharing */ 5014 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 5015 L1_CACHE_BYTES), GFP_KERNEL); 5016 if (!sbinfo) 5017 return error; 5018 5019 sb->s_fs_info = sbinfo; 5020 5021 #ifdef CONFIG_TMPFS 5022 /* 5023 * Per default we only allow half of the physical ram per 5024 * tmpfs instance, limiting inodes to one per page of lowmem; 5025 * but the internal instance is left unlimited. 5026 */ 5027 if (!(sb->s_flags & SB_KERNMOUNT)) { 5028 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 5029 ctx->blocks = shmem_default_max_blocks(); 5030 if (!(ctx->seen & SHMEM_SEEN_INODES)) 5031 ctx->inodes = shmem_default_max_inodes(); 5032 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 5033 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 5034 sbinfo->noswap = ctx->noswap; 5035 } else { 5036 sb->s_flags |= SB_NOUSER; 5037 } 5038 sb->s_export_op = &shmem_export_ops; 5039 sb->s_flags |= SB_NOSEC; 5040 5041 #if IS_ENABLED(CONFIG_UNICODE) 5042 if (!ctx->encoding && ctx->strict_encoding) { 5043 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n"); 5044 error = -EINVAL; 5045 goto failed; 5046 } 5047 5048 if (ctx->encoding) { 5049 sb->s_encoding = ctx->encoding; 5050 set_default_d_op(sb, &shmem_ci_dentry_ops); 5051 if (ctx->strict_encoding) 5052 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL; 5053 } 5054 #endif 5055 5056 #else 5057 sb->s_flags |= SB_NOUSER; 5058 #endif /* CONFIG_TMPFS */ 5059 sb->s_d_flags |= DCACHE_DONTCACHE; 5060 sbinfo->max_blocks = ctx->blocks; 5061 sbinfo->max_inodes = ctx->inodes; 5062 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 5063 if (sb->s_flags & SB_KERNMOUNT) { 5064 sbinfo->ino_batch = alloc_percpu(ino_t); 5065 if (!sbinfo->ino_batch) 5066 goto failed; 5067 } 5068 sbinfo->uid = ctx->uid; 5069 sbinfo->gid = ctx->gid; 5070 sbinfo->full_inums = ctx->full_inums; 5071 sbinfo->mode = ctx->mode; 5072 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5073 if (ctx->seen & SHMEM_SEEN_HUGE) 5074 sbinfo->huge = ctx->huge; 5075 else 5076 sbinfo->huge = tmpfs_huge; 5077 #endif 5078 sbinfo->mpol = ctx->mpol; 5079 ctx->mpol = NULL; 5080 5081 raw_spin_lock_init(&sbinfo->stat_lock); 5082 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 5083 goto failed; 5084 spin_lock_init(&sbinfo->shrinklist_lock); 5085 INIT_LIST_HEAD(&sbinfo->shrinklist); 5086 5087 sb->s_maxbytes = MAX_LFS_FILESIZE; 5088 sb->s_blocksize = PAGE_SIZE; 5089 sb->s_blocksize_bits = PAGE_SHIFT; 5090 sb->s_magic = TMPFS_MAGIC; 5091 sb->s_op = &shmem_ops; 5092 sb->s_time_gran = 1; 5093 #ifdef CONFIG_TMPFS_XATTR 5094 sb->s_xattr = shmem_xattr_handlers; 5095 #endif 5096 #ifdef CONFIG_TMPFS_POSIX_ACL 5097 sb->s_flags |= SB_POSIXACL; 5098 #endif 5099 uuid_t uuid; 5100 uuid_gen(&uuid); 5101 super_set_uuid(sb, uuid.b, sizeof(uuid)); 5102 5103 #ifdef CONFIG_TMPFS_QUOTA 5104 if (ctx->seen & SHMEM_SEEN_QUOTA) { 5105 sb->dq_op = &shmem_quota_operations; 5106 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5107 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 5108 5109 /* Copy the default limits from ctx into sbinfo */ 5110 memcpy(&sbinfo->qlimits, &ctx->qlimits, 5111 sizeof(struct shmem_quota_limits)); 5112 5113 if (shmem_enable_quotas(sb, ctx->quota_types)) 5114 goto failed; 5115 } 5116 #endif /* CONFIG_TMPFS_QUOTA */ 5117 5118 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 5119 S_IFDIR | sbinfo->mode, 0, 5120 mk_vma_flags(VMA_NORESERVE_BIT)); 5121 if (IS_ERR(inode)) { 5122 error = PTR_ERR(inode); 5123 goto failed; 5124 } 5125 inode->i_uid = sbinfo->uid; 5126 inode->i_gid = sbinfo->gid; 5127 sb->s_root = d_make_root(inode); 5128 if (!sb->s_root) 5129 goto failed; 5130 return 0; 5131 5132 failed: 5133 shmem_put_super(sb); 5134 return error; 5135 } 5136 5137 static int shmem_get_tree(struct fs_context *fc) 5138 { 5139 return get_tree_nodev(fc, shmem_fill_super); 5140 } 5141 5142 static void shmem_free_fc(struct fs_context *fc) 5143 { 5144 struct shmem_options *ctx = fc->fs_private; 5145 5146 if (ctx) { 5147 mpol_put(ctx->mpol); 5148 kfree(ctx); 5149 } 5150 } 5151 5152 static const struct fs_context_operations shmem_fs_context_ops = { 5153 .free = shmem_free_fc, 5154 .get_tree = shmem_get_tree, 5155 #ifdef CONFIG_TMPFS 5156 .parse_monolithic = shmem_parse_monolithic, 5157 .parse_param = shmem_parse_one, 5158 .reconfigure = shmem_reconfigure, 5159 #endif 5160 }; 5161 5162 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 5163 5164 static struct inode *shmem_alloc_inode(struct super_block *sb) 5165 { 5166 struct shmem_inode_info *info; 5167 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 5168 if (!info) 5169 return NULL; 5170 return &info->vfs_inode; 5171 } 5172 5173 static void shmem_free_in_core_inode(struct inode *inode) 5174 { 5175 if (S_ISLNK(inode->i_mode)) 5176 kfree(inode->i_link); 5177 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 5178 } 5179 5180 static void shmem_destroy_inode(struct inode *inode) 5181 { 5182 if (S_ISREG(inode->i_mode)) 5183 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 5184 if (S_ISDIR(inode->i_mode)) 5185 simple_offset_destroy(shmem_get_offset_ctx(inode)); 5186 } 5187 5188 static void shmem_init_inode(void *foo) 5189 { 5190 struct shmem_inode_info *info = foo; 5191 inode_init_once(&info->vfs_inode); 5192 } 5193 5194 static void __init shmem_init_inodecache(void) 5195 { 5196 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 5197 sizeof(struct shmem_inode_info), 5198 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 5199 } 5200 5201 static void __init shmem_destroy_inodecache(void) 5202 { 5203 kmem_cache_destroy(shmem_inode_cachep); 5204 } 5205 5206 /* Keep the page in page cache instead of truncating it */ 5207 static int shmem_error_remove_folio(struct address_space *mapping, 5208 struct folio *folio) 5209 { 5210 return 0; 5211 } 5212 5213 static const struct address_space_operations shmem_aops = { 5214 .dirty_folio = noop_dirty_folio, 5215 #ifdef CONFIG_TMPFS 5216 .write_begin = shmem_write_begin, 5217 .write_end = shmem_write_end, 5218 #endif 5219 #ifdef CONFIG_MIGRATION 5220 .migrate_folio = migrate_folio, 5221 #endif 5222 .error_remove_folio = shmem_error_remove_folio, 5223 }; 5224 5225 static const struct file_operations shmem_file_operations = { 5226 .mmap_prepare = shmem_mmap_prepare, 5227 .open = shmem_file_open, 5228 .get_unmapped_area = shmem_get_unmapped_area, 5229 #ifdef CONFIG_TMPFS 5230 .llseek = shmem_file_llseek, 5231 .read_iter = shmem_file_read_iter, 5232 .write_iter = shmem_file_write_iter, 5233 .fsync = noop_fsync, 5234 .splice_read = shmem_file_splice_read, 5235 .splice_write = iter_file_splice_write, 5236 .fallocate = shmem_fallocate, 5237 .setlease = generic_setlease, 5238 #endif 5239 }; 5240 5241 static const struct inode_operations shmem_inode_operations = { 5242 .getattr = shmem_getattr, 5243 .setattr = shmem_setattr, 5244 #ifdef CONFIG_TMPFS_XATTR 5245 .listxattr = shmem_listxattr, 5246 .set_acl = simple_set_acl, 5247 .fileattr_get = shmem_fileattr_get, 5248 .fileattr_set = shmem_fileattr_set, 5249 #endif 5250 }; 5251 5252 static const struct inode_operations shmem_dir_inode_operations = { 5253 #ifdef CONFIG_TMPFS 5254 .getattr = shmem_getattr, 5255 .create = shmem_create, 5256 .lookup = simple_lookup, 5257 .link = shmem_link, 5258 .unlink = shmem_unlink, 5259 .symlink = shmem_symlink, 5260 .mkdir = shmem_mkdir, 5261 .rmdir = shmem_rmdir, 5262 .mknod = shmem_mknod, 5263 .rename = shmem_rename2, 5264 .tmpfile = shmem_tmpfile, 5265 .get_offset_ctx = shmem_get_offset_ctx, 5266 #endif 5267 #ifdef CONFIG_TMPFS_XATTR 5268 .listxattr = shmem_listxattr, 5269 .fileattr_get = shmem_fileattr_get, 5270 .fileattr_set = shmem_fileattr_set, 5271 #endif 5272 #ifdef CONFIG_TMPFS_POSIX_ACL 5273 .setattr = shmem_setattr, 5274 .set_acl = simple_set_acl, 5275 #endif 5276 }; 5277 5278 static const struct inode_operations shmem_special_inode_operations = { 5279 .getattr = shmem_getattr, 5280 #ifdef CONFIG_TMPFS_XATTR 5281 .listxattr = shmem_listxattr, 5282 #endif 5283 #ifdef CONFIG_TMPFS_POSIX_ACL 5284 .setattr = shmem_setattr, 5285 .set_acl = simple_set_acl, 5286 #endif 5287 }; 5288 5289 static const struct super_operations shmem_ops = { 5290 .alloc_inode = shmem_alloc_inode, 5291 .free_inode = shmem_free_in_core_inode, 5292 .destroy_inode = shmem_destroy_inode, 5293 #ifdef CONFIG_TMPFS 5294 .statfs = shmem_statfs, 5295 .show_options = shmem_show_options, 5296 #endif 5297 #ifdef CONFIG_TMPFS_QUOTA 5298 .get_dquots = shmem_get_dquots, 5299 #endif 5300 .evict_inode = shmem_evict_inode, 5301 .drop_inode = inode_just_drop, 5302 .put_super = shmem_put_super, 5303 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5304 .nr_cached_objects = shmem_unused_huge_count, 5305 .free_cached_objects = shmem_unused_huge_scan, 5306 #endif 5307 }; 5308 5309 static const struct vm_operations_struct shmem_vm_ops = { 5310 .fault = shmem_fault, 5311 .map_pages = filemap_map_pages, 5312 #ifdef CONFIG_NUMA 5313 .set_policy = shmem_set_policy, 5314 .get_policy = shmem_get_policy, 5315 #endif 5316 }; 5317 5318 static const struct vm_operations_struct shmem_anon_vm_ops = { 5319 .fault = shmem_fault, 5320 .map_pages = filemap_map_pages, 5321 #ifdef CONFIG_NUMA 5322 .set_policy = shmem_set_policy, 5323 .get_policy = shmem_get_policy, 5324 #endif 5325 }; 5326 5327 int shmem_init_fs_context(struct fs_context *fc) 5328 { 5329 struct shmem_options *ctx; 5330 5331 ctx = kzalloc_obj(struct shmem_options, GFP_KERNEL); 5332 if (!ctx) 5333 return -ENOMEM; 5334 5335 ctx->mode = 0777 | S_ISVTX; 5336 ctx->uid = current_fsuid(); 5337 ctx->gid = current_fsgid(); 5338 5339 #if IS_ENABLED(CONFIG_UNICODE) 5340 ctx->encoding = NULL; 5341 #endif 5342 5343 fc->fs_private = ctx; 5344 fc->ops = &shmem_fs_context_ops; 5345 #ifdef CONFIG_TMPFS 5346 fc->sb_flags |= SB_I_VERSION; 5347 #endif 5348 return 0; 5349 } 5350 5351 static struct file_system_type shmem_fs_type = { 5352 .owner = THIS_MODULE, 5353 .name = "tmpfs", 5354 .init_fs_context = shmem_init_fs_context, 5355 #ifdef CONFIG_TMPFS 5356 .parameters = shmem_fs_parameters, 5357 #endif 5358 .kill_sb = kill_anon_super, 5359 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME, 5360 }; 5361 5362 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5363 5364 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \ 5365 { \ 5366 .attr = { .name = __stringify(_name), .mode = _mode }, \ 5367 .show = _show, \ 5368 .store = _store, \ 5369 } 5370 5371 #define TMPFS_ATTR_W(_name, _store) \ 5372 static struct kobj_attribute tmpfs_attr_##_name = \ 5373 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store) 5374 5375 #define TMPFS_ATTR_RW(_name, _show, _store) \ 5376 static struct kobj_attribute tmpfs_attr_##_name = \ 5377 __INIT_KOBJ_ATTR(_name, 0644, _show, _store) 5378 5379 #define TMPFS_ATTR_RO(_name, _show) \ 5380 static struct kobj_attribute tmpfs_attr_##_name = \ 5381 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL) 5382 5383 #if IS_ENABLED(CONFIG_UNICODE) 5384 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a, 5385 char *buf) 5386 { 5387 return sysfs_emit(buf, "supported\n"); 5388 } 5389 TMPFS_ATTR_RO(casefold, casefold_show); 5390 #endif 5391 5392 static struct attribute *tmpfs_attributes[] = { 5393 #if IS_ENABLED(CONFIG_UNICODE) 5394 &tmpfs_attr_casefold.attr, 5395 #endif 5396 NULL 5397 }; 5398 5399 static const struct attribute_group tmpfs_attribute_group = { 5400 .attrs = tmpfs_attributes, 5401 .name = "features" 5402 }; 5403 5404 static struct kobject *tmpfs_kobj; 5405 5406 static int __init tmpfs_sysfs_init(void) 5407 { 5408 int ret; 5409 5410 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj); 5411 if (!tmpfs_kobj) 5412 return -ENOMEM; 5413 5414 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group); 5415 if (ret) 5416 kobject_put(tmpfs_kobj); 5417 5418 return ret; 5419 } 5420 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */ 5421 5422 void __init shmem_init(void) 5423 { 5424 int error; 5425 5426 shmem_init_inodecache(); 5427 5428 #ifdef CONFIG_TMPFS_QUOTA 5429 register_quota_format(&shmem_quota_format); 5430 #endif 5431 5432 error = register_filesystem(&shmem_fs_type); 5433 if (error) { 5434 pr_err("Could not register tmpfs\n"); 5435 goto out2; 5436 } 5437 5438 shm_mnt = kern_mount(&shmem_fs_type); 5439 if (IS_ERR(shm_mnt)) { 5440 error = PTR_ERR(shm_mnt); 5441 pr_err("Could not kern_mount tmpfs\n"); 5442 goto out1; 5443 } 5444 5445 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5446 error = tmpfs_sysfs_init(); 5447 if (error) { 5448 pr_err("Could not init tmpfs sysfs\n"); 5449 goto out1; 5450 } 5451 #endif 5452 5453 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5454 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 5455 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5456 else 5457 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 5458 5459 /* 5460 * Default to setting PMD-sized THP to inherit the global setting and 5461 * disable all other multi-size THPs. 5462 */ 5463 if (!shmem_orders_configured) 5464 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER); 5465 #endif 5466 return; 5467 5468 out1: 5469 unregister_filesystem(&shmem_fs_type); 5470 out2: 5471 #ifdef CONFIG_TMPFS_QUOTA 5472 unregister_quota_format(&shmem_quota_format); 5473 #endif 5474 shmem_destroy_inodecache(); 5475 shm_mnt = ERR_PTR(error); 5476 } 5477 5478 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 5479 static ssize_t shmem_enabled_show(struct kobject *kobj, 5480 struct kobj_attribute *attr, char *buf) 5481 { 5482 static const int values[] = { 5483 SHMEM_HUGE_ALWAYS, 5484 SHMEM_HUGE_WITHIN_SIZE, 5485 SHMEM_HUGE_ADVISE, 5486 SHMEM_HUGE_NEVER, 5487 SHMEM_HUGE_DENY, 5488 SHMEM_HUGE_FORCE, 5489 }; 5490 int len = 0; 5491 int i; 5492 5493 for (i = 0; i < ARRAY_SIZE(values); i++) { 5494 len += sysfs_emit_at(buf, len, 5495 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 5496 i ? " " : "", shmem_format_huge(values[i])); 5497 } 5498 len += sysfs_emit_at(buf, len, "\n"); 5499 5500 return len; 5501 } 5502 5503 static ssize_t shmem_enabled_store(struct kobject *kobj, 5504 struct kobj_attribute *attr, const char *buf, size_t count) 5505 { 5506 char tmp[16]; 5507 int huge, err; 5508 5509 if (count + 1 > sizeof(tmp)) 5510 return -EINVAL; 5511 memcpy(tmp, buf, count); 5512 tmp[count] = '\0'; 5513 if (count && tmp[count - 1] == '\n') 5514 tmp[count - 1] = '\0'; 5515 5516 huge = shmem_parse_huge(tmp); 5517 if (huge == -EINVAL) 5518 return huge; 5519 5520 shmem_huge = huge; 5521 if (shmem_huge > SHMEM_HUGE_DENY) 5522 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5523 5524 err = start_stop_khugepaged(); 5525 return err ? err : count; 5526 } 5527 5528 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 5529 static DEFINE_SPINLOCK(huge_shmem_orders_lock); 5530 5531 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj, 5532 struct kobj_attribute *attr, char *buf) 5533 { 5534 int order = to_thpsize(kobj)->order; 5535 const char *output; 5536 5537 if (test_bit(order, &huge_shmem_orders_always)) 5538 output = "[always] inherit within_size advise never"; 5539 else if (test_bit(order, &huge_shmem_orders_inherit)) 5540 output = "always [inherit] within_size advise never"; 5541 else if (test_bit(order, &huge_shmem_orders_within_size)) 5542 output = "always inherit [within_size] advise never"; 5543 else if (test_bit(order, &huge_shmem_orders_madvise)) 5544 output = "always inherit within_size [advise] never"; 5545 else 5546 output = "always inherit within_size advise [never]"; 5547 5548 return sysfs_emit(buf, "%s\n", output); 5549 } 5550 5551 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj, 5552 struct kobj_attribute *attr, 5553 const char *buf, size_t count) 5554 { 5555 int order = to_thpsize(kobj)->order; 5556 ssize_t ret = count; 5557 5558 if (sysfs_streq(buf, "always")) { 5559 spin_lock(&huge_shmem_orders_lock); 5560 clear_bit(order, &huge_shmem_orders_inherit); 5561 clear_bit(order, &huge_shmem_orders_madvise); 5562 clear_bit(order, &huge_shmem_orders_within_size); 5563 set_bit(order, &huge_shmem_orders_always); 5564 spin_unlock(&huge_shmem_orders_lock); 5565 } else if (sysfs_streq(buf, "inherit")) { 5566 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5567 if (shmem_huge == SHMEM_HUGE_FORCE && 5568 order != HPAGE_PMD_ORDER) 5569 return -EINVAL; 5570 5571 spin_lock(&huge_shmem_orders_lock); 5572 clear_bit(order, &huge_shmem_orders_always); 5573 clear_bit(order, &huge_shmem_orders_madvise); 5574 clear_bit(order, &huge_shmem_orders_within_size); 5575 set_bit(order, &huge_shmem_orders_inherit); 5576 spin_unlock(&huge_shmem_orders_lock); 5577 } else if (sysfs_streq(buf, "within_size")) { 5578 spin_lock(&huge_shmem_orders_lock); 5579 clear_bit(order, &huge_shmem_orders_always); 5580 clear_bit(order, &huge_shmem_orders_inherit); 5581 clear_bit(order, &huge_shmem_orders_madvise); 5582 set_bit(order, &huge_shmem_orders_within_size); 5583 spin_unlock(&huge_shmem_orders_lock); 5584 } else if (sysfs_streq(buf, "advise")) { 5585 spin_lock(&huge_shmem_orders_lock); 5586 clear_bit(order, &huge_shmem_orders_always); 5587 clear_bit(order, &huge_shmem_orders_inherit); 5588 clear_bit(order, &huge_shmem_orders_within_size); 5589 set_bit(order, &huge_shmem_orders_madvise); 5590 spin_unlock(&huge_shmem_orders_lock); 5591 } else if (sysfs_streq(buf, "never")) { 5592 spin_lock(&huge_shmem_orders_lock); 5593 clear_bit(order, &huge_shmem_orders_always); 5594 clear_bit(order, &huge_shmem_orders_inherit); 5595 clear_bit(order, &huge_shmem_orders_within_size); 5596 clear_bit(order, &huge_shmem_orders_madvise); 5597 spin_unlock(&huge_shmem_orders_lock); 5598 } else { 5599 ret = -EINVAL; 5600 } 5601 5602 if (ret > 0) { 5603 int err = start_stop_khugepaged(); 5604 5605 if (err) 5606 ret = err; 5607 } 5608 return ret; 5609 } 5610 5611 struct kobj_attribute thpsize_shmem_enabled_attr = 5612 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store); 5613 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 5614 5615 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 5616 5617 static int __init setup_transparent_hugepage_shmem(char *str) 5618 { 5619 int huge; 5620 5621 huge = shmem_parse_huge(str); 5622 if (huge == -EINVAL) { 5623 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n"); 5624 return huge; 5625 } 5626 5627 shmem_huge = huge; 5628 return 1; 5629 } 5630 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem); 5631 5632 static int __init setup_transparent_hugepage_tmpfs(char *str) 5633 { 5634 int huge; 5635 5636 huge = shmem_parse_huge(str); 5637 if (huge < 0) { 5638 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n"); 5639 return huge; 5640 } 5641 5642 tmpfs_huge = huge; 5643 return 1; 5644 } 5645 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs); 5646 5647 static char str_dup[PAGE_SIZE] __initdata; 5648 static int __init setup_thp_shmem(char *str) 5649 { 5650 char *token, *range, *policy, *subtoken; 5651 unsigned long always, inherit, madvise, within_size; 5652 char *start_size, *end_size; 5653 int start, end, nr; 5654 char *p; 5655 5656 if (!str || strlen(str) + 1 > PAGE_SIZE) 5657 goto err; 5658 strscpy(str_dup, str); 5659 5660 always = huge_shmem_orders_always; 5661 inherit = huge_shmem_orders_inherit; 5662 madvise = huge_shmem_orders_madvise; 5663 within_size = huge_shmem_orders_within_size; 5664 p = str_dup; 5665 while ((token = strsep(&p, ";")) != NULL) { 5666 range = strsep(&token, ":"); 5667 policy = token; 5668 5669 if (!policy) 5670 goto err; 5671 5672 while ((subtoken = strsep(&range, ",")) != NULL) { 5673 if (strchr(subtoken, '-')) { 5674 start_size = strsep(&subtoken, "-"); 5675 end_size = subtoken; 5676 5677 start = get_order_from_str(start_size, 5678 THP_ORDERS_ALL_FILE_DEFAULT); 5679 end = get_order_from_str(end_size, 5680 THP_ORDERS_ALL_FILE_DEFAULT); 5681 } else { 5682 start_size = end_size = subtoken; 5683 start = end = get_order_from_str(subtoken, 5684 THP_ORDERS_ALL_FILE_DEFAULT); 5685 } 5686 5687 if (start < 0) { 5688 pr_err("invalid size %s in thp_shmem boot parameter\n", 5689 start_size); 5690 goto err; 5691 } 5692 5693 if (end < 0) { 5694 pr_err("invalid size %s in thp_shmem boot parameter\n", 5695 end_size); 5696 goto err; 5697 } 5698 5699 if (start > end) 5700 goto err; 5701 5702 nr = end - start + 1; 5703 if (!strcmp(policy, "always")) { 5704 bitmap_set(&always, start, nr); 5705 bitmap_clear(&inherit, start, nr); 5706 bitmap_clear(&madvise, start, nr); 5707 bitmap_clear(&within_size, start, nr); 5708 } else if (!strcmp(policy, "advise")) { 5709 bitmap_set(&madvise, start, nr); 5710 bitmap_clear(&inherit, start, nr); 5711 bitmap_clear(&always, start, nr); 5712 bitmap_clear(&within_size, start, nr); 5713 } else if (!strcmp(policy, "inherit")) { 5714 bitmap_set(&inherit, start, nr); 5715 bitmap_clear(&madvise, start, nr); 5716 bitmap_clear(&always, start, nr); 5717 bitmap_clear(&within_size, start, nr); 5718 } else if (!strcmp(policy, "within_size")) { 5719 bitmap_set(&within_size, start, nr); 5720 bitmap_clear(&inherit, start, nr); 5721 bitmap_clear(&madvise, start, nr); 5722 bitmap_clear(&always, start, nr); 5723 } else if (!strcmp(policy, "never")) { 5724 bitmap_clear(&inherit, start, nr); 5725 bitmap_clear(&madvise, start, nr); 5726 bitmap_clear(&always, start, nr); 5727 bitmap_clear(&within_size, start, nr); 5728 } else { 5729 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy); 5730 goto err; 5731 } 5732 } 5733 } 5734 5735 huge_shmem_orders_always = always; 5736 huge_shmem_orders_madvise = madvise; 5737 huge_shmem_orders_inherit = inherit; 5738 huge_shmem_orders_within_size = within_size; 5739 shmem_orders_configured = true; 5740 return 1; 5741 5742 err: 5743 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str); 5744 return 0; 5745 } 5746 __setup("thp_shmem=", setup_thp_shmem); 5747 5748 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5749 5750 #else /* !CONFIG_SHMEM */ 5751 5752 /* 5753 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 5754 * 5755 * This is intended for small system where the benefits of the full 5756 * shmem code (swap-backed and resource-limited) are outweighed by 5757 * their complexity. On systems without swap this code should be 5758 * effectively equivalent, but much lighter weight. 5759 */ 5760 5761 static struct file_system_type shmem_fs_type = { 5762 .name = "tmpfs", 5763 .init_fs_context = ramfs_init_fs_context, 5764 .parameters = ramfs_fs_parameters, 5765 .kill_sb = ramfs_kill_sb, 5766 .fs_flags = FS_USERNS_MOUNT, 5767 }; 5768 5769 void __init shmem_init(void) 5770 { 5771 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 5772 5773 shm_mnt = kern_mount(&shmem_fs_type); 5774 BUG_ON(IS_ERR(shm_mnt)); 5775 } 5776 5777 int shmem_unuse(unsigned int type) 5778 { 5779 return 0; 5780 } 5781 5782 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 5783 { 5784 return 0; 5785 } 5786 5787 void shmem_unlock_mapping(struct address_space *mapping) 5788 { 5789 } 5790 5791 #ifdef CONFIG_MMU 5792 unsigned long shmem_get_unmapped_area(struct file *file, 5793 unsigned long addr, unsigned long len, 5794 unsigned long pgoff, unsigned long flags) 5795 { 5796 return mm_get_unmapped_area(file, addr, len, pgoff, flags); 5797 } 5798 #endif 5799 5800 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend) 5801 { 5802 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 5803 } 5804 EXPORT_SYMBOL_GPL(shmem_truncate_range); 5805 5806 #define shmem_vm_ops generic_file_vm_ops 5807 #define shmem_anon_vm_ops generic_file_vm_ops 5808 #define shmem_file_operations ramfs_file_operations 5809 5810 static inline int shmem_acct_size(unsigned long flags, loff_t size) 5811 { 5812 return 0; 5813 } 5814 5815 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 5816 { 5817 } 5818 5819 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 5820 struct super_block *sb, struct inode *dir, 5821 umode_t mode, dev_t dev, vma_flags_t flags) 5822 { 5823 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 5824 return inode ? inode : ERR_PTR(-ENOSPC); 5825 } 5826 5827 #endif /* CONFIG_SHMEM */ 5828 5829 /* common code */ 5830 5831 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 5832 loff_t size, vma_flags_t flags, 5833 unsigned int i_flags) 5834 { 5835 const unsigned long shmem_flags = 5836 vma_flags_test(&flags, VMA_NORESERVE_BIT) ? SHMEM_F_NORESERVE : 0; 5837 struct inode *inode; 5838 struct file *res; 5839 5840 if (IS_ERR(mnt)) 5841 return ERR_CAST(mnt); 5842 5843 if (size < 0 || size > MAX_LFS_FILESIZE) 5844 return ERR_PTR(-EINVAL); 5845 5846 if (is_idmapped_mnt(mnt)) 5847 return ERR_PTR(-EINVAL); 5848 5849 if (shmem_acct_size(shmem_flags, size)) 5850 return ERR_PTR(-ENOMEM); 5851 5852 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 5853 S_IFREG | S_IRWXUGO, 0, flags); 5854 if (IS_ERR(inode)) { 5855 shmem_unacct_size(shmem_flags, size); 5856 return ERR_CAST(inode); 5857 } 5858 inode->i_flags |= i_flags; 5859 inode->i_size = size; 5860 clear_nlink(inode); /* It is unlinked */ 5861 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 5862 if (!IS_ERR(res)) 5863 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 5864 &shmem_file_operations); 5865 if (IS_ERR(res)) 5866 iput(inode); 5867 return res; 5868 } 5869 5870 /** 5871 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 5872 * kernel internal. There will be NO LSM permission checks against the 5873 * underlying inode. So users of this interface must do LSM checks at a 5874 * higher layer. The users are the big_key and shm implementations. LSM 5875 * checks are provided at the key or shm level rather than the inode. 5876 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5877 * @size: size to be set for the file 5878 * @flags: VMA_NORESERVE_BIT suppresses pre-accounting of the entire object size 5879 */ 5880 struct file *shmem_kernel_file_setup(const char *name, loff_t size, 5881 vma_flags_t flags) 5882 { 5883 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 5884 } 5885 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 5886 5887 /** 5888 * shmem_file_setup - get an unlinked file living in tmpfs 5889 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5890 * @size: size to be set for the file 5891 * @flags: VMA_NORESERVE_BIT suppresses pre-accounting of the entire object size 5892 */ 5893 struct file *shmem_file_setup(const char *name, loff_t size, vma_flags_t flags) 5894 { 5895 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 5896 } 5897 EXPORT_SYMBOL_GPL(shmem_file_setup); 5898 5899 /** 5900 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 5901 * @mnt: the tmpfs mount where the file will be created 5902 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5903 * @size: size to be set for the file 5904 * @flags: VMA_NORESERVE_BIT suppresses pre-accounting of the entire object size 5905 */ 5906 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 5907 loff_t size, vma_flags_t flags) 5908 { 5909 return __shmem_file_setup(mnt, name, size, flags, 0); 5910 } 5911 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 5912 5913 static struct file *__shmem_zero_setup(unsigned long start, unsigned long end, 5914 vma_flags_t flags) 5915 { 5916 loff_t size = end - start; 5917 5918 /* 5919 * Cloning a new file under mmap_lock leads to a lock ordering conflict 5920 * between XFS directory reading and selinux: since this file is only 5921 * accessible to the user through its mapping, use S_PRIVATE flag to 5922 * bypass file security, in the same way as shmem_kernel_file_setup(). 5923 */ 5924 return shmem_kernel_file_setup("dev/zero", size, flags); 5925 } 5926 5927 /** 5928 * shmem_zero_setup - setup a shared anonymous mapping 5929 * @vma: the vma to be mmapped is prepared by do_mmap 5930 * Returns: 0 on success, or error 5931 */ 5932 int shmem_zero_setup(struct vm_area_struct *vma) 5933 { 5934 struct file *file = __shmem_zero_setup(vma->vm_start, vma->vm_end, vma->flags); 5935 5936 if (IS_ERR(file)) 5937 return PTR_ERR(file); 5938 5939 if (vma->vm_file) 5940 fput(vma->vm_file); 5941 vma->vm_file = file; 5942 vma->vm_ops = &shmem_anon_vm_ops; 5943 5944 return 0; 5945 } 5946 5947 /** 5948 * shmem_zero_setup_desc - same as shmem_zero_setup, but determined by VMA 5949 * descriptor for convenience. 5950 * @desc: Describes VMA 5951 * Returns: 0 on success, or error 5952 */ 5953 int shmem_zero_setup_desc(struct vm_area_desc *desc) 5954 { 5955 struct file *file = __shmem_zero_setup(desc->start, desc->end, desc->vma_flags); 5956 5957 if (IS_ERR(file)) 5958 return PTR_ERR(file); 5959 5960 desc->vm_file = file; 5961 desc->vm_ops = &shmem_anon_vm_ops; 5962 5963 return 0; 5964 } 5965 5966 /** 5967 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 5968 * @mapping: the folio's address_space 5969 * @index: the folio index 5970 * @gfp: the page allocator flags to use if allocating 5971 * 5972 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 5973 * with any new page allocations done using the specified allocation flags. 5974 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 5975 * suit tmpfs, since it may have pages in swapcache, and needs to find those 5976 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 5977 * 5978 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 5979 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 5980 */ 5981 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 5982 pgoff_t index, gfp_t gfp) 5983 { 5984 #ifdef CONFIG_SHMEM 5985 struct inode *inode = mapping->host; 5986 struct folio *folio; 5987 int error; 5988 5989 error = shmem_get_folio_gfp(inode, index, i_size_read(inode), 5990 &folio, SGP_CACHE, gfp, NULL, NULL); 5991 if (error) 5992 return ERR_PTR(error); 5993 5994 folio_unlock(folio); 5995 return folio; 5996 #else 5997 /* 5998 * The tiny !SHMEM case uses ramfs without swap 5999 */ 6000 return mapping_read_folio_gfp(mapping, index, gfp); 6001 #endif 6002 } 6003 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 6004 6005 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 6006 pgoff_t index, gfp_t gfp) 6007 { 6008 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 6009 struct page *page; 6010 6011 if (IS_ERR(folio)) 6012 return &folio->page; 6013 6014 page = folio_file_page(folio, index); 6015 if (PageHWPoison(page)) { 6016 folio_put(folio); 6017 return ERR_PTR(-EIO); 6018 } 6019 6020 return page; 6021 } 6022 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 6023