1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include <linux/unicode.h> 44 #include "swap.h" 45 46 static struct vfsmount *shm_mnt __ro_after_init; 47 48 #ifdef CONFIG_SHMEM 49 /* 50 * This virtual memory filesystem is heavily based on the ramfs. It 51 * extends ramfs by the ability to use swap and honor resource limits 52 * which makes it a completely usable filesystem. 53 */ 54 55 #include <linux/xattr.h> 56 #include <linux/exportfs.h> 57 #include <linux/posix_acl.h> 58 #include <linux/posix_acl_xattr.h> 59 #include <linux/mman.h> 60 #include <linux/string.h> 61 #include <linux/slab.h> 62 #include <linux/backing-dev.h> 63 #include <linux/writeback.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 #include <linux/quotaops.h> 83 #include <linux/rcupdate_wait.h> 84 85 #include <linux/uaccess.h> 86 87 #include "internal.h" 88 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Pretend that one inode + its dentry occupy this much memory */ 95 #define BOGO_INODE_SIZE 1024 96 97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 98 #define SHORT_SYMLINK_LEN 128 99 100 /* 101 * shmem_fallocate communicates with shmem_fault or shmem_writeout via 102 * inode->i_private (with i_rwsem making sure that it has only one user at 103 * a time): we would prefer not to enlarge the shmem inode just for that. 104 */ 105 struct shmem_falloc { 106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 107 pgoff_t start; /* start of range currently being fallocated */ 108 pgoff_t next; /* the next page offset to be fallocated */ 109 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 110 pgoff_t nr_unswapped; /* how often writeout refused to swap out */ 111 }; 112 113 struct shmem_options { 114 unsigned long long blocks; 115 unsigned long long inodes; 116 struct mempolicy *mpol; 117 kuid_t uid; 118 kgid_t gid; 119 umode_t mode; 120 bool full_inums; 121 int huge; 122 int seen; 123 bool noswap; 124 unsigned short quota_types; 125 struct shmem_quota_limits qlimits; 126 #if IS_ENABLED(CONFIG_UNICODE) 127 struct unicode_map *encoding; 128 bool strict_encoding; 129 #endif 130 #define SHMEM_SEEN_BLOCKS 1 131 #define SHMEM_SEEN_INODES 2 132 #define SHMEM_SEEN_HUGE 4 133 #define SHMEM_SEEN_INUMS 8 134 #define SHMEM_SEEN_NOSWAP 16 135 #define SHMEM_SEEN_QUOTA 32 136 }; 137 138 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 139 static unsigned long huge_shmem_orders_always __read_mostly; 140 static unsigned long huge_shmem_orders_madvise __read_mostly; 141 static unsigned long huge_shmem_orders_inherit __read_mostly; 142 static unsigned long huge_shmem_orders_within_size __read_mostly; 143 static bool shmem_orders_configured __initdata; 144 #endif 145 146 #ifdef CONFIG_TMPFS 147 static unsigned long shmem_default_max_blocks(void) 148 { 149 return totalram_pages() / 2; 150 } 151 152 static unsigned long shmem_default_max_inodes(void) 153 { 154 unsigned long nr_pages = totalram_pages(); 155 156 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 157 ULONG_MAX / BOGO_INODE_SIZE); 158 } 159 #endif 160 161 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 162 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 163 struct vm_area_struct *vma, vm_fault_t *fault_type); 164 165 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 166 { 167 return sb->s_fs_info; 168 } 169 170 /* 171 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 172 * for shared memory and for shared anonymous (/dev/zero) mappings 173 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 174 * consistent with the pre-accounting of private mappings ... 175 */ 176 static inline int shmem_acct_size(unsigned long flags, loff_t size) 177 { 178 return (flags & VM_NORESERVE) ? 179 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 180 } 181 182 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 183 { 184 if (!(flags & VM_NORESERVE)) 185 vm_unacct_memory(VM_ACCT(size)); 186 } 187 188 static inline int shmem_reacct_size(unsigned long flags, 189 loff_t oldsize, loff_t newsize) 190 { 191 if (!(flags & VM_NORESERVE)) { 192 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 193 return security_vm_enough_memory_mm(current->mm, 194 VM_ACCT(newsize) - VM_ACCT(oldsize)); 195 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 196 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 197 } 198 return 0; 199 } 200 201 /* 202 * ... whereas tmpfs objects are accounted incrementally as 203 * pages are allocated, in order to allow large sparse files. 204 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 205 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 206 */ 207 static inline int shmem_acct_blocks(unsigned long flags, long pages) 208 { 209 if (!(flags & VM_NORESERVE)) 210 return 0; 211 212 return security_vm_enough_memory_mm(current->mm, 213 pages * VM_ACCT(PAGE_SIZE)); 214 } 215 216 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 217 { 218 if (flags & VM_NORESERVE) 219 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 220 } 221 222 static int shmem_inode_acct_blocks(struct inode *inode, long pages) 223 { 224 struct shmem_inode_info *info = SHMEM_I(inode); 225 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 226 int err = -ENOSPC; 227 228 if (shmem_acct_blocks(info->flags, pages)) 229 return err; 230 231 might_sleep(); /* when quotas */ 232 if (sbinfo->max_blocks) { 233 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 234 sbinfo->max_blocks, pages)) 235 goto unacct; 236 237 err = dquot_alloc_block_nodirty(inode, pages); 238 if (err) { 239 percpu_counter_sub(&sbinfo->used_blocks, pages); 240 goto unacct; 241 } 242 } else { 243 err = dquot_alloc_block_nodirty(inode, pages); 244 if (err) 245 goto unacct; 246 } 247 248 return 0; 249 250 unacct: 251 shmem_unacct_blocks(info->flags, pages); 252 return err; 253 } 254 255 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 256 { 257 struct shmem_inode_info *info = SHMEM_I(inode); 258 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 259 260 might_sleep(); /* when quotas */ 261 dquot_free_block_nodirty(inode, pages); 262 263 if (sbinfo->max_blocks) 264 percpu_counter_sub(&sbinfo->used_blocks, pages); 265 shmem_unacct_blocks(info->flags, pages); 266 } 267 268 static const struct super_operations shmem_ops; 269 static const struct address_space_operations shmem_aops; 270 static const struct file_operations shmem_file_operations; 271 static const struct inode_operations shmem_inode_operations; 272 static const struct inode_operations shmem_dir_inode_operations; 273 static const struct inode_operations shmem_special_inode_operations; 274 static const struct vm_operations_struct shmem_vm_ops; 275 static const struct vm_operations_struct shmem_anon_vm_ops; 276 static struct file_system_type shmem_fs_type; 277 278 bool shmem_mapping(const struct address_space *mapping) 279 { 280 return mapping->a_ops == &shmem_aops; 281 } 282 EXPORT_SYMBOL_GPL(shmem_mapping); 283 284 bool vma_is_anon_shmem(const struct vm_area_struct *vma) 285 { 286 return vma->vm_ops == &shmem_anon_vm_ops; 287 } 288 289 bool vma_is_shmem(const struct vm_area_struct *vma) 290 { 291 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 292 } 293 294 static LIST_HEAD(shmem_swaplist); 295 static DEFINE_SPINLOCK(shmem_swaplist_lock); 296 297 #ifdef CONFIG_TMPFS_QUOTA 298 299 static int shmem_enable_quotas(struct super_block *sb, 300 unsigned short quota_types) 301 { 302 int type, err = 0; 303 304 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 305 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 306 if (!(quota_types & (1 << type))) 307 continue; 308 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 309 DQUOT_USAGE_ENABLED | 310 DQUOT_LIMITS_ENABLED); 311 if (err) 312 goto out_err; 313 } 314 return 0; 315 316 out_err: 317 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 318 type, err); 319 for (type--; type >= 0; type--) 320 dquot_quota_off(sb, type); 321 return err; 322 } 323 324 static void shmem_disable_quotas(struct super_block *sb) 325 { 326 int type; 327 328 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 329 dquot_quota_off(sb, type); 330 } 331 332 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 333 { 334 return SHMEM_I(inode)->i_dquot; 335 } 336 #endif /* CONFIG_TMPFS_QUOTA */ 337 338 /* 339 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 340 * produces a novel ino for the newly allocated inode. 341 * 342 * It may also be called when making a hard link to permit the space needed by 343 * each dentry. However, in that case, no new inode number is needed since that 344 * internally draws from another pool of inode numbers (currently global 345 * get_next_ino()). This case is indicated by passing NULL as inop. 346 */ 347 #define SHMEM_INO_BATCH 1024 348 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 349 { 350 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 351 ino_t ino; 352 353 if (!(sb->s_flags & SB_KERNMOUNT)) { 354 raw_spin_lock(&sbinfo->stat_lock); 355 if (sbinfo->max_inodes) { 356 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 357 raw_spin_unlock(&sbinfo->stat_lock); 358 return -ENOSPC; 359 } 360 sbinfo->free_ispace -= BOGO_INODE_SIZE; 361 } 362 if (inop) { 363 ino = sbinfo->next_ino++; 364 if (unlikely(is_zero_ino(ino))) 365 ino = sbinfo->next_ino++; 366 if (unlikely(!sbinfo->full_inums && 367 ino > UINT_MAX)) { 368 /* 369 * Emulate get_next_ino uint wraparound for 370 * compatibility 371 */ 372 if (IS_ENABLED(CONFIG_64BIT)) 373 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 374 __func__, MINOR(sb->s_dev)); 375 sbinfo->next_ino = 1; 376 ino = sbinfo->next_ino++; 377 } 378 *inop = ino; 379 } 380 raw_spin_unlock(&sbinfo->stat_lock); 381 } else if (inop) { 382 /* 383 * __shmem_file_setup, one of our callers, is lock-free: it 384 * doesn't hold stat_lock in shmem_reserve_inode since 385 * max_inodes is always 0, and is called from potentially 386 * unknown contexts. As such, use a per-cpu batched allocator 387 * which doesn't require the per-sb stat_lock unless we are at 388 * the batch boundary. 389 * 390 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 391 * shmem mounts are not exposed to userspace, so we don't need 392 * to worry about things like glibc compatibility. 393 */ 394 ino_t *next_ino; 395 396 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 397 ino = *next_ino; 398 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 399 raw_spin_lock(&sbinfo->stat_lock); 400 ino = sbinfo->next_ino; 401 sbinfo->next_ino += SHMEM_INO_BATCH; 402 raw_spin_unlock(&sbinfo->stat_lock); 403 if (unlikely(is_zero_ino(ino))) 404 ino++; 405 } 406 *inop = ino; 407 *next_ino = ++ino; 408 put_cpu(); 409 } 410 411 return 0; 412 } 413 414 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 415 { 416 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 417 if (sbinfo->max_inodes) { 418 raw_spin_lock(&sbinfo->stat_lock); 419 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 420 raw_spin_unlock(&sbinfo->stat_lock); 421 } 422 } 423 424 /** 425 * shmem_recalc_inode - recalculate the block usage of an inode 426 * @inode: inode to recalc 427 * @alloced: the change in number of pages allocated to inode 428 * @swapped: the change in number of pages swapped from inode 429 * 430 * We have to calculate the free blocks since the mm can drop 431 * undirtied hole pages behind our back. 432 * 433 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 434 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 435 * 436 * Return: true if swapped was incremented from 0, for shmem_writeout(). 437 */ 438 static bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 439 { 440 struct shmem_inode_info *info = SHMEM_I(inode); 441 bool first_swapped = false; 442 long freed; 443 444 spin_lock(&info->lock); 445 info->alloced += alloced; 446 info->swapped += swapped; 447 freed = info->alloced - info->swapped - 448 READ_ONCE(inode->i_mapping->nrpages); 449 /* 450 * Special case: whereas normally shmem_recalc_inode() is called 451 * after i_mapping->nrpages has already been adjusted (up or down), 452 * shmem_writeout() has to raise swapped before nrpages is lowered - 453 * to stop a racing shmem_recalc_inode() from thinking that a page has 454 * been freed. Compensate here, to avoid the need for a followup call. 455 */ 456 if (swapped > 0) { 457 if (info->swapped == swapped) 458 first_swapped = true; 459 freed += swapped; 460 } 461 if (freed > 0) 462 info->alloced -= freed; 463 spin_unlock(&info->lock); 464 465 /* The quota case may block */ 466 if (freed > 0) 467 shmem_inode_unacct_blocks(inode, freed); 468 return first_swapped; 469 } 470 471 bool shmem_charge(struct inode *inode, long pages) 472 { 473 struct address_space *mapping = inode->i_mapping; 474 475 if (shmem_inode_acct_blocks(inode, pages)) 476 return false; 477 478 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 479 xa_lock_irq(&mapping->i_pages); 480 mapping->nrpages += pages; 481 xa_unlock_irq(&mapping->i_pages); 482 483 shmem_recalc_inode(inode, pages, 0); 484 return true; 485 } 486 487 void shmem_uncharge(struct inode *inode, long pages) 488 { 489 /* pages argument is currently unused: keep it to help debugging */ 490 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 491 492 shmem_recalc_inode(inode, 0, 0); 493 } 494 495 /* 496 * Replace item expected in xarray by a new item, while holding xa_lock. 497 */ 498 static int shmem_replace_entry(struct address_space *mapping, 499 pgoff_t index, void *expected, void *replacement) 500 { 501 XA_STATE(xas, &mapping->i_pages, index); 502 void *item; 503 504 VM_BUG_ON(!expected); 505 VM_BUG_ON(!replacement); 506 item = xas_load(&xas); 507 if (item != expected) 508 return -ENOENT; 509 xas_store(&xas, replacement); 510 return 0; 511 } 512 513 /* 514 * Sometimes, before we decide whether to proceed or to fail, we must check 515 * that an entry was not already brought back or split by a racing thread. 516 * 517 * Checking folio is not enough: by the time a swapcache folio is locked, it 518 * might be reused, and again be swapcache, using the same swap as before. 519 * Returns the swap entry's order if it still presents, else returns -1. 520 */ 521 static int shmem_confirm_swap(struct address_space *mapping, pgoff_t index, 522 swp_entry_t swap) 523 { 524 XA_STATE(xas, &mapping->i_pages, index); 525 int ret = -1; 526 void *entry; 527 528 rcu_read_lock(); 529 do { 530 entry = xas_load(&xas); 531 if (entry == swp_to_radix_entry(swap)) 532 ret = xas_get_order(&xas); 533 } while (xas_retry(&xas, entry)); 534 rcu_read_unlock(); 535 return ret; 536 } 537 538 /* 539 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 540 * 541 * SHMEM_HUGE_NEVER: 542 * disables huge pages for the mount; 543 * SHMEM_HUGE_ALWAYS: 544 * enables huge pages for the mount; 545 * SHMEM_HUGE_WITHIN_SIZE: 546 * only allocate huge pages if the page will be fully within i_size, 547 * also respect madvise() hints; 548 * SHMEM_HUGE_ADVISE: 549 * only allocate huge pages if requested with madvise(); 550 */ 551 552 #define SHMEM_HUGE_NEVER 0 553 #define SHMEM_HUGE_ALWAYS 1 554 #define SHMEM_HUGE_WITHIN_SIZE 2 555 #define SHMEM_HUGE_ADVISE 3 556 557 /* 558 * Special values. 559 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 560 * 561 * SHMEM_HUGE_DENY: 562 * disables huge on shm_mnt and all mounts, for emergency use; 563 * SHMEM_HUGE_FORCE: 564 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 565 * 566 */ 567 #define SHMEM_HUGE_DENY (-1) 568 #define SHMEM_HUGE_FORCE (-2) 569 570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 571 /* ifdef here to avoid bloating shmem.o when not necessary */ 572 573 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 574 static int tmpfs_huge __read_mostly = SHMEM_HUGE_NEVER; 575 576 static unsigned int shmem_get_orders_within_size(struct inode *inode, 577 unsigned long within_size_orders, pgoff_t index, 578 loff_t write_end) 579 { 580 pgoff_t aligned_index; 581 unsigned long order; 582 loff_t i_size; 583 584 order = highest_order(within_size_orders); 585 while (within_size_orders) { 586 aligned_index = round_up(index + 1, 1 << order); 587 i_size = max(write_end, i_size_read(inode)); 588 i_size = round_up(i_size, PAGE_SIZE); 589 if (i_size >> PAGE_SHIFT >= aligned_index) 590 return within_size_orders; 591 592 order = next_order(&within_size_orders, order); 593 } 594 595 return 0; 596 } 597 598 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 599 loff_t write_end, bool shmem_huge_force, 600 struct vm_area_struct *vma, 601 vm_flags_t vm_flags) 602 { 603 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ? 604 0 : BIT(HPAGE_PMD_ORDER); 605 unsigned long within_size_orders; 606 607 if (!S_ISREG(inode->i_mode)) 608 return 0; 609 if (shmem_huge == SHMEM_HUGE_DENY) 610 return 0; 611 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 612 return maybe_pmd_order; 613 614 /* 615 * The huge order allocation for anon shmem is controlled through 616 * the mTHP interface, so we still use PMD-sized huge order to 617 * check whether global control is enabled. 618 * 619 * For tmpfs mmap()'s huge order, we still use PMD-sized order to 620 * allocate huge pages due to lack of a write size hint. 621 * 622 * For tmpfs with 'huge=always' or 'huge=within_size' mount option, 623 * we will always try PMD-sized order first. If that failed, it will 624 * fall back to small large folios. 625 */ 626 switch (SHMEM_SB(inode->i_sb)->huge) { 627 case SHMEM_HUGE_ALWAYS: 628 if (vma) 629 return maybe_pmd_order; 630 631 return THP_ORDERS_ALL_FILE_DEFAULT; 632 case SHMEM_HUGE_WITHIN_SIZE: 633 if (vma) 634 within_size_orders = maybe_pmd_order; 635 else 636 within_size_orders = THP_ORDERS_ALL_FILE_DEFAULT; 637 638 within_size_orders = shmem_get_orders_within_size(inode, within_size_orders, 639 index, write_end); 640 if (within_size_orders > 0) 641 return within_size_orders; 642 643 fallthrough; 644 case SHMEM_HUGE_ADVISE: 645 if (vm_flags & VM_HUGEPAGE) 646 return maybe_pmd_order; 647 fallthrough; 648 default: 649 return 0; 650 } 651 } 652 653 static int shmem_parse_huge(const char *str) 654 { 655 int huge; 656 657 if (!str) 658 return -EINVAL; 659 660 if (!strcmp(str, "never")) 661 huge = SHMEM_HUGE_NEVER; 662 else if (!strcmp(str, "always")) 663 huge = SHMEM_HUGE_ALWAYS; 664 else if (!strcmp(str, "within_size")) 665 huge = SHMEM_HUGE_WITHIN_SIZE; 666 else if (!strcmp(str, "advise")) 667 huge = SHMEM_HUGE_ADVISE; 668 else if (!strcmp(str, "deny")) 669 huge = SHMEM_HUGE_DENY; 670 else if (!strcmp(str, "force")) 671 huge = SHMEM_HUGE_FORCE; 672 else 673 return -EINVAL; 674 675 if (!has_transparent_hugepage() && 676 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 677 return -EINVAL; 678 679 /* Do not override huge allocation policy with non-PMD sized mTHP */ 680 if (huge == SHMEM_HUGE_FORCE && 681 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER)) 682 return -EINVAL; 683 684 return huge; 685 } 686 687 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 688 static const char *shmem_format_huge(int huge) 689 { 690 switch (huge) { 691 case SHMEM_HUGE_NEVER: 692 return "never"; 693 case SHMEM_HUGE_ALWAYS: 694 return "always"; 695 case SHMEM_HUGE_WITHIN_SIZE: 696 return "within_size"; 697 case SHMEM_HUGE_ADVISE: 698 return "advise"; 699 case SHMEM_HUGE_DENY: 700 return "deny"; 701 case SHMEM_HUGE_FORCE: 702 return "force"; 703 default: 704 VM_BUG_ON(1); 705 return "bad_val"; 706 } 707 } 708 #endif 709 710 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 711 struct shrink_control *sc, unsigned long nr_to_free) 712 { 713 LIST_HEAD(list), *pos, *next; 714 struct inode *inode; 715 struct shmem_inode_info *info; 716 struct folio *folio; 717 unsigned long batch = sc ? sc->nr_to_scan : 128; 718 unsigned long split = 0, freed = 0; 719 720 if (list_empty(&sbinfo->shrinklist)) 721 return SHRINK_STOP; 722 723 spin_lock(&sbinfo->shrinklist_lock); 724 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 725 info = list_entry(pos, struct shmem_inode_info, shrinklist); 726 727 /* pin the inode */ 728 inode = igrab(&info->vfs_inode); 729 730 /* inode is about to be evicted */ 731 if (!inode) { 732 list_del_init(&info->shrinklist); 733 goto next; 734 } 735 736 list_move(&info->shrinklist, &list); 737 next: 738 sbinfo->shrinklist_len--; 739 if (!--batch) 740 break; 741 } 742 spin_unlock(&sbinfo->shrinklist_lock); 743 744 list_for_each_safe(pos, next, &list) { 745 pgoff_t next, end; 746 loff_t i_size; 747 int ret; 748 749 info = list_entry(pos, struct shmem_inode_info, shrinklist); 750 inode = &info->vfs_inode; 751 752 if (nr_to_free && freed >= nr_to_free) 753 goto move_back; 754 755 i_size = i_size_read(inode); 756 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE); 757 if (!folio || xa_is_value(folio)) 758 goto drop; 759 760 /* No large folio at the end of the file: nothing to split */ 761 if (!folio_test_large(folio)) { 762 folio_put(folio); 763 goto drop; 764 } 765 766 /* Check if there is anything to gain from splitting */ 767 next = folio_next_index(folio); 768 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE)); 769 if (end <= folio->index || end >= next) { 770 folio_put(folio); 771 goto drop; 772 } 773 774 /* 775 * Move the inode on the list back to shrinklist if we failed 776 * to lock the page at this time. 777 * 778 * Waiting for the lock may lead to deadlock in the 779 * reclaim path. 780 */ 781 if (!folio_trylock(folio)) { 782 folio_put(folio); 783 goto move_back; 784 } 785 786 ret = split_folio(folio); 787 folio_unlock(folio); 788 folio_put(folio); 789 790 /* If split failed move the inode on the list back to shrinklist */ 791 if (ret) 792 goto move_back; 793 794 freed += next - end; 795 split++; 796 drop: 797 list_del_init(&info->shrinklist); 798 goto put; 799 move_back: 800 /* 801 * Make sure the inode is either on the global list or deleted 802 * from any local list before iput() since it could be deleted 803 * in another thread once we put the inode (then the local list 804 * is corrupted). 805 */ 806 spin_lock(&sbinfo->shrinklist_lock); 807 list_move(&info->shrinklist, &sbinfo->shrinklist); 808 sbinfo->shrinklist_len++; 809 spin_unlock(&sbinfo->shrinklist_lock); 810 put: 811 iput(inode); 812 } 813 814 return split; 815 } 816 817 static long shmem_unused_huge_scan(struct super_block *sb, 818 struct shrink_control *sc) 819 { 820 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 821 822 if (!READ_ONCE(sbinfo->shrinklist_len)) 823 return SHRINK_STOP; 824 825 return shmem_unused_huge_shrink(sbinfo, sc, 0); 826 } 827 828 static long shmem_unused_huge_count(struct super_block *sb, 829 struct shrink_control *sc) 830 { 831 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 832 return READ_ONCE(sbinfo->shrinklist_len); 833 } 834 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 835 836 #define shmem_huge SHMEM_HUGE_DENY 837 838 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 839 struct shrink_control *sc, unsigned long nr_to_free) 840 { 841 return 0; 842 } 843 844 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 845 loff_t write_end, bool shmem_huge_force, 846 struct vm_area_struct *vma, 847 vm_flags_t vm_flags) 848 { 849 return 0; 850 } 851 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 852 853 static void shmem_update_stats(struct folio *folio, int nr_pages) 854 { 855 if (folio_test_pmd_mappable(folio)) 856 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages); 857 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages); 858 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages); 859 } 860 861 /* 862 * Somewhat like filemap_add_folio, but error if expected item has gone. 863 */ 864 static int shmem_add_to_page_cache(struct folio *folio, 865 struct address_space *mapping, 866 pgoff_t index, void *expected, gfp_t gfp) 867 { 868 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 869 unsigned long nr = folio_nr_pages(folio); 870 swp_entry_t iter, swap; 871 void *entry; 872 873 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 874 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 875 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 876 877 folio_ref_add(folio, nr); 878 folio->mapping = mapping; 879 folio->index = index; 880 881 gfp &= GFP_RECLAIM_MASK; 882 folio_throttle_swaprate(folio, gfp); 883 swap = radix_to_swp_entry(expected); 884 885 do { 886 iter = swap; 887 xas_lock_irq(&xas); 888 xas_for_each_conflict(&xas, entry) { 889 /* 890 * The range must either be empty, or filled with 891 * expected swap entries. Shmem swap entries are never 892 * partially freed without split of both entry and 893 * folio, so there shouldn't be any holes. 894 */ 895 if (!expected || entry != swp_to_radix_entry(iter)) { 896 xas_set_err(&xas, -EEXIST); 897 goto unlock; 898 } 899 iter.val += 1 << xas_get_order(&xas); 900 } 901 if (expected && iter.val - nr != swap.val) { 902 xas_set_err(&xas, -EEXIST); 903 goto unlock; 904 } 905 xas_store(&xas, folio); 906 if (xas_error(&xas)) 907 goto unlock; 908 shmem_update_stats(folio, nr); 909 mapping->nrpages += nr; 910 unlock: 911 xas_unlock_irq(&xas); 912 } while (xas_nomem(&xas, gfp)); 913 914 if (xas_error(&xas)) { 915 folio->mapping = NULL; 916 folio_ref_sub(folio, nr); 917 return xas_error(&xas); 918 } 919 920 return 0; 921 } 922 923 /* 924 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 925 */ 926 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 927 { 928 struct address_space *mapping = folio->mapping; 929 long nr = folio_nr_pages(folio); 930 int error; 931 932 xa_lock_irq(&mapping->i_pages); 933 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 934 folio->mapping = NULL; 935 mapping->nrpages -= nr; 936 shmem_update_stats(folio, -nr); 937 xa_unlock_irq(&mapping->i_pages); 938 folio_put_refs(folio, nr); 939 BUG_ON(error); 940 } 941 942 /* 943 * Remove swap entry from page cache, free the swap and its page cache. Returns 944 * the number of pages being freed. 0 means entry not found in XArray (0 pages 945 * being freed). 946 */ 947 static long shmem_free_swap(struct address_space *mapping, 948 pgoff_t index, void *radswap) 949 { 950 int order = xa_get_order(&mapping->i_pages, index); 951 void *old; 952 953 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 954 if (old != radswap) 955 return 0; 956 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order); 957 958 return 1 << order; 959 } 960 961 /* 962 * Determine (in bytes) how many of the shmem object's pages mapped by the 963 * given offsets are swapped out. 964 * 965 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 966 * as long as the inode doesn't go away and racy results are not a problem. 967 */ 968 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 969 pgoff_t start, pgoff_t end) 970 { 971 XA_STATE(xas, &mapping->i_pages, start); 972 struct folio *folio; 973 unsigned long swapped = 0; 974 unsigned long max = end - 1; 975 976 rcu_read_lock(); 977 xas_for_each(&xas, folio, max) { 978 if (xas_retry(&xas, folio)) 979 continue; 980 if (xa_is_value(folio)) 981 swapped += 1 << xas_get_order(&xas); 982 if (xas.xa_index == max) 983 break; 984 if (need_resched()) { 985 xas_pause(&xas); 986 cond_resched_rcu(); 987 } 988 } 989 rcu_read_unlock(); 990 991 return swapped << PAGE_SHIFT; 992 } 993 994 /* 995 * Determine (in bytes) how many of the shmem object's pages mapped by the 996 * given vma is swapped out. 997 * 998 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 999 * as long as the inode doesn't go away and racy results are not a problem. 1000 */ 1001 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 1002 { 1003 struct inode *inode = file_inode(vma->vm_file); 1004 struct shmem_inode_info *info = SHMEM_I(inode); 1005 struct address_space *mapping = inode->i_mapping; 1006 unsigned long swapped; 1007 1008 /* Be careful as we don't hold info->lock */ 1009 swapped = READ_ONCE(info->swapped); 1010 1011 /* 1012 * The easier cases are when the shmem object has nothing in swap, or 1013 * the vma maps it whole. Then we can simply use the stats that we 1014 * already track. 1015 */ 1016 if (!swapped) 1017 return 0; 1018 1019 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 1020 return swapped << PAGE_SHIFT; 1021 1022 /* Here comes the more involved part */ 1023 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 1024 vma->vm_pgoff + vma_pages(vma)); 1025 } 1026 1027 /* 1028 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 1029 */ 1030 void shmem_unlock_mapping(struct address_space *mapping) 1031 { 1032 struct folio_batch fbatch; 1033 pgoff_t index = 0; 1034 1035 folio_batch_init(&fbatch); 1036 /* 1037 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 1038 */ 1039 while (!mapping_unevictable(mapping) && 1040 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 1041 check_move_unevictable_folios(&fbatch); 1042 folio_batch_release(&fbatch); 1043 cond_resched(); 1044 } 1045 } 1046 1047 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 1048 { 1049 struct folio *folio; 1050 1051 /* 1052 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 1053 * beyond i_size, and reports fallocated folios as holes. 1054 */ 1055 folio = filemap_get_entry(inode->i_mapping, index); 1056 if (!folio) 1057 return folio; 1058 if (!xa_is_value(folio)) { 1059 folio_lock(folio); 1060 if (folio->mapping == inode->i_mapping) 1061 return folio; 1062 /* The folio has been swapped out */ 1063 folio_unlock(folio); 1064 folio_put(folio); 1065 } 1066 /* 1067 * But read a folio back from swap if any of it is within i_size 1068 * (although in some cases this is just a waste of time). 1069 */ 1070 folio = NULL; 1071 shmem_get_folio(inode, index, 0, &folio, SGP_READ); 1072 return folio; 1073 } 1074 1075 /* 1076 * Remove range of pages and swap entries from page cache, and free them. 1077 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 1078 */ 1079 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 1080 bool unfalloc) 1081 { 1082 struct address_space *mapping = inode->i_mapping; 1083 struct shmem_inode_info *info = SHMEM_I(inode); 1084 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 1085 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 1086 struct folio_batch fbatch; 1087 pgoff_t indices[PAGEVEC_SIZE]; 1088 struct folio *folio; 1089 bool same_folio; 1090 long nr_swaps_freed = 0; 1091 pgoff_t index; 1092 int i; 1093 1094 if (lend == -1) 1095 end = -1; /* unsigned, so actually very big */ 1096 1097 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1098 info->fallocend = start; 1099 1100 folio_batch_init(&fbatch); 1101 index = start; 1102 while (index < end && find_lock_entries(mapping, &index, end - 1, 1103 &fbatch, indices)) { 1104 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1105 folio = fbatch.folios[i]; 1106 1107 if (xa_is_value(folio)) { 1108 if (unfalloc) 1109 continue; 1110 nr_swaps_freed += shmem_free_swap(mapping, 1111 indices[i], folio); 1112 continue; 1113 } 1114 1115 if (!unfalloc || !folio_test_uptodate(folio)) 1116 truncate_inode_folio(mapping, folio); 1117 folio_unlock(folio); 1118 } 1119 folio_batch_remove_exceptionals(&fbatch); 1120 folio_batch_release(&fbatch); 1121 cond_resched(); 1122 } 1123 1124 /* 1125 * When undoing a failed fallocate, we want none of the partial folio 1126 * zeroing and splitting below, but shall want to truncate the whole 1127 * folio when !uptodate indicates that it was added by this fallocate, 1128 * even when [lstart, lend] covers only a part of the folio. 1129 */ 1130 if (unfalloc) 1131 goto whole_folios; 1132 1133 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1134 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1135 if (folio) { 1136 same_folio = lend < folio_pos(folio) + folio_size(folio); 1137 folio_mark_dirty(folio); 1138 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1139 start = folio_next_index(folio); 1140 if (same_folio) 1141 end = folio->index; 1142 } 1143 folio_unlock(folio); 1144 folio_put(folio); 1145 folio = NULL; 1146 } 1147 1148 if (!same_folio) 1149 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1150 if (folio) { 1151 folio_mark_dirty(folio); 1152 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1153 end = folio->index; 1154 folio_unlock(folio); 1155 folio_put(folio); 1156 } 1157 1158 whole_folios: 1159 1160 index = start; 1161 while (index < end) { 1162 cond_resched(); 1163 1164 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1165 indices)) { 1166 /* If all gone or hole-punch or unfalloc, we're done */ 1167 if (index == start || end != -1) 1168 break; 1169 /* But if truncating, restart to make sure all gone */ 1170 index = start; 1171 continue; 1172 } 1173 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1174 folio = fbatch.folios[i]; 1175 1176 if (xa_is_value(folio)) { 1177 long swaps_freed; 1178 1179 if (unfalloc) 1180 continue; 1181 swaps_freed = shmem_free_swap(mapping, indices[i], folio); 1182 if (!swaps_freed) { 1183 /* Swap was replaced by page: retry */ 1184 index = indices[i]; 1185 break; 1186 } 1187 nr_swaps_freed += swaps_freed; 1188 continue; 1189 } 1190 1191 folio_lock(folio); 1192 1193 if (!unfalloc || !folio_test_uptodate(folio)) { 1194 if (folio_mapping(folio) != mapping) { 1195 /* Page was replaced by swap: retry */ 1196 folio_unlock(folio); 1197 index = indices[i]; 1198 break; 1199 } 1200 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1201 folio); 1202 1203 if (!folio_test_large(folio)) { 1204 truncate_inode_folio(mapping, folio); 1205 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1206 /* 1207 * If we split a page, reset the loop so 1208 * that we pick up the new sub pages. 1209 * Otherwise the THP was entirely 1210 * dropped or the target range was 1211 * zeroed, so just continue the loop as 1212 * is. 1213 */ 1214 if (!folio_test_large(folio)) { 1215 folio_unlock(folio); 1216 index = start; 1217 break; 1218 } 1219 } 1220 } 1221 folio_unlock(folio); 1222 } 1223 folio_batch_remove_exceptionals(&fbatch); 1224 folio_batch_release(&fbatch); 1225 } 1226 1227 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1228 } 1229 1230 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1231 { 1232 shmem_undo_range(inode, lstart, lend, false); 1233 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1234 inode_inc_iversion(inode); 1235 } 1236 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1237 1238 static int shmem_getattr(struct mnt_idmap *idmap, 1239 const struct path *path, struct kstat *stat, 1240 u32 request_mask, unsigned int query_flags) 1241 { 1242 struct inode *inode = path->dentry->d_inode; 1243 struct shmem_inode_info *info = SHMEM_I(inode); 1244 1245 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1246 shmem_recalc_inode(inode, 0, 0); 1247 1248 if (info->fsflags & FS_APPEND_FL) 1249 stat->attributes |= STATX_ATTR_APPEND; 1250 if (info->fsflags & FS_IMMUTABLE_FL) 1251 stat->attributes |= STATX_ATTR_IMMUTABLE; 1252 if (info->fsflags & FS_NODUMP_FL) 1253 stat->attributes |= STATX_ATTR_NODUMP; 1254 stat->attributes_mask |= (STATX_ATTR_APPEND | 1255 STATX_ATTR_IMMUTABLE | 1256 STATX_ATTR_NODUMP); 1257 generic_fillattr(idmap, request_mask, inode, stat); 1258 1259 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0)) 1260 stat->blksize = HPAGE_PMD_SIZE; 1261 1262 if (request_mask & STATX_BTIME) { 1263 stat->result_mask |= STATX_BTIME; 1264 stat->btime.tv_sec = info->i_crtime.tv_sec; 1265 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1266 } 1267 1268 return 0; 1269 } 1270 1271 static int shmem_setattr(struct mnt_idmap *idmap, 1272 struct dentry *dentry, struct iattr *attr) 1273 { 1274 struct inode *inode = d_inode(dentry); 1275 struct shmem_inode_info *info = SHMEM_I(inode); 1276 int error; 1277 bool update_mtime = false; 1278 bool update_ctime = true; 1279 1280 error = setattr_prepare(idmap, dentry, attr); 1281 if (error) 1282 return error; 1283 1284 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1285 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1286 return -EPERM; 1287 } 1288 } 1289 1290 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1291 loff_t oldsize = inode->i_size; 1292 loff_t newsize = attr->ia_size; 1293 1294 /* protected by i_rwsem */ 1295 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1296 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1297 return -EPERM; 1298 1299 if (newsize != oldsize) { 1300 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1301 oldsize, newsize); 1302 if (error) 1303 return error; 1304 i_size_write(inode, newsize); 1305 update_mtime = true; 1306 } else { 1307 update_ctime = false; 1308 } 1309 if (newsize <= oldsize) { 1310 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1311 if (oldsize > holebegin) 1312 unmap_mapping_range(inode->i_mapping, 1313 holebegin, 0, 1); 1314 if (info->alloced) 1315 shmem_truncate_range(inode, 1316 newsize, (loff_t)-1); 1317 /* unmap again to remove racily COWed private pages */ 1318 if (oldsize > holebegin) 1319 unmap_mapping_range(inode->i_mapping, 1320 holebegin, 0, 1); 1321 } 1322 } 1323 1324 if (is_quota_modification(idmap, inode, attr)) { 1325 error = dquot_initialize(inode); 1326 if (error) 1327 return error; 1328 } 1329 1330 /* Transfer quota accounting */ 1331 if (i_uid_needs_update(idmap, attr, inode) || 1332 i_gid_needs_update(idmap, attr, inode)) { 1333 error = dquot_transfer(idmap, inode, attr); 1334 if (error) 1335 return error; 1336 } 1337 1338 setattr_copy(idmap, inode, attr); 1339 if (attr->ia_valid & ATTR_MODE) 1340 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1341 if (!error && update_ctime) { 1342 inode_set_ctime_current(inode); 1343 if (update_mtime) 1344 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1345 inode_inc_iversion(inode); 1346 } 1347 return error; 1348 } 1349 1350 static void shmem_evict_inode(struct inode *inode) 1351 { 1352 struct shmem_inode_info *info = SHMEM_I(inode); 1353 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1354 size_t freed = 0; 1355 1356 if (shmem_mapping(inode->i_mapping)) { 1357 shmem_unacct_size(info->flags, inode->i_size); 1358 inode->i_size = 0; 1359 mapping_set_exiting(inode->i_mapping); 1360 shmem_truncate_range(inode, 0, (loff_t)-1); 1361 if (!list_empty(&info->shrinklist)) { 1362 spin_lock(&sbinfo->shrinklist_lock); 1363 if (!list_empty(&info->shrinklist)) { 1364 list_del_init(&info->shrinklist); 1365 sbinfo->shrinklist_len--; 1366 } 1367 spin_unlock(&sbinfo->shrinklist_lock); 1368 } 1369 while (!list_empty(&info->swaplist)) { 1370 /* Wait while shmem_unuse() is scanning this inode... */ 1371 wait_var_event(&info->stop_eviction, 1372 !atomic_read(&info->stop_eviction)); 1373 spin_lock(&shmem_swaplist_lock); 1374 /* ...but beware of the race if we peeked too early */ 1375 if (!atomic_read(&info->stop_eviction)) 1376 list_del_init(&info->swaplist); 1377 spin_unlock(&shmem_swaplist_lock); 1378 } 1379 } 1380 1381 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1382 shmem_free_inode(inode->i_sb, freed); 1383 WARN_ON(inode->i_blocks); 1384 clear_inode(inode); 1385 #ifdef CONFIG_TMPFS_QUOTA 1386 dquot_free_inode(inode); 1387 dquot_drop(inode); 1388 #endif 1389 } 1390 1391 static unsigned int shmem_find_swap_entries(struct address_space *mapping, 1392 pgoff_t start, struct folio_batch *fbatch, 1393 pgoff_t *indices, unsigned int type) 1394 { 1395 XA_STATE(xas, &mapping->i_pages, start); 1396 struct folio *folio; 1397 swp_entry_t entry; 1398 1399 rcu_read_lock(); 1400 xas_for_each(&xas, folio, ULONG_MAX) { 1401 if (xas_retry(&xas, folio)) 1402 continue; 1403 1404 if (!xa_is_value(folio)) 1405 continue; 1406 1407 entry = radix_to_swp_entry(folio); 1408 /* 1409 * swapin error entries can be found in the mapping. But they're 1410 * deliberately ignored here as we've done everything we can do. 1411 */ 1412 if (swp_type(entry) != type) 1413 continue; 1414 1415 indices[folio_batch_count(fbatch)] = xas.xa_index; 1416 if (!folio_batch_add(fbatch, folio)) 1417 break; 1418 1419 if (need_resched()) { 1420 xas_pause(&xas); 1421 cond_resched_rcu(); 1422 } 1423 } 1424 rcu_read_unlock(); 1425 1426 return folio_batch_count(fbatch); 1427 } 1428 1429 /* 1430 * Move the swapped pages for an inode to page cache. Returns the count 1431 * of pages swapped in, or the error in case of failure. 1432 */ 1433 static int shmem_unuse_swap_entries(struct inode *inode, 1434 struct folio_batch *fbatch, pgoff_t *indices) 1435 { 1436 int i = 0; 1437 int ret = 0; 1438 int error = 0; 1439 struct address_space *mapping = inode->i_mapping; 1440 1441 for (i = 0; i < folio_batch_count(fbatch); i++) { 1442 struct folio *folio = fbatch->folios[i]; 1443 1444 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1445 mapping_gfp_mask(mapping), NULL, NULL); 1446 if (error == 0) { 1447 folio_unlock(folio); 1448 folio_put(folio); 1449 ret++; 1450 } 1451 if (error == -ENOMEM) 1452 break; 1453 error = 0; 1454 } 1455 return error ? error : ret; 1456 } 1457 1458 /* 1459 * If swap found in inode, free it and move page from swapcache to filecache. 1460 */ 1461 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1462 { 1463 struct address_space *mapping = inode->i_mapping; 1464 pgoff_t start = 0; 1465 struct folio_batch fbatch; 1466 pgoff_t indices[PAGEVEC_SIZE]; 1467 int ret = 0; 1468 1469 do { 1470 folio_batch_init(&fbatch); 1471 if (!shmem_find_swap_entries(mapping, start, &fbatch, 1472 indices, type)) { 1473 ret = 0; 1474 break; 1475 } 1476 1477 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1478 if (ret < 0) 1479 break; 1480 1481 start = indices[folio_batch_count(&fbatch) - 1]; 1482 } while (true); 1483 1484 return ret; 1485 } 1486 1487 /* 1488 * Read all the shared memory data that resides in the swap 1489 * device 'type' back into memory, so the swap device can be 1490 * unused. 1491 */ 1492 int shmem_unuse(unsigned int type) 1493 { 1494 struct shmem_inode_info *info, *next; 1495 int error = 0; 1496 1497 if (list_empty(&shmem_swaplist)) 1498 return 0; 1499 1500 spin_lock(&shmem_swaplist_lock); 1501 start_over: 1502 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1503 if (!info->swapped) { 1504 list_del_init(&info->swaplist); 1505 continue; 1506 } 1507 /* 1508 * Drop the swaplist mutex while searching the inode for swap; 1509 * but before doing so, make sure shmem_evict_inode() will not 1510 * remove placeholder inode from swaplist, nor let it be freed 1511 * (igrab() would protect from unlink, but not from unmount). 1512 */ 1513 atomic_inc(&info->stop_eviction); 1514 spin_unlock(&shmem_swaplist_lock); 1515 1516 error = shmem_unuse_inode(&info->vfs_inode, type); 1517 cond_resched(); 1518 1519 spin_lock(&shmem_swaplist_lock); 1520 if (atomic_dec_and_test(&info->stop_eviction)) 1521 wake_up_var(&info->stop_eviction); 1522 if (error) 1523 break; 1524 if (list_empty(&info->swaplist)) 1525 goto start_over; 1526 next = list_next_entry(info, swaplist); 1527 if (!info->swapped) 1528 list_del_init(&info->swaplist); 1529 } 1530 spin_unlock(&shmem_swaplist_lock); 1531 1532 return error; 1533 } 1534 1535 /** 1536 * shmem_writeout - Write the folio to swap 1537 * @folio: The folio to write 1538 * @plug: swap plug 1539 * @folio_list: list to put back folios on split 1540 * 1541 * Move the folio from the page cache to the swap cache. 1542 */ 1543 int shmem_writeout(struct folio *folio, struct swap_iocb **plug, 1544 struct list_head *folio_list) 1545 { 1546 struct address_space *mapping = folio->mapping; 1547 struct inode *inode = mapping->host; 1548 struct shmem_inode_info *info = SHMEM_I(inode); 1549 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1550 pgoff_t index; 1551 int nr_pages; 1552 bool split = false; 1553 1554 if ((info->flags & VM_LOCKED) || sbinfo->noswap) 1555 goto redirty; 1556 1557 if (!total_swap_pages) 1558 goto redirty; 1559 1560 /* 1561 * If CONFIG_THP_SWAP is not enabled, the large folio should be 1562 * split when swapping. 1563 * 1564 * And shrinkage of pages beyond i_size does not split swap, so 1565 * swapout of a large folio crossing i_size needs to split too 1566 * (unless fallocate has been used to preallocate beyond EOF). 1567 */ 1568 if (folio_test_large(folio)) { 1569 index = shmem_fallocend(inode, 1570 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 1571 if ((index > folio->index && index < folio_next_index(folio)) || 1572 !IS_ENABLED(CONFIG_THP_SWAP)) 1573 split = true; 1574 } 1575 1576 if (split) { 1577 try_split: 1578 /* Ensure the subpages are still dirty */ 1579 folio_test_set_dirty(folio); 1580 if (split_folio_to_list(folio, folio_list)) 1581 goto redirty; 1582 folio_clear_dirty(folio); 1583 } 1584 1585 index = folio->index; 1586 nr_pages = folio_nr_pages(folio); 1587 1588 /* 1589 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1590 * value into swapfile.c, the only way we can correctly account for a 1591 * fallocated folio arriving here is now to initialize it and write it. 1592 * 1593 * That's okay for a folio already fallocated earlier, but if we have 1594 * not yet completed the fallocation, then (a) we want to keep track 1595 * of this folio in case we have to undo it, and (b) it may not be a 1596 * good idea to continue anyway, once we're pushing into swap. So 1597 * reactivate the folio, and let shmem_fallocate() quit when too many. 1598 */ 1599 if (!folio_test_uptodate(folio)) { 1600 if (inode->i_private) { 1601 struct shmem_falloc *shmem_falloc; 1602 spin_lock(&inode->i_lock); 1603 shmem_falloc = inode->i_private; 1604 if (shmem_falloc && 1605 !shmem_falloc->waitq && 1606 index >= shmem_falloc->start && 1607 index < shmem_falloc->next) 1608 shmem_falloc->nr_unswapped += nr_pages; 1609 else 1610 shmem_falloc = NULL; 1611 spin_unlock(&inode->i_lock); 1612 if (shmem_falloc) 1613 goto redirty; 1614 } 1615 folio_zero_range(folio, 0, folio_size(folio)); 1616 flush_dcache_folio(folio); 1617 folio_mark_uptodate(folio); 1618 } 1619 1620 if (!folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN)) { 1621 bool first_swapped = shmem_recalc_inode(inode, 0, nr_pages); 1622 int error; 1623 1624 /* 1625 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1626 * if it's not already there. Do it now before the folio is 1627 * removed from page cache, when its pagelock no longer 1628 * protects the inode from eviction. And do it now, after 1629 * we've incremented swapped, because shmem_unuse() will 1630 * prune a !swapped inode from the swaplist. 1631 */ 1632 if (first_swapped) { 1633 spin_lock(&shmem_swaplist_lock); 1634 if (list_empty(&info->swaplist)) 1635 list_add(&info->swaplist, &shmem_swaplist); 1636 spin_unlock(&shmem_swaplist_lock); 1637 } 1638 1639 swap_shmem_alloc(folio->swap, nr_pages); 1640 shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap)); 1641 1642 BUG_ON(folio_mapped(folio)); 1643 error = swap_writeout(folio, plug); 1644 if (error != AOP_WRITEPAGE_ACTIVATE) { 1645 /* folio has been unlocked */ 1646 return error; 1647 } 1648 1649 /* 1650 * The intention here is to avoid holding on to the swap when 1651 * zswap was unable to compress and unable to writeback; but 1652 * it will be appropriate if other reactivate cases are added. 1653 */ 1654 error = shmem_add_to_page_cache(folio, mapping, index, 1655 swp_to_radix_entry(folio->swap), 1656 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 1657 /* Swap entry might be erased by racing shmem_free_swap() */ 1658 if (!error) { 1659 shmem_recalc_inode(inode, 0, -nr_pages); 1660 swap_free_nr(folio->swap, nr_pages); 1661 } 1662 1663 /* 1664 * The swap_cache_del_folio() below could be left for 1665 * shrink_folio_list()'s folio_free_swap() to dispose of; 1666 * but I'm a little nervous about letting this folio out of 1667 * shmem_writeout() in a hybrid half-tmpfs-half-swap state 1668 * e.g. folio_mapping(folio) might give an unexpected answer. 1669 */ 1670 swap_cache_del_folio(folio); 1671 goto redirty; 1672 } 1673 if (nr_pages > 1) 1674 goto try_split; 1675 redirty: 1676 folio_mark_dirty(folio); 1677 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1678 } 1679 EXPORT_SYMBOL_GPL(shmem_writeout); 1680 1681 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1682 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1683 { 1684 char buffer[64]; 1685 1686 if (!mpol || mpol->mode == MPOL_DEFAULT) 1687 return; /* show nothing */ 1688 1689 mpol_to_str(buffer, sizeof(buffer), mpol); 1690 1691 seq_printf(seq, ",mpol=%s", buffer); 1692 } 1693 1694 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1695 { 1696 struct mempolicy *mpol = NULL; 1697 if (sbinfo->mpol) { 1698 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1699 mpol = sbinfo->mpol; 1700 mpol_get(mpol); 1701 raw_spin_unlock(&sbinfo->stat_lock); 1702 } 1703 return mpol; 1704 } 1705 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1706 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1707 { 1708 } 1709 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1710 { 1711 return NULL; 1712 } 1713 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1714 1715 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1716 pgoff_t index, unsigned int order, pgoff_t *ilx); 1717 1718 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1719 struct shmem_inode_info *info, pgoff_t index) 1720 { 1721 struct mempolicy *mpol; 1722 pgoff_t ilx; 1723 struct folio *folio; 1724 1725 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1726 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1727 mpol_cond_put(mpol); 1728 1729 return folio; 1730 } 1731 1732 /* 1733 * Make sure huge_gfp is always more limited than limit_gfp. 1734 * Some of the flags set permissions, while others set limitations. 1735 */ 1736 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1737 { 1738 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1739 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1740 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1741 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1742 1743 /* Allow allocations only from the originally specified zones. */ 1744 result |= zoneflags; 1745 1746 /* 1747 * Minimize the result gfp by taking the union with the deny flags, 1748 * and the intersection of the allow flags. 1749 */ 1750 result |= (limit_gfp & denyflags); 1751 result |= (huge_gfp & limit_gfp) & allowflags; 1752 1753 return result; 1754 } 1755 1756 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1757 bool shmem_hpage_pmd_enabled(void) 1758 { 1759 if (shmem_huge == SHMEM_HUGE_DENY) 1760 return false; 1761 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always)) 1762 return true; 1763 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise)) 1764 return true; 1765 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size)) 1766 return true; 1767 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) && 1768 shmem_huge != SHMEM_HUGE_NEVER) 1769 return true; 1770 1771 return false; 1772 } 1773 1774 unsigned long shmem_allowable_huge_orders(struct inode *inode, 1775 struct vm_area_struct *vma, pgoff_t index, 1776 loff_t write_end, bool shmem_huge_force) 1777 { 1778 unsigned long mask = READ_ONCE(huge_shmem_orders_always); 1779 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size); 1780 vm_flags_t vm_flags = vma ? vma->vm_flags : 0; 1781 unsigned int global_orders; 1782 1783 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags, shmem_huge_force))) 1784 return 0; 1785 1786 global_orders = shmem_huge_global_enabled(inode, index, write_end, 1787 shmem_huge_force, vma, vm_flags); 1788 /* Tmpfs huge pages allocation */ 1789 if (!vma || !vma_is_anon_shmem(vma)) 1790 return global_orders; 1791 1792 /* 1793 * Following the 'deny' semantics of the top level, force the huge 1794 * option off from all mounts. 1795 */ 1796 if (shmem_huge == SHMEM_HUGE_DENY) 1797 return 0; 1798 1799 /* 1800 * Only allow inherit orders if the top-level value is 'force', which 1801 * means non-PMD sized THP can not override 'huge' mount option now. 1802 */ 1803 if (shmem_huge == SHMEM_HUGE_FORCE) 1804 return READ_ONCE(huge_shmem_orders_inherit); 1805 1806 /* Allow mTHP that will be fully within i_size. */ 1807 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0); 1808 1809 if (vm_flags & VM_HUGEPAGE) 1810 mask |= READ_ONCE(huge_shmem_orders_madvise); 1811 1812 if (global_orders > 0) 1813 mask |= READ_ONCE(huge_shmem_orders_inherit); 1814 1815 return THP_ORDERS_ALL_FILE_DEFAULT & mask; 1816 } 1817 1818 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1819 struct address_space *mapping, pgoff_t index, 1820 unsigned long orders) 1821 { 1822 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1823 pgoff_t aligned_index; 1824 unsigned long pages; 1825 int order; 1826 1827 if (vma) { 1828 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 1829 if (!orders) 1830 return 0; 1831 } 1832 1833 /* Find the highest order that can add into the page cache */ 1834 order = highest_order(orders); 1835 while (orders) { 1836 pages = 1UL << order; 1837 aligned_index = round_down(index, pages); 1838 /* 1839 * Check for conflict before waiting on a huge allocation. 1840 * Conflict might be that a huge page has just been allocated 1841 * and added to page cache by a racing thread, or that there 1842 * is already at least one small page in the huge extent. 1843 * Be careful to retry when appropriate, but not forever! 1844 * Elsewhere -EEXIST would be the right code, but not here. 1845 */ 1846 if (!xa_find(&mapping->i_pages, &aligned_index, 1847 aligned_index + pages - 1, XA_PRESENT)) 1848 break; 1849 order = next_order(&orders, order); 1850 } 1851 1852 return orders; 1853 } 1854 #else 1855 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1856 struct address_space *mapping, pgoff_t index, 1857 unsigned long orders) 1858 { 1859 return 0; 1860 } 1861 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1862 1863 static struct folio *shmem_alloc_folio(gfp_t gfp, int order, 1864 struct shmem_inode_info *info, pgoff_t index) 1865 { 1866 struct mempolicy *mpol; 1867 pgoff_t ilx; 1868 struct folio *folio; 1869 1870 mpol = shmem_get_pgoff_policy(info, index, order, &ilx); 1871 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id()); 1872 mpol_cond_put(mpol); 1873 1874 return folio; 1875 } 1876 1877 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf, 1878 gfp_t gfp, struct inode *inode, pgoff_t index, 1879 struct mm_struct *fault_mm, unsigned long orders) 1880 { 1881 struct address_space *mapping = inode->i_mapping; 1882 struct shmem_inode_info *info = SHMEM_I(inode); 1883 unsigned long suitable_orders = 0; 1884 struct folio *folio = NULL; 1885 long pages; 1886 int error, order; 1887 1888 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1889 orders = 0; 1890 1891 if (orders > 0) { 1892 suitable_orders = shmem_suitable_orders(inode, vmf, 1893 mapping, index, orders); 1894 1895 order = highest_order(suitable_orders); 1896 while (suitable_orders) { 1897 pages = 1UL << order; 1898 index = round_down(index, pages); 1899 folio = shmem_alloc_folio(gfp, order, info, index); 1900 if (folio) 1901 goto allocated; 1902 1903 if (pages == HPAGE_PMD_NR) 1904 count_vm_event(THP_FILE_FALLBACK); 1905 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK); 1906 order = next_order(&suitable_orders, order); 1907 } 1908 } else { 1909 pages = 1; 1910 folio = shmem_alloc_folio(gfp, 0, info, index); 1911 } 1912 if (!folio) 1913 return ERR_PTR(-ENOMEM); 1914 1915 allocated: 1916 __folio_set_locked(folio); 1917 __folio_set_swapbacked(folio); 1918 1919 gfp &= GFP_RECLAIM_MASK; 1920 error = mem_cgroup_charge(folio, fault_mm, gfp); 1921 if (error) { 1922 if (xa_find(&mapping->i_pages, &index, 1923 index + pages - 1, XA_PRESENT)) { 1924 error = -EEXIST; 1925 } else if (pages > 1) { 1926 if (pages == HPAGE_PMD_NR) { 1927 count_vm_event(THP_FILE_FALLBACK); 1928 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1929 } 1930 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK); 1931 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE); 1932 } 1933 goto unlock; 1934 } 1935 1936 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1937 if (error) 1938 goto unlock; 1939 1940 error = shmem_inode_acct_blocks(inode, pages); 1941 if (error) { 1942 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1943 long freed; 1944 /* 1945 * Try to reclaim some space by splitting a few 1946 * large folios beyond i_size on the filesystem. 1947 */ 1948 shmem_unused_huge_shrink(sbinfo, NULL, pages); 1949 /* 1950 * And do a shmem_recalc_inode() to account for freed pages: 1951 * except our folio is there in cache, so not quite balanced. 1952 */ 1953 spin_lock(&info->lock); 1954 freed = pages + info->alloced - info->swapped - 1955 READ_ONCE(mapping->nrpages); 1956 if (freed > 0) 1957 info->alloced -= freed; 1958 spin_unlock(&info->lock); 1959 if (freed > 0) 1960 shmem_inode_unacct_blocks(inode, freed); 1961 error = shmem_inode_acct_blocks(inode, pages); 1962 if (error) { 1963 filemap_remove_folio(folio); 1964 goto unlock; 1965 } 1966 } 1967 1968 shmem_recalc_inode(inode, pages, 0); 1969 folio_add_lru(folio); 1970 return folio; 1971 1972 unlock: 1973 folio_unlock(folio); 1974 folio_put(folio); 1975 return ERR_PTR(error); 1976 } 1977 1978 static struct folio *shmem_swap_alloc_folio(struct inode *inode, 1979 struct vm_area_struct *vma, pgoff_t index, 1980 swp_entry_t entry, int order, gfp_t gfp) 1981 { 1982 struct shmem_inode_info *info = SHMEM_I(inode); 1983 int nr_pages = 1 << order; 1984 struct folio *new; 1985 gfp_t alloc_gfp; 1986 void *shadow; 1987 1988 /* 1989 * We have arrived here because our zones are constrained, so don't 1990 * limit chance of success with further cpuset and node constraints. 1991 */ 1992 gfp &= ~GFP_CONSTRAINT_MASK; 1993 alloc_gfp = gfp; 1994 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1995 if (WARN_ON_ONCE(order)) 1996 return ERR_PTR(-EINVAL); 1997 } else if (order) { 1998 /* 1999 * If uffd is active for the vma, we need per-page fault 2000 * fidelity to maintain the uffd semantics, then fallback 2001 * to swapin order-0 folio, as well as for zswap case. 2002 * Any existing sub folio in the swap cache also blocks 2003 * mTHP swapin. 2004 */ 2005 if ((vma && unlikely(userfaultfd_armed(vma))) || 2006 !zswap_never_enabled() || 2007 non_swapcache_batch(entry, nr_pages) != nr_pages) 2008 goto fallback; 2009 2010 alloc_gfp = limit_gfp_mask(vma_thp_gfp_mask(vma), gfp); 2011 } 2012 retry: 2013 new = shmem_alloc_folio(alloc_gfp, order, info, index); 2014 if (!new) { 2015 new = ERR_PTR(-ENOMEM); 2016 goto fallback; 2017 } 2018 2019 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL, 2020 alloc_gfp, entry)) { 2021 folio_put(new); 2022 new = ERR_PTR(-ENOMEM); 2023 goto fallback; 2024 } 2025 2026 /* 2027 * Prevent parallel swapin from proceeding with the swap cache flag. 2028 * 2029 * Of course there is another possible concurrent scenario as well, 2030 * that is to say, the swap cache flag of a large folio has already 2031 * been set by swapcache_prepare(), while another thread may have 2032 * already split the large swap entry stored in the shmem mapping. 2033 * In this case, shmem_add_to_page_cache() will help identify the 2034 * concurrent swapin and return -EEXIST. 2035 */ 2036 if (swapcache_prepare(entry, nr_pages)) { 2037 folio_put(new); 2038 new = ERR_PTR(-EEXIST); 2039 /* Try smaller folio to avoid cache conflict */ 2040 goto fallback; 2041 } 2042 2043 __folio_set_locked(new); 2044 __folio_set_swapbacked(new); 2045 new->swap = entry; 2046 2047 memcg1_swapin(entry, nr_pages); 2048 shadow = swap_cache_get_shadow(entry); 2049 if (shadow) 2050 workingset_refault(new, shadow); 2051 folio_add_lru(new); 2052 swap_read_folio(new, NULL); 2053 return new; 2054 fallback: 2055 /* Order 0 swapin failed, nothing to fallback to, abort */ 2056 if (!order) 2057 return new; 2058 entry.val += index - round_down(index, nr_pages); 2059 alloc_gfp = gfp; 2060 nr_pages = 1; 2061 order = 0; 2062 goto retry; 2063 } 2064 2065 /* 2066 * When a page is moved from swapcache to shmem filecache (either by the 2067 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 2068 * shmem_unuse_inode()), it may have been read in earlier from swap, in 2069 * ignorance of the mapping it belongs to. If that mapping has special 2070 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 2071 * we may need to copy to a suitable page before moving to filecache. 2072 * 2073 * In a future release, this may well be extended to respect cpuset and 2074 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 2075 * but for now it is a simple matter of zone. 2076 */ 2077 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 2078 { 2079 return folio_zonenum(folio) > gfp_zone(gfp); 2080 } 2081 2082 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 2083 struct shmem_inode_info *info, pgoff_t index, 2084 struct vm_area_struct *vma) 2085 { 2086 struct swap_cluster_info *ci; 2087 struct folio *new, *old = *foliop; 2088 swp_entry_t entry = old->swap; 2089 int nr_pages = folio_nr_pages(old); 2090 int error = 0; 2091 2092 /* 2093 * We have arrived here because our zones are constrained, so don't 2094 * limit chance of success by further cpuset and node constraints. 2095 */ 2096 gfp &= ~GFP_CONSTRAINT_MASK; 2097 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2098 if (nr_pages > 1) { 2099 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 2100 2101 gfp = limit_gfp_mask(huge_gfp, gfp); 2102 } 2103 #endif 2104 2105 new = shmem_alloc_folio(gfp, folio_order(old), info, index); 2106 if (!new) 2107 return -ENOMEM; 2108 2109 folio_ref_add(new, nr_pages); 2110 folio_copy(new, old); 2111 flush_dcache_folio(new); 2112 2113 __folio_set_locked(new); 2114 __folio_set_swapbacked(new); 2115 folio_mark_uptodate(new); 2116 new->swap = entry; 2117 folio_set_swapcache(new); 2118 2119 ci = swap_cluster_get_and_lock_irq(old); 2120 __swap_cache_replace_folio(ci, old, new); 2121 mem_cgroup_replace_folio(old, new); 2122 shmem_update_stats(new, nr_pages); 2123 shmem_update_stats(old, -nr_pages); 2124 swap_cluster_unlock_irq(ci); 2125 2126 folio_add_lru(new); 2127 *foliop = new; 2128 2129 folio_clear_swapcache(old); 2130 old->private = NULL; 2131 2132 folio_unlock(old); 2133 /* 2134 * The old folio are removed from swap cache, drop the 'nr_pages' 2135 * reference, as well as one temporary reference getting from swap 2136 * cache. 2137 */ 2138 folio_put_refs(old, nr_pages + 1); 2139 return error; 2140 } 2141 2142 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 2143 struct folio *folio, swp_entry_t swap, 2144 bool skip_swapcache) 2145 { 2146 struct address_space *mapping = inode->i_mapping; 2147 swp_entry_t swapin_error; 2148 void *old; 2149 int nr_pages; 2150 2151 swapin_error = make_poisoned_swp_entry(); 2152 old = xa_cmpxchg_irq(&mapping->i_pages, index, 2153 swp_to_radix_entry(swap), 2154 swp_to_radix_entry(swapin_error), 0); 2155 if (old != swp_to_radix_entry(swap)) 2156 return; 2157 2158 nr_pages = folio_nr_pages(folio); 2159 folio_wait_writeback(folio); 2160 if (!skip_swapcache) 2161 swap_cache_del_folio(folio); 2162 /* 2163 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 2164 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 2165 * in shmem_evict_inode(). 2166 */ 2167 shmem_recalc_inode(inode, -nr_pages, -nr_pages); 2168 swap_free_nr(swap, nr_pages); 2169 } 2170 2171 static int shmem_split_large_entry(struct inode *inode, pgoff_t index, 2172 swp_entry_t swap, gfp_t gfp) 2173 { 2174 struct address_space *mapping = inode->i_mapping; 2175 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0); 2176 int split_order = 0; 2177 int i; 2178 2179 /* Convert user data gfp flags to xarray node gfp flags */ 2180 gfp &= GFP_RECLAIM_MASK; 2181 2182 for (;;) { 2183 void *old = NULL; 2184 int cur_order; 2185 pgoff_t swap_index; 2186 2187 xas_lock_irq(&xas); 2188 old = xas_load(&xas); 2189 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) { 2190 xas_set_err(&xas, -EEXIST); 2191 goto unlock; 2192 } 2193 2194 cur_order = xas_get_order(&xas); 2195 if (!cur_order) 2196 goto unlock; 2197 2198 /* Try to split large swap entry in pagecache */ 2199 swap_index = round_down(index, 1 << cur_order); 2200 split_order = xas_try_split_min_order(cur_order); 2201 2202 while (cur_order > 0) { 2203 pgoff_t aligned_index = 2204 round_down(index, 1 << cur_order); 2205 pgoff_t swap_offset = aligned_index - swap_index; 2206 2207 xas_set_order(&xas, index, split_order); 2208 xas_try_split(&xas, old, cur_order); 2209 if (xas_error(&xas)) 2210 goto unlock; 2211 2212 /* 2213 * Re-set the swap entry after splitting, and the swap 2214 * offset of the original large entry must be continuous. 2215 */ 2216 for (i = 0; i < 1 << cur_order; 2217 i += (1 << split_order)) { 2218 swp_entry_t tmp; 2219 2220 tmp = swp_entry(swp_type(swap), 2221 swp_offset(swap) + swap_offset + 2222 i); 2223 __xa_store(&mapping->i_pages, aligned_index + i, 2224 swp_to_radix_entry(tmp), 0); 2225 } 2226 cur_order = split_order; 2227 split_order = xas_try_split_min_order(split_order); 2228 } 2229 2230 unlock: 2231 xas_unlock_irq(&xas); 2232 2233 if (!xas_nomem(&xas, gfp)) 2234 break; 2235 } 2236 2237 if (xas_error(&xas)) 2238 return xas_error(&xas); 2239 2240 return 0; 2241 } 2242 2243 /* 2244 * Swap in the folio pointed to by *foliop. 2245 * Caller has to make sure that *foliop contains a valid swapped folio. 2246 * Returns 0 and the folio in foliop if success. On failure, returns the 2247 * error code and NULL in *foliop. 2248 */ 2249 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 2250 struct folio **foliop, enum sgp_type sgp, 2251 gfp_t gfp, struct vm_area_struct *vma, 2252 vm_fault_t *fault_type) 2253 { 2254 struct address_space *mapping = inode->i_mapping; 2255 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL; 2256 struct shmem_inode_info *info = SHMEM_I(inode); 2257 swp_entry_t swap, index_entry; 2258 struct swap_info_struct *si; 2259 struct folio *folio = NULL; 2260 bool skip_swapcache = false; 2261 int error, nr_pages, order; 2262 pgoff_t offset; 2263 2264 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 2265 index_entry = radix_to_swp_entry(*foliop); 2266 swap = index_entry; 2267 *foliop = NULL; 2268 2269 if (is_poisoned_swp_entry(index_entry)) 2270 return -EIO; 2271 2272 si = get_swap_device(index_entry); 2273 order = shmem_confirm_swap(mapping, index, index_entry); 2274 if (unlikely(!si)) { 2275 if (order < 0) 2276 return -EEXIST; 2277 else 2278 return -EINVAL; 2279 } 2280 if (unlikely(order < 0)) { 2281 put_swap_device(si); 2282 return -EEXIST; 2283 } 2284 2285 /* index may point to the middle of a large entry, get the sub entry */ 2286 if (order) { 2287 offset = index - round_down(index, 1 << order); 2288 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2289 } 2290 2291 /* Look it up and read it in.. */ 2292 folio = swap_cache_get_folio(swap); 2293 if (!folio) { 2294 if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) { 2295 /* Direct swapin skipping swap cache & readahead */ 2296 folio = shmem_swap_alloc_folio(inode, vma, index, 2297 index_entry, order, gfp); 2298 if (IS_ERR(folio)) { 2299 error = PTR_ERR(folio); 2300 folio = NULL; 2301 goto failed; 2302 } 2303 skip_swapcache = true; 2304 } else { 2305 /* Cached swapin only supports order 0 folio */ 2306 folio = shmem_swapin_cluster(swap, gfp, info, index); 2307 if (!folio) { 2308 error = -ENOMEM; 2309 goto failed; 2310 } 2311 } 2312 if (fault_type) { 2313 *fault_type |= VM_FAULT_MAJOR; 2314 count_vm_event(PGMAJFAULT); 2315 count_memcg_event_mm(fault_mm, PGMAJFAULT); 2316 } 2317 } else { 2318 swap_update_readahead(folio, NULL, 0); 2319 } 2320 2321 if (order > folio_order(folio)) { 2322 /* 2323 * Swapin may get smaller folios due to various reasons: 2324 * It may fallback to order 0 due to memory pressure or race, 2325 * swap readahead may swap in order 0 folios into swapcache 2326 * asynchronously, while the shmem mapping can still stores 2327 * large swap entries. In such cases, we should split the 2328 * large swap entry to prevent possible data corruption. 2329 */ 2330 error = shmem_split_large_entry(inode, index, index_entry, gfp); 2331 if (error) 2332 goto failed_nolock; 2333 } 2334 2335 /* 2336 * If the folio is large, round down swap and index by folio size. 2337 * No matter what race occurs, the swap layer ensures we either get 2338 * a valid folio that has its swap entry aligned by size, or a 2339 * temporarily invalid one which we'll abort very soon and retry. 2340 * 2341 * shmem_add_to_page_cache ensures the whole range contains expected 2342 * entries and prevents any corruption, so any race split is fine 2343 * too, it will succeed as long as the entries are still there. 2344 */ 2345 nr_pages = folio_nr_pages(folio); 2346 if (nr_pages > 1) { 2347 swap.val = round_down(swap.val, nr_pages); 2348 index = round_down(index, nr_pages); 2349 } 2350 2351 /* 2352 * We have to do this with the folio locked to prevent races. 2353 * The shmem_confirm_swap below only checks if the first swap 2354 * entry matches the folio, that's enough to ensure the folio 2355 * is not used outside of shmem, as shmem swap entries 2356 * and swap cache folios are never partially freed. 2357 */ 2358 folio_lock(folio); 2359 if ((!skip_swapcache && !folio_test_swapcache(folio)) || 2360 shmem_confirm_swap(mapping, index, swap) < 0 || 2361 folio->swap.val != swap.val) { 2362 error = -EEXIST; 2363 goto unlock; 2364 } 2365 if (!folio_test_uptodate(folio)) { 2366 error = -EIO; 2367 goto failed; 2368 } 2369 folio_wait_writeback(folio); 2370 2371 /* 2372 * Some architectures may have to restore extra metadata to the 2373 * folio after reading from swap. 2374 */ 2375 arch_swap_restore(folio_swap(swap, folio), folio); 2376 2377 if (shmem_should_replace_folio(folio, gfp)) { 2378 error = shmem_replace_folio(&folio, gfp, info, index, vma); 2379 if (error) 2380 goto failed; 2381 } 2382 2383 error = shmem_add_to_page_cache(folio, mapping, index, 2384 swp_to_radix_entry(swap), gfp); 2385 if (error) 2386 goto failed; 2387 2388 shmem_recalc_inode(inode, 0, -nr_pages); 2389 2390 if (sgp == SGP_WRITE) 2391 folio_mark_accessed(folio); 2392 2393 if (skip_swapcache) { 2394 folio->swap.val = 0; 2395 swapcache_clear(si, swap, nr_pages); 2396 } else { 2397 swap_cache_del_folio(folio); 2398 } 2399 folio_mark_dirty(folio); 2400 swap_free_nr(swap, nr_pages); 2401 put_swap_device(si); 2402 2403 *foliop = folio; 2404 return 0; 2405 failed: 2406 if (shmem_confirm_swap(mapping, index, swap) < 0) 2407 error = -EEXIST; 2408 if (error == -EIO) 2409 shmem_set_folio_swapin_error(inode, index, folio, swap, 2410 skip_swapcache); 2411 unlock: 2412 if (folio) 2413 folio_unlock(folio); 2414 failed_nolock: 2415 if (skip_swapcache) 2416 swapcache_clear(si, folio->swap, folio_nr_pages(folio)); 2417 if (folio) 2418 folio_put(folio); 2419 put_swap_device(si); 2420 2421 return error; 2422 } 2423 2424 /* 2425 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 2426 * 2427 * If we allocate a new one we do not mark it dirty. That's up to the 2428 * vm. If we swap it in we mark it dirty since we also free the swap 2429 * entry since a page cannot live in both the swap and page cache. 2430 * 2431 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 2432 */ 2433 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 2434 loff_t write_end, struct folio **foliop, enum sgp_type sgp, 2435 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type) 2436 { 2437 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 2438 struct mm_struct *fault_mm; 2439 struct folio *folio; 2440 int error; 2441 bool alloced; 2442 unsigned long orders = 0; 2443 2444 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 2445 return -EINVAL; 2446 2447 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 2448 return -EFBIG; 2449 repeat: 2450 if (sgp <= SGP_CACHE && 2451 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 2452 return -EINVAL; 2453 2454 alloced = false; 2455 fault_mm = vma ? vma->vm_mm : NULL; 2456 2457 folio = filemap_get_entry(inode->i_mapping, index); 2458 if (folio && vma && userfaultfd_minor(vma)) { 2459 if (!xa_is_value(folio)) 2460 folio_put(folio); 2461 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 2462 return 0; 2463 } 2464 2465 if (xa_is_value(folio)) { 2466 error = shmem_swapin_folio(inode, index, &folio, 2467 sgp, gfp, vma, fault_type); 2468 if (error == -EEXIST) 2469 goto repeat; 2470 2471 *foliop = folio; 2472 return error; 2473 } 2474 2475 if (folio) { 2476 folio_lock(folio); 2477 2478 /* Has the folio been truncated or swapped out? */ 2479 if (unlikely(folio->mapping != inode->i_mapping)) { 2480 folio_unlock(folio); 2481 folio_put(folio); 2482 goto repeat; 2483 } 2484 if (sgp == SGP_WRITE) 2485 folio_mark_accessed(folio); 2486 if (folio_test_uptodate(folio)) 2487 goto out; 2488 /* fallocated folio */ 2489 if (sgp != SGP_READ) 2490 goto clear; 2491 folio_unlock(folio); 2492 folio_put(folio); 2493 } 2494 2495 /* 2496 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2497 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2498 */ 2499 *foliop = NULL; 2500 if (sgp == SGP_READ) 2501 return 0; 2502 if (sgp == SGP_NOALLOC) 2503 return -ENOENT; 2504 2505 /* 2506 * Fast cache lookup and swap lookup did not find it: allocate. 2507 */ 2508 2509 if (vma && userfaultfd_missing(vma)) { 2510 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2511 return 0; 2512 } 2513 2514 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */ 2515 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false); 2516 if (orders > 0) { 2517 gfp_t huge_gfp; 2518 2519 huge_gfp = vma_thp_gfp_mask(vma); 2520 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2521 folio = shmem_alloc_and_add_folio(vmf, huge_gfp, 2522 inode, index, fault_mm, orders); 2523 if (!IS_ERR(folio)) { 2524 if (folio_test_pmd_mappable(folio)) 2525 count_vm_event(THP_FILE_ALLOC); 2526 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC); 2527 goto alloced; 2528 } 2529 if (PTR_ERR(folio) == -EEXIST) 2530 goto repeat; 2531 } 2532 2533 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0); 2534 if (IS_ERR(folio)) { 2535 error = PTR_ERR(folio); 2536 if (error == -EEXIST) 2537 goto repeat; 2538 folio = NULL; 2539 goto unlock; 2540 } 2541 2542 alloced: 2543 alloced = true; 2544 if (folio_test_large(folio) && 2545 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2546 folio_next_index(folio)) { 2547 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2548 struct shmem_inode_info *info = SHMEM_I(inode); 2549 /* 2550 * Part of the large folio is beyond i_size: subject 2551 * to shrink under memory pressure. 2552 */ 2553 spin_lock(&sbinfo->shrinklist_lock); 2554 /* 2555 * _careful to defend against unlocked access to 2556 * ->shrink_list in shmem_unused_huge_shrink() 2557 */ 2558 if (list_empty_careful(&info->shrinklist)) { 2559 list_add_tail(&info->shrinklist, 2560 &sbinfo->shrinklist); 2561 sbinfo->shrinklist_len++; 2562 } 2563 spin_unlock(&sbinfo->shrinklist_lock); 2564 } 2565 2566 if (sgp == SGP_WRITE) 2567 folio_set_referenced(folio); 2568 /* 2569 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2570 */ 2571 if (sgp == SGP_FALLOC) 2572 sgp = SGP_WRITE; 2573 clear: 2574 /* 2575 * Let SGP_WRITE caller clear ends if write does not fill folio; 2576 * but SGP_FALLOC on a folio fallocated earlier must initialize 2577 * it now, lest undo on failure cancel our earlier guarantee. 2578 */ 2579 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2580 long i, n = folio_nr_pages(folio); 2581 2582 for (i = 0; i < n; i++) 2583 clear_highpage(folio_page(folio, i)); 2584 flush_dcache_folio(folio); 2585 folio_mark_uptodate(folio); 2586 } 2587 2588 /* Perhaps the file has been truncated since we checked */ 2589 if (sgp <= SGP_CACHE && 2590 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2591 error = -EINVAL; 2592 goto unlock; 2593 } 2594 out: 2595 *foliop = folio; 2596 return 0; 2597 2598 /* 2599 * Error recovery. 2600 */ 2601 unlock: 2602 if (alloced) 2603 filemap_remove_folio(folio); 2604 shmem_recalc_inode(inode, 0, 0); 2605 if (folio) { 2606 folio_unlock(folio); 2607 folio_put(folio); 2608 } 2609 return error; 2610 } 2611 2612 /** 2613 * shmem_get_folio - find, and lock a shmem folio. 2614 * @inode: inode to search 2615 * @index: the page index. 2616 * @write_end: end of a write, could extend inode size 2617 * @foliop: pointer to the folio if found 2618 * @sgp: SGP_* flags to control behavior 2619 * 2620 * Looks up the page cache entry at @inode & @index. If a folio is 2621 * present, it is returned locked with an increased refcount. 2622 * 2623 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2624 * before unlocking the folio to ensure that the folio is not reclaimed. 2625 * There is no need to reserve space before calling folio_mark_dirty(). 2626 * 2627 * When no folio is found, the behavior depends on @sgp: 2628 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2629 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2630 * - for all other flags a new folio is allocated, inserted into the 2631 * page cache and returned locked in @foliop. 2632 * 2633 * Context: May sleep. 2634 * Return: 0 if successful, else a negative error code. 2635 */ 2636 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end, 2637 struct folio **foliop, enum sgp_type sgp) 2638 { 2639 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp, 2640 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2641 } 2642 EXPORT_SYMBOL_GPL(shmem_get_folio); 2643 2644 /* 2645 * This is like autoremove_wake_function, but it removes the wait queue 2646 * entry unconditionally - even if something else had already woken the 2647 * target. 2648 */ 2649 static int synchronous_wake_function(wait_queue_entry_t *wait, 2650 unsigned int mode, int sync, void *key) 2651 { 2652 int ret = default_wake_function(wait, mode, sync, key); 2653 list_del_init(&wait->entry); 2654 return ret; 2655 } 2656 2657 /* 2658 * Trinity finds that probing a hole which tmpfs is punching can 2659 * prevent the hole-punch from ever completing: which in turn 2660 * locks writers out with its hold on i_rwsem. So refrain from 2661 * faulting pages into the hole while it's being punched. Although 2662 * shmem_undo_range() does remove the additions, it may be unable to 2663 * keep up, as each new page needs its own unmap_mapping_range() call, 2664 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2665 * 2666 * It does not matter if we sometimes reach this check just before the 2667 * hole-punch begins, so that one fault then races with the punch: 2668 * we just need to make racing faults a rare case. 2669 * 2670 * The implementation below would be much simpler if we just used a 2671 * standard mutex or completion: but we cannot take i_rwsem in fault, 2672 * and bloating every shmem inode for this unlikely case would be sad. 2673 */ 2674 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2675 { 2676 struct shmem_falloc *shmem_falloc; 2677 struct file *fpin = NULL; 2678 vm_fault_t ret = 0; 2679 2680 spin_lock(&inode->i_lock); 2681 shmem_falloc = inode->i_private; 2682 if (shmem_falloc && 2683 shmem_falloc->waitq && 2684 vmf->pgoff >= shmem_falloc->start && 2685 vmf->pgoff < shmem_falloc->next) { 2686 wait_queue_head_t *shmem_falloc_waitq; 2687 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2688 2689 ret = VM_FAULT_NOPAGE; 2690 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2691 shmem_falloc_waitq = shmem_falloc->waitq; 2692 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2693 TASK_UNINTERRUPTIBLE); 2694 spin_unlock(&inode->i_lock); 2695 schedule(); 2696 2697 /* 2698 * shmem_falloc_waitq points into the shmem_fallocate() 2699 * stack of the hole-punching task: shmem_falloc_waitq 2700 * is usually invalid by the time we reach here, but 2701 * finish_wait() does not dereference it in that case; 2702 * though i_lock needed lest racing with wake_up_all(). 2703 */ 2704 spin_lock(&inode->i_lock); 2705 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2706 } 2707 spin_unlock(&inode->i_lock); 2708 if (fpin) { 2709 fput(fpin); 2710 ret = VM_FAULT_RETRY; 2711 } 2712 return ret; 2713 } 2714 2715 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2716 { 2717 struct inode *inode = file_inode(vmf->vma->vm_file); 2718 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2719 struct folio *folio = NULL; 2720 vm_fault_t ret = 0; 2721 int err; 2722 2723 /* 2724 * Trinity finds that probing a hole which tmpfs is punching can 2725 * prevent the hole-punch from ever completing: noted in i_private. 2726 */ 2727 if (unlikely(inode->i_private)) { 2728 ret = shmem_falloc_wait(vmf, inode); 2729 if (ret) 2730 return ret; 2731 } 2732 2733 WARN_ON_ONCE(vmf->page != NULL); 2734 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE, 2735 gfp, vmf, &ret); 2736 if (err) 2737 return vmf_error(err); 2738 if (folio) { 2739 vmf->page = folio_file_page(folio, vmf->pgoff); 2740 ret |= VM_FAULT_LOCKED; 2741 } 2742 return ret; 2743 } 2744 2745 unsigned long shmem_get_unmapped_area(struct file *file, 2746 unsigned long uaddr, unsigned long len, 2747 unsigned long pgoff, unsigned long flags) 2748 { 2749 unsigned long addr; 2750 unsigned long offset; 2751 unsigned long inflated_len; 2752 unsigned long inflated_addr; 2753 unsigned long inflated_offset; 2754 unsigned long hpage_size; 2755 2756 if (len > TASK_SIZE) 2757 return -ENOMEM; 2758 2759 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff, 2760 flags); 2761 2762 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2763 return addr; 2764 if (IS_ERR_VALUE(addr)) 2765 return addr; 2766 if (addr & ~PAGE_MASK) 2767 return addr; 2768 if (addr > TASK_SIZE - len) 2769 return addr; 2770 2771 if (shmem_huge == SHMEM_HUGE_DENY) 2772 return addr; 2773 if (flags & MAP_FIXED) 2774 return addr; 2775 /* 2776 * Our priority is to support MAP_SHARED mapped hugely; 2777 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2778 * But if caller specified an address hint and we allocated area there 2779 * successfully, respect that as before. 2780 */ 2781 if (uaddr == addr) 2782 return addr; 2783 2784 hpage_size = HPAGE_PMD_SIZE; 2785 if (shmem_huge != SHMEM_HUGE_FORCE) { 2786 struct super_block *sb; 2787 unsigned long __maybe_unused hpage_orders; 2788 int order = 0; 2789 2790 if (file) { 2791 VM_BUG_ON(file->f_op != &shmem_file_operations); 2792 sb = file_inode(file)->i_sb; 2793 } else { 2794 /* 2795 * Called directly from mm/mmap.c, or drivers/char/mem.c 2796 * for "/dev/zero", to create a shared anonymous object. 2797 */ 2798 if (IS_ERR(shm_mnt)) 2799 return addr; 2800 sb = shm_mnt->mnt_sb; 2801 2802 /* 2803 * Find the highest mTHP order used for anonymous shmem to 2804 * provide a suitable alignment address. 2805 */ 2806 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2807 hpage_orders = READ_ONCE(huge_shmem_orders_always); 2808 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size); 2809 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise); 2810 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 2811 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit); 2812 2813 if (hpage_orders > 0) { 2814 order = highest_order(hpage_orders); 2815 hpage_size = PAGE_SIZE << order; 2816 } 2817 #endif 2818 } 2819 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order) 2820 return addr; 2821 } 2822 2823 if (len < hpage_size) 2824 return addr; 2825 2826 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1); 2827 if (offset && offset + len < 2 * hpage_size) 2828 return addr; 2829 if ((addr & (hpage_size - 1)) == offset) 2830 return addr; 2831 2832 inflated_len = len + hpage_size - PAGE_SIZE; 2833 if (inflated_len > TASK_SIZE) 2834 return addr; 2835 if (inflated_len < len) 2836 return addr; 2837 2838 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr, 2839 inflated_len, 0, flags); 2840 if (IS_ERR_VALUE(inflated_addr)) 2841 return addr; 2842 if (inflated_addr & ~PAGE_MASK) 2843 return addr; 2844 2845 inflated_offset = inflated_addr & (hpage_size - 1); 2846 inflated_addr += offset - inflated_offset; 2847 if (inflated_offset > offset) 2848 inflated_addr += hpage_size; 2849 2850 if (inflated_addr > TASK_SIZE - len) 2851 return addr; 2852 return inflated_addr; 2853 } 2854 2855 #ifdef CONFIG_NUMA 2856 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2857 { 2858 struct inode *inode = file_inode(vma->vm_file); 2859 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2860 } 2861 2862 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2863 unsigned long addr, pgoff_t *ilx) 2864 { 2865 struct inode *inode = file_inode(vma->vm_file); 2866 pgoff_t index; 2867 2868 /* 2869 * Bias interleave by inode number to distribute better across nodes; 2870 * but this interface is independent of which page order is used, so 2871 * supplies only that bias, letting caller apply the offset (adjusted 2872 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2873 */ 2874 *ilx = inode->i_ino; 2875 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2876 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2877 } 2878 2879 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2880 pgoff_t index, unsigned int order, pgoff_t *ilx) 2881 { 2882 struct mempolicy *mpol; 2883 2884 /* Bias interleave by inode number to distribute better across nodes */ 2885 *ilx = info->vfs_inode.i_ino + (index >> order); 2886 2887 mpol = mpol_shared_policy_lookup(&info->policy, index); 2888 return mpol ? mpol : get_task_policy(current); 2889 } 2890 #else 2891 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2892 pgoff_t index, unsigned int order, pgoff_t *ilx) 2893 { 2894 *ilx = 0; 2895 return NULL; 2896 } 2897 #endif /* CONFIG_NUMA */ 2898 2899 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2900 { 2901 struct inode *inode = file_inode(file); 2902 struct shmem_inode_info *info = SHMEM_I(inode); 2903 int retval = -ENOMEM; 2904 2905 /* 2906 * What serializes the accesses to info->flags? 2907 * ipc_lock_object() when called from shmctl_do_lock(), 2908 * no serialization needed when called from shm_destroy(). 2909 */ 2910 if (lock && !(info->flags & VM_LOCKED)) { 2911 if (!user_shm_lock(inode->i_size, ucounts)) 2912 goto out_nomem; 2913 info->flags |= VM_LOCKED; 2914 mapping_set_unevictable(file->f_mapping); 2915 } 2916 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2917 user_shm_unlock(inode->i_size, ucounts); 2918 info->flags &= ~VM_LOCKED; 2919 mapping_clear_unevictable(file->f_mapping); 2920 } 2921 retval = 0; 2922 2923 out_nomem: 2924 return retval; 2925 } 2926 2927 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2928 { 2929 struct inode *inode = file_inode(file); 2930 2931 file_accessed(file); 2932 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2933 if (inode->i_nlink) 2934 vma->vm_ops = &shmem_vm_ops; 2935 else 2936 vma->vm_ops = &shmem_anon_vm_ops; 2937 return 0; 2938 } 2939 2940 static int shmem_file_open(struct inode *inode, struct file *file) 2941 { 2942 file->f_mode |= FMODE_CAN_ODIRECT; 2943 return generic_file_open(inode, file); 2944 } 2945 2946 #ifdef CONFIG_TMPFS_XATTR 2947 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2948 2949 #if IS_ENABLED(CONFIG_UNICODE) 2950 /* 2951 * shmem_inode_casefold_flags - Deal with casefold file attribute flag 2952 * 2953 * The casefold file attribute needs some special checks. I can just be added to 2954 * an empty dir, and can't be removed from a non-empty dir. 2955 */ 2956 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 2957 struct dentry *dentry, unsigned int *i_flags) 2958 { 2959 unsigned int old = inode->i_flags; 2960 struct super_block *sb = inode->i_sb; 2961 2962 if (fsflags & FS_CASEFOLD_FL) { 2963 if (!(old & S_CASEFOLD)) { 2964 if (!sb->s_encoding) 2965 return -EOPNOTSUPP; 2966 2967 if (!S_ISDIR(inode->i_mode)) 2968 return -ENOTDIR; 2969 2970 if (dentry && !simple_empty(dentry)) 2971 return -ENOTEMPTY; 2972 } 2973 2974 *i_flags = *i_flags | S_CASEFOLD; 2975 } else if (old & S_CASEFOLD) { 2976 if (dentry && !simple_empty(dentry)) 2977 return -ENOTEMPTY; 2978 } 2979 2980 return 0; 2981 } 2982 #else 2983 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 2984 struct dentry *dentry, unsigned int *i_flags) 2985 { 2986 if (fsflags & FS_CASEFOLD_FL) 2987 return -EOPNOTSUPP; 2988 2989 return 0; 2990 } 2991 #endif 2992 2993 /* 2994 * chattr's fsflags are unrelated to extended attributes, 2995 * but tmpfs has chosen to enable them under the same config option. 2996 */ 2997 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 2998 { 2999 unsigned int i_flags = 0; 3000 int ret; 3001 3002 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags); 3003 if (ret) 3004 return ret; 3005 3006 if (fsflags & FS_NOATIME_FL) 3007 i_flags |= S_NOATIME; 3008 if (fsflags & FS_APPEND_FL) 3009 i_flags |= S_APPEND; 3010 if (fsflags & FS_IMMUTABLE_FL) 3011 i_flags |= S_IMMUTABLE; 3012 /* 3013 * But FS_NODUMP_FL does not require any action in i_flags. 3014 */ 3015 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD); 3016 3017 return 0; 3018 } 3019 #else 3020 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3021 { 3022 } 3023 #define shmem_initxattrs NULL 3024 #endif 3025 3026 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 3027 { 3028 return &SHMEM_I(inode)->dir_offsets; 3029 } 3030 3031 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 3032 struct super_block *sb, 3033 struct inode *dir, umode_t mode, 3034 dev_t dev, unsigned long flags) 3035 { 3036 struct inode *inode; 3037 struct shmem_inode_info *info; 3038 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3039 ino_t ino; 3040 int err; 3041 3042 err = shmem_reserve_inode(sb, &ino); 3043 if (err) 3044 return ERR_PTR(err); 3045 3046 inode = new_inode(sb); 3047 if (!inode) { 3048 shmem_free_inode(sb, 0); 3049 return ERR_PTR(-ENOSPC); 3050 } 3051 3052 inode->i_ino = ino; 3053 inode_init_owner(idmap, inode, dir, mode); 3054 inode->i_blocks = 0; 3055 simple_inode_init_ts(inode); 3056 inode->i_generation = get_random_u32(); 3057 info = SHMEM_I(inode); 3058 memset(info, 0, (char *)inode - (char *)info); 3059 spin_lock_init(&info->lock); 3060 atomic_set(&info->stop_eviction, 0); 3061 info->seals = F_SEAL_SEAL; 3062 info->flags = flags & VM_NORESERVE; 3063 info->i_crtime = inode_get_mtime(inode); 3064 info->fsflags = (dir == NULL) ? 0 : 3065 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 3066 if (info->fsflags) 3067 shmem_set_inode_flags(inode, info->fsflags, NULL); 3068 INIT_LIST_HEAD(&info->shrinklist); 3069 INIT_LIST_HEAD(&info->swaplist); 3070 simple_xattrs_init(&info->xattrs); 3071 cache_no_acl(inode); 3072 if (sbinfo->noswap) 3073 mapping_set_unevictable(inode->i_mapping); 3074 3075 /* Don't consider 'deny' for emergencies and 'force' for testing */ 3076 if (sbinfo->huge) 3077 mapping_set_large_folios(inode->i_mapping); 3078 3079 switch (mode & S_IFMT) { 3080 default: 3081 inode->i_op = &shmem_special_inode_operations; 3082 init_special_inode(inode, mode, dev); 3083 break; 3084 case S_IFREG: 3085 inode->i_mapping->a_ops = &shmem_aops; 3086 inode->i_op = &shmem_inode_operations; 3087 inode->i_fop = &shmem_file_operations; 3088 mpol_shared_policy_init(&info->policy, 3089 shmem_get_sbmpol(sbinfo)); 3090 break; 3091 case S_IFDIR: 3092 inc_nlink(inode); 3093 /* Some things misbehave if size == 0 on a directory */ 3094 inode->i_size = 2 * BOGO_DIRENT_SIZE; 3095 inode->i_op = &shmem_dir_inode_operations; 3096 inode->i_fop = &simple_offset_dir_operations; 3097 simple_offset_init(shmem_get_offset_ctx(inode)); 3098 break; 3099 case S_IFLNK: 3100 /* 3101 * Must not load anything in the rbtree, 3102 * mpol_free_shared_policy will not be called. 3103 */ 3104 mpol_shared_policy_init(&info->policy, NULL); 3105 break; 3106 } 3107 3108 lockdep_annotate_inode_mutex_key(inode); 3109 return inode; 3110 } 3111 3112 #ifdef CONFIG_TMPFS_QUOTA 3113 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3114 struct super_block *sb, struct inode *dir, 3115 umode_t mode, dev_t dev, unsigned long flags) 3116 { 3117 int err; 3118 struct inode *inode; 3119 3120 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3121 if (IS_ERR(inode)) 3122 return inode; 3123 3124 err = dquot_initialize(inode); 3125 if (err) 3126 goto errout; 3127 3128 err = dquot_alloc_inode(inode); 3129 if (err) { 3130 dquot_drop(inode); 3131 goto errout; 3132 } 3133 return inode; 3134 3135 errout: 3136 inode->i_flags |= S_NOQUOTA; 3137 iput(inode); 3138 return ERR_PTR(err); 3139 } 3140 #else 3141 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3142 struct super_block *sb, struct inode *dir, 3143 umode_t mode, dev_t dev, unsigned long flags) 3144 { 3145 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3146 } 3147 #endif /* CONFIG_TMPFS_QUOTA */ 3148 3149 #ifdef CONFIG_USERFAULTFD 3150 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 3151 struct vm_area_struct *dst_vma, 3152 unsigned long dst_addr, 3153 unsigned long src_addr, 3154 uffd_flags_t flags, 3155 struct folio **foliop) 3156 { 3157 struct inode *inode = file_inode(dst_vma->vm_file); 3158 struct shmem_inode_info *info = SHMEM_I(inode); 3159 struct address_space *mapping = inode->i_mapping; 3160 gfp_t gfp = mapping_gfp_mask(mapping); 3161 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 3162 void *page_kaddr; 3163 struct folio *folio; 3164 int ret; 3165 pgoff_t max_off; 3166 3167 if (shmem_inode_acct_blocks(inode, 1)) { 3168 /* 3169 * We may have got a page, returned -ENOENT triggering a retry, 3170 * and now we find ourselves with -ENOMEM. Release the page, to 3171 * avoid a BUG_ON in our caller. 3172 */ 3173 if (unlikely(*foliop)) { 3174 folio_put(*foliop); 3175 *foliop = NULL; 3176 } 3177 return -ENOMEM; 3178 } 3179 3180 if (!*foliop) { 3181 ret = -ENOMEM; 3182 folio = shmem_alloc_folio(gfp, 0, info, pgoff); 3183 if (!folio) 3184 goto out_unacct_blocks; 3185 3186 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 3187 page_kaddr = kmap_local_folio(folio, 0); 3188 /* 3189 * The read mmap_lock is held here. Despite the 3190 * mmap_lock being read recursive a deadlock is still 3191 * possible if a writer has taken a lock. For example: 3192 * 3193 * process A thread 1 takes read lock on own mmap_lock 3194 * process A thread 2 calls mmap, blocks taking write lock 3195 * process B thread 1 takes page fault, read lock on own mmap lock 3196 * process B thread 2 calls mmap, blocks taking write lock 3197 * process A thread 1 blocks taking read lock on process B 3198 * process B thread 1 blocks taking read lock on process A 3199 * 3200 * Disable page faults to prevent potential deadlock 3201 * and retry the copy outside the mmap_lock. 3202 */ 3203 pagefault_disable(); 3204 ret = copy_from_user(page_kaddr, 3205 (const void __user *)src_addr, 3206 PAGE_SIZE); 3207 pagefault_enable(); 3208 kunmap_local(page_kaddr); 3209 3210 /* fallback to copy_from_user outside mmap_lock */ 3211 if (unlikely(ret)) { 3212 *foliop = folio; 3213 ret = -ENOENT; 3214 /* don't free the page */ 3215 goto out_unacct_blocks; 3216 } 3217 3218 flush_dcache_folio(folio); 3219 } else { /* ZEROPAGE */ 3220 clear_user_highpage(&folio->page, dst_addr); 3221 } 3222 } else { 3223 folio = *foliop; 3224 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 3225 *foliop = NULL; 3226 } 3227 3228 VM_BUG_ON(folio_test_locked(folio)); 3229 VM_BUG_ON(folio_test_swapbacked(folio)); 3230 __folio_set_locked(folio); 3231 __folio_set_swapbacked(folio); 3232 __folio_mark_uptodate(folio); 3233 3234 ret = -EFAULT; 3235 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3236 if (unlikely(pgoff >= max_off)) 3237 goto out_release; 3238 3239 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 3240 if (ret) 3241 goto out_release; 3242 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 3243 if (ret) 3244 goto out_release; 3245 3246 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 3247 &folio->page, true, flags); 3248 if (ret) 3249 goto out_delete_from_cache; 3250 3251 shmem_recalc_inode(inode, 1, 0); 3252 folio_unlock(folio); 3253 return 0; 3254 out_delete_from_cache: 3255 filemap_remove_folio(folio); 3256 out_release: 3257 folio_unlock(folio); 3258 folio_put(folio); 3259 out_unacct_blocks: 3260 shmem_inode_unacct_blocks(inode, 1); 3261 return ret; 3262 } 3263 #endif /* CONFIG_USERFAULTFD */ 3264 3265 #ifdef CONFIG_TMPFS 3266 static const struct inode_operations shmem_symlink_inode_operations; 3267 static const struct inode_operations shmem_short_symlink_operations; 3268 3269 static int 3270 shmem_write_begin(const struct kiocb *iocb, struct address_space *mapping, 3271 loff_t pos, unsigned len, 3272 struct folio **foliop, void **fsdata) 3273 { 3274 struct inode *inode = mapping->host; 3275 struct shmem_inode_info *info = SHMEM_I(inode); 3276 pgoff_t index = pos >> PAGE_SHIFT; 3277 struct folio *folio; 3278 int ret = 0; 3279 3280 /* i_rwsem is held by caller */ 3281 if (unlikely(info->seals & (F_SEAL_GROW | 3282 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 3283 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 3284 return -EPERM; 3285 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 3286 return -EPERM; 3287 } 3288 3289 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE); 3290 if (ret) 3291 return ret; 3292 3293 if (folio_contain_hwpoisoned_page(folio)) { 3294 folio_unlock(folio); 3295 folio_put(folio); 3296 return -EIO; 3297 } 3298 3299 *foliop = folio; 3300 return 0; 3301 } 3302 3303 static int 3304 shmem_write_end(const struct kiocb *iocb, struct address_space *mapping, 3305 loff_t pos, unsigned len, unsigned copied, 3306 struct folio *folio, void *fsdata) 3307 { 3308 struct inode *inode = mapping->host; 3309 3310 if (pos + copied > inode->i_size) 3311 i_size_write(inode, pos + copied); 3312 3313 if (!folio_test_uptodate(folio)) { 3314 if (copied < folio_size(folio)) { 3315 size_t from = offset_in_folio(folio, pos); 3316 folio_zero_segments(folio, 0, from, 3317 from + copied, folio_size(folio)); 3318 } 3319 folio_mark_uptodate(folio); 3320 } 3321 folio_mark_dirty(folio); 3322 folio_unlock(folio); 3323 folio_put(folio); 3324 3325 return copied; 3326 } 3327 3328 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3329 { 3330 struct file *file = iocb->ki_filp; 3331 struct inode *inode = file_inode(file); 3332 struct address_space *mapping = inode->i_mapping; 3333 pgoff_t index; 3334 unsigned long offset; 3335 int error = 0; 3336 ssize_t retval = 0; 3337 3338 for (;;) { 3339 struct folio *folio = NULL; 3340 struct page *page = NULL; 3341 unsigned long nr, ret; 3342 loff_t end_offset, i_size = i_size_read(inode); 3343 bool fallback_page_copy = false; 3344 size_t fsize; 3345 3346 if (unlikely(iocb->ki_pos >= i_size)) 3347 break; 3348 3349 index = iocb->ki_pos >> PAGE_SHIFT; 3350 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3351 if (error) { 3352 if (error == -EINVAL) 3353 error = 0; 3354 break; 3355 } 3356 if (folio) { 3357 folio_unlock(folio); 3358 3359 page = folio_file_page(folio, index); 3360 if (PageHWPoison(page)) { 3361 folio_put(folio); 3362 error = -EIO; 3363 break; 3364 } 3365 3366 if (folio_test_large(folio) && 3367 folio_test_has_hwpoisoned(folio)) 3368 fallback_page_copy = true; 3369 } 3370 3371 /* 3372 * We must evaluate after, since reads (unlike writes) 3373 * are called without i_rwsem protection against truncate 3374 */ 3375 i_size = i_size_read(inode); 3376 if (unlikely(iocb->ki_pos >= i_size)) { 3377 if (folio) 3378 folio_put(folio); 3379 break; 3380 } 3381 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count); 3382 if (folio && likely(!fallback_page_copy)) 3383 fsize = folio_size(folio); 3384 else 3385 fsize = PAGE_SIZE; 3386 offset = iocb->ki_pos & (fsize - 1); 3387 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset); 3388 3389 if (folio) { 3390 /* 3391 * If users can be writing to this page using arbitrary 3392 * virtual addresses, take care about potential aliasing 3393 * before reading the page on the kernel side. 3394 */ 3395 if (mapping_writably_mapped(mapping)) { 3396 if (likely(!fallback_page_copy)) 3397 flush_dcache_folio(folio); 3398 else 3399 flush_dcache_page(page); 3400 } 3401 3402 /* 3403 * Mark the folio accessed if we read the beginning. 3404 */ 3405 if (!offset) 3406 folio_mark_accessed(folio); 3407 /* 3408 * Ok, we have the page, and it's up-to-date, so 3409 * now we can copy it to user space... 3410 */ 3411 if (likely(!fallback_page_copy)) 3412 ret = copy_folio_to_iter(folio, offset, nr, to); 3413 else 3414 ret = copy_page_to_iter(page, offset, nr, to); 3415 folio_put(folio); 3416 } else if (user_backed_iter(to)) { 3417 /* 3418 * Copy to user tends to be so well optimized, but 3419 * clear_user() not so much, that it is noticeably 3420 * faster to copy the zero page instead of clearing. 3421 */ 3422 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 3423 } else { 3424 /* 3425 * But submitting the same page twice in a row to 3426 * splice() - or others? - can result in confusion: 3427 * so don't attempt that optimization on pipes etc. 3428 */ 3429 ret = iov_iter_zero(nr, to); 3430 } 3431 3432 retval += ret; 3433 iocb->ki_pos += ret; 3434 3435 if (!iov_iter_count(to)) 3436 break; 3437 if (ret < nr) { 3438 error = -EFAULT; 3439 break; 3440 } 3441 cond_resched(); 3442 } 3443 3444 file_accessed(file); 3445 return retval ? retval : error; 3446 } 3447 3448 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3449 { 3450 struct file *file = iocb->ki_filp; 3451 struct inode *inode = file->f_mapping->host; 3452 ssize_t ret; 3453 3454 inode_lock(inode); 3455 ret = generic_write_checks(iocb, from); 3456 if (ret <= 0) 3457 goto unlock; 3458 ret = file_remove_privs(file); 3459 if (ret) 3460 goto unlock; 3461 ret = file_update_time(file); 3462 if (ret) 3463 goto unlock; 3464 ret = generic_perform_write(iocb, from); 3465 unlock: 3466 inode_unlock(inode); 3467 return ret; 3468 } 3469 3470 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 3471 struct pipe_buffer *buf) 3472 { 3473 return true; 3474 } 3475 3476 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 3477 struct pipe_buffer *buf) 3478 { 3479 } 3480 3481 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 3482 struct pipe_buffer *buf) 3483 { 3484 return false; 3485 } 3486 3487 static const struct pipe_buf_operations zero_pipe_buf_ops = { 3488 .release = zero_pipe_buf_release, 3489 .try_steal = zero_pipe_buf_try_steal, 3490 .get = zero_pipe_buf_get, 3491 }; 3492 3493 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 3494 loff_t fpos, size_t size) 3495 { 3496 size_t offset = fpos & ~PAGE_MASK; 3497 3498 size = min_t(size_t, size, PAGE_SIZE - offset); 3499 3500 if (!pipe_is_full(pipe)) { 3501 struct pipe_buffer *buf = pipe_head_buf(pipe); 3502 3503 *buf = (struct pipe_buffer) { 3504 .ops = &zero_pipe_buf_ops, 3505 .page = ZERO_PAGE(0), 3506 .offset = offset, 3507 .len = size, 3508 }; 3509 pipe->head++; 3510 } 3511 3512 return size; 3513 } 3514 3515 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 3516 struct pipe_inode_info *pipe, 3517 size_t len, unsigned int flags) 3518 { 3519 struct inode *inode = file_inode(in); 3520 struct address_space *mapping = inode->i_mapping; 3521 struct folio *folio = NULL; 3522 size_t total_spliced = 0, used, npages, n, part; 3523 loff_t isize; 3524 int error = 0; 3525 3526 /* Work out how much data we can actually add into the pipe */ 3527 used = pipe_buf_usage(pipe); 3528 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3529 len = min_t(size_t, len, npages * PAGE_SIZE); 3530 3531 do { 3532 bool fallback_page_splice = false; 3533 struct page *page = NULL; 3534 pgoff_t index; 3535 size_t size; 3536 3537 if (*ppos >= i_size_read(inode)) 3538 break; 3539 3540 index = *ppos >> PAGE_SHIFT; 3541 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3542 if (error) { 3543 if (error == -EINVAL) 3544 error = 0; 3545 break; 3546 } 3547 if (folio) { 3548 folio_unlock(folio); 3549 3550 page = folio_file_page(folio, index); 3551 if (PageHWPoison(page)) { 3552 error = -EIO; 3553 break; 3554 } 3555 3556 if (folio_test_large(folio) && 3557 folio_test_has_hwpoisoned(folio)) 3558 fallback_page_splice = true; 3559 } 3560 3561 /* 3562 * i_size must be checked after we know the pages are Uptodate. 3563 * 3564 * Checking i_size after the check allows us to calculate 3565 * the correct value for "nr", which means the zero-filled 3566 * part of the page is not copied back to userspace (unless 3567 * another truncate extends the file - this is desired though). 3568 */ 3569 isize = i_size_read(inode); 3570 if (unlikely(*ppos >= isize)) 3571 break; 3572 /* 3573 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned 3574 * pages. 3575 */ 3576 size = len; 3577 if (unlikely(fallback_page_splice)) { 3578 size_t offset = *ppos & ~PAGE_MASK; 3579 3580 size = umin(size, PAGE_SIZE - offset); 3581 } 3582 part = min_t(loff_t, isize - *ppos, size); 3583 3584 if (folio) { 3585 /* 3586 * If users can be writing to this page using arbitrary 3587 * virtual addresses, take care about potential aliasing 3588 * before reading the page on the kernel side. 3589 */ 3590 if (mapping_writably_mapped(mapping)) { 3591 if (likely(!fallback_page_splice)) 3592 flush_dcache_folio(folio); 3593 else 3594 flush_dcache_page(page); 3595 } 3596 folio_mark_accessed(folio); 3597 /* 3598 * Ok, we have the page, and it's up-to-date, so we can 3599 * now splice it into the pipe. 3600 */ 3601 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3602 folio_put(folio); 3603 folio = NULL; 3604 } else { 3605 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3606 } 3607 3608 if (!n) 3609 break; 3610 len -= n; 3611 total_spliced += n; 3612 *ppos += n; 3613 in->f_ra.prev_pos = *ppos; 3614 if (pipe_is_full(pipe)) 3615 break; 3616 3617 cond_resched(); 3618 } while (len); 3619 3620 if (folio) 3621 folio_put(folio); 3622 3623 file_accessed(in); 3624 return total_spliced ? total_spliced : error; 3625 } 3626 3627 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3628 { 3629 struct address_space *mapping = file->f_mapping; 3630 struct inode *inode = mapping->host; 3631 3632 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3633 return generic_file_llseek_size(file, offset, whence, 3634 MAX_LFS_FILESIZE, i_size_read(inode)); 3635 if (offset < 0) 3636 return -ENXIO; 3637 3638 inode_lock(inode); 3639 /* We're holding i_rwsem so we can access i_size directly */ 3640 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3641 if (offset >= 0) 3642 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3643 inode_unlock(inode); 3644 return offset; 3645 } 3646 3647 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3648 loff_t len) 3649 { 3650 struct inode *inode = file_inode(file); 3651 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3652 struct shmem_inode_info *info = SHMEM_I(inode); 3653 struct shmem_falloc shmem_falloc; 3654 pgoff_t start, index, end, undo_fallocend; 3655 int error; 3656 3657 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3658 return -EOPNOTSUPP; 3659 3660 inode_lock(inode); 3661 3662 if (mode & FALLOC_FL_PUNCH_HOLE) { 3663 struct address_space *mapping = file->f_mapping; 3664 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3665 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3666 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3667 3668 /* protected by i_rwsem */ 3669 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3670 error = -EPERM; 3671 goto out; 3672 } 3673 3674 shmem_falloc.waitq = &shmem_falloc_waitq; 3675 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3676 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3677 spin_lock(&inode->i_lock); 3678 inode->i_private = &shmem_falloc; 3679 spin_unlock(&inode->i_lock); 3680 3681 if ((u64)unmap_end > (u64)unmap_start) 3682 unmap_mapping_range(mapping, unmap_start, 3683 1 + unmap_end - unmap_start, 0); 3684 shmem_truncate_range(inode, offset, offset + len - 1); 3685 /* No need to unmap again: hole-punching leaves COWed pages */ 3686 3687 spin_lock(&inode->i_lock); 3688 inode->i_private = NULL; 3689 wake_up_all(&shmem_falloc_waitq); 3690 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3691 spin_unlock(&inode->i_lock); 3692 error = 0; 3693 goto out; 3694 } 3695 3696 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3697 error = inode_newsize_ok(inode, offset + len); 3698 if (error) 3699 goto out; 3700 3701 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3702 error = -EPERM; 3703 goto out; 3704 } 3705 3706 start = offset >> PAGE_SHIFT; 3707 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3708 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3709 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3710 error = -ENOSPC; 3711 goto out; 3712 } 3713 3714 shmem_falloc.waitq = NULL; 3715 shmem_falloc.start = start; 3716 shmem_falloc.next = start; 3717 shmem_falloc.nr_falloced = 0; 3718 shmem_falloc.nr_unswapped = 0; 3719 spin_lock(&inode->i_lock); 3720 inode->i_private = &shmem_falloc; 3721 spin_unlock(&inode->i_lock); 3722 3723 /* 3724 * info->fallocend is only relevant when huge pages might be 3725 * involved: to prevent split_huge_page() freeing fallocated 3726 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3727 */ 3728 undo_fallocend = info->fallocend; 3729 if (info->fallocend < end) 3730 info->fallocend = end; 3731 3732 for (index = start; index < end; ) { 3733 struct folio *folio; 3734 3735 /* 3736 * Check for fatal signal so that we abort early in OOM 3737 * situations. We don't want to abort in case of non-fatal 3738 * signals as large fallocate can take noticeable time and 3739 * e.g. periodic timers may result in fallocate constantly 3740 * restarting. 3741 */ 3742 if (fatal_signal_pending(current)) 3743 error = -EINTR; 3744 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3745 error = -ENOMEM; 3746 else 3747 error = shmem_get_folio(inode, index, offset + len, 3748 &folio, SGP_FALLOC); 3749 if (error) { 3750 info->fallocend = undo_fallocend; 3751 /* Remove the !uptodate folios we added */ 3752 if (index > start) { 3753 shmem_undo_range(inode, 3754 (loff_t)start << PAGE_SHIFT, 3755 ((loff_t)index << PAGE_SHIFT) - 1, true); 3756 } 3757 goto undone; 3758 } 3759 3760 /* 3761 * Here is a more important optimization than it appears: 3762 * a second SGP_FALLOC on the same large folio will clear it, 3763 * making it uptodate and un-undoable if we fail later. 3764 */ 3765 index = folio_next_index(folio); 3766 /* Beware 32-bit wraparound */ 3767 if (!index) 3768 index--; 3769 3770 /* 3771 * Inform shmem_writeout() how far we have reached. 3772 * No need for lock or barrier: we have the page lock. 3773 */ 3774 if (!folio_test_uptodate(folio)) 3775 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3776 shmem_falloc.next = index; 3777 3778 /* 3779 * If !uptodate, leave it that way so that freeable folios 3780 * can be recognized if we need to rollback on error later. 3781 * But mark it dirty so that memory pressure will swap rather 3782 * than free the folios we are allocating (and SGP_CACHE folios 3783 * might still be clean: we now need to mark those dirty too). 3784 */ 3785 folio_mark_dirty(folio); 3786 folio_unlock(folio); 3787 folio_put(folio); 3788 cond_resched(); 3789 } 3790 3791 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3792 i_size_write(inode, offset + len); 3793 undone: 3794 spin_lock(&inode->i_lock); 3795 inode->i_private = NULL; 3796 spin_unlock(&inode->i_lock); 3797 out: 3798 if (!error) 3799 file_modified(file); 3800 inode_unlock(inode); 3801 return error; 3802 } 3803 3804 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3805 { 3806 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3807 3808 buf->f_type = TMPFS_MAGIC; 3809 buf->f_bsize = PAGE_SIZE; 3810 buf->f_namelen = NAME_MAX; 3811 if (sbinfo->max_blocks) { 3812 buf->f_blocks = sbinfo->max_blocks; 3813 buf->f_bavail = 3814 buf->f_bfree = sbinfo->max_blocks - 3815 percpu_counter_sum(&sbinfo->used_blocks); 3816 } 3817 if (sbinfo->max_inodes) { 3818 buf->f_files = sbinfo->max_inodes; 3819 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3820 } 3821 /* else leave those fields 0 like simple_statfs */ 3822 3823 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3824 3825 return 0; 3826 } 3827 3828 /* 3829 * File creation. Allocate an inode, and we're done.. 3830 */ 3831 static int 3832 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3833 struct dentry *dentry, umode_t mode, dev_t dev) 3834 { 3835 struct inode *inode; 3836 int error; 3837 3838 if (!generic_ci_validate_strict_name(dir, &dentry->d_name)) 3839 return -EINVAL; 3840 3841 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3842 if (IS_ERR(inode)) 3843 return PTR_ERR(inode); 3844 3845 error = simple_acl_create(dir, inode); 3846 if (error) 3847 goto out_iput; 3848 error = security_inode_init_security(inode, dir, &dentry->d_name, 3849 shmem_initxattrs, NULL); 3850 if (error && error != -EOPNOTSUPP) 3851 goto out_iput; 3852 3853 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3854 if (error) 3855 goto out_iput; 3856 3857 dir->i_size += BOGO_DIRENT_SIZE; 3858 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3859 inode_inc_iversion(dir); 3860 3861 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3862 d_add(dentry, inode); 3863 else 3864 d_instantiate(dentry, inode); 3865 3866 dget(dentry); /* Extra count - pin the dentry in core */ 3867 return error; 3868 3869 out_iput: 3870 iput(inode); 3871 return error; 3872 } 3873 3874 static int 3875 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3876 struct file *file, umode_t mode) 3877 { 3878 struct inode *inode; 3879 int error; 3880 3881 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3882 if (IS_ERR(inode)) { 3883 error = PTR_ERR(inode); 3884 goto err_out; 3885 } 3886 error = security_inode_init_security(inode, dir, NULL, 3887 shmem_initxattrs, NULL); 3888 if (error && error != -EOPNOTSUPP) 3889 goto out_iput; 3890 error = simple_acl_create(dir, inode); 3891 if (error) 3892 goto out_iput; 3893 d_tmpfile(file, inode); 3894 3895 err_out: 3896 return finish_open_simple(file, error); 3897 out_iput: 3898 iput(inode); 3899 return error; 3900 } 3901 3902 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3903 struct dentry *dentry, umode_t mode) 3904 { 3905 int error; 3906 3907 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3908 if (error) 3909 return ERR_PTR(error); 3910 inc_nlink(dir); 3911 return NULL; 3912 } 3913 3914 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3915 struct dentry *dentry, umode_t mode, bool excl) 3916 { 3917 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3918 } 3919 3920 /* 3921 * Link a file.. 3922 */ 3923 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3924 struct dentry *dentry) 3925 { 3926 struct inode *inode = d_inode(old_dentry); 3927 int ret = 0; 3928 3929 /* 3930 * No ordinary (disk based) filesystem counts links as inodes; 3931 * but each new link needs a new dentry, pinning lowmem, and 3932 * tmpfs dentries cannot be pruned until they are unlinked. 3933 * But if an O_TMPFILE file is linked into the tmpfs, the 3934 * first link must skip that, to get the accounting right. 3935 */ 3936 if (inode->i_nlink) { 3937 ret = shmem_reserve_inode(inode->i_sb, NULL); 3938 if (ret) 3939 goto out; 3940 } 3941 3942 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3943 if (ret) { 3944 if (inode->i_nlink) 3945 shmem_free_inode(inode->i_sb, 0); 3946 goto out; 3947 } 3948 3949 dir->i_size += BOGO_DIRENT_SIZE; 3950 inode_set_mtime_to_ts(dir, 3951 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3952 inode_inc_iversion(dir); 3953 inc_nlink(inode); 3954 ihold(inode); /* New dentry reference */ 3955 dget(dentry); /* Extra pinning count for the created dentry */ 3956 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3957 d_add(dentry, inode); 3958 else 3959 d_instantiate(dentry, inode); 3960 out: 3961 return ret; 3962 } 3963 3964 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3965 { 3966 struct inode *inode = d_inode(dentry); 3967 3968 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3969 shmem_free_inode(inode->i_sb, 0); 3970 3971 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3972 3973 dir->i_size -= BOGO_DIRENT_SIZE; 3974 inode_set_mtime_to_ts(dir, 3975 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3976 inode_inc_iversion(dir); 3977 drop_nlink(inode); 3978 dput(dentry); /* Undo the count from "create" - does all the work */ 3979 3980 /* 3981 * For now, VFS can't deal with case-insensitive negative dentries, so 3982 * we invalidate them 3983 */ 3984 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3985 d_invalidate(dentry); 3986 3987 return 0; 3988 } 3989 3990 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3991 { 3992 if (!simple_empty(dentry)) 3993 return -ENOTEMPTY; 3994 3995 drop_nlink(d_inode(dentry)); 3996 drop_nlink(dir); 3997 return shmem_unlink(dir, dentry); 3998 } 3999 4000 static int shmem_whiteout(struct mnt_idmap *idmap, 4001 struct inode *old_dir, struct dentry *old_dentry) 4002 { 4003 struct dentry *whiteout; 4004 int error; 4005 4006 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 4007 if (!whiteout) 4008 return -ENOMEM; 4009 4010 error = shmem_mknod(idmap, old_dir, whiteout, 4011 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4012 dput(whiteout); 4013 if (error) 4014 return error; 4015 4016 /* 4017 * Cheat and hash the whiteout while the old dentry is still in 4018 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 4019 * 4020 * d_lookup() will consistently find one of them at this point, 4021 * not sure which one, but that isn't even important. 4022 */ 4023 d_rehash(whiteout); 4024 return 0; 4025 } 4026 4027 /* 4028 * The VFS layer already does all the dentry stuff for rename, 4029 * we just have to decrement the usage count for the target if 4030 * it exists so that the VFS layer correctly free's it when it 4031 * gets overwritten. 4032 */ 4033 static int shmem_rename2(struct mnt_idmap *idmap, 4034 struct inode *old_dir, struct dentry *old_dentry, 4035 struct inode *new_dir, struct dentry *new_dentry, 4036 unsigned int flags) 4037 { 4038 struct inode *inode = d_inode(old_dentry); 4039 int they_are_dirs = S_ISDIR(inode->i_mode); 4040 int error; 4041 4042 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4043 return -EINVAL; 4044 4045 if (flags & RENAME_EXCHANGE) 4046 return simple_offset_rename_exchange(old_dir, old_dentry, 4047 new_dir, new_dentry); 4048 4049 if (!simple_empty(new_dentry)) 4050 return -ENOTEMPTY; 4051 4052 if (flags & RENAME_WHITEOUT) { 4053 error = shmem_whiteout(idmap, old_dir, old_dentry); 4054 if (error) 4055 return error; 4056 } 4057 4058 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 4059 if (error) 4060 return error; 4061 4062 if (d_really_is_positive(new_dentry)) { 4063 (void) shmem_unlink(new_dir, new_dentry); 4064 if (they_are_dirs) { 4065 drop_nlink(d_inode(new_dentry)); 4066 drop_nlink(old_dir); 4067 } 4068 } else if (they_are_dirs) { 4069 drop_nlink(old_dir); 4070 inc_nlink(new_dir); 4071 } 4072 4073 old_dir->i_size -= BOGO_DIRENT_SIZE; 4074 new_dir->i_size += BOGO_DIRENT_SIZE; 4075 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 4076 inode_inc_iversion(old_dir); 4077 inode_inc_iversion(new_dir); 4078 return 0; 4079 } 4080 4081 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 4082 struct dentry *dentry, const char *symname) 4083 { 4084 int error; 4085 int len; 4086 struct inode *inode; 4087 struct folio *folio; 4088 char *link; 4089 4090 len = strlen(symname) + 1; 4091 if (len > PAGE_SIZE) 4092 return -ENAMETOOLONG; 4093 4094 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 4095 VM_NORESERVE); 4096 if (IS_ERR(inode)) 4097 return PTR_ERR(inode); 4098 4099 error = security_inode_init_security(inode, dir, &dentry->d_name, 4100 shmem_initxattrs, NULL); 4101 if (error && error != -EOPNOTSUPP) 4102 goto out_iput; 4103 4104 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 4105 if (error) 4106 goto out_iput; 4107 4108 inode->i_size = len-1; 4109 if (len <= SHORT_SYMLINK_LEN) { 4110 link = kmemdup(symname, len, GFP_KERNEL); 4111 if (!link) { 4112 error = -ENOMEM; 4113 goto out_remove_offset; 4114 } 4115 inode->i_op = &shmem_short_symlink_operations; 4116 inode_set_cached_link(inode, link, len - 1); 4117 } else { 4118 inode_nohighmem(inode); 4119 inode->i_mapping->a_ops = &shmem_aops; 4120 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE); 4121 if (error) 4122 goto out_remove_offset; 4123 inode->i_op = &shmem_symlink_inode_operations; 4124 memcpy(folio_address(folio), symname, len); 4125 folio_mark_uptodate(folio); 4126 folio_mark_dirty(folio); 4127 folio_unlock(folio); 4128 folio_put(folio); 4129 } 4130 dir->i_size += BOGO_DIRENT_SIZE; 4131 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 4132 inode_inc_iversion(dir); 4133 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 4134 d_add(dentry, inode); 4135 else 4136 d_instantiate(dentry, inode); 4137 dget(dentry); 4138 return 0; 4139 4140 out_remove_offset: 4141 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 4142 out_iput: 4143 iput(inode); 4144 return error; 4145 } 4146 4147 static void shmem_put_link(void *arg) 4148 { 4149 folio_mark_accessed(arg); 4150 folio_put(arg); 4151 } 4152 4153 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 4154 struct delayed_call *done) 4155 { 4156 struct folio *folio = NULL; 4157 int error; 4158 4159 if (!dentry) { 4160 folio = filemap_get_folio(inode->i_mapping, 0); 4161 if (IS_ERR(folio)) 4162 return ERR_PTR(-ECHILD); 4163 if (PageHWPoison(folio_page(folio, 0)) || 4164 !folio_test_uptodate(folio)) { 4165 folio_put(folio); 4166 return ERR_PTR(-ECHILD); 4167 } 4168 } else { 4169 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ); 4170 if (error) 4171 return ERR_PTR(error); 4172 if (!folio) 4173 return ERR_PTR(-ECHILD); 4174 if (PageHWPoison(folio_page(folio, 0))) { 4175 folio_unlock(folio); 4176 folio_put(folio); 4177 return ERR_PTR(-ECHILD); 4178 } 4179 folio_unlock(folio); 4180 } 4181 set_delayed_call(done, shmem_put_link, folio); 4182 return folio_address(folio); 4183 } 4184 4185 #ifdef CONFIG_TMPFS_XATTR 4186 4187 static int shmem_fileattr_get(struct dentry *dentry, struct file_kattr *fa) 4188 { 4189 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4190 4191 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 4192 4193 return 0; 4194 } 4195 4196 static int shmem_fileattr_set(struct mnt_idmap *idmap, 4197 struct dentry *dentry, struct file_kattr *fa) 4198 { 4199 struct inode *inode = d_inode(dentry); 4200 struct shmem_inode_info *info = SHMEM_I(inode); 4201 int ret, flags; 4202 4203 if (fileattr_has_fsx(fa)) 4204 return -EOPNOTSUPP; 4205 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 4206 return -EOPNOTSUPP; 4207 4208 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 4209 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 4210 4211 ret = shmem_set_inode_flags(inode, flags, dentry); 4212 4213 if (ret) 4214 return ret; 4215 4216 info->fsflags = flags; 4217 4218 inode_set_ctime_current(inode); 4219 inode_inc_iversion(inode); 4220 return 0; 4221 } 4222 4223 /* 4224 * Superblocks without xattr inode operations may get some security.* xattr 4225 * support from the LSM "for free". As soon as we have any other xattrs 4226 * like ACLs, we also need to implement the security.* handlers at 4227 * filesystem level, though. 4228 */ 4229 4230 /* 4231 * Callback for security_inode_init_security() for acquiring xattrs. 4232 */ 4233 static int shmem_initxattrs(struct inode *inode, 4234 const struct xattr *xattr_array, void *fs_info) 4235 { 4236 struct shmem_inode_info *info = SHMEM_I(inode); 4237 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4238 const struct xattr *xattr; 4239 struct simple_xattr *new_xattr; 4240 size_t ispace = 0; 4241 size_t len; 4242 4243 if (sbinfo->max_inodes) { 4244 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4245 ispace += simple_xattr_space(xattr->name, 4246 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 4247 } 4248 if (ispace) { 4249 raw_spin_lock(&sbinfo->stat_lock); 4250 if (sbinfo->free_ispace < ispace) 4251 ispace = 0; 4252 else 4253 sbinfo->free_ispace -= ispace; 4254 raw_spin_unlock(&sbinfo->stat_lock); 4255 if (!ispace) 4256 return -ENOSPC; 4257 } 4258 } 4259 4260 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4261 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 4262 if (!new_xattr) 4263 break; 4264 4265 len = strlen(xattr->name) + 1; 4266 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 4267 GFP_KERNEL_ACCOUNT); 4268 if (!new_xattr->name) { 4269 kvfree(new_xattr); 4270 break; 4271 } 4272 4273 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 4274 XATTR_SECURITY_PREFIX_LEN); 4275 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 4276 xattr->name, len); 4277 4278 simple_xattr_add(&info->xattrs, new_xattr); 4279 } 4280 4281 if (xattr->name != NULL) { 4282 if (ispace) { 4283 raw_spin_lock(&sbinfo->stat_lock); 4284 sbinfo->free_ispace += ispace; 4285 raw_spin_unlock(&sbinfo->stat_lock); 4286 } 4287 simple_xattrs_free(&info->xattrs, NULL); 4288 return -ENOMEM; 4289 } 4290 4291 return 0; 4292 } 4293 4294 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 4295 struct dentry *unused, struct inode *inode, 4296 const char *name, void *buffer, size_t size) 4297 { 4298 struct shmem_inode_info *info = SHMEM_I(inode); 4299 4300 name = xattr_full_name(handler, name); 4301 return simple_xattr_get(&info->xattrs, name, buffer, size); 4302 } 4303 4304 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 4305 struct mnt_idmap *idmap, 4306 struct dentry *unused, struct inode *inode, 4307 const char *name, const void *value, 4308 size_t size, int flags) 4309 { 4310 struct shmem_inode_info *info = SHMEM_I(inode); 4311 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4312 struct simple_xattr *old_xattr; 4313 size_t ispace = 0; 4314 4315 name = xattr_full_name(handler, name); 4316 if (value && sbinfo->max_inodes) { 4317 ispace = simple_xattr_space(name, size); 4318 raw_spin_lock(&sbinfo->stat_lock); 4319 if (sbinfo->free_ispace < ispace) 4320 ispace = 0; 4321 else 4322 sbinfo->free_ispace -= ispace; 4323 raw_spin_unlock(&sbinfo->stat_lock); 4324 if (!ispace) 4325 return -ENOSPC; 4326 } 4327 4328 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 4329 if (!IS_ERR(old_xattr)) { 4330 ispace = 0; 4331 if (old_xattr && sbinfo->max_inodes) 4332 ispace = simple_xattr_space(old_xattr->name, 4333 old_xattr->size); 4334 simple_xattr_free(old_xattr); 4335 old_xattr = NULL; 4336 inode_set_ctime_current(inode); 4337 inode_inc_iversion(inode); 4338 } 4339 if (ispace) { 4340 raw_spin_lock(&sbinfo->stat_lock); 4341 sbinfo->free_ispace += ispace; 4342 raw_spin_unlock(&sbinfo->stat_lock); 4343 } 4344 return PTR_ERR(old_xattr); 4345 } 4346 4347 static const struct xattr_handler shmem_security_xattr_handler = { 4348 .prefix = XATTR_SECURITY_PREFIX, 4349 .get = shmem_xattr_handler_get, 4350 .set = shmem_xattr_handler_set, 4351 }; 4352 4353 static const struct xattr_handler shmem_trusted_xattr_handler = { 4354 .prefix = XATTR_TRUSTED_PREFIX, 4355 .get = shmem_xattr_handler_get, 4356 .set = shmem_xattr_handler_set, 4357 }; 4358 4359 static const struct xattr_handler shmem_user_xattr_handler = { 4360 .prefix = XATTR_USER_PREFIX, 4361 .get = shmem_xattr_handler_get, 4362 .set = shmem_xattr_handler_set, 4363 }; 4364 4365 static const struct xattr_handler * const shmem_xattr_handlers[] = { 4366 &shmem_security_xattr_handler, 4367 &shmem_trusted_xattr_handler, 4368 &shmem_user_xattr_handler, 4369 NULL 4370 }; 4371 4372 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 4373 { 4374 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4375 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 4376 } 4377 #endif /* CONFIG_TMPFS_XATTR */ 4378 4379 static const struct inode_operations shmem_short_symlink_operations = { 4380 .getattr = shmem_getattr, 4381 .setattr = shmem_setattr, 4382 .get_link = simple_get_link, 4383 #ifdef CONFIG_TMPFS_XATTR 4384 .listxattr = shmem_listxattr, 4385 #endif 4386 }; 4387 4388 static const struct inode_operations shmem_symlink_inode_operations = { 4389 .getattr = shmem_getattr, 4390 .setattr = shmem_setattr, 4391 .get_link = shmem_get_link, 4392 #ifdef CONFIG_TMPFS_XATTR 4393 .listxattr = shmem_listxattr, 4394 #endif 4395 }; 4396 4397 static struct dentry *shmem_get_parent(struct dentry *child) 4398 { 4399 return ERR_PTR(-ESTALE); 4400 } 4401 4402 static int shmem_match(struct inode *ino, void *vfh) 4403 { 4404 __u32 *fh = vfh; 4405 __u64 inum = fh[2]; 4406 inum = (inum << 32) | fh[1]; 4407 return ino->i_ino == inum && fh[0] == ino->i_generation; 4408 } 4409 4410 /* Find any alias of inode, but prefer a hashed alias */ 4411 static struct dentry *shmem_find_alias(struct inode *inode) 4412 { 4413 struct dentry *alias = d_find_alias(inode); 4414 4415 return alias ?: d_find_any_alias(inode); 4416 } 4417 4418 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 4419 struct fid *fid, int fh_len, int fh_type) 4420 { 4421 struct inode *inode; 4422 struct dentry *dentry = NULL; 4423 u64 inum; 4424 4425 if (fh_len < 3) 4426 return NULL; 4427 4428 inum = fid->raw[2]; 4429 inum = (inum << 32) | fid->raw[1]; 4430 4431 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 4432 shmem_match, fid->raw); 4433 if (inode) { 4434 dentry = shmem_find_alias(inode); 4435 iput(inode); 4436 } 4437 4438 return dentry; 4439 } 4440 4441 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 4442 struct inode *parent) 4443 { 4444 if (*len < 3) { 4445 *len = 3; 4446 return FILEID_INVALID; 4447 } 4448 4449 if (inode_unhashed(inode)) { 4450 /* Unfortunately insert_inode_hash is not idempotent, 4451 * so as we hash inodes here rather than at creation 4452 * time, we need a lock to ensure we only try 4453 * to do it once 4454 */ 4455 static DEFINE_SPINLOCK(lock); 4456 spin_lock(&lock); 4457 if (inode_unhashed(inode)) 4458 __insert_inode_hash(inode, 4459 inode->i_ino + inode->i_generation); 4460 spin_unlock(&lock); 4461 } 4462 4463 fh[0] = inode->i_generation; 4464 fh[1] = inode->i_ino; 4465 fh[2] = ((__u64)inode->i_ino) >> 32; 4466 4467 *len = 3; 4468 return 1; 4469 } 4470 4471 static const struct export_operations shmem_export_ops = { 4472 .get_parent = shmem_get_parent, 4473 .encode_fh = shmem_encode_fh, 4474 .fh_to_dentry = shmem_fh_to_dentry, 4475 }; 4476 4477 enum shmem_param { 4478 Opt_gid, 4479 Opt_huge, 4480 Opt_mode, 4481 Opt_mpol, 4482 Opt_nr_blocks, 4483 Opt_nr_inodes, 4484 Opt_size, 4485 Opt_uid, 4486 Opt_inode32, 4487 Opt_inode64, 4488 Opt_noswap, 4489 Opt_quota, 4490 Opt_usrquota, 4491 Opt_grpquota, 4492 Opt_usrquota_block_hardlimit, 4493 Opt_usrquota_inode_hardlimit, 4494 Opt_grpquota_block_hardlimit, 4495 Opt_grpquota_inode_hardlimit, 4496 Opt_casefold_version, 4497 Opt_casefold, 4498 Opt_strict_encoding, 4499 }; 4500 4501 static const struct constant_table shmem_param_enums_huge[] = { 4502 {"never", SHMEM_HUGE_NEVER }, 4503 {"always", SHMEM_HUGE_ALWAYS }, 4504 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 4505 {"advise", SHMEM_HUGE_ADVISE }, 4506 {} 4507 }; 4508 4509 const struct fs_parameter_spec shmem_fs_parameters[] = { 4510 fsparam_gid ("gid", Opt_gid), 4511 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 4512 fsparam_u32oct("mode", Opt_mode), 4513 fsparam_string("mpol", Opt_mpol), 4514 fsparam_string("nr_blocks", Opt_nr_blocks), 4515 fsparam_string("nr_inodes", Opt_nr_inodes), 4516 fsparam_string("size", Opt_size), 4517 fsparam_uid ("uid", Opt_uid), 4518 fsparam_flag ("inode32", Opt_inode32), 4519 fsparam_flag ("inode64", Opt_inode64), 4520 fsparam_flag ("noswap", Opt_noswap), 4521 #ifdef CONFIG_TMPFS_QUOTA 4522 fsparam_flag ("quota", Opt_quota), 4523 fsparam_flag ("usrquota", Opt_usrquota), 4524 fsparam_flag ("grpquota", Opt_grpquota), 4525 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 4526 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 4527 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 4528 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 4529 #endif 4530 fsparam_string("casefold", Opt_casefold_version), 4531 fsparam_flag ("casefold", Opt_casefold), 4532 fsparam_flag ("strict_encoding", Opt_strict_encoding), 4533 {} 4534 }; 4535 4536 #if IS_ENABLED(CONFIG_UNICODE) 4537 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4538 bool latest_version) 4539 { 4540 struct shmem_options *ctx = fc->fs_private; 4541 int version = UTF8_LATEST; 4542 struct unicode_map *encoding; 4543 char *version_str = param->string + 5; 4544 4545 if (!latest_version) { 4546 if (strncmp(param->string, "utf8-", 5)) 4547 return invalfc(fc, "Only UTF-8 encodings are supported " 4548 "in the format: utf8-<version number>"); 4549 4550 version = utf8_parse_version(version_str); 4551 if (version < 0) 4552 return invalfc(fc, "Invalid UTF-8 version: %s", version_str); 4553 } 4554 4555 encoding = utf8_load(version); 4556 4557 if (IS_ERR(encoding)) { 4558 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n", 4559 unicode_major(version), unicode_minor(version), 4560 unicode_rev(version)); 4561 } 4562 4563 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n", 4564 unicode_major(version), unicode_minor(version), unicode_rev(version)); 4565 4566 ctx->encoding = encoding; 4567 4568 return 0; 4569 } 4570 #else 4571 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4572 bool latest_version) 4573 { 4574 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4575 } 4576 #endif 4577 4578 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 4579 { 4580 struct shmem_options *ctx = fc->fs_private; 4581 struct fs_parse_result result; 4582 unsigned long long size; 4583 char *rest; 4584 int opt; 4585 kuid_t kuid; 4586 kgid_t kgid; 4587 4588 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 4589 if (opt < 0) 4590 return opt; 4591 4592 switch (opt) { 4593 case Opt_size: 4594 size = memparse(param->string, &rest); 4595 if (*rest == '%') { 4596 size <<= PAGE_SHIFT; 4597 size *= totalram_pages(); 4598 do_div(size, 100); 4599 rest++; 4600 } 4601 if (*rest) 4602 goto bad_value; 4603 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 4604 ctx->seen |= SHMEM_SEEN_BLOCKS; 4605 break; 4606 case Opt_nr_blocks: 4607 ctx->blocks = memparse(param->string, &rest); 4608 if (*rest || ctx->blocks > LONG_MAX) 4609 goto bad_value; 4610 ctx->seen |= SHMEM_SEEN_BLOCKS; 4611 break; 4612 case Opt_nr_inodes: 4613 ctx->inodes = memparse(param->string, &rest); 4614 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 4615 goto bad_value; 4616 ctx->seen |= SHMEM_SEEN_INODES; 4617 break; 4618 case Opt_mode: 4619 ctx->mode = result.uint_32 & 07777; 4620 break; 4621 case Opt_uid: 4622 kuid = result.uid; 4623 4624 /* 4625 * The requested uid must be representable in the 4626 * filesystem's idmapping. 4627 */ 4628 if (!kuid_has_mapping(fc->user_ns, kuid)) 4629 goto bad_value; 4630 4631 ctx->uid = kuid; 4632 break; 4633 case Opt_gid: 4634 kgid = result.gid; 4635 4636 /* 4637 * The requested gid must be representable in the 4638 * filesystem's idmapping. 4639 */ 4640 if (!kgid_has_mapping(fc->user_ns, kgid)) 4641 goto bad_value; 4642 4643 ctx->gid = kgid; 4644 break; 4645 case Opt_huge: 4646 ctx->huge = result.uint_32; 4647 if (ctx->huge != SHMEM_HUGE_NEVER && 4648 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4649 has_transparent_hugepage())) 4650 goto unsupported_parameter; 4651 ctx->seen |= SHMEM_SEEN_HUGE; 4652 break; 4653 case Opt_mpol: 4654 if (IS_ENABLED(CONFIG_NUMA)) { 4655 mpol_put(ctx->mpol); 4656 ctx->mpol = NULL; 4657 if (mpol_parse_str(param->string, &ctx->mpol)) 4658 goto bad_value; 4659 break; 4660 } 4661 goto unsupported_parameter; 4662 case Opt_inode32: 4663 ctx->full_inums = false; 4664 ctx->seen |= SHMEM_SEEN_INUMS; 4665 break; 4666 case Opt_inode64: 4667 if (sizeof(ino_t) < 8) { 4668 return invalfc(fc, 4669 "Cannot use inode64 with <64bit inums in kernel\n"); 4670 } 4671 ctx->full_inums = true; 4672 ctx->seen |= SHMEM_SEEN_INUMS; 4673 break; 4674 case Opt_noswap: 4675 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4676 return invalfc(fc, 4677 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4678 } 4679 ctx->noswap = true; 4680 ctx->seen |= SHMEM_SEEN_NOSWAP; 4681 break; 4682 case Opt_quota: 4683 if (fc->user_ns != &init_user_ns) 4684 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4685 ctx->seen |= SHMEM_SEEN_QUOTA; 4686 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4687 break; 4688 case Opt_usrquota: 4689 if (fc->user_ns != &init_user_ns) 4690 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4691 ctx->seen |= SHMEM_SEEN_QUOTA; 4692 ctx->quota_types |= QTYPE_MASK_USR; 4693 break; 4694 case Opt_grpquota: 4695 if (fc->user_ns != &init_user_ns) 4696 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4697 ctx->seen |= SHMEM_SEEN_QUOTA; 4698 ctx->quota_types |= QTYPE_MASK_GRP; 4699 break; 4700 case Opt_usrquota_block_hardlimit: 4701 size = memparse(param->string, &rest); 4702 if (*rest || !size) 4703 goto bad_value; 4704 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4705 return invalfc(fc, 4706 "User quota block hardlimit too large."); 4707 ctx->qlimits.usrquota_bhardlimit = size; 4708 break; 4709 case Opt_grpquota_block_hardlimit: 4710 size = memparse(param->string, &rest); 4711 if (*rest || !size) 4712 goto bad_value; 4713 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4714 return invalfc(fc, 4715 "Group quota block hardlimit too large."); 4716 ctx->qlimits.grpquota_bhardlimit = size; 4717 break; 4718 case Opt_usrquota_inode_hardlimit: 4719 size = memparse(param->string, &rest); 4720 if (*rest || !size) 4721 goto bad_value; 4722 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4723 return invalfc(fc, 4724 "User quota inode hardlimit too large."); 4725 ctx->qlimits.usrquota_ihardlimit = size; 4726 break; 4727 case Opt_grpquota_inode_hardlimit: 4728 size = memparse(param->string, &rest); 4729 if (*rest || !size) 4730 goto bad_value; 4731 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4732 return invalfc(fc, 4733 "Group quota inode hardlimit too large."); 4734 ctx->qlimits.grpquota_ihardlimit = size; 4735 break; 4736 case Opt_casefold_version: 4737 return shmem_parse_opt_casefold(fc, param, false); 4738 case Opt_casefold: 4739 return shmem_parse_opt_casefold(fc, param, true); 4740 case Opt_strict_encoding: 4741 #if IS_ENABLED(CONFIG_UNICODE) 4742 ctx->strict_encoding = true; 4743 break; 4744 #else 4745 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4746 #endif 4747 } 4748 return 0; 4749 4750 unsupported_parameter: 4751 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4752 bad_value: 4753 return invalfc(fc, "Bad value for '%s'", param->key); 4754 } 4755 4756 static char *shmem_next_opt(char **s) 4757 { 4758 char *sbegin = *s; 4759 char *p; 4760 4761 if (sbegin == NULL) 4762 return NULL; 4763 4764 /* 4765 * NUL-terminate this option: unfortunately, 4766 * mount options form a comma-separated list, 4767 * but mpol's nodelist may also contain commas. 4768 */ 4769 for (;;) { 4770 p = strchr(*s, ','); 4771 if (p == NULL) 4772 break; 4773 *s = p + 1; 4774 if (!isdigit(*(p+1))) { 4775 *p = '\0'; 4776 return sbegin; 4777 } 4778 } 4779 4780 *s = NULL; 4781 return sbegin; 4782 } 4783 4784 static int shmem_parse_monolithic(struct fs_context *fc, void *data) 4785 { 4786 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt); 4787 } 4788 4789 /* 4790 * Reconfigure a shmem filesystem. 4791 */ 4792 static int shmem_reconfigure(struct fs_context *fc) 4793 { 4794 struct shmem_options *ctx = fc->fs_private; 4795 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4796 unsigned long used_isp; 4797 struct mempolicy *mpol = NULL; 4798 const char *err; 4799 4800 raw_spin_lock(&sbinfo->stat_lock); 4801 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4802 4803 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4804 if (!sbinfo->max_blocks) { 4805 err = "Cannot retroactively limit size"; 4806 goto out; 4807 } 4808 if (percpu_counter_compare(&sbinfo->used_blocks, 4809 ctx->blocks) > 0) { 4810 err = "Too small a size for current use"; 4811 goto out; 4812 } 4813 } 4814 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4815 if (!sbinfo->max_inodes) { 4816 err = "Cannot retroactively limit inodes"; 4817 goto out; 4818 } 4819 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4820 err = "Too few inodes for current use"; 4821 goto out; 4822 } 4823 } 4824 4825 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4826 sbinfo->next_ino > UINT_MAX) { 4827 err = "Current inum too high to switch to 32-bit inums"; 4828 goto out; 4829 } 4830 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4831 err = "Cannot disable swap on remount"; 4832 goto out; 4833 } 4834 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4835 err = "Cannot enable swap on remount if it was disabled on first mount"; 4836 goto out; 4837 } 4838 4839 if (ctx->seen & SHMEM_SEEN_QUOTA && 4840 !sb_any_quota_loaded(fc->root->d_sb)) { 4841 err = "Cannot enable quota on remount"; 4842 goto out; 4843 } 4844 4845 #ifdef CONFIG_TMPFS_QUOTA 4846 #define CHANGED_LIMIT(name) \ 4847 (ctx->qlimits.name## hardlimit && \ 4848 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4849 4850 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4851 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4852 err = "Cannot change global quota limit on remount"; 4853 goto out; 4854 } 4855 #endif /* CONFIG_TMPFS_QUOTA */ 4856 4857 if (ctx->seen & SHMEM_SEEN_HUGE) 4858 sbinfo->huge = ctx->huge; 4859 if (ctx->seen & SHMEM_SEEN_INUMS) 4860 sbinfo->full_inums = ctx->full_inums; 4861 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4862 sbinfo->max_blocks = ctx->blocks; 4863 if (ctx->seen & SHMEM_SEEN_INODES) { 4864 sbinfo->max_inodes = ctx->inodes; 4865 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4866 } 4867 4868 /* 4869 * Preserve previous mempolicy unless mpol remount option was specified. 4870 */ 4871 if (ctx->mpol) { 4872 mpol = sbinfo->mpol; 4873 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4874 ctx->mpol = NULL; 4875 } 4876 4877 if (ctx->noswap) 4878 sbinfo->noswap = true; 4879 4880 raw_spin_unlock(&sbinfo->stat_lock); 4881 mpol_put(mpol); 4882 return 0; 4883 out: 4884 raw_spin_unlock(&sbinfo->stat_lock); 4885 return invalfc(fc, "%s", err); 4886 } 4887 4888 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4889 { 4890 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4891 struct mempolicy *mpol; 4892 4893 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4894 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4895 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4896 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4897 if (sbinfo->mode != (0777 | S_ISVTX)) 4898 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4899 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4900 seq_printf(seq, ",uid=%u", 4901 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4902 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4903 seq_printf(seq, ",gid=%u", 4904 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4905 4906 /* 4907 * Showing inode{64,32} might be useful even if it's the system default, 4908 * since then people don't have to resort to checking both here and 4909 * /proc/config.gz to confirm 64-bit inums were successfully applied 4910 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4911 * 4912 * We hide it when inode64 isn't the default and we are using 32-bit 4913 * inodes, since that probably just means the feature isn't even under 4914 * consideration. 4915 * 4916 * As such: 4917 * 4918 * +-----------------+-----------------+ 4919 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4920 * +------------------+-----------------+-----------------+ 4921 * | full_inums=true | show | show | 4922 * | full_inums=false | show | hide | 4923 * +------------------+-----------------+-----------------+ 4924 * 4925 */ 4926 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4927 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4928 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4929 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4930 if (sbinfo->huge) 4931 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4932 #endif 4933 mpol = shmem_get_sbmpol(sbinfo); 4934 shmem_show_mpol(seq, mpol); 4935 mpol_put(mpol); 4936 if (sbinfo->noswap) 4937 seq_printf(seq, ",noswap"); 4938 #ifdef CONFIG_TMPFS_QUOTA 4939 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4940 seq_printf(seq, ",usrquota"); 4941 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4942 seq_printf(seq, ",grpquota"); 4943 if (sbinfo->qlimits.usrquota_bhardlimit) 4944 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4945 sbinfo->qlimits.usrquota_bhardlimit); 4946 if (sbinfo->qlimits.grpquota_bhardlimit) 4947 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4948 sbinfo->qlimits.grpquota_bhardlimit); 4949 if (sbinfo->qlimits.usrquota_ihardlimit) 4950 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4951 sbinfo->qlimits.usrquota_ihardlimit); 4952 if (sbinfo->qlimits.grpquota_ihardlimit) 4953 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4954 sbinfo->qlimits.grpquota_ihardlimit); 4955 #endif 4956 return 0; 4957 } 4958 4959 #endif /* CONFIG_TMPFS */ 4960 4961 static void shmem_put_super(struct super_block *sb) 4962 { 4963 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4964 4965 #if IS_ENABLED(CONFIG_UNICODE) 4966 if (sb->s_encoding) 4967 utf8_unload(sb->s_encoding); 4968 #endif 4969 4970 #ifdef CONFIG_TMPFS_QUOTA 4971 shmem_disable_quotas(sb); 4972 #endif 4973 free_percpu(sbinfo->ino_batch); 4974 percpu_counter_destroy(&sbinfo->used_blocks); 4975 mpol_put(sbinfo->mpol); 4976 kfree(sbinfo); 4977 sb->s_fs_info = NULL; 4978 } 4979 4980 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS) 4981 static const struct dentry_operations shmem_ci_dentry_ops = { 4982 .d_hash = generic_ci_d_hash, 4983 .d_compare = generic_ci_d_compare, 4984 }; 4985 #endif 4986 4987 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4988 { 4989 struct shmem_options *ctx = fc->fs_private; 4990 struct inode *inode; 4991 struct shmem_sb_info *sbinfo; 4992 int error = -ENOMEM; 4993 4994 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4995 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4996 L1_CACHE_BYTES), GFP_KERNEL); 4997 if (!sbinfo) 4998 return error; 4999 5000 sb->s_fs_info = sbinfo; 5001 5002 #ifdef CONFIG_TMPFS 5003 /* 5004 * Per default we only allow half of the physical ram per 5005 * tmpfs instance, limiting inodes to one per page of lowmem; 5006 * but the internal instance is left unlimited. 5007 */ 5008 if (!(sb->s_flags & SB_KERNMOUNT)) { 5009 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 5010 ctx->blocks = shmem_default_max_blocks(); 5011 if (!(ctx->seen & SHMEM_SEEN_INODES)) 5012 ctx->inodes = shmem_default_max_inodes(); 5013 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 5014 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 5015 sbinfo->noswap = ctx->noswap; 5016 } else { 5017 sb->s_flags |= SB_NOUSER; 5018 } 5019 sb->s_export_op = &shmem_export_ops; 5020 sb->s_flags |= SB_NOSEC; 5021 5022 #if IS_ENABLED(CONFIG_UNICODE) 5023 if (!ctx->encoding && ctx->strict_encoding) { 5024 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n"); 5025 error = -EINVAL; 5026 goto failed; 5027 } 5028 5029 if (ctx->encoding) { 5030 sb->s_encoding = ctx->encoding; 5031 set_default_d_op(sb, &shmem_ci_dentry_ops); 5032 if (ctx->strict_encoding) 5033 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL; 5034 } 5035 #endif 5036 5037 #else 5038 sb->s_flags |= SB_NOUSER; 5039 #endif /* CONFIG_TMPFS */ 5040 sb->s_d_flags |= DCACHE_DONTCACHE; 5041 sbinfo->max_blocks = ctx->blocks; 5042 sbinfo->max_inodes = ctx->inodes; 5043 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 5044 if (sb->s_flags & SB_KERNMOUNT) { 5045 sbinfo->ino_batch = alloc_percpu(ino_t); 5046 if (!sbinfo->ino_batch) 5047 goto failed; 5048 } 5049 sbinfo->uid = ctx->uid; 5050 sbinfo->gid = ctx->gid; 5051 sbinfo->full_inums = ctx->full_inums; 5052 sbinfo->mode = ctx->mode; 5053 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5054 if (ctx->seen & SHMEM_SEEN_HUGE) 5055 sbinfo->huge = ctx->huge; 5056 else 5057 sbinfo->huge = tmpfs_huge; 5058 #endif 5059 sbinfo->mpol = ctx->mpol; 5060 ctx->mpol = NULL; 5061 5062 raw_spin_lock_init(&sbinfo->stat_lock); 5063 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 5064 goto failed; 5065 spin_lock_init(&sbinfo->shrinklist_lock); 5066 INIT_LIST_HEAD(&sbinfo->shrinklist); 5067 5068 sb->s_maxbytes = MAX_LFS_FILESIZE; 5069 sb->s_blocksize = PAGE_SIZE; 5070 sb->s_blocksize_bits = PAGE_SHIFT; 5071 sb->s_magic = TMPFS_MAGIC; 5072 sb->s_op = &shmem_ops; 5073 sb->s_time_gran = 1; 5074 #ifdef CONFIG_TMPFS_XATTR 5075 sb->s_xattr = shmem_xattr_handlers; 5076 #endif 5077 #ifdef CONFIG_TMPFS_POSIX_ACL 5078 sb->s_flags |= SB_POSIXACL; 5079 #endif 5080 uuid_t uuid; 5081 uuid_gen(&uuid); 5082 super_set_uuid(sb, uuid.b, sizeof(uuid)); 5083 5084 #ifdef CONFIG_TMPFS_QUOTA 5085 if (ctx->seen & SHMEM_SEEN_QUOTA) { 5086 sb->dq_op = &shmem_quota_operations; 5087 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5088 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 5089 5090 /* Copy the default limits from ctx into sbinfo */ 5091 memcpy(&sbinfo->qlimits, &ctx->qlimits, 5092 sizeof(struct shmem_quota_limits)); 5093 5094 if (shmem_enable_quotas(sb, ctx->quota_types)) 5095 goto failed; 5096 } 5097 #endif /* CONFIG_TMPFS_QUOTA */ 5098 5099 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 5100 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 5101 if (IS_ERR(inode)) { 5102 error = PTR_ERR(inode); 5103 goto failed; 5104 } 5105 inode->i_uid = sbinfo->uid; 5106 inode->i_gid = sbinfo->gid; 5107 sb->s_root = d_make_root(inode); 5108 if (!sb->s_root) 5109 goto failed; 5110 return 0; 5111 5112 failed: 5113 shmem_put_super(sb); 5114 return error; 5115 } 5116 5117 static int shmem_get_tree(struct fs_context *fc) 5118 { 5119 return get_tree_nodev(fc, shmem_fill_super); 5120 } 5121 5122 static void shmem_free_fc(struct fs_context *fc) 5123 { 5124 struct shmem_options *ctx = fc->fs_private; 5125 5126 if (ctx) { 5127 mpol_put(ctx->mpol); 5128 kfree(ctx); 5129 } 5130 } 5131 5132 static const struct fs_context_operations shmem_fs_context_ops = { 5133 .free = shmem_free_fc, 5134 .get_tree = shmem_get_tree, 5135 #ifdef CONFIG_TMPFS 5136 .parse_monolithic = shmem_parse_monolithic, 5137 .parse_param = shmem_parse_one, 5138 .reconfigure = shmem_reconfigure, 5139 #endif 5140 }; 5141 5142 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 5143 5144 static struct inode *shmem_alloc_inode(struct super_block *sb) 5145 { 5146 struct shmem_inode_info *info; 5147 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 5148 if (!info) 5149 return NULL; 5150 return &info->vfs_inode; 5151 } 5152 5153 static void shmem_free_in_core_inode(struct inode *inode) 5154 { 5155 if (S_ISLNK(inode->i_mode)) 5156 kfree(inode->i_link); 5157 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 5158 } 5159 5160 static void shmem_destroy_inode(struct inode *inode) 5161 { 5162 if (S_ISREG(inode->i_mode)) 5163 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 5164 if (S_ISDIR(inode->i_mode)) 5165 simple_offset_destroy(shmem_get_offset_ctx(inode)); 5166 } 5167 5168 static void shmem_init_inode(void *foo) 5169 { 5170 struct shmem_inode_info *info = foo; 5171 inode_init_once(&info->vfs_inode); 5172 } 5173 5174 static void __init shmem_init_inodecache(void) 5175 { 5176 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 5177 sizeof(struct shmem_inode_info), 5178 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 5179 } 5180 5181 static void __init shmem_destroy_inodecache(void) 5182 { 5183 kmem_cache_destroy(shmem_inode_cachep); 5184 } 5185 5186 /* Keep the page in page cache instead of truncating it */ 5187 static int shmem_error_remove_folio(struct address_space *mapping, 5188 struct folio *folio) 5189 { 5190 return 0; 5191 } 5192 5193 static const struct address_space_operations shmem_aops = { 5194 .dirty_folio = noop_dirty_folio, 5195 #ifdef CONFIG_TMPFS 5196 .write_begin = shmem_write_begin, 5197 .write_end = shmem_write_end, 5198 #endif 5199 #ifdef CONFIG_MIGRATION 5200 .migrate_folio = migrate_folio, 5201 #endif 5202 .error_remove_folio = shmem_error_remove_folio, 5203 }; 5204 5205 static const struct file_operations shmem_file_operations = { 5206 .mmap = shmem_mmap, 5207 .open = shmem_file_open, 5208 .get_unmapped_area = shmem_get_unmapped_area, 5209 #ifdef CONFIG_TMPFS 5210 .llseek = shmem_file_llseek, 5211 .read_iter = shmem_file_read_iter, 5212 .write_iter = shmem_file_write_iter, 5213 .fsync = noop_fsync, 5214 .splice_read = shmem_file_splice_read, 5215 .splice_write = iter_file_splice_write, 5216 .fallocate = shmem_fallocate, 5217 #endif 5218 }; 5219 5220 static const struct inode_operations shmem_inode_operations = { 5221 .getattr = shmem_getattr, 5222 .setattr = shmem_setattr, 5223 #ifdef CONFIG_TMPFS_XATTR 5224 .listxattr = shmem_listxattr, 5225 .set_acl = simple_set_acl, 5226 .fileattr_get = shmem_fileattr_get, 5227 .fileattr_set = shmem_fileattr_set, 5228 #endif 5229 }; 5230 5231 static const struct inode_operations shmem_dir_inode_operations = { 5232 #ifdef CONFIG_TMPFS 5233 .getattr = shmem_getattr, 5234 .create = shmem_create, 5235 .lookup = simple_lookup, 5236 .link = shmem_link, 5237 .unlink = shmem_unlink, 5238 .symlink = shmem_symlink, 5239 .mkdir = shmem_mkdir, 5240 .rmdir = shmem_rmdir, 5241 .mknod = shmem_mknod, 5242 .rename = shmem_rename2, 5243 .tmpfile = shmem_tmpfile, 5244 .get_offset_ctx = shmem_get_offset_ctx, 5245 #endif 5246 #ifdef CONFIG_TMPFS_XATTR 5247 .listxattr = shmem_listxattr, 5248 .fileattr_get = shmem_fileattr_get, 5249 .fileattr_set = shmem_fileattr_set, 5250 #endif 5251 #ifdef CONFIG_TMPFS_POSIX_ACL 5252 .setattr = shmem_setattr, 5253 .set_acl = simple_set_acl, 5254 #endif 5255 }; 5256 5257 static const struct inode_operations shmem_special_inode_operations = { 5258 .getattr = shmem_getattr, 5259 #ifdef CONFIG_TMPFS_XATTR 5260 .listxattr = shmem_listxattr, 5261 #endif 5262 #ifdef CONFIG_TMPFS_POSIX_ACL 5263 .setattr = shmem_setattr, 5264 .set_acl = simple_set_acl, 5265 #endif 5266 }; 5267 5268 static const struct super_operations shmem_ops = { 5269 .alloc_inode = shmem_alloc_inode, 5270 .free_inode = shmem_free_in_core_inode, 5271 .destroy_inode = shmem_destroy_inode, 5272 #ifdef CONFIG_TMPFS 5273 .statfs = shmem_statfs, 5274 .show_options = shmem_show_options, 5275 #endif 5276 #ifdef CONFIG_TMPFS_QUOTA 5277 .get_dquots = shmem_get_dquots, 5278 #endif 5279 .evict_inode = shmem_evict_inode, 5280 .drop_inode = inode_just_drop, 5281 .put_super = shmem_put_super, 5282 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5283 .nr_cached_objects = shmem_unused_huge_count, 5284 .free_cached_objects = shmem_unused_huge_scan, 5285 #endif 5286 }; 5287 5288 static const struct vm_operations_struct shmem_vm_ops = { 5289 .fault = shmem_fault, 5290 .map_pages = filemap_map_pages, 5291 #ifdef CONFIG_NUMA 5292 .set_policy = shmem_set_policy, 5293 .get_policy = shmem_get_policy, 5294 #endif 5295 }; 5296 5297 static const struct vm_operations_struct shmem_anon_vm_ops = { 5298 .fault = shmem_fault, 5299 .map_pages = filemap_map_pages, 5300 #ifdef CONFIG_NUMA 5301 .set_policy = shmem_set_policy, 5302 .get_policy = shmem_get_policy, 5303 #endif 5304 }; 5305 5306 int shmem_init_fs_context(struct fs_context *fc) 5307 { 5308 struct shmem_options *ctx; 5309 5310 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 5311 if (!ctx) 5312 return -ENOMEM; 5313 5314 ctx->mode = 0777 | S_ISVTX; 5315 ctx->uid = current_fsuid(); 5316 ctx->gid = current_fsgid(); 5317 5318 #if IS_ENABLED(CONFIG_UNICODE) 5319 ctx->encoding = NULL; 5320 #endif 5321 5322 fc->fs_private = ctx; 5323 fc->ops = &shmem_fs_context_ops; 5324 #ifdef CONFIG_TMPFS 5325 fc->sb_flags |= SB_I_VERSION; 5326 #endif 5327 return 0; 5328 } 5329 5330 static struct file_system_type shmem_fs_type = { 5331 .owner = THIS_MODULE, 5332 .name = "tmpfs", 5333 .init_fs_context = shmem_init_fs_context, 5334 #ifdef CONFIG_TMPFS 5335 .parameters = shmem_fs_parameters, 5336 #endif 5337 .kill_sb = kill_litter_super, 5338 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME, 5339 }; 5340 5341 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5342 5343 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \ 5344 { \ 5345 .attr = { .name = __stringify(_name), .mode = _mode }, \ 5346 .show = _show, \ 5347 .store = _store, \ 5348 } 5349 5350 #define TMPFS_ATTR_W(_name, _store) \ 5351 static struct kobj_attribute tmpfs_attr_##_name = \ 5352 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store) 5353 5354 #define TMPFS_ATTR_RW(_name, _show, _store) \ 5355 static struct kobj_attribute tmpfs_attr_##_name = \ 5356 __INIT_KOBJ_ATTR(_name, 0644, _show, _store) 5357 5358 #define TMPFS_ATTR_RO(_name, _show) \ 5359 static struct kobj_attribute tmpfs_attr_##_name = \ 5360 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL) 5361 5362 #if IS_ENABLED(CONFIG_UNICODE) 5363 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a, 5364 char *buf) 5365 { 5366 return sysfs_emit(buf, "supported\n"); 5367 } 5368 TMPFS_ATTR_RO(casefold, casefold_show); 5369 #endif 5370 5371 static struct attribute *tmpfs_attributes[] = { 5372 #if IS_ENABLED(CONFIG_UNICODE) 5373 &tmpfs_attr_casefold.attr, 5374 #endif 5375 NULL 5376 }; 5377 5378 static const struct attribute_group tmpfs_attribute_group = { 5379 .attrs = tmpfs_attributes, 5380 .name = "features" 5381 }; 5382 5383 static struct kobject *tmpfs_kobj; 5384 5385 static int __init tmpfs_sysfs_init(void) 5386 { 5387 int ret; 5388 5389 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj); 5390 if (!tmpfs_kobj) 5391 return -ENOMEM; 5392 5393 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group); 5394 if (ret) 5395 kobject_put(tmpfs_kobj); 5396 5397 return ret; 5398 } 5399 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */ 5400 5401 void __init shmem_init(void) 5402 { 5403 int error; 5404 5405 shmem_init_inodecache(); 5406 5407 #ifdef CONFIG_TMPFS_QUOTA 5408 register_quota_format(&shmem_quota_format); 5409 #endif 5410 5411 error = register_filesystem(&shmem_fs_type); 5412 if (error) { 5413 pr_err("Could not register tmpfs\n"); 5414 goto out2; 5415 } 5416 5417 shm_mnt = kern_mount(&shmem_fs_type); 5418 if (IS_ERR(shm_mnt)) { 5419 error = PTR_ERR(shm_mnt); 5420 pr_err("Could not kern_mount tmpfs\n"); 5421 goto out1; 5422 } 5423 5424 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5425 error = tmpfs_sysfs_init(); 5426 if (error) { 5427 pr_err("Could not init tmpfs sysfs\n"); 5428 goto out1; 5429 } 5430 #endif 5431 5432 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5433 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 5434 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5435 else 5436 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 5437 5438 /* 5439 * Default to setting PMD-sized THP to inherit the global setting and 5440 * disable all other multi-size THPs. 5441 */ 5442 if (!shmem_orders_configured) 5443 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER); 5444 #endif 5445 return; 5446 5447 out1: 5448 unregister_filesystem(&shmem_fs_type); 5449 out2: 5450 #ifdef CONFIG_TMPFS_QUOTA 5451 unregister_quota_format(&shmem_quota_format); 5452 #endif 5453 shmem_destroy_inodecache(); 5454 shm_mnt = ERR_PTR(error); 5455 } 5456 5457 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 5458 static ssize_t shmem_enabled_show(struct kobject *kobj, 5459 struct kobj_attribute *attr, char *buf) 5460 { 5461 static const int values[] = { 5462 SHMEM_HUGE_ALWAYS, 5463 SHMEM_HUGE_WITHIN_SIZE, 5464 SHMEM_HUGE_ADVISE, 5465 SHMEM_HUGE_NEVER, 5466 SHMEM_HUGE_DENY, 5467 SHMEM_HUGE_FORCE, 5468 }; 5469 int len = 0; 5470 int i; 5471 5472 for (i = 0; i < ARRAY_SIZE(values); i++) { 5473 len += sysfs_emit_at(buf, len, 5474 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 5475 i ? " " : "", shmem_format_huge(values[i])); 5476 } 5477 len += sysfs_emit_at(buf, len, "\n"); 5478 5479 return len; 5480 } 5481 5482 static ssize_t shmem_enabled_store(struct kobject *kobj, 5483 struct kobj_attribute *attr, const char *buf, size_t count) 5484 { 5485 char tmp[16]; 5486 int huge, err; 5487 5488 if (count + 1 > sizeof(tmp)) 5489 return -EINVAL; 5490 memcpy(tmp, buf, count); 5491 tmp[count] = '\0'; 5492 if (count && tmp[count - 1] == '\n') 5493 tmp[count - 1] = '\0'; 5494 5495 huge = shmem_parse_huge(tmp); 5496 if (huge == -EINVAL) 5497 return huge; 5498 5499 shmem_huge = huge; 5500 if (shmem_huge > SHMEM_HUGE_DENY) 5501 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5502 5503 err = start_stop_khugepaged(); 5504 return err ? err : count; 5505 } 5506 5507 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 5508 static DEFINE_SPINLOCK(huge_shmem_orders_lock); 5509 5510 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj, 5511 struct kobj_attribute *attr, char *buf) 5512 { 5513 int order = to_thpsize(kobj)->order; 5514 const char *output; 5515 5516 if (test_bit(order, &huge_shmem_orders_always)) 5517 output = "[always] inherit within_size advise never"; 5518 else if (test_bit(order, &huge_shmem_orders_inherit)) 5519 output = "always [inherit] within_size advise never"; 5520 else if (test_bit(order, &huge_shmem_orders_within_size)) 5521 output = "always inherit [within_size] advise never"; 5522 else if (test_bit(order, &huge_shmem_orders_madvise)) 5523 output = "always inherit within_size [advise] never"; 5524 else 5525 output = "always inherit within_size advise [never]"; 5526 5527 return sysfs_emit(buf, "%s\n", output); 5528 } 5529 5530 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj, 5531 struct kobj_attribute *attr, 5532 const char *buf, size_t count) 5533 { 5534 int order = to_thpsize(kobj)->order; 5535 ssize_t ret = count; 5536 5537 if (sysfs_streq(buf, "always")) { 5538 spin_lock(&huge_shmem_orders_lock); 5539 clear_bit(order, &huge_shmem_orders_inherit); 5540 clear_bit(order, &huge_shmem_orders_madvise); 5541 clear_bit(order, &huge_shmem_orders_within_size); 5542 set_bit(order, &huge_shmem_orders_always); 5543 spin_unlock(&huge_shmem_orders_lock); 5544 } else if (sysfs_streq(buf, "inherit")) { 5545 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5546 if (shmem_huge == SHMEM_HUGE_FORCE && 5547 order != HPAGE_PMD_ORDER) 5548 return -EINVAL; 5549 5550 spin_lock(&huge_shmem_orders_lock); 5551 clear_bit(order, &huge_shmem_orders_always); 5552 clear_bit(order, &huge_shmem_orders_madvise); 5553 clear_bit(order, &huge_shmem_orders_within_size); 5554 set_bit(order, &huge_shmem_orders_inherit); 5555 spin_unlock(&huge_shmem_orders_lock); 5556 } else if (sysfs_streq(buf, "within_size")) { 5557 spin_lock(&huge_shmem_orders_lock); 5558 clear_bit(order, &huge_shmem_orders_always); 5559 clear_bit(order, &huge_shmem_orders_inherit); 5560 clear_bit(order, &huge_shmem_orders_madvise); 5561 set_bit(order, &huge_shmem_orders_within_size); 5562 spin_unlock(&huge_shmem_orders_lock); 5563 } else if (sysfs_streq(buf, "advise")) { 5564 spin_lock(&huge_shmem_orders_lock); 5565 clear_bit(order, &huge_shmem_orders_always); 5566 clear_bit(order, &huge_shmem_orders_inherit); 5567 clear_bit(order, &huge_shmem_orders_within_size); 5568 set_bit(order, &huge_shmem_orders_madvise); 5569 spin_unlock(&huge_shmem_orders_lock); 5570 } else if (sysfs_streq(buf, "never")) { 5571 spin_lock(&huge_shmem_orders_lock); 5572 clear_bit(order, &huge_shmem_orders_always); 5573 clear_bit(order, &huge_shmem_orders_inherit); 5574 clear_bit(order, &huge_shmem_orders_within_size); 5575 clear_bit(order, &huge_shmem_orders_madvise); 5576 spin_unlock(&huge_shmem_orders_lock); 5577 } else { 5578 ret = -EINVAL; 5579 } 5580 5581 if (ret > 0) { 5582 int err = start_stop_khugepaged(); 5583 5584 if (err) 5585 ret = err; 5586 } 5587 return ret; 5588 } 5589 5590 struct kobj_attribute thpsize_shmem_enabled_attr = 5591 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store); 5592 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 5593 5594 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 5595 5596 static int __init setup_transparent_hugepage_shmem(char *str) 5597 { 5598 int huge; 5599 5600 huge = shmem_parse_huge(str); 5601 if (huge == -EINVAL) { 5602 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n"); 5603 return huge; 5604 } 5605 5606 shmem_huge = huge; 5607 return 1; 5608 } 5609 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem); 5610 5611 static int __init setup_transparent_hugepage_tmpfs(char *str) 5612 { 5613 int huge; 5614 5615 huge = shmem_parse_huge(str); 5616 if (huge < 0) { 5617 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n"); 5618 return huge; 5619 } 5620 5621 tmpfs_huge = huge; 5622 return 1; 5623 } 5624 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs); 5625 5626 static char str_dup[PAGE_SIZE] __initdata; 5627 static int __init setup_thp_shmem(char *str) 5628 { 5629 char *token, *range, *policy, *subtoken; 5630 unsigned long always, inherit, madvise, within_size; 5631 char *start_size, *end_size; 5632 int start, end, nr; 5633 char *p; 5634 5635 if (!str || strlen(str) + 1 > PAGE_SIZE) 5636 goto err; 5637 strscpy(str_dup, str); 5638 5639 always = huge_shmem_orders_always; 5640 inherit = huge_shmem_orders_inherit; 5641 madvise = huge_shmem_orders_madvise; 5642 within_size = huge_shmem_orders_within_size; 5643 p = str_dup; 5644 while ((token = strsep(&p, ";")) != NULL) { 5645 range = strsep(&token, ":"); 5646 policy = token; 5647 5648 if (!policy) 5649 goto err; 5650 5651 while ((subtoken = strsep(&range, ",")) != NULL) { 5652 if (strchr(subtoken, '-')) { 5653 start_size = strsep(&subtoken, "-"); 5654 end_size = subtoken; 5655 5656 start = get_order_from_str(start_size, 5657 THP_ORDERS_ALL_FILE_DEFAULT); 5658 end = get_order_from_str(end_size, 5659 THP_ORDERS_ALL_FILE_DEFAULT); 5660 } else { 5661 start_size = end_size = subtoken; 5662 start = end = get_order_from_str(subtoken, 5663 THP_ORDERS_ALL_FILE_DEFAULT); 5664 } 5665 5666 if (start < 0) { 5667 pr_err("invalid size %s in thp_shmem boot parameter\n", 5668 start_size); 5669 goto err; 5670 } 5671 5672 if (end < 0) { 5673 pr_err("invalid size %s in thp_shmem boot parameter\n", 5674 end_size); 5675 goto err; 5676 } 5677 5678 if (start > end) 5679 goto err; 5680 5681 nr = end - start + 1; 5682 if (!strcmp(policy, "always")) { 5683 bitmap_set(&always, start, nr); 5684 bitmap_clear(&inherit, start, nr); 5685 bitmap_clear(&madvise, start, nr); 5686 bitmap_clear(&within_size, start, nr); 5687 } else if (!strcmp(policy, "advise")) { 5688 bitmap_set(&madvise, start, nr); 5689 bitmap_clear(&inherit, start, nr); 5690 bitmap_clear(&always, start, nr); 5691 bitmap_clear(&within_size, start, nr); 5692 } else if (!strcmp(policy, "inherit")) { 5693 bitmap_set(&inherit, start, nr); 5694 bitmap_clear(&madvise, start, nr); 5695 bitmap_clear(&always, start, nr); 5696 bitmap_clear(&within_size, start, nr); 5697 } else if (!strcmp(policy, "within_size")) { 5698 bitmap_set(&within_size, start, nr); 5699 bitmap_clear(&inherit, start, nr); 5700 bitmap_clear(&madvise, start, nr); 5701 bitmap_clear(&always, start, nr); 5702 } else if (!strcmp(policy, "never")) { 5703 bitmap_clear(&inherit, start, nr); 5704 bitmap_clear(&madvise, start, nr); 5705 bitmap_clear(&always, start, nr); 5706 bitmap_clear(&within_size, start, nr); 5707 } else { 5708 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy); 5709 goto err; 5710 } 5711 } 5712 } 5713 5714 huge_shmem_orders_always = always; 5715 huge_shmem_orders_madvise = madvise; 5716 huge_shmem_orders_inherit = inherit; 5717 huge_shmem_orders_within_size = within_size; 5718 shmem_orders_configured = true; 5719 return 1; 5720 5721 err: 5722 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str); 5723 return 0; 5724 } 5725 __setup("thp_shmem=", setup_thp_shmem); 5726 5727 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5728 5729 #else /* !CONFIG_SHMEM */ 5730 5731 /* 5732 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 5733 * 5734 * This is intended for small system where the benefits of the full 5735 * shmem code (swap-backed and resource-limited) are outweighed by 5736 * their complexity. On systems without swap this code should be 5737 * effectively equivalent, but much lighter weight. 5738 */ 5739 5740 static struct file_system_type shmem_fs_type = { 5741 .name = "tmpfs", 5742 .init_fs_context = ramfs_init_fs_context, 5743 .parameters = ramfs_fs_parameters, 5744 .kill_sb = ramfs_kill_sb, 5745 .fs_flags = FS_USERNS_MOUNT, 5746 }; 5747 5748 void __init shmem_init(void) 5749 { 5750 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 5751 5752 shm_mnt = kern_mount(&shmem_fs_type); 5753 BUG_ON(IS_ERR(shm_mnt)); 5754 } 5755 5756 int shmem_unuse(unsigned int type) 5757 { 5758 return 0; 5759 } 5760 5761 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 5762 { 5763 return 0; 5764 } 5765 5766 void shmem_unlock_mapping(struct address_space *mapping) 5767 { 5768 } 5769 5770 #ifdef CONFIG_MMU 5771 unsigned long shmem_get_unmapped_area(struct file *file, 5772 unsigned long addr, unsigned long len, 5773 unsigned long pgoff, unsigned long flags) 5774 { 5775 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags); 5776 } 5777 #endif 5778 5779 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 5780 { 5781 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 5782 } 5783 EXPORT_SYMBOL_GPL(shmem_truncate_range); 5784 5785 #define shmem_vm_ops generic_file_vm_ops 5786 #define shmem_anon_vm_ops generic_file_vm_ops 5787 #define shmem_file_operations ramfs_file_operations 5788 #define shmem_acct_size(flags, size) 0 5789 #define shmem_unacct_size(flags, size) do {} while (0) 5790 5791 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 5792 struct super_block *sb, struct inode *dir, 5793 umode_t mode, dev_t dev, unsigned long flags) 5794 { 5795 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 5796 return inode ? inode : ERR_PTR(-ENOSPC); 5797 } 5798 5799 #endif /* CONFIG_SHMEM */ 5800 5801 /* common code */ 5802 5803 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 5804 loff_t size, unsigned long flags, unsigned int i_flags) 5805 { 5806 struct inode *inode; 5807 struct file *res; 5808 5809 if (IS_ERR(mnt)) 5810 return ERR_CAST(mnt); 5811 5812 if (size < 0 || size > MAX_LFS_FILESIZE) 5813 return ERR_PTR(-EINVAL); 5814 5815 if (is_idmapped_mnt(mnt)) 5816 return ERR_PTR(-EINVAL); 5817 5818 if (shmem_acct_size(flags, size)) 5819 return ERR_PTR(-ENOMEM); 5820 5821 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 5822 S_IFREG | S_IRWXUGO, 0, flags); 5823 if (IS_ERR(inode)) { 5824 shmem_unacct_size(flags, size); 5825 return ERR_CAST(inode); 5826 } 5827 inode->i_flags |= i_flags; 5828 inode->i_size = size; 5829 clear_nlink(inode); /* It is unlinked */ 5830 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 5831 if (!IS_ERR(res)) 5832 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 5833 &shmem_file_operations); 5834 if (IS_ERR(res)) 5835 iput(inode); 5836 return res; 5837 } 5838 5839 /** 5840 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 5841 * kernel internal. There will be NO LSM permission checks against the 5842 * underlying inode. So users of this interface must do LSM checks at a 5843 * higher layer. The users are the big_key and shm implementations. LSM 5844 * checks are provided at the key or shm level rather than the inode. 5845 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5846 * @size: size to be set for the file 5847 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5848 */ 5849 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 5850 { 5851 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 5852 } 5853 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 5854 5855 /** 5856 * shmem_file_setup - get an unlinked file living in tmpfs 5857 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5858 * @size: size to be set for the file 5859 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5860 */ 5861 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 5862 { 5863 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 5864 } 5865 EXPORT_SYMBOL_GPL(shmem_file_setup); 5866 5867 /** 5868 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 5869 * @mnt: the tmpfs mount where the file will be created 5870 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5871 * @size: size to be set for the file 5872 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5873 */ 5874 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 5875 loff_t size, unsigned long flags) 5876 { 5877 return __shmem_file_setup(mnt, name, size, flags, 0); 5878 } 5879 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 5880 5881 /** 5882 * shmem_zero_setup - setup a shared anonymous mapping 5883 * @vma: the vma to be mmapped is prepared by do_mmap 5884 */ 5885 int shmem_zero_setup(struct vm_area_struct *vma) 5886 { 5887 struct file *file; 5888 loff_t size = vma->vm_end - vma->vm_start; 5889 5890 /* 5891 * Cloning a new file under mmap_lock leads to a lock ordering conflict 5892 * between XFS directory reading and selinux: since this file is only 5893 * accessible to the user through its mapping, use S_PRIVATE flag to 5894 * bypass file security, in the same way as shmem_kernel_file_setup(). 5895 */ 5896 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 5897 if (IS_ERR(file)) 5898 return PTR_ERR(file); 5899 5900 if (vma->vm_file) 5901 fput(vma->vm_file); 5902 vma->vm_file = file; 5903 vma->vm_ops = &shmem_anon_vm_ops; 5904 5905 return 0; 5906 } 5907 5908 /** 5909 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 5910 * @mapping: the folio's address_space 5911 * @index: the folio index 5912 * @gfp: the page allocator flags to use if allocating 5913 * 5914 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 5915 * with any new page allocations done using the specified allocation flags. 5916 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 5917 * suit tmpfs, since it may have pages in swapcache, and needs to find those 5918 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 5919 * 5920 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 5921 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 5922 */ 5923 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 5924 pgoff_t index, gfp_t gfp) 5925 { 5926 #ifdef CONFIG_SHMEM 5927 struct inode *inode = mapping->host; 5928 struct folio *folio; 5929 int error; 5930 5931 error = shmem_get_folio_gfp(inode, index, i_size_read(inode), 5932 &folio, SGP_CACHE, gfp, NULL, NULL); 5933 if (error) 5934 return ERR_PTR(error); 5935 5936 folio_unlock(folio); 5937 return folio; 5938 #else 5939 /* 5940 * The tiny !SHMEM case uses ramfs without swap 5941 */ 5942 return mapping_read_folio_gfp(mapping, index, gfp); 5943 #endif 5944 } 5945 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 5946 5947 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 5948 pgoff_t index, gfp_t gfp) 5949 { 5950 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 5951 struct page *page; 5952 5953 if (IS_ERR(folio)) 5954 return &folio->page; 5955 5956 page = folio_file_page(folio, index); 5957 if (PageHWPoison(page)) { 5958 folio_put(folio); 5959 return ERR_PTR(-EIO); 5960 } 5961 5962 return page; 5963 } 5964 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 5965