xref: /linux/mm/shmem.c (revision 68c402fe5c5e5aa9a04c8bba9d99feb08a68afa7)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44 
45 static struct vfsmount *shm_mnt __ro_after_init;
46 
47 #ifdef CONFIG_SHMEM
48 /*
49  * This virtual memory filesystem is heavily based on the ramfs. It
50  * extends ramfs by the ability to use swap and honor resource limits
51  * which makes it a completely usable filesystem.
52  */
53 
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 #include <linux/quotaops.h>
82 #include <linux/rcupdate_wait.h>
83 
84 #include <linux/uaccess.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Pretend that one inode + its dentry occupy this much memory */
95 #define BOGO_INODE_SIZE 1024
96 
97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98 #define SHORT_SYMLINK_LEN 128
99 
100 /*
101  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
102  * inode->i_private (with i_rwsem making sure that it has only one user at
103  * a time): we would prefer not to enlarge the shmem inode just for that.
104  */
105 struct shmem_falloc {
106 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 	pgoff_t start;		/* start of range currently being fallocated */
108 	pgoff_t next;		/* the next page offset to be fallocated */
109 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
110 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
111 };
112 
113 struct shmem_options {
114 	unsigned long long blocks;
115 	unsigned long long inodes;
116 	struct mempolicy *mpol;
117 	kuid_t uid;
118 	kgid_t gid;
119 	umode_t mode;
120 	bool full_inums;
121 	int huge;
122 	int seen;
123 	bool noswap;
124 	unsigned short quota_types;
125 	struct shmem_quota_limits qlimits;
126 #define SHMEM_SEEN_BLOCKS 1
127 #define SHMEM_SEEN_INODES 2
128 #define SHMEM_SEEN_HUGE 4
129 #define SHMEM_SEEN_INUMS 8
130 #define SHMEM_SEEN_NOSWAP 16
131 #define SHMEM_SEEN_QUOTA 32
132 };
133 
134 #ifdef CONFIG_TMPFS
135 static unsigned long shmem_default_max_blocks(void)
136 {
137 	return totalram_pages() / 2;
138 }
139 
140 static unsigned long shmem_default_max_inodes(void)
141 {
142 	unsigned long nr_pages = totalram_pages();
143 
144 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
145 			ULONG_MAX / BOGO_INODE_SIZE);
146 }
147 #endif
148 
149 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
150 			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
151 			struct mm_struct *fault_mm, vm_fault_t *fault_type);
152 
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 	return sb->s_fs_info;
156 }
157 
158 /*
159  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160  * for shared memory and for shared anonymous (/dev/zero) mappings
161  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162  * consistent with the pre-accounting of private mappings ...
163  */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 	return (flags & VM_NORESERVE) ?
167 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169 
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 	if (!(flags & VM_NORESERVE))
173 		vm_unacct_memory(VM_ACCT(size));
174 }
175 
176 static inline int shmem_reacct_size(unsigned long flags,
177 		loff_t oldsize, loff_t newsize)
178 {
179 	if (!(flags & VM_NORESERVE)) {
180 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 			return security_vm_enough_memory_mm(current->mm,
182 					VM_ACCT(newsize) - VM_ACCT(oldsize));
183 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 	}
186 	return 0;
187 }
188 
189 /*
190  * ... whereas tmpfs objects are accounted incrementally as
191  * pages are allocated, in order to allow large sparse files.
192  * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
193  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194  */
195 static inline int shmem_acct_blocks(unsigned long flags, long pages)
196 {
197 	if (!(flags & VM_NORESERVE))
198 		return 0;
199 
200 	return security_vm_enough_memory_mm(current->mm,
201 			pages * VM_ACCT(PAGE_SIZE));
202 }
203 
204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206 	if (flags & VM_NORESERVE)
207 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
211 {
212 	struct shmem_inode_info *info = SHMEM_I(inode);
213 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 	int err = -ENOSPC;
215 
216 	if (shmem_acct_blocks(info->flags, pages))
217 		return err;
218 
219 	might_sleep();	/* when quotas */
220 	if (sbinfo->max_blocks) {
221 		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
222 						sbinfo->max_blocks, pages))
223 			goto unacct;
224 
225 		err = dquot_alloc_block_nodirty(inode, pages);
226 		if (err) {
227 			percpu_counter_sub(&sbinfo->used_blocks, pages);
228 			goto unacct;
229 		}
230 	} else {
231 		err = dquot_alloc_block_nodirty(inode, pages);
232 		if (err)
233 			goto unacct;
234 	}
235 
236 	return 0;
237 
238 unacct:
239 	shmem_unacct_blocks(info->flags, pages);
240 	return err;
241 }
242 
243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
244 {
245 	struct shmem_inode_info *info = SHMEM_I(inode);
246 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247 
248 	might_sleep();	/* when quotas */
249 	dquot_free_block_nodirty(inode, pages);
250 
251 	if (sbinfo->max_blocks)
252 		percpu_counter_sub(&sbinfo->used_blocks, pages);
253 	shmem_unacct_blocks(info->flags, pages);
254 }
255 
256 static const struct super_operations shmem_ops;
257 static const struct address_space_operations shmem_aops;
258 static const struct file_operations shmem_file_operations;
259 static const struct inode_operations shmem_inode_operations;
260 static const struct inode_operations shmem_dir_inode_operations;
261 static const struct inode_operations shmem_special_inode_operations;
262 static const struct vm_operations_struct shmem_vm_ops;
263 static const struct vm_operations_struct shmem_anon_vm_ops;
264 static struct file_system_type shmem_fs_type;
265 
266 bool shmem_mapping(struct address_space *mapping)
267 {
268 	return mapping->a_ops == &shmem_aops;
269 }
270 EXPORT_SYMBOL_GPL(shmem_mapping);
271 
272 bool vma_is_anon_shmem(struct vm_area_struct *vma)
273 {
274 	return vma->vm_ops == &shmem_anon_vm_ops;
275 }
276 
277 bool vma_is_shmem(struct vm_area_struct *vma)
278 {
279 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
280 }
281 
282 static LIST_HEAD(shmem_swaplist);
283 static DEFINE_MUTEX(shmem_swaplist_mutex);
284 
285 #ifdef CONFIG_TMPFS_QUOTA
286 
287 static int shmem_enable_quotas(struct super_block *sb,
288 			       unsigned short quota_types)
289 {
290 	int type, err = 0;
291 
292 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
293 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
294 		if (!(quota_types & (1 << type)))
295 			continue;
296 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
297 					  DQUOT_USAGE_ENABLED |
298 					  DQUOT_LIMITS_ENABLED);
299 		if (err)
300 			goto out_err;
301 	}
302 	return 0;
303 
304 out_err:
305 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
306 		type, err);
307 	for (type--; type >= 0; type--)
308 		dquot_quota_off(sb, type);
309 	return err;
310 }
311 
312 static void shmem_disable_quotas(struct super_block *sb)
313 {
314 	int type;
315 
316 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
317 		dquot_quota_off(sb, type);
318 }
319 
320 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
321 {
322 	return SHMEM_I(inode)->i_dquot;
323 }
324 #endif /* CONFIG_TMPFS_QUOTA */
325 
326 /*
327  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
328  * produces a novel ino for the newly allocated inode.
329  *
330  * It may also be called when making a hard link to permit the space needed by
331  * each dentry. However, in that case, no new inode number is needed since that
332  * internally draws from another pool of inode numbers (currently global
333  * get_next_ino()). This case is indicated by passing NULL as inop.
334  */
335 #define SHMEM_INO_BATCH 1024
336 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
337 {
338 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339 	ino_t ino;
340 
341 	if (!(sb->s_flags & SB_KERNMOUNT)) {
342 		raw_spin_lock(&sbinfo->stat_lock);
343 		if (sbinfo->max_inodes) {
344 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
345 				raw_spin_unlock(&sbinfo->stat_lock);
346 				return -ENOSPC;
347 			}
348 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
349 		}
350 		if (inop) {
351 			ino = sbinfo->next_ino++;
352 			if (unlikely(is_zero_ino(ino)))
353 				ino = sbinfo->next_ino++;
354 			if (unlikely(!sbinfo->full_inums &&
355 				     ino > UINT_MAX)) {
356 				/*
357 				 * Emulate get_next_ino uint wraparound for
358 				 * compatibility
359 				 */
360 				if (IS_ENABLED(CONFIG_64BIT))
361 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
362 						__func__, MINOR(sb->s_dev));
363 				sbinfo->next_ino = 1;
364 				ino = sbinfo->next_ino++;
365 			}
366 			*inop = ino;
367 		}
368 		raw_spin_unlock(&sbinfo->stat_lock);
369 	} else if (inop) {
370 		/*
371 		 * __shmem_file_setup, one of our callers, is lock-free: it
372 		 * doesn't hold stat_lock in shmem_reserve_inode since
373 		 * max_inodes is always 0, and is called from potentially
374 		 * unknown contexts. As such, use a per-cpu batched allocator
375 		 * which doesn't require the per-sb stat_lock unless we are at
376 		 * the batch boundary.
377 		 *
378 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
379 		 * shmem mounts are not exposed to userspace, so we don't need
380 		 * to worry about things like glibc compatibility.
381 		 */
382 		ino_t *next_ino;
383 
384 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
385 		ino = *next_ino;
386 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
387 			raw_spin_lock(&sbinfo->stat_lock);
388 			ino = sbinfo->next_ino;
389 			sbinfo->next_ino += SHMEM_INO_BATCH;
390 			raw_spin_unlock(&sbinfo->stat_lock);
391 			if (unlikely(is_zero_ino(ino)))
392 				ino++;
393 		}
394 		*inop = ino;
395 		*next_ino = ++ino;
396 		put_cpu();
397 	}
398 
399 	return 0;
400 }
401 
402 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
403 {
404 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
405 	if (sbinfo->max_inodes) {
406 		raw_spin_lock(&sbinfo->stat_lock);
407 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
408 		raw_spin_unlock(&sbinfo->stat_lock);
409 	}
410 }
411 
412 /**
413  * shmem_recalc_inode - recalculate the block usage of an inode
414  * @inode: inode to recalc
415  * @alloced: the change in number of pages allocated to inode
416  * @swapped: the change in number of pages swapped from inode
417  *
418  * We have to calculate the free blocks since the mm can drop
419  * undirtied hole pages behind our back.
420  *
421  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
422  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
423  */
424 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
425 {
426 	struct shmem_inode_info *info = SHMEM_I(inode);
427 	long freed;
428 
429 	spin_lock(&info->lock);
430 	info->alloced += alloced;
431 	info->swapped += swapped;
432 	freed = info->alloced - info->swapped -
433 		READ_ONCE(inode->i_mapping->nrpages);
434 	/*
435 	 * Special case: whereas normally shmem_recalc_inode() is called
436 	 * after i_mapping->nrpages has already been adjusted (up or down),
437 	 * shmem_writepage() has to raise swapped before nrpages is lowered -
438 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
439 	 * been freed.  Compensate here, to avoid the need for a followup call.
440 	 */
441 	if (swapped > 0)
442 		freed += swapped;
443 	if (freed > 0)
444 		info->alloced -= freed;
445 	spin_unlock(&info->lock);
446 
447 	/* The quota case may block */
448 	if (freed > 0)
449 		shmem_inode_unacct_blocks(inode, freed);
450 }
451 
452 bool shmem_charge(struct inode *inode, long pages)
453 {
454 	struct address_space *mapping = inode->i_mapping;
455 
456 	if (shmem_inode_acct_blocks(inode, pages))
457 		return false;
458 
459 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
460 	xa_lock_irq(&mapping->i_pages);
461 	mapping->nrpages += pages;
462 	xa_unlock_irq(&mapping->i_pages);
463 
464 	shmem_recalc_inode(inode, pages, 0);
465 	return true;
466 }
467 
468 void shmem_uncharge(struct inode *inode, long pages)
469 {
470 	/* pages argument is currently unused: keep it to help debugging */
471 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
472 
473 	shmem_recalc_inode(inode, 0, 0);
474 }
475 
476 /*
477  * Replace item expected in xarray by a new item, while holding xa_lock.
478  */
479 static int shmem_replace_entry(struct address_space *mapping,
480 			pgoff_t index, void *expected, void *replacement)
481 {
482 	XA_STATE(xas, &mapping->i_pages, index);
483 	void *item;
484 
485 	VM_BUG_ON(!expected);
486 	VM_BUG_ON(!replacement);
487 	item = xas_load(&xas);
488 	if (item != expected)
489 		return -ENOENT;
490 	xas_store(&xas, replacement);
491 	return 0;
492 }
493 
494 /*
495  * Sometimes, before we decide whether to proceed or to fail, we must check
496  * that an entry was not already brought back from swap by a racing thread.
497  *
498  * Checking page is not enough: by the time a SwapCache page is locked, it
499  * might be reused, and again be SwapCache, using the same swap as before.
500  */
501 static bool shmem_confirm_swap(struct address_space *mapping,
502 			       pgoff_t index, swp_entry_t swap)
503 {
504 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
505 }
506 
507 /*
508  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
509  *
510  * SHMEM_HUGE_NEVER:
511  *	disables huge pages for the mount;
512  * SHMEM_HUGE_ALWAYS:
513  *	enables huge pages for the mount;
514  * SHMEM_HUGE_WITHIN_SIZE:
515  *	only allocate huge pages if the page will be fully within i_size,
516  *	also respect fadvise()/madvise() hints;
517  * SHMEM_HUGE_ADVISE:
518  *	only allocate huge pages if requested with fadvise()/madvise();
519  */
520 
521 #define SHMEM_HUGE_NEVER	0
522 #define SHMEM_HUGE_ALWAYS	1
523 #define SHMEM_HUGE_WITHIN_SIZE	2
524 #define SHMEM_HUGE_ADVISE	3
525 
526 /*
527  * Special values.
528  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
529  *
530  * SHMEM_HUGE_DENY:
531  *	disables huge on shm_mnt and all mounts, for emergency use;
532  * SHMEM_HUGE_FORCE:
533  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
534  *
535  */
536 #define SHMEM_HUGE_DENY		(-1)
537 #define SHMEM_HUGE_FORCE	(-2)
538 
539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
540 /* ifdef here to avoid bloating shmem.o when not necessary */
541 
542 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
543 
544 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
545 		   struct mm_struct *mm, unsigned long vm_flags)
546 {
547 	loff_t i_size;
548 
549 	if (!S_ISREG(inode->i_mode))
550 		return false;
551 	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
552 		return false;
553 	if (shmem_huge == SHMEM_HUGE_DENY)
554 		return false;
555 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
556 		return true;
557 
558 	switch (SHMEM_SB(inode->i_sb)->huge) {
559 	case SHMEM_HUGE_ALWAYS:
560 		return true;
561 	case SHMEM_HUGE_WITHIN_SIZE:
562 		index = round_up(index + 1, HPAGE_PMD_NR);
563 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
564 		if (i_size >> PAGE_SHIFT >= index)
565 			return true;
566 		fallthrough;
567 	case SHMEM_HUGE_ADVISE:
568 		if (mm && (vm_flags & VM_HUGEPAGE))
569 			return true;
570 		fallthrough;
571 	default:
572 		return false;
573 	}
574 }
575 
576 #if defined(CONFIG_SYSFS)
577 static int shmem_parse_huge(const char *str)
578 {
579 	if (!strcmp(str, "never"))
580 		return SHMEM_HUGE_NEVER;
581 	if (!strcmp(str, "always"))
582 		return SHMEM_HUGE_ALWAYS;
583 	if (!strcmp(str, "within_size"))
584 		return SHMEM_HUGE_WITHIN_SIZE;
585 	if (!strcmp(str, "advise"))
586 		return SHMEM_HUGE_ADVISE;
587 	if (!strcmp(str, "deny"))
588 		return SHMEM_HUGE_DENY;
589 	if (!strcmp(str, "force"))
590 		return SHMEM_HUGE_FORCE;
591 	return -EINVAL;
592 }
593 #endif
594 
595 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
596 static const char *shmem_format_huge(int huge)
597 {
598 	switch (huge) {
599 	case SHMEM_HUGE_NEVER:
600 		return "never";
601 	case SHMEM_HUGE_ALWAYS:
602 		return "always";
603 	case SHMEM_HUGE_WITHIN_SIZE:
604 		return "within_size";
605 	case SHMEM_HUGE_ADVISE:
606 		return "advise";
607 	case SHMEM_HUGE_DENY:
608 		return "deny";
609 	case SHMEM_HUGE_FORCE:
610 		return "force";
611 	default:
612 		VM_BUG_ON(1);
613 		return "bad_val";
614 	}
615 }
616 #endif
617 
618 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
619 		struct shrink_control *sc, unsigned long nr_to_split)
620 {
621 	LIST_HEAD(list), *pos, *next;
622 	LIST_HEAD(to_remove);
623 	struct inode *inode;
624 	struct shmem_inode_info *info;
625 	struct folio *folio;
626 	unsigned long batch = sc ? sc->nr_to_scan : 128;
627 	int split = 0;
628 
629 	if (list_empty(&sbinfo->shrinklist))
630 		return SHRINK_STOP;
631 
632 	spin_lock(&sbinfo->shrinklist_lock);
633 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
634 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
635 
636 		/* pin the inode */
637 		inode = igrab(&info->vfs_inode);
638 
639 		/* inode is about to be evicted */
640 		if (!inode) {
641 			list_del_init(&info->shrinklist);
642 			goto next;
643 		}
644 
645 		/* Check if there's anything to gain */
646 		if (round_up(inode->i_size, PAGE_SIZE) ==
647 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
648 			list_move(&info->shrinklist, &to_remove);
649 			goto next;
650 		}
651 
652 		list_move(&info->shrinklist, &list);
653 next:
654 		sbinfo->shrinklist_len--;
655 		if (!--batch)
656 			break;
657 	}
658 	spin_unlock(&sbinfo->shrinklist_lock);
659 
660 	list_for_each_safe(pos, next, &to_remove) {
661 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
662 		inode = &info->vfs_inode;
663 		list_del_init(&info->shrinklist);
664 		iput(inode);
665 	}
666 
667 	list_for_each_safe(pos, next, &list) {
668 		int ret;
669 		pgoff_t index;
670 
671 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
672 		inode = &info->vfs_inode;
673 
674 		if (nr_to_split && split >= nr_to_split)
675 			goto move_back;
676 
677 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
678 		folio = filemap_get_folio(inode->i_mapping, index);
679 		if (IS_ERR(folio))
680 			goto drop;
681 
682 		/* No huge page at the end of the file: nothing to split */
683 		if (!folio_test_large(folio)) {
684 			folio_put(folio);
685 			goto drop;
686 		}
687 
688 		/*
689 		 * Move the inode on the list back to shrinklist if we failed
690 		 * to lock the page at this time.
691 		 *
692 		 * Waiting for the lock may lead to deadlock in the
693 		 * reclaim path.
694 		 */
695 		if (!folio_trylock(folio)) {
696 			folio_put(folio);
697 			goto move_back;
698 		}
699 
700 		ret = split_folio(folio);
701 		folio_unlock(folio);
702 		folio_put(folio);
703 
704 		/* If split failed move the inode on the list back to shrinklist */
705 		if (ret)
706 			goto move_back;
707 
708 		split++;
709 drop:
710 		list_del_init(&info->shrinklist);
711 		goto put;
712 move_back:
713 		/*
714 		 * Make sure the inode is either on the global list or deleted
715 		 * from any local list before iput() since it could be deleted
716 		 * in another thread once we put the inode (then the local list
717 		 * is corrupted).
718 		 */
719 		spin_lock(&sbinfo->shrinklist_lock);
720 		list_move(&info->shrinklist, &sbinfo->shrinklist);
721 		sbinfo->shrinklist_len++;
722 		spin_unlock(&sbinfo->shrinklist_lock);
723 put:
724 		iput(inode);
725 	}
726 
727 	return split;
728 }
729 
730 static long shmem_unused_huge_scan(struct super_block *sb,
731 		struct shrink_control *sc)
732 {
733 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
734 
735 	if (!READ_ONCE(sbinfo->shrinklist_len))
736 		return SHRINK_STOP;
737 
738 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
739 }
740 
741 static long shmem_unused_huge_count(struct super_block *sb,
742 		struct shrink_control *sc)
743 {
744 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
745 	return READ_ONCE(sbinfo->shrinklist_len);
746 }
747 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
748 
749 #define shmem_huge SHMEM_HUGE_DENY
750 
751 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
752 		struct shrink_control *sc, unsigned long nr_to_split)
753 {
754 	return 0;
755 }
756 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
757 
758 /*
759  * Somewhat like filemap_add_folio, but error if expected item has gone.
760  */
761 static int shmem_add_to_page_cache(struct folio *folio,
762 				   struct address_space *mapping,
763 				   pgoff_t index, void *expected, gfp_t gfp)
764 {
765 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
766 	long nr = folio_nr_pages(folio);
767 
768 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
769 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
770 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
771 	VM_BUG_ON(expected && folio_test_large(folio));
772 
773 	folio_ref_add(folio, nr);
774 	folio->mapping = mapping;
775 	folio->index = index;
776 
777 	gfp &= GFP_RECLAIM_MASK;
778 	folio_throttle_swaprate(folio, gfp);
779 
780 	do {
781 		xas_lock_irq(&xas);
782 		if (expected != xas_find_conflict(&xas)) {
783 			xas_set_err(&xas, -EEXIST);
784 			goto unlock;
785 		}
786 		if (expected && xas_find_conflict(&xas)) {
787 			xas_set_err(&xas, -EEXIST);
788 			goto unlock;
789 		}
790 		xas_store(&xas, folio);
791 		if (xas_error(&xas))
792 			goto unlock;
793 		if (folio_test_pmd_mappable(folio))
794 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
795 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
796 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
797 		mapping->nrpages += nr;
798 unlock:
799 		xas_unlock_irq(&xas);
800 	} while (xas_nomem(&xas, gfp));
801 
802 	if (xas_error(&xas)) {
803 		folio->mapping = NULL;
804 		folio_ref_sub(folio, nr);
805 		return xas_error(&xas);
806 	}
807 
808 	return 0;
809 }
810 
811 /*
812  * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
813  */
814 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
815 {
816 	struct address_space *mapping = folio->mapping;
817 	long nr = folio_nr_pages(folio);
818 	int error;
819 
820 	xa_lock_irq(&mapping->i_pages);
821 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
822 	folio->mapping = NULL;
823 	mapping->nrpages -= nr;
824 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
825 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
826 	xa_unlock_irq(&mapping->i_pages);
827 	folio_put(folio);
828 	BUG_ON(error);
829 }
830 
831 /*
832  * Remove swap entry from page cache, free the swap and its page cache.
833  */
834 static int shmem_free_swap(struct address_space *mapping,
835 			   pgoff_t index, void *radswap)
836 {
837 	void *old;
838 
839 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
840 	if (old != radswap)
841 		return -ENOENT;
842 	free_swap_and_cache(radix_to_swp_entry(radswap));
843 	return 0;
844 }
845 
846 /*
847  * Determine (in bytes) how many of the shmem object's pages mapped by the
848  * given offsets are swapped out.
849  *
850  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
851  * as long as the inode doesn't go away and racy results are not a problem.
852  */
853 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
854 						pgoff_t start, pgoff_t end)
855 {
856 	XA_STATE(xas, &mapping->i_pages, start);
857 	struct page *page;
858 	unsigned long swapped = 0;
859 	unsigned long max = end - 1;
860 
861 	rcu_read_lock();
862 	xas_for_each(&xas, page, max) {
863 		if (xas_retry(&xas, page))
864 			continue;
865 		if (xa_is_value(page))
866 			swapped++;
867 		if (xas.xa_index == max)
868 			break;
869 		if (need_resched()) {
870 			xas_pause(&xas);
871 			cond_resched_rcu();
872 		}
873 	}
874 	rcu_read_unlock();
875 
876 	return swapped << PAGE_SHIFT;
877 }
878 
879 /*
880  * Determine (in bytes) how many of the shmem object's pages mapped by the
881  * given vma is swapped out.
882  *
883  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
884  * as long as the inode doesn't go away and racy results are not a problem.
885  */
886 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
887 {
888 	struct inode *inode = file_inode(vma->vm_file);
889 	struct shmem_inode_info *info = SHMEM_I(inode);
890 	struct address_space *mapping = inode->i_mapping;
891 	unsigned long swapped;
892 
893 	/* Be careful as we don't hold info->lock */
894 	swapped = READ_ONCE(info->swapped);
895 
896 	/*
897 	 * The easier cases are when the shmem object has nothing in swap, or
898 	 * the vma maps it whole. Then we can simply use the stats that we
899 	 * already track.
900 	 */
901 	if (!swapped)
902 		return 0;
903 
904 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
905 		return swapped << PAGE_SHIFT;
906 
907 	/* Here comes the more involved part */
908 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
909 					vma->vm_pgoff + vma_pages(vma));
910 }
911 
912 /*
913  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
914  */
915 void shmem_unlock_mapping(struct address_space *mapping)
916 {
917 	struct folio_batch fbatch;
918 	pgoff_t index = 0;
919 
920 	folio_batch_init(&fbatch);
921 	/*
922 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
923 	 */
924 	while (!mapping_unevictable(mapping) &&
925 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
926 		check_move_unevictable_folios(&fbatch);
927 		folio_batch_release(&fbatch);
928 		cond_resched();
929 	}
930 }
931 
932 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
933 {
934 	struct folio *folio;
935 
936 	/*
937 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
938 	 * beyond i_size, and reports fallocated folios as holes.
939 	 */
940 	folio = filemap_get_entry(inode->i_mapping, index);
941 	if (!folio)
942 		return folio;
943 	if (!xa_is_value(folio)) {
944 		folio_lock(folio);
945 		if (folio->mapping == inode->i_mapping)
946 			return folio;
947 		/* The folio has been swapped out */
948 		folio_unlock(folio);
949 		folio_put(folio);
950 	}
951 	/*
952 	 * But read a folio back from swap if any of it is within i_size
953 	 * (although in some cases this is just a waste of time).
954 	 */
955 	folio = NULL;
956 	shmem_get_folio(inode, index, &folio, SGP_READ);
957 	return folio;
958 }
959 
960 /*
961  * Remove range of pages and swap entries from page cache, and free them.
962  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
963  */
964 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
965 								 bool unfalloc)
966 {
967 	struct address_space *mapping = inode->i_mapping;
968 	struct shmem_inode_info *info = SHMEM_I(inode);
969 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
970 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
971 	struct folio_batch fbatch;
972 	pgoff_t indices[PAGEVEC_SIZE];
973 	struct folio *folio;
974 	bool same_folio;
975 	long nr_swaps_freed = 0;
976 	pgoff_t index;
977 	int i;
978 
979 	if (lend == -1)
980 		end = -1;	/* unsigned, so actually very big */
981 
982 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
983 		info->fallocend = start;
984 
985 	folio_batch_init(&fbatch);
986 	index = start;
987 	while (index < end && find_lock_entries(mapping, &index, end - 1,
988 			&fbatch, indices)) {
989 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
990 			folio = fbatch.folios[i];
991 
992 			if (xa_is_value(folio)) {
993 				if (unfalloc)
994 					continue;
995 				nr_swaps_freed += !shmem_free_swap(mapping,
996 							indices[i], folio);
997 				continue;
998 			}
999 
1000 			if (!unfalloc || !folio_test_uptodate(folio))
1001 				truncate_inode_folio(mapping, folio);
1002 			folio_unlock(folio);
1003 		}
1004 		folio_batch_remove_exceptionals(&fbatch);
1005 		folio_batch_release(&fbatch);
1006 		cond_resched();
1007 	}
1008 
1009 	/*
1010 	 * When undoing a failed fallocate, we want none of the partial folio
1011 	 * zeroing and splitting below, but shall want to truncate the whole
1012 	 * folio when !uptodate indicates that it was added by this fallocate,
1013 	 * even when [lstart, lend] covers only a part of the folio.
1014 	 */
1015 	if (unfalloc)
1016 		goto whole_folios;
1017 
1018 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1019 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1020 	if (folio) {
1021 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1022 		folio_mark_dirty(folio);
1023 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1024 			start = folio_next_index(folio);
1025 			if (same_folio)
1026 				end = folio->index;
1027 		}
1028 		folio_unlock(folio);
1029 		folio_put(folio);
1030 		folio = NULL;
1031 	}
1032 
1033 	if (!same_folio)
1034 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1035 	if (folio) {
1036 		folio_mark_dirty(folio);
1037 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1038 			end = folio->index;
1039 		folio_unlock(folio);
1040 		folio_put(folio);
1041 	}
1042 
1043 whole_folios:
1044 
1045 	index = start;
1046 	while (index < end) {
1047 		cond_resched();
1048 
1049 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1050 				indices)) {
1051 			/* If all gone or hole-punch or unfalloc, we're done */
1052 			if (index == start || end != -1)
1053 				break;
1054 			/* But if truncating, restart to make sure all gone */
1055 			index = start;
1056 			continue;
1057 		}
1058 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1059 			folio = fbatch.folios[i];
1060 
1061 			if (xa_is_value(folio)) {
1062 				if (unfalloc)
1063 					continue;
1064 				if (shmem_free_swap(mapping, indices[i], folio)) {
1065 					/* Swap was replaced by page: retry */
1066 					index = indices[i];
1067 					break;
1068 				}
1069 				nr_swaps_freed++;
1070 				continue;
1071 			}
1072 
1073 			folio_lock(folio);
1074 
1075 			if (!unfalloc || !folio_test_uptodate(folio)) {
1076 				if (folio_mapping(folio) != mapping) {
1077 					/* Page was replaced by swap: retry */
1078 					folio_unlock(folio);
1079 					index = indices[i];
1080 					break;
1081 				}
1082 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1083 						folio);
1084 
1085 				if (!folio_test_large(folio)) {
1086 					truncate_inode_folio(mapping, folio);
1087 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1088 					/*
1089 					 * If we split a page, reset the loop so
1090 					 * that we pick up the new sub pages.
1091 					 * Otherwise the THP was entirely
1092 					 * dropped or the target range was
1093 					 * zeroed, so just continue the loop as
1094 					 * is.
1095 					 */
1096 					if (!folio_test_large(folio)) {
1097 						folio_unlock(folio);
1098 						index = start;
1099 						break;
1100 					}
1101 				}
1102 			}
1103 			folio_unlock(folio);
1104 		}
1105 		folio_batch_remove_exceptionals(&fbatch);
1106 		folio_batch_release(&fbatch);
1107 	}
1108 
1109 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1110 }
1111 
1112 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1113 {
1114 	shmem_undo_range(inode, lstart, lend, false);
1115 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1116 	inode_inc_iversion(inode);
1117 }
1118 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1119 
1120 static int shmem_getattr(struct mnt_idmap *idmap,
1121 			 const struct path *path, struct kstat *stat,
1122 			 u32 request_mask, unsigned int query_flags)
1123 {
1124 	struct inode *inode = path->dentry->d_inode;
1125 	struct shmem_inode_info *info = SHMEM_I(inode);
1126 
1127 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1128 		shmem_recalc_inode(inode, 0, 0);
1129 
1130 	if (info->fsflags & FS_APPEND_FL)
1131 		stat->attributes |= STATX_ATTR_APPEND;
1132 	if (info->fsflags & FS_IMMUTABLE_FL)
1133 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1134 	if (info->fsflags & FS_NODUMP_FL)
1135 		stat->attributes |= STATX_ATTR_NODUMP;
1136 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1137 			STATX_ATTR_IMMUTABLE |
1138 			STATX_ATTR_NODUMP);
1139 	generic_fillattr(idmap, request_mask, inode, stat);
1140 
1141 	if (shmem_is_huge(inode, 0, false, NULL, 0))
1142 		stat->blksize = HPAGE_PMD_SIZE;
1143 
1144 	if (request_mask & STATX_BTIME) {
1145 		stat->result_mask |= STATX_BTIME;
1146 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1147 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 static int shmem_setattr(struct mnt_idmap *idmap,
1154 			 struct dentry *dentry, struct iattr *attr)
1155 {
1156 	struct inode *inode = d_inode(dentry);
1157 	struct shmem_inode_info *info = SHMEM_I(inode);
1158 	int error;
1159 	bool update_mtime = false;
1160 	bool update_ctime = true;
1161 
1162 	error = setattr_prepare(idmap, dentry, attr);
1163 	if (error)
1164 		return error;
1165 
1166 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1167 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1168 			return -EPERM;
1169 		}
1170 	}
1171 
1172 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1173 		loff_t oldsize = inode->i_size;
1174 		loff_t newsize = attr->ia_size;
1175 
1176 		/* protected by i_rwsem */
1177 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1178 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1179 			return -EPERM;
1180 
1181 		if (newsize != oldsize) {
1182 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1183 					oldsize, newsize);
1184 			if (error)
1185 				return error;
1186 			i_size_write(inode, newsize);
1187 			update_mtime = true;
1188 		} else {
1189 			update_ctime = false;
1190 		}
1191 		if (newsize <= oldsize) {
1192 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1193 			if (oldsize > holebegin)
1194 				unmap_mapping_range(inode->i_mapping,
1195 							holebegin, 0, 1);
1196 			if (info->alloced)
1197 				shmem_truncate_range(inode,
1198 							newsize, (loff_t)-1);
1199 			/* unmap again to remove racily COWed private pages */
1200 			if (oldsize > holebegin)
1201 				unmap_mapping_range(inode->i_mapping,
1202 							holebegin, 0, 1);
1203 		}
1204 	}
1205 
1206 	if (is_quota_modification(idmap, inode, attr)) {
1207 		error = dquot_initialize(inode);
1208 		if (error)
1209 			return error;
1210 	}
1211 
1212 	/* Transfer quota accounting */
1213 	if (i_uid_needs_update(idmap, attr, inode) ||
1214 	    i_gid_needs_update(idmap, attr, inode)) {
1215 		error = dquot_transfer(idmap, inode, attr);
1216 		if (error)
1217 			return error;
1218 	}
1219 
1220 	setattr_copy(idmap, inode, attr);
1221 	if (attr->ia_valid & ATTR_MODE)
1222 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1223 	if (!error && update_ctime) {
1224 		inode_set_ctime_current(inode);
1225 		if (update_mtime)
1226 			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1227 		inode_inc_iversion(inode);
1228 	}
1229 	return error;
1230 }
1231 
1232 static void shmem_evict_inode(struct inode *inode)
1233 {
1234 	struct shmem_inode_info *info = SHMEM_I(inode);
1235 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1236 	size_t freed = 0;
1237 
1238 	if (shmem_mapping(inode->i_mapping)) {
1239 		shmem_unacct_size(info->flags, inode->i_size);
1240 		inode->i_size = 0;
1241 		mapping_set_exiting(inode->i_mapping);
1242 		shmem_truncate_range(inode, 0, (loff_t)-1);
1243 		if (!list_empty(&info->shrinklist)) {
1244 			spin_lock(&sbinfo->shrinklist_lock);
1245 			if (!list_empty(&info->shrinklist)) {
1246 				list_del_init(&info->shrinklist);
1247 				sbinfo->shrinklist_len--;
1248 			}
1249 			spin_unlock(&sbinfo->shrinklist_lock);
1250 		}
1251 		while (!list_empty(&info->swaplist)) {
1252 			/* Wait while shmem_unuse() is scanning this inode... */
1253 			wait_var_event(&info->stop_eviction,
1254 				       !atomic_read(&info->stop_eviction));
1255 			mutex_lock(&shmem_swaplist_mutex);
1256 			/* ...but beware of the race if we peeked too early */
1257 			if (!atomic_read(&info->stop_eviction))
1258 				list_del_init(&info->swaplist);
1259 			mutex_unlock(&shmem_swaplist_mutex);
1260 		}
1261 	}
1262 
1263 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1264 	shmem_free_inode(inode->i_sb, freed);
1265 	WARN_ON(inode->i_blocks);
1266 	clear_inode(inode);
1267 #ifdef CONFIG_TMPFS_QUOTA
1268 	dquot_free_inode(inode);
1269 	dquot_drop(inode);
1270 #endif
1271 }
1272 
1273 static int shmem_find_swap_entries(struct address_space *mapping,
1274 				   pgoff_t start, struct folio_batch *fbatch,
1275 				   pgoff_t *indices, unsigned int type)
1276 {
1277 	XA_STATE(xas, &mapping->i_pages, start);
1278 	struct folio *folio;
1279 	swp_entry_t entry;
1280 
1281 	rcu_read_lock();
1282 	xas_for_each(&xas, folio, ULONG_MAX) {
1283 		if (xas_retry(&xas, folio))
1284 			continue;
1285 
1286 		if (!xa_is_value(folio))
1287 			continue;
1288 
1289 		entry = radix_to_swp_entry(folio);
1290 		/*
1291 		 * swapin error entries can be found in the mapping. But they're
1292 		 * deliberately ignored here as we've done everything we can do.
1293 		 */
1294 		if (swp_type(entry) != type)
1295 			continue;
1296 
1297 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1298 		if (!folio_batch_add(fbatch, folio))
1299 			break;
1300 
1301 		if (need_resched()) {
1302 			xas_pause(&xas);
1303 			cond_resched_rcu();
1304 		}
1305 	}
1306 	rcu_read_unlock();
1307 
1308 	return xas.xa_index;
1309 }
1310 
1311 /*
1312  * Move the swapped pages for an inode to page cache. Returns the count
1313  * of pages swapped in, or the error in case of failure.
1314  */
1315 static int shmem_unuse_swap_entries(struct inode *inode,
1316 		struct folio_batch *fbatch, pgoff_t *indices)
1317 {
1318 	int i = 0;
1319 	int ret = 0;
1320 	int error = 0;
1321 	struct address_space *mapping = inode->i_mapping;
1322 
1323 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1324 		struct folio *folio = fbatch->folios[i];
1325 
1326 		if (!xa_is_value(folio))
1327 			continue;
1328 		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1329 					mapping_gfp_mask(mapping), NULL, NULL);
1330 		if (error == 0) {
1331 			folio_unlock(folio);
1332 			folio_put(folio);
1333 			ret++;
1334 		}
1335 		if (error == -ENOMEM)
1336 			break;
1337 		error = 0;
1338 	}
1339 	return error ? error : ret;
1340 }
1341 
1342 /*
1343  * If swap found in inode, free it and move page from swapcache to filecache.
1344  */
1345 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1346 {
1347 	struct address_space *mapping = inode->i_mapping;
1348 	pgoff_t start = 0;
1349 	struct folio_batch fbatch;
1350 	pgoff_t indices[PAGEVEC_SIZE];
1351 	int ret = 0;
1352 
1353 	do {
1354 		folio_batch_init(&fbatch);
1355 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1356 		if (folio_batch_count(&fbatch) == 0) {
1357 			ret = 0;
1358 			break;
1359 		}
1360 
1361 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1362 		if (ret < 0)
1363 			break;
1364 
1365 		start = indices[folio_batch_count(&fbatch) - 1];
1366 	} while (true);
1367 
1368 	return ret;
1369 }
1370 
1371 /*
1372  * Read all the shared memory data that resides in the swap
1373  * device 'type' back into memory, so the swap device can be
1374  * unused.
1375  */
1376 int shmem_unuse(unsigned int type)
1377 {
1378 	struct shmem_inode_info *info, *next;
1379 	int error = 0;
1380 
1381 	if (list_empty(&shmem_swaplist))
1382 		return 0;
1383 
1384 	mutex_lock(&shmem_swaplist_mutex);
1385 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1386 		if (!info->swapped) {
1387 			list_del_init(&info->swaplist);
1388 			continue;
1389 		}
1390 		/*
1391 		 * Drop the swaplist mutex while searching the inode for swap;
1392 		 * but before doing so, make sure shmem_evict_inode() will not
1393 		 * remove placeholder inode from swaplist, nor let it be freed
1394 		 * (igrab() would protect from unlink, but not from unmount).
1395 		 */
1396 		atomic_inc(&info->stop_eviction);
1397 		mutex_unlock(&shmem_swaplist_mutex);
1398 
1399 		error = shmem_unuse_inode(&info->vfs_inode, type);
1400 		cond_resched();
1401 
1402 		mutex_lock(&shmem_swaplist_mutex);
1403 		next = list_next_entry(info, swaplist);
1404 		if (!info->swapped)
1405 			list_del_init(&info->swaplist);
1406 		if (atomic_dec_and_test(&info->stop_eviction))
1407 			wake_up_var(&info->stop_eviction);
1408 		if (error)
1409 			break;
1410 	}
1411 	mutex_unlock(&shmem_swaplist_mutex);
1412 
1413 	return error;
1414 }
1415 
1416 /*
1417  * Move the page from the page cache to the swap cache.
1418  */
1419 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1420 {
1421 	struct folio *folio = page_folio(page);
1422 	struct address_space *mapping = folio->mapping;
1423 	struct inode *inode = mapping->host;
1424 	struct shmem_inode_info *info = SHMEM_I(inode);
1425 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1426 	swp_entry_t swap;
1427 	pgoff_t index;
1428 
1429 	/*
1430 	 * Our capabilities prevent regular writeback or sync from ever calling
1431 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1432 	 * its underlying filesystem, in which case tmpfs should write out to
1433 	 * swap only in response to memory pressure, and not for the writeback
1434 	 * threads or sync.
1435 	 */
1436 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1437 		goto redirty;
1438 
1439 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1440 		goto redirty;
1441 
1442 	if (!total_swap_pages)
1443 		goto redirty;
1444 
1445 	/*
1446 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1447 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1448 	 * and its shmem_writeback() needs them to be split when swapping.
1449 	 */
1450 	if (folio_test_large(folio)) {
1451 		/* Ensure the subpages are still dirty */
1452 		folio_test_set_dirty(folio);
1453 		if (split_huge_page(page) < 0)
1454 			goto redirty;
1455 		folio = page_folio(page);
1456 		folio_clear_dirty(folio);
1457 	}
1458 
1459 	index = folio->index;
1460 
1461 	/*
1462 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1463 	 * value into swapfile.c, the only way we can correctly account for a
1464 	 * fallocated folio arriving here is now to initialize it and write it.
1465 	 *
1466 	 * That's okay for a folio already fallocated earlier, but if we have
1467 	 * not yet completed the fallocation, then (a) we want to keep track
1468 	 * of this folio in case we have to undo it, and (b) it may not be a
1469 	 * good idea to continue anyway, once we're pushing into swap.  So
1470 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1471 	 */
1472 	if (!folio_test_uptodate(folio)) {
1473 		if (inode->i_private) {
1474 			struct shmem_falloc *shmem_falloc;
1475 			spin_lock(&inode->i_lock);
1476 			shmem_falloc = inode->i_private;
1477 			if (shmem_falloc &&
1478 			    !shmem_falloc->waitq &&
1479 			    index >= shmem_falloc->start &&
1480 			    index < shmem_falloc->next)
1481 				shmem_falloc->nr_unswapped++;
1482 			else
1483 				shmem_falloc = NULL;
1484 			spin_unlock(&inode->i_lock);
1485 			if (shmem_falloc)
1486 				goto redirty;
1487 		}
1488 		folio_zero_range(folio, 0, folio_size(folio));
1489 		flush_dcache_folio(folio);
1490 		folio_mark_uptodate(folio);
1491 	}
1492 
1493 	swap = folio_alloc_swap(folio);
1494 	if (!swap.val)
1495 		goto redirty;
1496 
1497 	/*
1498 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1499 	 * if it's not already there.  Do it now before the folio is
1500 	 * moved to swap cache, when its pagelock no longer protects
1501 	 * the inode from eviction.  But don't unlock the mutex until
1502 	 * we've incremented swapped, because shmem_unuse_inode() will
1503 	 * prune a !swapped inode from the swaplist under this mutex.
1504 	 */
1505 	mutex_lock(&shmem_swaplist_mutex);
1506 	if (list_empty(&info->swaplist))
1507 		list_add(&info->swaplist, &shmem_swaplist);
1508 
1509 	if (add_to_swap_cache(folio, swap,
1510 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1511 			NULL) == 0) {
1512 		shmem_recalc_inode(inode, 0, 1);
1513 		swap_shmem_alloc(swap);
1514 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1515 
1516 		mutex_unlock(&shmem_swaplist_mutex);
1517 		BUG_ON(folio_mapped(folio));
1518 		return swap_writepage(&folio->page, wbc);
1519 	}
1520 
1521 	mutex_unlock(&shmem_swaplist_mutex);
1522 	put_swap_folio(folio, swap);
1523 redirty:
1524 	folio_mark_dirty(folio);
1525 	if (wbc->for_reclaim)
1526 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1527 	folio_unlock(folio);
1528 	return 0;
1529 }
1530 
1531 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1532 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1533 {
1534 	char buffer[64];
1535 
1536 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1537 		return;		/* show nothing */
1538 
1539 	mpol_to_str(buffer, sizeof(buffer), mpol);
1540 
1541 	seq_printf(seq, ",mpol=%s", buffer);
1542 }
1543 
1544 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1545 {
1546 	struct mempolicy *mpol = NULL;
1547 	if (sbinfo->mpol) {
1548 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1549 		mpol = sbinfo->mpol;
1550 		mpol_get(mpol);
1551 		raw_spin_unlock(&sbinfo->stat_lock);
1552 	}
1553 	return mpol;
1554 }
1555 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1556 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1557 {
1558 }
1559 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1560 {
1561 	return NULL;
1562 }
1563 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1564 
1565 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1566 			pgoff_t index, unsigned int order, pgoff_t *ilx);
1567 
1568 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1569 			struct shmem_inode_info *info, pgoff_t index)
1570 {
1571 	struct mempolicy *mpol;
1572 	pgoff_t ilx;
1573 	struct folio *folio;
1574 
1575 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1576 	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1577 	mpol_cond_put(mpol);
1578 
1579 	return folio;
1580 }
1581 
1582 /*
1583  * Make sure huge_gfp is always more limited than limit_gfp.
1584  * Some of the flags set permissions, while others set limitations.
1585  */
1586 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1587 {
1588 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1589 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1590 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1591 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1592 
1593 	/* Allow allocations only from the originally specified zones. */
1594 	result |= zoneflags;
1595 
1596 	/*
1597 	 * Minimize the result gfp by taking the union with the deny flags,
1598 	 * and the intersection of the allow flags.
1599 	 */
1600 	result |= (limit_gfp & denyflags);
1601 	result |= (huge_gfp & limit_gfp) & allowflags;
1602 
1603 	return result;
1604 }
1605 
1606 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1607 		struct shmem_inode_info *info, pgoff_t index)
1608 {
1609 	struct mempolicy *mpol;
1610 	pgoff_t ilx;
1611 	struct page *page;
1612 
1613 	mpol = shmem_get_pgoff_policy(info, index, HPAGE_PMD_ORDER, &ilx);
1614 	page = alloc_pages_mpol(gfp, HPAGE_PMD_ORDER, mpol, ilx, numa_node_id());
1615 	mpol_cond_put(mpol);
1616 
1617 	return page_rmappable_folio(page);
1618 }
1619 
1620 static struct folio *shmem_alloc_folio(gfp_t gfp,
1621 		struct shmem_inode_info *info, pgoff_t index)
1622 {
1623 	struct mempolicy *mpol;
1624 	pgoff_t ilx;
1625 	struct page *page;
1626 
1627 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1628 	page = alloc_pages_mpol(gfp, 0, mpol, ilx, numa_node_id());
1629 	mpol_cond_put(mpol);
1630 
1631 	return (struct folio *)page;
1632 }
1633 
1634 static struct folio *shmem_alloc_and_add_folio(gfp_t gfp,
1635 		struct inode *inode, pgoff_t index,
1636 		struct mm_struct *fault_mm, bool huge)
1637 {
1638 	struct address_space *mapping = inode->i_mapping;
1639 	struct shmem_inode_info *info = SHMEM_I(inode);
1640 	struct folio *folio;
1641 	long pages;
1642 	int error;
1643 
1644 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1645 		huge = false;
1646 
1647 	if (huge) {
1648 		pages = HPAGE_PMD_NR;
1649 		index = round_down(index, HPAGE_PMD_NR);
1650 
1651 		/*
1652 		 * Check for conflict before waiting on a huge allocation.
1653 		 * Conflict might be that a huge page has just been allocated
1654 		 * and added to page cache by a racing thread, or that there
1655 		 * is already at least one small page in the huge extent.
1656 		 * Be careful to retry when appropriate, but not forever!
1657 		 * Elsewhere -EEXIST would be the right code, but not here.
1658 		 */
1659 		if (xa_find(&mapping->i_pages, &index,
1660 				index + HPAGE_PMD_NR - 1, XA_PRESENT))
1661 			return ERR_PTR(-E2BIG);
1662 
1663 		folio = shmem_alloc_hugefolio(gfp, info, index);
1664 		if (!folio)
1665 			count_vm_event(THP_FILE_FALLBACK);
1666 	} else {
1667 		pages = 1;
1668 		folio = shmem_alloc_folio(gfp, info, index);
1669 	}
1670 	if (!folio)
1671 		return ERR_PTR(-ENOMEM);
1672 
1673 	__folio_set_locked(folio);
1674 	__folio_set_swapbacked(folio);
1675 
1676 	gfp &= GFP_RECLAIM_MASK;
1677 	error = mem_cgroup_charge(folio, fault_mm, gfp);
1678 	if (error) {
1679 		if (xa_find(&mapping->i_pages, &index,
1680 				index + pages - 1, XA_PRESENT)) {
1681 			error = -EEXIST;
1682 		} else if (huge) {
1683 			count_vm_event(THP_FILE_FALLBACK);
1684 			count_vm_event(THP_FILE_FALLBACK_CHARGE);
1685 		}
1686 		goto unlock;
1687 	}
1688 
1689 	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1690 	if (error)
1691 		goto unlock;
1692 
1693 	error = shmem_inode_acct_blocks(inode, pages);
1694 	if (error) {
1695 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1696 		long freed;
1697 		/*
1698 		 * Try to reclaim some space by splitting a few
1699 		 * large folios beyond i_size on the filesystem.
1700 		 */
1701 		shmem_unused_huge_shrink(sbinfo, NULL, 2);
1702 		/*
1703 		 * And do a shmem_recalc_inode() to account for freed pages:
1704 		 * except our folio is there in cache, so not quite balanced.
1705 		 */
1706 		spin_lock(&info->lock);
1707 		freed = pages + info->alloced - info->swapped -
1708 			READ_ONCE(mapping->nrpages);
1709 		if (freed > 0)
1710 			info->alloced -= freed;
1711 		spin_unlock(&info->lock);
1712 		if (freed > 0)
1713 			shmem_inode_unacct_blocks(inode, freed);
1714 		error = shmem_inode_acct_blocks(inode, pages);
1715 		if (error) {
1716 			filemap_remove_folio(folio);
1717 			goto unlock;
1718 		}
1719 	}
1720 
1721 	shmem_recalc_inode(inode, pages, 0);
1722 	folio_add_lru(folio);
1723 	return folio;
1724 
1725 unlock:
1726 	folio_unlock(folio);
1727 	folio_put(folio);
1728 	return ERR_PTR(error);
1729 }
1730 
1731 /*
1732  * When a page is moved from swapcache to shmem filecache (either by the
1733  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1734  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1735  * ignorance of the mapping it belongs to.  If that mapping has special
1736  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1737  * we may need to copy to a suitable page before moving to filecache.
1738  *
1739  * In a future release, this may well be extended to respect cpuset and
1740  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1741  * but for now it is a simple matter of zone.
1742  */
1743 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1744 {
1745 	return folio_zonenum(folio) > gfp_zone(gfp);
1746 }
1747 
1748 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1749 				struct shmem_inode_info *info, pgoff_t index)
1750 {
1751 	struct folio *old, *new;
1752 	struct address_space *swap_mapping;
1753 	swp_entry_t entry;
1754 	pgoff_t swap_index;
1755 	int error;
1756 
1757 	old = *foliop;
1758 	entry = old->swap;
1759 	swap_index = swp_offset(entry);
1760 	swap_mapping = swap_address_space(entry);
1761 
1762 	/*
1763 	 * We have arrived here because our zones are constrained, so don't
1764 	 * limit chance of success by further cpuset and node constraints.
1765 	 */
1766 	gfp &= ~GFP_CONSTRAINT_MASK;
1767 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1768 	new = shmem_alloc_folio(gfp, info, index);
1769 	if (!new)
1770 		return -ENOMEM;
1771 
1772 	folio_get(new);
1773 	folio_copy(new, old);
1774 	flush_dcache_folio(new);
1775 
1776 	__folio_set_locked(new);
1777 	__folio_set_swapbacked(new);
1778 	folio_mark_uptodate(new);
1779 	new->swap = entry;
1780 	folio_set_swapcache(new);
1781 
1782 	/*
1783 	 * Our caller will very soon move newpage out of swapcache, but it's
1784 	 * a nice clean interface for us to replace oldpage by newpage there.
1785 	 */
1786 	xa_lock_irq(&swap_mapping->i_pages);
1787 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1788 	if (!error) {
1789 		mem_cgroup_migrate(old, new);
1790 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1791 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1792 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1793 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1794 	}
1795 	xa_unlock_irq(&swap_mapping->i_pages);
1796 
1797 	if (unlikely(error)) {
1798 		/*
1799 		 * Is this possible?  I think not, now that our callers check
1800 		 * both PageSwapCache and page_private after getting page lock;
1801 		 * but be defensive.  Reverse old to newpage for clear and free.
1802 		 */
1803 		old = new;
1804 	} else {
1805 		folio_add_lru(new);
1806 		*foliop = new;
1807 	}
1808 
1809 	folio_clear_swapcache(old);
1810 	old->private = NULL;
1811 
1812 	folio_unlock(old);
1813 	folio_put_refs(old, 2);
1814 	return error;
1815 }
1816 
1817 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1818 					 struct folio *folio, swp_entry_t swap)
1819 {
1820 	struct address_space *mapping = inode->i_mapping;
1821 	swp_entry_t swapin_error;
1822 	void *old;
1823 
1824 	swapin_error = make_poisoned_swp_entry();
1825 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1826 			     swp_to_radix_entry(swap),
1827 			     swp_to_radix_entry(swapin_error), 0);
1828 	if (old != swp_to_radix_entry(swap))
1829 		return;
1830 
1831 	folio_wait_writeback(folio);
1832 	delete_from_swap_cache(folio);
1833 	/*
1834 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
1835 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
1836 	 * in shmem_evict_inode().
1837 	 */
1838 	shmem_recalc_inode(inode, -1, -1);
1839 	swap_free(swap);
1840 }
1841 
1842 /*
1843  * Swap in the folio pointed to by *foliop.
1844  * Caller has to make sure that *foliop contains a valid swapped folio.
1845  * Returns 0 and the folio in foliop if success. On failure, returns the
1846  * error code and NULL in *foliop.
1847  */
1848 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1849 			     struct folio **foliop, enum sgp_type sgp,
1850 			     gfp_t gfp, struct mm_struct *fault_mm,
1851 			     vm_fault_t *fault_type)
1852 {
1853 	struct address_space *mapping = inode->i_mapping;
1854 	struct shmem_inode_info *info = SHMEM_I(inode);
1855 	struct swap_info_struct *si;
1856 	struct folio *folio = NULL;
1857 	swp_entry_t swap;
1858 	int error;
1859 
1860 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1861 	swap = radix_to_swp_entry(*foliop);
1862 	*foliop = NULL;
1863 
1864 	if (is_poisoned_swp_entry(swap))
1865 		return -EIO;
1866 
1867 	si = get_swap_device(swap);
1868 	if (!si) {
1869 		if (!shmem_confirm_swap(mapping, index, swap))
1870 			return -EEXIST;
1871 		else
1872 			return -EINVAL;
1873 	}
1874 
1875 	/* Look it up and read it in.. */
1876 	folio = swap_cache_get_folio(swap, NULL, 0);
1877 	if (!folio) {
1878 		/* Or update major stats only when swapin succeeds?? */
1879 		if (fault_type) {
1880 			*fault_type |= VM_FAULT_MAJOR;
1881 			count_vm_event(PGMAJFAULT);
1882 			count_memcg_event_mm(fault_mm, PGMAJFAULT);
1883 		}
1884 		/* Here we actually start the io */
1885 		folio = shmem_swapin_cluster(swap, gfp, info, index);
1886 		if (!folio) {
1887 			error = -ENOMEM;
1888 			goto failed;
1889 		}
1890 	}
1891 
1892 	/* We have to do this with folio locked to prevent races */
1893 	folio_lock(folio);
1894 	if (!folio_test_swapcache(folio) ||
1895 	    folio->swap.val != swap.val ||
1896 	    !shmem_confirm_swap(mapping, index, swap)) {
1897 		error = -EEXIST;
1898 		goto unlock;
1899 	}
1900 	if (!folio_test_uptodate(folio)) {
1901 		error = -EIO;
1902 		goto failed;
1903 	}
1904 	folio_wait_writeback(folio);
1905 
1906 	/*
1907 	 * Some architectures may have to restore extra metadata to the
1908 	 * folio after reading from swap.
1909 	 */
1910 	arch_swap_restore(folio_swap(swap, folio), folio);
1911 
1912 	if (shmem_should_replace_folio(folio, gfp)) {
1913 		error = shmem_replace_folio(&folio, gfp, info, index);
1914 		if (error)
1915 			goto failed;
1916 	}
1917 
1918 	error = shmem_add_to_page_cache(folio, mapping, index,
1919 					swp_to_radix_entry(swap), gfp);
1920 	if (error)
1921 		goto failed;
1922 
1923 	shmem_recalc_inode(inode, 0, -1);
1924 
1925 	if (sgp == SGP_WRITE)
1926 		folio_mark_accessed(folio);
1927 
1928 	delete_from_swap_cache(folio);
1929 	folio_mark_dirty(folio);
1930 	swap_free(swap);
1931 	put_swap_device(si);
1932 
1933 	*foliop = folio;
1934 	return 0;
1935 failed:
1936 	if (!shmem_confirm_swap(mapping, index, swap))
1937 		error = -EEXIST;
1938 	if (error == -EIO)
1939 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1940 unlock:
1941 	if (folio) {
1942 		folio_unlock(folio);
1943 		folio_put(folio);
1944 	}
1945 	put_swap_device(si);
1946 
1947 	return error;
1948 }
1949 
1950 /*
1951  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1952  *
1953  * If we allocate a new one we do not mark it dirty. That's up to the
1954  * vm. If we swap it in we mark it dirty since we also free the swap
1955  * entry since a page cannot live in both the swap and page cache.
1956  *
1957  * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
1958  */
1959 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1960 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1961 		struct vm_fault *vmf, vm_fault_t *fault_type)
1962 {
1963 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1964 	struct mm_struct *fault_mm;
1965 	struct folio *folio;
1966 	int error;
1967 	bool alloced;
1968 
1969 	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
1970 		return -EINVAL;
1971 
1972 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1973 		return -EFBIG;
1974 repeat:
1975 	if (sgp <= SGP_CACHE &&
1976 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
1977 		return -EINVAL;
1978 
1979 	alloced = false;
1980 	fault_mm = vma ? vma->vm_mm : NULL;
1981 
1982 	folio = filemap_get_entry(inode->i_mapping, index);
1983 	if (folio && vma && userfaultfd_minor(vma)) {
1984 		if (!xa_is_value(folio))
1985 			folio_put(folio);
1986 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1987 		return 0;
1988 	}
1989 
1990 	if (xa_is_value(folio)) {
1991 		error = shmem_swapin_folio(inode, index, &folio,
1992 					   sgp, gfp, fault_mm, fault_type);
1993 		if (error == -EEXIST)
1994 			goto repeat;
1995 
1996 		*foliop = folio;
1997 		return error;
1998 	}
1999 
2000 	if (folio) {
2001 		folio_lock(folio);
2002 
2003 		/* Has the folio been truncated or swapped out? */
2004 		if (unlikely(folio->mapping != inode->i_mapping)) {
2005 			folio_unlock(folio);
2006 			folio_put(folio);
2007 			goto repeat;
2008 		}
2009 		if (sgp == SGP_WRITE)
2010 			folio_mark_accessed(folio);
2011 		if (folio_test_uptodate(folio))
2012 			goto out;
2013 		/* fallocated folio */
2014 		if (sgp != SGP_READ)
2015 			goto clear;
2016 		folio_unlock(folio);
2017 		folio_put(folio);
2018 	}
2019 
2020 	/*
2021 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2022 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2023 	 */
2024 	*foliop = NULL;
2025 	if (sgp == SGP_READ)
2026 		return 0;
2027 	if (sgp == SGP_NOALLOC)
2028 		return -ENOENT;
2029 
2030 	/*
2031 	 * Fast cache lookup and swap lookup did not find it: allocate.
2032 	 */
2033 
2034 	if (vma && userfaultfd_missing(vma)) {
2035 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2036 		return 0;
2037 	}
2038 
2039 	if (shmem_is_huge(inode, index, false, fault_mm,
2040 			  vma ? vma->vm_flags : 0)) {
2041 		gfp_t huge_gfp;
2042 
2043 		huge_gfp = vma_thp_gfp_mask(vma);
2044 		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2045 		folio = shmem_alloc_and_add_folio(huge_gfp,
2046 				inode, index, fault_mm, true);
2047 		if (!IS_ERR(folio)) {
2048 			count_vm_event(THP_FILE_ALLOC);
2049 			goto alloced;
2050 		}
2051 		if (PTR_ERR(folio) == -EEXIST)
2052 			goto repeat;
2053 	}
2054 
2055 	folio = shmem_alloc_and_add_folio(gfp, inode, index, fault_mm, false);
2056 	if (IS_ERR(folio)) {
2057 		error = PTR_ERR(folio);
2058 		if (error == -EEXIST)
2059 			goto repeat;
2060 		folio = NULL;
2061 		goto unlock;
2062 	}
2063 
2064 alloced:
2065 	alloced = true;
2066 	if (folio_test_pmd_mappable(folio) &&
2067 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2068 					folio_next_index(folio) - 1) {
2069 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2070 		struct shmem_inode_info *info = SHMEM_I(inode);
2071 		/*
2072 		 * Part of the large folio is beyond i_size: subject
2073 		 * to shrink under memory pressure.
2074 		 */
2075 		spin_lock(&sbinfo->shrinklist_lock);
2076 		/*
2077 		 * _careful to defend against unlocked access to
2078 		 * ->shrink_list in shmem_unused_huge_shrink()
2079 		 */
2080 		if (list_empty_careful(&info->shrinklist)) {
2081 			list_add_tail(&info->shrinklist,
2082 				      &sbinfo->shrinklist);
2083 			sbinfo->shrinklist_len++;
2084 		}
2085 		spin_unlock(&sbinfo->shrinklist_lock);
2086 	}
2087 
2088 	if (sgp == SGP_WRITE)
2089 		folio_set_referenced(folio);
2090 	/*
2091 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2092 	 */
2093 	if (sgp == SGP_FALLOC)
2094 		sgp = SGP_WRITE;
2095 clear:
2096 	/*
2097 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2098 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2099 	 * it now, lest undo on failure cancel our earlier guarantee.
2100 	 */
2101 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2102 		long i, n = folio_nr_pages(folio);
2103 
2104 		for (i = 0; i < n; i++)
2105 			clear_highpage(folio_page(folio, i));
2106 		flush_dcache_folio(folio);
2107 		folio_mark_uptodate(folio);
2108 	}
2109 
2110 	/* Perhaps the file has been truncated since we checked */
2111 	if (sgp <= SGP_CACHE &&
2112 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2113 		error = -EINVAL;
2114 		goto unlock;
2115 	}
2116 out:
2117 	*foliop = folio;
2118 	return 0;
2119 
2120 	/*
2121 	 * Error recovery.
2122 	 */
2123 unlock:
2124 	if (alloced)
2125 		filemap_remove_folio(folio);
2126 	shmem_recalc_inode(inode, 0, 0);
2127 	if (folio) {
2128 		folio_unlock(folio);
2129 		folio_put(folio);
2130 	}
2131 	return error;
2132 }
2133 
2134 /**
2135  * shmem_get_folio - find, and lock a shmem folio.
2136  * @inode:	inode to search
2137  * @index:	the page index.
2138  * @foliop:	pointer to the folio if found
2139  * @sgp:	SGP_* flags to control behavior
2140  *
2141  * Looks up the page cache entry at @inode & @index.  If a folio is
2142  * present, it is returned locked with an increased refcount.
2143  *
2144  * If the caller modifies data in the folio, it must call folio_mark_dirty()
2145  * before unlocking the folio to ensure that the folio is not reclaimed.
2146  * There is no need to reserve space before calling folio_mark_dirty().
2147  *
2148  * When no folio is found, the behavior depends on @sgp:
2149  *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2150  *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2151  *  - for all other flags a new folio is allocated, inserted into the
2152  *    page cache and returned locked in @foliop.
2153  *
2154  * Context: May sleep.
2155  * Return: 0 if successful, else a negative error code.
2156  */
2157 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2158 		enum sgp_type sgp)
2159 {
2160 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2161 			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2162 }
2163 EXPORT_SYMBOL_GPL(shmem_get_folio);
2164 
2165 /*
2166  * This is like autoremove_wake_function, but it removes the wait queue
2167  * entry unconditionally - even if something else had already woken the
2168  * target.
2169  */
2170 static int synchronous_wake_function(wait_queue_entry_t *wait,
2171 			unsigned int mode, int sync, void *key)
2172 {
2173 	int ret = default_wake_function(wait, mode, sync, key);
2174 	list_del_init(&wait->entry);
2175 	return ret;
2176 }
2177 
2178 /*
2179  * Trinity finds that probing a hole which tmpfs is punching can
2180  * prevent the hole-punch from ever completing: which in turn
2181  * locks writers out with its hold on i_rwsem.  So refrain from
2182  * faulting pages into the hole while it's being punched.  Although
2183  * shmem_undo_range() does remove the additions, it may be unable to
2184  * keep up, as each new page needs its own unmap_mapping_range() call,
2185  * and the i_mmap tree grows ever slower to scan if new vmas are added.
2186  *
2187  * It does not matter if we sometimes reach this check just before the
2188  * hole-punch begins, so that one fault then races with the punch:
2189  * we just need to make racing faults a rare case.
2190  *
2191  * The implementation below would be much simpler if we just used a
2192  * standard mutex or completion: but we cannot take i_rwsem in fault,
2193  * and bloating every shmem inode for this unlikely case would be sad.
2194  */
2195 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2196 {
2197 	struct shmem_falloc *shmem_falloc;
2198 	struct file *fpin = NULL;
2199 	vm_fault_t ret = 0;
2200 
2201 	spin_lock(&inode->i_lock);
2202 	shmem_falloc = inode->i_private;
2203 	if (shmem_falloc &&
2204 	    shmem_falloc->waitq &&
2205 	    vmf->pgoff >= shmem_falloc->start &&
2206 	    vmf->pgoff < shmem_falloc->next) {
2207 		wait_queue_head_t *shmem_falloc_waitq;
2208 		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2209 
2210 		ret = VM_FAULT_NOPAGE;
2211 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2212 		shmem_falloc_waitq = shmem_falloc->waitq;
2213 		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2214 				TASK_UNINTERRUPTIBLE);
2215 		spin_unlock(&inode->i_lock);
2216 		schedule();
2217 
2218 		/*
2219 		 * shmem_falloc_waitq points into the shmem_fallocate()
2220 		 * stack of the hole-punching task: shmem_falloc_waitq
2221 		 * is usually invalid by the time we reach here, but
2222 		 * finish_wait() does not dereference it in that case;
2223 		 * though i_lock needed lest racing with wake_up_all().
2224 		 */
2225 		spin_lock(&inode->i_lock);
2226 		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2227 	}
2228 	spin_unlock(&inode->i_lock);
2229 	if (fpin) {
2230 		fput(fpin);
2231 		ret = VM_FAULT_RETRY;
2232 	}
2233 	return ret;
2234 }
2235 
2236 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2237 {
2238 	struct inode *inode = file_inode(vmf->vma->vm_file);
2239 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2240 	struct folio *folio = NULL;
2241 	vm_fault_t ret = 0;
2242 	int err;
2243 
2244 	/*
2245 	 * Trinity finds that probing a hole which tmpfs is punching can
2246 	 * prevent the hole-punch from ever completing: noted in i_private.
2247 	 */
2248 	if (unlikely(inode->i_private)) {
2249 		ret = shmem_falloc_wait(vmf, inode);
2250 		if (ret)
2251 			return ret;
2252 	}
2253 
2254 	WARN_ON_ONCE(vmf->page != NULL);
2255 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2256 				  gfp, vmf, &ret);
2257 	if (err)
2258 		return vmf_error(err);
2259 	if (folio) {
2260 		vmf->page = folio_file_page(folio, vmf->pgoff);
2261 		ret |= VM_FAULT_LOCKED;
2262 	}
2263 	return ret;
2264 }
2265 
2266 unsigned long shmem_get_unmapped_area(struct file *file,
2267 				      unsigned long uaddr, unsigned long len,
2268 				      unsigned long pgoff, unsigned long flags)
2269 {
2270 	unsigned long addr;
2271 	unsigned long offset;
2272 	unsigned long inflated_len;
2273 	unsigned long inflated_addr;
2274 	unsigned long inflated_offset;
2275 
2276 	if (len > TASK_SIZE)
2277 		return -ENOMEM;
2278 
2279 	addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2280 				    flags);
2281 
2282 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2283 		return addr;
2284 	if (IS_ERR_VALUE(addr))
2285 		return addr;
2286 	if (addr & ~PAGE_MASK)
2287 		return addr;
2288 	if (addr > TASK_SIZE - len)
2289 		return addr;
2290 
2291 	if (shmem_huge == SHMEM_HUGE_DENY)
2292 		return addr;
2293 	if (len < HPAGE_PMD_SIZE)
2294 		return addr;
2295 	if (flags & MAP_FIXED)
2296 		return addr;
2297 	/*
2298 	 * Our priority is to support MAP_SHARED mapped hugely;
2299 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2300 	 * But if caller specified an address hint and we allocated area there
2301 	 * successfully, respect that as before.
2302 	 */
2303 	if (uaddr == addr)
2304 		return addr;
2305 
2306 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2307 		struct super_block *sb;
2308 
2309 		if (file) {
2310 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2311 			sb = file_inode(file)->i_sb;
2312 		} else {
2313 			/*
2314 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2315 			 * for "/dev/zero", to create a shared anonymous object.
2316 			 */
2317 			if (IS_ERR(shm_mnt))
2318 				return addr;
2319 			sb = shm_mnt->mnt_sb;
2320 		}
2321 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2322 			return addr;
2323 	}
2324 
2325 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2326 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2327 		return addr;
2328 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2329 		return addr;
2330 
2331 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2332 	if (inflated_len > TASK_SIZE)
2333 		return addr;
2334 	if (inflated_len < len)
2335 		return addr;
2336 
2337 	inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2338 					     inflated_len, 0, flags);
2339 	if (IS_ERR_VALUE(inflated_addr))
2340 		return addr;
2341 	if (inflated_addr & ~PAGE_MASK)
2342 		return addr;
2343 
2344 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2345 	inflated_addr += offset - inflated_offset;
2346 	if (inflated_offset > offset)
2347 		inflated_addr += HPAGE_PMD_SIZE;
2348 
2349 	if (inflated_addr > TASK_SIZE - len)
2350 		return addr;
2351 	return inflated_addr;
2352 }
2353 
2354 #ifdef CONFIG_NUMA
2355 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2356 {
2357 	struct inode *inode = file_inode(vma->vm_file);
2358 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2359 }
2360 
2361 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2362 					  unsigned long addr, pgoff_t *ilx)
2363 {
2364 	struct inode *inode = file_inode(vma->vm_file);
2365 	pgoff_t index;
2366 
2367 	/*
2368 	 * Bias interleave by inode number to distribute better across nodes;
2369 	 * but this interface is independent of which page order is used, so
2370 	 * supplies only that bias, letting caller apply the offset (adjusted
2371 	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2372 	 */
2373 	*ilx = inode->i_ino;
2374 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2375 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2376 }
2377 
2378 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2379 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2380 {
2381 	struct mempolicy *mpol;
2382 
2383 	/* Bias interleave by inode number to distribute better across nodes */
2384 	*ilx = info->vfs_inode.i_ino + (index >> order);
2385 
2386 	mpol = mpol_shared_policy_lookup(&info->policy, index);
2387 	return mpol ? mpol : get_task_policy(current);
2388 }
2389 #else
2390 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2391 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2392 {
2393 	*ilx = 0;
2394 	return NULL;
2395 }
2396 #endif /* CONFIG_NUMA */
2397 
2398 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2399 {
2400 	struct inode *inode = file_inode(file);
2401 	struct shmem_inode_info *info = SHMEM_I(inode);
2402 	int retval = -ENOMEM;
2403 
2404 	/*
2405 	 * What serializes the accesses to info->flags?
2406 	 * ipc_lock_object() when called from shmctl_do_lock(),
2407 	 * no serialization needed when called from shm_destroy().
2408 	 */
2409 	if (lock && !(info->flags & VM_LOCKED)) {
2410 		if (!user_shm_lock(inode->i_size, ucounts))
2411 			goto out_nomem;
2412 		info->flags |= VM_LOCKED;
2413 		mapping_set_unevictable(file->f_mapping);
2414 	}
2415 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2416 		user_shm_unlock(inode->i_size, ucounts);
2417 		info->flags &= ~VM_LOCKED;
2418 		mapping_clear_unevictable(file->f_mapping);
2419 	}
2420 	retval = 0;
2421 
2422 out_nomem:
2423 	return retval;
2424 }
2425 
2426 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2427 {
2428 	struct inode *inode = file_inode(file);
2429 	struct shmem_inode_info *info = SHMEM_I(inode);
2430 	int ret;
2431 
2432 	ret = seal_check_write(info->seals, vma);
2433 	if (ret)
2434 		return ret;
2435 
2436 	/* arm64 - allow memory tagging on RAM-based files */
2437 	vm_flags_set(vma, VM_MTE_ALLOWED);
2438 
2439 	file_accessed(file);
2440 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2441 	if (inode->i_nlink)
2442 		vma->vm_ops = &shmem_vm_ops;
2443 	else
2444 		vma->vm_ops = &shmem_anon_vm_ops;
2445 	return 0;
2446 }
2447 
2448 static int shmem_file_open(struct inode *inode, struct file *file)
2449 {
2450 	file->f_mode |= FMODE_CAN_ODIRECT;
2451 	return generic_file_open(inode, file);
2452 }
2453 
2454 #ifdef CONFIG_TMPFS_XATTR
2455 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2456 
2457 /*
2458  * chattr's fsflags are unrelated to extended attributes,
2459  * but tmpfs has chosen to enable them under the same config option.
2460  */
2461 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2462 {
2463 	unsigned int i_flags = 0;
2464 
2465 	if (fsflags & FS_NOATIME_FL)
2466 		i_flags |= S_NOATIME;
2467 	if (fsflags & FS_APPEND_FL)
2468 		i_flags |= S_APPEND;
2469 	if (fsflags & FS_IMMUTABLE_FL)
2470 		i_flags |= S_IMMUTABLE;
2471 	/*
2472 	 * But FS_NODUMP_FL does not require any action in i_flags.
2473 	 */
2474 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2475 }
2476 #else
2477 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2478 {
2479 }
2480 #define shmem_initxattrs NULL
2481 #endif
2482 
2483 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2484 {
2485 	return &SHMEM_I(inode)->dir_offsets;
2486 }
2487 
2488 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2489 					     struct super_block *sb,
2490 					     struct inode *dir, umode_t mode,
2491 					     dev_t dev, unsigned long flags)
2492 {
2493 	struct inode *inode;
2494 	struct shmem_inode_info *info;
2495 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2496 	ino_t ino;
2497 	int err;
2498 
2499 	err = shmem_reserve_inode(sb, &ino);
2500 	if (err)
2501 		return ERR_PTR(err);
2502 
2503 	inode = new_inode(sb);
2504 	if (!inode) {
2505 		shmem_free_inode(sb, 0);
2506 		return ERR_PTR(-ENOSPC);
2507 	}
2508 
2509 	inode->i_ino = ino;
2510 	inode_init_owner(idmap, inode, dir, mode);
2511 	inode->i_blocks = 0;
2512 	simple_inode_init_ts(inode);
2513 	inode->i_generation = get_random_u32();
2514 	info = SHMEM_I(inode);
2515 	memset(info, 0, (char *)inode - (char *)info);
2516 	spin_lock_init(&info->lock);
2517 	atomic_set(&info->stop_eviction, 0);
2518 	info->seals = F_SEAL_SEAL;
2519 	info->flags = flags & VM_NORESERVE;
2520 	info->i_crtime = inode_get_mtime(inode);
2521 	info->fsflags = (dir == NULL) ? 0 :
2522 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2523 	if (info->fsflags)
2524 		shmem_set_inode_flags(inode, info->fsflags);
2525 	INIT_LIST_HEAD(&info->shrinklist);
2526 	INIT_LIST_HEAD(&info->swaplist);
2527 	simple_xattrs_init(&info->xattrs);
2528 	cache_no_acl(inode);
2529 	if (sbinfo->noswap)
2530 		mapping_set_unevictable(inode->i_mapping);
2531 	mapping_set_large_folios(inode->i_mapping);
2532 
2533 	switch (mode & S_IFMT) {
2534 	default:
2535 		inode->i_op = &shmem_special_inode_operations;
2536 		init_special_inode(inode, mode, dev);
2537 		break;
2538 	case S_IFREG:
2539 		inode->i_mapping->a_ops = &shmem_aops;
2540 		inode->i_op = &shmem_inode_operations;
2541 		inode->i_fop = &shmem_file_operations;
2542 		mpol_shared_policy_init(&info->policy,
2543 					 shmem_get_sbmpol(sbinfo));
2544 		break;
2545 	case S_IFDIR:
2546 		inc_nlink(inode);
2547 		/* Some things misbehave if size == 0 on a directory */
2548 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2549 		inode->i_op = &shmem_dir_inode_operations;
2550 		inode->i_fop = &simple_offset_dir_operations;
2551 		simple_offset_init(shmem_get_offset_ctx(inode));
2552 		break;
2553 	case S_IFLNK:
2554 		/*
2555 		 * Must not load anything in the rbtree,
2556 		 * mpol_free_shared_policy will not be called.
2557 		 */
2558 		mpol_shared_policy_init(&info->policy, NULL);
2559 		break;
2560 	}
2561 
2562 	lockdep_annotate_inode_mutex_key(inode);
2563 	return inode;
2564 }
2565 
2566 #ifdef CONFIG_TMPFS_QUOTA
2567 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2568 				     struct super_block *sb, struct inode *dir,
2569 				     umode_t mode, dev_t dev, unsigned long flags)
2570 {
2571 	int err;
2572 	struct inode *inode;
2573 
2574 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2575 	if (IS_ERR(inode))
2576 		return inode;
2577 
2578 	err = dquot_initialize(inode);
2579 	if (err)
2580 		goto errout;
2581 
2582 	err = dquot_alloc_inode(inode);
2583 	if (err) {
2584 		dquot_drop(inode);
2585 		goto errout;
2586 	}
2587 	return inode;
2588 
2589 errout:
2590 	inode->i_flags |= S_NOQUOTA;
2591 	iput(inode);
2592 	return ERR_PTR(err);
2593 }
2594 #else
2595 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2596 				     struct super_block *sb, struct inode *dir,
2597 				     umode_t mode, dev_t dev, unsigned long flags)
2598 {
2599 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2600 }
2601 #endif /* CONFIG_TMPFS_QUOTA */
2602 
2603 #ifdef CONFIG_USERFAULTFD
2604 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2605 			   struct vm_area_struct *dst_vma,
2606 			   unsigned long dst_addr,
2607 			   unsigned long src_addr,
2608 			   uffd_flags_t flags,
2609 			   struct folio **foliop)
2610 {
2611 	struct inode *inode = file_inode(dst_vma->vm_file);
2612 	struct shmem_inode_info *info = SHMEM_I(inode);
2613 	struct address_space *mapping = inode->i_mapping;
2614 	gfp_t gfp = mapping_gfp_mask(mapping);
2615 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2616 	void *page_kaddr;
2617 	struct folio *folio;
2618 	int ret;
2619 	pgoff_t max_off;
2620 
2621 	if (shmem_inode_acct_blocks(inode, 1)) {
2622 		/*
2623 		 * We may have got a page, returned -ENOENT triggering a retry,
2624 		 * and now we find ourselves with -ENOMEM. Release the page, to
2625 		 * avoid a BUG_ON in our caller.
2626 		 */
2627 		if (unlikely(*foliop)) {
2628 			folio_put(*foliop);
2629 			*foliop = NULL;
2630 		}
2631 		return -ENOMEM;
2632 	}
2633 
2634 	if (!*foliop) {
2635 		ret = -ENOMEM;
2636 		folio = shmem_alloc_folio(gfp, info, pgoff);
2637 		if (!folio)
2638 			goto out_unacct_blocks;
2639 
2640 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2641 			page_kaddr = kmap_local_folio(folio, 0);
2642 			/*
2643 			 * The read mmap_lock is held here.  Despite the
2644 			 * mmap_lock being read recursive a deadlock is still
2645 			 * possible if a writer has taken a lock.  For example:
2646 			 *
2647 			 * process A thread 1 takes read lock on own mmap_lock
2648 			 * process A thread 2 calls mmap, blocks taking write lock
2649 			 * process B thread 1 takes page fault, read lock on own mmap lock
2650 			 * process B thread 2 calls mmap, blocks taking write lock
2651 			 * process A thread 1 blocks taking read lock on process B
2652 			 * process B thread 1 blocks taking read lock on process A
2653 			 *
2654 			 * Disable page faults to prevent potential deadlock
2655 			 * and retry the copy outside the mmap_lock.
2656 			 */
2657 			pagefault_disable();
2658 			ret = copy_from_user(page_kaddr,
2659 					     (const void __user *)src_addr,
2660 					     PAGE_SIZE);
2661 			pagefault_enable();
2662 			kunmap_local(page_kaddr);
2663 
2664 			/* fallback to copy_from_user outside mmap_lock */
2665 			if (unlikely(ret)) {
2666 				*foliop = folio;
2667 				ret = -ENOENT;
2668 				/* don't free the page */
2669 				goto out_unacct_blocks;
2670 			}
2671 
2672 			flush_dcache_folio(folio);
2673 		} else {		/* ZEROPAGE */
2674 			clear_user_highpage(&folio->page, dst_addr);
2675 		}
2676 	} else {
2677 		folio = *foliop;
2678 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2679 		*foliop = NULL;
2680 	}
2681 
2682 	VM_BUG_ON(folio_test_locked(folio));
2683 	VM_BUG_ON(folio_test_swapbacked(folio));
2684 	__folio_set_locked(folio);
2685 	__folio_set_swapbacked(folio);
2686 	__folio_mark_uptodate(folio);
2687 
2688 	ret = -EFAULT;
2689 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2690 	if (unlikely(pgoff >= max_off))
2691 		goto out_release;
2692 
2693 	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
2694 	if (ret)
2695 		goto out_release;
2696 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
2697 	if (ret)
2698 		goto out_release;
2699 
2700 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2701 				       &folio->page, true, flags);
2702 	if (ret)
2703 		goto out_delete_from_cache;
2704 
2705 	shmem_recalc_inode(inode, 1, 0);
2706 	folio_unlock(folio);
2707 	return 0;
2708 out_delete_from_cache:
2709 	filemap_remove_folio(folio);
2710 out_release:
2711 	folio_unlock(folio);
2712 	folio_put(folio);
2713 out_unacct_blocks:
2714 	shmem_inode_unacct_blocks(inode, 1);
2715 	return ret;
2716 }
2717 #endif /* CONFIG_USERFAULTFD */
2718 
2719 #ifdef CONFIG_TMPFS
2720 static const struct inode_operations shmem_symlink_inode_operations;
2721 static const struct inode_operations shmem_short_symlink_operations;
2722 
2723 static int
2724 shmem_write_begin(struct file *file, struct address_space *mapping,
2725 			loff_t pos, unsigned len,
2726 			struct page **pagep, void **fsdata)
2727 {
2728 	struct inode *inode = mapping->host;
2729 	struct shmem_inode_info *info = SHMEM_I(inode);
2730 	pgoff_t index = pos >> PAGE_SHIFT;
2731 	struct folio *folio;
2732 	int ret = 0;
2733 
2734 	/* i_rwsem is held by caller */
2735 	if (unlikely(info->seals & (F_SEAL_GROW |
2736 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2737 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2738 			return -EPERM;
2739 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2740 			return -EPERM;
2741 	}
2742 
2743 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2744 	if (ret)
2745 		return ret;
2746 
2747 	*pagep = folio_file_page(folio, index);
2748 	if (PageHWPoison(*pagep)) {
2749 		folio_unlock(folio);
2750 		folio_put(folio);
2751 		*pagep = NULL;
2752 		return -EIO;
2753 	}
2754 
2755 	return 0;
2756 }
2757 
2758 static int
2759 shmem_write_end(struct file *file, struct address_space *mapping,
2760 			loff_t pos, unsigned len, unsigned copied,
2761 			struct page *page, void *fsdata)
2762 {
2763 	struct folio *folio = page_folio(page);
2764 	struct inode *inode = mapping->host;
2765 
2766 	if (pos + copied > inode->i_size)
2767 		i_size_write(inode, pos + copied);
2768 
2769 	if (!folio_test_uptodate(folio)) {
2770 		if (copied < folio_size(folio)) {
2771 			size_t from = offset_in_folio(folio, pos);
2772 			folio_zero_segments(folio, 0, from,
2773 					from + copied, folio_size(folio));
2774 		}
2775 		folio_mark_uptodate(folio);
2776 	}
2777 	folio_mark_dirty(folio);
2778 	folio_unlock(folio);
2779 	folio_put(folio);
2780 
2781 	return copied;
2782 }
2783 
2784 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2785 {
2786 	struct file *file = iocb->ki_filp;
2787 	struct inode *inode = file_inode(file);
2788 	struct address_space *mapping = inode->i_mapping;
2789 	pgoff_t index;
2790 	unsigned long offset;
2791 	int error = 0;
2792 	ssize_t retval = 0;
2793 	loff_t *ppos = &iocb->ki_pos;
2794 
2795 	index = *ppos >> PAGE_SHIFT;
2796 	offset = *ppos & ~PAGE_MASK;
2797 
2798 	for (;;) {
2799 		struct folio *folio = NULL;
2800 		struct page *page = NULL;
2801 		pgoff_t end_index;
2802 		unsigned long nr, ret;
2803 		loff_t i_size = i_size_read(inode);
2804 
2805 		end_index = i_size >> PAGE_SHIFT;
2806 		if (index > end_index)
2807 			break;
2808 		if (index == end_index) {
2809 			nr = i_size & ~PAGE_MASK;
2810 			if (nr <= offset)
2811 				break;
2812 		}
2813 
2814 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2815 		if (error) {
2816 			if (error == -EINVAL)
2817 				error = 0;
2818 			break;
2819 		}
2820 		if (folio) {
2821 			folio_unlock(folio);
2822 
2823 			page = folio_file_page(folio, index);
2824 			if (PageHWPoison(page)) {
2825 				folio_put(folio);
2826 				error = -EIO;
2827 				break;
2828 			}
2829 		}
2830 
2831 		/*
2832 		 * We must evaluate after, since reads (unlike writes)
2833 		 * are called without i_rwsem protection against truncate
2834 		 */
2835 		nr = PAGE_SIZE;
2836 		i_size = i_size_read(inode);
2837 		end_index = i_size >> PAGE_SHIFT;
2838 		if (index == end_index) {
2839 			nr = i_size & ~PAGE_MASK;
2840 			if (nr <= offset) {
2841 				if (folio)
2842 					folio_put(folio);
2843 				break;
2844 			}
2845 		}
2846 		nr -= offset;
2847 
2848 		if (folio) {
2849 			/*
2850 			 * If users can be writing to this page using arbitrary
2851 			 * virtual addresses, take care about potential aliasing
2852 			 * before reading the page on the kernel side.
2853 			 */
2854 			if (mapping_writably_mapped(mapping))
2855 				flush_dcache_page(page);
2856 			/*
2857 			 * Mark the page accessed if we read the beginning.
2858 			 */
2859 			if (!offset)
2860 				folio_mark_accessed(folio);
2861 			/*
2862 			 * Ok, we have the page, and it's up-to-date, so
2863 			 * now we can copy it to user space...
2864 			 */
2865 			ret = copy_page_to_iter(page, offset, nr, to);
2866 			folio_put(folio);
2867 
2868 		} else if (user_backed_iter(to)) {
2869 			/*
2870 			 * Copy to user tends to be so well optimized, but
2871 			 * clear_user() not so much, that it is noticeably
2872 			 * faster to copy the zero page instead of clearing.
2873 			 */
2874 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2875 		} else {
2876 			/*
2877 			 * But submitting the same page twice in a row to
2878 			 * splice() - or others? - can result in confusion:
2879 			 * so don't attempt that optimization on pipes etc.
2880 			 */
2881 			ret = iov_iter_zero(nr, to);
2882 		}
2883 
2884 		retval += ret;
2885 		offset += ret;
2886 		index += offset >> PAGE_SHIFT;
2887 		offset &= ~PAGE_MASK;
2888 
2889 		if (!iov_iter_count(to))
2890 			break;
2891 		if (ret < nr) {
2892 			error = -EFAULT;
2893 			break;
2894 		}
2895 		cond_resched();
2896 	}
2897 
2898 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2899 	file_accessed(file);
2900 	return retval ? retval : error;
2901 }
2902 
2903 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2904 {
2905 	struct file *file = iocb->ki_filp;
2906 	struct inode *inode = file->f_mapping->host;
2907 	ssize_t ret;
2908 
2909 	inode_lock(inode);
2910 	ret = generic_write_checks(iocb, from);
2911 	if (ret <= 0)
2912 		goto unlock;
2913 	ret = file_remove_privs(file);
2914 	if (ret)
2915 		goto unlock;
2916 	ret = file_update_time(file);
2917 	if (ret)
2918 		goto unlock;
2919 	ret = generic_perform_write(iocb, from);
2920 unlock:
2921 	inode_unlock(inode);
2922 	return ret;
2923 }
2924 
2925 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
2926 			      struct pipe_buffer *buf)
2927 {
2928 	return true;
2929 }
2930 
2931 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
2932 				  struct pipe_buffer *buf)
2933 {
2934 }
2935 
2936 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
2937 				    struct pipe_buffer *buf)
2938 {
2939 	return false;
2940 }
2941 
2942 static const struct pipe_buf_operations zero_pipe_buf_ops = {
2943 	.release	= zero_pipe_buf_release,
2944 	.try_steal	= zero_pipe_buf_try_steal,
2945 	.get		= zero_pipe_buf_get,
2946 };
2947 
2948 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
2949 					loff_t fpos, size_t size)
2950 {
2951 	size_t offset = fpos & ~PAGE_MASK;
2952 
2953 	size = min_t(size_t, size, PAGE_SIZE - offset);
2954 
2955 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2956 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2957 
2958 		*buf = (struct pipe_buffer) {
2959 			.ops	= &zero_pipe_buf_ops,
2960 			.page	= ZERO_PAGE(0),
2961 			.offset	= offset,
2962 			.len	= size,
2963 		};
2964 		pipe->head++;
2965 	}
2966 
2967 	return size;
2968 }
2969 
2970 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2971 				      struct pipe_inode_info *pipe,
2972 				      size_t len, unsigned int flags)
2973 {
2974 	struct inode *inode = file_inode(in);
2975 	struct address_space *mapping = inode->i_mapping;
2976 	struct folio *folio = NULL;
2977 	size_t total_spliced = 0, used, npages, n, part;
2978 	loff_t isize;
2979 	int error = 0;
2980 
2981 	/* Work out how much data we can actually add into the pipe */
2982 	used = pipe_occupancy(pipe->head, pipe->tail);
2983 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2984 	len = min_t(size_t, len, npages * PAGE_SIZE);
2985 
2986 	do {
2987 		if (*ppos >= i_size_read(inode))
2988 			break;
2989 
2990 		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
2991 					SGP_READ);
2992 		if (error) {
2993 			if (error == -EINVAL)
2994 				error = 0;
2995 			break;
2996 		}
2997 		if (folio) {
2998 			folio_unlock(folio);
2999 
3000 			if (folio_test_hwpoison(folio) ||
3001 			    (folio_test_large(folio) &&
3002 			     folio_test_has_hwpoisoned(folio))) {
3003 				error = -EIO;
3004 				break;
3005 			}
3006 		}
3007 
3008 		/*
3009 		 * i_size must be checked after we know the pages are Uptodate.
3010 		 *
3011 		 * Checking i_size after the check allows us to calculate
3012 		 * the correct value for "nr", which means the zero-filled
3013 		 * part of the page is not copied back to userspace (unless
3014 		 * another truncate extends the file - this is desired though).
3015 		 */
3016 		isize = i_size_read(inode);
3017 		if (unlikely(*ppos >= isize))
3018 			break;
3019 		part = min_t(loff_t, isize - *ppos, len);
3020 
3021 		if (folio) {
3022 			/*
3023 			 * If users can be writing to this page using arbitrary
3024 			 * virtual addresses, take care about potential aliasing
3025 			 * before reading the page on the kernel side.
3026 			 */
3027 			if (mapping_writably_mapped(mapping))
3028 				flush_dcache_folio(folio);
3029 			folio_mark_accessed(folio);
3030 			/*
3031 			 * Ok, we have the page, and it's up-to-date, so we can
3032 			 * now splice it into the pipe.
3033 			 */
3034 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3035 			folio_put(folio);
3036 			folio = NULL;
3037 		} else {
3038 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3039 		}
3040 
3041 		if (!n)
3042 			break;
3043 		len -= n;
3044 		total_spliced += n;
3045 		*ppos += n;
3046 		in->f_ra.prev_pos = *ppos;
3047 		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3048 			break;
3049 
3050 		cond_resched();
3051 	} while (len);
3052 
3053 	if (folio)
3054 		folio_put(folio);
3055 
3056 	file_accessed(in);
3057 	return total_spliced ? total_spliced : error;
3058 }
3059 
3060 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3061 {
3062 	struct address_space *mapping = file->f_mapping;
3063 	struct inode *inode = mapping->host;
3064 
3065 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3066 		return generic_file_llseek_size(file, offset, whence,
3067 					MAX_LFS_FILESIZE, i_size_read(inode));
3068 	if (offset < 0)
3069 		return -ENXIO;
3070 
3071 	inode_lock(inode);
3072 	/* We're holding i_rwsem so we can access i_size directly */
3073 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3074 	if (offset >= 0)
3075 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3076 	inode_unlock(inode);
3077 	return offset;
3078 }
3079 
3080 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3081 							 loff_t len)
3082 {
3083 	struct inode *inode = file_inode(file);
3084 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3085 	struct shmem_inode_info *info = SHMEM_I(inode);
3086 	struct shmem_falloc shmem_falloc;
3087 	pgoff_t start, index, end, undo_fallocend;
3088 	int error;
3089 
3090 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3091 		return -EOPNOTSUPP;
3092 
3093 	inode_lock(inode);
3094 
3095 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3096 		struct address_space *mapping = file->f_mapping;
3097 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3098 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3099 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3100 
3101 		/* protected by i_rwsem */
3102 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3103 			error = -EPERM;
3104 			goto out;
3105 		}
3106 
3107 		shmem_falloc.waitq = &shmem_falloc_waitq;
3108 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3109 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3110 		spin_lock(&inode->i_lock);
3111 		inode->i_private = &shmem_falloc;
3112 		spin_unlock(&inode->i_lock);
3113 
3114 		if ((u64)unmap_end > (u64)unmap_start)
3115 			unmap_mapping_range(mapping, unmap_start,
3116 					    1 + unmap_end - unmap_start, 0);
3117 		shmem_truncate_range(inode, offset, offset + len - 1);
3118 		/* No need to unmap again: hole-punching leaves COWed pages */
3119 
3120 		spin_lock(&inode->i_lock);
3121 		inode->i_private = NULL;
3122 		wake_up_all(&shmem_falloc_waitq);
3123 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3124 		spin_unlock(&inode->i_lock);
3125 		error = 0;
3126 		goto out;
3127 	}
3128 
3129 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3130 	error = inode_newsize_ok(inode, offset + len);
3131 	if (error)
3132 		goto out;
3133 
3134 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3135 		error = -EPERM;
3136 		goto out;
3137 	}
3138 
3139 	start = offset >> PAGE_SHIFT;
3140 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3141 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3142 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3143 		error = -ENOSPC;
3144 		goto out;
3145 	}
3146 
3147 	shmem_falloc.waitq = NULL;
3148 	shmem_falloc.start = start;
3149 	shmem_falloc.next  = start;
3150 	shmem_falloc.nr_falloced = 0;
3151 	shmem_falloc.nr_unswapped = 0;
3152 	spin_lock(&inode->i_lock);
3153 	inode->i_private = &shmem_falloc;
3154 	spin_unlock(&inode->i_lock);
3155 
3156 	/*
3157 	 * info->fallocend is only relevant when huge pages might be
3158 	 * involved: to prevent split_huge_page() freeing fallocated
3159 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3160 	 */
3161 	undo_fallocend = info->fallocend;
3162 	if (info->fallocend < end)
3163 		info->fallocend = end;
3164 
3165 	for (index = start; index < end; ) {
3166 		struct folio *folio;
3167 
3168 		/*
3169 		 * Good, the fallocate(2) manpage permits EINTR: we may have
3170 		 * been interrupted because we are using up too much memory.
3171 		 */
3172 		if (signal_pending(current))
3173 			error = -EINTR;
3174 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3175 			error = -ENOMEM;
3176 		else
3177 			error = shmem_get_folio(inode, index, &folio,
3178 						SGP_FALLOC);
3179 		if (error) {
3180 			info->fallocend = undo_fallocend;
3181 			/* Remove the !uptodate folios we added */
3182 			if (index > start) {
3183 				shmem_undo_range(inode,
3184 				    (loff_t)start << PAGE_SHIFT,
3185 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3186 			}
3187 			goto undone;
3188 		}
3189 
3190 		/*
3191 		 * Here is a more important optimization than it appears:
3192 		 * a second SGP_FALLOC on the same large folio will clear it,
3193 		 * making it uptodate and un-undoable if we fail later.
3194 		 */
3195 		index = folio_next_index(folio);
3196 		/* Beware 32-bit wraparound */
3197 		if (!index)
3198 			index--;
3199 
3200 		/*
3201 		 * Inform shmem_writepage() how far we have reached.
3202 		 * No need for lock or barrier: we have the page lock.
3203 		 */
3204 		if (!folio_test_uptodate(folio))
3205 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3206 		shmem_falloc.next = index;
3207 
3208 		/*
3209 		 * If !uptodate, leave it that way so that freeable folios
3210 		 * can be recognized if we need to rollback on error later.
3211 		 * But mark it dirty so that memory pressure will swap rather
3212 		 * than free the folios we are allocating (and SGP_CACHE folios
3213 		 * might still be clean: we now need to mark those dirty too).
3214 		 */
3215 		folio_mark_dirty(folio);
3216 		folio_unlock(folio);
3217 		folio_put(folio);
3218 		cond_resched();
3219 	}
3220 
3221 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3222 		i_size_write(inode, offset + len);
3223 undone:
3224 	spin_lock(&inode->i_lock);
3225 	inode->i_private = NULL;
3226 	spin_unlock(&inode->i_lock);
3227 out:
3228 	if (!error)
3229 		file_modified(file);
3230 	inode_unlock(inode);
3231 	return error;
3232 }
3233 
3234 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3235 {
3236 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3237 
3238 	buf->f_type = TMPFS_MAGIC;
3239 	buf->f_bsize = PAGE_SIZE;
3240 	buf->f_namelen = NAME_MAX;
3241 	if (sbinfo->max_blocks) {
3242 		buf->f_blocks = sbinfo->max_blocks;
3243 		buf->f_bavail =
3244 		buf->f_bfree  = sbinfo->max_blocks -
3245 				percpu_counter_sum(&sbinfo->used_blocks);
3246 	}
3247 	if (sbinfo->max_inodes) {
3248 		buf->f_files = sbinfo->max_inodes;
3249 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3250 	}
3251 	/* else leave those fields 0 like simple_statfs */
3252 
3253 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3254 
3255 	return 0;
3256 }
3257 
3258 /*
3259  * File creation. Allocate an inode, and we're done..
3260  */
3261 static int
3262 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3263 	    struct dentry *dentry, umode_t mode, dev_t dev)
3264 {
3265 	struct inode *inode;
3266 	int error;
3267 
3268 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3269 	if (IS_ERR(inode))
3270 		return PTR_ERR(inode);
3271 
3272 	error = simple_acl_create(dir, inode);
3273 	if (error)
3274 		goto out_iput;
3275 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3276 					     shmem_initxattrs, NULL);
3277 	if (error && error != -EOPNOTSUPP)
3278 		goto out_iput;
3279 
3280 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3281 	if (error)
3282 		goto out_iput;
3283 
3284 	dir->i_size += BOGO_DIRENT_SIZE;
3285 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3286 	inode_inc_iversion(dir);
3287 	d_instantiate(dentry, inode);
3288 	dget(dentry); /* Extra count - pin the dentry in core */
3289 	return error;
3290 
3291 out_iput:
3292 	iput(inode);
3293 	return error;
3294 }
3295 
3296 static int
3297 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3298 	      struct file *file, umode_t mode)
3299 {
3300 	struct inode *inode;
3301 	int error;
3302 
3303 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3304 	if (IS_ERR(inode)) {
3305 		error = PTR_ERR(inode);
3306 		goto err_out;
3307 	}
3308 	error = security_inode_init_security(inode, dir, NULL,
3309 					     shmem_initxattrs, NULL);
3310 	if (error && error != -EOPNOTSUPP)
3311 		goto out_iput;
3312 	error = simple_acl_create(dir, inode);
3313 	if (error)
3314 		goto out_iput;
3315 	d_tmpfile(file, inode);
3316 
3317 err_out:
3318 	return finish_open_simple(file, error);
3319 out_iput:
3320 	iput(inode);
3321 	return error;
3322 }
3323 
3324 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3325 		       struct dentry *dentry, umode_t mode)
3326 {
3327 	int error;
3328 
3329 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3330 	if (error)
3331 		return error;
3332 	inc_nlink(dir);
3333 	return 0;
3334 }
3335 
3336 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3337 			struct dentry *dentry, umode_t mode, bool excl)
3338 {
3339 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3340 }
3341 
3342 /*
3343  * Link a file..
3344  */
3345 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3346 		      struct dentry *dentry)
3347 {
3348 	struct inode *inode = d_inode(old_dentry);
3349 	int ret = 0;
3350 
3351 	/*
3352 	 * No ordinary (disk based) filesystem counts links as inodes;
3353 	 * but each new link needs a new dentry, pinning lowmem, and
3354 	 * tmpfs dentries cannot be pruned until they are unlinked.
3355 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3356 	 * first link must skip that, to get the accounting right.
3357 	 */
3358 	if (inode->i_nlink) {
3359 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3360 		if (ret)
3361 			goto out;
3362 	}
3363 
3364 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3365 	if (ret) {
3366 		if (inode->i_nlink)
3367 			shmem_free_inode(inode->i_sb, 0);
3368 		goto out;
3369 	}
3370 
3371 	dir->i_size += BOGO_DIRENT_SIZE;
3372 	inode_set_mtime_to_ts(dir,
3373 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3374 	inode_inc_iversion(dir);
3375 	inc_nlink(inode);
3376 	ihold(inode);	/* New dentry reference */
3377 	dget(dentry);	/* Extra pinning count for the created dentry */
3378 	d_instantiate(dentry, inode);
3379 out:
3380 	return ret;
3381 }
3382 
3383 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3384 {
3385 	struct inode *inode = d_inode(dentry);
3386 
3387 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3388 		shmem_free_inode(inode->i_sb, 0);
3389 
3390 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3391 
3392 	dir->i_size -= BOGO_DIRENT_SIZE;
3393 	inode_set_mtime_to_ts(dir,
3394 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3395 	inode_inc_iversion(dir);
3396 	drop_nlink(inode);
3397 	dput(dentry);	/* Undo the count from "create" - does all the work */
3398 	return 0;
3399 }
3400 
3401 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3402 {
3403 	if (!simple_offset_empty(dentry))
3404 		return -ENOTEMPTY;
3405 
3406 	drop_nlink(d_inode(dentry));
3407 	drop_nlink(dir);
3408 	return shmem_unlink(dir, dentry);
3409 }
3410 
3411 static int shmem_whiteout(struct mnt_idmap *idmap,
3412 			  struct inode *old_dir, struct dentry *old_dentry)
3413 {
3414 	struct dentry *whiteout;
3415 	int error;
3416 
3417 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3418 	if (!whiteout)
3419 		return -ENOMEM;
3420 
3421 	error = shmem_mknod(idmap, old_dir, whiteout,
3422 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3423 	dput(whiteout);
3424 	if (error)
3425 		return error;
3426 
3427 	/*
3428 	 * Cheat and hash the whiteout while the old dentry is still in
3429 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3430 	 *
3431 	 * d_lookup() will consistently find one of them at this point,
3432 	 * not sure which one, but that isn't even important.
3433 	 */
3434 	d_rehash(whiteout);
3435 	return 0;
3436 }
3437 
3438 /*
3439  * The VFS layer already does all the dentry stuff for rename,
3440  * we just have to decrement the usage count for the target if
3441  * it exists so that the VFS layer correctly free's it when it
3442  * gets overwritten.
3443  */
3444 static int shmem_rename2(struct mnt_idmap *idmap,
3445 			 struct inode *old_dir, struct dentry *old_dentry,
3446 			 struct inode *new_dir, struct dentry *new_dentry,
3447 			 unsigned int flags)
3448 {
3449 	struct inode *inode = d_inode(old_dentry);
3450 	int they_are_dirs = S_ISDIR(inode->i_mode);
3451 	int error;
3452 
3453 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3454 		return -EINVAL;
3455 
3456 	if (flags & RENAME_EXCHANGE)
3457 		return simple_offset_rename_exchange(old_dir, old_dentry,
3458 						     new_dir, new_dentry);
3459 
3460 	if (!simple_offset_empty(new_dentry))
3461 		return -ENOTEMPTY;
3462 
3463 	if (flags & RENAME_WHITEOUT) {
3464 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3465 		if (error)
3466 			return error;
3467 	}
3468 
3469 	error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
3470 	if (error)
3471 		return error;
3472 
3473 	if (d_really_is_positive(new_dentry)) {
3474 		(void) shmem_unlink(new_dir, new_dentry);
3475 		if (they_are_dirs) {
3476 			drop_nlink(d_inode(new_dentry));
3477 			drop_nlink(old_dir);
3478 		}
3479 	} else if (they_are_dirs) {
3480 		drop_nlink(old_dir);
3481 		inc_nlink(new_dir);
3482 	}
3483 
3484 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3485 	new_dir->i_size += BOGO_DIRENT_SIZE;
3486 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3487 	inode_inc_iversion(old_dir);
3488 	inode_inc_iversion(new_dir);
3489 	return 0;
3490 }
3491 
3492 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3493 			 struct dentry *dentry, const char *symname)
3494 {
3495 	int error;
3496 	int len;
3497 	struct inode *inode;
3498 	struct folio *folio;
3499 
3500 	len = strlen(symname) + 1;
3501 	if (len > PAGE_SIZE)
3502 		return -ENAMETOOLONG;
3503 
3504 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3505 				VM_NORESERVE);
3506 	if (IS_ERR(inode))
3507 		return PTR_ERR(inode);
3508 
3509 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3510 					     shmem_initxattrs, NULL);
3511 	if (error && error != -EOPNOTSUPP)
3512 		goto out_iput;
3513 
3514 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3515 	if (error)
3516 		goto out_iput;
3517 
3518 	inode->i_size = len-1;
3519 	if (len <= SHORT_SYMLINK_LEN) {
3520 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3521 		if (!inode->i_link) {
3522 			error = -ENOMEM;
3523 			goto out_remove_offset;
3524 		}
3525 		inode->i_op = &shmem_short_symlink_operations;
3526 	} else {
3527 		inode_nohighmem(inode);
3528 		inode->i_mapping->a_ops = &shmem_aops;
3529 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3530 		if (error)
3531 			goto out_remove_offset;
3532 		inode->i_op = &shmem_symlink_inode_operations;
3533 		memcpy(folio_address(folio), symname, len);
3534 		folio_mark_uptodate(folio);
3535 		folio_mark_dirty(folio);
3536 		folio_unlock(folio);
3537 		folio_put(folio);
3538 	}
3539 	dir->i_size += BOGO_DIRENT_SIZE;
3540 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3541 	inode_inc_iversion(dir);
3542 	d_instantiate(dentry, inode);
3543 	dget(dentry);
3544 	return 0;
3545 
3546 out_remove_offset:
3547 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3548 out_iput:
3549 	iput(inode);
3550 	return error;
3551 }
3552 
3553 static void shmem_put_link(void *arg)
3554 {
3555 	folio_mark_accessed(arg);
3556 	folio_put(arg);
3557 }
3558 
3559 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3560 				  struct delayed_call *done)
3561 {
3562 	struct folio *folio = NULL;
3563 	int error;
3564 
3565 	if (!dentry) {
3566 		folio = filemap_get_folio(inode->i_mapping, 0);
3567 		if (IS_ERR(folio))
3568 			return ERR_PTR(-ECHILD);
3569 		if (PageHWPoison(folio_page(folio, 0)) ||
3570 		    !folio_test_uptodate(folio)) {
3571 			folio_put(folio);
3572 			return ERR_PTR(-ECHILD);
3573 		}
3574 	} else {
3575 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3576 		if (error)
3577 			return ERR_PTR(error);
3578 		if (!folio)
3579 			return ERR_PTR(-ECHILD);
3580 		if (PageHWPoison(folio_page(folio, 0))) {
3581 			folio_unlock(folio);
3582 			folio_put(folio);
3583 			return ERR_PTR(-ECHILD);
3584 		}
3585 		folio_unlock(folio);
3586 	}
3587 	set_delayed_call(done, shmem_put_link, folio);
3588 	return folio_address(folio);
3589 }
3590 
3591 #ifdef CONFIG_TMPFS_XATTR
3592 
3593 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3594 {
3595 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3596 
3597 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3598 
3599 	return 0;
3600 }
3601 
3602 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3603 			      struct dentry *dentry, struct fileattr *fa)
3604 {
3605 	struct inode *inode = d_inode(dentry);
3606 	struct shmem_inode_info *info = SHMEM_I(inode);
3607 
3608 	if (fileattr_has_fsx(fa))
3609 		return -EOPNOTSUPP;
3610 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3611 		return -EOPNOTSUPP;
3612 
3613 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3614 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3615 
3616 	shmem_set_inode_flags(inode, info->fsflags);
3617 	inode_set_ctime_current(inode);
3618 	inode_inc_iversion(inode);
3619 	return 0;
3620 }
3621 
3622 /*
3623  * Superblocks without xattr inode operations may get some security.* xattr
3624  * support from the LSM "for free". As soon as we have any other xattrs
3625  * like ACLs, we also need to implement the security.* handlers at
3626  * filesystem level, though.
3627  */
3628 
3629 /*
3630  * Callback for security_inode_init_security() for acquiring xattrs.
3631  */
3632 static int shmem_initxattrs(struct inode *inode,
3633 			    const struct xattr *xattr_array, void *fs_info)
3634 {
3635 	struct shmem_inode_info *info = SHMEM_I(inode);
3636 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3637 	const struct xattr *xattr;
3638 	struct simple_xattr *new_xattr;
3639 	size_t ispace = 0;
3640 	size_t len;
3641 
3642 	if (sbinfo->max_inodes) {
3643 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3644 			ispace += simple_xattr_space(xattr->name,
3645 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3646 		}
3647 		if (ispace) {
3648 			raw_spin_lock(&sbinfo->stat_lock);
3649 			if (sbinfo->free_ispace < ispace)
3650 				ispace = 0;
3651 			else
3652 				sbinfo->free_ispace -= ispace;
3653 			raw_spin_unlock(&sbinfo->stat_lock);
3654 			if (!ispace)
3655 				return -ENOSPC;
3656 		}
3657 	}
3658 
3659 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3660 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3661 		if (!new_xattr)
3662 			break;
3663 
3664 		len = strlen(xattr->name) + 1;
3665 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3666 					  GFP_KERNEL_ACCOUNT);
3667 		if (!new_xattr->name) {
3668 			kvfree(new_xattr);
3669 			break;
3670 		}
3671 
3672 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3673 		       XATTR_SECURITY_PREFIX_LEN);
3674 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3675 		       xattr->name, len);
3676 
3677 		simple_xattr_add(&info->xattrs, new_xattr);
3678 	}
3679 
3680 	if (xattr->name != NULL) {
3681 		if (ispace) {
3682 			raw_spin_lock(&sbinfo->stat_lock);
3683 			sbinfo->free_ispace += ispace;
3684 			raw_spin_unlock(&sbinfo->stat_lock);
3685 		}
3686 		simple_xattrs_free(&info->xattrs, NULL);
3687 		return -ENOMEM;
3688 	}
3689 
3690 	return 0;
3691 }
3692 
3693 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3694 				   struct dentry *unused, struct inode *inode,
3695 				   const char *name, void *buffer, size_t size)
3696 {
3697 	struct shmem_inode_info *info = SHMEM_I(inode);
3698 
3699 	name = xattr_full_name(handler, name);
3700 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3701 }
3702 
3703 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3704 				   struct mnt_idmap *idmap,
3705 				   struct dentry *unused, struct inode *inode,
3706 				   const char *name, const void *value,
3707 				   size_t size, int flags)
3708 {
3709 	struct shmem_inode_info *info = SHMEM_I(inode);
3710 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3711 	struct simple_xattr *old_xattr;
3712 	size_t ispace = 0;
3713 
3714 	name = xattr_full_name(handler, name);
3715 	if (value && sbinfo->max_inodes) {
3716 		ispace = simple_xattr_space(name, size);
3717 		raw_spin_lock(&sbinfo->stat_lock);
3718 		if (sbinfo->free_ispace < ispace)
3719 			ispace = 0;
3720 		else
3721 			sbinfo->free_ispace -= ispace;
3722 		raw_spin_unlock(&sbinfo->stat_lock);
3723 		if (!ispace)
3724 			return -ENOSPC;
3725 	}
3726 
3727 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
3728 	if (!IS_ERR(old_xattr)) {
3729 		ispace = 0;
3730 		if (old_xattr && sbinfo->max_inodes)
3731 			ispace = simple_xattr_space(old_xattr->name,
3732 						    old_xattr->size);
3733 		simple_xattr_free(old_xattr);
3734 		old_xattr = NULL;
3735 		inode_set_ctime_current(inode);
3736 		inode_inc_iversion(inode);
3737 	}
3738 	if (ispace) {
3739 		raw_spin_lock(&sbinfo->stat_lock);
3740 		sbinfo->free_ispace += ispace;
3741 		raw_spin_unlock(&sbinfo->stat_lock);
3742 	}
3743 	return PTR_ERR(old_xattr);
3744 }
3745 
3746 static const struct xattr_handler shmem_security_xattr_handler = {
3747 	.prefix = XATTR_SECURITY_PREFIX,
3748 	.get = shmem_xattr_handler_get,
3749 	.set = shmem_xattr_handler_set,
3750 };
3751 
3752 static const struct xattr_handler shmem_trusted_xattr_handler = {
3753 	.prefix = XATTR_TRUSTED_PREFIX,
3754 	.get = shmem_xattr_handler_get,
3755 	.set = shmem_xattr_handler_set,
3756 };
3757 
3758 static const struct xattr_handler shmem_user_xattr_handler = {
3759 	.prefix = XATTR_USER_PREFIX,
3760 	.get = shmem_xattr_handler_get,
3761 	.set = shmem_xattr_handler_set,
3762 };
3763 
3764 static const struct xattr_handler * const shmem_xattr_handlers[] = {
3765 	&shmem_security_xattr_handler,
3766 	&shmem_trusted_xattr_handler,
3767 	&shmem_user_xattr_handler,
3768 	NULL
3769 };
3770 
3771 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3772 {
3773 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3774 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3775 }
3776 #endif /* CONFIG_TMPFS_XATTR */
3777 
3778 static const struct inode_operations shmem_short_symlink_operations = {
3779 	.getattr	= shmem_getattr,
3780 	.setattr	= shmem_setattr,
3781 	.get_link	= simple_get_link,
3782 #ifdef CONFIG_TMPFS_XATTR
3783 	.listxattr	= shmem_listxattr,
3784 #endif
3785 };
3786 
3787 static const struct inode_operations shmem_symlink_inode_operations = {
3788 	.getattr	= shmem_getattr,
3789 	.setattr	= shmem_setattr,
3790 	.get_link	= shmem_get_link,
3791 #ifdef CONFIG_TMPFS_XATTR
3792 	.listxattr	= shmem_listxattr,
3793 #endif
3794 };
3795 
3796 static struct dentry *shmem_get_parent(struct dentry *child)
3797 {
3798 	return ERR_PTR(-ESTALE);
3799 }
3800 
3801 static int shmem_match(struct inode *ino, void *vfh)
3802 {
3803 	__u32 *fh = vfh;
3804 	__u64 inum = fh[2];
3805 	inum = (inum << 32) | fh[1];
3806 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3807 }
3808 
3809 /* Find any alias of inode, but prefer a hashed alias */
3810 static struct dentry *shmem_find_alias(struct inode *inode)
3811 {
3812 	struct dentry *alias = d_find_alias(inode);
3813 
3814 	return alias ?: d_find_any_alias(inode);
3815 }
3816 
3817 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3818 		struct fid *fid, int fh_len, int fh_type)
3819 {
3820 	struct inode *inode;
3821 	struct dentry *dentry = NULL;
3822 	u64 inum;
3823 
3824 	if (fh_len < 3)
3825 		return NULL;
3826 
3827 	inum = fid->raw[2];
3828 	inum = (inum << 32) | fid->raw[1];
3829 
3830 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3831 			shmem_match, fid->raw);
3832 	if (inode) {
3833 		dentry = shmem_find_alias(inode);
3834 		iput(inode);
3835 	}
3836 
3837 	return dentry;
3838 }
3839 
3840 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3841 				struct inode *parent)
3842 {
3843 	if (*len < 3) {
3844 		*len = 3;
3845 		return FILEID_INVALID;
3846 	}
3847 
3848 	if (inode_unhashed(inode)) {
3849 		/* Unfortunately insert_inode_hash is not idempotent,
3850 		 * so as we hash inodes here rather than at creation
3851 		 * time, we need a lock to ensure we only try
3852 		 * to do it once
3853 		 */
3854 		static DEFINE_SPINLOCK(lock);
3855 		spin_lock(&lock);
3856 		if (inode_unhashed(inode))
3857 			__insert_inode_hash(inode,
3858 					    inode->i_ino + inode->i_generation);
3859 		spin_unlock(&lock);
3860 	}
3861 
3862 	fh[0] = inode->i_generation;
3863 	fh[1] = inode->i_ino;
3864 	fh[2] = ((__u64)inode->i_ino) >> 32;
3865 
3866 	*len = 3;
3867 	return 1;
3868 }
3869 
3870 static const struct export_operations shmem_export_ops = {
3871 	.get_parent     = shmem_get_parent,
3872 	.encode_fh      = shmem_encode_fh,
3873 	.fh_to_dentry	= shmem_fh_to_dentry,
3874 };
3875 
3876 enum shmem_param {
3877 	Opt_gid,
3878 	Opt_huge,
3879 	Opt_mode,
3880 	Opt_mpol,
3881 	Opt_nr_blocks,
3882 	Opt_nr_inodes,
3883 	Opt_size,
3884 	Opt_uid,
3885 	Opt_inode32,
3886 	Opt_inode64,
3887 	Opt_noswap,
3888 	Opt_quota,
3889 	Opt_usrquota,
3890 	Opt_grpquota,
3891 	Opt_usrquota_block_hardlimit,
3892 	Opt_usrquota_inode_hardlimit,
3893 	Opt_grpquota_block_hardlimit,
3894 	Opt_grpquota_inode_hardlimit,
3895 };
3896 
3897 static const struct constant_table shmem_param_enums_huge[] = {
3898 	{"never",	SHMEM_HUGE_NEVER },
3899 	{"always",	SHMEM_HUGE_ALWAYS },
3900 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3901 	{"advise",	SHMEM_HUGE_ADVISE },
3902 	{}
3903 };
3904 
3905 const struct fs_parameter_spec shmem_fs_parameters[] = {
3906 	fsparam_u32   ("gid",		Opt_gid),
3907 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3908 	fsparam_u32oct("mode",		Opt_mode),
3909 	fsparam_string("mpol",		Opt_mpol),
3910 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3911 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3912 	fsparam_string("size",		Opt_size),
3913 	fsparam_u32   ("uid",		Opt_uid),
3914 	fsparam_flag  ("inode32",	Opt_inode32),
3915 	fsparam_flag  ("inode64",	Opt_inode64),
3916 	fsparam_flag  ("noswap",	Opt_noswap),
3917 #ifdef CONFIG_TMPFS_QUOTA
3918 	fsparam_flag  ("quota",		Opt_quota),
3919 	fsparam_flag  ("usrquota",	Opt_usrquota),
3920 	fsparam_flag  ("grpquota",	Opt_grpquota),
3921 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
3922 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
3923 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
3924 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
3925 #endif
3926 	{}
3927 };
3928 
3929 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3930 {
3931 	struct shmem_options *ctx = fc->fs_private;
3932 	struct fs_parse_result result;
3933 	unsigned long long size;
3934 	char *rest;
3935 	int opt;
3936 	kuid_t kuid;
3937 	kgid_t kgid;
3938 
3939 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3940 	if (opt < 0)
3941 		return opt;
3942 
3943 	switch (opt) {
3944 	case Opt_size:
3945 		size = memparse(param->string, &rest);
3946 		if (*rest == '%') {
3947 			size <<= PAGE_SHIFT;
3948 			size *= totalram_pages();
3949 			do_div(size, 100);
3950 			rest++;
3951 		}
3952 		if (*rest)
3953 			goto bad_value;
3954 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3955 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3956 		break;
3957 	case Opt_nr_blocks:
3958 		ctx->blocks = memparse(param->string, &rest);
3959 		if (*rest || ctx->blocks > LONG_MAX)
3960 			goto bad_value;
3961 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3962 		break;
3963 	case Opt_nr_inodes:
3964 		ctx->inodes = memparse(param->string, &rest);
3965 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
3966 			goto bad_value;
3967 		ctx->seen |= SHMEM_SEEN_INODES;
3968 		break;
3969 	case Opt_mode:
3970 		ctx->mode = result.uint_32 & 07777;
3971 		break;
3972 	case Opt_uid:
3973 		kuid = make_kuid(current_user_ns(), result.uint_32);
3974 		if (!uid_valid(kuid))
3975 			goto bad_value;
3976 
3977 		/*
3978 		 * The requested uid must be representable in the
3979 		 * filesystem's idmapping.
3980 		 */
3981 		if (!kuid_has_mapping(fc->user_ns, kuid))
3982 			goto bad_value;
3983 
3984 		ctx->uid = kuid;
3985 		break;
3986 	case Opt_gid:
3987 		kgid = make_kgid(current_user_ns(), result.uint_32);
3988 		if (!gid_valid(kgid))
3989 			goto bad_value;
3990 
3991 		/*
3992 		 * The requested gid must be representable in the
3993 		 * filesystem's idmapping.
3994 		 */
3995 		if (!kgid_has_mapping(fc->user_ns, kgid))
3996 			goto bad_value;
3997 
3998 		ctx->gid = kgid;
3999 		break;
4000 	case Opt_huge:
4001 		ctx->huge = result.uint_32;
4002 		if (ctx->huge != SHMEM_HUGE_NEVER &&
4003 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4004 		      has_transparent_hugepage()))
4005 			goto unsupported_parameter;
4006 		ctx->seen |= SHMEM_SEEN_HUGE;
4007 		break;
4008 	case Opt_mpol:
4009 		if (IS_ENABLED(CONFIG_NUMA)) {
4010 			mpol_put(ctx->mpol);
4011 			ctx->mpol = NULL;
4012 			if (mpol_parse_str(param->string, &ctx->mpol))
4013 				goto bad_value;
4014 			break;
4015 		}
4016 		goto unsupported_parameter;
4017 	case Opt_inode32:
4018 		ctx->full_inums = false;
4019 		ctx->seen |= SHMEM_SEEN_INUMS;
4020 		break;
4021 	case Opt_inode64:
4022 		if (sizeof(ino_t) < 8) {
4023 			return invalfc(fc,
4024 				       "Cannot use inode64 with <64bit inums in kernel\n");
4025 		}
4026 		ctx->full_inums = true;
4027 		ctx->seen |= SHMEM_SEEN_INUMS;
4028 		break;
4029 	case Opt_noswap:
4030 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4031 			return invalfc(fc,
4032 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4033 		}
4034 		ctx->noswap = true;
4035 		ctx->seen |= SHMEM_SEEN_NOSWAP;
4036 		break;
4037 	case Opt_quota:
4038 		if (fc->user_ns != &init_user_ns)
4039 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4040 		ctx->seen |= SHMEM_SEEN_QUOTA;
4041 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4042 		break;
4043 	case Opt_usrquota:
4044 		if (fc->user_ns != &init_user_ns)
4045 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4046 		ctx->seen |= SHMEM_SEEN_QUOTA;
4047 		ctx->quota_types |= QTYPE_MASK_USR;
4048 		break;
4049 	case Opt_grpquota:
4050 		if (fc->user_ns != &init_user_ns)
4051 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4052 		ctx->seen |= SHMEM_SEEN_QUOTA;
4053 		ctx->quota_types |= QTYPE_MASK_GRP;
4054 		break;
4055 	case Opt_usrquota_block_hardlimit:
4056 		size = memparse(param->string, &rest);
4057 		if (*rest || !size)
4058 			goto bad_value;
4059 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4060 			return invalfc(fc,
4061 				       "User quota block hardlimit too large.");
4062 		ctx->qlimits.usrquota_bhardlimit = size;
4063 		break;
4064 	case Opt_grpquota_block_hardlimit:
4065 		size = memparse(param->string, &rest);
4066 		if (*rest || !size)
4067 			goto bad_value;
4068 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4069 			return invalfc(fc,
4070 				       "Group quota block hardlimit too large.");
4071 		ctx->qlimits.grpquota_bhardlimit = size;
4072 		break;
4073 	case Opt_usrquota_inode_hardlimit:
4074 		size = memparse(param->string, &rest);
4075 		if (*rest || !size)
4076 			goto bad_value;
4077 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4078 			return invalfc(fc,
4079 				       "User quota inode hardlimit too large.");
4080 		ctx->qlimits.usrquota_ihardlimit = size;
4081 		break;
4082 	case Opt_grpquota_inode_hardlimit:
4083 		size = memparse(param->string, &rest);
4084 		if (*rest || !size)
4085 			goto bad_value;
4086 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4087 			return invalfc(fc,
4088 				       "Group quota inode hardlimit too large.");
4089 		ctx->qlimits.grpquota_ihardlimit = size;
4090 		break;
4091 	}
4092 	return 0;
4093 
4094 unsupported_parameter:
4095 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4096 bad_value:
4097 	return invalfc(fc, "Bad value for '%s'", param->key);
4098 }
4099 
4100 static int shmem_parse_options(struct fs_context *fc, void *data)
4101 {
4102 	char *options = data;
4103 
4104 	if (options) {
4105 		int err = security_sb_eat_lsm_opts(options, &fc->security);
4106 		if (err)
4107 			return err;
4108 	}
4109 
4110 	while (options != NULL) {
4111 		char *this_char = options;
4112 		for (;;) {
4113 			/*
4114 			 * NUL-terminate this option: unfortunately,
4115 			 * mount options form a comma-separated list,
4116 			 * but mpol's nodelist may also contain commas.
4117 			 */
4118 			options = strchr(options, ',');
4119 			if (options == NULL)
4120 				break;
4121 			options++;
4122 			if (!isdigit(*options)) {
4123 				options[-1] = '\0';
4124 				break;
4125 			}
4126 		}
4127 		if (*this_char) {
4128 			char *value = strchr(this_char, '=');
4129 			size_t len = 0;
4130 			int err;
4131 
4132 			if (value) {
4133 				*value++ = '\0';
4134 				len = strlen(value);
4135 			}
4136 			err = vfs_parse_fs_string(fc, this_char, value, len);
4137 			if (err < 0)
4138 				return err;
4139 		}
4140 	}
4141 	return 0;
4142 }
4143 
4144 /*
4145  * Reconfigure a shmem filesystem.
4146  */
4147 static int shmem_reconfigure(struct fs_context *fc)
4148 {
4149 	struct shmem_options *ctx = fc->fs_private;
4150 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4151 	unsigned long used_isp;
4152 	struct mempolicy *mpol = NULL;
4153 	const char *err;
4154 
4155 	raw_spin_lock(&sbinfo->stat_lock);
4156 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4157 
4158 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4159 		if (!sbinfo->max_blocks) {
4160 			err = "Cannot retroactively limit size";
4161 			goto out;
4162 		}
4163 		if (percpu_counter_compare(&sbinfo->used_blocks,
4164 					   ctx->blocks) > 0) {
4165 			err = "Too small a size for current use";
4166 			goto out;
4167 		}
4168 	}
4169 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4170 		if (!sbinfo->max_inodes) {
4171 			err = "Cannot retroactively limit inodes";
4172 			goto out;
4173 		}
4174 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4175 			err = "Too few inodes for current use";
4176 			goto out;
4177 		}
4178 	}
4179 
4180 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4181 	    sbinfo->next_ino > UINT_MAX) {
4182 		err = "Current inum too high to switch to 32-bit inums";
4183 		goto out;
4184 	}
4185 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4186 		err = "Cannot disable swap on remount";
4187 		goto out;
4188 	}
4189 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4190 		err = "Cannot enable swap on remount if it was disabled on first mount";
4191 		goto out;
4192 	}
4193 
4194 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4195 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4196 		err = "Cannot enable quota on remount";
4197 		goto out;
4198 	}
4199 
4200 #ifdef CONFIG_TMPFS_QUOTA
4201 #define CHANGED_LIMIT(name)						\
4202 	(ctx->qlimits.name## hardlimit &&				\
4203 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4204 
4205 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4206 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4207 		err = "Cannot change global quota limit on remount";
4208 		goto out;
4209 	}
4210 #endif /* CONFIG_TMPFS_QUOTA */
4211 
4212 	if (ctx->seen & SHMEM_SEEN_HUGE)
4213 		sbinfo->huge = ctx->huge;
4214 	if (ctx->seen & SHMEM_SEEN_INUMS)
4215 		sbinfo->full_inums = ctx->full_inums;
4216 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4217 		sbinfo->max_blocks  = ctx->blocks;
4218 	if (ctx->seen & SHMEM_SEEN_INODES) {
4219 		sbinfo->max_inodes  = ctx->inodes;
4220 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4221 	}
4222 
4223 	/*
4224 	 * Preserve previous mempolicy unless mpol remount option was specified.
4225 	 */
4226 	if (ctx->mpol) {
4227 		mpol = sbinfo->mpol;
4228 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4229 		ctx->mpol = NULL;
4230 	}
4231 
4232 	if (ctx->noswap)
4233 		sbinfo->noswap = true;
4234 
4235 	raw_spin_unlock(&sbinfo->stat_lock);
4236 	mpol_put(mpol);
4237 	return 0;
4238 out:
4239 	raw_spin_unlock(&sbinfo->stat_lock);
4240 	return invalfc(fc, "%s", err);
4241 }
4242 
4243 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4244 {
4245 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4246 	struct mempolicy *mpol;
4247 
4248 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4249 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4250 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4251 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4252 	if (sbinfo->mode != (0777 | S_ISVTX))
4253 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4254 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4255 		seq_printf(seq, ",uid=%u",
4256 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4257 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4258 		seq_printf(seq, ",gid=%u",
4259 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4260 
4261 	/*
4262 	 * Showing inode{64,32} might be useful even if it's the system default,
4263 	 * since then people don't have to resort to checking both here and
4264 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4265 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4266 	 *
4267 	 * We hide it when inode64 isn't the default and we are using 32-bit
4268 	 * inodes, since that probably just means the feature isn't even under
4269 	 * consideration.
4270 	 *
4271 	 * As such:
4272 	 *
4273 	 *                     +-----------------+-----------------+
4274 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4275 	 *  +------------------+-----------------+-----------------+
4276 	 *  | full_inums=true  | show            | show            |
4277 	 *  | full_inums=false | show            | hide            |
4278 	 *  +------------------+-----------------+-----------------+
4279 	 *
4280 	 */
4281 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4282 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4283 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4284 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4285 	if (sbinfo->huge)
4286 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4287 #endif
4288 	mpol = shmem_get_sbmpol(sbinfo);
4289 	shmem_show_mpol(seq, mpol);
4290 	mpol_put(mpol);
4291 	if (sbinfo->noswap)
4292 		seq_printf(seq, ",noswap");
4293 #ifdef CONFIG_TMPFS_QUOTA
4294 	if (sb_has_quota_active(root->d_sb, USRQUOTA))
4295 		seq_printf(seq, ",usrquota");
4296 	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4297 		seq_printf(seq, ",grpquota");
4298 	if (sbinfo->qlimits.usrquota_bhardlimit)
4299 		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4300 			   sbinfo->qlimits.usrquota_bhardlimit);
4301 	if (sbinfo->qlimits.grpquota_bhardlimit)
4302 		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4303 			   sbinfo->qlimits.grpquota_bhardlimit);
4304 	if (sbinfo->qlimits.usrquota_ihardlimit)
4305 		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4306 			   sbinfo->qlimits.usrquota_ihardlimit);
4307 	if (sbinfo->qlimits.grpquota_ihardlimit)
4308 		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4309 			   sbinfo->qlimits.grpquota_ihardlimit);
4310 #endif
4311 	return 0;
4312 }
4313 
4314 #endif /* CONFIG_TMPFS */
4315 
4316 static void shmem_put_super(struct super_block *sb)
4317 {
4318 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4319 
4320 #ifdef CONFIG_TMPFS_QUOTA
4321 	shmem_disable_quotas(sb);
4322 #endif
4323 	free_percpu(sbinfo->ino_batch);
4324 	percpu_counter_destroy(&sbinfo->used_blocks);
4325 	mpol_put(sbinfo->mpol);
4326 	kfree(sbinfo);
4327 	sb->s_fs_info = NULL;
4328 }
4329 
4330 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4331 {
4332 	struct shmem_options *ctx = fc->fs_private;
4333 	struct inode *inode;
4334 	struct shmem_sb_info *sbinfo;
4335 	int error = -ENOMEM;
4336 
4337 	/* Round up to L1_CACHE_BYTES to resist false sharing */
4338 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4339 				L1_CACHE_BYTES), GFP_KERNEL);
4340 	if (!sbinfo)
4341 		return error;
4342 
4343 	sb->s_fs_info = sbinfo;
4344 
4345 #ifdef CONFIG_TMPFS
4346 	/*
4347 	 * Per default we only allow half of the physical ram per
4348 	 * tmpfs instance, limiting inodes to one per page of lowmem;
4349 	 * but the internal instance is left unlimited.
4350 	 */
4351 	if (!(sb->s_flags & SB_KERNMOUNT)) {
4352 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4353 			ctx->blocks = shmem_default_max_blocks();
4354 		if (!(ctx->seen & SHMEM_SEEN_INODES))
4355 			ctx->inodes = shmem_default_max_inodes();
4356 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4357 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4358 		sbinfo->noswap = ctx->noswap;
4359 	} else {
4360 		sb->s_flags |= SB_NOUSER;
4361 	}
4362 	sb->s_export_op = &shmem_export_ops;
4363 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4364 #else
4365 	sb->s_flags |= SB_NOUSER;
4366 #endif
4367 	sbinfo->max_blocks = ctx->blocks;
4368 	sbinfo->max_inodes = ctx->inodes;
4369 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4370 	if (sb->s_flags & SB_KERNMOUNT) {
4371 		sbinfo->ino_batch = alloc_percpu(ino_t);
4372 		if (!sbinfo->ino_batch)
4373 			goto failed;
4374 	}
4375 	sbinfo->uid = ctx->uid;
4376 	sbinfo->gid = ctx->gid;
4377 	sbinfo->full_inums = ctx->full_inums;
4378 	sbinfo->mode = ctx->mode;
4379 	sbinfo->huge = ctx->huge;
4380 	sbinfo->mpol = ctx->mpol;
4381 	ctx->mpol = NULL;
4382 
4383 	raw_spin_lock_init(&sbinfo->stat_lock);
4384 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4385 		goto failed;
4386 	spin_lock_init(&sbinfo->shrinklist_lock);
4387 	INIT_LIST_HEAD(&sbinfo->shrinklist);
4388 
4389 	sb->s_maxbytes = MAX_LFS_FILESIZE;
4390 	sb->s_blocksize = PAGE_SIZE;
4391 	sb->s_blocksize_bits = PAGE_SHIFT;
4392 	sb->s_magic = TMPFS_MAGIC;
4393 	sb->s_op = &shmem_ops;
4394 	sb->s_time_gran = 1;
4395 #ifdef CONFIG_TMPFS_XATTR
4396 	sb->s_xattr = shmem_xattr_handlers;
4397 #endif
4398 #ifdef CONFIG_TMPFS_POSIX_ACL
4399 	sb->s_flags |= SB_POSIXACL;
4400 #endif
4401 	uuid_t uuid;
4402 	uuid_gen(&uuid);
4403 	super_set_uuid(sb, uuid.b, sizeof(uuid));
4404 
4405 #ifdef CONFIG_TMPFS_QUOTA
4406 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4407 		sb->dq_op = &shmem_quota_operations;
4408 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4409 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4410 
4411 		/* Copy the default limits from ctx into sbinfo */
4412 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4413 		       sizeof(struct shmem_quota_limits));
4414 
4415 		if (shmem_enable_quotas(sb, ctx->quota_types))
4416 			goto failed;
4417 	}
4418 #endif /* CONFIG_TMPFS_QUOTA */
4419 
4420 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
4421 				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
4422 	if (IS_ERR(inode)) {
4423 		error = PTR_ERR(inode);
4424 		goto failed;
4425 	}
4426 	inode->i_uid = sbinfo->uid;
4427 	inode->i_gid = sbinfo->gid;
4428 	sb->s_root = d_make_root(inode);
4429 	if (!sb->s_root)
4430 		goto failed;
4431 	return 0;
4432 
4433 failed:
4434 	shmem_put_super(sb);
4435 	return error;
4436 }
4437 
4438 static int shmem_get_tree(struct fs_context *fc)
4439 {
4440 	return get_tree_nodev(fc, shmem_fill_super);
4441 }
4442 
4443 static void shmem_free_fc(struct fs_context *fc)
4444 {
4445 	struct shmem_options *ctx = fc->fs_private;
4446 
4447 	if (ctx) {
4448 		mpol_put(ctx->mpol);
4449 		kfree(ctx);
4450 	}
4451 }
4452 
4453 static const struct fs_context_operations shmem_fs_context_ops = {
4454 	.free			= shmem_free_fc,
4455 	.get_tree		= shmem_get_tree,
4456 #ifdef CONFIG_TMPFS
4457 	.parse_monolithic	= shmem_parse_options,
4458 	.parse_param		= shmem_parse_one,
4459 	.reconfigure		= shmem_reconfigure,
4460 #endif
4461 };
4462 
4463 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4464 
4465 static struct inode *shmem_alloc_inode(struct super_block *sb)
4466 {
4467 	struct shmem_inode_info *info;
4468 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4469 	if (!info)
4470 		return NULL;
4471 	return &info->vfs_inode;
4472 }
4473 
4474 static void shmem_free_in_core_inode(struct inode *inode)
4475 {
4476 	if (S_ISLNK(inode->i_mode))
4477 		kfree(inode->i_link);
4478 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4479 }
4480 
4481 static void shmem_destroy_inode(struct inode *inode)
4482 {
4483 	if (S_ISREG(inode->i_mode))
4484 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4485 	if (S_ISDIR(inode->i_mode))
4486 		simple_offset_destroy(shmem_get_offset_ctx(inode));
4487 }
4488 
4489 static void shmem_init_inode(void *foo)
4490 {
4491 	struct shmem_inode_info *info = foo;
4492 	inode_init_once(&info->vfs_inode);
4493 }
4494 
4495 static void __init shmem_init_inodecache(void)
4496 {
4497 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4498 				sizeof(struct shmem_inode_info),
4499 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4500 }
4501 
4502 static void __init shmem_destroy_inodecache(void)
4503 {
4504 	kmem_cache_destroy(shmem_inode_cachep);
4505 }
4506 
4507 /* Keep the page in page cache instead of truncating it */
4508 static int shmem_error_remove_folio(struct address_space *mapping,
4509 				   struct folio *folio)
4510 {
4511 	return 0;
4512 }
4513 
4514 static const struct address_space_operations shmem_aops = {
4515 	.writepage	= shmem_writepage,
4516 	.dirty_folio	= noop_dirty_folio,
4517 #ifdef CONFIG_TMPFS
4518 	.write_begin	= shmem_write_begin,
4519 	.write_end	= shmem_write_end,
4520 #endif
4521 #ifdef CONFIG_MIGRATION
4522 	.migrate_folio	= migrate_folio,
4523 #endif
4524 	.error_remove_folio = shmem_error_remove_folio,
4525 };
4526 
4527 static const struct file_operations shmem_file_operations = {
4528 	.mmap		= shmem_mmap,
4529 	.open		= shmem_file_open,
4530 	.get_unmapped_area = shmem_get_unmapped_area,
4531 #ifdef CONFIG_TMPFS
4532 	.llseek		= shmem_file_llseek,
4533 	.read_iter	= shmem_file_read_iter,
4534 	.write_iter	= shmem_file_write_iter,
4535 	.fsync		= noop_fsync,
4536 	.splice_read	= shmem_file_splice_read,
4537 	.splice_write	= iter_file_splice_write,
4538 	.fallocate	= shmem_fallocate,
4539 #endif
4540 };
4541 
4542 static const struct inode_operations shmem_inode_operations = {
4543 	.getattr	= shmem_getattr,
4544 	.setattr	= shmem_setattr,
4545 #ifdef CONFIG_TMPFS_XATTR
4546 	.listxattr	= shmem_listxattr,
4547 	.set_acl	= simple_set_acl,
4548 	.fileattr_get	= shmem_fileattr_get,
4549 	.fileattr_set	= shmem_fileattr_set,
4550 #endif
4551 };
4552 
4553 static const struct inode_operations shmem_dir_inode_operations = {
4554 #ifdef CONFIG_TMPFS
4555 	.getattr	= shmem_getattr,
4556 	.create		= shmem_create,
4557 	.lookup		= simple_lookup,
4558 	.link		= shmem_link,
4559 	.unlink		= shmem_unlink,
4560 	.symlink	= shmem_symlink,
4561 	.mkdir		= shmem_mkdir,
4562 	.rmdir		= shmem_rmdir,
4563 	.mknod		= shmem_mknod,
4564 	.rename		= shmem_rename2,
4565 	.tmpfile	= shmem_tmpfile,
4566 	.get_offset_ctx	= shmem_get_offset_ctx,
4567 #endif
4568 #ifdef CONFIG_TMPFS_XATTR
4569 	.listxattr	= shmem_listxattr,
4570 	.fileattr_get	= shmem_fileattr_get,
4571 	.fileattr_set	= shmem_fileattr_set,
4572 #endif
4573 #ifdef CONFIG_TMPFS_POSIX_ACL
4574 	.setattr	= shmem_setattr,
4575 	.set_acl	= simple_set_acl,
4576 #endif
4577 };
4578 
4579 static const struct inode_operations shmem_special_inode_operations = {
4580 	.getattr	= shmem_getattr,
4581 #ifdef CONFIG_TMPFS_XATTR
4582 	.listxattr	= shmem_listxattr,
4583 #endif
4584 #ifdef CONFIG_TMPFS_POSIX_ACL
4585 	.setattr	= shmem_setattr,
4586 	.set_acl	= simple_set_acl,
4587 #endif
4588 };
4589 
4590 static const struct super_operations shmem_ops = {
4591 	.alloc_inode	= shmem_alloc_inode,
4592 	.free_inode	= shmem_free_in_core_inode,
4593 	.destroy_inode	= shmem_destroy_inode,
4594 #ifdef CONFIG_TMPFS
4595 	.statfs		= shmem_statfs,
4596 	.show_options	= shmem_show_options,
4597 #endif
4598 #ifdef CONFIG_TMPFS_QUOTA
4599 	.get_dquots	= shmem_get_dquots,
4600 #endif
4601 	.evict_inode	= shmem_evict_inode,
4602 	.drop_inode	= generic_delete_inode,
4603 	.put_super	= shmem_put_super,
4604 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4605 	.nr_cached_objects	= shmem_unused_huge_count,
4606 	.free_cached_objects	= shmem_unused_huge_scan,
4607 #endif
4608 };
4609 
4610 static const struct vm_operations_struct shmem_vm_ops = {
4611 	.fault		= shmem_fault,
4612 	.map_pages	= filemap_map_pages,
4613 #ifdef CONFIG_NUMA
4614 	.set_policy     = shmem_set_policy,
4615 	.get_policy     = shmem_get_policy,
4616 #endif
4617 };
4618 
4619 static const struct vm_operations_struct shmem_anon_vm_ops = {
4620 	.fault		= shmem_fault,
4621 	.map_pages	= filemap_map_pages,
4622 #ifdef CONFIG_NUMA
4623 	.set_policy     = shmem_set_policy,
4624 	.get_policy     = shmem_get_policy,
4625 #endif
4626 };
4627 
4628 int shmem_init_fs_context(struct fs_context *fc)
4629 {
4630 	struct shmem_options *ctx;
4631 
4632 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4633 	if (!ctx)
4634 		return -ENOMEM;
4635 
4636 	ctx->mode = 0777 | S_ISVTX;
4637 	ctx->uid = current_fsuid();
4638 	ctx->gid = current_fsgid();
4639 
4640 	fc->fs_private = ctx;
4641 	fc->ops = &shmem_fs_context_ops;
4642 	return 0;
4643 }
4644 
4645 static struct file_system_type shmem_fs_type = {
4646 	.owner		= THIS_MODULE,
4647 	.name		= "tmpfs",
4648 	.init_fs_context = shmem_init_fs_context,
4649 #ifdef CONFIG_TMPFS
4650 	.parameters	= shmem_fs_parameters,
4651 #endif
4652 	.kill_sb	= kill_litter_super,
4653 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4654 };
4655 
4656 void __init shmem_init(void)
4657 {
4658 	int error;
4659 
4660 	shmem_init_inodecache();
4661 
4662 #ifdef CONFIG_TMPFS_QUOTA
4663 	error = register_quota_format(&shmem_quota_format);
4664 	if (error < 0) {
4665 		pr_err("Could not register quota format\n");
4666 		goto out3;
4667 	}
4668 #endif
4669 
4670 	error = register_filesystem(&shmem_fs_type);
4671 	if (error) {
4672 		pr_err("Could not register tmpfs\n");
4673 		goto out2;
4674 	}
4675 
4676 	shm_mnt = kern_mount(&shmem_fs_type);
4677 	if (IS_ERR(shm_mnt)) {
4678 		error = PTR_ERR(shm_mnt);
4679 		pr_err("Could not kern_mount tmpfs\n");
4680 		goto out1;
4681 	}
4682 
4683 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4684 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4685 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4686 	else
4687 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4688 #endif
4689 	return;
4690 
4691 out1:
4692 	unregister_filesystem(&shmem_fs_type);
4693 out2:
4694 #ifdef CONFIG_TMPFS_QUOTA
4695 	unregister_quota_format(&shmem_quota_format);
4696 out3:
4697 #endif
4698 	shmem_destroy_inodecache();
4699 	shm_mnt = ERR_PTR(error);
4700 }
4701 
4702 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4703 static ssize_t shmem_enabled_show(struct kobject *kobj,
4704 				  struct kobj_attribute *attr, char *buf)
4705 {
4706 	static const int values[] = {
4707 		SHMEM_HUGE_ALWAYS,
4708 		SHMEM_HUGE_WITHIN_SIZE,
4709 		SHMEM_HUGE_ADVISE,
4710 		SHMEM_HUGE_NEVER,
4711 		SHMEM_HUGE_DENY,
4712 		SHMEM_HUGE_FORCE,
4713 	};
4714 	int len = 0;
4715 	int i;
4716 
4717 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4718 		len += sysfs_emit_at(buf, len,
4719 				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4720 				i ? " " : "", shmem_format_huge(values[i]));
4721 	}
4722 	len += sysfs_emit_at(buf, len, "\n");
4723 
4724 	return len;
4725 }
4726 
4727 static ssize_t shmem_enabled_store(struct kobject *kobj,
4728 		struct kobj_attribute *attr, const char *buf, size_t count)
4729 {
4730 	char tmp[16];
4731 	int huge;
4732 
4733 	if (count + 1 > sizeof(tmp))
4734 		return -EINVAL;
4735 	memcpy(tmp, buf, count);
4736 	tmp[count] = '\0';
4737 	if (count && tmp[count - 1] == '\n')
4738 		tmp[count - 1] = '\0';
4739 
4740 	huge = shmem_parse_huge(tmp);
4741 	if (huge == -EINVAL)
4742 		return -EINVAL;
4743 	if (!has_transparent_hugepage() &&
4744 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4745 		return -EINVAL;
4746 
4747 	shmem_huge = huge;
4748 	if (shmem_huge > SHMEM_HUGE_DENY)
4749 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4750 	return count;
4751 }
4752 
4753 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4754 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4755 
4756 #else /* !CONFIG_SHMEM */
4757 
4758 /*
4759  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4760  *
4761  * This is intended for small system where the benefits of the full
4762  * shmem code (swap-backed and resource-limited) are outweighed by
4763  * their complexity. On systems without swap this code should be
4764  * effectively equivalent, but much lighter weight.
4765  */
4766 
4767 static struct file_system_type shmem_fs_type = {
4768 	.name		= "tmpfs",
4769 	.init_fs_context = ramfs_init_fs_context,
4770 	.parameters	= ramfs_fs_parameters,
4771 	.kill_sb	= ramfs_kill_sb,
4772 	.fs_flags	= FS_USERNS_MOUNT,
4773 };
4774 
4775 void __init shmem_init(void)
4776 {
4777 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4778 
4779 	shm_mnt = kern_mount(&shmem_fs_type);
4780 	BUG_ON(IS_ERR(shm_mnt));
4781 }
4782 
4783 int shmem_unuse(unsigned int type)
4784 {
4785 	return 0;
4786 }
4787 
4788 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4789 {
4790 	return 0;
4791 }
4792 
4793 void shmem_unlock_mapping(struct address_space *mapping)
4794 {
4795 }
4796 
4797 #ifdef CONFIG_MMU
4798 unsigned long shmem_get_unmapped_area(struct file *file,
4799 				      unsigned long addr, unsigned long len,
4800 				      unsigned long pgoff, unsigned long flags)
4801 {
4802 	return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
4803 }
4804 #endif
4805 
4806 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4807 {
4808 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4809 }
4810 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4811 
4812 #define shmem_vm_ops				generic_file_vm_ops
4813 #define shmem_anon_vm_ops			generic_file_vm_ops
4814 #define shmem_file_operations			ramfs_file_operations
4815 #define shmem_acct_size(flags, size)		0
4816 #define shmem_unacct_size(flags, size)		do {} while (0)
4817 
4818 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
4819 				struct super_block *sb, struct inode *dir,
4820 				umode_t mode, dev_t dev, unsigned long flags)
4821 {
4822 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
4823 	return inode ? inode : ERR_PTR(-ENOSPC);
4824 }
4825 
4826 #endif /* CONFIG_SHMEM */
4827 
4828 /* common code */
4829 
4830 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
4831 			loff_t size, unsigned long flags, unsigned int i_flags)
4832 {
4833 	struct inode *inode;
4834 	struct file *res;
4835 
4836 	if (IS_ERR(mnt))
4837 		return ERR_CAST(mnt);
4838 
4839 	if (size < 0 || size > MAX_LFS_FILESIZE)
4840 		return ERR_PTR(-EINVAL);
4841 
4842 	if (shmem_acct_size(flags, size))
4843 		return ERR_PTR(-ENOMEM);
4844 
4845 	if (is_idmapped_mnt(mnt))
4846 		return ERR_PTR(-EINVAL);
4847 
4848 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4849 				S_IFREG | S_IRWXUGO, 0, flags);
4850 	if (IS_ERR(inode)) {
4851 		shmem_unacct_size(flags, size);
4852 		return ERR_CAST(inode);
4853 	}
4854 	inode->i_flags |= i_flags;
4855 	inode->i_size = size;
4856 	clear_nlink(inode);	/* It is unlinked */
4857 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4858 	if (!IS_ERR(res))
4859 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4860 				&shmem_file_operations);
4861 	if (IS_ERR(res))
4862 		iput(inode);
4863 	return res;
4864 }
4865 
4866 /**
4867  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4868  * 	kernel internal.  There will be NO LSM permission checks against the
4869  * 	underlying inode.  So users of this interface must do LSM checks at a
4870  *	higher layer.  The users are the big_key and shm implementations.  LSM
4871  *	checks are provided at the key or shm level rather than the inode.
4872  * @name: name for dentry (to be seen in /proc/<pid>/maps
4873  * @size: size to be set for the file
4874  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4875  */
4876 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4877 {
4878 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4879 }
4880 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
4881 
4882 /**
4883  * shmem_file_setup - get an unlinked file living in tmpfs
4884  * @name: name for dentry (to be seen in /proc/<pid>/maps
4885  * @size: size to be set for the file
4886  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4887  */
4888 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4889 {
4890 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4891 }
4892 EXPORT_SYMBOL_GPL(shmem_file_setup);
4893 
4894 /**
4895  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4896  * @mnt: the tmpfs mount where the file will be created
4897  * @name: name for dentry (to be seen in /proc/<pid>/maps
4898  * @size: size to be set for the file
4899  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4900  */
4901 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4902 				       loff_t size, unsigned long flags)
4903 {
4904 	return __shmem_file_setup(mnt, name, size, flags, 0);
4905 }
4906 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4907 
4908 /**
4909  * shmem_zero_setup - setup a shared anonymous mapping
4910  * @vma: the vma to be mmapped is prepared by do_mmap
4911  */
4912 int shmem_zero_setup(struct vm_area_struct *vma)
4913 {
4914 	struct file *file;
4915 	loff_t size = vma->vm_end - vma->vm_start;
4916 
4917 	/*
4918 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4919 	 * between XFS directory reading and selinux: since this file is only
4920 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4921 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4922 	 */
4923 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4924 	if (IS_ERR(file))
4925 		return PTR_ERR(file);
4926 
4927 	if (vma->vm_file)
4928 		fput(vma->vm_file);
4929 	vma->vm_file = file;
4930 	vma->vm_ops = &shmem_anon_vm_ops;
4931 
4932 	return 0;
4933 }
4934 
4935 /**
4936  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4937  * @mapping:	the folio's address_space
4938  * @index:	the folio index
4939  * @gfp:	the page allocator flags to use if allocating
4940  *
4941  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4942  * with any new page allocations done using the specified allocation flags.
4943  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4944  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4945  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4946  *
4947  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4948  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4949  */
4950 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4951 		pgoff_t index, gfp_t gfp)
4952 {
4953 #ifdef CONFIG_SHMEM
4954 	struct inode *inode = mapping->host;
4955 	struct folio *folio;
4956 	int error;
4957 
4958 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4959 				    gfp, NULL, NULL);
4960 	if (error)
4961 		return ERR_PTR(error);
4962 
4963 	folio_unlock(folio);
4964 	return folio;
4965 #else
4966 	/*
4967 	 * The tiny !SHMEM case uses ramfs without swap
4968 	 */
4969 	return mapping_read_folio_gfp(mapping, index, gfp);
4970 #endif
4971 }
4972 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4973 
4974 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4975 					 pgoff_t index, gfp_t gfp)
4976 {
4977 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4978 	struct page *page;
4979 
4980 	if (IS_ERR(folio))
4981 		return &folio->page;
4982 
4983 	page = folio_file_page(folio, index);
4984 	if (PageHWPoison(page)) {
4985 		folio_put(folio);
4986 		return ERR_PTR(-EIO);
4987 	}
4988 
4989 	return page;
4990 }
4991 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4992